
Research on Penetration Testing Based on

Machine Learning

 2

Abstract

In recent years, the number of network vulnerabilities found in web applications has

shown a sharp upward trend. These vulnerabilities pose a certain threat to the security

of data. Once exploited by attackers, they may not only cause varying degrees of

damage to the confidentiality, integrity and availability of data, but also utilize the

vulnerable website as their tools to expand their malicious activities. In order to ensure

the security of data involved in web applications, running penetration testing could be

particularly important. However, traditional penetration testing relies heavily on the

experience and technology of security personnel, which often means high time cost

and economic cost, and it is usually difficult for small enterprises and individual web

holders to come up with sufficient budget to ensure the safety of their websites. In this

context, even if their websites are hacked and turned into malicious, it could be difficult

for them to find problems. So, there is an urgent need for a faster method to carry on

penetration testing at low cost as much as possible, to ensure the security of web

application. Applying machine learning to penetration testing could be a direction

which is worthy of exploration. This paper studies the penetration testing of web

applications. The main achievement of this project is to develop a method based on

machine learning to automatically predict malicious vulnerable web pages of target

website and launch exploit automatically. The software is mainly divided into three

parts. The first part uses crawlers to crawl and save the web page data of the target

web application, and then formats the data and submits it to the second part. The

second part uses the trained machine learning model to analyze the target web page,

evaluate whether there is any malicious code in the web page, and submit it to the

third part if there are exploitable targets. The third part is the vulnerability exploitation

module, which calls exploiting tools to scan and attack web pages that are predicted

to be risky in order to exploit vulnerabilities.

 3

Acknowledgements

Firstly, I would like to thank my supervisor Amir Javed for giving me this opportunity to

do projects that I am interested in and patiently help me when I encounter difficulties.

Without his support, it is difficult for me to successfully complete this project. Secondly,

I want to thank my friend Lujing Ge. She has given me a lot of help in my study and

life. I cherish the time I spent with her. Finally, I would like to thank my family, who

have always been my strong backing and given me strong support in all aspects.

 4

Table of Contents

List of figures ... 7

List of tables .. 8

Chapter 1 .. 9

Introduction .. 9

1.1 Preface ... 9

1.2 Research problem ... 9

1.2 Research motivation ... 10

1.3 Project aims and objectives .. 11

1.4 Intended audience .. 12

1.5 Dissertation outline .. 12

Chapter 2 .. 13

Background and literature review ... 13

2.1 Introduction of penetration testing ... 13

2.2 Introduction of machine learning .. 14

2.2.1 Supervised learning ... 15

2.2.2 Unsupervised learning ... 17

2.2.3 Reinforcement learning ... 17

2.3 Machine learning algorithm used in this project ... 17

2.3.1 Random forests ... 18

2.3.2 Naive Bayes ... 19

2.3.3 K-nearest neighbor .. 21

2.3.4 Support vector machine ... 21

2.4 Machine learning evaluation methods .. 22

2.4.1 Confusion matrix ... 23

2.4.2 Performance indicator ... 23

2.5 Python Libraries .. 24

2.6 OWASP ZAP .. 25

2.7 Related works ... 25

Chapter 3 .. 28

Requirement specification and system design .. 28

3.1 Requirement specification .. 28

3.1.1 Functional requirement ... 28

3.1.2 None- functional requirements .. 29

3.2 System design ... 29

 5

Chapter 4 .. 32

Implementation ... 32

4.1 Classifier Module .. 32

4.1.1 Data collection ... 32

4.1.2 Feature selection ... 35

4.1.3 Data preprocessing .. 35

Data preprocessing for comprehensive features ... 37

Data preprocessing for JavaScript code ... 38

4.1.4 Machine learning models training .. 40

Random forest .. 40

Naïve Bayes .. 41

KNN .. 41

SVM .. 42

4.1.5 Classifier evaluation and comparative analysis .. 43

Confusion matrix (Comprehensive features dataset) .. 43

Confusion matrix (JavaScript code dataset) ... 43

Precision (Comprehensive features dataset) ... 44

Precision (JavaScript code dataset) .. 45

Accuracy (Comprehensive features dataset) ... 45

Accuracy (JavaScript code dataset) .. 46

Recall (Comprehensive features dataset) .. 46

Recall (JavaScript code dataset) ... 47

F1 score (Comprehensive features dataset) ... 47

F1 score (JavaScript code dataset) ... 48

4.2 Crawler module .. 49

4.3 Vulnerability scanning module .. 50

Chapter 5 .. 52

System testing and comparative analysis .. 52

5.1 Crawler module test ... 52

5.2 Classifier module test ... 52

5.3 Vulnerability scanning module test ... 54

5.4 Integration test ... 54

5.5 Test result ... 54

5.6 Comparative analysis .. 55

Chapter 6 .. 56

Limitation and future work .. 56

6.1 Limitation ... 56

6.2 Future works .. 56

Chapter 7 .. 58

Conclusion ... 58

Chapter 8 .. 59

 6

Reflection .. 59

References ... 61

 7

List of figures

Figure 1: Machine learning process ... 15

Figure 2: Machine learning training .. 16

Figure 3: Decision tree ... 18

Figure 4: Random forest .. 19

Figure 5: Naïve Bayes .. 20

Figure 6: KNN .. 21

Figure 7: SVM .. 22

Figure 8: Program structure .. 29

Figure 9: Program processes .. 30

Figure 10: Code block of data checking .. 36

Figure 11: Result of data checking .. 36

Figure 12: Code block of under sampling ... 36

Figure 13: Code block of data encode ... 37

Figure 14: Code block of get URL depth ... 38

Figure 15: Code block of splicing column ... 38

Figure 16: Code block of get JavaScript code ... 39

Figure 17: Code block of code feature extraction .. 39

Figure 18: Code block of random forest model training .. 40

Figure 19: Code block of naïve Bayes model training .. 41

Figure 20: Code block of 4 folds cross validation .. 42

Figure 21: Result of validation .. 42

Figure 22: Code block of SVM model training .. 42

Figure 23: Confusion matrix (Comprehensive features) ... 43

Figure 24: Confusion matrix (JavaScript code) .. 43

Figure 25: Precision (Comprehensive features) .. 44

Figure 26: Precision (JavaScript code) ... 45

Figure 27: Accuracy (Comprehensive features) .. 45

Figure 28: Accuracy (JavaScript code) ... 46

Figure 29: Recall (Comprehensive features) .. 46

Figure 30: Recall (JavaScript code) ... 47

Figure 31: F1 score (Comprehensive features) ... 47

Figure 32: F1 score (JavaScript code) .. 48

Figure 33: Code block of crawler .. 49

Figure 34: Code block of data preprocessing .. 50

Figure 35: Code block of load classifier .. 50

Figure 36: Code block of extract malicious URL .. 50

Figure 37: Code block of ZAP Class .. 51

Figure 38: Code block of vulnerability scanning .. 51

Figure 39: Code block of vulnerability exploiting ... 51

 8

List of tables

Table 1: Confusion matrix .. 23

Table 2: Features in dataset [45] .. 34

Table 3: Test case 1 ... 52

Table 4: Test case 2 ... 53

Table 5: Test case 3 ... 53

Table 6: Test case 4 ... 53

Table 7: Test case 5 ... 54

Table 8: Test case 6 ... 54

Table 9: Test case 7 ... 54

 9

Chapter 1

Introduction

1.1 Preface

In today's world, with the rapid development of the Internet, all walks of life have

gradually entered the age of information. Especially in recent years, due to the

rapid spread of COVID-19 in the world, there are many companies and

organizations have begun to migrate their business to online. As a relatively

flexible network software, web application is very convenient. Web applications

allow their users to access a variety of network services by browser without

installing any additional software. Therefore, web application is widely used in

different kind of industry. Enterprises and even government agencies can use it to

provide services and processing their works. Although the popularity of these web

applications has greatly improved work efficiency and provided a lot of

convenience for daily life, it is also accompanied by some data security risks.

Statistics show that network security problems caused by web application

vulnerabilities have become more common in recent years. According to the report

released by CDNetworks, the number of attacks on web application have reached

approximately 4.2 billion which have boosted over 9 times compared to 2019. It is

also worth noting that with the rapidly development of artificial intelligence, there

are many attackers are applying machine learning on malicious activities. The

report shows that more than 90% web application attacks are from automated

scanners [1].

1.2 Research problem

Once the web application is attacked, it may cause a series of serious problems.

Hackers may insert malicious scripts into web pages through vulnerabilities to

secretly carry out destructive activities. Especially for small businesses or personal

websites, their web pages are likely to become malicious websites if existing

vulnerabilities are exploited by attackers. Common attacks against web

applications include DDoS, XSS injection, SQL injection and remote code

 10

execution (RCE). DDoS attacks cause network congestion by generating a large

amount of traffic, making the target website inaccessible, which destroys the

availability of data. It is reported that New Zealand stock exchange was forced to

suspend spot market trading due to DDoS attacks [2]. In 2016, because DNS

server provider dyn was attacked by DDoS, many well-known websites such as

Amazon, twitter and spotify could not be accessed [3]. XSS attack may have a

certain impact on the confidentiality and integrity of data. The attacker tampers

with the website through XSS insertion and lures the victim into the changed

website, so as to steal cookies and redirect users to malicious websites. British

Airways has faced a fine of £ 20m for violating gdpr due to data disclosure caused

by XSS vulnerability [4]. EBay's XSS vulnerability has caused a large number of

users to be cheated [6]. SQL injection is also a dangerous attack. It can insert

specific SQL statements into the page request, so as to access the database

without authorization and obtain the information in the database, resulting in

serious information disclosure. In 2014, security researchers found SQL injection

vulnerability in Tesla website, which will cause user information disclosure [7].

Cisco has been reported that there could be SQL injection vulnerability in Cisco

data center manager [8]. If it is exploited, it will allow attackers to gain

administrative privileges. The reason for the RCE vulnerability is that the code of

the web application uses functions that can execute system commands, and the

user's input is not filtered, so the user's input can be executed on the server as a

command statement. Through this vulnerability, an attacker can easily obtain the

privileges of the server, resulting in more serious damage.

1.2 Research motivation

In order to repair vulnerabilities and find malicious code as soon as possible after

the web application get compromised or showing signs of being attacked, to avoid

more losses from serious web security incidents caused by malicious exploitation

by hackers, it is increasingly necessary for the owners of web applications to

conduct penetration testing on their own websites. However, the traditional

penetration testing process is often cumbersome and has high technical

requirements for testers, it is usually taking a certain time to find potential

vulnerabilities as much as possible. For the penetration test of web application,

 11

there are many automatic scanning tools, such as Nmap, Nikto, SQLmap, w3af,

etc. [9]. However, these tools often require testers to have some experience to find

the location of vulnerabilities and select the appropriate payload to launch attack.

Although those automatic scanning tools could be a powerful automatic scanning

tool which allows users to find and verify vulnerabilities, for large-scale web

applications, its complete scanning function will take a lot of time. Facing so many

network threats, how to improve the efficiency of penetration testing could be a

long-term problem that worth to explore. As mentioned above, machine learning is

used by some hackers to carry out malicious activities, which can be said to be the

negative impact of the rapid development of machine learning in recent years.

However, machine learning is also widely used to ensure cybersecurity. For

example, spam classification, malicious website identification, malicious traffic

detection, etc. [10]. However, these applications could be regard as passive

security measures, and the research of machine learning in active security

detection is just emerging. In order to face the increasingly serious network threat,

the combination of penetration testing and machine learning to improve work

efficiency and improve the accuracy of vulnerability scanning could be a direction

worth to explore.

1.3 Project aims and objectives

The aim of this project is to develop a lightweight Python3 program based on

machine learning to detect the web pages which could be malicious, then to scan

and exploit potential vulnerabilities in compromised web pages.

The scope of this project is to train several different machine learning models

through the training set, which are random forest, naive Bayes, KNN and SVM,

then compare the performance of several different machine learning models in

predicting malicious websites in the test set and select a model with the best

performance to be applied to the automatic penetration test program. The program

consists of three parts. The first part is the crawler, which will crawl the content of

the target web page and convert it into the certain data format that required by the

prediction model. The second part is the classifier based on selected machine

learning model, which will predict whether the target web site may have

 12

vulnerabilities. The third part is the exploit module, which will scan the

corresponding target web page according to the prediction results and try to exploit.

The innovation of this project is that the combination of machine learning and

traditional penetration test scanning tools can effectively shorten the scanning time

of traditional scanning tools. The dataset used in this project comes from A.K.

Singh. The development language is Python, which is widely used in machine

learning, and the test environment of the program is Kali Linux.

1.4 Intended audience

The audience of this project are researchers and relevant practitioners in the field

of Cybersecurity, as well as anyone interested in effectively applying machine

learning to penetration testing.

1.5 Dissertation outline

Chapter 1 gives a short description of the project context, main aims, scope and

intended audience of the project. Chapter 2 introduces the related technical

background of the project from three aspects. Firstly, it briefly introduces the

penetration test and its process. Secondly, it provides machine learning and lists

some classical machine learning models that can be used for vulnerability web

page prediction, as well as some methods to evaluate the performance of models.

Thirdly, it lists the main Python libraries used in this project. Finally, it gives some

relevant research status. In the Chapter 3, the requirements of the project are

explained and analyzed, and the structure and process design of the project are

given. The Chapter 4 is the main section of this paper. In this chapter, the

implementation process is described in detail according to the main structure of

the project. Chapter 5 will give some system test case of this project and

comparative analysis. Chapter 6 will summarize the limitation of the project and

give some potential work in the future. Chapter 7 will summaries this project and

draw conclusion. Chapter 8 will present a reflection on learning result from this

project.

 13

Chapter 2

Background and literature review

2.1 Introduction of penetration testing

Penetration testing usually refers to a set of activities to ensure the security of the

target system by launching ethical attacks. This process includes dynamical

analysis of technical vulnerability or weakness of the system. The vulnerability

analysis is carried out from the possible injection point of an attacker, and

conditionally take the initiative to exploit the vulnerabilities of this location using

various payload.

Penetration testing is usually divided into seven stages, including clear

requirements, information collection, threat modeling, vulnerability analysis,

vulnerability verification, deep attack, written report, etc. [9]. Clarifying the

requirements stage means that before the penetration test, the tester shall

communicate with the customer to unify the opinions of both parties on the

penetration test, determine the objectives of the penetration test, etc. After that,

enter the information collection stage [9]. The main work at this stage is to collect

some public information of the target, such as the URL of the web app, the network

protocol used (HTTP or HTTPS), web page content, etc. After the information is

collected, the work can enter the threat modeling stage. It is to say that use the

collected information to formulate some possible attack schemes to achieve the

purpose of penetration test [9]. The next stage is the vulnerability analyzing. The

main work of this stage is to scan the vulnerabilities of the target system with the

help of some software tools [9]. After the vulnerability is scanned, the vulnerability

verification phase can be carried out, in which some vulnerability exploit tools are

usually used [9]. If the vulnerability is verified, the deep attack stage can be carried

out. The deep attack stage often means that the security protection measures of

the penetration target have been broken. The work of this stage is to show the

consequences of the security protection being broken [9]. The last stage is the

written report stage. The main goal of this stage is to provide customers with a well

 14

understood document, explain a series of problems found in the penetration test,

and provide repair suggestions [9].

2.2 Introduction of machine learning

Machine learning is a kind of technology that explore how to use computers to

obtain new knowledge or skills, rebuild the existing knowledge structure and

Iteratively improve its performance by simulate or realize the learning behavior of

human.[11][12] It could be seen as a subject which is interdisciplinary, for example,

it includes statistics, probability theory, approximation theory, convex analysis and

algorithm complexity theory and so on. As a popular subject in recent years, the

history of machine learning could be track back to decades or centuries ago. Dating

back to the 17th century, Bayesian and Laplace's derivation of least squares and

Markov chain has been widely used, it could be the foundation and tool of modern

machine learning. Since 1950 when Alan Turing has proposed to create a learning

machine, there is a great development has been made in the research of machine

learning.[13]

With the rapid progress of Internet and computer technology in the last few years,

there is an explosion of data increases, and the demand for data analysis in various

industries continues to increase, how to collect information efficiently through

machine learning has gradually become a main motive force for the research of

machine learning technology. How to comprehensively analyze complicated and

various information based on machine learning methods and make more efficient

use of digital data has become the major direction of study of machine learning in

the current stage which is in a big data environment [14]. Now, machine learning

is widely used in various fields, for example, computer vision, speech recognition,

natural language processing, spam recognition and malicious website recognition

and so on.

According to different learning methods, machine learning can be classified into

three different methods in general: supervised learning, unsupervised learning and

reinforcement learning [14].

 15

2.2.1 Supervised learning

Supervised learning could be regarded as a broad category of machine learning

theory that generate a function from labeled training data after a series of

calculations. The training data should include a set of samples with characteristics

parameters. In supervised learning progress, every instance should be constituted

with an input object (usually a set of vector matrix) and a desired output value (also

known as a supervised label). Supervised learning methods is generally used to

analyze the sample features in training data to produce a function, which could be

used to map out new samples to a predicted label. The main task of supervised

learning is to train the potential relationship between eigenvalues and labels in

learning samples, and finally make correct predictions for the labels of new

samples. Supervised learning is generally used to solve classification problems

and regression problems [15]. In the regression problem, it is often necessary to

predict continuous specific values, while in the classification problem, the main goal

of supervised algorithm is to classify materials, which is the prediction of discrete

values. Classification problems are very common in the practical application of

network security, such as spam classification, malicious traffic classification,

malicious URL detection and so on [10]. The machine learning algorithms applied

in this project belong to supervised learning.

The general process of using supervised learning to solve classification problems

is shown in the figure below:

Figure 1: Machine learning process

 16

Firstly, a large number of data will be preprocessed to extract appropriate features,

labeled according to different categories, then transformed into the format required

by machine learning algorithm. Secondly, the dataset used for training will be

handed over to the machine learning algorithm. The algorithm will continue to use

it to calculate the training data and try to find the model with the least loss. Its

training process can also be said to be a trial-and-error process [14]. The training

process could be simply shown as the figure:

Figure 2: Machine learning training

- Model: take the feature set (�) in the dataset as the input and return a

predicted value (�′) as the output, which can be simplified and understood as

the following formula (� is bias, � is weight, � is the number of features, and

� ∈ �):

�‘	 = 	�	 +	�!�! 	+ 	�"�"	+	. . . �#�#

- Calculate loss: calculate the loss under this parameter (bias, weight) through

the loss function. Loss is an important indicator in machine learning algorithms

that is used to evaluate the prediction accuracy of a classifier for each sample.

The value of loss will be small if the predicted result is accurate, otherwise the

loss will be large. The loss function is necessary for the classification model.

The linear regression model usually adopts the mean square error function,

while the logical regression model uses the logarithmic loss function [15].

- Calculate parameter update: detect the value of the loss function and generate

new bias and weight to reduce the value of the loss function.

 17

The model obtained through training can make more accurate prediction of new

data.

In practical applications, it is often necessary to divide the dataset into two parts.

One part should be used for the training task of machine learning model, that is,

the training set, and the other part should be utilized as the test dataset to evaluate

the prediction accuracy of the trained model [15].

2.2.2 Unsupervised learning

In practical problems, it is often difficult to classify the data manually because lack

of sufficient experience and prior knowledge, or the cost of manual classification

could be too high. Unsupervised learning is to solve these problems. The task of

unsupervised learning is to analyze the data from rows according to the training

samples without marked categories, and finally distinguish the observed values

[14].

2.2.3 Reinforcement learning

The process of reinforcement learning could be regard as a reward guiding

behavior that agents interact with the digital environment and improve in the means

of "trial and error". The object of reinforcement learning agent is to maximize the

reward from action space in the specific environment. The fields reinforcement

learning being distinguished from supervised learning could be the way that agents

learning. The former mainly reflected in given labels, but in reinforcement learning,

the label could be seen as reinforcement signal provided by the environment which

is an reward or penalty of the selected action. In this way, agents constantly learn

new experiences, iterate from the environment, and finally have the ability to

quickly make the best action in the environment [14].

 2.3 Machine learning algorithm used in this project

The machine learning classifiers used in this project include random forest, naive

Bayes, k-nearest neighbor (KNN) and support vector machine (SVM). These

 18

algorithms are classical methods for solving classification problems, which could

be helpful to achieve the final goal of the project.

2.3.1 Random forests

Random forest is a kind of classification method containing multiple decision trees.

Decision tree algorithm is a classical method with tree structure, which is easy to

understand and implement. Take a simple example to illustrate the decision tree,

as shown in the figure:

Figure 3: Decision tree

At the root node, the decision tree obtains a characteristic URL length value of 20.

In general, this is normal for a web application, so it cannot be determined as a

malicious website at this step. However, it is still uncertain whether it is a benign

website, so continue to judge the next feature. The length of JavaScript is 500,

while the length of JS in normal web pages generally does not exceed 300.

Therefore, it can be judged that this web page is a malicious website. (in practical

application, the situation is much more complex [14]. This example is only a brief

description of the general process of decision tree)

Random forest is a combination of multiple such decision trees (Figure). There are

many studies have shown that the combined classifier could have a better

efficiency on classification than that of single classifier. There is a useful

characteristic of Random forest classification method that it can rank the

importance and evaluate the role in classification of each feature of the when it is

processing the classification work [16].

 19

Figure 4: Random forest

2.3.2 Naive Bayes

Naive Bayes algorithm evolved from Bayes theorem of classical mathematics,

which belongs to probability theory. The classifier based on naive Bayes algorithm

is not only easy to implement, but it also has a stable performance on classification

works. It can also perform well in the case of small samples. Moreover, it is not

sensitive on abnormal samples, which could be a good characteristic for

classification model. However, it also has disadvantages. In naive Bayes, the

characteristics of samples are assumed to be independent of each other. Although

this can avoid the excessive weight of a specific feature, in practical problems,

there may be correlation between features, which will affect the effect of

classification to a certain extent [17].

In order to illustrate the principle of naive Bayesian classification algorithm, first

give a simple example. As shown in the figure, suppose there is a data set, which

is composed of two types of samples: normal web application (blue) and vulnerable

web application (red). Each sample has been labeled, that is, classified. For the

new sample �(�, �), Use �#$%&'((�, �) to represent the probability that the point is

divided into normal web application, and Use �)*((�, �) to represent the probability

that the point is divided into vulnerable web application [17].

 20

Figure 5: Naïve Bayes

Then, if �#$%&'((�, �) > �)*((�, �), the �(�, �) will be classified as the normal web

site; if �#$%&'((�, �) < �)*((�, �) , the �(�, �) will be classified as the vulnerable

website.

The above is the case of two-dimensional features. Expand the features to d-

Dimension, its mathematical principle can be shown as follows:

With sample data set � = {�!, �"… , �#} , the feature set of the corresponding

sample data is � = {�!, �"… , �+}, the label set is � = {�!, �"… , �&}, that is, � can

be classified into � kind of different class. Where, �!, �"… , �+ is independent and

random, then the priori probability of �, �,%-$% = �(�); the posteriori probability of

Y, �,$./ = �(�|�). According to Bayesian formula, the posteriori probability �,$./
can be calculated from �,%-$% = �(�), �(�)	���	�(�|�):

�(�|�) = �(�)�(�|�)
�(�)

Since naive Bayes is based on the independence of each feature, the above

equation can be written as:

�(�|� = �) =>�(�-|� = �)
+

-0!

The posteriori probability can be calculated from the above two equations:

�,$./ = �(�|�) = �(�-)∏ �(�1|�-)+
10!

∏ �(�-)+
10!

Since the size of �(�) is fixed, it is only necessary to compare the molecular part

of the above formula when comparing the a posteriori probability. Therefore, the

formula of the label �- to which the sample data belongs can be obtained:

 21

�(�-|�!, �"… , �+) =
�(�-)∏ �(�1|�-)+

10!

∏ �(�1)+
10!

2.3.3 K-nearest neighbor

K-nearest neighbor (KNN) can be traced back to 1951, it was proposed by Fix and

Hodges as a statistical algorithm, then it was expanded by Cover. After years of

development, KNN algorithm is a relatively mature and simple method to solve

classification problems. Its main idea is to find k nearest samples in the feature

space for a new sample. If most of the K samples belong to a category, the new

sample can be classified into this category. The advantage of KNN algorithm is that

it is relatively easy to understand and implement, and in principle, it does not need

the process of training. However, its disadvantages are also obvious. In the

condition of samples with high-dimensional features, its calculation pressure will

be very high. It also fails to perform well in unbalanced samples [15].

The following is an example to illustrate the principle of KNN. As shown in the figure,

it is assumed that in a two-dimensional feature space, square samples represent

vulnerable website, triangular samples represent normal website, and circular

samples represent new samples. It can be intuitively observed from the figure that

if the value of K is set to 3, the new sample will be classified as normal website. If

K value is set to 5, the new sample will be marked as vulnerable website.

Figure 6: KNN

2.3.4 Support vector machine

Support vector machines (SVM) is a set of supervised machine learning method

which is commonly used to binary classification problems. Its decision boundary is

 22

a maximum-margin hyperplane which is the optimal solution to solve the feature

matrix of training samples [18]. It has many advantages. For example, when the

dimension of the feature matrix is relatively high, it can also classify the data set

better. Moreover, SVM is quite effective even when the dimension of feature matrix

is higher than the number of samples [19]. However, it also has some

disadvantages. For example, fitting may occur when the dimension of the

characteristic matrix is much larger than the number of samples. In addition, SVM

will facing too much computation when the sample size is very large, so it could be

not suitable for large data sets [20][21].

The basic idea of SVM is as follows:

Figure 7: SVM

Take a simple example to illustrate the basic principle of SVM, as shown in the

figure. Suppose that in the two-dimensional feature space, dark points represent

the sample as vulnerable web application, and the light points represent normal

web application. What SVM needs to do is to find a line that can divide the two-

dimensional space into two parts, which contains two different web applications.

And this line should be optimal, that is, even if a new sample is added to this space,

the line can successfully divide the new sample into the correct area [18].

2.4 Machine learning evaluation methods

After machine learning model training, an essential step is to evaluate the

established model and evaluate whether it meets the needs of use.

 23

2.4.1 Confusion matrix

The classification judgment result of the classifier for an instance may be positive

or negative. Similarly, the judgment may be true or false. There are 4 conditions

that could be combined as a table, namely, confusion matrix [11].

- True positive: It means that the positive result which predicted by classifier is

correct.

- False positive: It suggests that the positive result predicted by classifier is wrong.

- True negative: It indicates that the negative result predicted by classifier is

correct.

- False negative: It means that the negative result predicted by classifier is wrong.

 Predicted positive Predicted negative

Actually positive True positive (TP) False negative (FN)

Actually negative False positive (FP) True negative (TN)

Table 1: Confusion matrix

2.4.2 Performance indicator

Accuracy is used to represent the percentage of correct prediction in all prediction

results of the classifier [11].

�������� = �� + ��
�� + �� + �� + ��

Precision is used to indicate how many of the results predicted as positive by the

classifier are correct [11].

��������� = ��
�� + ��

Recall is used to indicate how many samples with positive labels are correctly

classified by the classifier [11].

������ = ��
�� + ��

 24

F1 score is an evaluation index combining precision and recall [11].

�1	����� = 2(������ × ���������)
������ + ���������

2.5 Python Libraries

This project utilizes python as programming language. The syntax of Python is

relatively simple and easy to learn for starters, so it is widely welcomed by

developers come from various fields and becomes one of the popular programming

languages in recent years. Another powerful advantage of python is that its

community provides a large number of third-party libraries, which provide a variety

of useful functions, covering the fields of scientific computing, web development,

web crawling and machine learning, and most of them are mature and stable.

These third-party libraries are very important for Python development. They can

greatly improve the efficiency of development. The main libraries used in this

project are as follows:

requests: It is a HTTP library which is widely used in crawling. In this project, it is

used to send request to the target web application and receive its response. [22]

BeautifulSoup: It contains some functions that can conveniently extract the

content from web pages. [23]

whois: It is mainly used to query whether the domain name has been registered,

which is one of the features required by the classification model in this project. [24]

geoip2: It is used to query the geographical location of IP, which is used as a

feature in the prediction model. [25]

tld: It can easily extract top-level domain names from complex URLs. The TLD is

a feature that will be used in the classifier in this project. [26]

re: It is a basic library of python, which is mainly used to string matching.

 25

numpy: It is a powerful mathematical function library. It supports multi-dimensional

array operation and matrix operation. It is an important library in the field of machine

learning. [27]

pandas: It is a library built on Numpy, which is mainly used to easily operate

Numpy data. [28]

sklearn: Its full name is scikit-learn. It is one of the most popular Python modules

in the field of machine learning. It includes a variety of machine learning methods,

such as classification, progression, clustering, dimensional reduction, model

selection and preprocessing. The utilization of scikit-learn makes the development

of machine learning more simple and convenient, and reduces the amount of code

to a great extent. [29]

matplotlib: It is a powerful Python module which is used to data visualization. [30]

imblearn: It is a library contains some methods to process unbalanced dataset.

[31]

2.6 OWASP ZAP

ZAP is a tool for web penetration test produced by OWASP company. It supplies

the functions to scan and test a variety of vulnerabilities in the web page [32]. ZAP

provides a set of API for Python [33]. Its functions can be easily called through API

in Python programs. In this project, ZAP + API is used as a vulnerability exploitation

tool to complete the final work of penetration test.

2.7 Related works

Alam et al. Proposed a method called NMPREDICTOR to predict vulnerabilities in

web pages. This method is actually based on the white box test in penetration

testing, that is, using machine learning to review the code, and abstracting

vulnerability prediction as a text feature extraction and classification problem of

 26

machine learning. The precision of the prediction results of vulnerabilities in the

website framework Drupal reached 84.9%. [34]

Aldwairi and Alsalman proposed a method to identify malicious websites based on

URL features. Their method is based on Naive Bayesian classifier and uses

genetic algorithm. They complete the training of this prediction method in a short

time with a small data set and low memory consumption. The prediction accuracy

of this method for malicious websites reaches 87%. [35]

Calzavara et al. proposed a method called Mitch to predict CSRF vulnerabilities in

web pages. They trained a machine learning model to judge the target through

some characteristics of web page requests. The prediction accuracy of their

method for CSRF vulnerabilities is about 74%. It is said that they successfully found

CSRF vulnerabilities in the actual website test, and several vulnerabilities were not

found in the traditional vulnerability analysis software. [36]

Bauer, Fung and Jia proposed a lightweight method to detect DOM XSS

vulnerabilities in web pages. They use crawlers to collect a large number of web

pages and extract more than 18 billion JavaScript function codes, including secure

code and potentially vulnerable code. Using these data, they trained a classifier

based on deep neural network to predict whether there may be DOM XSS

vulnerabilities by analyzing the characteristics of JavaScript code. According to

their conclusion, the prediction accuracy of this method for DOM type XSS

vulnerabilities is 94.5%. [37]

Shar and Tan proposed a machine learning based method to predict SQL injection

vulnerabilities and XSS vulnerabilities in web applications. They use supervised

learning and unsupervised learning methods to mix static analysis and dynamic

analysis of the code features of web applications, and finally predict the results.

According to their experiments, they have a supervised learning method to predict

vulnerabilities with an accuracy of 85. [38]

Kamtuo and Soomlek studied SQL injection vulnerability prediction based on

machine learning. In their work, they used about 1000 samples to train a variety of

 27

machine learning classification models (SVM, boosted decision tree, artificial

neural network, decision jungle) to conduct text analysis on the server code of web

application. After comparison, the accuracy of vulnerability prediction of the

decision jungle model they trained is the highest among several models, Most SQL

vulnerabilities can be accurately predicted. [39]

Govil, Gupta and Singh specifically studied the prediction of XSS vulnerabilities in

web applications. They established some machine learning models to analyze the

context by extracting the features in the web source code, so as to predict whether

there are XSS vulnerabilities in web pages. They used SVM, Nb, Bagging, J48 and

JRip classifiers to test on public data sets. Their experiments show that Bagging

performs best among these classifiers and can accurately predict XSS

vulnerabilities in web pages. [40]

Fang et al. have proposed a method based on semantic analysis for static

detection of JavaScript code. They use JavaScript code to generate a syntax tree,

format it into a sequence of syntax units, and then use text processing algorithms

to convert it into the form of word vectors. Finally, the dataset is used to train the

machine learning model. According to their experiments, the detection accuracy of

this model for malicious JavaScript code can reach 97.7%. [41]

 28

Chapter 3

Requirement specification and system design

3.1 Requirement specification

In order to achieve the final goal of the project, it is necessary to analyze the needs

of the project based on the goal. Requirement analysis is to more clearly point out

what functions need to be implemented in the project, which is very helpful for

subsequent development.

3.1.1 Functional requirement

The final goal of this project is to complete a penetration testing tool that can

automatically predict whether there may be injected malicious code in web pages,

and scan and exploit web pages which may be compromised. This goal can be

divided into three modules: crawler module, machine learning classifier module

and vulnerability scanning module.

Crawler module: This module mainly needs to realize two functions: traversing the

website and reading website information. First, in this module, the user is allowed

to enter a URL of the target web application. This module needs to be able to

traverse the target and find all the URLs under the target site as much as possible.

Secondly, the module needs to read the information of the target site and page,

save and format the data, and prepare to submit it to the second module.

Machine learning classifier module: The module should mainly realize two part in

function. Firstly, users can select the trained model in this project to complete the

subsequent web page classification, and the performance of the model should be

given. Secondly, users can also choose to use their own data set to train the model

and choose the most appropriate one according to the performance of the model

which could be used to predict compromised webpages.

 29

Vulnerability scanning module: The main function of this module is to scan the web

pages predicted as risky by the classifier and verify the existing vulnerabilities. In

addition, the results of this web application penetration test shall also be displayed.

3.1.2 None- functional requirements

Accuracy: the final program should be able to identify the compromised web pages

accurately.

Efficiency: it should be more efficient than the traditional web application

vulnerability scanning tool.

Usability: it should be convenient to use and have the necessary user interaction.

3.2 System design

According to the above requirements analysis, this project is mainly divided into

three functional modules, namely crawler module, classifier module and

vulnerability scanning module. According to the tasks of each module, the main

structural design of the project is as follows:

Figure 8: Program structure

In the crawler module, there are three main functions. HTTP request methods

represents a group of methods used to send and receive requests to the target

web application, and it also has the ability to automatically traverse the whole web

 30

application to obtain and the content of all web pages in the target. Data extract

methods contains some methods to extract the contents of web pages and save

them in a list. Data process methods is used to process those data and convert

them into the data format supported by the machine learning model. Next, the

processed data will be submitted to the second module, named, classification

module.

The main components of the classification module include machine learning

methods, trained machine learning models, performance evaluation methods and

data processing methods. Machine learning methods includes the implementation

of some machine learning algorithms (Random forest, Naïve Bayes, KNN and

SVM). These algorithms need to be trained with training dataset. After training, the

corresponding trained machine learning models can be obtained. These trained

models can be used to classify the data submitted in the crawler module and

predict whether there may be malicious vulnerabilities in the target web application.

The performance evaluation method includes some evaluation methods on the

performance of classification models (precision, accuracy, recall, F1 score), which

are used to compare the performance differences between trained classifiers. The

data processing method in this module is used to preprocess the training data to

meet the needs of model training.

In the last part, the vulnerability scanning module is mainly composed of OWASP

zap and its API. According to the judgment results of the classifier, web pages with

vulnerability risk can be submitted to OWASP zap through API for vulnerability

scanning and verification and the result will be shown.

In general, the main processes of the project are as shown as below:

Figure 9: Program processes

 31

In the web application penetration testing process, first, the user inputs the URL of

a target web application, and the crawler module will crawl the content of the web

application from the web page pointed to by the URL link. After traversing, each

web page will be regarded as a sample, and the data corresponding to each page

will be preprocessed and converted into the form of characteristic matrix, then

submit to the classifier. The classifier will classify these samples, that is, predict

whether there may be malicious code in the samples. Then submit the URL

corresponding to the sample which is predicted as compromised to the vulnerability

scanning module for vulnerability verification, and finally print the scanning results.

In the process of machine learning training, first preprocess the training data set

and test data set, and then use the processed training set to train the machine

learning model (random forest, naive Bayes, KNN and SVM). After obtaining the

trained model, use them to classify the samples of the test data set, Then the

evaluation method is used to test their classification results. By comparing the

precision, accuracy, recall and f1score of these models, the best model is selected

as the classifier in the penetration test process.

 32

Chapter 4

Implementation

This chapter will introduce the implementation of the project in detail according to

the three modules mentioned in the system design (classifier module, crawler

module and vulnerability scanning module).

4.1 Classifier Module

Firstly, the work of classifier module is carried out because this module plays a

very important role in the whole project. It not only processes the sample data

obtained by crawlers from web pages and classifies them according to whether

there may be vulnerabilities, but also calls the vulnerability scanning module

according to the classification results. The work completed by this module is similar

to the threat modeling and vulnerability analysis stage in the process of penetration

testing. Different from the traditional methods, in this project, machine learning

model is used to assist testers to complete these works, in order to improve the

efficiency of penetration testing to a certain extent.

In this project, the implementation of the classifier module can be mainly divided

into the following steps: data collection, feature selection, data preprocessing,

training several machine learning models, using the test set to verify the model and

compare the performance of different trained models to choose the best classifier.

Next, this paper will introduce the specific implementation methods and processes

of these steps one by one.

4.1.1 Data collection

In order to train machine learning model, a large number of high-quality samples

are needed. Because the principle of machine learning is to use a series of

mathematical theories to calculate the characteristics of samples, the quality of

samples often affects the performance of the machine learning model it trains.

However, this is also one of the difficulties in the implementation of the project,

 33

because it is a very arduous task to obtain many high-quality malicious web pages

with vulnerability. Due to time constraints, it is unrealistic to obtain enough samples

independently during the implementation of the project. Therefore, the data set

provided by Singh is used in the project, this is a data set containing samples of

malicious websites and benign websites. The number of samples is about 1.5

million. This data set is provided in CSV format and can be easily processed using

pandas.

In this project, the task of the machine learning model is to accurately identify

malicious web pages (web pages implanted with malicious code because

vulnerabilities are exploited by hackers) according to several characteristic data.

Therefore, this data set provided by Singh is very suitable for machine learning

training of this project. It is reasonable to use malicious web pages to locate

vulnerabilities more effectively because there are many studies have shown that

the way of malicious web page attack is often through the utilization of web page

vulnerabilities. For example, according to Liu and Zhong's research, a web page

with vulnerabilities is likely to be broken by hackers, and then secretly used to

spread web malware [42]. Christin and Soska have provided a method to predict

whether vulnerable web pages will become malicious web pages [43]. Eshete et

al. Also pointed out in the research that malicious web pages are closely related to

vulnerability exploitation [44]. The above research shows that there are some

common characteristics between malicious web pages and web pages with

vulnerabilities. In summary, it is feasible to use malicious web pages to predict

whether web pages have vulnerabilities.

In this dataset, the features contained in the sample are shown in the following

table:

Feature Description

url Uniform resource locator (URL) string

of web application.

ip_add Host IP address of the web application.

 34

geo_loc The geographic location corresponding

to the IP address of the web

application.

url_len The number of characters in the URL.

js_len The length of JavaScript code, which is

calculated by dividing the total number

of characters contained in the string of

JavaScript code in the web page by

1000.

js_obf_len The length of obfuscated JavaScript

code, which is calculated by dividing

the total number of characters

contained in the string of obfuscated

JavaScript code in the web page by

1000.

tld Top level domain of the web

application.

who_is To Indicate whether the domain name

of the web application has been

registered.

https Used to indicate whether the HTTPS

protocol is enabled for the web

application.

content Text content and JavaScript code of

web pages.

label Classified tags, malicious web

application is marked as bad, and

benign websites are marked as good.

Table 2: Features in dataset [45]

In addition to the original features above in the dataset, a new feature, path_depth,

is added in this project according to the depth of the URL.

 35

4.1.2 Feature selection

Feature selection is a very important work in machine learning, because the

principle of machine learning is to continuously iterate and learn through the

operation of the features of the sample, so whether the feature selection is

appropriate or not often affects the classification accuracy of the trained machine

learning model. In this project, two different schemes are used for feature

extraction. One scheme is to select comprehensive features, another scheme is to

extract text features from JavaScript code. The reasons for using two methods for

feature extraction in this project will be described in detail below.

Comprehensive features: This scheme is mainly based on the idea that there are

some similar characteristics between malicious websites and vulnerable webpages.

To select appropriate features, the difficulty of data preprocessing was considered,

geo_loc, url_len, js_len, js_obf_len, tld, who_is, https and path_depth is selected

as the features used to train machine learning models.

JavaScript code: Javascript code is used for text feature extraction, and the

JavaScript code in the sample is transformed into the form of feature vector that

can be recognized by machine learning model. This method is used because

vulnerabilities in web applications may be caused by not paying attention to filtering

some inputs in JavaScript code, such as XSS vulnerability, SQLinjection and

remote command execution. Therefore, we can analyze the JavaScript code in the

web page through machine learning to find out the potential characteristics of the

codes which causes the vulnerability, so as to predict whether there may be a

vulnerability in the web page.

4.1.3 Data preprocessing

In machine learning, data preprocessing could be an essential work, because the

data in the raw dataset could not be directly recognized by the machine learning

model, and there may be some abnormal data in the dataset. Direct use will affect

the training effect of machine learning, and even some program errors may occur.

 36

The data set used in this project has been divided into training set and test set.

Firstly, check the data set to see if there are abnormal null values. The main python

codes are shown in Figure 10.

Figure 10: Code block of data checking

The loadDataset() function includes pandas.read_csv(), which is a function used

to load csv files, numpy.any() can be used to traverse the whole dataset.

Pandas.isnull() will check whether there are null values in the data. If there are null

values, it will return True, otherwise it will return False. The result printed in the

terminal are as below, it means that there is no null value in training set and test

set.

Figure 11: Result of data checking

The second point to note is to check whether the proportion of positive and negative

samples in the data set is balanced, because too unbalanced samples will affect

the training results of machine learning and lead to the problem of over fitting in

prediction. According to the description document of the dataset, there are

approximately 2% samples which are labeled as bad, while the proportion of

samples marked as good are almost 98%. Therefore, corresponding processing

should be made for this data set to balance the proportion of positive and negative

samples. There are two ways to deal with unbalanced samples, under sampling

and oversampling. Under sampling makes the data balanced by reducing the

number of positive examples. In contrast, oversampling uses some methods to add

negative sample data to balance the data [46].Under sampling has been adopted

in this project, the main codes are as follows (Figure 12):

Figure 12: Code block of under sampling

 37

The code above uses RandomUnderSampler() to create an object which contains

fit_resample() to under sampling. The parameter random_state in

RandomUnderSample() is random seed which is used to ensure that the results of

each random under sampling are the same. There are two parameters in

fit_resample(), x_train should be the feature columns and y_train should be the

label column. After processing, the ratio of positive and negative samples in the

data set is balanced to 1:1.

According to the two different feature selection methods, the subsequent data

preprocessing work is also different. The two processing processes are described

in detail below.

Data preprocessing for comprehensive features

Firstly, because the machine learning models used in this project are based on

mathematical functions, some discrete text data in the dataset cannot be

processed by mathematical methods. For example, for the column https in the

dataset, its original data is a string with a value of "yes" or "no", which could not be

recognized by the machine learning model, so a method should be used to convert

it into digital data of 1 or 0. Sklearn provides a convenient data conversion method

in its data preprocessing package, which is sklearn.preprocessing.LabelEncoder.

The main codes for data format conversion are as follows (Figure 14).

Figure 13: Code block of data encode

In this function, labelEn was instantiated as a LabelEncoder object, then it calls the

data formatting method through fit_transform() and return the result. The parameter

col should be a feature column which need to be digitized and the col.value is the

data for each row.

Secondly, define a function to calculate URL depth of the sample (Figure 13). The

parameter col should be the column of url in the dataset. It will traverse the data of

this column and return a list containing the information of path depth.

 38

Figure 14: Code block of get URL depth

After calculating the path_depth value of each row of data, the result matrix should

be spliced into the original dataset. Pandas provides the method concat(), which

can easily realize the splicing of multiple matrices (Figure 15). In the contact

parameter, the matrix list to be spliced is required. The parameter axis is used to

set the splicing mode, axis = 1 means horizontal splicing, namely, adding columns.

Figure 15: Code block of splicing column

Data preprocessing for JavaScript code

In malicious website, the main way to harm visitors could be regarded as the

exploitation of the vulnerabilities in the JavaScript code of web application.

Therefore, analyzing the JavaScript code in these malicious websites could be a

solution to find out the potential compromised web pages [47].

In the dataset, the content column is the raw content extracted from each web page

sample, which contains JavaScript code. In order to extract these codes, the

processing method is as Figure 16. In getJs(col) function, the parameter col should

be the content column of the dataset. the list js_arr is used to save the JavaScript

code extracted from content, the function will traverse col and use re.findall(R

'<script(.*?)</script>', ele, re.dotall) to match the JavaScript code in each sample

ele using regular expressions of the first parameter. The third parameter

re.DOTALL means to match all characters.

 39

Figure 16: Code block of get JavaScript code

The analysis of JavaScript code belongs to the problem of text classification in

machine learning applications. In order to solve the problem of text classification,

the next step should be extracting the features of the text and convert the features

into the form of matrix for the calculation of machine learning model. There are two

main ideas for text transformation, Bag of Word model and the word vector model.

The method of bag model is to put all the words in the text into one bag, regardless

of word order and grammar [48]. For example, for the two texts "it is a vulnerable

web application" and "it is a benign web application", their word bags are expressed

in array form as ["it", "is", "a", "vulnerable", "benign", "Web", "application]. Then,

the two texts above can be expressed in vector form as [1,1,1,1,0,1,1] and

[1,1,1,1,0,1,1]. The position of the element in the vector corresponds to the

subscript of the word bag array, and the value of the element represents the

number of occurrences of the corresponding word. Word vector model maps each

word in the data set into a high-dimensional spatial vector through a large number

of calculations. The relationship between words can be obtained by calculating

cosine [41].

Considering that the principle of word bag model is relatively simple and easy to

implement, word bag model is adopted in this project. The main code is as below.

Figure 17: Code block of code feature extraction

CountVectorizer is a class in sklearn, which provides a text feature extraction

method based on word bag model. As shown in the Figure 16, The contavectorizer

() is used to instantiate an object transfer, and then call the fit_transform () method

 40

to vectorize the text in the parameters (x_train[“js”] and x_test[“js”], which are the

js columns in the training set and the test set, respectively).

4.1.4 Machine learning models training

After preprocessing the data, we can use the data to train the machine learning

model. In this project, for the two feature extraction methods, four machine learning

algorithms, random forest, naive Bayes, KNN and SVM, are used to create

classifiers to evaluate the performance of different classification algorithms and the

effect of the two feature extraction methods. The following describes the main

codes according to these four different algorithms (Because several codes for

machine learning model training are the same whether using comprehensive

features or text features, only the codes of comprehensive features are listed as

instructions).

Random forest

The class sklearn. Ensemble. Randomforestclassifier is provided in sklearn, which

contains the implementation of the random forest algorithm. The code is as follows.

Figure 18: Code block of random forest model training

RandomForestClassifier(n_estimators=10) is used to instantiate a classifier object,

where the parameter n_estimators represents the number of decision trees in

random forest. classifier.fit(x_train, y_train) means to start training the model,

parameter x_train is the feature matrix of the training set, and y_train is the label

column of the training set. After the training, the samples in the training set x_test

can be classified through classifier.predict(x_test). In the end, pickle is used to save

the trained model to a file for later use in comparison work.

 41

Naïve Bayes

For naive Bayes classifier, sklearn provides a variety of algorithm implementations,

namely GaussianNB, MultinomialNB and BernoulliNB. MultinomialNB is used in

this project because this algorithm is suitable for discrete features. The main codes

for training naive Bayes classifier are as follows (Figure 19). Similar to the code

above, first use MultinomialNB () to instantiate a model object classifier, then call

fit (x_train, y_train) to train the model, and finally save the classifier obtained after

the training to the file.

Figure 19: Code block of naïve Bayes model training

KNN

The process of creating a KNN classifier is similar to the above work. It is realized

by training the instantiated objects of the KNeigborsClassifier, which is the class of

skearn. However, for the KNeigborsClassifier class, it is necessary to determine

the value of the parameter n_neighbors to obtain a KNN classifier with better

performance. In order to determine n_neighbors, k-cross validation is a common

method. Its principle is: divide the original data into k groups (generally evenly),

make every subset dataset as a verification set respectively, and the other k-1

subset data as the training set. In this way, there are k models will be obtained,

and the average of the classification accuracy of the final verification sets of k

models will be used as the performance index of the KNN classifier. This project

used 4 cross validation; the code is as Figure 20. After 4 cross validation, it is finally

obtained that among the values of 15, 20, 25, 30, 35 and 40, When n_neighbors =

15, KNN has the highest accuracy, as shown in Figure 21.

 42

Figure 20: Code block of 4 folds cross validation

Figure 21: Result of validation

SVM

A variety of kernel functions are provided in the SVM class of sklearn, which can

be roughly divided into linear and nonlinear. According to the study that compared

supervised classification models, [49] the linear kernel performs better than several

other nonlinear kernels in the task of text classification. The SVM model with linear

kernel is adopted in this project, and the code is as follows:

Figure 22: Code block of SVM model training

 43

4.1.5 Classifier evaluation and comparative analysis

In this part, for the two classification methods, four different classifiers are used to

classify the samples of training set and test set respectively, and the corresponding

conflict matrix, precision, accuracy, recall and f1score are calculated, and then the

performance of classifiers is compared and analyzed through these indicators.

Confusion matrix (Comprehensive features dataset)

Figure 23: Confusion matrix (Comprehensive features)

Firstly, for the training results of data sets using comprehensive features, the

prediction results of different machine learning models for samples can be seen

intuitively from the display of the conflict matrix (Figure 23, 0 indicates malicious

websites and 1 indicates benign websites). Among the prediction results of Naive

Bayes classifier, the proportion of False Neg is 4.09%, which is the highest among

these models, which means that it is more likely to mistakenly identify malicious

web pages as benign web pages than other classifiers. For random forest, KNN

and SVM, there is not a big gap in the performance of malicious web page

recognition.

Confusion matrix (JavaScript code dataset)

Figure 24: Confusion matrix (JavaScript code)

 44

For the training results of this dataset, it can be seen from the conflict matrix (Figure

24) that, contrary to the above experiments, Naive Bayes has the best effect on

identifying malicious websites in this dataset, and the proportion of True Pos is

46.38%. Although it identifies too many benign websites as malicious websites (the

proportion of false neg is 14.85%), to some extent, it can avoid ignoring some

potential malicious pages, which may be beneficial for vulnerability detection.

Precision (Comprehensive features dataset)

Figure 25: Precision (Comprehensive features)

It is shown in the above Figure 25 that in terms of precision, the four machine

learning models perform well. Among them, Naive Bayes classifier has the highest

accuracy, and the prediction precision of training set and test set reaches 100%.

This means that if a sample is judged as a malicious web page by Naive Bayes

classifier, the probability that the sample is actually a malicious web page is almost

100%.

 45

Precision (JavaScript code dataset)

Figure 26: Precision (JavaScript code)

In the work of classifying JavaScript code, Naive Bayes is still the best classifier in

precision. Its precision of prediction for training set and test set is 90.06% and

90.67%. Although the prediction accuracy of random forest in the training set is

93.9%, its performance is not stable. In the test set, its precision is reduced to

88.99%.

Accuracy (Comprehensive features dataset)

Figure 27: Accuracy (Comprehensive features)

In terms of accuracy, random forest is the best of the four models. Its accuracy of

prediction results in the training set is 99.84%, and its score in the test set is

98.92%. This means that it can correctly classify most web pages.

 46

Accuracy (JavaScript code dataset)

Figure 28: Accuracy (JavaScript code)

Classifiers using JavaScript as features do not perform as well as classifiers using

comprehensive features in terms of accuracy. As shown in Figure 28, random

forest is still the best model. Its prediction accuracy for the training set is 96.75%.

Although the prediction accuracy for the test set has decreased to 92.1%, it is still

the highest among several models.

Recall (Comprehensive features dataset)

Figure 29: Recall (Comprehensive features)

Figure 29 shows the performance of recall of several different machine learning

models in the case of training using data sets with comprehensive features. It can

be seen that the performance of random forest classifier is the best. In the

 47

classification of training set and test set, recall is 99.87% and 97.99% respectively.

The higher recall means the classifier can identify the malicious web pages more

accurately.

Recall (JavaScript code dataset)

Figure 30: Recall (JavaScript code)

In this data set, the recall of random forest model in the classification of training set

is the highest among the four models, which is 93.51, while the recall of test set is

reduced to 88.12%. Naive Bayes performs well in the classification of test sets,

which is 92.77%, and its classification of test sets and training sets is relatively

stable in recall.

F1 score (Comprehensive features dataset)

Figure 31: F1 score (Comprehensive features)

 48

F1-score is used to balance precision and recall. It is widely used to compare the

performance of several different models [50]. As can be seen from Fig. 31, the F1

scores of random forest for both training set and test set are the highest compared

with other models, which are 99.84% and 98.91% respectively.

F1 score (JavaScript code dataset)

Figure 32: F1 score (JavaScript code)

When using JavaScript code dataset, the F1 score of random forest classifier is

still the best among the four classifiers. The F1 score in the training set is 96.64%,

and the performance in the training set decreases, with f1score of 91.78%.

Comparation of machine learning classifiers

It can be seen from the above data that the classifier trained by using the dataset

of comprehensive features has a good performance in identifying malicious

websites. In this training mode, random forest performs well. A higher accuracy

indicates that it can classify websites well in most cases, and a high recall indicates

that it has a relatively high accuracy in identifying malicious websites. Although

Naive Bayes achieves 100% performance in precision, this means that it may miss

some malicious web pages. In general, the random forest model can identify

malicious websites relatively well.

 49

4.2 Crawler module

There are three main objects to be realized in this module:

1. Automatically traverse all pages under the web application.

2. Save and extract some features of web pages, which are needed by machine

learning classifier

3. The extracted data should be processed and formatted into the data set for

training and testing machine learning above.

The main Python code of crawler function in this module are as follows.

Figure 33: Code block of crawler

In this function, the requests library is used to complete the task of sending and

receiving requests for web pages. Compared with urlib2 module, using requests

can make the code more concise. It supports HTTP connection retention and

connection pooling, session retention using cookies, and encoding of automatic

response content. The main idea to implement crawler is to use beautiful loop to

find all <a> tags in the web page, because a tag is often used to render the

navigation bar and link to other pages of the target web application. After finding

the <a> tag, filter out the target with href attribute, and you can traverse the website

according to the links found in href.

 50

The code of data preprocessing function is as below:

Figure 34: Code block of data preprocessing

The implementation of this part is relatively simple. It mainly standardizes each row

of data by traversing the data list returned by the crawler, and finally converts the

data into the format of DataFrame through the DataFrame() function of pandas.

Then, the data could be submitted to the classifier module (Figure 35).

Figure 35: Code block of load classifier

After the classifier completes the identification of malicious web pages, the

program will call the function extractVulnerableURL(predict_list, raw_data) to map

the URL of the predicted malicious web pages according to the corresponding

relationship of the number of rows, which is used as the target of the vulnerability

exploitation module.

Figure 36: Code block of extract malicious URL

4.3 Vulnerability scanning module

In this module, the main function should be scanning and exploiting the web pages

which are predicted as malicious by the machine learning classifier. In order to

realize the function above, this project uses the ZAP API for Python to call the

 51

corresponding methods to verify the vulnerabilities. The main Python code are as

follows:

Figure 37: Code block of ZAP Class

ZAP is defined as a class with 3 main member variables: target, apikey and zap.

The target is the url of web page which may be malicious, apikey should be a string

which used to match the ZAP application installed. It could be found at the menu

of ZAP: “ Preferences / Options / API / API key ”. zap is a ZAPv2 object which is

used to call ZAP API functions.

Figure 38: Code block of vulnerability scanning

The method spider() above (Figure 37) is used to launch web page scan on specific

target by ZAP. It will send various http request to the target to find potential injection

point.

Figure 39: Code block of vulnerability exploiting

The method attack() above is used to verify vulnerability by trying different kind of

attack with corresponding payloads.

 52

Chapter 5

System testing and comparative analysis

In order to ensure that the program can run correctly and meet the requirements,

testing the program is a necessary link. In this project, the functions in three modules

(crawler module, classifier module and expansion module) are tested respectively, and

finally the process test is carried out.

5.1 Crawler module test

Test Case ID: 1

Description: To verify whether the crawler module can traverse the web page
normally, extract the web page information and format it.

Test Steps 1. Add three sets of print()
functions to the code of crawler
module to print the processing
results of Http Request
Methods, Data Extract Methods
and Data Process Methods
respectively in terminal.

2. Run the crawler program at the
terminal.

Expected Result 1. The crawler can send network
requests normally.

2. It can show the progress of the
crawler.

3. Successfully complete the web
page crawling and output the
data in the correct format.

Pass / Fail Pass
Table 3: Test case 1

5.2 Classifier module test

Test Case ID: 2

Description: To ensure that data preprocessing can successfully convert data to
the specific format required.

Test Steps 1. Transform training set

2. Transform test set

3. At the same time, traverse the
transformed training set and test
set, and compare the coded
lines to ensure that the coding
rules are the same.

 53

Expected Result 1. The training set and test set
were successfully converted to
a specific format

2. The coding rules of the lines to
be coded in the training set and
the test set are consistent.

Pass / Fail Pass
Table 4: Test case 2

Test Case ID: 3

Description: Ensure that the machine learning training can operate normally.

Test Steps 1. Train random forest model.

2. Train Naïve Bayes model.

3. Train KNN model.

4. Train SVM model.

5. Run test set on random forest
model.

6. Run test set on Naïve Bayes
model.

7. Run test set on KNN model.

8. Run test set on SVM model.

Expected Result 1. No error during training.

2. The test set samples can be
predicted normally.

Pass / Fail Pass
Table 5: Test case 3

Test Case ID: 4

Description: To ensure that the evaluation method and the trained classifier
works properly.

Test Steps 1. Run precision evaluation on 4
classifiers.

2. Run accuracy evaluation on 4
classifiers.

3. Run recall evaluation on 4
classifiers.

4. Run F1 score evaluation on 4
classifiers.

5. Run confusion matrix evaluation
on 4 classifiers.

Expected Result 1. The machine learning model
can run successfully

2. Precision evaluation, accuracy
evaluation, recall evaluation, F1
score evaluation and confusion
matrix evaluation can run
normally and generate charts.

Pass / Fail Pass
Table 6: Test case 4

 54

Test Case ID: 5

Description: Ensure that the data processing module can match the URL to the
sample according to the prediction results.

Test Steps 1. Extract 50 pieces of data from
the test set, use random forest
classifier to predict the label,
and output the results.

2. Run the data processing
function to match the prediction
results with the test data and
output the results.

Expected Result 1. The classifier operates
normally.

2. The program can successfully
match the predicted label and
the URL of the sample.

Pass / Fail Pass
Table 7: Test case 5

5.3 Vulnerability scanning module test

Test Case ID: 6

Description: To ensure that the vulnerability scanning module can operate
normally

Test Steps 1. Run OWASP ZAP

2. Run vulnerability scanning
python program.

Expected Result 1. The program can run normally
and successfully establish a
connection with OWASP ZAP.

2. Scanning and exploiting
functions can run normally.

Pass / Fail Pass
Table 8: Test case 6

5.4 Integration test

Test Case ID: 7

Description: In order to verify that each module can cooperate normally, the
whole program can run normally.

Test Steps 1. Run the main program.

Expected Result 1. There is no unexpected error.

2. The console can print results
normally.

Pass / Fail Pass
Table 9: Test case 7

5.5 Test result

After unit test and integration test, the results show that the program can run

normally and complete the planned tasks. In the test, the crawler module can

 55

successfully send requests and receive feedback to the web page entered by the

user. The information extraction function can run normally, traverse the web

application and extract the relevant information of the web page, and finally convert

these information into the specified format. The training method in the machine

learning module can run normally, and can generate a classifier to identify

malicious web pages by training according to the training set. The evaluation

function is available. After using the test set to test and evaluate these classifiers,

it can be found that random forest can accurately predict malicious web pages, and

its accuracy can reach 98.92%. The vulnerability scanning and verification module

can also run normally. For several simple web pages used in the test, the scanning

module has successfully scanned and verified them.

5.6 Comparative analysis

The innovation of this project is to combine malicious web page detection and

penetration testing based on machine learning. By judging the pages that have

been maliciously tampered with in the whole web application, we can scan and

these pages first, so as to quickly find the location of the problem. In this project,

the comprehensive feature training machine learning model is relatively good for

the accuracy of malicious website detection, and the precision can reach 99.85%.

Compared with other similar studies, Aldwairi and Alsalman extracted the features

in the URL to train the model in their project. The precision of malicious website

recognition is 87% [35]. In Yan and Xu's research, based on the feature analysis

of malicious code embedded in the URL, the precision of recognition is about 90%

[51]. Xuan, Dinh and victor in the research of using URL features to detect

malicious web pages, the random forest model of 100 decision trees achieved a

precision of 98.75% [52]. Vinayakumar, Soman and Poornachandran compared

several deep learning URL detection methods, of which the best precision is 98.88%

[53]. From the comparison, it can be concluded that the model of this project can

be better suitable for finding malicious tampered web pages, which can help the

penetration test become more targeted for finding problems.

 56

Chapter 6

Limitation and future work

6.1 Limitation

First of all, due to the limited time, the implementation of this project is still relatively

basic for the application of machine learning in penetration testing, so the goal is

also more targeted. It mainly focuses on screening the objectives of penetration

testing by detecting potential malicious code in web pages, The purpose is to help

web application owners quickly find out the vulnerabilities in the tampered web

pages, so as to restore the web pages to normal as soon as possible and prevent

further losses. According to the test results, this work is meaningful. It can

accurately screen the samples of malicious web pages from the test set. Second,

due to the limited hardware conditions, the problem of memory overflow was

encountered in the process of machine learning model training of this project.

Finally, the way of under sampling was used to randomly screen the samples.

6.2 Future works

In the future work, the following points can be improved on the research of this

project:

1. Try to use the technology related to deep learning to mine the vulnerabilities of

web applications. Compared with the traditional machine learning which needs to

manually extract the features from the training data set, deep learning can extract

the features by itself, which has stronger learning ability and even surpasses

human performance in some tasks.

2. Use natural language processing combined with deep learning to synthesize a

variety of data in the sample, conduct semantic analysis, and detect potential

vulnerabilities in a way similar to code review.

 57

3. In the process of data preprocessing, make more detailed classification of

samples, such as distinguishing the types of malicious code and vulnerabilities in

web pages and the threat degree of vulnerabilities.

4. Improve the code structure, reduce the coupling between different modules of

the program, and make the work of data preprocessing more flexible.

5. Create a crawler to obtain more targeted information for vulnerability mining,

collect the data of web applications with potential vulnerabilities that have not been

injected with malicious code or tampered with, and turn the work goal to find

vulnerabilities before web applications are attacked.

 58

Chapter 7

Conclusion

This project aims to create a program to quickly judge whether a website may have

been implanted with malicious code based on machine learning, and then give

priority to the vulnerability scanning and verification of the tampered web pages

according to the judgment results, so as to help testers locate vulnerabilities in a

short time. In order to achieve the above objectives, three main parts are created

in this program: crawler module, machine learning module and vulnerability

scanning verification module. First, the main function of the crawler module is to

collect the necessary information contained in the target web page, and preprocess

it after the collection, so as to meet the sample format supported by the machine

learning prediction model. Second, in the machine learning module, firstly, the data

set containing comprehensive features is used to train and test the four machine

learning models, and then the data set containing JavaScript code is used to train

and test the four machine learning models again. Finally, a total of eight classifiers

are created and their performance is evaluated. Thirdly, the vulnerability scanning

verification module mainly realizes the function of scanning specific web pages.

After testing, these three parts can complete the expected tasks well. The main

result of this study is that the created program can give priority to scanning the web

pages predicted by the classifier as likely to have been attacked, which can greatly

shorten the time to find problems and improve the efficiency of penetration testing

to a certain extent. The second achievement is that after comparison, it is found

that the random forest classifier trained with the data set containing comprehensive

features has the best performance for predicting malicious web pages. It performs

well in the test set with the ratio of positive and negative samples of 1:1, and the

recognition rate of web pages inserted with malicious code can reach 98.92%.

 59

Chapter 8

Reflection

This project has improved me in both academic and technical aspects. The whole

research process is a very meaningful experience for me. There are many valuable

lessons in the main stages of this research process. In the first stage, that is, the

stage of investigating and learning the relevant research of the project, I have done

a lot of investigation on the application of machine learning in the field of network

security at this stage. By consulting a large number of relevant academic papers, I

have a deeper understanding of the intersection of these two disciplines and have

a lot of new ideas for the research of this project. Through the study of these papers,

I also have a clearer understanding of the general process and standards of

academic research, which will be a valuable asset on my academic road in the

future. The second stage is to analyze my project objectives and seek technical

methods to meet the target requirements. This stage is a great challenge for me,

and it also gives me a lot of very useful research experience. Because my previous

work did not involve machine learning related experience, and my understanding

of penetration testing is relatively limited, how to combine these two unfamiliar

fields is a difficult but worthwhile task. Because of my limited understanding of

machine learning in the early stage, I tried some inaccurate or unrealistic directions

when looking for solutions. For example, I excessively pursue the use of

reinforcement learning related solutions, but it is unrealistic for my current

knowledge reserve to use it in my project in a limited time. At this stage, the

summary and guidance on my project objectives offered by my supervisor made

me gradually find the right direction. Finally, I chose the traditional machine

learning scheme to be applied to this project, and made some attempts in common

methods, such as using sample features different from which are used in related

research to train the machine learning model. In addition, in the process of

exploring the scheme, I also learned various performance evaluation methods for

machine learning. The third stage, that is, the stage of project implementation and

testing, is relatively smooth at this stage because I have been engaged in software

development before. During this stage, I have learned a lot of academic and

technical experience and lessons. For example, in terms of learning, I have learned

 60

relevant methods of data preprocessing, such as data cleaning, unbalanced

sample processing, etc; Methods and basic processes related to machine learning

model training and performance evaluation, such as cross validation of machine

learning model to obtain the model parameter value with the best performance; In

terms of technology, I have gained some experience in error and debugging in the

process of development and testing, which is very valuable for future learning and

research. In addition, another attempt I think is more useful is that I added process

visualization code to the model training program, because the training time of

machine learning model is sometimes long. By visualizing the process, the step of

the program can be intuitively shown, so as to know whether it is running normally

or crashing. The last stage is the writing stage of the thesis. At this stage, I learned

the lesson that the problems and achievements arising from the research process

should be recorded in time, which will facilitate the sorting work in the future.

Because I did not save the results in the process of implementation, I had to run

the program again and record their results, which took a lot of time. The above are

my reflections on the project. By summarizing the experience of the project, I have

deepened my understanding of the project, clarified my strengths and weaknesses,

and stimulated my enthusiasm for academic research. I will make full use of these

favorable experiences and correct my shortcomings, Invest in the research on the

cross field of machine learning and network security with a more professional

attitude.

 61

References

[1] "State of the Web Security 2020 - CDNetworks", CDNetworks, 2021. [Online].

Available: https://www.cdnetworks.com/news/state-of-the-web-security-2020/.

[Accessed: 28- Oct- 2021].

[2] "New Zealand stock exchange halted by cyber-attack", BBC News, 2021. [Online].

Available: https://www.bbc.com/news/53918580. [Accessed: 25- Oct- 2021].

[3] "Dyn says cyberattack 'has been resolved' after services shut down", NBC News,

2021. [Online]. Available: https://www.nbcnews.com/tech/tech-news/dyn-says-

cyberattack-resolved-after-services-shut-down-n670926. [Accessed: 25- Oct-

2021].

[4] "British Airways fined £20m over data breach", BBC News, 2021. [Online].

Available: https://www.bbc.co.uk/news/technology-54568784. [Accessed: 25- Oct-

2021].

[5] "British Airways breach: How did hackers get in?", BBC News, 2021. [Online].

Available: https://www.bbc.com/news/technology-45446529. [Accessed: 25- Oct-

2021].

[6] "eBay under pressure as hacks continue", BBC News, 2021. [Online]. Available:

https://www.bbc.com/news/technology-29310042. [Accessed: 25- Oct- 2021].

[7] "Agent Tesla Panel Remote Code Execution", Rapid7, 2021. [Online]. Available:

https://www.rapid7.com/db/modules/exploit/multi/http/agent_tesla_panel_rce/.

[Accessed: 28- Oct- 2021].

[8] "Cisco Data Center Network Manager SQL Injection

Vulnerability", Tools.cisco.com, 2021. [Online]. Available:

https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-

dcnm-sql-inject-8hk6PwmF. [Accessed: 28- Oct- 2021].

[9] G. Weidman, Penetration testing, 1st ed. San Francisco: No Starch Press, 2014.

pp. 2-6, 317-337.

[10] T. Thomas, A. Vijayaraghavan and S. Emmanuel, Machine learning

approaches in cyber security analytics. pp. 37-47.

[11] E. Machines, T. Author(s) and C. Apress, "Efficient Learning Machines |
SpringerLink", Apress.com, 2021. [Online]. Available:
https://www.apress.com/gp/book/9781430259893. [Accessed: 30- Oct- 2021].

[12] M. Mohri, A. Rostamizadeh and A. Talwalkar, Foundations of machine

learning. pp. 2-13.

[13] A. TURING, "I.—COMPUTING MACHINERY AND INTELLIGENCE", Mind, vol.,

no. 236, pp. 433-460, 1950. Available: 10.1093/mind/lix.236.433.

 62

[14] S. Raschka and V. Mirjalili, Python Machine Learning - Third Edition. pp. 2-15.

[15] N. Nilsson, “INTRODUCTION TO MACHINE LEARNING”,

Robotics.stanford.edu, 2021. [Online]. Available:

http://robotics.stanford.edu/~nilsson/MLBOOK.pdf. [Accessed: 28- Oct- 2021].

[16] G. Biau and E. Scornet, "A random forest guided tour", TEST, vol. 25, no. 2, pp.

197-227, 2016. Available: 10.1007/s11749-016-0481-7.

[17] S. Raschka, "Naive Bayes and Text Classification I - Introduction and

Theory", arXiv.org, 2021. [Online]. Available: https://arxiv.org/abs/1410.5329.

[Accessed: 31- Oct- 2021].

[18] W. Noble, "What is a support vector machine?", Nature Biotechnology, vol. 24,

no. 12, pp. 1565-1567, 2006. Available: 10.1038/nbt1206-1565.

[19] D. Meyer, F. Leisch and K. Hornik, "The support vector machine under

test", Neurocomputing, vol. 55, no. 1-2, pp. 169-186, 2003. Available:

10.1016/s0925-2312(03)00431-4.

[20] P. Liang, W. Li and J. Hu, "Fast SVM training using data reconstruction for

classification of very large datasets", IEEJ Transactions on Electrical and

Electronic Engineering, vol. 15, no. 3, pp. 372-381, 2019. Available:

10.1002/tee.23065.

[21] A. Abdiansah and R. Wardoyo, "Time Complexity Analysis of Support Vector

Machines (SVM) in LibSVM", International Journal of Computer Applications, vol.

128, no. 3, pp. 28-34, 2015. Available: 10.5120/ijca2015906480.

[22] "requests", PyPI, 2021. [Online]. Available: https://pypi.org/project/requests/.

[Accessed: 28- Oct- 2021].

[23] "beautifulsoup4", PyPI, 2021. [Online]. Available:

https://pypi.org/project/beautifulsoup4/. [Accessed: 28- Oct- 2021].

[24] "pa-whois", PyPI, 2021. [Online]. Available: https://pypi.org/project/pa-whois/.

[Accessed: 28- Oct- 2021].

[25] "geoip2", PyPI, 2021. [Online]. Available: https://pypi.org/project/geoip2/.

[Accessed: 28- Oct- 2021].

[26] "tld", PyPI, 2021. [Online]. Available: https://pypi.org/project/tld/. [Accessed: 28-

Oct- 2021].

[27] C. Harris et al., "Array programming with NumPy", Nature, 2021. [Online].

Available: https://www.nature.com/articles/s41586-020-2649-2. [Accessed: 31-

Oct- 2021].

[28] W. McKinney, "pandas: a Foundational Python Library for Data Analysis and

Statistics", ResearchGate, 2021. [Online]. Available:

 63

https://www.researchgate.net/publication/265194455_pandas_a_Foundational_P

ython_Library_for_Data_Analysis_and_Statistics. [Accessed: 31- Oct- 2021].

[29] F. Pedregosa et al., "Scikit-learn: Machine Learning in Python", Jmlr.org, 2021.

[Online]. Available: https://jmlr.org/papers/v12/pedregosa11a.html. [Accessed: 31-

Oct- 2021].

[30] [49]W. McKinney, "Data Structures for Statistical Computing in

Python", ResearchGate, 2021. [Online]. Available:

https://www.researchgate.net/publication/265001241_Data_Structures_for_Statist

ical_Computing_in_Python. [Accessed: 31- Oct- 2021].

[31] "imbalanced-learn", PyPI, 2021. [Online]. Available:

https://pypi.org/project/imbalanced-learn/. [Accessed: 28- Oct- 2021].

[32] H. Abdullah, "Evaluation of Open Source Web Application Vulnerability

Scanners", Academic Journal of Nawroz University, vol. 9, no. 1, p. 47, 2020.

Available: 10.25007/ajnu.v9n1a532.

[33] J. Fan, P. Gao, C. Shi and N. Li, "Research on Combine White-Box Testing and

Black-Box Testing of Web Applications Security", Advanced Materials Research,

vol. 989-994, pp. 4542-4546, 2014. Available: 10.4028/www.scientific.net/amr.989-

994.4542.

[34] M. Khalid, H. Farooq, M. Iqbal, M. Alam and K. Rasheed, "Predicting Web

Vulnerabilities in Web Applications Based on Machine Learning", Communications

in Computer and Information Science, pp. 473-484, 2019. Available: 10.1007/978-

981-13-6052-7_41 [Accessed 31 October 2021].

[35] M. Aldwairi and R. Alsalman, "MALURLS: A Lightweight Malicious Website

Classification Based on URL Features", 2021. [Online]. Available:

https://www.researchgate.net/publication/237067589_MALURLS_A_lightweight_

malicious_website_classification_based_on_URL_features. [Accessed: 28- Oct-

2021].

[36] S. Calzavara, M. Conti, R. Focardi, A. Rabitti and G. Tolomei, "Mitch: A Machine

Learning Approach to the Black-Box Detection of CSRF

Vulnerabilities", Ieeexplore.ieee.org, 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/8806728/. [Accessed: 22- Oct- 2021].

[37] W. Melicher, C. Fung, L. Bauer and L. Jia, "Towards a Lightweight, Hybrid

Approach for Detecting DOM XSS Vulnerabilities with Machine

Learning", Users.ece.cmu.edu, 2021. [Online]. Available:

https://users.ece.cmu.edu/~lbauer/papers/2021/www2021-dom-xss-dnn.pdf.

[Accessed: 28- Oct- 2021].

[38] L. Shar, H. Tan and L. Briand, "Mining SQL injection and cross site scripting

vulnerabilities using hybrid program analysis | Proceedings of the 2013

 64

International Conference on Software Engineering", Dl.acm.org, 2021. [Online].

Available: https://dl.acm.org/doi/10.5555/2486788.2486873. [Accessed: 28- Oct-

2021].

[39] K. Kamtuo and C. Soomlek, "Machine Learning for SQL injection prevention on

server-side scripting", Ieeexplore.ieee.org, 2021. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/7859950/. [Accessed: 28- Oct-

2021].

[40] M. Gupta, M. Govil and G. Singh, "Predicting Cross-Site Scripting (XSS)

security vulnerabilities in web applications", Ieeexplore.ieee.org, 2021. [Online].

Available: https://ieeexplore.ieee.org/abstract/document/7219789. [Accessed: 28-

Oct- 2021].

[41] Y. Fang, C. Huang, Y. Su and Y. Qiu, "Detecting malicious JavaScript code

based on semantic analysis", 2021. [Online]. Available:

https://www.researchgate.net/publication/339356123_Detecting_Malicious_JavaS

cript_Code_Based_on_Semantic_Analysis. [Accessed: 28- Oct- 2021].

[42] W. Liu and S. Zhong, "Web malware spread modelling and optimal control
strategies", Scientific Reports, vol. 7, no. 1, 2017. Available: 10.1038/srep42308.

[43] K. Soska and N. Christin, "Automatically Detecting Vulnerable Websites Before

They Turn Malicious", Usenix.org, 2021. [Online]. Available:

https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-

soska.pdf. [Accessed: 28- Oct- 2021].

[44] B. Eshete, A. Villafiorita, K. Weldemariam and M. Zulkernine, "EINSPECT:

Evolution-Guided Analysis and Detection of Malicious Web Pages," 2013 IEEE

37th Annual Computer Software and Applications Conference, 2013, pp. 375-380,

doi: 10.1109/COMPSAC.2013.63.

[45] A. Singh, "Malicious and Benign Webpages Dataset", 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2352340920311987.

[Accessed: 28- Oct- 2021].

[46] A. Liu, "The Effect of Oversampling and Undersampling on Classifying

Imbalanced Text Datasets", 2021. [Online]. Available:

https://www.semanticscholar.org/paper/The-Effect-of-Oversampling-and-

Undersampling-on-Liu/cade435c88610820f073a0fb61b73dff8f006760. [Accessed:

28- Oct- 2021].

[47] S. Ndichu, S. Kim, S. Ozawa, T. Misu and K. Makishima, "A machine learning
approach to detection of JavaScript-based attacks using AST features and
paragraph vectors", Applied Soft Computing, vol. 84, p. 105721, 2019. Available:
10.1016/j.asoc.2019.105721.

[48] Y. Zhang, R. Jin and Z. Zhou, "Understanding Bag-of-Words Model: A

Statistical Framework", 2021. [Online]. Available:

 65

https://www.researchgate.net/profile/Rong-Jin-

4/publication/226525014_Understanding_bag-of-

words_model_A_statistical_framework/links/554b968f0cf29752ee7cc15b/Underst

anding-bag-of-words-model-A-statistical-framework.pdf. [Accessed: 28- Oct- 2021].

[49] B. Hsu, "Comparison of Supervised Classification Models on Textual Data",

2021. [Online]. Available:

https://www.researchgate.net/publication/341619075_Comparison_of_Supervised

_Classification_Models_on_Textual_Data. [Accessed: 28- Oct- 2021].

[50] D. Miyamoto, H. Hazeyama and Y. Kadobayashi, "An evaluation of machine

learning-based methods for detection of phishing sites | Proceedings of the 15th

international conference on Advances in neuro-information processing - Volume

Part I", Dl.acm.org, 2021. [Online]. Available:

https://dl.acm.org/doi/10.5555/1813488.1813559. [Accessed: 29- Oct- 2021].

[51] X. Yan, Y. Xu, B. Cui, S. Zhang, T. Guo and C. Li, "Learning URL Embedding
for Malicious Website Detection", IEEE Transactions on Industrial Informatics, vol.
16, no. 10, pp. 6673-6681, 2020. Available: 10.1109/tii.2020.2977886.

[52] C. Xuan, H. Dinh and T. Victor, "Malicious URL Detection based on Machine
Learning", International Journal of Advanced Computer Science and Applications,
vol. 11, no. 1, 2020. Available: 10.14569/ijacsa.2020.0110119.

[53] R. Vinayakumar, K. Soman and P. Poornachandran, "Evaluating deep learning

approaches to characterize and classify malicious URL’s", Journal of Intelligent &
Fuzzy Systems, vol. 34, no. 3, pp. 1333-1343, 2018. Available: 10.3233/jifs-169429.

