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Abstract 

Nowadays, the Internet of things (IoT) refers to the billions of devices designed to 

transfer data over the internet or other network. With the continuous growth and 

advancement of IoT applications, attacks on IoT devices have threatened many 

organisations and consumers in recent years. A successful IoT attack can bring many 

severe consequences for organisations, such as financial consequences. With Machine 

Learning approaches taking centre stage in today's computer technology, substantial 

efforts are being made to use machine learning in the art and science of IoT attack 

detection. However, most researchers have focused on supervised algorithms to detect 

IoT attacks, due to its effective capability in detecting IoT attacks, even though zero-

day attacks are likely to go undiscovered, as supervised detection algorithms frequently 

misclassify them. Nevertheless, unsupervised detection techniques can play a 

significant role in detecting zero-day attacks when other mechanisms fail. Therefore, in 

the current study, an unsupervised ML model is presented that can distinguish between 

malicious and benign IoT traffic and effectively react to zero-day IoT attacks. The 

model is trained with a real data set, depending on the most popular unsupervised ML 

algorithms that have been successfully implemented with IoT attack problems: k-

Means and Autoencoder. Using a real dataset makes the current approach overcome the 

limitations of one of the problems that may arise from real data in the actual 

environment, which is in regards to outlier values, by applying the capping approach to 

treat them. Subsequently, the results of the two unsupervised ML algorithms are 

presented to reflect their performance. The proposed approach successfully 

demonstrates that unsupervised models obtained promising results for detecting attacks 

on IoT network traffic. Moreover, the capping approach for the treatment of outlier 

values has been proven to improve the models’ performance. 
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1. Introduction 

1.1 Research Motivation  

The Internet of Things (IoT) comprises thousands of millions of connected devices that 

can transmit and receive data over the internet. Recently, these devices can be found in 

various settings, including homes, offices, transportation, healthcare, 

telecommunications, agriculture, etc. IoT devices are rapidly growing and making a 

significant influence in people’s daily lives and assisting industries, such as healthcare 

and transportation in making critical decisions. According to Newman (2020), the 

findings of Business Insider's 2020 IoT report shows that IoT devices are predicted to 

be in excess of 41 billion by 2027, which has increased from around 8 billion in 2019 

(see Figure 1). IoT has provided enormous benefits to people’s lives, society, and 

industries over the years; however, the technology employed has yet to mature 

sufficiently to provide secure devices and communication. Moreover, as the number of 

connected devices grows, adversaries have more opportunities to gain access to them 

and exploit them to conduct large-scale attacks. Indeed, a successful IoT attack can 

have major consequences for any institution or corporation that has been attacked, 

including financial damages in the hundreds of billions of dollars, as well as 

reputational damage, time and productivity loss, and more. From the perspective of 

negative consequences for individuals, they are exposed to leakage of sensitive 

information. 

Securing IoT devices is an increasing challenge for manufacturers and consumers, and 

recent statistics have illustrated that IoT attacks continue to be a big risk that are far 

from being eliminated. Kaspersky reported that during the first half of 2021, some 1.51 

billion breaches of IoT devices occurred, which is an increase from 639 million in 2020; 

twice as much as the previous half-year (Cyrus 2021). Additionally, the Mirai attack, 

which crippled numerous popular websites in 2016, underscored the vulnerability of 

IoT devices (Bhatia et al. 2019). Mirai was able to transform up to 100,000 improperly 

secured cameras, digital video recording (DVR) players, and other IoT devices into 

botnets for conducting unprecedented DDoS attacks. Since the subsequent release of 

the Mirai source code, there have been countless further IoT attacks. Due to these 
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reasons, as well as the negative impact they can have on their victims, there is a growing 

requirement to detect malicious IoT traffic. Correspondingly, the primary motive for 

the current study is to detect IoT attacks by building an IoT traffic attack classifier that 

can distinguish between malicious and benign traffic before it compromises IoT device 

security. 

 

Figure 1 : Forecast the Number of IoT Devices From 2019 To 2027 (Newman 2020) 

1.2 Research Statement   

Anti-malicious traffic strategies on IoT often focus on supervised Machine Learning 

(ML) algorithms (Doshi et al. 2018; Hasan et al. 2019; Stoian 2020; Shafiq et al. 2020); 

which their functionality is to detect attacks that exploit known security breaches or 

vulnerabilities (Zoppi et al. 2021). That can be ineffective when reacting to zero-day 

IoT attacks, as they exploit either new vulnerabilities or known vulnerabilities in new 

and different methods that cannot be matched against a known pattern (ibid). Therefore, 

zero-day IoT attacks are frequently misclassified by supervised detection algorithms 

(Zoppi et al. 2021). However, unsupervised techniques can play a significant role in 

detecting zero-day attacks when other mechanisms fail, as they infer patterns from a 
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training set and identify the underlying structure of the data without using the known 

pattern as a guide (i.e. labels are unknown at training time) (Zoppi et al. 2021). Instead, 

it is supposed that ongoing attacks temporarily change the values of system indicators 

concerning their expected values (ibid). As a result, they learn a model that is decoupled 

from the labels provided to data points in the training sets, and thus, fit the detection of 

zero-day attacks (ibid). In the current study, the following research questions will be 

addressed:  

• Can unsupervised ML model detect malicious attack with high accuracy?  

• Which unsupervised model is the best performer? 

1.3 Research Aim and Objective  

The primary purpose of the current study is to build a clustering-based and anomaly-

based detection unsupervised ML model that can differentiate between malicious traffic 

and benign ones on IoT devices using a combined dataset. To achieve this purpose, 

multiple objectives were defined:  

• To prepare and pre-process datasets using scripts, as an initial step towards an IoT 

network traffic classifier. 

• To build two types of unsupervised ML algorithms, which are k-Means and 

Autoencoders.  

• To discuss the results of different ML algorithms that have been proposed in the 

development of a clustering-based and anomaly-based detection model to detect 

IoT attacks.  

1.4 Intended Audience 

This study is for people interested or planning to be involved in research in cyber 

security application approaches built by ML algorithms, especially in the field of 

network traffic detection on IoT devices. Furthermore, it is beneficial for people 

interested in applying statistical and mathematical models in a cybersecurity context. 

1.5 Dissertation Structure  
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This dissertation consists of six chapters as follows: 

Chapter 1 - Introduction: This chapter introduces the motivation behind the study, its 

statement, its aims and objectives, and details of the audience who may find it 

interesting. 

Chapter 2 - Background and Literature Review: This chapter provides the necessary 

background knowledge to facilitate the comprehension of the subsequent chapters. It 

also displays existing literature that uses ML models for detecting IoT attacks. 

Chapter 3 - Methodology and Implementation: This chapter presents the study 

methodology, along with the implementation of various ML algorithms on using the 

specific datasets down to the model evaluation level. 

Chapter 4 - Results and Evaluation: This chapter discusses the results of the current 

study’s ML algorithms. Additionally, it compares these results to the results obtained 

in previous studies. 

Chapter 5 - Conclusion: This chapter summarises the study’s findings. It also 

illustrates potential limitations and future work directions that could be undertaken to 

improve the project.  

Chapter 6 - Reflection on Learning: This chapter presents a reflection on the lessons 

learnt from conducting this study. 
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2. Background and Literature Review 

2.1 Overview  

For the ease of understanding the following chapters, some knowledge of IoT attacks 

and ML is required. This chapter consists of four main sections: background on IoT 

attacks, ML, learning evaluation and a literature review. It begins with a general 

introduction of IoT devices, before delving into the types of IoT attacks, overviewing 

IoT attacks’ consequences and countermeasures. The second section then briefly 

describes ML algorithms; next, the learning evaluation is explained. Finally, the 

previous related works connected to the current study are presented. 

2.2 Background of Cyberattacks on IoT Devices 

The following section describes cyberattacks on IoT devices, including the definition 

and importance of IoT devices, IoT attack types, IoT attack lifecycles, potential 

consequences, and existing countermeasures. 

2.2.1 IoT Devices 

IoT devices include sensors, actuators, software, machines and appliances that are 

designed to transfer data over the internet or other networks. These devices can be 

integrated with a variety of devices, such as industrial equipment, mobile phones, 

medical devices and environmental sensors. These devices are made to detect and 

respond to the presence of humans. To illustrate, when a person arrives home then it is 

with the help of these IoT devices that the car interacts with the garage to open the door.  

Nowadays, IoT devices are increasingly incorporating artificial intelligence (AI) and 

ML into systems and processes, such as industrial smart manufacturing, autonomous 

driving, medical equipment, and home automation to provide intelligence and 

autonomy. Many of these gadgets are microcontroller-based systems with limited 

power and cost. By having these devices it is possible to achieve a lot of more 

advantages, as they are known by Machine-to-Machine (M2M) communication, and 

this interaction provides better efficiency levels, as accurate results can be obtained 

rapidly, which results in saving people’s valuable time. 
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2.2.2 Types of IoT Attacks  

IoT attacks occur when hackers attempt to compromise the security of IoT devices. 

Subsequently, once a device is compromised, the attacker steals the confidential data, 

connects the IoT device with botnets, and can even take full control of that device. 

There are various types of attacks on IoT devices, which are briefly described in the 

following section: 

1. Physical Attacks 

IoT software is vulnerable to various threats. Similarity, IoT system hardware 

components, such as RFID readers, controller, sensors and many types of RFID tags, 

are subject to various physical attacks; for example, the de-packaging of chips, layout 

reconstruction, micro-probing, and particle beam techniques. However, they are more 

difficult to undertake, as they require expensive materials ( Babar et al. 2011). 

2. Side Channel Attacks 

A side channel attack relies on data obtained from a computer system's 

implementation, rather than weaknesses in the algorithm itself (e.g. cryptanalysis and 

software bugs). Timing data, power consumption, electromagnetic leakage, and even 

sound can all provide additional sources of data that can be exploited (Babar et al. 

2011). Examples of side channel attacks are: timing attacks, power analysis attacks, 

fault analysis attacks, electromagnetic attacks, and environmental attacks (ibid). 

3. Cryptanalysis Attacks 

These attacks target the ciphertext and attempt to break the encryption; thus, they aim 

to find the encryption key in order to obtain the plaintext (Babar et al. 2011). This is 

used to breach cryptographic protocols, violate authentication mechanisms, and, more 

benignly, uncover and fix flaws in encryption algorithms. Ciphertext-only attacks, 

known-plaintext attacks, chosen-plaintext attacks, and man-in-the-middle attacks are 

examples of cryptanalysis attacks (ibid). 

4. Software Attacks 
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Software attacks are the essential source of security vulnerabilities in any system, and 

they exploit implementation vulnerabilities via the system’s communication interface 

(Babar et al. 2011). Software attacks may be able to perform critical damaging 

operations, such as controlling the IoT devices or sending spam to other IoT objects. 

This type of attack involves exploiting buffer overflows and deliberately injecting 

malicious codes into the system using ‘Trojan horse’ programmes, worms, or viruses 

(ibid). 

5. Networks Attacks 

The network of any organisation and individual is considered a core part; the threat is 

that actors can use networks to gain remote control of others’ IoT devices. Accordingly, 

as networks have both digital and physical components, it is important to understand 

how they work. Moreover, due to the broadcast nature of the transmission medium in 

wireless communications systems, the network is vulnerable to various attacks, which 

are classified as active and passive attacks (Babar et al. 2011). Examples of passive 

attacks involve: monitoring and eavesdropping, traffic analysis, camouflage 

adversaries, etc (ibid). Comparatively, examples of active attacks involve: denial of 

service attacks, node subversion, node malfunction, node capture, node outage, 

message corruption, false node, routing attacks, etc. (ibid); in the current study, the 

focus is on this type of attack. 

2.2.3 IoT Attack Lifecycle  

The attack lifecycle that hackers normally use to compromise the IoT devices consists 

of eight stages (see Figure 2). Firstly, the attacker tries to gain initial access by 

identifying the IP addresses of vulnerable devices using fast port-scanning tools. 

Secondly, the attacker performs the execution of payloads or commands on the 

vulnerable devices. Then, due to the execution of any backdoor or malware, the attacker 

maintains persistence in devices. Following this, the attacker uses evasion techniques, 

such as the Torii botnet, to ensure that the attack is not discovered or detected by any 

security solution. During the next stage, device data and sensitive files are collected. 

The malicious payload then receives commands from the command-and-control (C2) 

server. Subsequently, the lateral movement stage is completed within the network to 
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continue infecting a huge number of new IoT devices. Finally, the hacker affects the 

device by stealing information or damaging the device (Palo Alto Networks| IoT 2019). 

 

Figure 2 : The IoT Attack Lifecycle (PALO ALTO NETWORKS | IoT  2019) 

2.2.4 Consequences of IoT Attacks   

There are billions of IoT devices in the world that all collect massive amounts of data 

in real time. The data that is collected, if intercepted, might provide an attacker with 

knowledge in regards to the device’s environment, the user’s contact with the devices, 

and user login passwords, health data, location data, and other sensitive personal data, 

all of which could be accessed through IoT attacks. Indeed, all IoT devices are 

vulnerable to botnets being used to launch distributed denial-of-service (DDoS) attacks. 

In 2016, Mirai was able to transform up to 100,000 improperly secured cameras, digital 

video recording (DVR) players, and other IoT devices into botnets to conduct an 

unprecedented DDoS attack (Bhatia et al. 2019). This resulted in massive internet 

outages, including on Twitter, the Guardian, Netflix, Reddit, and CNN (Dunlap 2020). 

Since the subsequent releasing of the Mirai source code, there have been countless 

further IoT attacks. For example, there has been a 280% increase in attacks on IoT 

devices, with a large chunk of this increase stemming from the Mirai malware (Kelly 

et al. 2020).  

Every user of IoT technology should be aware that 57% of IoT devices are vulnerable 

to cyberattacks (Rock 2020); which can have major financial and reputational 
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consequences for any institution or corporation that uses them. Moreover, cyberattacks 

can cause a variety of other problems for businesses, including the leakage of sensitive 

information and data theft which may lead them to face lawsuits, such as in Europe 

according to the General Data Protection Regulation (GDPR). Considering that, it is 

critical to safeguard the company, employees, and customers. 

In addition, many healthcare facilities are implementing IoT, as it makes patient 

monitoring easier; pacemakers, defibrillators, CT scanners, and other IoT devices are 

among the many that are connected. Consequently, the function of those devices may 

be diminished or entirely disabled due to a cyberattack (Dunlap 2020); this can be 

extremely risky and have disastrous results. That means a cyberattack on a hospital’s 

IoT devices can result in more than only the theft or leakage of medical information; it 

can also result in significant threats to patients’ health. In particular, such an attack 

might pose grave health and safety hazards to a sufferer.                                                                                       

In general, cyberattacks have a negative impact on device performance. Modern IoT 

malware and attacks, such as botnet scanning and propagation, can drain the CPU and 

memory, resulting in a performance reduction of more than 90%, which affects the 

availability of legitimate services and the average device life expectancy. IoT devices 

that have been hacked may experience battery loss, forcing the IoT devices to shut down 

and the IoT services to go offline (Palo Alto Networks| IoT 2019). 

2.2.5 Countermeasures to IoT Attacks 

For both manufacturers and consumers, securing IoT devices is becoming exceedingly 

challenging. As the IoT market has been growing rapidly, attacks on them have become 

more prevalent, and a lack of appropriate safeguards on IoT devices leaves their users 

vulnerable to cyberattacks. The following section lists some existing countermeasures 

to prevent attacks on IoT devices:   

1. Security Information and Event Management (SIEM) 

Enterprise security professionals use security information and event management 

(SIEM) solutions to gain insight into and keep track of the activities in their 

environment. SIEM solutions provide a clear view of the organisation’s network. When 
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SIEM detects a threat, vulnerability, attack, or unusual behaviour, it generates warnings 

for security teams to respond quickly. It provides long-term analysis of security events 

and real-time reporting that are utilised to create correlation rules, which the SIEM 

system uses to detect security incidents and provide a quick response (Díaz López et 

al., 2018). SIEM solutions basically integrate the IoT devices, collect their data, and 

analyse the data on the basis of different engines, as well as providing net flow details’ 

analysis, while the security team can monitor the alert generated by SIEM and act upon 

the incident accordingly (ibid). 

2. Patching IoT Devices  

Many IoT devices are unpatched and connect to the corporate network using standard 

internet service providers. A security-conscious firm would most likely use isolated 

routers to isolate these devices, ensuring that no path from the devices to protected 

network assets exists. Hackers, on the other hand, can quickly discover publicly linked 

devices with known security vulnerabilities using readily available tools. They can use 

publicly available lists from a Common Vulnerabilities and Exposures (CVE) site to 

attempt a factory reset and gain root access to the device once they have found a target. 

Specifically, they will be able to manage the device, such as monitoring a video feed if 

they are successful. Therefore, regular patching is essential in order to ensure the 

security of IoT devices (Borkar 2018). 

To avoid these attacks, the software and firmware must be updated frequently. 

Firmware keeps the system safe by applying the most recent security patches and 

reducing the risk of cybersecurity attacks. There is an ability to secure IoT devices by 

patching any vulnerabilities or exploits as they arise. In accordance, the majority of IoT 

manufacturers send out regular updates, and there is the ability to check for new 

upgrades and security patches on their websites. To avert cyber threats on IoT devices, 

it is critical that they are updated on a regular basis (Tawalbeh et al. 2020). Updating 

IoT device software ensures that the device is equipped with the most up-to-date 

antimalware and antivirus protection (ibid). 

3. Data Encryption 



21 

 

Data encryption is the process of encoding data so that only the sender and intended 

recipient is able to read it (Bhanot and Hans 2015); encryption is the most efficient 

method of ensuring data security. Therefore, the data at rest and in motion between IoT 

devices and back-end systems should be encrypted with standard cryptographic 

algorithms and fully encrypted key lifecycle management processes to safeguard user 

privacy and prevent IoT data breaches. 

4. Machine Learning (ML) 

There are too many challenges in securing IOT devices, and very soon an organisation 

will have an array of connected devices to handle their updates, passwords, settings, 

vulnerabilities mitigations that will make it tough for security teams, and thus, , ML can 

be beneficial in this process (Dickson 2016). 

 

Instead of looking for the security of per-device, network-based solutions can help 

protect IoT devices by covering the home network in a protective shield. To prevent 

intruders from entering IoT networks, it will be necessary to define and register every 

device that is allowed to access a network. However, IoT devices must have access to 

and be accessible by third-party applications, such as through the cloud and mobile 

apps. Incoming and outgoing IoT device traffic can be monitored by ML engine`s to 

develop a profile that determines the IoT ecosystem's regular behaviour. Detecting 

threats will, therefore, focus on identifying traffic and exchanges that do not conform 

to standard operating procedures. Alarms can be delivered to device owners to alert 

them of potential dangers and suspicious activity. In addition, the traffic monitoring 

method can be applied to device interactions in order to detect attacks that may get 

beyond the perimeters and identify compromised devices (Dickson 2016). 

 

One of the issues with a large number of IoT devices is that they lack the processing 

power and storage capacity required to run security solutions and store large databases 

of threat and malware signatures to protect devices against threats. ML also assists in 

providing lightweight endpoint protection to IoT devices. Instead of signature-based 

protection, which can be readily evaded with simple techniques, behaviour-based 

solutions are able to be built as thin solutions that require fewer resources and can run 

on small processors (Dickson 2016). It can be deduced that ML is the best and most 
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efficient solution among all previous solutions, as it reduces the human intervention 

against the attack by helping the tools and software to learn the environment and the 

attack tactics and behaviour, and then act in the way of a human; therefore, it is highly 

demanded due to its efficiency. Correspondingly, section 2.5 presents a variety of 

studies that use ML classifiers in their anomaly-based detection framework. 

2.3  Artificial Intelligence and Machine Learning 

AI is a wide-ranging field of computer science that is interested in building intelligent 

software or machines that are capable of simulating human intelligence in performing 

decision making tasks (Helmold and Terry 2021), especially with vast information. 

Moreover, its purpose is to process data much faster than human capabilities and with 

a high degree of efficiency and accuracy (Awad and Khanna 2015). Machine learning 

(ML) is a subset of AI and is the learning of computer algorithms that can automatically 

improve through experience and data. ML has been defined by Samuel (1959), who is 

the first scientist in the field of computer games and AI, as a "field of study that gives 

computers the ability to learn without being explicitly programmed".  ML algorithms 

build a statistical model based on sample data, also known as "training data". Therefore, 

it is possible to make decisions or predictions without being explicitly programmed to 

do so (Mahesh 2020). What is more, the demand for ML has been increasing in recent 

times due to the abundance of datasets available. Therefore, ML is used in many 

industries in the field of extracting relevant data from a large data set (ibid); for instance, 

financial services, healthcare, transportation, gas and oil, government, and retail 

(Witten et al. 2011). The main types of ML are listed in the following sections: 

2.3.1 Supervised Learning 

Supervised Learning is whereby the model has input variables (x) and an output label 

(Y). The main aim of the supervised learning algorithm is to learn the mapping function 

from the input to the output, with a function inferred from labelled training data, which 

consists of a set of training instances (Mahesh 2020). The input dataset is separated into 

two parts: train and test, with the train part contains an output variable that needs to be 

predicted or classified (ibid). From the training dataset, all algorithms learn some type 

of pattern and apply them to the test dataset for prediction or classification (ibid). There 
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are many metrics used to evaluate the accuracy level of the supervised ML model, such 

as accuracy, precision and recall. Supervised learning problems can be further 

categorised into regression and classification problems. However, supervised learning 

is frequently employed in the solution of classification problems (Sodhi et al. 2019).  

2.3.2 Unsupervised Learning  

Unsupervised Learning is whereby the model only has input variables (X) and no 

corresponding output labels. It is provided with an unlabelled dataset and its aim is to 

model the underlying structure or distribution in the data to study more about the data. 

However, it can work with a labelled dataset by ignoring the labels and classifying the 

observations into certain reasonable groups. When new data is introduced, it employs 

previously learnt features in order to identify the data’s class (Mahesh 2020). 

Unsupervised learning problems can be further categorised into clustering and 

association problems; clustering is the most common unsupervised learning algorithm 

used to evaluate the data to determine hidden patterns or groupings. As this study 

focuses on unsupervised ML, the following section lists some common unsupervised 

ML algorithms used in the classifier context: 

1. Principal Component Analysis (PCA)  

The principal component analysis (PCA) is an unsupervised statistical approach that 

utilises an orthogonal transformation to turn a set of observations of potentially 

correlated variables into a set of values of linearly uncorrelated variables that are 

referred to as principal components. Therefore, through this technique, the dimension 

of the data is reduced to make computations faster and easier, which uses linear 

combinations that explain the variance-covariance structure of a group of variables. 

PCA is frequently used as a dimensionality reduction approach (Mahesh 2020), and is 
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also considered a linear analogue of the AE model (Bhatia et al. 2019). The 

functionality of PCA is depicted in Figure 3. 

 

Figure 3 : Principal Component Analysis (Mahesh 2020) 

2. k-means Clustering  

K-means clustering is one of the most common and easiest unsupervised learning 

algorithms for solving well-known clustering issue (Mahesh 2020). The goal of k-

means clustering is to group together similar data points in a cluster and ascertain 

underlying patterns. To achieve this goal, the k-means algorithm looks for a fixed 

number (k) of clusters in a dataset. Finding the optimal k number is a critical step, as 

the performance of the k-Means algorithm depends upon the value of K, which can be 

achieved through the elbow method, which is one of the most common techniques for 

finding the optimal value of K. elbow method is proposed to explain and check the 

consistency of clustering analysis to help in the determination of the best number of 

clusters in the dataset (Liu and Deng 2021). The key concept of k-means clustering is 

to define the k number of centroids, one for each cluster (Mahesh 2020). A centroid is 

a fictional or real point that represents the cluster's centre. Following this, each data 

point is assigned to the closest cluster, while keeping the centroids as small as possible. 

When there are no pending points, the first step is accomplished, and an early group 

age is completed (Mahesh 2020). At this point, new centroids of the clusters formed in 

the preceding step need to be re-calculated to optimise their location (ibid). Figure 4 

illustrate how the k-means clustering algorithm can handle the clustering problem. 
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Figure 4 : K-Means Clustering (Mahesh 2020) 

3. Autoencoder   

Autoencoders play an essential part in unsupervised learning and functions as a neural 

network that employs backpropagation to find an identity function that can reproduce 

the input data {x(1), x(2), . . . , x(m)} as outputs {xˆ(1), xˆ(2), . . . , xˆ(m)} with the least 

number of errors (Baldi 2012). Figure 5 shows that AE consists of two primary parts: 

an encoder (Layer L1) for compressing the input into a lower-dimensional latent 

subspace; and a decoder (Layer L3) for reconstructing the input from this latent 

subspace. The hidden layer (Layer L2) compresses the inputs into a small number of 

neurons (Hinton and Salakhutdinov 2006). The distance between the input and 

reconstructed output is determined by a loss function, which represents how close the 

data point is to the model that the Autoencoder generated (Bhatia et al. 2019). 

Autoencoders are widely used in anomaly detection which is the process of finding 

abnormalities in data (ibid). Abnormal data refers to data that deviates greatly from the 

data's general behaviour. The loss function of the trained AE model is able to be used 
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as a classifier to distinguish between normal network traffic and malicious traffic that 

is known or unknown (Bhatia et al. 2019). 

 

Figure 5 : Autoencoder (Hinton and Salakhutdinov 2006) 

2.3.3 Semi-Supervised Learning 

Semi-supervised learning combines both supervised and unsupervised ML techniques. 

The purpose of semi-supervised learning is to understand how combining labelled and 

unlabelled data might affect learning behaviour, and design algorithms that take benefit 

from such a collection. This has provided the ability to leverage widely available 

unlabelled data to enhance supervised learning tasks when labelled data is rare or 

expensive. Therefore, semi-supervised learning is of great importance in ML and data 

mining. Moreover, it shows that it can be used as a quantitative tool to figure out human 

category learning, where the majority of the input is clearly unlabelled (Zhu and 

Goldberg 2009).   

2.4  Learning Evaluation  
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In order to evaluate the performance of a ML model, various metrics can be used; for 

example, Confusion Matrix, Precision, Accuracy, Recall, F1- Score and RMSE score, 

which are described in the following sections:  

2.4.1 Confusion Matrix  

A confusion matrix is a table that visualises a model’s performance by displaying the 

values that the model thought belonged to which classes. It has a size of N × N, where 

n indicates the number of classes, with the actual classes represented by the columns 

axis and the predicted classes represented by the rows axis. To illustrate, the confusion 

matrix in a binary classification problem, N=2 (see Table 1), and the confusion matrix 

consists of four outputs that demonstrate the success rate of the classification of the 

model in predicting the outcomes, which is the correlation between the label and the 

classification of the model. These four outputs are interpreted below.  

• TP is the number of actual positives that were correctly identified as positives  

• TN is the number of actual negatives that were correctly identified as negatives. 

• FP is the number of actual negatives that were incorrectly identified as positives. 

• FN is the number of actual positives that were incorrectly identified as 

negatives.   

Table 1 : Confusion Matrix Structure for Binary Classifier 

  Predicted Class 

  Negative (0) Positive (1)  

Actual 

Class 

Negative (0) TN FP 

Positive (1) FN TP 

The confusion matrix outputs are used for several metrics (Ciaburro and Josh 2019), 

which will be discussed in the next sections. 

2.4.2 Accuracy  
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The accuracy is a metric used to evaluate the ML model that calculates the fraction of 

correct predictions over the total number of samples; the best accuracy score is 1 and 

the worst is 0. Its formula is: 

�������� =
�� + ��

�������
 

2.4.3 Precision 

The precision is a metric used to evaluate the ML model that calculates the fraction of 

correctly identified positives over the total number of positive examples that were 

predicted; the best precision score is 1 and the worst is 0. Its formula is:  

��������� =
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2.4.4 Recall  

The recall is a metric used to evaluate the ML model that calculates the fraction of 

actual positives that were correctly identified; the best recall score is 1 and the worst 

is 0. Its formula is: 

������ =
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2.4.5 F1- Score 

The F-1 score is a metric that represents a weighted harmonic mean of the precision 

and recall. Therefore, it takes into account both false positives and false negatives, 

which makes the F-1 score more suitable for an imbalanced dataset, as it is able to 

reflect the real performance of the classifier to a better extent than accuracy (Parker, 

2011); the best F-1 score is 1 and the worst is 0. Its binary classifiers formula is: 

�� − ����� = � ∗
(��������� ∗ ������)	

(��������� + ������)	
 

2.4.6 Root Mean Square Error (RMSE) 
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 RMSE is a standard method for calculating a model's error in predicting quantitative 

data (Moody 2019). Formally it is defined as follows: 

 

2.5  Literature Review 

As discussed in section 2.2, cyberattacks on IoT devices have threatened many 

corporations and consumers in recent years. There have been various studies that have 

discussed countermeasures for cyberattacks on IoT devices, such as SIEM, patching 

IoT devices, and data encryption. However, the rising diversity of IoT attacks and their 

sub-types has necessitated the development of innovative technologies for improved 

efficacy; the current study focuses only on ML models as an effective solution to detect 

IoT attacks. Table 2 details the related work on attack detection using ML in IoT 

network traffic. Each study containing ML algorithms used: a classifier type, datasets, 

evaluation metrics and limitations 

Table 2 : Existing Solutions of ML in detecting IoT Attacks 

Author(s) ML algorithms 

used  

 

Classifier 

Type 

Dataset Best 

Algorithm  

 

Evaluation 

Metrics  

 

Limitations 

(Shirazi et 

al. 2016) 

Unsupervised 

Learning: 

1. K-means  

2. PCA-SVD  

3. GMM  

Binary 

classifier 

Simulation 

dataset of 

real 

anomalies 

and 

normal 

activity on 

K-means  

 

Precision = 

0.8319  

F1- Score = 

0.6751  

They train 

models on a 

simulated 

dataset, 

although 

different 

issues may 

have arisen 
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a gas 

pipeline  

in the case of 

real data. 

(Doshi et 

al. 2018) 

Supervised 

Learning: 

1.  KNN  

2.  LSVM  

3.  DT  

4. RF  

5.  NN  

 

Binary 

classifier 

 

Simulated 

dataset  

 

KNN 

DT 

RF 

NN 

 

Accuracy 

=0.999 

As there are 

no public 

datasets for 

consumer 

IoT attack 

traffic, they 

generated 

classifier 

training data 

by 

simulating 

the network 

of IoT 

devices. In 

the situation 

of real data, 

different 

issues may 

have 

emerged. 

(Bhatia et 

al. 2019) 

Unsupervised 

Learning: 

1. AE 

2. PCA 

Supervised 

Learning: 

1. SVM 

 

Binary 

classifier 

 

Publicly 

available 

dataset of 

benign 

traffic 

Simulated 

dataset of 

malicious 

IoT 

network 

traffic (IoT 

DDoS 

attack) 

AE 

 

F1- Score  

Normal= 

0.935  

Attack= 

0.967  

 

They use a 

simulated 

dataset of 

malicious 

traffic, as 

there are is 

lack of 

publicly 

available 

datasets 

containing 

DDoS IoT 

attacks. In 
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the case of 

real data, 

different 

problems 

may arise.. 

(Hasan et 

al. 2019) 

Supervised 

Learning: 

1.  LR 

2.  SVM 

3.  DT 

4.  RF 

5.  ANN 

Multi-

class 

classifier 

Produced 

synthetic 

data from 

DS2OS  

RF 

 

Accuracy = 

0.994  

 

The models 

were 

implemented 

on virtual 

environment 

data. In the 

case of real-

time data, 

different 

problems 

may arise. 

(Chang et 

al. 2019) 

 

Semi-

Supervised 

Learning:  

1. k-means  

2. CEA 

 

Multi-

class 

classifier 

Gas 

Pipeline 

Dataset 

and 

Water 

Storage 

Tank 

Dataset  

1. k-

means  

2. CEA 

 

F1- Score = 

0.8908  

 

 

Broad 

conclusions 

cannot be 

drawn 

because the 

experimental 

base is not 

large 

enough.  

(Stoian 

2020) 

Supervised 

Learning: 

1.  DT  

2.  RF  

3. Naıve 

Bayes (NB) 

4.  SVM  

5.  ANN  

 

Multi-

class 

classifier 

IoT-23  

 

RF   

 

Precision = 

0.995  

 

Only data 

with no 

statistical 

correlation 

to the 

column to be 

predicted 

was deleted, 

even though 

it is possible 
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to delete 

more 

columns 

from the 

IoT-23 

dataset to 

improve the 

efficiency of 

the model. 

(Shafiq  et 

al. 2020) 

 

Supervised 

Learning: 

1.  NB 

2. BayesNet  

3.  DT  

4.  RF  

5.  RT 

Multi-

class 

classifier 

Bot-IoT  

 

Naıve 

Bayes (NB) 

 

Precision = 

0.99  

 

The dataset 

was not 

cleaned, 

which may 

affect the 

model’s 

performance. 

The main conclusion drawn from previous studies is that ML has shown promising 

results for IoT attack detection. Even though many types of ML algorithms exist, most 

researchers have focused on supervised algorithms to detect IoT attacks (whether binary 

or multi-class classifier), rather than unsupervised ML algorithms. Moreover, other 

studies have used simulated datasets (Shirazi et al. 2016; Doshi et al. 2018; Bhatia et 

al. 2019; Hasan et al. 2019). Even though these sources provide a large and emulated 

collection of IoT traffic samples, different problems may arise in the case of real data, 

which can potentially affect the model’s capability to detect real patterns in IoT attacks. 

Taking that into account, it is noticeable that most prior research mainly focuses on 

supervised algorithms to distinguish IoT attacks from benign data. Although it has an 

effective capability in detecting IoT attacks, new unknown threats, often known as zero-

day attacks or zero-days, are likely to remain undiscovered, as supervised detection 

algorithms frequently misclassify them (Zoppi et al. 2021). However, unsupervised 

detection techniques can play a significant role in detecting zero-day attacks when other 

mechanisms fail (Zoppi et al. 2021). Therefore, the IoT attacks detection solution for 

the current study is an unsupervised-based IoT traffic attack classifier, which can be 
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effective in reacting to zero-day IoT attacks. The main contribution of this study is to 

use two approaches for these techniques, namely clustering-based and anomaly-based 

detection to identify attacks on IoT devices. To the best of the researcher’s  knowledge, 

this is the first time that these have been used together for developing IoT traffic attack 

classifier on a real dataset of IoT network traffic collected from real-time network 

traffic data of IoT appliances.  

2.6 Summary  

Nowadays, cyberattacks on IoT devices have become more prevalent because of their 

rapid growth. IoT devices are defined as devices designed for transferring data over the 

internet or other networks, such as sensors, actuators, software, machines and 

appliances. Cyberattacks on IoT devices can have major financial and reputational 

consequences for any institution or corporation that uses them. Therefore, there has 

been rich research in the field of ML techniques for IoT cyberattack detection and 

prevention. By reviewing previous research, it has been possible to observe that 

researchers mainly focus on supervised algorithms for detecting IoT attacks, rather than 

unsupervised ML algorithms. The proposed solution is an unsupervised-based IoT 

traffic attack classifier that uses the information present in that traffic to classify it as 

benign or malicious. The main contribution of the current study is the use of two types 

of these techniques to identify attacks on IoT devices, using a real dataset of IoT 

network traffic. 
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3. Methodology and Implementation 

3.1 Overview   

This chapter provides detailed information on the methodology that was adhered to 

along with the implementation of the detection model development that is able to 

distinguish between benign and malicious IoT network traffic. It begins with a 

description of the environmental setup, and is then followed by an explanation on the 

methodology and implementation of the detection model development pipeline. 

3.2 Environmental Setup  

The proposed model was implemented using Python 3.8, which takes advantage of the 

capabilities provided by various Python libraries; each implementation section will 

mention its utilised library. Python was chosen, as it is the preferred language by 

developers for data science, AI, and ML, due to its simple and readable syntax, which 

would enable easy testing for algorithms involved in ML applications (Nagpal and 

Gabrani 2019). Therefore, it provides developers with the opportunity to concentrate 

on the machine learning aspect, rather than programming the task (ibid). 

Moreover, experiments were run in the Jupyter notebook (a web tool), as it is a 

convenient and flexible tool, where all documentation, code execution, output 

observation, and result visualisation can be executed in a single file. Additionally, each 

section operates independently, allowing users to test a particular block without 

executing the code from the beginning, because it will increase accessibility to 

particular functions. The laptop used in the experiments was running MacOS; the 

processer was an Intel Core i5 CPU 2.3 GHz; and the memory of the laptop was 8 GB 

RAM. 

3.3 Overall Methodology  

In the current study, the detection of IoT attacks is formulated as an unsupervised ML 

binary classifier problem, which means that there are two classes: benign IoT device 

traffic and a malicious version. The essential objective of an IoT traffic attack classifier 

is to build a model that can distinguish between benign and malicious IoT network 
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traffic in a publicly available labelled dataset; thus, IoT attack attempts will be detected 

before they reach the devices. The current methodology and implementation will adhere 

to the standard framework for building an IoT traffic attack classifier, which has been 

observed after reviewing the IoT attacks detection literature, as mentioned in section 

2.5.  

Figure 6 depicts the detection model development pipeline. In the first step, the data of 

IoT network traffic is collected and then the preparation and pre-processing of this data 

are performed; this is a prior step to the exploratory data analysis. Subsequently, the 

outlier value treatment is executed. The next stage is to feed the resulting data from 

previous stages into ML models for training them. Finally, the trained model's 

performance is evaluated using standard metrics. 

 

Figure 6 : The Applied Methodology for IoT Attacks Detection Model Development 

 

3.4 Data Collection  
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In order to build the current study’s IoT attacks detection model, obtaining a collection 

of malicious and benign IoT network traffic was necessary to train and test the detection 

performance of the model. The goal for the IoT network traffic dataset was to be 

realistic, which reflects real patterns in IoT network attack characteristics. Therefore, 

the IoT-32 data set was selected for the study (Garcia et al. 2020). The selection of the 

IoT-23 dataset to build our IoT attacks detection model was due to its reality, compared 

with most literature mentioned in section 2.5, which used simulated data sets. A real 

dataset is essential in analysing the actual behaviour of benign and malicious IoT traffic. 

Furthermore, the IoT-23 experimental dataset was collected from real IoT devices 

between 2018 and 2019 in collaboration with the Czech Technical University in Prague, 

which was created by the Avast AIC laboratory. Moreover, it is a publicly available 

labelled dataset consisting of 20 malicious captures and three benign captures (Garcia 

et al. 2020). 

Each capture in its complete form contains the original packet capture files of network 

traffic in .pcap format, and 'conn.log.labeled' files, which were created from the .pcap 

file using the Zeek network analyser (Garcia et al. 2020). Zeek, previously known as 

Bro, has been defined by Suciu et al. (2019) as “an open source framework that can be 

used for investigating the network traffic, detection of behavioural irregularities 

[anomalies] on a network for cyber-security reasons”. Comparatively, a lighter version 

only contains 'conn.log.labeled' files (Garcia et al. 2020). The latter file was used for 

this study because .pcap files are generated by the network capture tool, Wireshark, and 

can only be opened with its use; however, working with them proved needlessly 

complex for the current study; thus, they were discarded. The dataset sample was 

collected from various 'conn.log.labeled' files, which are under the following captures. 

• CTU-IoT-Malware-Capture-34-1 (Mirai) 

• CTU-IoT-Malware-Capture-43-1 (Mirai) 

• CTU-IoT-Malware-Capture-20-1 (Torii) 

• CTU-IoT-Malware-Capture-21-1 (Torii) 

• CTU-IoT-Malware-Capture-42-1 (Trojan) 
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• CTU-IoT-Malware-Capture-60-1 (Gagfyt) 

• CTU-IoT-Malware-Capture-17-1 (Kenjiro) 

• CTU-IoT-Malware-Capture-36-1 (Okiru) 

• CTU-IoT-Malware-Capture-8-1 (Hakai) 

Due to technical limitations, a small sample was obtained from each capture, which was 

converted into Excel files in order to make it readable for Python. Then, one feature has 

been added to each sample that indicates the type of malware (type_of_malware) that 

contains Mirai, Torii, Trojan, Gagfyt, Kenjiro, Okiru and Hakai labels, using the Python 

script. 

Algorithm 1: Add type_of_malware Feature   

Start  

Read sample content from excel file, using Pandas DataFrame 

(comment: Pandas DataFrame is a tabular data structure (rows and columns), 

which is suitable for the excel file)  

Initialize empty column  for Type_of_malware feature in the DataFrame 

Column_value=label 

(comment: label is the column that contains 'malicious' or 'benign' value ) 	

For row in DataFrame 

if Column_value ='Malicious'  

return malware name 

(comment: malware name is written as a String value for each sample, each 

sample is for one type of malware) 	



38 

 

append	malware name	to	Type_of_malware column	 

else  

return '-' 

append	(-) to	Type_of_malware column 

Write DataFrame to new Excel  file 

(comment: Excel file contains original sample with Type_of_malware column )  

End 

Subsequently, the obtained nine Excel files were organised into a root folder. To pre-

process the dataset, a Python script was written to read nine Excel files and to append 

them into one concrete Excel file, which was referred to as "total_samples.xlsx". The 

structure of the dataset is depicted in Table 3. 

Algorithm 2: Samples  Collection   

Start  

Define path variable 

Read samples_folder path 

Create DataFrame object (columns and rows), using Pandas library 

For file in samples_folder 

open file 

read file content 

append content to DataFrame 

Write DataFrame to new Excel  file 

End 
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Table 3 : IoT-23 Dataset Structure 

IoT Network Traffic Instances Count 

Benign 16776 

Malicious 85590 

Total 102366 

 

The 'conn.log.labeled' files were provided with labels containing 23 columns of 

network traffic data. Each column included valuable information regarding the captured 

network traffic with a header and 102366 instances. Table 4 summarises the description 

and type of these columns. With the column that is added (type_of_malware), the total 

number of columns has come to a total of 24. The upcoming section describes the 

preparation and pre-processing of the IoT-23 dataset. 

Table  ٤  : The Description of Columns in 'conn.log.labeled' File 

Description  Type  The Column  

Timestamp. Time  Ts 

Connection's unique ID. String Uid 

The IP address of the originating endpoint (AKA 

ORIG). 

Addr  

 

id.org_h 

 

TCP/UDP port (or ICMP code) of the originating 

endpoint.  

Port  

 

id.org_p 

The IP address of the responding endpoint (AKA 

ORIG). 

Addr  

 

id.resp_h 
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TCP/UDP port (or ICMP code) of the responding 

endpoint. 

Port  

 

id.resp_p 

Transport layer protocol of connection. Enum 

 

Proto 

Dynamic detection of application protocol if any. String  

 

service 

Duration between the first packet seen and the last 

packet seen. 

Interval  

 

duration  

 

Bytes of originator payload; from sequence numbers 

if TCP. 

Count  

 

orig_bytes  

 

Bytes of responder payload; from sequence numbers 

if TCP. 

Count  

 

resp_bytes  

 

Connection state, Refer to (Garcia et al. 2020) for 

more details. 

String  

 

conn_state  

 

If the connection originated locally T; if remotely F. Bool 

 

local_orig  

 

If the connection responded locally T; if remotely F. Bool local_resp  

The number of bytes missing in content gaps. String  

 

missed_bytes  

 

Connection state history.  String 

 

History 

 

The number of originator packets. Count orig_pkts 
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The number of originator IP bytes (via IP 

total_length header field). 

Count 

 

orig_ip_bytes 

 

The number of responder packets. Count 

 

resp_pkts 

 

The number of responder IP bytes (via IP 

total_length header field). 

Count 

 

resp_ip_bytes 

 

If tunneled connection UID of encapsulating parent 

(s) labelled. 

set[string] 

 

tunnel_parents 

Classification of network traffic as "benign or 

malicious" after a physical examination. 

String 

 

Label 

 

Identifying the type of attack in malicious traffic. String 

 

detailed-label 

 

 

3.5 Data Preparation & Pre-processing  

Once the data are collected, it was time for preparation and pre-processing of the data. 

This step was executed using a Python script with the Pandas library. The Pandas library 

is an open-source data analysis and manipulation tool that is fast, powerful, flexible, 

and simple to use (Pandas 2021). Using Pandas makes tasks with time series and 

structured data smooth for ML programmers (ibid). Panda can also be utilised to 

generate a data frame with a tabular data structure (i.e. rows and columns). 

3.5.1 Data Preparation 

The first step in model implementation is achieved by importing the dataset from the 

source into the analysis tool, and a python script was used to read the dataset by taking 
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the Excel file of the dataset as an argument, and to store it as a pandas DataFrame object 

for further analysis, such as data pre-processing process. The need to understand the 

attributes of data (e.g. a column’s name, its type and number of missing values in a 

column) is required before pre-processing it. A python script was used to display 

attributes of the data, as shown in Figure 7. This step illustrated that there are 8 features 

of numeric data types and 16 features of object data types, with the columns tied with 

data type "int64" and "float" that denote numerical data while the data type "object" 

denotes categorical data. Moreover, there are no missing values in the data, as all 

features have 102366 instances. 

 

Figure 7 : Understanding of Data Attributes 

In addition, some columns were eliminated from the dataset to decrease the clustering 

and neural network complexity in order to achieve the best model performance. More 

details regarding the removed feature and its elimination reason are clarified in Table 

5. Following the elimination process, there were a total of 11 features left for analysis, 

with all the remaining features with their functionality illustrated in Table 6. The next 

section details how all the remaining features have been pre-processed to be ready for 

model implementation. 
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Table 5 : Elimination Process Information 

Removed Feature Reason for Elimination 

ts, uid, id.org_h, 

id.resp_h,  

id.org_p, and 

id.resp_p 

 

The timestamp, Connection's unique ID, IP address and port 

of the originator and responder are considered identifying 

properties. The features that indicated identifying properties 

were eliminated, such as IP address, time, and packet ID, to 

guarantee that the model was not dependent on specific 

network configurations and that network behaviour features 

were captured, rather than network actors and devices 

(Anthi et al. 2019). Therefore, these features were 

eliminated because our proposed model applies to all IoT 

network traffic. 

local_orig, 

local_resp and 

tunnel_parents 

They have no value for all instances. 

service and 

missed_bytes 

They were missing more than 96% of instances values. 

History The connection state history, which is contain 13 types of 

the state history of connection, is not related to the purpose 

of this study. 

detailed-label 

 

It identifies the specific type of attack in every malware type 

(e.g. C&C, DDoS and Okiru attack). Due to the appending 

of many malware type samples in the same dataset file, this 

feature has been replaced by the type_of_malware feature, 

which identifies only malware type rather than the specific 

type on each one. 
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Table 6 : Remaining Features with Their Functionality 

Column Name Feature  Functionality  

Proto Protocol  The transport layer protocol. 

Duration Duration  The time period of the connection 

lasted. 

orig_bytes  Originator bytes  The number of payload bytes that have 

been received from the originator. 

resp_bytes  Responder bytes  The number of payload bytes that have 

been received from the responder.  

conn_state  Connection state Possible connection state values; refer to 

(Garcia et al. 2020) for more detail. 

orig_pkts  Originator packets The number of packets that have been 

received from the originator. 

resp_pkts  Responder packets The number of packets that have been 

received from the responder. 

 orig_ip_bytes  Originator IP bytes The number of IP level bytes that have 

been received from the originator 

resp_ip_bytes  Responder IP bytes The number of IP level bytes that have 

been received from the responder 

Label Network traffic label The type of network traffic; benign or 

malicious. 

type_of_malware Type of malware  The type of malware executed. 

 

3.5.2 Data Pre-processing  

Data pre-processing is an important step in ML, as it is used to improve the quality of 

the data; thus, enhancing the classifiers’ performance levels. This process includes 
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dataset cleaning, transformation and normalisation, which decreases the noise and 

inconsistency that is common in real-world data. During model development, the goal 

of pre-processing is to remove noise from the values of the variable, such as handling 

and treating the blank values (e.g. '-' symbol) and to transform values to a numeric data 

format. The pre-processing and cleaning process was performed on the remaining 

features of both types that exist in the dataset, namely the categorical and numeric types; 

this stage for both types is described separately in the following sections: 

1. Cleaning and Pre-processing of Categorical Data 

The categorical features are cleaned and pre-processed by transforming them into 

numeric values in order to be processed into models. There are four different data 

transformation cases from categorical values into numeric values, which are presented 

in Table 7. 

Table 7 : The Data Transformation Cases of Categorical Features 

label Feature 

Categorical value Corresponding numeric value 

Benign 0 

Malicious 1 

type_of_malware Feature 

Categorical value Corresponding numeric value 

- 0 

Mirai 1 

Kenjiro 2 

Gagfyt 3 

Okiru 4 

Hakai 5 

Torii 6 

Trojan 7 

conn_state Feature 

Categorical value Corresponding numeric value 

S0 1 
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OTH 2 

SF 3 

S3  4 

RSTO 5 

REJ 6 

RSTR 7 

proto Feature 

Categorical value Corresponding numeric value 

Tcp 1 

Udp 2 

Icmp 3 

2. Cleaning and Pre-processing of Numeric Data 

Three numeric features are cleaned and pre-processed; is shown in Figure 7, "duration", 

"orig_bytes" and "resp_bytes" columns were categorised as categorical data, although 

they are in fact numeric data. The cleaning and pre-process on these features were 

performed by replacing the blank value '-' by 0, which was then converted to the 

numeric type to be fed into models. After the process of data cleaning and 

transformation, the data normalisation was executed, which is to rescale the values of 

the features, so that they share a standard scale. Further, data normalisation is critical 

in cluster analysis, as clusters are defined by the distance between points in a 

mathematical space. 

3.6 Exploratory Data Analysis (EDA) 

After data preparation and pre-processing, the exploratory data analysis (EDA) stage is 

performed. It is an important stage in every data science project because it provides a 

more in-depth understanding of the data by utilising statistical graphics and other data 

visualisation methods (Peng et al. 2021). As the IoT-23 dataset was labelled manually 

by the developers, and there is no available information regarding how the labelling 

process was undertaken, EDA was required to be used during the model's development. 

This stage was implemented using the Python script with the Seaborn and Matplotlib 
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library (Seaborn 2021; Matplotlib 2021), which are used for data visualisation. Indeed, 

using Seaborn makes default Matplotlib plots more attractive. 

This section will discuss several statistical and graphical representations of features in 

order to ascertain a better understanding of data patterns. The EDA was performed on 

both types of data columns in the dataset, namely categorical and numeric types; this 

stage for both types is described separately in Table 8. As the EDA stage was present 

post-data transformation in the pre-processing stage (section 3.4.3); the data was 

displayed in its transformed format, not the original one. 

Table 8 : Distribution of Variables 

Exploring Categorical Variables 

Distribution of the Label Variable  

 

Observation There are two classes in the label variable:  

• Class 0 contains 16776 instances, which is benign traffic.  

• Class 1 contains 85590 instances, which is malicious traffic. 

Distribution of Types_of_malware Variable   
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Observation There are eight classes in types_of_malware variable: 

• Class 0 is benign traffic. 

• Class 1 has the highest counts of malware (31781), which represents 

Mirai malware. 

• Class 7 have the lowest counts of malware (6), which represents Troj

an malware. 

Distribution of the Proto Variable 

 

Observation The proto variable has three classes: 

• The highest count of protocols is on class 1 (95948), which 

represents the TCP protocol. 

• The lowest count of protocols is on classe 3 (3), which represents 

the ICMP protocols. 

Distribution of the Conn_state Variable 
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Observation The conn_state variable has seven classes: 

• The highest count of connection state values is on class 1 (73682), 

which represents the S0 connection state value 

• The lowest count of connection state values is on class 4 (5), 

which represents the RSTR  

Exploring Numeric Variables 

Distribution of the Duration Variable 

 

Observation By exploring the distribution of duration by the label and by statistics, it 

was possible to observe that there are outliers and the variable is skewed. 

Distribution of the orig_pkts Variable 
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Observation • The distribution of original packets by the label has shown that 

most of the traffic was transmitted between 0 to 2 packets. 

However, the traffic transmitted above 2 packets was malicious. 

• By exploring the statistics of the original packets variable, it was 

possible to observe that 75% of the values represent 2 and the max 

value is 66027354, which means that there are outliers and the 

variable is skewed. 

Distribution of the orig_ip_bytes Variable 

        

Observation By exploring the distribution of original IP bytes by the label and by 

statistics, it was possible to observe that there are outliers in both benign 

traffic (class 0) and malicious traffic (class 1), and data is skewed with 

more speed in malicious traffic (1).  

Distribution of the resp_pkts Variable 
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Observation By exploring the distribution of the response packets by label and by 

statistics, it was discovered that most of the traffic have small values, 

although it seems that malicious traffic (class 1) have one big value. 

Moreover, the variable has outliers and it is skewed. 

Distribution of the resp_ip_bytes Variable 

 

Observation By exploring the distribution of the response IP bytes by label and by 

statistics, it was noted that both benign traffic (class 0) and malicious 

traffic (class 1) have outliers and the variable is skewed. 

Distribution of the orig_bytes Variable 
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Observation By exploring the distribution of original bytes transmitted from the source 

by label and by statistics, it was noted that both benign traffic (class 0) 

and malicious traffic (class 1) have lots of 0 values and the variable is 

speedily skewed with malicious traffic (class 1). 

Distribution of the resp_bytes Variable 

 

Observation By exploring the distribution of response bytes by label and by statistics, 

it was discovered that there are many outliers in both classes; malicious 

(1) and benign (0), which also have lots of 0 values. 

 

In conclusion, regarding the exploration of the categorical variables, there are two types 

of traffic in the dataset: benign of 16776 instances and malicious of 85590 instances. 

Secondly, the type of malware variable contains eight classes, with the highest count of 
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malware as Mirai. Moreover, the protocols variable consists of three classes, with the 

majority representing the TCP protocol. Finally, the connection state variable has seven 

classes, with the S0 value as the highest count of connection state values. In terms of 

exploring numeric variables, their distribution has shown that there are many outliers, 

not only in malicious traffic (e.g. duration, resp_pkts and orig_bytes), but also in both 

malicious and benign traffic (e.g. orig_ip_bytes, resp_ip_bytes and resp_bytes).   

3.7 Outlier Value Treatment  

The fourth step in the detection model development pipeline is outlier value treatment. 

As noted in the previous section, the dataset contains many outlier values in both 

malicious and benign traffic. This is one of the problems that can arise from real data. 

Moreover, removing outlier values from data before feeding it into the model can 

improve the model’s accuracy. To illustrate, one drawback of the k-Means clustering 

algorithm is that it is sensitive to noisy data and outliers (i.e. outlier values influence 

the performance of k-Means); thus, removing the outliers from clusters can improve the 

clustering accuracy (Gan and Ng 2017). Therefore, the outlier treatment approach is an 

important step before building the ML models. In addition, the current outlier value 

treatment approach is the capping method, which is a method that identifies a value as 

an outlier if it exceeds the value of the 99th percentile of the variable. Following this, 

the outlier is capped at a specific value above the P99 value (Tiwari et al. 2007). 

Therefore, the outlier value was capped in all numerical variables in our dataset at the 

P99 value of the variable. 

3.8 ML Model Training 

The next stage was to feed the resulting data from previous stages into the proposed 

ML models for training them. In the current study, the most common unsupervised ML 

algorithms presented in the IoT attacks literature were implemented (section 2.5): k-

means and AE. We also used the unsupervised PCA model as data dimensionally 

reduction technique to improve the K-means model accuracy. They were implemented 

using Python’s libraries Scikit-learn (Scikit-learn 2021) and TensorFlow (TensorFlow 

2021). Scikit-learn is used because it provides a variety of ML algorithms, as well as 

functionalities, including clustering, decomposition and model selection (Pedregosa et 
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al. 2011). Furthermore, despite the fact that it is written in high-level language, attention 

has been taken to minimise the computational cost (ibid). As a result, it is suited for 

problems, such as network traffic binary classifiers. Comparatively, the reason for using 

TensorFlow is that it provides easy construction and training of ML models, such as 

neural network techniques (TensorFlow 2021). The implementation of each model is 

described separately in the following. 

Before training the detection ML models, the PCA model was used to reduce the 

dimension of data to make computations faster and easier. Firstly, the PCA was 

executed on the training data to determine the minimum set of top K principal 

components with cumulative variance greater than 94%. PCA is then rerun on the 

training data, but this time restricted to use only the top k principal components, which 

was 5. The data resulting from this model was used by the k-Means clustering model 

to perform faster training, decrease complexity, simplify interpretation, and improve 

accuracy (Zhu et al. 2019). 

3.8.1 K-Means Clustering Model 

The k-Means clustering model was run with its default implementation script in Python. 

To find the optimal value of K, the elbow method was used. As shown in Figure 8, the 

method was employed by running the model on the data for a range of k values from 2 

to 14, which illustrated that there is an elbow at k=7 (i.e. k=7 can be considered a good 

number of the clusters to group the data). Therefore, the model was built on the data 

resulting from the PCA model with K = 7. Separately, Figure 9 depicted that the model 

clearly separated the 7 clusters constructed from the data. The cluster label (cluster 

number) resulting from the model was combined with original data and stored as a 

pandas DataFrame object. Following this, the DataFrame was exported in a new Excel 
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file to calculate the evaluation metrics of the model mathematically; more details are 

described in Chapter 4. 

 

Figure 8 : The Elbow Method 

 

 

Figure 9 : Our K-Means Clustering Model with 7 Clusters 

3.8.2 Autoencoder Model   
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The Autoencoder (AE) model was executed through Python with its default 

implementation script. A simple 75:25 split was used to create a train and a test data 

set, where training data have 75% of the data and testing have 25% of the data. The 

model was built on the training dataset, and then predictions were made on the test 

dataset. The train-test split was used to ensure that the model operates with high 

accuracy, even on unseen data (i.e. the test dataset). The performance results of the 

model are presented in the following chapter. 

3.9 Trained Model Evaluation  

The final stage in the model development pipeline is evaluation, as shown in Figure 6. 

The primary purpose of our IoT traffic attack classifier is to distinguish between 

malicious and benign traffic from the IoT-23 dataset, detecting malicious traffic before 

it can reach IoT devices. Therefore, to evaluate the current study’s model’s prediction 

accuracy of the aim for which it was developed.  Firstly, the standard ML-based 

evaluation metrics used in the IoT network traffic detection literature were employed 

(see section 2.5), such as confusion matrix, accuracy and F1- Score, to evaluate K-

Means model performance. Moreover, we used one of the employed standard scores 

utilised to assess the efficiency of the AE model, which is the RMSE score. A general 

description of evaluation metrics has been presented in Chapter 2. The representation 

of entries in the confusion matrix in the proposed model is clarified in Table 9; instances 

of benign IoT traffic were labelled with (0), while malicious ones were labelled with 

(1). Chapter 4 provides a more detailed explanation of the utilised method of model 

evaluation. 

Table 9 : Representation of The Confusion Matrix in Our Proposed Model 

Class  Predicted (0) Predicted (1)  

Actual 

(0) 

TN FP 

 Represent the number of 

benign network traffic  

that are correctly 

classified as benign. 

Represent the number of 

benign network traffic  

that are incorrectly 

classified as malicious. 
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Actual 

(1) 

FN TP 

 Represent the number of 

malicious network traffic  

that are incorrectly 

classified as benign. 

Represent the number of 

malicious network 

traffic  that are correctly 

classified as malicious. 

 

When detecting malicious IoT traffic, the cost of a false positive, which is the cost of 

classifying benign IoT network traffic as malicious, is considerable, as it can 

significantly impact the productivity of organisation that depends on IoT devices. 

Therefore, any anti-malicious IoT traffic detection model’s goal is to raise the ratio of 

true positives compared to false positives. Nonetheless, a high false negative ratio, 

which is the ratio of malicious network traffic is classified as benign, cannot be 

disregarded. Therefore, both precision (high precision equates to a low false positives 

rate) and recall (a high recall equates to a low false negative rate) must be considered 

in order to ensure the model’s accuracy in detecting malicious IoT traffic, which enables 

IoT platforms to rely on the model. As a result, the F1-score (the mean of precision and 

recall) will be considered the primary evaluation metric in the current study. 

Additionally, as the dataset is imbalanced, the F1-score can better reflect the classifier’s 

real performance in comparison to levels of accuracy (Parker 2011). Regarding the 

RMSE score, it indicates how much the input and reconstructed output data constructed 

from the model differ from each other. Thus, reducing the RMSE score is the purpose 

of any IoT traffic detection model to verify that the model is accurate in detecting 

malicious IoT traffic. 

3.10 Summary  

This chapter has described the current study’s methodology and implementation for the 

detection model’s development pipeline: data collection, data preparation & pre-

processing, EDA, outlier values treatment, ML model training, and trained model 

evaluation. The aim of the first four steps is to prepare dataset for the ML algorithms. 

During the ML model training phase, the prepared data was fed into the two proposed 

ML models, k-Means and AE models, in order to train them. Finally, to evaluate the 
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models' performance, confusion matrix, accuracy, precision, recall, F1-score and 

RMSE were all used. The results of running the model will be presented in the next 

chapter. 
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4. Results and Evaluation  

4.1 Overview  

Following the dataset pre-processing, EDA, ML model training, and the trained model 

evaluation stages that were discussed in the previous chapter, the results are presented 

and discussed in this chapter. This is presented by discussing the findings of the two 

experiments, which are shown to reflect the performance of the two proposed 

unsupervised models. 

4.2  Experiments Workflow 

In the upcoming sections, two experiments were designed using two different ML 

algorithms. The two experiments present the results of the performance of the IoT 

malicious traffic detection models; the first experiment was performed on the K-Means 

algorithm, while the second experiment was performed on the AE algorithm. 

4.3 Experiments 1: The Result of the K-Means Clustering Algorithm  

In the first experiment, the evaluation metrics of the k-Means clustering model were 

calculated mathematically. To calculate the confusion matrix values, clusters were 

considered that either contain malicious or benign IoT network traffic as values of TP 

or TN, respectively. Moreover, clusters that contain both types of traffic were 

considered as values of FP or FN; the values of the confusion matrix are depicted in 

Table 10. As shown in Table 11, all the values of evaluation metrics exceed 95%. 

However, as the dataset is imbalanced, the real performance is reflected by the F1- 

Score, which represents 97%. Therefore, the performance of the k-Means clustering 

model is high, which means it has accurately distinguished between malicious and 

benign IoT network traffic. 

Table 10 : Confusion Matrix Values of k-Means Clustering Algorithm 

Class  Predicted Benign Predicted Malicious 

Actual 

Benign  

15844 932 
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Actual 

Malicious  

3480 82110 

 

Table 11 : The Evaluation Metrics of K-Means Clustering Algorithm 

Accuracy 

 

Precision  

 

Recall  

 

F1-score 

 

0.96 

 

0.99 0.96 

 

0.97 

 

 

4.4  Experiments 2: The Result of the AE Algorithm  

In this experiment, the performance of the model was evaluated using RMSE score. As 

shown in Table 12, the RMSE score in the training and testing sample were very low, 

0.027 and 0.029, respectively. A low value of RMSE score indicates that the input and 

reconstructed output data are close to each other, showing a better accuracy of the 

model (i.e. better model performance). 

Table 12 : RMSE Score Value for Training and Testing Sample 

Sample RMSE 

Training sample 0.0271 

 

Testing sample 0.0291 

 

4.5  Comparative Analysis  
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It is difficult to perform a concrete comparison with previous research that used the 

same algorithm type, as various studies are conducted in different techniques and 

environments. For example, Chang et al. (2019) examined the current model type (i.e. 

k-Means), but they developed it through a different technique, which was a semi-

supervised form. Therefore, the comparative analysis performed in the study focused 

only on previous studies that were similar to this one. Hence, the results of the 

algorithm are compared to the results of prior studies that sought to solve IoT attack 

problems using unsupervised ML models for IoT attack detection. 

The relevant studies are listed in the table below, as numerous aspects have been 

evaluated as the foundation for comparison to guarantee that the comparison is 

accurate and realistic: the ML algorithm used with its type, dataset and achieved 

evaluation metrics. Further, as illustrated in Table 13, the results of the k-Means 

clustering model have significantly outperformed the results that exist in the study by 

Shirazi et al. (2016). Although, Shirazi et al. (2016) has similarities with the current 

approach in certain stages: obtaining related features to decrease model complexity; 

dataset normalisation, and the use of principal component analysis (PCA) to reduce 

the data. However, the difference relates to the dataset type: simulated or real. 

Table 13 : Comparison of the Current Study's Findings with Previous Studies' Results 

Author(s) ML 

algorithm 

Dataset Evaluation Metrics 

Accuracy Precision Recall F1- 

Score 

(Shirazi et 

al. 2016) 

Unsupervised 

Learning: 

K-means  

 

Simulated 

dataset 

0.57 

 

0.83 0.57  

 

0.68 

Our study Unsupervised 

Learning: 

K-means  

IoT-23 0.96 0.99 0.96 0.97 
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4.6  Discussion  

Based on the findings of all of the experiments, it is feasible to conclude that our two 

approaches of unsupervised ML models, namely clustering-based and anomaly-based 

detection, achieved promising results in the detection of IoT network traffic attacks. 

Additionally, as shown in Table 11, which presents the k-Means findings, high scores 

were achieved with accuracy and F1-score of 96% and 97%, respectively. Furthermore, 

the precision score was 99%, which indicates that the false positive rate was low, and 

demonstrates that the number of benign network traffic that are incorrectly classified as 

malicious was low. Furthermore, these results significantly outperform the results that 

exist in the research by Shiraz et al. (2016), as discussed in section 4.5. Meanwhile, 

regarding the AE anomaly detection model, the RMSE score in the training and testing 

sample were very low, 0.027 and 0.029, respectively, suggesting nearly identical results 

in both samples. This indicates that the model's input and reconstructed output data are 

close to each other in both samples, which demonstrates high model accuracy in 

detecting IoT attacks. 

Through the use of a real dataset, it was possible to attempt to show that the current 

approach overcomes the limitations of some problems that may arise from real data in 

the actual environment (e.g. existence of outlier values), which need to be addressed or 

may affect the performance effectiveness of the ML model. To illustrate, unsupervised 

k-Means performance will be affected because it depends on the mean value, which is 

easily influenced by extreme values. Therefore, the capping approach for outlier values 

treatment was utilised, which has proven its ability in improving the models' 

performance. To test the current hypothesis, the approach was applied without the 

outlier values treatment, which dropped the models' performance levels. Accordingly, 

in the k-Means algorithm, the accuracy and f1-score declined from 96% to 93% and 

97% to 95%, respectively. Moreover, in the AE model, the RMSE score has increased 

in the training sample from 0.027 to 0.37, indicating a higher rate of loss error, and thus, 

less accuracy. 

4.7 Summary  
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Two designed experiments were detailed during this chapter to present the results of 

the IoT attacks detection classifiers. They have demonstrated that our two approaches 

of unsupervised ML models (i.e. k-Means and AE) achieved promising results in the 

detection of attacks on IoT network traffic. Moreover, the outlier values’ treatment that 

uses the capping approach has proven to improve the models' performance. 

Furthermore, the k-Means model performance results outperformed the results 

presented by Shiraz et al. (2016). 
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5. Conclusion 

5.1 Conclusion 

In the current study, IoT attack detection was investigated using an unsupervised ML 

technique. IoT attack detection was formulated as a binary classifier problem; with IoT 

network traffic categorised as malicious or benign. Two approaches to the unsupervised 

ML models were developed that can differentiate between malicious traffic and benign 

ones: a clustering-based and anomaly-based detection model. Moreover, another 

approach of unsupervised ML model was developed, which is the PCA to reduce the 

dimension of the data and improve models' performance. The methodology for building 

this classifier is divided into six major stages: data collection; dataset preparation and 

pre-processing; EDA; outlier value treatment; ML model training; and trained model 

evaluation. Additionally, two experiments were conducted to test the performance of 

the IoT attacks detection classifiers. Subsequently, the main finding of the study show 

that unsupervised k-Means and AE models obtained promising results in regards to the 

detection of attacks on IoT network traffic. What is more, the use of the capping 

approach for outlier values treatment has proven to improve the models' performance 

levels. Comparatively, efficiency was demonstrated by testing the model performance 

without treating outlier values, which presented a drop in performance results. 

5.2 Limitations and Future Work  

One of the challenges encountered in this IoT attack detection domain study was a lack 

of information on how the dataset labelling process was undertaken. Furthermore, as 

the dataset is labelled manually by a human analyst, inaccurate or incorrect labelling 

may occur, resulting in the incorrect processing of the results of the output and a 

considerable threat to the entire scheme. Moreover, from a statistical perspective, IoT 

attack detection is a multi-class classifier problem, rather than a binary classifier 

problem. Due to the limited time allotted for the current study, some of aforementioned 

concerns can be used as a direction for improvements in future work. In accordance, 

the following are recommended: 

• To increase the size of the data set, both in the type of malware and number of IoT 

devices, and then using it to perform multi-class ML classifiers that can distinguish 
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not only malicious and benign IoT network traffic, but also to classify the type of 

IoT malware that occurs, which exists in a 'type-of-malware' variable. 

• To compare the current proposed model with other types of unsupervised ML 

algorithm, such as the one-class SVM; this will further investigate and examine 

unsupervised ML classifiers' techniques to detect malicious network traffic for IoT 

devices. 

• To create the solution as a software system in order to allow interaction with users 

via a well-designed user interface. This can be accomplished by utilising web 

technologies such as HTML and JavaScript to build a graphical user interface (GUI) 

that enables user interaction. 
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6. Reflection on Learning  

The task of undertaking the current study began with topic selection. Indeed, it was 

necessary to determine the project’s topic a couple of months prior to the start date; 

this was the beginning of the journey. Throughout the taught modules, I became 

interested in IoT attacks, their rapid development, and their threat to global security. 

As a result, it was anticipated that this study would enable me to broaden my current 

capabilities and expand my knowledge in my area of interest. In order to attain the 

best possible result, the project work was divided into two major parts; each of those 

taught me lessons regarding technical and academic life. The first part included 

obtaining an in-depth understanding of the topic and issue, as well as to explore the 

research methodology and implementation strategies. This was challenging, as while I 

had written and contributed to many projects, none had included ML or Python. 

Nonetheless, because I had prior expertise working with programming logic in 

languages, such as Java, the intention was to learn ML through a distinctly difficult 

programming challenge. 

The second part involved the technical implementation and findings; it was all 

through trial and error. An important lesson was to not be discouraged when 

encountering any obstacle; instead, it was necessary to attempt to understand the 

source of the problem and how to overcome it. One of the biggest difficulties faced in 

this part was in finding functions to evaluate models using evaluation metrics, such as 

Accuracy and F1- Score. This took weeks of reading the scripts of the ML-based IoT 

attack detection model, which highlighted that unsupervised techniques provide other 

functions to evaluate performance, such as calculating the RMSE score. Even though 

writing this study was a lonely project, it was the most rewarding aspect of my 

master's degree programme because it taught me many things and introduced me to 

technical, security and personal skills that I am confident will lead to success in future 

opportunities. In conclusion, the experience was quite beneficial, and it will pave the 

road for me to get my dream job. 
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