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Abstract 

 

 

In recent years, the number of network vulnerabilities found in web applications has 

shown a sharp upward trend. These vulnerabilities pose a certain threat to the security 

of data. Once exploited by attackers, they may not only cause varying degrees of 

damage to the confidentiality, integrity and availability of data, but also utilize the 

vulnerable website as their tools to expand their malicious activities. In order to ensure 

the security of data involved in web applications, running penetration testing could be 

particularly important. However, traditional penetration testing relies heavily on the 

experience and technology of security personnel, which often means high time cost 

and economic cost, and it is usually difficult for small enterprises and individual web 

holders to come up with sufficient budget to ensure the safety of their websites. In this 

context, even if their websites are hacked and turned into malicious, it could be difficult 

for them to find problems. So, there is an urgent need for a faster method to carry on 

penetration testing at low cost as much as possible, to ensure the security of web 

application. Applying machine learning to penetration testing could be a direction 

which is worthy of exploration. This paper studies the penetration testing of web 

applications. The main achievement of this project is to develop a method based on 

machine learning to automatically predict malicious vulnerable web pages of target 

website and launch exploit automatically. The software is mainly divided into three 

parts. The first part uses crawlers to crawl and save the web page data of the target 

web application, and then formats the data and submits it to the second part. The 

second part uses the trained machine learning model to analyze the target web page, 

evaluate whether there is any malicious code in the web page, and submit it to the 

third part if there are exploitable targets. The third part is the vulnerability exploitation 

module, which calls exploiting tools to scan and attack web pages that are predicted 

to be risky in order to exploit vulnerabilities. 
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Chapter 1 

Introduction 

 

1.1 Preface 
 

In today's world, with the rapid development of the Internet, all walks of life have 

gradually entered the age of information. Especially in recent years, due to the 

rapid spread of COVID-19 in the world, there are many companies and 

organizations have begun to migrate their business to online. As a relatively 

flexible network software, web application is very convenient. Web applications 

allow their users to access a variety of network services by browser without 

installing any additional software. Therefore, web application is widely used in 

different kind of industry. Enterprises and even government agencies can use it to 

provide services and processing their works. Although the popularity of these web 

applications has greatly improved work efficiency and provided a lot of 

convenience for daily life, it is also accompanied by some data security risks. 

Statistics show that network security problems caused by web application 

vulnerabilities have become more common in recent years. According to the report 

released by CDNetworks, the number of attacks on web application have reached 

approximately 4.2 billion which have boosted over 9 times compared to 2019. It is 

also worth noting that with the rapidly development of artificial intelligence, there 

are many attackers are applying machine learning on malicious activities. The 

report shows that more than 90% web application attacks are from  automated 

scanners [1]. 

 

1.2 Research problem 

 
Once the web application is attacked, it may cause a series of serious problems. 

Hackers may insert malicious scripts into web pages through vulnerabilities to 

secretly carry out destructive activities. Especially for small businesses or personal 

websites, their web pages are likely to become malicious websites if existing 

vulnerabilities are exploited by attackers. Common attacks against web 

applications include DDoS, XSS injection, SQL injection and remote code 
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execution (RCE). DDoS attacks cause network congestion by generating a large 

amount of traffic, making the target website inaccessible, which destroys the 

availability of data. It is reported that New Zealand stock exchange was forced to 

suspend spot market trading due to DDoS attacks [2]. In 2016, because DNS 

server provider dyn was attacked by DDoS, many well-known websites such as 

Amazon, twitter and spotify could not be accessed [3]. XSS attack may have a 

certain impact on the confidentiality and integrity of data. The attacker tampers 

with the website through XSS insertion and lures the victim into the changed 

website, so as to steal cookies and redirect users to malicious websites. British 

Airways has faced a fine of £ 20m for violating gdpr due to data disclosure caused 

by XSS vulnerability [4]. EBay's XSS vulnerability has caused a large number of 

users to be cheated [6]. SQL injection is also a dangerous attack. It can insert 

specific SQL statements into the page request, so as to access the database 

without authorization and obtain the information in the database, resulting in 

serious information disclosure. In 2014, security researchers found SQL injection 

vulnerability in Tesla website, which will cause user information disclosure [7]. 

Cisco has been reported that there could be SQL injection vulnerability in Cisco 

data center manager [8]. If it is exploited, it will allow attackers to gain 

administrative privileges. The reason for the RCE vulnerability is that the code of 

the web application uses functions that can execute system commands, and the 

user's input is not filtered, so the user's input can be executed on the server as a 

command statement. Through this vulnerability, an attacker can easily obtain the 

privileges of the server, resulting in more serious damage. 

 

1.2 Research motivation 
 

In order to repair vulnerabilities and find malicious code as soon as possible after 

the web application get compromised or showing signs of being attacked, to avoid 

more losses from serious web security incidents caused by malicious exploitation 

by hackers, it is increasingly necessary for the owners of web applications to 

conduct penetration testing on their own websites. However, the traditional 

penetration testing process is often cumbersome and has high technical 

requirements for testers, it is usually taking a certain time to find potential 

vulnerabilities as much as possible. For the penetration test of web application, 
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there are many automatic scanning tools, such as Nmap, Nikto, SQLmap, w3af, 

etc. [9]. However, these tools often require testers to have some experience to find 

the location of vulnerabilities and select the appropriate payload to launch attack. 

Although those automatic scanning tools could be a powerful automatic scanning 

tool which allows users to find and verify vulnerabilities, for large-scale web 

applications, its complete scanning function will take a lot of time. Facing so many 

network threats, how to improve the efficiency of penetration testing could be a 

long-term problem that worth to explore. As mentioned above, machine learning is 

used by some hackers to carry out malicious activities, which can be said to be the 

negative impact of the rapid development of machine learning in recent years. 

However, machine learning is also widely used to ensure cybersecurity. For 

example, spam classification, malicious website identification, malicious traffic 

detection, etc. [10]. However, these applications could be regard as passive 

security measures, and the research of machine learning in active security 

detection is just emerging. In order to face the increasingly serious network threat, 

the combination of penetration testing and machine learning to improve work 

efficiency and improve the accuracy of vulnerability scanning could be a direction 

worth to explore. 

 

1.3 Project aims and objectives 
 

The aim of this project is to develop a lightweight Python3 program based on 

machine learning to detect the web pages which could be malicious, then to scan 

and exploit potential vulnerabilities in compromised web pages.  

 

The scope of this project is to train several different machine learning models 

through the training set, which are random forest, naive Bayes, KNN and SVM, 

then compare the performance of several different machine learning models in 

predicting malicious websites in the test set and select a model with the best 

performance to be applied to the automatic penetration test program. The program 

consists of three parts. The first part is the crawler, which will crawl the content of 

the target web page and convert it into the certain data format that required by the 

prediction model. The second part is the classifier based on selected machine 

learning model, which will predict whether the target web site may have 
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vulnerabilities. The third part is the exploit module, which will scan the 

corresponding target web page according to the prediction results and try to exploit. 

The innovation of this project is that the combination of machine learning and 

traditional penetration test scanning tools can effectively shorten the scanning time 

of traditional scanning tools. The dataset used in this project comes from A.K. 

Singh. The development language is Python, which is widely used in machine 

learning, and the test environment of the program is Kali Linux. 

 

1.4 Intended audience 
 

The audience of this project are researchers and relevant practitioners in the field 

of Cybersecurity, as well as anyone interested in effectively applying machine 

learning to penetration testing. 

 

1.5 Dissertation outline 
 

Chapter 1 gives a short description of the project context, main aims, scope and 

intended audience of the project. Chapter 2 introduces the related technical 

background of the project from three aspects. Firstly, it briefly introduces the 

penetration test and its process. Secondly, it provides machine learning and lists 

some classical machine learning models that can be used for vulnerability web 

page prediction, as well as some methods to evaluate the performance of models. 

Thirdly, it lists the main Python libraries used in this project. Finally, it gives some 

relevant research status. In the Chapter 3, the requirements of the project are 

explained and analyzed, and the structure and process design of the project are 

given. The Chapter 4 is the main section of this paper. In this chapter, the 

implementation process is described in detail according to the main structure of 

the project. Chapter 5 will give some system test case of this project and 

comparative analysis. Chapter 6 will summarize the limitation of the project and 

give some potential work in the future. Chapter 7 will summaries this project and 

draw conclusion. Chapter 8 will present a reflection on learning result from this 

project. 
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Chapter 2 

Background and literature review 

 

2.1 Introduction of penetration testing 
 

Penetration testing usually refers to a set of activities to ensure the security of the 

target system by launching ethical attacks. This process includes dynamical 

analysis of technical vulnerability or weakness of the system. The vulnerability 

analysis is carried out from the possible injection point of an attacker, and 

conditionally take the initiative to exploit the vulnerabilities of this location using 

various payload. 

 

Penetration testing is usually divided into seven stages, including clear 

requirements, information collection, threat modeling, vulnerability analysis, 

vulnerability verification, deep attack, written report, etc. [9]. Clarifying the 

requirements stage means that before the penetration test, the tester shall 

communicate with the customer to unify the opinions of both parties on the 

penetration test, determine the objectives of the penetration test, etc. After that, 

enter the information collection stage [9]. The main work at this stage is to collect 

some public information of the target, such as the URL of the web app, the network 

protocol used (HTTP or HTTPS), web page content, etc. After the information is 

collected, the work can enter the threat modeling stage. It is to say that use the 

collected information to formulate some possible attack schemes to achieve the 

purpose of penetration test [9]. The next stage is the vulnerability analyzing. The 

main work of this stage is to scan the vulnerabilities of the target system with the 

help of some software tools [9]. After the vulnerability is scanned, the vulnerability 

verification phase can be carried out, in which some vulnerability exploit tools are 

usually used [9]. If the vulnerability is verified, the deep attack stage can be carried 

out. The deep attack stage often means that the security protection measures of 

the penetration target have been broken. The work of this stage is to show the 

consequences of the security protection being broken [9]. The last stage is the 

written report stage. The main goal of this stage is to provide customers with a well 
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understood document, explain a series of problems found in the penetration test, 

and provide repair suggestions [9]. 

 

2.2 Introduction of machine learning 
 

Machine learning is a kind of technology that explore how to use computers to 

obtain new knowledge or skills, rebuild the existing knowledge structure and 

Iteratively improve its performance by simulate or realize the learning behavior of 

human.[11][12] It could be seen as a subject which is interdisciplinary, for example, 

it includes statistics, probability theory, approximation theory, convex analysis and 

algorithm complexity theory and so on. As a popular subject in recent years, the 

history of machine learning could be track back to decades or centuries ago. Dating 

back to the 17th century, Bayesian and Laplace's derivation of least squares and 

Markov chain has been widely used, it could be the foundation and tool of modern 

machine learning. Since 1950 when Alan Turing has proposed to create a learning 

machine, there is a great development has been made in the research of machine 

learning.[13] 

 

With the rapid progress of Internet and computer technology in the last few years, 

there is an explosion of data increases, and the demand for data analysis in various 

industries continues to increase, how to collect information efficiently through 

machine learning has gradually become a main motive force for the research of 

machine learning technology. How to comprehensively analyze complicated and 

various information based on machine learning methods and make more efficient 

use of digital data has become the major direction of study of machine learning in 

the current stage which is in a big data environment [14]. Now, machine learning 

is widely used in various fields, for example, computer vision, speech recognition, 

natural language processing, spam recognition and malicious website recognition 

and so on. 

 

According to different learning methods, machine learning can be classified into 

three different methods in general: supervised learning, unsupervised learning and 

reinforcement learning [14]. 
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2.2.1 Supervised learning 
 

Supervised learning could be regarded as a broad category of machine learning 

theory that generate a function from labeled training data after a series of 

calculations. The training data should include a set of samples with characteristics 

parameters. In supervised learning progress, every instance should be constituted 

with an input object (usually a set of vector matrix) and a desired output value (also 

known as a supervised label). Supervised learning methods is generally used to 

analyze the sample features in training data to produce a function, which could be 

used to map out new samples to a predicted label. The main task of supervised 

learning is to train the potential relationship between eigenvalues and labels in 

learning samples, and finally make correct predictions for the labels of new 

samples. Supervised learning is generally used to solve classification problems 

and regression problems [15]. In the regression problem, it is often necessary to 

predict continuous specific values, while in the classification problem, the main goal 

of supervised algorithm is to classify materials, which is the prediction of discrete 

values. Classification problems are very common in the practical application of 

network security, such as spam classification, malicious traffic classification, 

malicious URL detection and so on [10]. The machine learning algorithms applied 

in this project belong to supervised learning.  

 

The general process of using supervised learning to solve classification problems 

is shown in the figure below: 

 

Figure 1: Machine learning process 
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Firstly, a large number of data will be preprocessed to extract appropriate features, 

labeled according to different categories, then transformed into the format required 

by machine learning algorithm. Secondly, the dataset used for training will be 

handed over to the machine learning algorithm. The algorithm will continue to use 

it to calculate the training data and try to find the model with the least loss. Its 

training process can also be said to be a trial-and-error process [14]. The training 

process could be simply shown as the figure: 

 

Figure 2: Machine learning training 

- Model: take the feature set ( �	) in the dataset as the input and return a 

predicted value ( �′ ) as the output, which can be simplified and understood as 

the following formula (� is bias, � is weight, � is the number of features, and 

� ∈ � ):  

 

�‘	 = 	�	 +	�!�! 	+ 	�"�"	+	. . . �#�# 

 

- Calculate loss: calculate the loss under this parameter (bias, weight) through 

the loss function. Loss is an important indicator in machine learning algorithms 

that is used to evaluate the prediction accuracy of a classifier for each sample. 

The value of loss will be small if the predicted result is accurate, otherwise the 

loss will be large. The loss function is necessary for the classification model. 

The linear regression model usually adopts the mean square error function, 

while the logical regression model uses the logarithmic loss function [15]. 

 

- Calculate parameter update: detect the value of the loss function and generate 

new bias and weight to reduce the value of the loss function. 
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The model obtained through training can make more accurate prediction of new 

data. 

 

In practical applications, it is often necessary to divide the dataset into two parts. 

One part should be used for the training task of machine learning model, that is, 

the training set, and the other part should be utilized as the test dataset to evaluate 

the prediction accuracy of the trained model [15]. 

 

2.2.2 Unsupervised learning 
 

In practical problems, it is often difficult to classify the data manually because lack 

of sufficient experience and prior knowledge, or the cost of manual classification 

could be too high. Unsupervised learning is to solve these problems. The task of 

unsupervised learning is to analyze the data from rows according to the training 

samples without marked categories, and finally distinguish the observed values 

[14]. 

 

2.2.3 Reinforcement learning 
 

The process of reinforcement learning could be regard as a reward guiding 

behavior that agents interact with the digital environment and improve in the means 

of "trial and error". The object of reinforcement learning agent is to maximize the 

reward from action space in the specific environment. The fields reinforcement 

learning being distinguished from supervised learning could be the way that agents 

learning. The former mainly reflected in given labels, but in reinforcement learning, 

the label could be seen as reinforcement signal provided by the environment which 

is an reward or penalty of the selected action. In this way, agents constantly learn 

new experiences, iterate from the environment, and finally have the ability to 

quickly make the best action in the environment [14]. 

 

 2.3 Machine learning algorithm used in this project 
 

The machine learning classifiers used in this project include random forest, naive 

Bayes, k-nearest neighbor (KNN) and support vector machine (SVM). These 
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algorithms are classical methods for solving classification problems, which could 

be helpful to achieve the final goal of the project. 

 

2.3.1 Random forests 
 

Random forest is a kind of classification method containing multiple decision trees. 

Decision tree algorithm is a classical method with tree structure, which is easy to 

understand and implement. Take a simple example to illustrate the decision tree, 

as shown in the figure: 

 

Figure 3: Decision tree 

At the root node, the decision tree obtains a characteristic URL length value of 20. 

In general, this is normal for a web application, so it cannot be determined as a 

malicious website at this step. However, it is still uncertain whether it is a benign 

website, so continue to judge the next feature. The length of JavaScript is 500, 

while the length of JS in normal web pages generally does not exceed 300. 

Therefore, it can be judged that this web page is a malicious website. (in practical 

application, the situation is much more complex [14]. This example is only a brief 

description of the general process of decision tree) 

 

Random forest is a combination of multiple such decision trees (Figure). There are 

many studies have shown that the combined classifier could have a better 

efficiency on classification than that of single classifier. There is a useful 

characteristic of Random forest classification method that it can rank the 

importance and evaluate the role in classification of each feature of the when it is 

processing the classification work [16]. 
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Figure 4: Random forest 

2.3.2 Naive Bayes  
 

Naive Bayes algorithm evolved from Bayes theorem of classical mathematics, 

which belongs to probability theory. The classifier based on naive Bayes algorithm 

is not only easy to implement, but it also has a stable performance on classification 

works. It can also perform well in the case of small samples. Moreover, it is not 

sensitive on abnormal samples, which could be a good characteristic for 

classification model. However, it also has disadvantages. In naive Bayes, the 

characteristics of samples are assumed to be independent of each other. Although 

this can avoid the excessive weight of a specific feature, in practical problems, 

there may be correlation between features, which will affect the effect of 

classification to a certain extent [17]. 

 

In order to illustrate the principle of naive Bayesian classification algorithm, first 

give a simple example. As shown in the figure, suppose there is a data set, which 

is composed of two types of samples: normal web application (blue) and vulnerable 

web application (red). Each sample has been labeled, that is, classified. For the 

new sample �(�, �), Use �#$%&'((�, �) to represent the probability that the point is 

divided into normal web application, and Use �)*((�, �) to represent the probability 

that the point is divided into vulnerable web application [17].   
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Figure 5: Naïve Bayes 

Then, if �#$%&'((�, �) > �)*((�, �), the �(�, �) will be classified as the normal web 

site; if �#$%&'((�, �) < �)*((�, �) , the �(�, �)  will be classified as the vulnerable 

website. 

 

The above is the case of two-dimensional features. Expand the features to d-

Dimension, its mathematical principle can be shown as follows: 

 

With sample data set � = {�!, �"… , �#} , the feature set of the corresponding 

sample data is � = {�!, �"… , �+}, the label set is � = {�!, �"… , �&}, that is, � can 

be classified into � kind of different class. Where, �!, �"… , �+ is independent and 

random, then the priori probability of �, �,%-$% = �(�); the posteriori probability of 

Y, �,$./ = �(�|�). According to Bayesian formula, the posteriori probability �,$./ 
can be calculated from �,%-$% = �(�), �(�)	���	�(�|�): 

�(�|�) = �(�)�(�|�)
�(�)  

Since naive Bayes is based on the independence of each feature, the above 

equation can be written as: 

�(�|� = �) =>�(�-|� = �)
+

-0!

 

The posteriori probability can be calculated from the above two equations: 

�,$./ = �(�|�) = �(�-)∏ �(�1|�-)+
10!

∏ �(�-)+
10!

 

Since the size of �(�) is fixed, it is only necessary to compare the molecular part 

of the above formula when comparing the a posteriori probability. Therefore, the 

formula of the label �- to which the sample data belongs can be obtained: 
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�(�-|�!, �"… , �+) =
�(�-)∏ �(�1|�-)+

10!

∏ �(�1)+
10!

 

 

2.3.3 K-nearest neighbor 
 

K-nearest neighbor (KNN) can be traced back to 1951, it was proposed by Fix and 

Hodges as a statistical algorithm, then it was expanded by Cover. After years of 

development, KNN algorithm is a relatively mature and simple method to solve 

classification problems. Its main idea is to find k nearest samples in the feature 

space for a new sample. If most of the K samples belong to a category, the new 

sample can be classified into this category. The advantage of KNN algorithm is that 

it is relatively easy to understand and implement, and in principle, it does not need 

the process of training. However, its disadvantages are also obvious. In the 

condition of samples with high-dimensional features, its calculation pressure will 

be very high. It also fails to perform well in unbalanced samples [15]. 

 

The following is an example to illustrate the principle of KNN. As shown in the figure, 

it is assumed that in a two-dimensional feature space, square samples represent 

vulnerable website, triangular samples represent normal website, and circular 

samples represent new samples. It can be intuitively observed from the figure that 

if the value of K is set to 3, the new sample will be classified as normal website. If 

K value is set to 5, the new sample will be marked as vulnerable website. 

 

Figure 6: KNN 

2.3.4 Support vector machine 
 

Support vector machines (SVM) is a set of supervised machine learning method 

which is commonly used to binary classification problems. Its decision boundary is 
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a maximum-margin hyperplane which is the optimal solution to solve the feature 

matrix of training samples [18]. It has many advantages. For example, when the 

dimension of the feature matrix is relatively high, it can also classify the data set 

better. Moreover, SVM is quite effective even when the dimension of feature matrix 

is higher than the number of samples [19]. However, it also has some 

disadvantages. For example, fitting may occur when the dimension of the 

characteristic matrix is much larger than the number of samples. In addition, SVM 

will facing too much computation when the sample size is very large, so it could be 

not suitable for large data sets [20][21]. 

 

The basic idea of SVM is as follows: 

 

Figure 7: SVM 

 

Take a simple example to illustrate the basic principle of SVM, as shown in the 

figure. Suppose that in the two-dimensional feature space, dark points represent 

the sample as vulnerable web application, and the light points represent normal 

web application. What SVM needs to do is to find a line that can divide the two-

dimensional space into two parts, which contains two different web applications. 

And this line should be optimal, that is, even if a new sample is added to this space, 

the line can successfully divide the new sample into the correct area [18]. 

 

2.4 Machine learning evaluation methods 
 

After machine learning model training, an essential step is to evaluate the 

established model and evaluate whether it meets the needs of use.  
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2.4.1 Confusion matrix 
 

The classification judgment result of the classifier for an instance may be positive 

or negative. Similarly, the judgment may be true or false. There are 4 conditions 

that could be combined as a table, namely, confusion matrix [11]. 

 

- True positive: It means that the positive result which predicted by classifier is 

correct. 

- False positive: It suggests that the positive result predicted by classifier is wrong. 

- True negative: It indicates that the negative result predicted by classifier is 

correct. 

- False negative: It means that the negative result predicted by classifier is wrong. 

 

 Predicted positive Predicted negative 

Actually positive True positive (TP) False negative (FN) 

Actually negative False positive (FP) True negative (TN) 

Table 1: Confusion matrix 

2.4.2 Performance indicator 
 

Accuracy is used to represent the percentage of correct prediction in all prediction 

results of the classifier [11]. 

�������� = �� + ��
�� + �� + �� + �� 

 

Precision is used to indicate how many of the results predicted as positive by the 

classifier are correct [11]. 

��������� = ��
�� + �� 

 

Recall is used to indicate how many samples with positive labels are correctly 

classified by the classifier [11]. 

������ = ��
�� + �� 
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F1 score is an evaluation index combining precision and recall [11]. 

�1	����� = 2(������ × ���������)
������ + ���������  

 

2.5 Python Libraries 
 

This project utilizes python as programming language. The syntax of Python is 

relatively simple and easy to learn for starters, so it is widely welcomed by 

developers come from various fields and becomes one of the popular programming 

languages in recent years. Another powerful advantage of python is that its 

community provides a large number of third-party libraries, which provide a variety 

of useful functions, covering the fields of scientific computing, web development, 

web crawling and machine learning, and most of them are mature and stable. 

These third-party libraries are very important for Python development. They can 

greatly improve the efficiency of development. The main libraries used in this 

project are as follows:  

 

requests: It is a HTTP library which is widely used in crawling. In this project, it is 

used to send request to the target web application and receive its response. [22] 

 

BeautifulSoup: It contains some functions that can conveniently extract the 

content from web pages. [23] 

 

whois: It is mainly used to query whether the domain name has been registered, 

which is one of the features required by the classification model in this project. [24] 

 

geoip2: It is used to query the geographical location of IP, which is used as a 

feature in the prediction model. [25] 

 

tld: It can easily extract top-level domain names from complex URLs. The TLD is 

a feature that will be used in the classifier in this project. [26] 

 

re: It is a basic library of python, which is mainly used to string matching.  
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numpy: It is a powerful mathematical function library. It supports multi-dimensional 

array operation and matrix operation. It is an important library in the field of machine 

learning. [27] 

 

pandas: It is a library built on Numpy, which is mainly used to easily operate 

Numpy data. [28] 

 

sklearn: Its full name is scikit-learn. It is one of the most popular Python modules 

in the field of machine learning. It includes a variety of machine learning methods, 

such as classification, progression, clustering, dimensional reduction, model 

selection and preprocessing. The utilization of scikit-learn makes the development 

of machine learning more simple and convenient, and reduces the amount of code 

to a great extent. [29] 

 

matplotlib: It is a powerful Python module which is used to data visualization. [30] 

 

imblearn: It is a library contains some methods to process unbalanced dataset. 

[31] 

 

2.6 OWASP ZAP 

 
ZAP is a tool for web penetration test produced by OWASP company. It supplies 

the functions to scan and test a variety of vulnerabilities in the web page [32]. ZAP 

provides a set of API for Python [33]. Its functions can be easily called through API 

in Python programs. In this project, ZAP + API is used as a vulnerability exploitation 

tool to complete the final work of penetration test. 

 

2.7 Related works 
 

Alam et al. Proposed a method called NMPREDICTOR to predict vulnerabilities in 

web pages. This method is actually based on the white box test in penetration 

testing, that is, using machine learning to review the code, and abstracting 

vulnerability prediction as a text feature extraction and classification problem of 
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machine learning. The precision of the prediction results of vulnerabilities in the 

website framework Drupal reached 84.9%. [34] 

 

Aldwairi and Alsalman proposed a method to identify malicious websites based on 

URL features. Their method is based on Naive Bayesian classifier and uses 

genetic algorithm. They complete the training of this prediction method in a short 

time with a small data set and low memory consumption. The prediction accuracy 

of this method for malicious websites reaches 87%. [35] 

 

Calzavara et al. proposed a method called Mitch to predict CSRF vulnerabilities in 

web pages. They trained a machine learning model to judge the target through 

some characteristics of web page requests. The prediction accuracy of their 

method for CSRF vulnerabilities is about 74%. It is said that they successfully found 

CSRF vulnerabilities in the actual website test, and several vulnerabilities were not 

found in the traditional vulnerability analysis software. [36] 

 

Bauer, Fung and Jia proposed a lightweight method to detect DOM XSS 

vulnerabilities in web pages. They use crawlers to collect a large number of web 

pages and extract more than 18 billion JavaScript function codes, including secure 

code and potentially vulnerable code. Using these data, they trained a classifier 

based on deep neural network to predict whether there may be DOM XSS 

vulnerabilities by analyzing the characteristics of JavaScript code. According to 

their conclusion, the prediction accuracy of this method for DOM type XSS 

vulnerabilities is 94.5%. [37] 

 

Shar and Tan proposed a machine learning based method to predict SQL injection 

vulnerabilities and XSS vulnerabilities in web applications. They use supervised 

learning and unsupervised learning methods to mix static analysis and dynamic 

analysis of the code features of web applications, and finally predict the results. 

According to their experiments, they have a supervised learning method to predict 

vulnerabilities with an accuracy of 85. [38] 

 

Kamtuo and Soomlek studied SQL injection vulnerability prediction based on 

machine learning. In their work, they used about 1000 samples to train a variety of 
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machine learning classification models (SVM, boosted decision tree, artificial 

neural network, decision jungle) to conduct text analysis on the server code of web 

application. After comparison, the accuracy of vulnerability prediction of the 

decision jungle model they trained is the highest among several models, Most SQL 

vulnerabilities can be accurately predicted. [39] 

 

Govil, Gupta and Singh specifically studied the prediction of XSS vulnerabilities in 

web applications. They established some machine learning models to analyze the 

context by extracting the features in the web source code, so as to predict whether 

there are XSS vulnerabilities in web pages. They used SVM, Nb, Bagging, J48 and 

JRip classifiers to test on public data sets. Their experiments show that Bagging 

performs best among these classifiers and can accurately predict XSS 

vulnerabilities in web pages. [40] 

 

Fang et al. have proposed a method based on semantic analysis for static 

detection of JavaScript code. They use JavaScript code to generate a syntax tree, 

format it into a sequence of syntax units, and then use text processing algorithms 

to convert it into the form of word vectors. Finally, the dataset is used to train the 

machine learning model. According to their experiments, the detection accuracy of 

this model for malicious JavaScript code can reach 97.7%. [41] 
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Chapter 3 

Requirement specification and system design 

 

3.1 Requirement specification 
 

In order to achieve the final goal of the project, it is necessary to analyze the needs 

of the project based on the goal. Requirement analysis is to more clearly point out 

what functions need to be implemented in the project, which is very helpful for 

subsequent development. 

 

3.1.1 Functional requirement 
 

The final goal of this project is to complete a penetration testing tool that can 

automatically predict whether there may be injected malicious code in web pages, 

and scan and exploit web pages which may be compromised. This goal can be 

divided into three modules: crawler module, machine learning classifier module 

and vulnerability scanning module. 

 

Crawler module: This module mainly needs to realize two functions: traversing the 

website and reading website information. First, in this module, the user is allowed 

to enter a URL of the target web application. This module needs to be able to 

traverse the target and find all the URLs under the target site as much as possible. 

Secondly, the module needs to read the information of the target site and page, 

save and format the data, and prepare to submit it to the second module. 

 

Machine learning classifier module: The module should mainly realize two part in 

function. Firstly, users can select the trained model in this project to complete the 

subsequent web page classification, and the performance of the model should be 

given. Secondly, users can also choose to use their own data set to train the model 

and choose the most appropriate one according to the performance of the model 

which could be used to predict compromised webpages. 
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Vulnerability scanning module: The main function of this module is to scan the web 

pages predicted as risky by the classifier and verify the existing vulnerabilities. In 

addition, the results of this web application penetration test shall also be displayed. 

 

3.1.2 None- functional requirements 
 

Accuracy: the final program should be able to identify the compromised web pages 

accurately. 

 

Efficiency: it should be more efficient than the traditional web application 

vulnerability scanning tool. 

 

Usability: it should be convenient to use and have the necessary user interaction. 

 

3.2 System design 
 

According to the above requirements analysis, this project is mainly divided into 

three functional modules, namely crawler module, classifier module and 

vulnerability scanning module. According to the tasks of each module, the main 

structural design of the project is as follows: 

 

Figure 8: Program structure 

In the crawler module, there are three main functions. HTTP request methods 

represents a group of methods used to send and receive requests to the target 

web application, and it also has the ability to automatically traverse the whole web 
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application to obtain and the content of all web pages in the target. Data extract 

methods contains some methods to extract the contents of web pages and save 

them in a list. Data process methods is used to process those data and convert 

them into the data format supported by the machine learning model. Next, the 

processed data will be submitted to the second module, named, classification 

module. 

 

The main components of the classification module include machine learning 

methods, trained machine learning models, performance evaluation methods and 

data processing methods. Machine learning methods includes the implementation 

of some machine learning algorithms (Random forest, Naïve Bayes, KNN and 

SVM). These algorithms need to be trained with training dataset. After training, the 

corresponding trained machine learning models can be obtained. These trained 

models can be used to classify the data submitted in the crawler module and 

predict whether there may be malicious vulnerabilities in the target web application. 

The performance evaluation method includes some evaluation methods on the 

performance of classification models (precision, accuracy, recall, F1 score), which 

are used to compare the performance differences between trained classifiers. The 

data processing method in this module is used to preprocess the training data to 

meet the needs of model training. 

 

In the last part, the vulnerability scanning module is mainly composed of OWASP 

zap and its API. According to the judgment results of the classifier, web pages with 

vulnerability risk can be submitted to OWASP zap through API for vulnerability 

scanning and verification and the result will be shown. 

 

In general, the main processes of the project are as shown as below: 

 

Figure 9: Program processes 
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In the web application penetration testing process, first, the user inputs the URL of 

a target web application, and the crawler module will crawl the content of the web 

application from the web page pointed to by the URL link. After traversing, each 

web page will be regarded as a sample, and the data corresponding to each page 

will be preprocessed and converted into the form of characteristic matrix, then 

submit to the classifier. The classifier will classify these samples, that is, predict 

whether there may be malicious code in the samples. Then submit the URL 

corresponding to the sample which is predicted as compromised to the vulnerability 

scanning module for vulnerability verification, and finally print the scanning results. 

 

In the process of machine learning training, first preprocess the training data set 

and test data set, and then use the processed training set to train the machine 

learning model (random forest, naive Bayes, KNN and SVM). After obtaining the 

trained model, use them to classify the samples of the test data set, Then the 

evaluation method is used to test their classification results. By comparing the 

precision, accuracy, recall and f1score of these models, the best model is selected 

as the classifier in the penetration test process. 
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Chapter 4 

Implementation 

 

This chapter will introduce the implementation of the project in detail according to 

the three modules mentioned in the system design (classifier module, crawler 

module and vulnerability scanning module). 

 

4.1 Classifier Module 
 

Firstly, the work of classifier module is carried out because this module plays a 

very important role in the whole project. It not only processes the sample data 

obtained by crawlers from web pages and classifies them according to whether 

there may be vulnerabilities, but also calls the vulnerability scanning module 

according to the classification results. The work completed by this module is similar 

to the threat modeling and vulnerability analysis stage in the process of penetration 

testing. Different from the traditional methods, in this project, machine learning 

model is used to assist testers to complete these works, in order to improve the 

efficiency of penetration testing to a certain extent. 

 

In this project, the implementation of the classifier module can be mainly divided 

into the following steps: data collection, feature selection, data preprocessing, 

training several machine learning models, using the test set to verify the model and 

compare the performance of different trained models to choose the best classifier. 

Next, this paper will introduce the specific implementation methods and processes 

of these steps one by one. 

 

4.1.1 Data collection 
 

In order to train machine learning model, a large number of high-quality samples 

are needed. Because the principle of machine learning is to use a series of 

mathematical theories to calculate the characteristics of samples, the quality of 

samples often affects the performance of the machine learning model it trains. 

However, this is also one of the difficulties in the implementation of the project, 
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because it is a very arduous task to obtain many high-quality malicious web pages 

with vulnerability. Due to time constraints, it is unrealistic to obtain enough samples 

independently during the implementation of the project. Therefore, the data set 

provided by Singh is used in the project, this is a data set containing samples of 

malicious websites and benign websites. The number of samples is about 1.5 

million. This data set is provided in CSV format and can be easily processed using 

pandas. 

 

In this project, the task of the machine learning model is to accurately identify 

malicious web pages (web pages implanted with malicious code because 

vulnerabilities are exploited by hackers) according to several characteristic data. 

Therefore, this data set provided by Singh is very suitable for machine learning 

training of this project. It is reasonable to use malicious web pages to locate 

vulnerabilities more effectively because there are many studies have shown that 

the way of malicious web page attack is often through the utilization of web page 

vulnerabilities. For example, according to Liu and Zhong's research, a web page 

with vulnerabilities is likely to be broken by hackers, and then secretly used to 

spread web malware [42]. Christin and Soska have provided a method to predict 

whether vulnerable web pages will become malicious web pages [43]. Eshete et 

al. Also pointed out in the research that malicious web pages are closely related to 

vulnerability exploitation [44]. The above research shows that there are some 

common characteristics between malicious web pages and web pages with 

vulnerabilities. In summary, it is feasible to use malicious web pages to predict 

whether web pages have vulnerabilities. 

 

In this dataset, the features contained in the sample are shown in the following 

table: 

 

Feature Description 

url Uniform resource locator (URL) string 

of web application. 

ip_add Host IP address of the web application. 
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geo_loc The geographic location corresponding 

to the IP address of the web 

application. 

url_len The number of characters in the URL. 

js_len The length of JavaScript code, which is 

calculated by dividing the total number 

of characters contained in the string of 

JavaScript code in the web page by 

1000. 

js_obf_len The length of obfuscated JavaScript 

code, which is calculated by dividing 

the total number of characters 

contained in the string of obfuscated 

JavaScript code in the web page by 

1000. 

tld Top level domain of the web 

application. 

who_is To Indicate whether the domain name 

of the web application has been 

registered. 

https Used to indicate whether the HTTPS 

protocol is enabled for the web 

application. 

content Text content and JavaScript code of 

web pages. 

label Classified tags, malicious web 

application is marked as bad, and 

benign websites are marked as good. 

Table 2: Features in dataset [45] 

In addition to the original features above in the dataset, a new feature, path_depth, 

is added in this project according to the depth of the URL. 
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4.1.2 Feature selection 
 

Feature selection is a very important work in machine learning, because the 

principle of machine learning is to continuously iterate and learn through the 

operation of the features of the sample, so whether the feature selection is 

appropriate or not often affects the classification accuracy of the trained machine 

learning model. In this project, two different schemes are used for feature 

extraction. One scheme is to select comprehensive features, another scheme is to 

extract text features from JavaScript code. The reasons for using two methods for 

feature extraction in this project will be described in detail below. 

 

Comprehensive features: This scheme is mainly based on the idea that there are 

some similar characteristics between malicious websites and vulnerable webpages. 

To select appropriate features, the difficulty of data preprocessing was considered, 

geo_loc, url_len, js_len, js_obf_len, tld, who_is, https and path_depth is selected 

as the features used to train machine learning models. 

 

JavaScript code: Javascript code is used for text feature extraction, and the 

JavaScript code in the sample is transformed into the form of feature vector that 

can be recognized by machine learning model. This method is used because 

vulnerabilities in web applications may be caused by not paying attention to filtering 

some inputs in JavaScript code, such as XSS vulnerability, SQLinjection and 

remote command execution. Therefore, we can analyze the JavaScript code in the 

web page through machine learning to find out the potential characteristics of the 

codes which causes the vulnerability, so as to predict whether there may be a 

vulnerability in the web page. 

 

4.1.3 Data preprocessing 
 

In machine learning, data preprocessing could be an essential work, because the 

data in the raw dataset could not be directly recognized by the machine learning 

model, and there may be some abnormal data in the dataset. Direct use will affect 

the training effect of machine learning, and even some program errors may occur.  
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The data set used in this project has been divided into training set and test set. 

Firstly, check the data set to see if there are abnormal null values. The main python 

codes are shown in Figure 10. 

 

Figure 10: Code block of data checking 

The loadDataset() function includes pandas.read_csv(), which is a function used 

to load csv files, numpy.any() can be used to traverse the whole dataset. 

Pandas.isnull() will check whether there are null values in the data. If there are null 

values, it will return True, otherwise it will return False. The result printed in the 

terminal are as below, it means that there is no null value in training set and test 

set.  

 

Figure 11: Result of data checking 

The second point to note is to check whether the proportion of positive and negative 

samples in the data set is balanced, because too unbalanced samples will affect 

the training results of machine learning and lead to the problem of over fitting in 

prediction. According to the description document of the dataset, there are 

approximately 2% samples which are labeled as bad, while the proportion of 

samples marked as good are almost 98%. Therefore, corresponding processing 

should be made for this data set to balance the proportion of positive and negative 

samples. There are two ways to deal with unbalanced samples, under sampling 

and oversampling. Under sampling makes the data balanced by reducing the 

number of positive examples. In contrast, oversampling uses some methods to add 

negative sample data to balance the data [46].Under sampling has been adopted 

in this project, the main codes are as follows (Figure 12): 

 

Figure 12: Code block of under sampling 
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The code above uses RandomUnderSampler() to create an object which contains 

fit_resample() to under sampling. The parameter random_state in 

RandomUnderSample() is random seed which is used to ensure that the results of 

each random under sampling are the same. There are two parameters in 

fit_resample(), x_train should be the feature columns and y_train should be the 

label column. After processing, the ratio of positive and negative samples in the 

data set is balanced to 1:1. 

 

According to the two different feature selection methods, the subsequent data 

preprocessing work is also different. The two processing processes are described 

in detail below. 

 

Data preprocessing for comprehensive features 

 

Firstly, because the machine learning models used in this project are based on 

mathematical functions, some discrete text data in the dataset cannot be 

processed by mathematical methods. For example, for the column https in the 

dataset, its original data is a string with a value of "yes" or "no", which could not be 

recognized by the machine learning model, so a method should be used to convert 

it into digital data of 1 or 0. Sklearn provides a convenient data conversion method 

in its data preprocessing package, which is sklearn.preprocessing.LabelEncoder. 

The main codes for data format conversion are as follows (Figure 14). 

 

Figure 13:  Code block of data encode 

In this function, labelEn was instantiated as a LabelEncoder object, then it calls the 

data formatting method through fit_transform() and return the result. The parameter 

col should be a feature column which need to be digitized and the col.value is the 

data for each row.   

 

Secondly, define a function to calculate URL depth of the sample (Figure 13). The 

parameter col should be the column of url in the dataset. It will traverse the data of 

this column and return a list containing the information of path depth. 
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Figure 14: Code block of get URL depth 

After calculating the path_depth value of each row of data, the result matrix should 

be spliced into the original dataset. Pandas provides the method concat(), which 

can easily realize the splicing of multiple matrices (Figure 15). In the contact 

parameter, the matrix list to be spliced is required. The parameter axis is used to 

set the splicing mode, axis = 1 means horizontal splicing, namely, adding columns. 

 

Figure 15: Code block of splicing column 

 

Data preprocessing for JavaScript code 

 

In malicious website, the main way to harm visitors could be regarded as the 

exploitation of the vulnerabilities in the JavaScript code of web application. 

Therefore, analyzing the JavaScript code in these malicious websites could be a 

solution to find out the potential compromised web pages [47].  

 

In the dataset, the content column is the raw content extracted from each web page 

sample, which contains JavaScript code. In order to extract these codes, the 

processing method is as Figure 16. In getJs(col) function, the parameter col should 

be the content column of the dataset. the list js_arr is used to save the JavaScript 

code extracted from content, the function will traverse col and use re.findall(R 

'<script(.*?)</script>', ele, re.dotall) to match the JavaScript code in each sample 

ele using regular expressions of the first parameter. The third parameter 

re.DOTALL means to match all characters. 
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Figure 16: Code block of get JavaScript code 

The analysis of JavaScript code belongs to the problem of text classification in 

machine learning applications. In order to solve the problem of text classification, 

the next step should be extracting the features of the text and convert the features 

into the form of matrix for the calculation of machine learning model. There are two 

main ideas for text transformation, Bag of Word model and the word vector model. 

The method of bag model is to put all the words in the text into one bag, regardless 

of word order and grammar [48]. For example, for the two texts "it is a vulnerable 

web application" and "it is a benign web application", their word bags are expressed 

in array form as ["it", "is", "a", "vulnerable", "benign", "Web", "application]. Then, 

the two texts above can be expressed in vector form as [1,1,1,1,0,1,1] and 

[1,1,1,1,0,1,1]. The position of the element in the vector corresponds to the 

subscript of the word bag array, and the value of the element represents the 

number of occurrences of the corresponding word. Word vector model maps each 

word in the data set into a high-dimensional spatial vector through a large number 

of calculations. The relationship between words can be obtained by calculating 

cosine [41]. 

 

Considering that the principle of word bag model is relatively simple and easy to 

implement, word bag model is adopted in this project. The main code is as below. 

 

Figure 17: Code block of code feature extraction 

CountVectorizer is a class in sklearn, which provides a text feature extraction 

method based on word bag model. As shown in the Figure 16, The contavectorizer 

() is used to instantiate an object transfer, and then call the fit_transform () method 
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to vectorize the text in the parameters (x_train[“js”] and x_test[“js”], which are the 

js columns in the training set and the test set, respectively). 

 

4.1.4 Machine learning models training 
 

After preprocessing the data, we can use the data to train the machine learning 

model. In this project, for the two feature extraction methods, four machine learning 

algorithms, random forest, naive Bayes, KNN and SVM, are used to create 

classifiers to evaluate the performance of different classification algorithms and the 

effect of the two feature extraction methods. The following describes the main 

codes according to these four different algorithms (Because several codes for 

machine learning model training are the same whether using comprehensive 

features or text features, only the codes of comprehensive features are listed as 

instructions). 

 

Random forest 

 

The class sklearn. Ensemble. Randomforestclassifier is provided in sklearn, which 

contains the implementation of the random forest algorithm. The code is as follows. 

 

Figure 18: Code block of random forest model training 

RandomForestClassifier(n_estimators=10) is used to instantiate a classifier object, 

where the parameter n_estimators represents the number of decision trees in 

random forest. classifier.fit(x_train, y_train) means to start training the model, 

parameter x_train is the feature matrix of the training set, and y_train is the label 

column of the training set. After the training, the samples in the training set x_test 

can be classified through classifier.predict(x_test). In the end, pickle is used to save 

the trained model to a file for later use in comparison work. 

 

 



 41 

Naïve Bayes 

 

For naive Bayes classifier, sklearn provides a variety of algorithm implementations, 

namely GaussianNB, MultinomialNB and BernoulliNB. MultinomialNB is used in 

this project because this algorithm is suitable for discrete features. The main codes 

for training naive Bayes classifier are as follows (Figure 19). Similar to the code 

above, first use MultinomialNB () to instantiate a model object classifier, then call 

fit (x_train, y_train) to train the model, and finally save the classifier obtained after 

the training to the file. 

 

Figure 19: Code block of naïve Bayes model training 

 

KNN 

 

The process of creating a KNN classifier is similar to the above work. It is realized 

by training the instantiated objects of the KNeigborsClassifier, which is the class of 

skearn. However, for the KNeigborsClassifier class, it is necessary to determine 

the value of the parameter n_neighbors to obtain a KNN classifier with better 

performance. In order to determine n_neighbors, k-cross validation is a common 

method. Its principle is: divide the original data into k groups (generally evenly), 

make every subset dataset as a verification set respectively, and the other k-1 

subset data as the training set. In this way, there are k models will be obtained, 

and the average of the classification accuracy of the final verification sets of k 

models will be used as the performance index of the KNN classifier. This project 

used 4 cross validation; the code is as Figure 20. After 4 cross validation, it is finally 

obtained that among the values of 15, 20, 25, 30, 35 and 40, When n_neighbors = 

15, KNN has the highest accuracy, as shown in Figure 21. 
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Figure 20: Code block of 4 folds cross validation 

 

Figure 21: Result of validation 

SVM 

 

A variety of kernel functions are provided in the SVM class of sklearn, which can 

be roughly divided into linear and nonlinear. According to the study that compared 

supervised classification models, [49] the linear kernel performs better than several 

other nonlinear kernels in the task of text classification. The SVM model with linear 

kernel is adopted in this project, and the code is as follows: 

 

Figure 22: Code block of SVM model training 
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4.1.5 Classifier evaluation and comparative analysis 
 
In this part, for the two classification methods, four different classifiers are used to 

classify the samples of training set and test set respectively, and the corresponding 

conflict matrix, precision, accuracy, recall and f1score are calculated, and then the 

performance of classifiers is compared and analyzed through these indicators. 

 

Confusion matrix (Comprehensive features dataset) 

 
Figure 23: Confusion matrix (Comprehensive features) 

Firstly, for the training results of data sets using comprehensive features, the 

prediction results of different machine learning models for samples can be seen 

intuitively from the display of the conflict matrix (Figure 23, 0 indicates malicious 

websites and 1 indicates benign websites). Among the prediction results of Naive 

Bayes classifier, the proportion of False Neg is 4.09%, which is the highest among 

these models, which means that it is more likely to mistakenly identify malicious 

web pages as benign web pages than other classifiers. For random forest, KNN 

and SVM, there is not a big gap in the performance of malicious web page 

recognition. 

 

Confusion matrix (JavaScript code dataset) 

 
Figure 24: Confusion matrix (JavaScript code) 
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For the training results of this dataset, it can be seen from the conflict matrix (Figure 

24) that, contrary to the above experiments, Naive Bayes has the best effect on 

identifying malicious websites in this dataset, and the proportion of True Pos is 

46.38%. Although it identifies too many benign websites as malicious websites (the 

proportion of false neg is 14.85%), to some extent, it can avoid ignoring some 

potential malicious pages, which may be beneficial for vulnerability detection. 

 

Precision (Comprehensive features dataset) 

 
Figure 25: Precision (Comprehensive features) 

It is shown in the above Figure 25 that in terms of precision, the four machine 

learning models perform well. Among them, Naive Bayes classifier has the highest 

accuracy, and the prediction precision of training set and test set reaches 100%. 

This means that if a sample is judged as a malicious web page by Naive Bayes 

classifier, the probability that the sample is actually a malicious web page is almost 

100%. 
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Precision (JavaScript code dataset) 

 
Figure 26: Precision (JavaScript code) 

In the work of classifying JavaScript code, Naive Bayes is still the best classifier in 

precision. Its precision of prediction for training set and test set is 90.06% and 

90.67%. Although the prediction accuracy of random forest in the training set is 

93.9%, its performance is not stable. In the test set, its precision is reduced to 

88.99%. 

 

Accuracy (Comprehensive features dataset) 

 
Figure 27: Accuracy (Comprehensive features) 

In terms of accuracy, random forest is the best of the four models. Its accuracy of 

prediction results in the training set is 99.84%, and its score in the test set is 

98.92%. This means that it can correctly classify most web pages. 
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Accuracy (JavaScript code dataset) 

 
Figure 28: Accuracy (JavaScript code) 

Classifiers using JavaScript as features do not perform as well as classifiers using 

comprehensive features in terms of accuracy. As shown in Figure 28, random 

forest is still the best model. Its prediction accuracy for the training set is 96.75%. 

Although the prediction accuracy for the test set has decreased to 92.1%, it is still 

the highest among several models. 

 

Recall (Comprehensive features dataset) 

 
Figure 29: Recall (Comprehensive features) 

Figure 29 shows the performance of recall of several different machine learning 

models in the case of training using data sets with comprehensive features. It can 

be seen that the performance of random forest classifier is the best. In the 
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classification of training set and test set, recall is 99.87% and 97.99% respectively. 

The higher recall means the classifier can identify the malicious web pages more 

accurately. 

 

Recall (JavaScript code dataset) 

 
Figure 30: Recall (JavaScript code) 

In this data set, the recall of random forest model in the classification of training set 

is the highest among the four models, which is 93.51, while the recall of test set is 

reduced to 88.12%. Naive Bayes performs well in the classification of test sets, 

which is 92.77%, and its classification of test sets and training sets is relatively 

stable in recall. 

 

F1 score (Comprehensive features dataset) 

 
Figure 31: F1 score (Comprehensive features) 
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F1-score is used to balance precision and recall. It is widely used to compare the 

performance of several different models [50]. As can be seen from Fig. 31, the F1 

scores of random forest for both training set and test set are the highest compared 

with other models, which are 99.84% and 98.91% respectively. 

 

F1 score (JavaScript code dataset) 

 
Figure 32: F1 score (JavaScript code) 

When using JavaScript code dataset, the F1 score of random forest classifier is 

still the best among the four classifiers. The F1 score in the training set is 96.64%, 

and the performance in the training set decreases, with f1score of 91.78%. 

 

Comparation of machine learning classifiers 

 

It can be seen from the above data that the classifier trained by using the dataset 

of comprehensive features has a good performance in identifying malicious 

websites. In this training mode, random forest performs well. A higher accuracy 

indicates that it can classify websites well in most cases, and a high recall indicates 

that it has a relatively high accuracy in identifying malicious websites. Although 

Naive Bayes achieves 100% performance in precision, this means that it may miss 

some malicious web pages. In general, the random forest model can identify 

malicious websites relatively well. 
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4.2 Crawler module 
 

There are three main objects to be realized in this module:  

1. Automatically traverse all pages under the web application.  

2. Save and extract some features of web pages, which are needed by machine 

learning classifier 

3. The extracted data should be processed and formatted into the data set for 

training and testing machine learning above. 

 

The main Python code of crawler function in this module are as follows.  

 

Figure 33: Code block of crawler 

In this function, the requests library is used to complete the task of sending and 

receiving requests for web pages. Compared with urlib2 module, using requests 

can make the code more concise. It supports HTTP connection retention and 

connection pooling, session retention using cookies, and encoding of automatic 

response content. The main idea to implement crawler is to use beautiful loop to 

find all <a> tags in the web page, because a tag is often used to render the 

navigation bar and link to other pages of the target web application. After finding 

the <a> tag, filter out the target with href attribute, and you can traverse the website 

according to the links found in href. 
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The code of data preprocessing function is as below: 

 

Figure 34: Code block of data preprocessing 

The implementation of this part is relatively simple. It mainly standardizes each row 

of data by traversing the data list returned by the crawler, and finally converts the 

data into the format of DataFrame through the DataFrame() function of pandas. 

Then, the data could be submitted to the classifier module (Figure 35).  

 

Figure 35: Code block of load classifier 

After the classifier completes the identification of malicious web pages, the 

program will call the function extractVulnerableURL(predict_list, raw_data)  to map 

the URL of the predicted malicious web pages according to the corresponding 

relationship of the number of rows, which is used as the target of the vulnerability 

exploitation module. 

 

Figure 36: Code block of extract malicious URL 

4.3 Vulnerability scanning module 
 

In this module, the main function should be scanning and exploiting the web pages 

which are predicted as malicious by the machine learning classifier. In order to 

realize the function above, this project uses the ZAP API for Python to call the 
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corresponding methods to verify the vulnerabilities. The main Python code are as 

follows: 

 

Figure 37: Code block of ZAP Class 

ZAP is defined as a class with 3 main member variables: target, apikey and zap. 

The target is the url of web page which may be malicious, apikey should be a string 

which used to match the ZAP application installed. It could be found at the menu 

of ZAP: “ Preferences / Options / API / API key ”. zap is a ZAPv2 object which is 

used to call ZAP API functions. 

 

Figure 38: Code block of vulnerability scanning 

The method spider() above (Figure 37) is used to launch web page scan on specific 

target by ZAP. It will send various http request to the target to find potential injection 

point.  

 

Figure 39: Code block of vulnerability exploiting 

The method attack() above is used to verify vulnerability by trying different kind of 

attack with corresponding payloads. 
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Chapter 5 

System testing and comparative analysis 

 

In order to ensure that the program can run correctly and meet the requirements, 

testing the program is a necessary link. In this project, the functions in three modules 

(crawler module, classifier module and expansion module) are tested respectively, and 

finally the process test is carried out. 

 

5.1 Crawler module test 
 

Test Case ID: 1 

Description: To verify whether the crawler module can traverse the web page 
normally, extract the web page information and format it. 

Test Steps 1. Add three sets of print() 
functions to the code of crawler 
module to print the processing 
results of Http Request 
Methods, Data Extract Methods 
and Data Process Methods 
respectively in terminal. 

2. Run the crawler program at the 
terminal. 

Expected Result 1. The crawler can send network 
requests normally. 

2. It can show the progress of the 
crawler. 

3. Successfully complete the web 
page crawling and output the 
data in the correct format. 

Pass / Fail Pass 
Table 3: Test case 1 

5.2 Classifier module test 
 

Test Case ID: 2 

Description: To ensure that data preprocessing can successfully convert data to 
the specific format required. 

Test Steps 1. Transform training set 

2. Transform test set 

3. At the same time, traverse the 
transformed training set and test 
set, and compare the coded 
lines to ensure that the coding 
rules are the same. 
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Expected Result 1. The training set and test set 
were successfully converted to 
a specific format 

2. The coding rules of the lines to 
be coded in the training set and 
the test set are consistent. 

Pass / Fail Pass 
Table 4: Test case 2 

Test Case ID: 3 

Description: Ensure that the machine learning training can operate normally. 

Test Steps 1. Train random forest model. 

2. Train Naïve Bayes model. 

3. Train KNN model. 

4. Train SVM model. 

5. Run test set on random forest 
model. 

6. Run test set on Naïve Bayes 
model. 

7. Run test set on KNN model. 

8. Run test set on SVM model. 

Expected Result 1. No error during training. 

2. The test set samples can be 
predicted normally. 

Pass / Fail Pass 
Table 5: Test case 3 

Test Case ID: 4 

Description: To ensure that the evaluation method and the trained classifier 
works properly. 

Test Steps 1. Run precision evaluation on 4 
classifiers. 

2. Run accuracy evaluation on 4 
classifiers. 

3. Run recall evaluation on 4 
classifiers. 

4. Run F1 score evaluation on 4 
classifiers. 

5. Run confusion matrix evaluation 
on 4 classifiers. 

Expected Result 1. The machine learning model 
can run successfully 

2. Precision evaluation, accuracy 
evaluation, recall evaluation, F1 
score evaluation and confusion 
matrix evaluation can run 
normally and generate charts. 

Pass / Fail Pass 
Table 6: Test case 4 
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Test Case ID: 5 

Description: Ensure that the data processing module can match the URL to the 
sample according to the prediction results. 

Test Steps 1. Extract 50 pieces of data from 
the test set, use random forest 
classifier to predict the label, 
and output the results. 

2. Run the data processing 
function to match the prediction 
results with the test data and 
output the results. 

Expected Result 1. The classifier operates 
normally. 

2. The program can successfully 
match the predicted label and 
the URL of the sample. 

Pass / Fail Pass 
Table 7: Test case 5 

5.3 Vulnerability scanning module test 

 

Test Case ID: 6 

Description: To ensure that the vulnerability scanning module can operate 
normally 

Test Steps 1. Run OWASP ZAP 

2. Run vulnerability scanning 
python program. 

Expected Result 1. The program can run normally 
and successfully establish a 
connection with OWASP ZAP. 

2. Scanning and exploiting 
functions can run normally. 

Pass / Fail Pass 
Table 8: Test case 6 

5.4 Integration test 

 

Test Case ID: 7 

Description: In order to verify that each module can cooperate normally, the 
whole program can run normally. 

Test Steps 1. Run the main program. 

Expected Result 1. There is no unexpected error. 

2. The console can print results 
normally. 

Pass / Fail Pass 
Table 9: Test case 7 

5.5 Test result 
 
After unit test and integration test, the results show that the program can run 

normally and complete the planned tasks. In the test, the crawler module can 
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successfully send requests and receive feedback to the web page entered by the 

user. The information extraction function can run normally, traverse the web 

application and extract the relevant information of the web page, and finally convert 

these information into the specified format. The training method in the machine 

learning module can run normally, and can generate a classifier to identify 

malicious web pages by training according to the training set. The evaluation 

function is available. After using the test set to test and evaluate these classifiers, 

it can be found that random forest can accurately predict malicious web pages, and 

its accuracy can reach 98.92%. The vulnerability scanning and verification module 

can also run normally. For several simple web pages used in the test, the scanning 

module has successfully scanned and verified them. 

 

5.6 Comparative analysis 
 

The innovation of this project is to combine malicious web page detection and 

penetration testing based on machine learning. By judging the pages that have 

been maliciously tampered with in the whole web application, we can scan and 

these pages first, so as to quickly find the location of the problem. In this project, 

the comprehensive feature training machine learning model is relatively good for 

the accuracy of malicious website detection, and the precision can reach 99.85%. 

Compared with other similar studies, Aldwairi and Alsalman extracted the features 

in the URL to train the model in their project. The precision of malicious website 

recognition is 87% [35]. In Yan and Xu's research, based on the feature analysis 

of malicious code embedded in the URL, the precision of recognition is about 90% 

[51]. Xuan, Dinh and victor in the research of using URL features to detect 

malicious web pages, the random forest model of 100 decision trees achieved a 

precision of 98.75% [52]. Vinayakumar, Soman and Poornachandran compared 

several deep learning URL detection methods, of which the best precision is 98.88% 

[53]. From the comparison, it can be concluded that the model of this project can 

be better suitable for finding malicious tampered web pages, which can help the 

penetration test become more targeted for finding problems. 
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Chapter 6 

Limitation and future work 

6.1 Limitation 
 

First of all, due to the limited time, the implementation of this project is still relatively 

basic for the application of machine learning in penetration testing, so the goal is 

also more targeted. It mainly focuses on screening the objectives of penetration 

testing by detecting potential malicious code in web pages, The purpose is to help 

web application owners quickly find out the vulnerabilities in the tampered web 

pages, so as to restore the web pages to normal as soon as possible and prevent 

further losses. According to the test results, this work is meaningful. It can 

accurately screen the samples of malicious web pages from the test set. Second, 

due to the limited hardware conditions, the problem of memory overflow was 

encountered in the process of machine learning model training of this project. 

Finally, the way of under sampling was used to randomly screen the samples. 

 

6.2 Future works 
 

In the future work, the following points can be improved on the research of this 

project: 

 

1. Try to use the technology related to deep learning to mine the vulnerabilities of 

web applications. Compared with the traditional machine learning which needs to 

manually extract the features from the training data set, deep learning can extract 

the features by itself, which has stronger learning ability and even surpasses 

human performance in some tasks. 

 

2. Use natural language processing combined with deep learning to synthesize a 

variety of data in the sample, conduct semantic analysis, and detect potential 

vulnerabilities in a way similar to code review. 
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3. In the process of data preprocessing, make more detailed classification of 

samples, such as distinguishing the types of malicious code and vulnerabilities in 

web pages and the threat degree of vulnerabilities. 

 

4. Improve the code structure, reduce the coupling between different modules of 

the program, and make the work of data preprocessing more flexible. 

 

5. Create a crawler to obtain more targeted information for vulnerability mining, 

collect the data of web applications with potential vulnerabilities that have not been 

injected with malicious code or tampered with, and turn the work goal to find 

vulnerabilities before web applications are attacked. 
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Chapter 7 

Conclusion 

This project aims to create a program to quickly judge whether a website may have 

been implanted with malicious code based on machine learning, and then give 

priority to the vulnerability scanning and verification of the tampered web pages 

according to the judgment results, so as to help testers locate vulnerabilities in a 

short time. In order to achieve the above objectives, three main parts are created 

in this program: crawler module, machine learning module and vulnerability 

scanning verification module. First, the main function of the crawler module is to 

collect the necessary information contained in the target web page, and preprocess 

it after the collection, so as to meet the sample format supported by the machine 

learning prediction model. Second, in the machine learning module, firstly, the data 

set containing comprehensive features is used to train and test the four machine 

learning models, and then the data set containing JavaScript code is used to train 

and test the four machine learning models again. Finally, a total of eight classifiers 

are created and their performance is evaluated. Thirdly, the vulnerability scanning 

verification module mainly realizes the function of scanning specific web pages. 

After testing, these three parts can complete the expected tasks well. The main 

result of this study is that the created program can give priority to scanning the web 

pages predicted by the classifier as likely to have been attacked, which can greatly 

shorten the time to find problems and improve the efficiency of penetration testing 

to a certain extent. The second achievement is that after comparison, it is found 

that the random forest classifier trained with the data set containing comprehensive 

features has the best performance for predicting malicious web pages. It performs 

well in the test set with the ratio of positive and negative samples of 1:1, and the 

recognition rate of web pages inserted with malicious code can reach 98.92%. 
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Chapter 8 

Reflection 

This project has improved me in both academic and technical aspects. The whole 

research process is a very meaningful experience for me. There are many valuable 

lessons in the main stages of this research process. In the first stage, that is, the 

stage of investigating and learning the relevant research of the project, I have done 

a lot of investigation on the application of machine learning in the field of network 

security at this stage. By consulting a large number of relevant academic papers, I 

have a deeper understanding of the intersection of these two disciplines and have 

a lot of new ideas for the research of this project. Through the study of these papers, 

I also have a clearer understanding of the general process and standards of 

academic research, which will be a valuable asset on my academic road in the 

future. The second stage is to analyze my project objectives and seek technical 

methods to meet the target requirements. This stage is a great challenge for me, 

and it also gives me a lot of very useful research experience. Because my previous 

work did not involve machine learning related experience, and my understanding 

of penetration testing is relatively limited, how to combine these two unfamiliar 

fields is a difficult but worthwhile task. Because of my limited understanding of 

machine learning in the early stage, I tried some inaccurate or unrealistic directions 

when looking for solutions. For example, I excessively pursue the use of 

reinforcement learning related solutions, but it is unrealistic for my current 

knowledge reserve to use it in my project in a limited time. At this stage, the 

summary and guidance on my project objectives offered by my supervisor made 

me gradually find the right direction. Finally, I chose the traditional machine 

learning scheme to be applied to this project, and made some attempts in common 

methods, such as using sample features different from which are used in related 

research to train the machine learning model. In addition, in the process of 

exploring the scheme, I also learned various performance evaluation methods for 

machine learning. The third stage, that is, the stage of project implementation and 

testing, is relatively smooth at this stage because I have been engaged in software 

development before. During this stage, I have learned a lot of academic and 

technical experience and lessons. For example, in terms of learning, I have learned 
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relevant methods of data preprocessing, such as data cleaning, unbalanced 

sample processing, etc; Methods and basic processes related to machine learning 

model training and performance evaluation, such as cross validation of machine 

learning model to obtain the model parameter value with the best performance; In 

terms of technology, I have gained some experience in error and debugging in the 

process of development and testing, which is very valuable for future learning and 

research. In addition, another attempt I think is more useful is that I added process 

visualization code to the model training program, because the training time of 

machine learning model is sometimes long. By visualizing the process,  the step of 

the program can be intuitively shown, so as to know whether it is running normally 

or crashing. The last stage is the writing stage of the thesis. At this stage, I learned 

the lesson that the problems and achievements arising from the research process 

should be recorded in time, which will facilitate the sorting work in the future. 

Because I did not save the results in the process of implementation, I had to run 

the program again and record their results, which took a lot of time. The above are 

my reflections on the project. By summarizing the experience of the project, I have 

deepened my understanding of the project, clarified my strengths and weaknesses, 

and stimulated my enthusiasm for academic research. I will make full use of these 

favorable experiences and correct my shortcomings, Invest in the research on the 

cross field of machine learning and network security with a more professional 

attitude. 
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