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Abstract

The clinical signs of sepsis are subtle, and the current diagnosis lacks sensitivity and specificity.

Gene-expression based diagnostic approaches have the potential to provide faster and more

accurate diagnoses, but to be clinically practical and cost effective, new diagnostic approaches

must use a small number of input genes. Here gene-expression data for 63 neonatal infants is

used to derive three machine learning based classifiers that predict sepsis in neonatal infants.

In contrast to previous analysis of this data set, input genes are not pre-selected with univariate

statistical methods; feature selection is incorporated into the machine learning pipeline. The

results demonstrate that L1 penalised logistic regression, support vector machines used with

recursive feature elimination, and random forests all produce classifiers that predict sepsis

infection with high sensitivity and specificity using ten or fewer input genes.
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Chapter 1

Introduction

Sepsis is the leading pathway to death from infection of any kind. The World Health Organi-

sation estimates that approximately six million people die of sepsis annually [1]. Speaking at

the recent Sepsis Tech and Innovation 2021 conference, Prof. Steven Simpson of University of

Kansas presented analysis estimating the annual cost of treating Sepsis to the US healthcare

system at a staggering $63bn [2].

The clinical signs of sepsis are subtle, and the current diagnosis lacks sensitivity and specificity.

Recent work carried out at Imperial College London as part of the DiAlS study has shown

that the introduction of digital sepsis alerts in hospitals (early warning systems used to identify

clinical deterioration), reduced the risk of death by 14% [3]. At the same time, a study published

in June 2021 by the University of Michigan found that one of the most widely used early warning

systems in the US (the Epic Sepsis Model) failed to detect 67% of patients later found to have

sepsis [4]. This illustrates the lack of sensitivity in current technologies. The development of

faster and more accurate detection systems deployed at scale have the potential to save lives

as well as mitigate the overuse of antibiotics and reduce healthcare costs.

Machine learning (“ML”) based approaches to the diagnosis of sepsis have been reported by

many researchers. These primarily focus on adult patient populations using vital sign, demo-

graphic and metabolic patient data as inputs [5]. In contrast, this project uses gene expression

data from neonatal infants as the basis for developing a machine learning based classifier for

the diagnosis of sepsis, building on work carried out at the university of Edinburgh in 2014

(“the 2014 project”) [6].

Chapter 2 will outline the aims and objectives of the project. Chapter 3 provides an brief
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overview of the existing research into sepsis diagnosis using machine learning. This is followed

in Chapter 4 by a discussion of the nature of the problem being solved, the academic context,

why it is difficult and some important methodological background on the techniques used.

Chapter 5 details the approach taken to solve the problem and the rationale. The project

results and the analysis of those results are the subject of Chapter 6. Chapter 7 summarises

the main conclusions of the project and presents ideas for further work. Chapter 8 is a personal

reflection on the work, the learnings from it, and areas for future personal development.

2



Chapter 2

Aims and Objectives

The aim of this project is to develop a ML classifier capable of diagnosing sepsis in neo-natal

infants based on the measured expression levels of a small number of genes in their blood. Gene

expression can be measured for tens of thousands of individual genes in a given patient at a

given time, hence the task is one of ‘gene selection’ as well as classification. Gene selection

studies in biomedicine often have one or both of the following aims [7]:

1. To identify a broad set of relevant genes that help explain the underlying biology of a

disease pathway, in this case sepsis. This may include similar genes, whose expression

levels are correlated.

2. To identify the minimum subset of genes that provide accurate classification (diagnosis).

This is most valuable in a clinical setting, as the smaller the number of genes for which

expression levels need to be measured, the faster and cheaper the test. In this case,

gene-selection must eliminate redundant genes.

This project builds on the 2014 project which identified a set of 52 genes that both helped

explain the underlying pathways involved in sepsis, and provided an accurate classifier [6]. The

aim of this project is to identify a minimal set of approximately 5-10 genes capable of reliably

distinguishing between healthy and infected neonatal infants. In machine learning terms, this

means developing a robust approach to feature selection, as well as a high performing classifier.

In order to achieve this aim, this project will take as input a data set of 63 neonatal infants

obtained from the Project Sepsis Research Group at Cardiff University, approximately balanced

between healthy and infected patients. The work will test and compare the effectiveness of
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alternative ML strategies for feature selection and binary classification. The output will be one

or more high performing classifiers, an analysis of their performance, and a description of the

required input features.
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Chapter 3

Background

This chapter provides a brief overview of the current uses of ML in sepsis diagnosis, and in the

broader context of omics data. It concludes with a summary of the previous analysis of the

data set used in this project.

3.1 Machine Learning Applications in Sepsis Diagnosis

Over the past decade, ML algorithms have been applied to the problem of sepsis diagnosis in

a wide variety of settings. A 2019 meta-analysis of the prediction of sepsis using ML based

techniques across seven studies between 2016 and 2018 concluded that ML approaches perform

better at predicting the onset of sepsis than traditional clinical scoring tools such as SIRS 1 and

SOFA 2 [10]. A 2020 meta-analysis by Fleuren and colleagues also concluded that ML models

can accurately predict sepsis onset. Of the 23 papers reviewed, a wide variety of ML approaches

were used including SVMs, näıve Bayes, decision trees, and neural networks [5]. Deep neural

network architectures such as CNNs, RNNs and LSTMs have also been successfully employed

in sepsis predictors [11] [12]. The overwhelming majority of existing studies appear to use a

small (fewer than 50) number of features, typically drawn from clinical vital sign, co-morbidity,

1The SIRS (systemic inflammatory response syndrome) screening tool identifies patients as being at risk of

sepsis where at least two out of body temperature, heart rate, respiratory rate and white blood cell count are

outside a defined expected range [8].
2The SOFA (Sequential Organ Failure Assessment) score is based on six scores, one for each of the respiratory,

cardiovascular, hepatic, coagulation, renal and neurological systems each scored from 0 to 4 with an increasing

score reflecting worsening organ dysfunction. A change in the SOFA score of 2 or more is seen as a defining

characteristic of sepsis [9].
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demographic, and metabolic data, rather than gene expression or other ’omics’ data.

3.2 Machine Learning and “Omics” Data

The application of ML methods to the vast amounts of biological data now available across

genomics, transcriptomics, proteomics and metabolomics is a very active area of research in

disease diagnosis and understanding, particularly in areas such as oncology [13]. The integration

of these heterogeneous and high-dimensional data sources gives the potential to develop more

powerful ML classifiers for disease diagnosis than currently exist [14]. In the diagnosis of

sepsis specifically, gene-expression based diagnostic approaches have recently been developed

and validated in clinical settings in collaboration with California-based Inflamatix Inc. who

are developing a commercial diagnostic device [15] [16]. The literature on the application of

ML techniques to sepsis diagnosis using omics data is however limited, and mainly focuses on

adult patients. There is therefore an opportunity to build on the research base in this area to

investigate the use of ML approaches more fully with omics data, and in particular in neonatal

infants.

3.3 The 2014 Project

The 2014 project focused on the identification of genes that differentiate neonatal infants with

a bacterial sepsis infection from healthy neonatal infants. The data set used was recruited from

neonatal infants at the Neonatal Unit, Royal Infirmary of Edinburgh and analysed by Smith,

Ghazal and colleagues at the University of Edinburgh in 2014 [6].

A common approach in gene selection studies is to select the features (genes), based on their

differential expression as a preliminary step prior to classification and without reference to the

classification algorithm that is later used. Genes are also often selected based on univariate

methods, where the relevance of a gene is estimated in isolation from other genes [7]. Differen-

tially expressed genes are commonly selected using two standard methods. The ‘fold-change’

method measures the ratio of the absolute value of a gene expression level between two classes,

here infected and healthy. Genes are defined as differentially expressed if the ratio exceeds

a pre-determined threshold. The ‘p-value’ approach, provides a probability, a p-value, as the

output of a statistical test of the difference in the mean expression level between the two classes

6



[17].

The 2014 project selected the 52 candidate genes in this way. A statistical cut off of adjusted

P ≤ 10−5 and a quantitative cut off of fold change ≥ 4 were applied to select the 52 genes. Fol-

lowing gene selection, the reduced 52-gene set was modelled using a range of machine learning

techniques (random forest, support vector machine, k-nearest neighbour, and logistic regres-

sion). The resulting logistic regression based classifier performed well, with an accuracy of 0.98,

sensitivity (recall) of 1.00 and specificity of 0.97 [6].

This approach to pre-selecting genes is not necessarily the most appropriate for identifying

the minimal set of genes that result in good classification performance, since the selection of

the features is independent of the classifier later used to model the data. The chosen features

may also be correlated, and interactions between genes are not taken into account [7]. The

limitations of univariate feature selection approaches are explained more fully in Section 4.3.1.

This project seeks to build on the 2014 project and identify a smaller set of 5-10 genes that can

be used to accurately predict neonatal sepsis, using ML techniques that utilise in-built feature

selection.
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Chapter 4

Problem

4.1 Overview

The challenge in this project is to develop a highly accurate ML classifier capable of differen-

tiating neonatal infants with sepsis (‘infected’) from healthy neonatal infants (‘healthy’). In

order to be practically useful in a clinical setting, a diagnostic test based on the gene expression

levels must use a limited set of genes (e.g. 5-10), since measuring the expression of each gene

increases the time and cost of performing the test. To be clinically credible, the relevance of the

genes selected must be verified: the test needs to be explainable based on existing knowledge

of the underlying biology [18].

4.2 High Dimensional, Low Sample Size Data

The data set used for the project contains data on 63 neonatal infants, with information on

gene expression levels for 48,802 gene probes for each patient. Formally, we have a set of m

examples Xk, yk, where (k = 1, ....m), where m = 63, and where there are p variables xk,i

where (i = 1, ....p), where p = 48, 802. The shape of this data set is often referred to as a high

dimensional, low sample size (HDLSS) data set.

HDLSS data sets are common when dealing with omics data. Microarray gene sequencing

technology produces data sets with tens of thousands of variables, each being the level of

expression of a particular gene in a patient. However, the practicalities of recruiting patients
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in a clinical setting means that the number examples m is often far lower than the number of

observed variables p. The high dimensional nature of the data set presents unique challenges,

often referred to as the ‘Curse of dimensionality’ [19]. In particular:

1. Data sparsity - a data set with p dimensions can be thought of as being located in a

p-dimensional space. Where m <<< p, most of the space is likely to contain no data, i.e.

be sparse. This sparsity makes it less likely that a given set of examples is representative

of the underlying population.

2. Multi-colinearity - where the number of dimensions is larger than the number of ex-

amples (p > m), at least one variable can be expressed as a linear combination of the

others. This means that some of the variables are redundant.

3. Overfitting - the higher p, the greater the complexity of the classifier and its ability to

model both underlying patterns and noise in the training data.

Choosing a robust approach to feature selection to mitigate these issues is central to this project.

An overview of the most relevant techniques is given in Section 4.3.

The very low number of examples also presents significant challenges in model evaluation,

given the very limited amount of data available for train, validation and test sets. In order to

perform feature selection, hyper parameter tuning and model evaluation, this work will require

techniques to maximise the exploitation of the information available in the 63 examples. One

such technique is using a nested cross validation strategy for hyper parameter tuning and model

evaluation, outlined in Section 4.4.

The combination of complex feature selection approaches (e.g. recursive feature selection de-

scribed below) and computationally costly cross validation approaches (e.g. leave one out cross

validation) has a negative impact on the computational cost and memory requirements of model

training, in turn making hyper parameter tuning more expensive. An efficient approach to hy-

per parameter optimisation will therefore also be valuable in this project. One such approach

is Bayesian Optimisation using Gaussian processes, outlined in Section 4.5.
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4.3 Feature Selection

Filtering out irrelevant and redundant features is essential to avoid the above issues, in par-

ticular overfitting, and to provide faster and less resource-intensive models. In the case of a

biological data set, the features selected can be verified for their relevance based on prior expert

knowledge of their function. Equally, they may help elucidate the underlying biological pro-

cesses taking place [20] [18]. Feature selection methods have been characterised into variable

ranking methods, wrapper methods, and embedded methods [21]. The following sections briefly

outline the principles of each type, and detail the specific methods used in this project.

4.3.1 Variable Ranking Methods

Variable ranking feature selection methods are performed as a pre-processing step, indepen-

dently of the choice of ML classifier. In a supervised learning classification setting, variables

are scored based on their relevance in discriminating between the classes and then ranked. The

top ranked features are then selected. The process is computationally efficient as for a set of n

variables, n scores are computed [21]. Section 3.1 outlined the variable scoring methods based

on p-values for differences in means and fold change that are commonly used in gene selection

studies.

Variable ranking methods that select variables according to their individual predictive power

of class labels have two significant drawbacks.

1. Multi-colinearity of features remain. It is possible that the selected subset of features will

include colinear and therefore redundant features. At the same time, useful features may

have been discarded.

2. Variable interactions are ignored. A variable that shows a low predictive power when

taken alone may provide significant performance improvement when used along with

other variables, as a result of the separation in a higher dimensional space being better

than the separation in a single dimension. In this way, complementary genes could be

missed from the feature set [21].

That said, given the relative computational efficiency of variable ranking methods, they remain

relevant to this project. The variable scoring method used in this work is based on mutual
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information, or equivalently information gain. Information gain is chosen for two reasons.

Firstly it may be used with discrete and continuous data, as in our classification problem.

Secondly, information gain will detect any relationships between the data sets and is insensitive

to the number of examples [22]. For each feature in the data set, the information gain between

feature vector fi (again where i = 1, ....p and p = 48, 802) and target vector y is calculated.

The features are then ranked by their score. Information gain is a positive number, the higher

the value, the stronger the relationship and it is equal to zero if and only if two features are

independent.

Formally, the information gain between variables X and Y is given by Equation 4.1, where

H(X) is a measure of the purity of the data set Y and H(Y |X) is a measure of the purity of

the data set Y given X.

Gain(X;Y ) = H(Y )−H(Y |X) (4.1)

In the case of binary classification, for a given variableXi, information gain is given by Equation

4.2, where C is a cost function measuring the impurity of the data set as a function of the

probability a of the label being equal to 1.

Gain(Y ;Xi) = H(Y )−H(Y |Xi) = C(P [y])− (P [x1]C(P [y|x1]) + P [x0]C(P [y|x0]) (4.2)

The function used in this work to calculate information gain is the scikit-learn function

mutual_info_classif, which uses entropy as the cost function C, described by Equation 4.3

C(a) = −alog2(a)− (1− a)log2(1− a) (4.3)

This function also uses an approach based on k-nearest neighbour distances to discretize the

continuous variables for the purpose of calculating information gain as developed by Ross 2014

[22].

4.3.2 Wrapper Methods

Wrapper or ’search and score’ methods take subsets of features and use the prediction per-

formance of a machine learning model to determine the relative usefulness of a given feature
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subset. A wrapper method includes a definition of how to search over possible feature subsets,

and a methodology for evaluating model performance on each subset, typically via cross valida-

tion. Two common approaches to searching over possible subsets are greedy sequential search,

and recursive feature elimination (RFE) which has been demonstrated to perform well using

high dimensional omics data [18].

The RFE algorithm is a backwards search procedure, starting with all of the input features

and pruning features until a minimum subset of features is obtained. The features are pruned

by recursively fitting a classifier to the data, and discarding the least relevant features at each

iteration.

The relevance of features is determined by a ranking criterion, based on the change to the

objective or loss function of the classifier as a result of removing a given feature. The greater

the change to the objective function, the more relevant a feature. Assuming a classifier is trained

using an objective function J over the training examples, the change in the cost function DJ(i)

on removing a feature i is given by Equation 4.4.

DJ(i) = (1/2)
δ2J

δω2
i

(Dωi)2 (4.4)

The RFE procedure works as follows and produces a feature ranking, where feature subsets are

nested F1 ⊂ F2 ⊂ F3.

1. Train the classifier, i.e. optimize weights ωi with respect to J

2. Compute the ranking criterion for all features (DJ(i))

3. Remove the feature with the smallest ranking criterion

The main drawback of RFE is the computational cost of the algorithm. When features are

removed one at a time, complexity scales in proportion to the number of features. In our case,

with over 48,000 features, computational cost is a potential issue with this approach.

4.3.3 Embedded Methods

Embedded methods perform feature selection during the training of a predictor, and are there-

fore typically specific to a given learning method. Examples of embedded methods are L1
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regularisation (LASSO) in linear and logistic regression models, and feature selection based on

feature importance in random forests [23] [24].

The cost function in a logistic regression model J , over m training examples, with respect to

weights vector θ is given by Equation 4.5:

J(θ) =
1

m

m∑

i=1

Cost(hθ(xi), yi) (4.5)

Where the cost contribution from a given example is described by Equations 4.6 and 4.7.

Cost(hθ(x), y) = −y.log(hθ(x))− (1− y)log(hθ(x)) (4.6)

Where:

hθ(x) =
1

1 + e−(θTx)
(4.7)

Regularisation adds a penalty term to the cost function J(θ) to constrain the magnitude of the

weights. L1 regularisation adds a penalty based on the magnitude of the feature coefficients.

In this case, the coefficient of a given feature may be set to zero, resulting in the removal of the

feature from the model. The cost function, including the L1 penalty is given by Equation 4.8.

J(θ) =
1

m

m∑

i=1

Cost(hθ(xi), yi) + λ
k∑

j=1

|θj| (4.8)

The parameter λ determines the size of the penalty and k is the number of features. This

illustrates how the feature selection step is ‘embedded’ within the minimisation of the cost

function in the logistic regression model. By increasing the value of λ, the L1 penalty is

increased, reducing the coefficients of the features, and resulting in more features having a zero

coefficient, i.e. more features are removed.

Decision tree based models also have embedded feature selection methods. As an example, in

a random forest classifier, the feature importance of a given feature is calculated based on the

mean information gain (also described as the “mean decrease in impurity”) over all nodes in a

decision tree, weighted by proportion of samples reaching that node, averaged over all trees of

the ensemble [25]. Information gain for a given node is calculated as described previously in

Equation 4.2. In the case of calculating feature importance, the cost function used to measure

purity in this work is the Gini index, an alternative to entropy, and given by Equation 4.9.
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C(a) = 2a(1− a) (4.9)

Given the very large number of features in our dataset, the aim in this project is to avoid

variable ranking based methods where possible, and instead use methods that select subsets of

variables together based on their predictive power, while at the same time yielding a compact

set of features that provide good classification performance with the chosen models.

4.3.4 Feature Stability

A further challenge of working with such a high dimensional data set is the ‘stability’ of the

selected feature set. The objective of this work is not only to identify a minimal set of features

for the diagnosis of sepsis, but also a meaningful set of features that have underlying biological

validity. The stability of the feature selection procedure relates to how the chosen feature

subset varies with different samples drawn from the training data. If the feature subset changes

dramatically for small changes in the training data, the model could be described as unstable.

If the feature subset is invariate to changes in the training data, it could be described as stable

[26].

4.4 Nested Cross Validation

The wrapper and embedded methods for feature selection described above both require a cross

validation step to evaluate the relative performance of alternative feature subsets. A common

challenge with high dimensional, low sample size data sets is having sufficient examples to

perform robust feature selection and hyper parameter tuning separately from model evaluation.

The tuning of hyper-parameters and selection of features cannot be performed on the same

validation set, as this will lead to biased estimates of performance [27].

To solve this, nested cross validation is often applied to small data sets. The general nested

cross validation scheme is illustrated in Figure 4.1. The data set is split into train and test

sets (the outer CV loop). A k-fold cross validation is applied to the train set (the inner CV

loop). The entire feature selection and hyper parameter optimisation pipeline is applied to the

inner CV loop, and the optimum features and parameters selected. In the interests of deriving

the least biased estimate of model performance, leave one out cross validation can be used in
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this inner loop. A model is then retrained on the full train set using the chosen features and

parameters. This model is then used to make predictions on the test set, and the predictions

scored.

With a low number of examples such as in our case, there may still be high variance in the

model performance depending on the examples in the train and test sets. The address this,

the generalisation error of the model is estimated by averaging the model performance scores

of the test set over multiple train / test splits (the outer loop).

Figure 4.1: Illustration of Nested Cross Validation [28]

4.5 Bayesian Optimisation with Gaussian Processes

The combination of nested cross validation with hyper parameter optimisation in the inner

loop adds to the complexity of the models, impacting run times and resource requirements.

Grid search based hyper parameter turning can be time consuming and potentially test a

large number of poorly performing parameters. To improve model optimisation times, another

important methodology used in this project is Baysian Optimisation with Gaussian Processes.

Bayesian optimisation using Gaussian processes is an alternative approach to searching the

hyper-parameter space. Rather than testing all possible values as in a grid search, a Bayesian

search identifies the most promising next value of a parameter to test, based on the performance
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of previous values, relative to some objective function.

Given an objective function f(x) that provides and evaluation of a ML model trained on

features x, Bayesian optimisation is a machine-learning optimisation methodology that solves

the problem:

x∗ = argmax
x

f(x) (4.10)

In the problem addressed in this project, the set A of possible values of x, and the objective

function f have the following properties [29] [30]:

1. The set of variables A, (in our case hyper parameters and or numbers of features) is a

simple set where x ∈ Rd; ai ≤ xi ≤ bi.

2. The objective function f is continuous and expensive to evaluate, in particular time

consuming given the number of potential values of x, and complexity of the function.

3. f is a ’black box’ meaning that there is no closed form solution and it is not differentiable;

therefore it can not be solved easily with techniques such as gradient descent.

The task of hyper parameter optimisation where there is a complex objective function, such as

a nested cross validation procedure, evaluating the accuracy of a machine learning model, and

where there is a large potential search space, making f(x) expensive to evaluate, fits the above

criteria.

There are two components to the Bayesian optimisation process. Firstly a statistical model (a

Gaussian process) for modelling the objective function that calculates a probability distribution

for the potential values of f(x) at given of x. Secondly an ‘acquisition function’, that calculates

the expected improvement in the objective function at each potential value of x, and therefore

determines which value of x is selected for the next iteration of the process. The acquisition

function selects the value of x that provides the greater expected improvement in f(x), based

on the current probability distribution.

The iterative process can be summarised as follows. The number of iterations of the process T

is defined ahead of time [29]:

For t = 1,..., T:
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1. Given the set of observations (xi, yi = f(xi)) for i = 1, ..., t, build a statistical model for

the objective function f using Gaussian process regression

2. Use a computationally inexpensive ’surrogate’ acquisition function u(x) based on the

posterior probability distribution of f to calculate the next point x based on the expected

maximum improvement in f(x).

xt+1 = argmax
x

u(x)

3. Calculate the next observation yt+1 at xt+1

The process therefore explores the search space (e.g. hyperparameter space) by progressively

estimating values of the parameters with the maximum expected improvements in the objective

function (e.g. model performance). This means a wider search space can be evaluated in

a given time, as less valuable regions are ignored. This is in contrast to a grid search or

randomised search procedure where possible hyperparameter values are treated equally, and

potentially large numbers of poorly performing values would have to be evaluated to achieve

the same result, at significant time cost. A more detailed mathematical discussion of Bayesian

optimisation is given in [30].
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Chapter 5

Approach

The project will apply a number of widely used machine algorithms to the neonatal data

set, incorporating feature selection into the pipeline to build an accurate classifier. The main

algorithms under consideration at the outset were L1 regularised logistic regression, linear

support vector machines and random forests.

5.1 Data Collection

The data set contains gene-expression level information on 63 neonatal infants. The produce the

data set, the RNA collected from the infected and control infants was hybridized onto Illumina

Human Whole-Genome Expression BeadChip HT12v3 microarrays comprising 48,802 features

(gene probes). The raw data from 63 samples was transformed using standard techniques when

using microarray outputs - variance stabilizing transformation and robust spline normalization

- designed to remove systematic variation between samples resulting from the process of mea-

surement rather than underlying biological differences. The examples are labelled as either

infected (indices with prefix ‘Inf’) and healthy (indices with prefix ‘Con’), based on clinical

assessment of the patients at the time of data collection. The infected patients were confirmed

to have a bacterial infection, save one virally infected patient with index Inf075 [6].
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5.2 Data Pre-Processing

Data pre-processing consisted of three steps. Firstly, the data set was de-duplicated to that

there were no duplicate features. The data was de-duplicated based on the column Probe_Id,

the unique identifier in the dataset that maps to an individual gene probe. A single duplicate

feature was removed. Secondly, the data was searched for NaN values: none were identified.

Finally, each feature vector xi was standardised (or ‘z-scored’), meaning all 63 values for each

feature were re-scaled to give a mean of 0 and standard deviation of 1. L1 regularisation (in

logistic regression and SVM models) requires features to be on the same scale. The L1 penalty

uses the magnitude of the coefficient of each feature to determine the penalty - having features

on different scales would result in features on larger scales dis-proportionally impacting the

penalty term, and biasing the selection of features.

5.3 Validation Strategy

Given the very low number of examples, a nested cross validation strategy was implemented,

as described in Section 4.4.

The outer cross-validation loop, used for model selection and performance evaluation, uses a

3-fold split, resulting in three sets of training examples of 42 examples, and three correspond-

ing test sets of 21 examples. This was implemented as a repeated k-fold cross validation to

enable repeating experiments over multiple train-test splits, while ensuring that each example

is contained in the test set every three iterations. Performance metrics could then be averaged

over all iterations to reduce the impact of variance in the scores.

Where cross validation is needed for the purpose of feature selection (such as in the RFE

procedure) or hyper parameter tuning, the inner cross validation loop implemented leave-one-

out cross validation to provide the most reliable estimate of model performance; a worthwhile

trade-off with increased computational cost given the small sample size. The resulting 42-

fold cross validation, has 41 training examples and one validation example for each fold. The

inner cross validation procedure was manually coded to allow the predictions for the validation

examples to be stored and then scored across all folds. Standard python cross validation

functions such as GridSearchCV do not facilitate this, as they calculate metrics on each fold and

then average across folds, giving errors when using a leave one out strategy. The code for the
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function that performs the outer cross validation loop and model evaluation is given in Listing

5.1. Examples of the code implementing the inner cross validation loops are given in Sections

5.4.1 and 5.4.2.

Listing 5.1: Nested Cross Validation

def nested_cv_lr(df , labels , n_repeats):

# configure the cross -validation procedure

cv_outer = RepeatedKFold(n_splits=3, n_repeats=n_repeats)

# containers to collect scores from each outer loop iteration

scores_list = []

best_parameters_list = []

mis_classified_list = []

selected_features_list = []

# create outer cv loop for model evaluation

for train_ix , test_ix in cv_outer.split(df):

# split data into train and text sets

X_train , X_test = df.iloc[train_ix , :], df.iloc[test_ix , :]

y_train , y_test = labels[train_ix], labels[test_ix]

# execute the inner cv procedure to return trained model

model , best_parameter = train_lr_baysian(X_train , y_train)

# predict on the test set and store the selected features

y_pred = model.predict(X_test)

y_pred_probab = model.predict_proba(X_test)

# score predictions , mis -classified examples , and features

scores = score_model(y_pred , y_pred_probab , y_test)

mis_classified = mis_class_points(X_test , y_pred , y_test)

selected_features = model.coef_ [0]

# add scores etc. to containers

scores_list.append(scores)

best_parameters_list.append(best_parameter)

mis_classified_list.append(mis_classified)
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selected_features_list.append(selected_features)

# return performance data for all interations

return scores_list ,

best_parameters_list ,

mis_classified_list ,

selected_features_list

5.4 Machine Learning Model Choices

The choice of the machine learning algorithms is determined by the nature of the problem.

• Logistic regression was selected as a baseline model for its simplicity, interpretability, and

the availability of L1 regularisation as an embedded feature selection method.

• SVMs were chosen given their strong performance in classification tasks and prior success

in classification tasks using omics data, particularly when combined with recursive feature

elimination [18].

• Random Forests were selected again for their well documented performance in classifica-

tion tasks, their speed and interpretability of the embedded feature selection.

5.4.1 Logistic Regression

Logistic regression was implemented using scikit-learn’s built in LogisticRegression class, using

an L1 penalty, and the liblinear solver. The regularisation parameter C was optimised using a

Bayesian Optimisation with Gaussian process, using the gp_minimize function from the scikit-

optimize library.

The objective function to be maximised was defined as the accuracy of classification of the inner

leave-one-out cross-validation loop. The number of iterations of the Bayesian optimisation was

determined empirically to ensure convergence, i.e. a maximum accuracy. In this formulation,

the number of features selected is an output of the process of maximising model performance.

The code that performs the model training and hyper parameter optimisation via the inner

cross-validation loop is given in Listing 5.2.
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Listing 5.2: Bayesian Optimisation - Optimising Classification Accuracy

def train_lr_baysian(X_train , y_train):

# define hyper parameter search space

hyper_p_c = Real(low=1e-6, high =1000.0 , prior=’log -uniform ’, name=’C’)

search_space_lr = [hyper_p_c]

# define the objective function

@use_named_args(search_space_lr)

def evaluate_model (** params):

# create inner cv loop for hyperparameter optimisation

cv_inner = LeaveOneOut ()

y_val_classes = []

y_val_predictions = []

for train_index , val_index in cv_inner.split(X_train):

X_train_inner , X_val = X_train.iloc[train_index , :],

X_train.iloc[val_index , :]

y_train_inner , y_val = y_train[train_index], y_train[val_index]

# instantiate and fit the predictor

model = LogisticRegression(penalty=’l1’, solver="liblinear")

model.set_params (** params)

model.fit(X_train_inner , y_train_inner)

# predict validation set

y_val_pred = model.predict(X_val)

y_val_classes.append(y_val)

y_val_predictions.append(y_val_pred)

# score the predictions on validation set over all folds

score = accuracy_score(y_val_classes , y_val_predictions)

return 1.0 - score

# perform optimization and store the optimum hyperparameter

result = gp_minimize(evaluate_model ,

search_space_lr ,
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acq_func="EI",

x0=[1.0] ,

n_initial_points =20,

n_calls =30)

best_parameter = result.x

# retrain the predictor using the optimum hyperparameter

model = LogisticRegression(C=best_parameter [0],

penalty=’l1’,

solver="liblinear")

model.fit(X_train , y_train)

# return trained model for scoring

return model , best_parameter

An alternative approach was also evaluated, where a simplified objective function targeted a

fixed number of features in the final model, irrespective of the performance of the model. The

rationale for this approach was to ensure that the model produced has a limited set of features,

mitigating the risk of over fitting. In this case, there is no inner cross validation loop, as the

number of features in the trained model can be measured without reference to unseen data in a

validation set. This significantly reduced training times. The code for this simplified objective

function is given in Listing 5.3.

Listing 5.3: Bayesian Optimisation - Optimising Fixed Number of Features

# define the target number of features

target_features = n_features

# define the objective function

@use_named_args(search_space_lr)

def evaluate_model (** params):

# instantiate and fit the predictor

model = LogisticRegression(penalty=’l1’, solver="liblinear")

model.set_params (** params)

model.fit(X_train , y_train)

# calculate number of features compared with target

n_nonzero = np.sum(model.coef_ != 0)
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return (target_features -n_nonzero)**2

# perform optimization

result = gp_minimize(evaluate_model ,

search_space_lr ,

acq_func="EI",

x0=[1.0] ,

n_initial_points =20,

n_calls =30)

In both of the logistic regression approaches descrived above, following hyperparameter opti-

misation, the final model was retrained using the optimum hyperparameter evaluated on the

test set. The whole procedure was repeated (via the outer cross validation loop) and scores

averaged over multiple iterations of train/test split and average performance recorded. The

‘final model’ was then trained on the full dataset (train and test sets) and the selected features

identified.

5.4.2 Support Vector Machines

A linear support vector machine classifier with L1 regularisation was initially considered as a

baseline for performance. This approach used a similar procedure to that shown in Listing 5.3.

As a second step, a linear SVM was combined with RFE to reduce the set of features used in

the final model. The RFE procedure was evaluated using leave-one-out cross validation in the

inner loop. As discussed previously, the computational cost of RFE is high, and scales linearly

with the number of features n. In the case of 48,202 features, eliminating one feature at a

time to select a final set of 20 features, RFE would involve fitting over 48,000 SVM models for

each fold of the cross validation. In order to reduce the computational cost to a reasonable

level, two compromises were introduced: (i) a variable ranking feature selection method was

introduced prior to performing RFE, based on information gain. This was used to reduce the

number of features to 250. (ii) During RFE, 10% of the features were discarded after each fit of

the model, reducing the number of fit models required to 24, in order to select 20 features from

250. The variable ranking feature selection and RFE were included in the same pipeline, along

with hyperparameter tuning, and performed within the inner cross validation loop, to ensure

no data leakage from the initial feature selection steps to the test set.
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Similarly to the case of logistic regression, hyperparameter optimisation was achieved using

Bayesian optimisation with Gaussian processes, whereby the objective function solved for the

classification accuracy of the pipeline. The full pipeline is illustrated in Listing 5.4

Listing 5.4: SVM Pipeline

def train_svm_baysian(X_train , y_train , out_features):

# define hyper paramaeter search space

hyper_p_c = Real(1e-6, 100.0 , ’log -uniform ’, name=’C’)

search_space_svm = [hyper_p_c]

# define the objective function

@use_named_args(search_space_svm)

def evaluate_model (** params):

cv_inner = LeaveOneOut ()

y_val_classes = []

y_val_predictions = []

# create inner cv loop for hyperparameter optimisation

for train_index , val_index in cv_inner.split(X_train):

X_train_inner , X_val = X_train.iloc[train_index , :],

X_train.iloc[val_index , :]

y_train_inner , y_val = y_train[train_index], y_train[val_index]

# pipeline for recursive feature elimination and model training

svc = SVC(kernel="linear", probability=True)

svc.set_params (** params)

rfe = RFE(estimator=svc ,

n_features_to_select=out_features ,

step =0.1)

svm_pipeline = Pipeline(steps =[(’rfe’, rfe),

(’model’, svc)])

svm_pipeline.fit(X_train_inner , y_train_inner)

# predict validation set

y_val_pred = svm_pipeline.predict(X_val)

y_val_classes.append(y_val)

y_val_predictions.append(y_val_pred)
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# score the predictions on validation set over all folds

score = accuracy_score(y_val_classes , y_val_predictions)

return 1.0 - score

# perform optimization and store optimum hyperparameter

result = gp_minimize(evaluate_model , search_space_svm , n_calls =20)

best_C = result.x[0]

# retrain the predictor using the optimum hyperparameter

clf = SVC(kernel="linear", C=best_C , probability=True)

feature_elim = RFE(estimator=clf ,

n_features_to_select=out_features ,

step =0.1)

model = Pipeline(steps =[(’feature_elim ’, feature_elim),

(’clf’, clf)])

model.fit(X_train , y_train)

# return trained model for scoring

return model , best_C

As with Logistic Regression, following hyperparameter optimisation, the final model was re-

trained using the optimum hyperparameter evaluated on the test set. Again, the whole proce-

dure was repeated and scores averaged over multiple iterations of train/test split and average

performance recorded. The ‘final model’ was then trained on the full dataset (train and test

sets) and the selected features identified.

5.4.3 Random Forest

A Random forest classifier was implemented using scikit-learn’s built-in RandomForestClassifier

class. A random forest model is expected to be less sensitive to hyperparameter optimisation

[7], therefore a simpler grid search was used over hyper parameter space to validate sensitivity

to key hyper parameters, rather than the Bayesian optimisation process used with logistic

regression and SVMs.

The training time complexity of a random forest is given by Equation 5.1
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O(k · d · n · log(n)) (5.1)

Where n is the number of examples, d is the number of features evaluated at each tree and k

is the number of trees used to build the forest. Given the very small sample size, the number

of estimators (trees) used to build the forest was tested at 500, and 1,000 estimators. To

maintain a reasonable complexity cost, the maximum number of features used to build each

tree was tested in the range 100 - 500, balancing classification performance with training time.

Feature selection was performed during the optimisation using scikit-learn’s SelectFromModel

class, selecting a fixed number of features based on the calculated feature importance. A final

random forest classifier was then trained on these features only.

The random forest model was run with sample bootstrapping with replacement, enabling scoring

of each set of hyper parameters and corresponding selected features using the ‘out of bag’

accuracy score. Out of bag scoring eliminated the need for cross-validation in the inner loop,

with significant savings in training time.

Again, following hyper parameter optimisation, the full train set was retrained with the same

pipeline using the selected hyperparameters and scored against the test set. As previously, the

entire procedure was repeated and scores averaged over multiple iterations of train/test split

and average performance recorded. The final model was then trained on the full data set (train

and test sets) and the selected features identified.

5.5 Model Evaluation

The problem of diagnosing infected from healthy patients is in this case a binary classification

problem. A range of metrics are widely used to measure classification performance in this set-

ting. Terminology and metric preferences vary between machine learning and medical statistics

literature and so a brief overview of the important metrics used in this project is given here.

The metrics are best understood in terms of a confusion matrix, as illustrated in Figure 5.1

Accuracy measures the ratio of correct predictions to all predictions in the test set, regardless

of whether positive (infected) or negative (healthy). Where the classes are unbalanced, accuracy

may give an unrealistically positive view of performance. For example an accuracy score of 0.95

may sound high, however if one class represents 5% of examples, then all of this class could be
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Figure 5.1: Confusion Matrix

mis-classified - i.e. the predictor has no power. Our neonatal data set is artificially imbalanced

since the overwhelming majority of real world neonatal infants will be healthy. Accuracy is used

for hyper parameter tuning in our case, given the data set is balanced, and correct classification

is a reasonable measure when comparing between alternative hyper parameters. Accuracy is

recorded for model selection, however it is noted that it is not the most appropriate metric for

this task.

Accuracy =
TP + TN

TP + FP + FN + TN

Sensitivity, also referred to as Recall or the True Positive Rate measures the ratio of

all correctly predicted positive cases to all true (observed) positive cases. In a condition like

sepsis, where cases are easily missed and the mortality rate is very high, sensitivity is one of the

most important measures. A diagnostic tool must have a very high sensitivity. That said, high

sensitivity must be balanced with false positives. In the real world, a high false positive rate

has been shown to result in ‘alert fatigue’ among clinicians where results of tests are ignored

[4]. In addition, administration of unnecessary antibiotics to neonatal patients increases the

risk of life threatening necrotizing enterocolitis [6].

Recall =
TP

TP + FN
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Specificity, the corollary of recall for the healthy patients, measures the ratio of all correctly

predicted negative cases to all true (observed) negative cases. Specificity is particularly useful

when viewed in combination with sensitivity. False Positive Rate, or (1 − specificity) is

used in plotting the ROC curve described below.

Specificity =
TN

TN + FP

FalsePositiveRate = 1− Specificity =
FP

TN + FP

Precision, also referred to as Positive Predictive Values (PPV) measures the ratio cases

correctly predicted as positive to all cases predicted as positive. Precision provides an alterna-

tive measure of the impact of false positives in the predictions.

Precision =
TP

TP + FP

The Receiver Operating Characteristic (”ROC”) Curve is widely used in medical di-

agnostic binary classification settings. The ROC curve is a probability curve constructed by

plotting the True Positive Rate (Recall or Sensitivity) against the False Positive Rate of a clas-

sifier. Plotting the ROC curve requires a classifier to output the probability of each example

in the test belonging to the positive class. The curve plots the TPR and FPR at different

threshold probabilities for the positive class. In the case where the classes can be perfectly

separated by the classifier, then the probability for all examples classified as the positive class

would be above the threshold, and all probabilities for the negative class would be below the

threshold.

The Area Under the ROC Curve (referred to as ROC - AUC) is a measure of how well a

classifier is able to separate the classes. An AUC of 1.0 implies that the classes can be perfectly

separated at some threshold probability. An AUC of 0.5 implies that a model has no ability to

separate the classes.

The ROC curve can be used to determine the trade-off between false positive and false negatives

in a given classifier. In the sepsis diagnosis setting, the cost of false positive and false negatives

may not be the same - the trade off is the risk of death from sepsis, weighed against the

risk of complications from the unnecessary use of antibiotics. The ROC curve can be used to

determine the threshold probability for a given model that provides the best balance between
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false positives and false negatives.

All of the above metrics will be reported in the results. Given the application context, the

most important measure in this work is likely to be AUC. AUC is independent of the threshold

probability separating the classes, and takes into account the impact of both false negatives

and false positives.
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Chapter 6

Results and Analysis

This section outlines the results achieved with each of the three main classification algorithms

tested, along with the corresponding genes identified during the feature selection process.

6.1 Logistic Regression

The initial logistic regression model was trained using a repeated 3-fold cross validation strategy,

repeated three times, resulting in nine train/test split iterations. As discussed in Section 5.4.1,

the L1 regularisation parameter C was tuned using an inner leave-one-out cross validation loop

on the training set, and the value of C giving the highest accuracy score on the validation set

selected. The full training set was then retrained using this value of C and this trained model

then used to make predictions on the test set, which were then scored. Table 6.1 shows the

results for all nine train/ test splits including the value of C and number of features selected

for each iteration. The mean scores over all iterations are also given.

On first inspection the performance metrics appear promising. The AUC ranges from 0.91 -

1.00 across the nine iterations, with a mean of 0.98. However, the selected L1 regularisation

parameter varies widely between iterations (ranging from 0.08 to 34.88). The number of features

selected at each training round also varies widely. There appears to be a positive correlation

between the magnitude of the regularisation parameter C and the number of features (the lower

C, the fewer features) as expected.

In order to identify the selected features, the full data set (train and test sets) was used to train

the model, the features extracted and the genes identified. The final trained model produced
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Iteration Best C Num Features Accuracy Recall Specificity Precision AUC

1 1.00 101 0.95 0.88 1.00 1.00 0.98

2 0.08 2 0.90 1.00 0.82 0.83 0.98

3 34.88 210 0.95 1.00 0.91 0.91 1.00

4 1.00 68 0.81 1.00 0.67 0.69 0.91

5 1.28 91 0.95 0.89 1.00 1.00 0.95

6 5.48 139 1.00 1.00 1.00 1.00 1.00

7 0.09 4 0.90 1.00 0.78 0.86 1.00

8 12.16 177 1.00 1.00 1.00 1.00 1.00

9 1.00 64 0.90 0.90 0.91 0.90 0.98

Mean n/a 95 0.93 0.96 0.90 0.91 0.98

Table 6.1: Model Performance: Optimising Classification Accuracy

non-zero coefficients for 89 different features on the first run, and 336 features on a subsequent

run. This large number of features relative to the number of examples in the data, the high

variance of the hyper parameter C and the number of features selected over multiple training

iterations, combined with the near perfect classification of the test sets, indicate that this model

may be over fitting the data - the curse of dimensionality strikes!

This approach of optimising the validation set for classification performance is not regularising

the logistic regression model strongly enough to mitigate over fitting or to identify a small and

consistent set of features that could have underlying biological validity.

6.1.1 Constraining the Number of Features

In order to force a stronger L1 penalty, and therefore greater sparsity in the output feature set,

an alternative approach was tested, this time setting the objective function within the Bayesian

optimisation to optimise for a specific number of features, as detailed in Section 5.4.1.

The model was initially trained to optimise for 30 features. Nine iterations of train and test sets

produced the results in Table 6.2. These results also detail the specific examples mis-classified

in the test set at each iteration.

These results show a regularisation hyper-parameter C of between 0.15 and 0.45 across all
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Iteration Best C Num Features Accuracy Recall Specificity Precision AUC False Positives False Negatives

1 0.40 49 0.95 0.83 1.00 1.00 0.98 - Inf 149

2 0.27 33 0.90 0.88 0.92 0.88 0.99 Con 165a Inf075

3 0.21 24 0.95 1.00 0.86 0.93 1.00 Con 206 -

4 0.19 24 0.95 1.00 0.92 0.89 0.98 Con 165a -

5 0.27 39 0.95 0.80 1.00 1.00 0.98 - Inf 149

6 0.45 38 0.95 0.93 1.00 1.00 0.99 - Inf075

7 0.15 14 1.00 1.00 1.00 1.00 1.00 - -

8 0.24 31 0.86 0.88 0.85 0.78 0.94 Con 165a, Con 206 Inf075

9 0.34 38 1.00 1.00 1.00 1.00 1.00 - -

Mean n/a 32.0 0.95 0.92 0.95 0.94 0.98 n/a n/a

Table 6.2: Model Performance: Optimising for 30 Features

iterations, significantly more stable than previously. The performance of the model is good,

with a mean recall of 0.92, specificity of 0.95 and AUC of 0.98. The number of features

selected in each training iteration shows significantly less variance than previously. However,

the number of selected features still varies across iterations, with a mean of 32. These results

give significantly more confidence that the final model is indeed a well performing classifier that

is likely to generalise to unseen data, rather than simply over fitting the training data.

6.1.2 Patient Inf075

As noted in Section 5.1, patient Inf075 was identified clinically as having a viral rather than

bacterial infection. Table 6.2 shows that patient Inf075 was incorrectly classified as healthy

in three iterations of the model, and was the example most frequently classified as a false

negative. Given this result and the uncertainty around the label of this example, the analysis

was repeated excluding patient Inf075, yielding the results in Table 6.3. These results show

an improved performance across all metrics. In particular the average AUC is 1.00 across

all nine iterations, indicating that this model provides near perfect classification. Again, the

hyperparameter C is relatively stable across iterations, however the number of features selected,

while averaging 27 across iterations, shows some variance between iterations.

6.1.3 Threshold Selection: Illustration

It is important to note that accuracy, recall, specificity and precision are all calculated using the

predicted classes of the test set examples. The class prediction is made relative to a pre-defined
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Iteration Best C Num Features Accuracy Recall Specificity Precision AUC False Positives False Negatives

1 0.18 21 1.00 1.00 1.00 1.00 1.00 - -

2 0.13 21 0.95 1.00 0.93 0.88 1.00 Con 206 -

3 0.12 12 0.95 1.00 0.92 0.89 1.00 Con 165a -

4 0.33 29 1.00 1.00 1.00 1.00 1.00 - -

5 0.23 31 1.00 1.00 1.00 1.00 1.00 - -

6 0.23 34 1.00 1.00 1.00 1.00 1.00 - -

7 0.45 36 0.95 1.00 0.93 0.86 1.00 Con 165a -

8 0.14 15 1.00 1.00 1.00 1.00 1.00 - -

9 0.26 47 1.00 1.00 1.00 1.00 1.00 - -

Mean n/a 27.0 0.98 1.00 0.98 0.96 1.00 n/a n/a

Table 6.3: Model Performance: Optimising for 30 Features (Excluding Patient Inf075)

threshold probability separating the classes. In this report these metrics are calculated with

the commonly used default threshold of 0.5. AUC does not assume a threshold, as the ROC

curve describes model performance over the full range of thresholds between 0 and 1.

As an illustration of the impact of the choice of threshold, the results in Table 6.3 show iteration

number three of the model has an AUC of 1.00 (implying perfect classification), but an accuracy

of 0.95, recall of 1.0 and a precision of 0.89, (implying mis-classified false positive examples).

Figure 6.1 plots the predicted probability of being in the positive class for each of the 20 test set

examples in this third iteration of the model, against the true class labels. Where the threshold

separating the predicted classes is set at 0.5 (horizontal red line) one healthy patient (Patient

Con 165a) would be mis-classified as infected. Given there are 20 examples in the test set, and

8 true positive cases, this results in an accuracy score of 0.95 or 19

20
, and a precision of 0.89 or

8

9
. Alternatively, setting the threshold at 0.55, results in all points correctly classified, hence

the AUC of 1.0. Table 6.4 illustrates the three performance metrics at a range of thresholds.

For example, when the threshold is set at 0.1, all examples are predicted as infected, hence

accuracy and precision are both 0.40 or 8

20
. When the threshold is raised to 0.55, all examples

are correctly classified and accuracy, recall and precision are all 1.0, explaining the observed

AUC of 1.00. At a threshold of 0.7, a false negative prediction lowers accuracy and recall.

A further observation on the data in Table 6.3 is that precision is 0.88, 0.89 and 0.86 for

iterations 2, 3 and 7 of the model respectively, despite there being only one mis-classified point

in each case. This is due to the variation in the number of positive examples in the test set

in each iteration. This is a further illustration of the importance of averaging performance

measures over multiple train / test splits when using a low sample size data set.
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Figure 6.1: Illustration: impact of threshold on classification

Threshold Accuracy Recall Precision

0.10 0.40 1.00 0.40

0.30 0.85 1.00 0.73

0.50 0.95 1.00 0.89

0.55 1.00 1.00 1.00

0.70 0.95 0.88 1.00

Table 6.4: Illustration: impact of threshold on performance metrics

To summarise, all metrics in the above tables other than AUC are stated with respect to a

threshold of 0.5. The very low sample size and therefore the small test set of approximately

20 examples on each model iteration means that accuracy, recall, specificity and precision are

all sensitive to the chosen threshold probability and the balance of the classes in the test set.

Given this, AUC will be used as the primary metric for model evaluation for the remainder of

this report.
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6.1.4 Performance vs Number of Features Trade-Off

As outlined in Chapter 2, the aim of the work is to develop an accurate classifier with a small

set of features. The above results demonstrate near perfect classification using L1 penalised

logistic regression when 30 features are targeted. The model training and testing was therefore

repeated, optimising for successively smaller numbers of features to determine if classification

performance deteriorates with a smaller feature set. The average number of features selected in

training and the mean AUC over nine iterations was again evaluated. The results are given in

Table 6.5. The results show that there is very little performance loss by reducing the number

of features from 30 to 10. However, this should be interpreted with some caution given the

variance in the number of features actually selected in each training iteration of the model.

Table 6.5 shows the mean number of features actually selected over nine iterations. Below a

target of around 10 features, some iterations of the model failed to converge on a non-zero value

of C, resulting in all features being eliminated. This illustrates the limitations of this approach

to feature selection. Using the L1 regularisation parameter alone appears to be insufficient to

finely control the number of features selected in model training. This points to the need for a

more systematic approach to test performance with a specific number of features, such as using

the recursive feature elimination algorithm discussed in Section 6.2.

Target Number of Features Mean AUC Mean Features Selected

30 1.00 27.0

25 0.99 22.0

20 1.00 18.0

15 1.00 15.0

10 1.00 9.0

Table 6.5: Performance vs Features Trade-Off

6.1.5 Logistic Regression: Final Model

The final logistic regression model was retrained on the full dataset, again excluding patient

Inf075, optimising for 10 features. The Bayesian optimisation converged after 22 evaluations.

The resulting model selected 12 features, with a hyperparameter C of 0.081.

The final feature set comprises 12 genes: ID3, NMT2, UBE2Q2, HS.276860, LATS2, PKIA,
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GSN, PSTPIP2, P2RX1, SLC2A3, B4GALT5 and CD3G. Two is these genes overlap with

genes identified in the 52-gene classifier in the 2014 project, namely SLC2A3 and B4GALT5.

Figure 6.2 shows the z-scored gene expression levels in the original data set for the 62 patients

(excluding patient Inf075) for each of the 12 selected genes. The healthy patients are differen-

tiated from the infected patients, and it is clear that each of the selected genes shows either

strongly increased or decreased expression in the infected patients.

Figure 6.2: Patient gene expression levels for the 12 selected genes

6.2 Support Vector Machines

The results of the initial SVM model, using an L1 penalty to optimise for a fixed number of

features were poor, with an average AUC consistently below 0.9 over nine iterations.

The second approach combined linear SVM with RFE, as outlined in Section 5.4.2. The SVM

models were trained on the dataset excluding patient Inf075, given the uncertainty around

the diagnosis and hence the label for this example. In order to limit computation time, the

best 250 features were selected based on information gain between the training data set and

training labels and the RFE procedure was used to reduce the remaining 250 features to a final

set. A nested cross validation procedure was used, with the 250 feature selection performed

independently for each train / test split, and the RFE procedure cross validated in the inner

cross validation loop using leave one out cross validation. The full results solving for 30 features

are provided in Table 6.6. The AUC is 1.00 for every iteration of the train / test set, indicating

perfect classification of the data.
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Iteration C Accuracy Recall Specificity Precision AUC False Positives False Negatives

1 89.093 1.00 1.00 1.00 1.00 1.00 - -

2 0.005 0.95 1.00 0.94 0.83 1.00 Con 165a -

3 0.016 0.95 0.93 1.00 1.00 1.00 - Inf 149

4 16.321 1.00 1.00 1.00 1.00 1.00 - -

5 0.001 1.00 1.00 1.00 1.00 1.00 - -

6 0.003 0.95 0.89 1.00 1.00 1.00 - Inf 149

7 0.004 1.00 1.00 1.00 1.00 1.00 - -

8 5.251 0.95 0.91 1.00 1.00 1.00 - Inf 149

9 0.827 0.95 1.00 0.91 0.90 1.00 Con 165a -

Mean n/a 0.97 0.97 0.98 0.97 1.00 n/a n/a

Table 6.6: SVM: 30 Feature Model Performance (Excluding Patient Inf075)

6.2.1 Performance vs Number of Features Trade-Off

The experiment was repeated, optimising for each of 3, 4, 5, 6, 8, 10, 15, 20 and 25 features to

understand the impact of a reduced feature set on model performance. In contrast to the case

of logistic regression, the number of features selected by the final model in the RFE procedure

is precisely the target number. The AUC at each number of features is detailed in Table 6.7.

It is clear that the model’s classification performance remains strong, even with 3, 4, and 5

features selected.

Number of Features Average AUC

30 1.00

25 1.00

20 1.00

15 1.00

10 1.00

8 0.99

6 1.00

5 0.99

4 0.99

3 0.99

Table 6.7: SVM: Performance vs Features Trade-Off
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6.2.2 Feature Stability

The strong performance of the SVM classifier, even with a very low number of features is

an encouraging result. This raises the question of the stability of the features selected. As

discussed in Section 4.3.4, for the chosen feature set to be meaningful, it must be relatively

stable to changes in the training data. During model training, the subset of genes selected for

each train/test iteration was captured and the frequency of each gene tallied across the nine

iterations. The results of this are shown in Figure 6.3. The frequency count for the top 20

genes selected over all nine iterations is shown for three illustrative cases, the 30 feature model,

10 feature model and 5 feature model. The results indicate some instability in the feature sets.

In the 30 feature model, the most frequently selected gene(s) are only selected in seven out of

nine training rounds, compared with four out of nine in the 10 gene predictor, and 3 out of nine

in the five gene predictor. A more quantitative analysis of the stability of the selected features

is the subject of further work and might provide a quantitative basis for selecting the optimum

number of features.

Figure 6.3: SVM: Gene frequency in feature set over nine training iterations
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6.2.3 SVM: Final Model

As for logistic regression, the final model was retrained on the full data set, again excluding

patient Inf075, filtering down to 250 features based on information gain and optimising the

model for five features using an RFE procedure. The resulting model selected five features, with

a hyperparameter C of 0.007. The selected genes were UBE2Q2, ID3, P2RX1, GSN and LATS2.

Despite the instability in the selected genes in the 5 gene predictor during training rounds, these

five genes selected by the final model over the whole data set show good correspondence to the

most frequently occurring genes in the 30 gene predictor during training. This gives some

confidence in the validity of the selected genes. There is however no overlap between these five

genes and the 52-gene classifier in the 2014 project.

Figure 6.4 shows the z-scored gene expression levels in the original data set for the 62 patients

excluding patient Inf075 for each of the five selected genes. The healthy patients are differen-

tiated from the infected patients, and it is again clear that each of the selected genes shows

either strongly increased or decreased expression in the infected patients.

Figure 6.4: SVM: Patient gene expression levels for the five selected genes

6.3 Random Forest Results

The random forest model was trained using the data set excluding patient Inf075. The ran-

dom forest model selecting 30 features achieved an average AUC of 1.0. Table 6.8 gives the

performance of the model over nine iterations. Performance was not improved by increasing

the number of estimators or maximum features evaluated at each node, all iterations selected

500, and 100 as the best hyper parameters respectively.
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Iteration Accuracy Recall Specificity Precision AUC FP FN

1 1.00 1.00 1.00 1.00 1.00 - -

2 0.95 0.90 1.00 1.00 1.00 - Inf 149

3 0.95 0.89 1.00 1.00 1.00 - Inf 132a

4 0.95 0.88 1.00 1.00 1.00 - Inf 149

5 1.00 1.00 1.00 1.00 1.00 - -

6 1.00 1.00 1.00 1.00 1.00 - -

7 0.95 0.88 1.00 1.00 0.99 - Inf 149

8 1.00 1.00 1.00 1.00 1.00 - -

9 1.00 1.00 1.00 1.00 1.00 - -

Mean 0.98 0.95 1.00 1.00 1.00 n/a n/a

Table 6.8: Random Forest: 30 Feature Model Performance (Excluding Patient Inf075)

6.3.1 Performance vs Number of Features Trade-Off

Table 6.9 shows that performance was equally good with the reduced number of features se-

lected. A random forest model with just 3 features gave near perfect classification, AUC of

0.99 on average over nine iterations.

6.3.2 Feature Stability

Similarly to the SVM case, the subset of genes selected during model training for each train/

test iteration was captured and the frequency of each gene tallied across the nine iterations.

The results of this are shown in Figure 6.5. The frequency count for the top 20 genes selected

over all nine iterations is shown for three illustrative cases, the 30 feature model, 10 feature

model and 5 feature model. The results indicate greater instability in the feature sets than

in the case of SVMs. In the 30 feature model, the most frequently selected gene(s) are only

selected in six out of nine training rounds, compared with three out of nine in the 10 and 5

gene predictors. There is also less overlap between the top 20 genes selected across the 30, 10

and 5 gene predictors than in the SVM results. The wider variation in the selected genes in

the training iterations in the random forest model compared with the SVM model is likely a
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Number of Features Average AUC

30 1.00

25 1.00

20 1.00

15 0.99

10 1.00

8 1.00

6 1.00

5 1.00

4 1.00

3 0.99

Table 6.9: Random Forest: Performance vs Features Trade-Off

result of the pre-selection of the 250 genes in the SVM case. A more thorough investigation of

the stability of the features sets and the underlying reasons should be the subject of further

investigation.

6.3.3 Random Forest: Final Model

The final model was trained on the full dataset and the best five features identified. The final

features selected were LILRA6, RNF125, BCL3, FLOT1 and LBH. Again, none of these genes

feature in the 52-gene classifier in the 2014 project.

Figure 6.6 shows the z-scored gene expression levels in the original data set for the 62 patients

excluding patient 75 for each of the five selected genes. The healthy patients are differentiated

from the infected patients, and it is again clear that each of the selected genes shows either

strongly increased or decreased expression in the infected patients.

6.4 Biological Significance of Selected Genes

The results of this project were discussed with Professor Peter Ghazal, Sêr Cymru Chair in Sys-

tems Medicine, Systems Immunity Research Institute at Cardiff University to gather feedback

on biological meaningfulness of the selected genes and their consistency with the 2014 project.
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Figure 6.5: Random Forest: Gene frequency in feature set over nine training iterations

Figure 6.6: Random Forest: Patient gene expression levels for the five selected genes

The feedback received is that these results are explainable in terms of the known function of

many of the genes identified and fit well with the group’s existing knowledge. In particular,

genes identified by the logistic regression and svm models as being under expressed in infected

patients such as CD3G and ID3, are known T-Cell markers. CD3G for example plays a role in

the activation of T-Cells, a key part of the body’s immune response to infectious disease [31]. A

number of the over expressed genes identified in the logistic regression and svm models are all
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involved in the ‘metabolic process to fight disease’. In general, the results are consistent with

the research group’s previous 2014 study and ongoing research into the sepsis disease pathway.
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Chapter 7

Conclusions

7.1 Critical Evaluation of Results

The project has successfully demonstrated machine learning classifiers that accurately predict

healthy from infected neonatal infant patients in the data set under investigation. In addition,

it has been shown that excellent classification performance is achievable with a very low number

of features, as low as three of the potential 48,202 genes are needed to separate the classes.

The validity of the selected genes, in particular for the logistic regression and SVM models,

has been confirmed by a world expert in the field. There are however some concerns over the

stability of the set of genes selected by each model. And, given the low number of samples in

the data set under investigation, it is not known how well these classifiers generalise to unseen

data.

The logistic regression results demonstrate that a strong L1 penalty produces an accurate

classifier with as few as ten features. Attempts to further reduce the number of features

highlighted the limitations of using the magnitude of the regularisation parameter alone to

control for the number of selected features as the number of features selected in the output

model varied widely. The results given in Table 6.5 are therefore approximate, based on average

features selected over multiple iterations. This could be improved in two ways. Firstly, the

Bayesian optimisation procedure could be replaced with a simpler search procedure for adjusting

the regularisation parameter to adjust the number of output features, for example a binary

search process. This would help determine whether the issue lies in the Bayesian optimisation.

Secondly, a wrapper method such as recursive feature elimination or sequential backward feature
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selection could be performed with the logistic regression model to guarantee the number of

output features, as was carried out for the SVM model. The ten features selected by the final

logistic regression model contained two features that were identified in the 52-gene classier in

the 2014 research, and the majority of the genes were confirmed by an expert to be significant

based on their known biological function. Despite the shortcomings, the logistic regression

classifier and the corresponding feature set perform the classification task extremely well.

The model combining support vector machines with recursive feature elimination gave very high

classification performance on the data set under investigation, with as few as three features.

The features selected on each training iteration of the model were relatively stable, and the

final model selected a set of features consistent with those selected most frequently in training.

There was however no overlap between the final five selected features and the 52-gene classifier

from previous work, however the selected genes were confirmed to be biologically relevant.

The SVM-RFE process was somewhat compromised by the need to pre-select 250 features from

48,202 before applying RFE in order to reduce the computational complexity. This was achieved

using a variable ranking method with the limitations described in 4.3.1, namely features may

be correlated and interactions between variables are ignored. These results are very promising,

however further study is required to validate the performance of the classifier on unseen data

and further investigate the stability of the selected features.

The random forest classifier achieved equally good classification performance to the SVM-RFE

classifier, when measured by AUC. As with SVM, very accurate classification was possible with

as few as three features. In the random forest model, the stability of the chosen feature set is

an issue, perhaps indicating there are numerous three to five feature subsets that result in good

performance and that the selection of any one particular feature subset is somewhat random.

This could be a result of the randomised bootstrapping of features in tree training. The five

selected features in the final model also showed no overlap with the 52-gene classifier. The

potential inconsistency in the selected features raises questions over biological validity of the

feature set, and the explainability of the result. While the model performs well in classifying

this data set, it may not generalise.

Overall, this project has contributed three novel and highly performing classifiers for the diag-

nosis of sepsis in neonatal infants, with corresponding feature sets drawn from gene expression

data. In each case the feature space has been reduced from a potential 48,202 features to just

5-10 genes, a sufficiently low number of genes to potentially make these classifiers practically
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useful in a clinical setting. The validity of the selected features has been confirmed based on

their known function.

7.2 Further Work

The impact of class imbalance must be investigated. The analysis has been performed with an

artificially balanced data set of approximately 50-50 split of health and infected patients. In

reality, the classes are highly imbalanced, with vast majority of infants being healthy. Even in

the likely clinical setting for a diagnostic sepsis test for neonatal infants, the majority of the

patients will presumably not have sepsis. The performance of each of the classifiers should be

examined on additional imbalanced data sets that better represent the natural distribution of

sepsis cases in patients.

The stability of the feature sets produced by each model have only been evaluated qualitatively

in this work. At least 15 quantitative measures of the feature stability of a feature selection

procedure have been reported [26]. Further work should identify the most appropriate measure

for this case and apply it to the results. A better and more rigorous analysis of feature stability

would be a valuable tool to determine the best model or models to take forward.

Patient Inf075 was removed from the data set having been identified as having a viral rather

than a bacterial infection. The reduction of sepsis diagnosis to a binary classification problem

is overly simplistic. To be clinically useful and enable clinicians to determine appropriate

treatment, a diagnostic test may need to distinguish healthy patients from a number of different

sepsis diagnoses, for example viral and bacterial and for a range of severity. Research is ongoing

in this area. Sweeny, Wong and colleagues reported a 7-gene signature capable of distinguishing

between bacterial and viral infections [32]. This project should be extended to take into account

the nature and severity of the infection - it should be framed as a multi-class classification

problem.

Additional machine learning algorithms should be tested, in particular neural networks. Deep

neural networks have recently been demonstrated to be successful in feature selection and

classification tasks with high dimensional, low sample size omics data sets [33] [34]. These were

excluded from the project due to the complexity of implementation given the time frame and

scope of the project, however should be investigated in further work.
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Finally and perhaps most importantly, the results of the project must be validated on multiple

independent patient cohorts. This validation is crucial as the low number of examples mean

these models may have over fit the data. The range of patients should also be extended to

include children and adults to confirm whether the sepsis biomarkers identified in neonatal

infants have the same diagnostic power in older patients.
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Chapter 8

Reflection

This chapter is a personal reflection on the learnings gained from the dissertation phase of the

MSc Artificial Intelligence, and as such is written in the first person.

8.1 Learnings from the Research Process

Conducting a literature review as been a learning process for me. Many of the MSc coursework

projects required background reading, however this was typically reading around a methodology

to solve an already defined problem. In the case of this extended dissertation, the literature

review served not only to educate me on the existing research in the area and the theoretical

underpinnings of particular technique, but to help define the research plan. The project could

have taken an number of different directions, and there is an overwhelming amount of literature

on the subject of bio marker identification using machine learning, on machine learning with

omics data, and on techniques for managing HDLSS data sets. The literature also cuts across

the fields of machine learning, bioinformatics and medicine.

Deciding what to read and what was relevant was a new challenge. I feel I have improved my

ability to filter articles based on reading abstracts, introductions and conclusions in order to

determine the relevance of a particular source. I have also learned to use tools such as Google

Scholar and Cardiff University Library resources to evaluate the authority of particular sources

- mainly based on citation indices. Another new practical skill has been building a managing

a bibliography. I experimented with various free tools before deciding on ZoteroBib to build

the bibliography. As my library grows I will undoubtedly need to use a full reference manager
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tool, such as Zotero or Mendelay.

A related learning is the importance of reading the literature for the purpose of designing the

experiments and shaping the methodology. At the start of the project, I saw the purpose of the

literature review as simply gathering background information. I started the project by going

straight into implementation, building ML models using approaches I had learned in the taught

modules. Some of my initial decisions on methodology led to problems, in particular around

training times. As an example, I initially ran all models (logistic regression, SVMs, Random

Forest) with all 48,202 features, using nested cross validation loops to score hyper parameters

for accuracy. Run times were over 12 hours for some models, significantly slowing down my

work. Early on I also tried to wrap logistic regression and random forests models in recursive

feature elimination wrapper methods, again leading to very long run times. If I had read more

of the articles I now have in my bibliography earlier on in the project, I would have understood

how the computational complexity of wrapper methods scales with the number of features. I

would also have learned that logistic regression with Lasso penalisation and random forests have

embedded feature selection, which can be used without additional forwards or backwards search

processes to select features. These computationally more efficient processes in fact produced

strong results.

I feel my overall time management worked well. Based on experiences with large pieces of

coursework during the taught phase of the MSc, in particular a significant project for the

Foundations of Statistics and Data Science module, I allocated eight of the twelve weeks to ex-

perimentation and four weeks for write up. This was about right, and left some time additional

experiments during the write up phase to enhance the work.

8.2 Personal Development

The dissertation phase has really improved my knowledge and skills in machine learning. I have

had to deepen my knowledge in many areas that were only touched on in the taught course.

In order to apply methods to a novel situation and to justify my decisions, I have needed to

understand them at a deeper level. Good examples would be feature selection methods and

logistic regression classifiers. I took the time to understand my logistic regression results by

looking at the predicted probabilities and understanding the apparent discrepancies between

the different performance measures like recall and AUC as outlined in Section 6.1.3. This helped
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refine my understanding of how logistic regression works. As well as deepening my knowledge,

I have had to investigate completely new areas of theory, in particular Bayesian optimisation

and nested cross validation, both of which I described in Chapter 4.

The work has enhanced my python coding skills, in particular reducing my reliance on pre-built

library functions and forcing me to code some methods myself. A good example is the nested

cross validation procedure with a grid search of hyper parameters and model scoring used in the

random forest model. Standard python libraries contain functions to perform a grid search with

cross validation (e.g. scikit-learn’s GridSearchCV function). However, in order to achieve what

I wanted, that is to score model predictions over all folds, I needed to break these functions

down and build parts of them myself. This has been a great learning in how these functions

work and some of the limitations of the existing libraries.

The process of writing up has also been educational. I have enjoyed beginning to learn how to

use some of the great visualisation tools such as Seaborn, and building a better understanding

of LaTex and all of the flexibility and power it has.

During course of dissertation phase, I applied for PhD position to continue with this research

and was awarded scholarship to pursue a PhD. I am very much looking forward to continuing

with this work. There are a number of areas I have identified for development as I embark on

the PhD.

Coding skills. I need to continue to build on my coding and general software engineering

skills. The size of the project meant my code in a jupyter notebook became unwieldy. I need

to find an approach that works for me to modularise and manage my code, and to get better at

reusing code. There may be tooling that can help and this is something that I plan to research.

Mathematical understanding of the underlying algorithms. As much as I have learned

in a short space of time on the MSc course, the field of machine learning is vast and under-

standing the underlying theory is important to guide application. I will continue to build my

knowledge of the theory that underpins the algorithms and techniques that I am using.

Working with cloud infrastructure. Inevitably, future work will involve compute heavy

models requiring GPUs and parallelisation. I deferred learning how to run models on the

university cloud as part of this project, given the time investment in learning relative to the

length of the project. This is a priority for me now as I continue with research - an investment

in learning how to use more powerful tools will undoubtedly pay significant dividends in the

51



future.

The broader scientific context, in particular the field of bioinformatics, is also an important

area of development for me. In the case of this project, the source of the data and how it was

pre-processed was opaque to me. As I move forwards I need to build my understanding of

the clinical and scientific context around the extraction of omics data from patient samples,

potential data issues and pre-processing steps. Equally, I will need to improve my ability to

interpret my own results and their significance by building some knowledge of the biomarkers

that are of particular interest and significance in this field.

8.3 Final Thought

Undertaking this project has been a fantastic introduction to the field of machine learning in

biomedicine, in particular biomarker identification. The project has given me a small insight

into the challenges of biological data sets, in particular in relation to high dimensional low

sample size data, and the need for explainability in the results.

This is not an area covered in the taught part of the MSc course, but it is however a very active

area of research with applications in medical diagnosics, pharmaceutical development, and day

to day clinical decision making. The ongoing improvements in omics sequencing technologies

mean that there is an ever increasing amount of data available for research in this area, and I

am excited about the prospect of continuing on to a PhD.
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Appendix A

Supporting Python Code

This thesis is accompanied by the following files containing the input data and python code

used to produce the results in Chapter 6.

File Name Contents

genomic_data.csv Input data set

sepsis_preprocessing.py Data preprocessing steps to deduplicate and standardise input data

sepsis_evaluation.py Shared functions for model scoring and gene identification

sepsis_lr.py Logistic regression analysis

sepsis_svm.py Support vector machine analysis

sepsis_rf.py Random forest analysis

Table A.1: Source Code Files

All input data, python code files and output illustrations, as well as the PDF version of this the-

sis are available in this github repository: https://github.com/parkyed/sepsis_ml_omics_

msc
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Appendix B

Code Libraries and Versions

The following python code libraries were used during the course of this work.

Library Version

scikit-learn 0.24.1

scikit-optimize 0.8.1

scipy 1.6.1

pandas 1.2.3

numpy 1.20.1

matplotlib 3.3.4

seaborn 0.11.1

Table B.1: Code Libraries and Versions
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