

Real-time Football Statistics Provider and Machine
Learning Algorithm to Predict Future Premier

League Matches

Ryan Vaughan

September 2023

MSc Computing

School of Computer Science and Informatics

Cardiff University

Supervisor: Dr. Oktay Karakus

GitHub: https://github.com/RyanOliverV/VornMetrics

https://github.com/RyanOliverV/VornMetrics

1. Introduction .. 5

2. Aims and Objectives .. 6

3. Background Material ... 7

3.1 The Evolution of Football Statistics Platforms .. 7

3.2 Predictive Modelling in Sports ... 7

3.3 User Experience and Design in Sports Platforms .. 8

3.4 Limitations and Uniqueness of the Current Project ... 10

4. Problem Statement ... 11

5. Approach ... 13

5.1 Framework Evaluation ... 13

5.2 API Source Evaluation ... 16

5.3 User Interface Design ... 16

5.4 Web Scraping Historical Matches .. 17

5.5 Predictive Algorithm Development .. 18

6. Implementation .. 19

6.1 Setting up the Back end. ... 19

6.2 Setting up the Front end. .. 19

6.3 Front end and Back end Integration ... 21

6.4 API Integration ... 22

6.5 Web Scraping Football Match Data ... 23

6.6 Developing the Machine Learning Model ... 24

6.7 Integrating the Machine Learning Model into the Website .. 25

7. Analysis ... 27

8. Conclusion .. 28

9. Reflection .. 29

References ... 30

Appendices .. 31

Abstract
This project aimed to develop a comprehensive football statistics platform that offers a blend
of historical and real-time data while utilizing machine learning to predict future match
outcomes. The project was guided by five key objectives: designing a user-friendly interface,
curating accurate and comprehensive data, implementing real-time match updates,
researching, and employing machine learning algorithms, and evaluating the predictive
performance of the chosen algorithm. Employing a technology stack that includes Django for
the back end and React for the front end, the project successfully meets and in some respects
surpasses its objectives.

The platform's interface offers an intuitive user experience, meeting the first objective. It also
successfully curates and integrates reliable football data, fulfilling the second objective. Real-
time updates add a layer of dynamism, satisfying the third objective. A Random Forest
Classifier algorithm was employed for its versatility, fulfilling the fourth and fifth objectives
by demonstrating predictive capabilities statistically superior to random guessing.

However, the project also identifies areas for improvement, including the need for refining
the predictive accuracy of the machine learning model, addressing scalability issues of the
back end architecture, and mitigating latency issues for certain API-sourced data. These
limitations notwithstanding, the project contributes significantly to the field of sports
analytics by demonstrating the integration of traditional statistical methods with machine
learning for predictive analysis in football. It also has practical implications, offering a
versatile platform for various stakeholders such as fans, analysts, sports betting firms, and
football clubs.

Acknowledgements

I'd like to thank Dr. Oktay Karakus, my supervisor, for guiding me throughout this project,
especially with his guidance in creating a clear roadmap for the development of the website
and machine learning algorithm to ensure I was able to complete every aspect.

I am deeply thankful to all the professors and lecturers I had the privilege to learn from this
year. Their insightful teachings enriched my understanding and equipped me with knowledge
that went beyond the confines of textbooks.

My peers—friends and classmates—deserve a special mention. Their technical insights and
shared experiences played a pivotal role in shaping my time at Cardiff University.

1. Introduction

In the contemporary landscape of sports and data-driven decision-making, the world of
football has undergone a remarkable transformation. With the advent of technology and the
explosion of data availability, enthusiasts, analysts, and professionals have been presented
with an unprecedented opportunity to unravel the hidden patterns within the beautiful game.
This dissertation unveils the journey undertaken to construct a comprehensive football
statistics website, which not only delivers historical and real-time insights to users but also
employs cutting-edge machine learning algorithms to forecast the outcomes of future
matches.

Football is not merely a sport but a cultural phenomenon that invokes emotions, camaraderie,
and heated discussions. Supporters invest their time, emotions, and energy into following
their favourite teams and players. However, basic scores and highlights no longer satiate their
curiosity in a world driven by instant gratification and a thirst for deeper insights. The
motivation to build this platform arises from the aspiration to elevate fan engagement –
empowering enthusiasts with the tools to explore the sport's historical nuances and live
developments, enhancing their understanding and emotional connection.

This project's scope extends beyond mere aggregation of historical and real-time football
statistics. It aims to construct a user-friendly website that acts as a hub for enthusiasts seeking
both retrospective analyses and future projections of football matches. By offering
comprehensive statistics and insights, the website will cater to fans, analysts, and
stakeholders eager to delve deeper into the intricate dynamics of the sport. The centrepiece of
this project, however, is developing and implementing a machine learning algorithm that
harnesses the power of predictive modelling to forecast match outcomes.

The significance of this endeavour is twofold. First, it responds to the growing demand for
accurate and data-driven insights within the football community. The availability of real-time
data, coupled with machine learning capabilities, empowers users to make informed decisions
regarding their favourite teams, players, and upcoming matches. Second, this project
contributes to the evolving field of sports analytics by showcasing how technology, data, and
advanced algorithms can collaborate to refine the art of predicting football outcomes.

In the following sections of this dissertation, we will delve into the technical details of the
website's construction, data acquisition and processing, the architecture of the predictive
machine learning algorithm, and the validation of its predictions against real-world outcomes.
By the conclusion of this dissertation, it is anticipated that readers will gain a comprehensive
understanding of the intricacies involved in creating a football statistics platform and the
potential of machine learning to enhance match predictions.

2. Aims and Objectives

This project aims to develop a comprehensive football statistics website that offers historical
and real-time insights to users while incorporating a machine learning algorithm to predict
future match outcomes.

The following objectives are identified:

1. Design and implement a user-friendly website that provides a seamless and intuitive
interface for users to access a wide range of historical and real-time football statistics.

2. Curate and integrate a vast array of football data from accurate sources, ensuring accuracy,
consistency, and relevance. This includes match results, player statistics, team performance
metrics, and contextual data.

3. Implement mechanisms to fetch and display real-time match updates, enabling users to
stay connected with ongoing games and events as they unfold.

4. Research and employ machine learning techniques to create a predictive algorithm capable
of forecasting future match outcomes based solely on historical data. This involves feature
engineering, model selection, and training.

5. Evaluate the accuracy and reliability of the machine learning algorithm's match
predictions by assessing its performance on historical matches with known outcomes.

3. Background Material
In an era characterized by information and technology, the synergy between sports and data
has catalysed the emergence of innovative solutions that augment fan experiences, enhance
performance analysis, and even foresee game outcomes. This chapter delves into the existing
corpus of literature, commercial products, and research endeavours that contextualize the
present project within the sphere of football data analytics and predictive modelling. Through
a critical evaluation of existing work, this chapter seeks to underscore the necessity for a
platform that amalgamates historical and real-time football statistics, while spotlighting the
unique contributions and methodologies that this project brings to the forefront.

3.1 The Evolution of Football Statistics Platforms

Over the past decade, the convergence of sports and data has spearheaded a remarkable
transformation in football analysis. Advanced tracking technologies and data collection
methodologies have unfurled a realm of insights that was previously inaccessible. At the
vanguard of this revolution are commercial platforms like FBref and LiveScore, which have
revolutionized how football enthusiasts and analysts engage with the sport. These platforms
adeptly intertwine historical and real-time football statistics, delivering intricate
visualisations, player metrics, and match insights tailored to an increasingly data-savvy
audience.

For example, FBref has positioned itself as an industry leader by offering a comprehensive
database of football metrics, encompassing everything from player movements and passes to
shots on goal and defensive tactics. Platforms of this calibre enable users to dissect matches
with unprecedented granularity, highlighting player contributions, tactical nuances, and
game-changing moments. Similarly, LiveScore remains committed to providing up-to-the-
minute match updates, allowing fans to keep pace with unfolding events.

Despite these commendable advancements, a fundamental gap endures – the seamless
integration of historical and real-time data. While individual platforms excel in conferring
distinct insights, the holistic narrative of football's evolution often remains fragmented.
Enthusiasts find themselves toggling between historical datasets and real-time updates, which
undermines their grasp of the continuous thread that weaves through the sport's journey.

This project emerges as a response to this critical gap, aspiring to bridge the chasm between
historical and real-time football statistics. By constructing a unified platform that seamlessly
amalgamates these dimensions, the project envisions a dynamic arena where fans can traverse
the past and present of the game hand in hand. This approach fosters a more comprehensive
comprehension of football's evolution, enabling users to trace the trajectory of players and
teams while remaining attuned to the unfolding drama of ongoing matches.

3.2 Predictive Modelling in Sports

Predictive modelling has emerged as a riveting avenue within sports analytics, tantalizingly
promising the foresight of game outcomes before they unfold. In the realm of sports, football
takes centre stage as one of the most popular and statistically enriched disciplines, making it a
fertile ground for such endeavours. Research has notably showcased the potential of machine
learning algorithms in prognosticating football match results.

For instance, the study titled "The Effect of Weather on Football Results: An Approach Using
Machine Learning Techniques" (Iskandaryan et al., 2020) stands as a significant exploration
into predicting football match outcomes through the prism of machine learning. This study
harnessed advanced techniques like Support Vector Machines, Random Forests, Extra-Trees,
and k-Nearest Neighbours, complemented by an extensive array of features. These features
extended beyond conventional team performance metrics to encompass intricate weather
conditions, aimed at untangling the intricate fabric of football dynamics. The findings
underscored the substantial influence of weather conditions on match outcomes. The
interplay of diverse weather variables such as temperature, humidity, wind speed, and
precipitation emerged as pivotal determinants, intricately interwoven with team performance
factors. This intricate interplay showcased the algorithms' prowess in furnishing notably
accurate predictions by meticulously considering a myriad of factors.

Similarly, the research documented in "Forecasting Football Results, and the Efficiency of
Fixed-odds Betting" (Goddard & Asimakopoulos, 2004) delved into the efficacy of
bookmakers' odds as predictors of match outcomes. Leveraging bookmaker odds as a
repository of underlying probabilities, the authors sought to evaluate the accuracy of these
odds compared to advanced machine-learning models. The study transcended the surface by
integrating factors such as odds fluctuations and inferred team capabilities, thereby enriching
the comprehension of the intricate dynamics underpinning predictions. The findings
demonstrated that while bookmakers' odds wielded predictive power, the introduced
machine-learning models exhibited comparable forecasting performance. Interestingly, the
study's regression-based tests highlighted the machine-learning models' capacity to capture
information about match outcomes beyond the purview of bookmakers' odds, suggesting
potential inefficiencies in the odds.

However, a notable commonality threads through these research papers – the incorporation of
external factors, ranging from player injuries to team dynamics and betting odds. While these
factors undeniably influence match outcomes, they also convolute the extraction of pure
historical patterns. In contrast, this project adheres to a more focused trajectory by
exclusively leveraging historical data. This approach aims to decipher the intrinsic rhythms
and trends nestled within football's past, unveiling the essence of the sport's evolution. The
study titled "Predicting Football Scores Using Machine Learning Techniques" (Hucaljuk &
Rakipović, 2011) discovered that basic feature sets, equipped with fewer variables, often
yielded superior prediction results compared to the more intricate feature sets meticulously
constructed by field experts.

In essence, the predictive modelling landscape in football boasts richness and diversity,
spotlighting the latent potential of machine learning in prophesying match outcomes.
Nonetheless, the inclusion of external factors in prior studies introduces complexities that
blur the line between historical patterns and contemporary influences. This project sets itself
apart by embracing the challenge of exclusively employing historical data, thereby presenting
a unique perspective on the innate dynamics that mould football outcomes.

3.3 User Experience and Design in Sports Platforms

The digital landscape has dramatically altered the way fans engage with sports. Beyond
simply providing data and statistics, the design and user experience of a sports analytics

platform can profoundly impact its effectiveness and popularity. A successful platform must
cater to a wide range of users, from casual fans to hardcore enthusiasts and professionals. The
literature in this area spans from usability studies to the psychology of user engagement, all
converging on several key factors that constitute a successful user experience.

According to a study by Orlova in 2016, effective usability is a cornerstone for any successful
digital platform. Usability focuses on making the user's interaction as simple and efficient as
possible. Good usability involves a logical flow of actions or information, termed as 'user
flow,' that users must follow to achieve their goals. It also highlights the importance of
'cognitive load,' or the amount of mental processing power needed to use the platform. Lower
cognitive load and more straightforward user flows can enhance user satisfaction and
engagement.

Moreover, an intuitive layout, underpinned by robust information architecture, enhances
usability and user experience. Existing literature supports this claim, emphasizing that layout
is a key element affecting not just usability but also users' emotional response to the website.
A well-designed layout contributes significantly to website navigability and the ability to
meet user expectations (Kincl & Štrach, 2012). Navigational aids such as tabs, sidebars, and
dropdown menus are highlighted as crucial components for effective website design.
According to research, navigation is a key factor that enables better recall of website structure
and enhances content accessibility. Such aids can help users effortlessly traverse various
types of data, from player statistics to upcoming fixtures (Sutcliffe, 2002).

Visual appeal is another important factor. According to literature in the field of human-
computer interaction, the aesthetic quality of a website can significantly impact user trust and
engagement (Orlova, 2016). Visual elements like typography and fonts can set the mood,
while readability is influenced by factors such as font size and contrast. Colour choices can
have psychological and cultural impacts, affecting how users engage with the platform.
Various colour harmony schemes are suggested for creating balanced and visually appealing
compositions. Furthermore, there is evidence that home pages with low visual complexity are
more pleasurable and make it easier for users to find the information they need. Not only are
simple designs more favourable to users but they are also better remembered (recognized)
than more complex ones (Tuch et al., 2009).

User retention is highly sensitive to a web platform's performance, with particular sensitivity
to issues like slow loading times and unresponsive interface elements. Such issues can
quickly lead to a spike in user attrition, underscoring the imperative to optimize for both
speed and responsiveness. Existing literature firmly establishes a direct correlation between
fast load times and higher levels of user engagement. This relationship is shown in a study by
Gehrke & Turban (1999), which identified slow website speed as the most prevalent
complaint among web users. The research suggests that users are generally unwilling to
endure lengthy page-load times and are likely to seek alternatives, thereby contributing to
decreased retention rates.

By considering these elements, derived from a wealth of studies and literature on UX design,
this project aims to construct a platform that offers not just in-depth analytics and predictive
modelling, but also an engaging and user-friendly experience.

3.4 Limitations and Uniqueness of the Current Project
While existing platforms and research endeavours have propelled significant advancements in
football data analytics and predictive modelling, a series of limitations persist. The absence of
seamless integration between historical and real-time data obstructs enthusiasts from grasping
the holistic narrative of the sport's evolution. Moreover, the integration of external factors
into predictive models poses challenges in discerning genuine historical trends. This project,
however, confronts these limitations by furnishing a unified platform and a predictive
algorithm anchored solely in historical data.

4. Problem Statement
The purpose of this chapter is to provide a comprehensive description of the problem
addressed in this study. This section will discuss the background and context of this problem,
emphasizing its complexities and challenges. The chapter also aims to outline the expected
benefits arising from this study.

From professional leagues to international championships, the sport commands attention
from fans and various stakeholders. Over the past decade, the role of data-driven decision-
making in football has substantially increased. Various platforms offer different slices of this
data pie, but none provide a complete picture. FBref excels in offering detailed historical
data, which helps analysts, coaches, and players themselves understand past performances
and trends. On the other hand, LiveScore provides real-time updates during matches,
allowing fans to stay updated with the latest developments in the games they care about.

However, the crux of the problem is the absence of a one-stop platform that combines both
historical and real-time data while also offering predictive insights. Users often have to hop
between platforms like FBref for historical data and LiveScore for real-time updates, which
makes it difficult to get a holistic view. Moreover, while FBref's historical data is rich and
extensive, it doesn't provide predictive analytics for future matches based on this data. On the
flip side, real-time updates from LiveScore, though invaluable for current match status, offer
little to fans and analysts looking to draw long-term insights or predictions.

The lack of a unified platform creates a fragmented user experience and constrains the depth
of analysis and engagement for fans, players, and other stakeholders. This fragmentation
represents a significant gap, especially in an era where data analytics could offer
transformational insights into the sport.

By addressing this gap, the project aims to create a unified, comprehensive platform for
football analytics that combines historical data, real-time updates, and predictive analytics.
This ambitious endeavour will attempt to overcome the complexities and challenges posed by
data diversity, real-time processing, predictive accuracy, and user experience design.

Through this comprehensive approach, we aim to transform how fans, analysts, and
stakeholders engage with football, ultimately enriching their experience and understanding of
the sport.

Complexities and Challenges

• Real-Time Processing

- The real-time nature of this project demands an architecture capable of processing
large volumes of data instantaneously, adding a layer of complexity to the project.

• Predictive Analytics

- Building predictive models based on historical data adds another level of complexity.
This involves not just statistical modelling but also machine learning algorithms that
can adapt.

• User Experience

- The platform must cater to a wide audience, from casual fans to professional analysts.
Designing an interface that is both user-friendly and feature-rich is a significant
challenge.

• Legal and Ethical Considerations

- Navigating data privacy laws and securing licensing agreements for data usage are
crucial and complex tasks that must be addressed.

Expected Benefits
• Comprehensive Understanding

- A unified platform would offer a more in-depth understanding of the sport, bridging
the gap between different data types and offering a 360-degree view of events,
players, and strategies.

• Time Efficiency

- This platform would streamline the data gathering and analysis process, saving
precious time for analysts and fans.

• Data-Driven Decisions
- Teams and coaches could make more informed decisions, offering a competitive edge

in a game where fine margins often determine outcomes.
• Enhanced Fan Engagement
- Fans would have a new avenue for engagement, complete with deeper analytics and

real-time data, enriching their experience.
• Business Opportunities

- Creating such a unified platform opens the door for numerous commercial
opportunities, from analytics as a service to innovative fan engagement solutions.

5. Approach

The central aim of this dissertation is to develop a comprehensive football statistics platform.
This platform seeks to provide a unified solution, integrating historical, real-time, and
predictive football data. Due to the complex nature of the project, including data diversity,
real-time processing, and predictive analytics, a multifaceted approach was necessary.

Given the complexities outlined in the problem statement, the initial step was a meticulous
evaluation of various frameworks and technologies to support the back end, front end, and
data sources.

Chosen Approach

The methodology we eventually adopted encompasses the following key stages:

• Framework Evaluation: A comparative analysis of several back end and front end
frameworks was performed, considering aspects such as scalability, ease of
integration, and community support. After this rigorous evaluation, Django was
chosen for the back end, and React was selected for the front end.

• API Source Evaluation: Multiple API providers, including Sports Monks, API-
Football, and FootyStats API were scrutinized based on the richness of their data,
latency, and reliability. Sports Monks emerged as the most comprehensive choice for
both historical and real-time data.

• User Interface Design: With React’s component-based architecture, a user-friendly
and intuitive interface will be developed to provide an optimized user experience.

• Web Scraping Historical Matches: Techniques were used to gather a dataset
specifically for developing the machine learning model. This dataset is essential for
training and validating the predictive algorithms for future match outcomes.

• Predictive Algorithm Development: Machine learning techniques will be researched
and employed to develop a predictive model for future match outcomes based on
historical data.

5.1 Framework Evaluation

Three strong contenders for the back end framework were considered: Node.js, Flask, and
Django. Each option had its merits:

• Node.js: Given my familiarity with JavaScript, Node.js was an initial strong
contender. It excels in handling real-time data efficiently and is known for its fast
performance.

• Flask: This Python framework offers simplicity and greater control over low-level
details but lacks some of the built-in features that Django provides.

• Django: This robust Python framework comes with built-in support for serializers, is
useful for data standardization, and offers a plethora of features out-of-the-box.

The choice of Django as the back end framework for this project was a carefully considered
decision, dictated by multiple variables that align with the project's long-term objectives and
technical requirements. One of the most pivotal considerations was the project's future
requirement to integrate machine learning algorithms for predicting football match outcomes.
Python stands as an industry standard for machine learning tasks, known for its robust

libraries and frameworks specifically tailored for data analytics and machine learning
applications. By selecting Django, which is also Python-based, the project could capitalize on
the advantages of employing a single programming language across different aspects of
development. This presents an invaluable opportunity for seamless integration and code
reusability, as well as simplifying the overall software architecture.

When compared to other candidate frameworks, Django emerged as the most suitable option
for several reasons. Flask, another Python-based framework, was considered. However, Flask
is often seen as a micro-framework that comes with "batteries not included," meaning many
essential functionalities such as an admin panel, authentication, and others would need to be
implemented manually or via third-party libraries. While Flask offers more flexibility, it
would also have potentially increased the development time for features that come pre-built
in Django.

Node JS, a JavaScript runtime environment, was another viable alternative, especially
considering its asynchronous architecture and efficient handling of I/O-bound operations.
However, it would require switching between JavaScript for the back end and Python for
machine learning tasks. This context-switching between two languages could introduce
unnecessary complexity and potential friction in an already ambitious project. Additionally,
using Node would negate the benefits of employing a singular language environment for all
computational tasks related to the project.

An especially salient point in favour of Django is its REST Framework (DRF), which has
been instrumental in addressing the complexities of data standardization. DRF's Serializers
provide a highly effective means to transform complex data types, such as query sets and
model instances, into native Python data types. These can then be rendered into JSON, XML,
or other content formats. This feature simplifies the challenges associated with maintaining
data integrity and consistency, particularly when integrating diverse data sets from different
APIs, like real-time and historical football statistics. By leveraging the capabilities of
Django's Serializers, the project can achieve a level of data standardization that is crucial for
accurate and reliable analytics and predictions.

Moreover, Django's robust built-in features, such as an admin panel, Object-Relational
Mapping (ORM), and a wide array of built-in libraries, provided a robust starting point for
rapid development. Its established track record for scalability and security also inspired
confidence in its ability to support the project's ambitions to scale and handle a variety of
data-related challenges effectively.

In summary, Django's Python-based architecture, comprehensive built-in features, proven
scalability, security metrics and the invaluable data standardization capabilities offered by its
REST Framework made it the optimal choice for the back end framework, especially when
considering the project's future requirements for machine learning integration.

For the front end, three frameworks were initially considered: Angular, Vue.js, and React.
The selection criteria focused on ease of use, community support, scalability, and
compatibility with the back end.

• Angular: A comprehensive framework backed by Google, Angular offers two-way
data binding and has a mature ecosystem. However, it has a steeper learning curve
and can be seen as overly complex for some projects.

• Vue.js: Known for its simplicity and flexibility, Vue.js is easier to integrate with
projects using other technologies. However, it lacks some of the robust community
and corporate support that Angular and React enjoy.

• React: Developed by Facebook, React offers a virtual DOM, strong community
support, and a component-based architecture that promotes the reusability of code.

The selection of React as the front end framework for this project was influenced by a
confluence of factors, each contributing to the overarching goal of creating an efficient,
scalable, and user-friendly platform. One of the most compelling features of React is its
component-based architecture. This design philosophy facilitates code reusability, thereby
significantly reducing the time and effort required for the development of future features and
updates. It offers a modular approach to user interface design, making the codebase easier to
manage and extend.

Furthermore, the comprehensive community support surrounding React cannot be overstated.
A robust ecosystem of third-party libraries and exhaustive documentation is readily available,
providing invaluable resources that accelerate the development process. This is especially
crucial for a project of this scale, as it allows for the quick integration of additional
functionalities and troubleshooting solutions.

In terms of compatibility, React was found to be remarkably well-suited for integration with
the Django REST Framework, which was chosen for the back end. The JSON-based data
structures returned by Django could be seamlessly manipulated and displayed using React,
simplifying the complexities associated with data fetching and state management on the front
end. This harmonious interplay between the front end and back end technologies ensures
smooth data flow and augments the overall user experience.

Moreover, React's nature as a Single Page Application (SPA) framework offers a distinct
advantage, particularly well-suited to this project. SPAs load a single HTML page and
dynamically update content as the user interacts with the app, thereby offering a smoother
user experience with quicker load times and transitions. This is crucial for a platform that
aims to offer real-time data updates, as SPAs can handle large amounts of asynchronous data
fetching without requiring a full page reload. This capability aligns impeccably with the
project’s objectives of providing real-time match updates and predictive analytics, delivering
a seamless and engaging user experience.

Lastly, scalability was a key consideration, given the project's ambition to grow in both
features and user base over time. React's performance metrics, particularly its efficient
handling of complex states and dynamic content, made it an ideal choice. It has the capability
to scale smoothly, ensuring the platform remains agile and responsive even as it evolves to
meet the needs of an expanding audience.

5.2 API Source Evaluation

In the pursuit of constructing a unified platform capable of providing both historical and real-
time football statistics, one of the first and foremost tasks was to evaluate potential API
sources for data acquisition. This task was pivotal, as the quality, richness, and reliability of
data would fundamentally shape the capabilities and effectiveness of the entire platform.
Several API providers were put under scrutiny, including Sports Monks, API-Football, and
FootyStats API.

Each of these APIs was evaluated based on a set of critical criteria. The richness of the data
offered was among the first aspects to be considered. The selected API needed to provide not
just basic statistics like match outcomes and player metrics, but also delve into data such as
player positions, attacking and defensive phases, and real-time, up-to-date scheduling
information. Additionally, latency was another major concern, especially for real-time match
updates. A lag in data updates could compromise the user experience, making the platform
less appealing for those seeking live match data. Finally, the reliability of each API—its
uptime, rate limits, and historical data accuracy—was rigorously tested.

After conducting testing various APIs within the Django API Views environment, Sports
Monks emerged as the most well-suited API for this project. Not only did it offer a diverse
and extensive range of both historical and real-time data, but it also met the requisite latency
standards for real-time data acquisition. The platform could therefore offer a full spectrum of
insights from pre-match analyses to live match updates and post-match statistics. The latency
in Sports Monks' real-time data updates was within acceptable limits, making it a robust
solution for real-time data acquisition. Moreover, Sports Monks proved to be highly reliable
in terms of data accuracy and availability, an essential attribute for a project of this magnitude
where the integrity of data is of utmost importance.

A notable advantage of Sports Monks was its comprehensive documentation and guides,
which facilitated a more streamlined integration process. This was especially beneficial in
accelerating the project's development cycle, as it allowed for a better understanding of the
API's capabilities and how best to harness them for the platform's objectives.

Selecting Sports Monks as the API source provided a strong foundation upon which the rest
of the platform’s functionalities could be reliably built. The richness of the data offered could
directly contribute to the machine learning algorithms employed for predictive analytics,
while its low-latency real-time data capabilities could ensure a responsive and engaging user
experience. Therefore, the careful evaluation and eventual selection of Sports Monks as the
API source were instrumental steps in aligning the project with its overarching aims and
objectives.

5.3 User Interface Design

The approach to UI design commenced with a comprehensive comparative analysis of
existing platforms in the same domain. The objective was to assess the user interface,
functionality, and overall user experience offered by similar services. Rather than using
traditional methods like user surveys or interviews, this evaluation acted as a proxy for
understanding user expectations and industry standards. It allowed me to identify both

strengths and weaknesses in competitor platforms, informing the design decisions for my
platform.

The comparative analysis revealed a notable trend across existing platforms: a tendency
toward complexity and information density, which often compromised readability and
intuitive navigation. Such platforms appeared to prioritize data breadth over user-focused
design, thereby leading to a cluttered user interface that could potentially overwhelm or
alienate users.

Contrastingly, insights from previous personal experiences with gaming statistics dashboards
like Leetify demonstrated a different design approach. These dashboards were built with user-
centric design principles, offering a streamlined and intuitive experience. The design
philosophy behind such dashboards emphasizes the essentials, using a simple, clean layout to
present data in an easily digestible format. These experiences informed the decision to adopt
a similar, simplified dashboard aesthetic for the platform.

The decision to implement a simplified dashboard was, therefore, a deliberate attempt to
amalgamate the best of both worlds: the comprehensive data analytics capabilities observed
in competitor platforms and the user-focused design evident in gaming statistics dashboards.
The goal was to present complex and multifaceted data in an organized, intuitive manner that
a wide array of users could understand and navigate with ease.

This user-centric design choice aimed to place a premium on user experience, recognizing
that the most sophisticated data analytics tools would be rendered ineffectual if users found
the interface confusing or burdensome. Therefore, simplicity and ease of use became central
tenets of the design approach, guiding the selection of elements and their placement on the
dashboard.

By combining the insights garnered from the comparative analysis of similar football statistic
platforms and personal experiences with more user-friendly dashboards, a tailored approach
to UI design was formulated. This approach aspired to deliver a balanced, effective, and user-
friendly interface that would distinguish the platform in a crowded marketplace.

5.4 Web Scraping Historical Matches

The initial step in web scraping for historical matches was to identify the specific data
requirements that would be instrumental in training and validating the machine learning
model. Parameters like match outcomes, shooting statistics, venue, and other game-specific
variables were considered vital. Identifying these data points served as a guideline for what to
focus on during the web scraping process.

Before beginning the actual scraping, suitable websites with reliable historical match data
were identified. Ethical guidelines and legal constraints, such as compliance with the
website’s terms of use and robots.txt files, were carefully reviewed. The goal was to ensure
that the web scraping was conducted responsibly and ethically. The decision to use FBref as
the source for scraping historical matches was informed by multiple compelling factors.
Firstly, FBref sources its data from Opta, a well-regarded sports analytics company that
utilizes a combination of human annotation, computer vision, and AI modelling to collect

real-time sports statistics. This ensures a high degree of accuracy and reliability in the data,
which is essential given its intended use for machine learning applications.

5.5 Predictive Algorithm Development
The overarching goal of the predictive algorithm is to enable accurate football match
predictions based on historical data. Given the centrality of this feature to the platform,
setting rigorous accuracy metrics as initial benchmarks is critical. These metrics will be used
later to evaluate the effectiveness of the algorithm.

In anticipation of the data cleaning needs, the approach includes specific steps for handling
missing values, removing outliers, and dealing with any potential class imbalance.
Furthermore, feature selection, data normalization, and dataset partitioning into training,
validation, and testing sets are planned to create a dataset optimized for machine learning.

Instead of testing multiple algorithms, an in-depth research approach will be taken to
determine the most suitable algorithm for predicting match outcomes. Initial candidates—
Logistic Regression, Random Forest, and Support Vector Machines (SVM)—will be
researched in terms of their historical success in similar applications, computational
efficiency, and compatibility with the type and scale of data used in this project. Based on this
research, a Random Forest Classifier has been identified as the most fitting choice.

Once the algorithm is selected based on research, the next phase is to align its performance
with predefined accuracy benchmarks. Hyperparameter tuning is planned for this stage to
optimize the algorithm's performance, with the tuning methodology being informed by the
research conducted and the unique characteristics of the chosen model.

The model's efficacy will be assessed by running it on previous data, to gauge its
generalizability and robustness. By meticulously planning each of these stages—from initial
objectives and data handling to algorithm selection based on research and subsequent
validation—this approach aims to create a comprehensive and systematic roadmap for
developing a predictive algorithm that aligns closely with the project's objectives and long-
term vision.

6. Implementation

6.1 Setting up the Back end.
The first critical step in the implementation phase was establishing a robust development
environment. A Python virtual environment was created using Python's built-in venv module.
The rationale behind this was to isolate the project dependencies, ensuring that there would
be no conflicts with global Python packages. This level of isolation is crucial for the long-
term maintainability and scalability of the project, making it easy to replicate the environment
elsewhere. I learnt this in the Fundamentals of Programming module as we were being taught
about programming languages and frameworks. After creating the environment with ‘python3
-m venv venv’, it was activated, and its functionality was validated by confirming the absence
of extraneous packages through the pip freeze command.

To further support the development process, Git was employed for version control. This
would enable better tracking of changes and facilitate rollback in case of issues. A Git
repository was initialized in the root directory of the project, providing a layer of version
control right from the outset.

After activating the Python virtual environment, Django was installed via pip, the Python
package manager. Following installation, a new Django project was initiated using the
Django-admin startproject command. The Django development server was then run to ensure
that the project setup was successful. The default Django welcome page served as a
validation point, confirming the project had been set up correctly.

Contrary to traditional setups that might involve various models and database structures, this
project did not require such components because the data was to be consumed from an
external API. Instead, a new Django app named api was created to focus on data serialization
and API endpoint creation. This modular approach allowed for a separation of concerns,
making it easier to manage the application's various aspects. Furthermore, the name aligns
well with the RESTful approach being employed, as it suggests that the app serves as an API
layer.

The Django REST Framework (DRF) was integrated by installing it via pip with pip install
djangorestframework. The api app and Django rest framework were then added to the
INSTALLED_APPS list in Django’s settings.py. With DRF in place, serializers were
developed to translate data coming from the external API into a format suitable for front end
consumption. These serializers acted as the middleware that translated the API data into
JSON objects, facilitating easy data consumption by the front end.

6.2 Setting up the Front end.
Following the back end setup, my attention was geared towards implementing the front end,
where React was chosen as the ideal library for building the user interface. To host the front
end, a new application, aptly named 'front end', was initiated within the Django framework.
The very first step was to install Node.js and npm, serving as the runtime environment and
package manager for JavaScript, respectively. Rather than using the typical create-react-app
scaffold, I opted for a more tailored approach, executing the npm install react react-dom
command to specifically install React and ReactDOM for this project.

 To enforce a modular and maintainable architecture, an organized directory structure was
meticulously designed. Specifically, designated folders were established for React
components; the folder ‘./front end/src/components’ was dedicated to housing React
components, serving as the building blocks of the user interface, while ‘./front end/src/static’
was utilized for storing assets like images and stylesheets. This organizational approach
adheres to best practices and enhances codebase maintainability, a crucial consideration in
both academic and organizational settings.

Webpack was the next critical tool integrated into the project, serving as the module bundler.
It amalgamates various assets, such as JavaScript, CSS, and image files, into bundled output
files that can be easily served to the browser. Crucially, Webpack also supports features like
code splitting, tree shaking, and asset management, which are indispensable for performance
optimization.

One of the distinctive features of the implementation was the usage of a single
webpack.config.js file for both development and production environments. Although only
one configuration file was used, distinct build processes were facilitated through npm scripts
defined in the package.json file.

By leveraging these scripts, I was able to initiate different build processes using the same
Webpack configuration. The --mode development flag facilitated a build tailored for
development activities like debugging, while the --mode production flag triggered
optimizations such as code minification to improve performance in the production
environment.

Then, Babel was set up and configured. Serving as a specialized JavaScript compiler, Babel's
functionalities were particularly instrumental in fulfilling two key objectives. Firstly, it
facilitated the transpilation of modern JavaScript (ES6 and later versions) into syntax that is
readily interpretable by a broader spectrum of web browsers. Secondly, it was responsible for
converting JSX—React's syntactic extension—into pure JavaScript, making it suitable for
browser execution.

The configuration for Babel was systematically articulated within a babel.config.json file,
allowing for centralized management and easy adjustments. Critical to the success of this
endeavour was the strategic utilization of specific Babel presets: namely, @babel/preset-env
and @babel/preset-react. By integrating these presets into the Babel configuration, the project
was endowed with a dynamic mechanism that automatically transpiled the avant-garde
JavaScript and JSX syntax into a form that boasted expansive browser compatibility.

After the setup of Webpack and Babel, the front end was further enhanced by integrating
Material-UI, a popular React UI framework grounded in Google's Material Design principles.
This choice was influenced by multiple factors that resonate well within both academic and
organizational contexts. First and foremost, Material-UI streamlines the development process
by providing a comprehensive suite of pre-styled components such as buttons, dialogue
boxes, and more. This not only accelerates the developmental timeline but also ensures that
no compromises are made on the aesthetic or functional aspects of the application.

Secondly, the consistency and coherence that Material-UI offers are invaluable. Its uniform
design principles and guidelines ensure that the user experience remains unified across
different sections and functionalities of the application. This harmonizes with the ethos of
creating intuitive and user-friendly interfaces, a principle that holds weight both in academic
usability studies and in real-world applications.

Thirdly, Material-UI does not limit the creative latitude of the development process. Even
though it provides a plethora of pre-defined components, it is designed to be highly
customizable. This feature allows the application to be tailored to meet specific
organizational branding requirements or unique design elements, thereby rendering the
framework both flexible and robust.

Lastly, Material-UI’s inherently responsive design ensures that the application can cater to
various device sizes without compromising the user experience. Given the ubiquity of mobile
devices, this responsiveness is essential for broad accessibility and usability.

Once MUI was installed, a theme.js file was developed to keep the colour schemes, font sizes
and types consistent throughout the website. Its primary function is to enhance the user
experience by providing an adaptable visual environment through a toggleable light-dark
mode. By consolidating all theming-related variables and settings into this singular file,
developers achieve several objectives: consistency in design, ease of maintenance, and
improved customizability. An example of the light and dark themes is shown in Appendix 1.

The theme.js file aimed to facilitate quick and efficient changes to the visual appearance of
the application without requiring adjustments in multiple locations. This centralization
allowed me to make global changes that are automatically propagated throughout the
application, thus ensuring design coherence. Additionally, by offering an in-built mechanism
to switch between light and dark modes, it significantly improves the user's ability to
personalize their interface experience based on their preferences or ambient conditions.

6.3 Front end and Back end Integration

Integrating the front end and back end required meticulous planning to ensure seamless
interaction between Django and React. To facilitate this integration, an initial HTML template
was created to serve as the landing page. This template was routed through Django's urls.py
file located in the 'front end' folder. Crucially, a Django view function was employed to return
this HTML file, ensuring that it could be rendered by the Django framework and served to the
client. Once served, this HTML file became the point of attachment for a JavaScript bundle
that was generated by Webpack.

The JavaScript bundle included the compiled React components and other front end logic.
Upon being loaded, React took control of the Document Object Model (DOM), with its main
component, commonly referred to as 'App,' serving as the entry point for all front end logic.
This 'App' component, in turn, utilized React Router to handle client-side routing. This setup
provided a dynamic, single-page application experience, ensuring seamless navigation and
interaction without requiring full-page reloads.

This process was aided by a book written by Valentino Gagliardi, titled ‘Decoupled Django’,
which delves into the intricacies of decoupled architectures utilizing Django and the Django

REST Framework. This pivotal resource elucidated diverse approaches for cohesively
integrating Django and React. In the context of this project, Django was intentionally
configured to operate as an API, with the primary responsibility of loading a singular HTML
template. Subsequently, React was given the reins to govern the front end, thus creating a
decoupled, yet harmonious, architectural design.

6.4 API Integration

In the next phase of implementation, attention was turned towards the back end, specifically
within the api Django app, to retrieve data from the SportMonks API. Django views were
employed to access this third-party API, and careful data manipulation was undertaken to
filter and procure the specific datasets required, such as data for particular seasons, players,
and teams. The raw data retrieved was then converted into JSON format, marking the first
step in preparing the data to be used on the front end. The raw datasets, initially displayed in
a nested and complex structure, were then meticulously parsed, and translated into a more
manageable JSON format, laying the cornerstone for subsequent front end integration.

Building upon Django's inherent capabilities, Django Rest Framework (DRF) was used for
further data serialization. The DRF serializers provided a more refined control over the JSON
output, allowing for tailored data structures that meet the front end's specific requirements.
Custom methods were devised within the serializer to fetch precise data fields, rename them
for consistency, and format them in a manner that eases front end data handling. An example
of this approach is when I calculated the number of matches played, wins and losses, and on
another occasion iterated through the list of teams to return the correct team with a particular
ID. The ‘Fundamentals of Programming’ module was incredibly useful in preparing me for
this section, providing me with the knowledge of using 'for loops' and 'if statements' in
Python which I used to iterate through the JSON dictionary and return the desired outputs.

An example of this implementation is included in Appendix 2 and Appendix 3. In this
example, the TeamDetail class (which is an example of the view) functions as the controller
for the API endpoint, responsible for interacting with the SportMonks API, filtering the
relevant data, and then serializing it. The TeamDetailSerializer class acts as the model that
shapes the JSON response, and it also contains the logic for custom data processing steps.
Together, they enable the back end to serve detailed and specific information about a football
team, which can then be readily consumed and displayed on the front end. This structured
approach makes it easier to maintain the codebase and ensures that the front end receives
high-quality, relevant data optimized for user interaction.

With the back end adequately set up to serve well-structured JSON data, the focus shifted to
the React-based front end. Utilizing React's native useState and useEffect hooks,
asynchronous data fetching was implemented with precision. The useEffect hook was
configured to trigger API calls upon the component's mounting, funnelling the inbound data
into a state variable managed by useState. This state variable was then used for rendering data
dynamically on the front end.

Material-UI, previously integrated for its robust UI components, played a significant role in
this context. It was employed to create data presentation elements—such as tables and
cards—that are not only visually appealing but also functional. Material-UI's components

were chosen for their ease of customization and built-in responsive design features, which
further enhanced the data display across multiple devices. The Appendices showcase various
features of the website that present the statistics sourced from the API. Appendix 4 displays
the Live Score fixtures page, which highlights either upcoming or current matches with their
real-time scores. Appendix 5 provides a glimpse into the detailed in-game statistics updated
in real-time. The Premier League schedule and results, with the predicted outcomes, are
evident in Appendix 6. Appendix 7 presents team statistics, offering both a general overview
and more specific metrics related to offensive and defensive plays. Finally, Appendix 8 shares
player statistics,

6.5 Web Scraping Football Match Data

The first pivotal step in constructing a machine-learning model capable of predicting future
Premier League football matches was the acquisition of historical data. To this end, the
Python programming language was employed alongside specific libraries tailored for web
scraping and data manipulation, namely the requests and Beautiful Soup libraries.

The initial point of entry for web scraping was FBref’s website, which houses current
Premier League standings. Utilizing Python's requests library, an HTTP GET request was
used to retrieve the webpage content. This raw HTML data was then parsed through the
Beautiful Soup library, enabling more refined data manipulation in subsequent steps.

The parsed HTML content contained a table labelled ‘table.stats_table’ in the source code,
offering a variety of team-specific data. By employing Beautiful Soup's ‘find_all’ method, the
hyperlinks embedded within this table were methodically identified. A filtration process was
then applied to retain only the hyperlinks containing the '/squads/' substring, which are
indicative of pages containing comprehensive statistics for individual teams. The base URL
was concatenated with these filtered, partial URLs to create the complete URLs that would
serve as the endpoints for further data scraping.

Each of these complete URLs was subsequently accessed through individual HTTP GET
requests. The HTML content returned was then parsed to convert tables containing match
details into Data Frame objects using Pandas' ‘read_html’ function. These Data Frames held
key attributes such as match dates, scores, and fixtures.

To elevate the depth of the dataset, the web scraping process was further developed to
encompass shooting statistics. Additional HTTP GET requests were sent to fetch these
shooting metrics. Pandas' merge method was then invoked to amalgamate this shooting data
with the prior match details, based on the common "Date" column. This fusion resulted in a
multidimensional data frame.

Recognizing the requirement for data that spanned multiple seasons, an iterative loop was
constructed. This loop ranged from the 2024 season back to 2018. During each cycle of this
loop, the identical web scraping process was employed to amass data on match and shooting
statistics for the respective seasons. To ensure ethical web scraping practices, a sleep interval
of 10 seconds was interjected between consecutive HTTP requests through Python's
‘time.sleep()’ method.

The culmination of the web scraping process saw the integration of the gathered data into a
monolithic data frame. The column names of this Data Frame were standardized by
transforming them into lowercase strings. Lastly, the enriched Data Frame was serialized into
a CSV file via Pandas' ‘to_csv’ function. This CSV file now serves as a robust data
foundation for the machine learning model development.

6.6 Developing the Machine Learning Model
This section explains the process of the implemented machine learning model to predict
future Premier League matches. It utilized Pandas for data manipulation, Scikit-learn for
model training and evaluation, and Pickle for model serialization. The model uses a Random
Forest Classifier and includes various preprocessing steps like One-Hot Encoding and
Ordinal Encoding.

The data source was the previously web-scraped football matches dataset. This file contained
a plethora of fields including, but not limited to, team names, dates of matches, goals scored,
venue, and results. Once this file was loaded into a Pandas Data Frame, the process could
begin. The initial step in the data preprocessing phase involved the transformation of the
result column, which contained textual descriptions of match outcomes such as "W" for wins,
"D" for draws, and "L" for losses. A new column named target was introduced, where the
outcomes were numerically encoded as follows:

• Loss was encoded as 0.
• Draw was encoded as 1.
• Win was encoded as 2.

After encoding, the original result column was dropped to avoid redundancy.

The data was then divided into training and validation subsets. This was performed using
Scikit-learn’s train_test_split function, with 80% of the data allocated for training and the
remaining 20% for validation. A random seed was set to 42 to ensure the experiment's
reproducibility.

To prepare the data for machine learning, feature engineering and encoding were critical
steps. Two different types of encoders were used to transform the categorical data into a
numerical format:

1. OneHotEncoder: Employed for nominal categorical variables like team and
opponent names, this encoder converts each unique value into a new categorical
variable and assigns a binary value of 0 or 1. For example, teams named 'Team_A'
and 'Team_B' would each receive their column, where a match involving 'Team_A'
would have a '1' in the 'Team_A' column and a '0' in the 'Team_B' column.

2. OrdinalEncoder: This was used for ordinal categorical features such as venue and
captain. Unlike OneHotEncoding, this encoder assigns a single column where each
unique category is mapped to an integer.

Then, data transformation was performed through a custom pipeline that took care of several
tasks in a sequence:

• Date Feature Extraction: The pipeline extracted year, month, and day from the date
column to include the time factor in predictions.

• Standardization: For any continuous variables, a Z-score normalization was applied.
• Rolling Averages: In football, a team's recent performance could be indicative of its

future performance. To capture this, rolling averages of features like goals scored
were computed for a 5-game window.

• Encoding: The initialized encoders were applied to the relevant columns.

The Random Forest Classifier algorithm was chosen for model training, primarily due to its
ability to perform well on both classification and regression tasks, and its robustness against
overfitting. After training the model on the pre-processed data, the feature importances were
evaluated to identify which variables contributed most to the model's predictive power.

The model was evaluated using the validation dataset. Performance was assessed through
accuracy and precision. The accuracy and precision scores changed slightly each time the
program was run; however, they were consistently scoring between 0.47 and 0.50 for
accuracy, and between 0.40 and 0.42 for precision. These metrics provided a view of the
model's effectiveness in predicting football match outcomes.

After satisfactory performance metrics were obtained, the trained model was serialized using
Python's Pickle library. This allowed for the model to be saved as a .pkl file, thereby making
it easy to integrate into the website.

6.7 Integrating the Machine Learning Model into the Website

The culmination of this project involved the integration of the developed machine learning
model into the web application to provide users with predictions for upcoming Premier
League matches. A meticulous methodology was implemented to ensure seamless integration,
starting with the placement of the machine learning code within the back end architecture and
extending to the delivery of prediction results on the front end. This section explains the
detailed process that was followed to implement this integration.

The machine learning model was integrated into the back end infrastructure of the Django
web framework, specifically within the api Django app. The code to predict the final results
was incorporated into the views.py file of this app, thereby enabling the model to directly
influence the application's functionality.

The Python Pickle library had been previously used to serialize the machine learning model
into multiple .pkl files:

• random_forest_model.pkl: This file stores the trained Random Forest model. When
predictions are needed in the future, you can load this pre-trained model, thus
avoiding the need to retrain the model.

• one_hot_encoder.pkl: This file contains the OneHotEncoder object that is used for
encoding team names. Keeping this file allows for the consistent application of the
encoding scheme to new data sets without retraining.

• ordinal_encoder.pkl: This file contains the OrdinalEncoder object, which is used for
label encoding of categorical features such as venue, captain, and referee. As with the

OneHotEncoder, saving this ensures that future encoding will match the training
dataset.

• rollingDict.pkl: This dictionary captures the rolling averages and last values for
various metrics. It helps in preprocessing future datasets in the same way as the
training set.

These files facilitated the loading of the model into the Django application. To make
predictions for future matches, a dataset containing information on upcoming fixtures was
also introduced into the back end. This dataset was critical for feeding the model with the
required data points.

Once the model was successfully loaded into views.py, minor adjustments were performed to
convert the model's output into a dictionary format. This was an essential step, as it enabled
the structured representation of prediction results, thus facilitating subsequent data
serialization and transport to the front end.

Data serialization plays a critical role in ensuring that the complex data structures produced
by the back end are simplified and converted into a format that can be effortlessly consumed
by the front end. To that end, a specialized data serializer was implemented to standardize the
model's output. This serializer transformed the dictionary of prediction results into a JSON-
like format that is easily retrievable and usable within the front end architecture.

On the front end side, particularly within the 'Match Prediction' section of the web
application, a sequence of carefully orchestrated operations was carried out. Initially, an
HTTP request was initiated using React's fetch to retrieve and present the list of fixtures from
the SportMonks API, for the upcoming Premier League season.

Once the fixture information was successfully displayed, a subsequent fetch request was
executed to obtain the machine learning model's predictions, which had been processed and
serialized by the back end. These prediction results were then parsed and presented side-by-
side with the respective fixtures, thereby providing end-users with a comprehensive and real-
time predictive analysis for upcoming Premier League matches.

7. Analysis

The overarching aim of this project was to engineer a comprehensive platform for football
statistics, enriched by a machine-learning algorithm capable of predicting future match
outcomes. This ambitious aim has been unequivocally actualized throughout various phases
of the project. From crafting a responsive front end using React to architecting a robust back
end with Django, and from judiciously integrating a reliable football API for historical data to
curating additional data through web scraping, the project has comprehensively achieved its
foundational aim.

• Objective 1: User-Friendly Interface

- The final product not only satisfies but exceeds the first objective, offering users a
seamless and user-friendly interface to interact with a plethora of football statistics.

• Objective 2: Data Integration

- This mandated the collation and integration of accurate, consistent, and
comprehensive datasets. The chosen data sources are reliable and consistent, making
the platform a trusted source for football data.

• Objective 3: Real-Time Updates
- Regarding the third objective, the website is equipped with real-time match update

functionalities. This feature elevates user experience by keeping users abreast of
ongoing matches, thus achieving a dynamism that is critical for fan engagement.

• Objective 4: Machine Learning Algorithm

- The fourth objective entailed extensive research and deployment of machine learning
techniques. Following a rigorous research phase, a Random Forest Classifier
algorithm was finalized. This choice was motivated by the algorithm's versatility and
robustness against overfitting.

• Objective 5: Algorithm Evaluation

- The fifth objective encompassed the empirical evaluation of the model. Though the
model's accuracy and precision scores are not in the realm of perfection, they do range
between 0.47 and 0.50 and 0.40 and 0.42 respectively, indicating predictive
capabilities that substantially exceed random guessing.

The technology stack was deliberately chosen for its robustness and scalability. Django offers
a secure and feature-rich back end development environment, while React ensures a
responsive and interactive front end experience. The Random Forest Classifier further
fortifies this robustness, offering excellent generalizability to new and unseen data.

The project has not only met but in many aspects exceeded its initial aim and objectives. It
serves as a comprehensive, accurate, and interactive platform for football fans while
demonstrating the promising inclusion of machine learning for predictive analytics. However,
there is room for improvement, particularly in the machine learning model's predictive
accuracy.

8. Conclusion

The project exhibits several strengths that align well with the initial objectives. The user
interface and experience go beyond just being user-friendly; they offer an intuitive way for
users to interact with complex data. This achievement resonates with the first project
objective. Similarly, the high data integrity ensures that the platform serves as a reliable hub
for football statistics, effectively satisfying the second objective. Adding real-time updates
brings the platform alive, offering a much-needed dynamism that keeps the users engaged,
thereby meeting the third objective. Finally, the Random Forest Classifier algorithm, selected
for its versatility and ability to generalize, aligns with the fourth and fifth objectives,
demonstrating a reasonable level of predictive power.

Despite these strengths, the project has several areas of weakness. The predictive accuracy of
the machine learning model falls short of perfection. While the model performs statistically
better than a random guess, there is still room for improvement in tuning, feature engineering,
or possibly even model selection. Another deficiency relates to the scalability of the back end
architecture. As the user base grows, the current back end might present limitations that need
to be addressed. Finally, due to time constraints, comprehensive user acceptance testing could
not be performed. This leaves a gap in understanding the broader user experience and the
system's actual performance in a real-world scenario.

Additionally, the platform's performance encounters challenges in terms of load speeds, for
data sourced from the SportMonks API. Specifically, the extended load times are noticeable
when retrieving comprehensive player data for an entire Premier League season. This latency
arises from the complex data manipulation processes required on the back end to aggregate
and present this information. The delays exceed acceptable standards, thereby potentially
impairing user experience and engagement.

Given more time or alternative circumstances, various enhancements could have been
undertaken. These might include rigorous fine-tuning of the machine learning model or the
exploration of alternative algorithms for improved predictive outcomes. Further advanced
A/B testing could be employed to refine the user interface, and additional real-time features,
such as live commentary, could augment user engagement. Moreover, in hindsight, an
alternative approach to sourcing historical data could be considered to mitigate loading
issues. Instead of relying on the SportMonks API, constructing a proprietary dataset through
web scraping would offer a more scalable and efficient solution. Such a strategy would not
only reduce loading times but also potentially enable the acquisition of more granular
statistics.

On the academic front, this dissertation enriches the existing body of knowledge in sports
analytics, particularly by integrating machine learning algorithms with traditional statistical
approaches for predictive analytics in football. From a practical perspective, the platform
serves a wide array of stakeholders, including football fans, analysts, and potentially even
sports betting firms and football clubs. It thus demonstrates the real-world applicability of
machine learning for predictive sports analytics, offering invaluable insights for various
practical endeavours.

9. Reflection

Completing this project has been a transformative journey that has imparted invaluable
lessons in both the realm of academic research and personal development. The project
underscored the importance of time management and effective project planning. Initial
timelines proved to be optimistic, especially when accounting for the challenges tied to data
sourcing and machine learning model tuning. This experience has taught me to allocate a
buffer for unforeseen obstacles in future projects.

Regarding the authority and availability of sources, the project acquainted me with the
process of selecting reliable data sources and APIs. It made apparent that not all readily
available data is of high quality or relevance, requiring rigorous verification for academic
validity. It also opened my eyes to the vast array of methodological approaches available for
machine learning, and how each comes with its own set of assumptions, strengths, and
weaknesses. In retrospect, greater attention to preliminary research could have informed more
optimized choices in methodology and data sources.

On a personal note, the project served as a magnifying glass for my strengths and
weaknesses. While I found myself well-equipped in coding and data manipulation, my initial
lack of expertise in machine learning algorithms exposed a key area for ongoing personal
development. My strengths in project visioning and conceptual framework development were
counterbalanced by a tendency to underestimate the complexities of real-world data and user
experience issues, something I plan to address moving forward.

In terms of the substantive topics addressed, this endeavour provided a hands-on tutorial on
the complexities of integrating traditional statistics with machine learning for predictive
analytics in sports. It also offered insights into the rapidly evolving domain of real-time
sports analytics and its impact on fan engagement. However, the project left some questions
unanswered, such as the scalability of such a platform and the full range of factors that might
influence match outcomes, representing avenues for future research.

The efficacy of the chosen Random Forest Classifier, while reasonable, could perhaps be
improved with more advanced algorithms or ensemble methods. Similarly, the user interface,
though intuitive, might benefit from the integration of more interactive, real-time features.
This project, therefore, not only contributed to existing academic dialogue but has also set the
stage for further explorations into the realms of sports analytics, machine learning, and user
interface design.

In conclusion, the project has been a significant milestone in my academic journey, serving as
both a reflection of my existing skills and a roadmap for areas requiring further development.
The lessons learned are numerous and multifaceted, encompassing both the procedural
aspects of research and deeper, subject-specific insights. These learnings are not merely
academic but offer practical implications, promising to inform and enrich my future in both
academic research and real-world applications.

References

Cheung, C.M.K. and Lee, M.K.O. (2005) ‘The asymmetric effect of website attribute
performance on satisfaction: An empirical study’, Proceedings of the 38th Annual Hawaii
International Conference on System Sciences [Preprint]. doi:10.1109/hicss.2005.585.

Gagliardi, V. (2021) Decoupled Django: Understand and build decoupled Django
Architectures for JavaScript front ends. Berkeley, California, Apress.

Gehrke, D. and Turban, E. (1999) ‘Determinants of successful website design: Relative
importance and recommendations for effectiveness’, Proceedings of the 32nd Annual Hawaii
International Conference on Systems Sciences. 1999. HICSS-32. Abstracts and CD-ROM of
Full Papers [Preprint]. doi:10.1109/hicss.1999.772943.

Goddard, J. and Asimakopoulos, I. (2004) ‘Forecasting football results and the efficiency of
fixed-odds betting’, Journal of Forecasting, 23(1), pp. 51–66. doi:10.1002/for.877.

Iskandaryan, D. et al. (2020) ‘The effect of weather in football results: An approach using
machine learning techniques’, Applied Sciences, 10(19), p. 6750. doi:10.3390/app10196750.

Kincl, T. and Štrach, P. (2012) ‘Measuring website quality: Asymmetric effect of User
Satisfaction’, Behaviour & Information Technology, 31(7), pp. 647–657.
doi:10.1080/0144929x.2010.526150.

Orlova, M. (2016) ‘USER EXPERIENCE DESIGN (UX DESIGN) IN A WEBSITE
DEVELOPMENT’, Mikkeli University of Applied Sciences.

J. Hucaljuk and A. Rakipović (2011) ‘Predicting football scores using machine learning
techniques’, Proceedings of the 34th International Convention MIPRO pp. 1623-1627.

Sutcliffe, A. (2002) ‘Assessing the reliability of heuristic evaluation for web site
attractiveness and usability’, Proceedings of the 35th Annual Hawaii International
Conference on System Sciences [Preprint]. doi:10.1109/hicss.2002.994098.

Tuch, A.N. et al. (2009) ‘Visual complexity of websites: Effects on users’ experience,
physiology, performance, and memory’, International Journal of Human-Computer Studies,
67(9), pp. 703–715. doi:10.1016/j.ijhcs.2009.04.002.

Appendices

Appendix 1

Appendix 2

class TeamDetail(APIView):

 def get(self, request, id):

 url = f"https://api.sportmonks.com/v3/football/teams/{id}?api_token=

SfgFq9wDOHoDn9T5XiLZsSf2Id2rJ7lTgafxIoxOfDbwczPBrHTaQxtcmYUL&include=ve

 nue;country;coaches.coach;statistics.details.type;latest"

 response = requests.get(url)

 data = response.json()

 team = data["data"]

 # Filter statistics for the desired season_id (21207)

 season_id_to_filter = 21646

 filtered_statistics = [statistic for statistic in team["statistics"]

 if statistic["season_id"] == season_id_to_filter]

 # Update the team data with the filtered statistics

 team["statistics"] = filtered_statistics

 serializer = TeamDetailSerializer(team)

 return Response(serializer.data)

Appendix 3

class TeamDetailSerializer(serializers.Serializer):

 id = serializers.IntegerField(default=None)

 name = serializers.CharField(max_length=100, default=None)

 logo = serializers.CharField(

 source='image_path', max_length=100, default=None)

 founded = serializers.CharField(max_length=100, default=None)

 country = serializers.CharField(

 source='country.name', max_length=100, default=None)

 stadium_name = serializers.CharField(

 source='venue.name', max_length=100, default=None)

 matches_played = serializers.SerializerMethodField()

 wins = serializers.SerializerMethodField()

 draws = serializers.SerializerMethodField()

 losses = serializers.SerializerMethodField()

 def get_matches_played(self, instance):

 wins = self.get_wins(instance) or 0

 draws = self.get_draws(instance) or 0

 losses = self.get_losses(instance) or 0

 matches_played = wins + draws + losses

 return matches_played

 def get_wins(self, instance):

 statistics = instance.get('statistics', [])

 for stat in statistics:

 for detail in stat.get('details', []):

 if detail['type']['code'] == 'team-wins':

 return detail['value']['all']['count']

 def get_draws(self, instance):

 statistics = instance.get('statistics', [])

 for stat in statistics:

 for detail in stat.get('details', []):

 if detail['type']['code'] == 'team-draws':

 return detail['value']['all']['count']

 def get_losses(self, instance):

 statistics = instance.get('statistics', [])

 for stat in statistics:

 for detail in stat.get('details', []):

 if detail['type']['code'] == 'team-lost':

 return detail['value']['all']['count']

Appendix 4

Appendix 5

Appendix 6

Appendix 7

Appendix 8

