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1 Preamble 
1.1 Abstract 
This paper will explore the possibility of using 
machine learning and deep learning algorithms 
to identify Twitter traffic relating to 
cryptocurrency Pump and Dump schemes.  
 To do this, historic examples of 
schemes will be used to construct a suitable 
dataset. This dataset will then be utilised to 
train both neural networks and support vector 
machine classifiers. Performance metrics will 
then be used to suggests the most fit for 
purpose classifier.  

1.2 Acknowledgments 
I would like to thank my supervisor, Amir, for 
his continued support. 

2 Introduction 
The past few years has seen a marked increase 
in public interest towards cryptocurrencies as a 
means to store, grow and protect personal 
wealth. It is estimated that 3.3 million 
individuals in the UK – around 5% of the 
population - currently own some form of 
cryptocurrency (1). More recently, the 
COVID-19 pandemic seems to have spurred 
the growth in popularity for cryptocurrency 
assets; in Q1 of 2021, during the third national 
lockdown, 3 of the 10 most downloaded apps 
relate to the buying and selling of 
cryptocurrencies (2), and the value of Bitcoin 
has risen astronomically. The aforementioned 
statistic truly highlights the fact that 
cryptocurrencies have reached mainstream 
appeal; they are simply a few taps away and 
can be purchased by individuals who have no 
knowledge of the technical intricacies on 
which they rely.  
 Unfortunately, this means that many 
make uninformed investments. Unlike 
traditional stock investments, where buyers 
carry out due diligence on the stocks they wish 
to buy, many crypto investors purchase based 
on the recommendations of others. This opens 
the door for scammers who, aided by the 
ubiquitous and instantaneous nature of the 
internet, are able to scam unsavvy investors 
into purchasing cryptocurrencies for their own 
gain. This is illustrated by the reported £146 
million worth of damages though to be caused 
by cryptocurrency scams in 2021 alone (3). 
This is not a diminishing issue, with a 30% 

increase in damages already being recorded in 
2021 when compared to 2020 (3). 
 One reported class of cryptocurrency 
scam is the ‘Pump and Dump’. Similar to a 
traditional pump and dump scheme, this scam 
involves spreading false positive information 
regarding a cryptocurrency with the intention 
of artificially spiking its price. Those running 
the scam can then sell their pre-bought 
cryptocurrency at the inflated price, with those 
convinced by misinformation left incurring 
losses. Social media platforms such as Twitter 
are often used as the vector over which this 
misinformation is spread (4).  
 It is clear this class of scam is an 
emerging threat which has grown naturally 
alongside the growth of the currencies they 
rely upon. As such, methods of detection and 
prevention are, and will continue to be, 
invaluable. Currently, most literature focuses 
on using statistical analysis techniques on 
price movement, buying, and selling data in 
order to discern suspicious activity from 
legitimate. These methods may be an effective 
means of classification, however their use as a 
means of prevention is questionable. In order 
for suspicious price movement to be detected, 
a buying spike will already have to have 
occurred. This means victims have already 
been convinced to purchase the currency, and 
the scam has already been somewhat 
successful. 
 This paper will explore another 
approach for detection and prevention, based 
not on price movement but on social media 
data generated during the incidents, 
specifically Twitter traffic. This data will be 
used to train a range of machine learning 
classifiers, with the aim of producing a 
classifier capable of discerning suspicious 
tweets, or those which content suggests a 
Pump and Dump is occurring, from benign. By 
classifying Tweets in this way, the potential to 
stop or hinder the spread of this damaging 
information is presented.  

This approach has scarcely been explored 
in literature, and an implementation of this 
approach on Twitter itself is not possible. As 
such, this paper will act as one of the first 
proof-of-concepts of the idea. Data will be 
collected using the Twitter API. Analysis of 
text vectorization techniques will then be 
conducted in order to process the text into a 
format suitable for training machine learning 
and deep learning algorithms. Finally a set of 
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neural network classifiers, each of which 
comprised of different layers and using 
different vectorization techniques, will be 
trained on the dataset. This classifier will be 
compared to a ‘baseline’ classifier using a 
simpler machine learning algorithm – ‘Support 
Vector Machine’. The aim of this is to 
investigate what type and structure of model, 
and what method of vectorization is most 
suitable for this classification problem. If 
implemented effectively, it is hoped that the 
final classifier identified would be suitable for 
use on large volumes of live traffic. 

3 Background & Related 

Works 
3.1 Cryptocurrency 

3.1.1 Overview 
In the last decade, the term ‘cryptocurrency’ 
has risen to ubiquity both online and in 
financial circles. A ‘cryptocurrency’ is defined 
in the Meriam-Webster dictionary as: 
 

“Any form of currency that only exists 
digitally, that usually has no central issuing or 

regulating authority but instead uses a 
decentralized system to record transactions 
and manage the issuance of new units, and 

that relies on cryptography to prevent 
counterfeiting and fraudulent transactions 

(5)” 
 

This concept was originally proposed and 
implemented by the pseudonym ‘Satoshi 
Nakamoto’ in the famous Bitcoin White Paper 
(6). This paper proposed a peer-to-peer digital 
currency in which transactions could be 
guaranteed non-repudiation and integrity via 
digital signatures and solved the double 
spending problem through a decentralised 
ledger known as a ‘blockchain’ and a concept 
called ‘proof-of-work’. The latter of these two 
ideas was unprecedented and has proven to be 
conceptually sound to this very day. In the 11 
years since Nakamoto’s Bitcoin began trading, 
its value has increased from $0.0008 to over 
$47,6001. 

Following Bitcoin’s continued 
popularity, a host of new Cryptocurrencies 
have been brought to the market. These 

 
1 As of writing this paper. The value of 
cryptocurrencies is prone to wild fluctuation.  

currencies, referred to as altcoins, often aim to 
either improve on an aspect of Bitcoin such as 
transaction speed and energy efficiency, or 
provide additional/differing functionality. 
Some well-known examples of altcoins 
include ‘Ethereum’, ‘Cardano’, and 
‘Dogecoin’ (7). 

3.1.2 Cryptocurrency Exchanges 
As discussed previously, cryptocurrencies are 
often bought and sold for more traditional fiat 
currency. The demand to buy and sell 
cryptocurrencies has resulted in a plethora of 
online ‘exchanges’ which facilitate these 
transactions being opened. Currently the 
largest of these exchanges, named ‘Binance’, 
lists over 385 different cryptocurrencies and 
can facilitate over $27 Billion worth of trades 
in a 24-hour period (8). 
 Exchanges such as Binance often 
function similarly to a traditional stock 
exchange. Currencies are represented by 3-4 
letter symbols (e.g., ‘BTC’, ‘ETH’) much like 
the ticker symbols used to represent publicly 
traded stocks (e.g., $TSLA). Much of the 
terminology used in the stock markets has 
been ported over to these new exchanges. 
Some notable terms include: 
 
Market Capitalization/ Market Cap - For a 
cryptocurrency like Bitcoin, market 
capitalization (or market cap) is the total value 
of all the coins in circulation. It’s calculated by 
multiplying the number of coins in circulation 
by the current market price of a single coin 
(9). 
 
Volume – The total value of crypto traded in a 
given timeframe. For example, 24 Hour 
Volume would describe the total value of 
trades completed in a 24-hour time period 
(10).  
 
Liquidity – A measure of how quickly an asset 
(in the context of this report a crypto asset) can 
be exchanged for another asset or currency. A 
cryptocurrency with low liquidity will be 
harder to buy and sell, and additionally be 
susceptible to large market value fluctuations 
from small orders (11).  

https://www.merriam-webster.com/dictionary/cryptography
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3.1.3 Lack of Regulation 
The similar terminology and presentation of 
cryptocurrency exchanges to traditional stock 
markets may lead some to believe that both are 
-for all intents and purposes- identical. 
However, this is currently not the case; having 
existed for upwards of 200-years, stock 
markets worldwide are legally well established 
and governed by regulatory bodies. In the UK, 
the regulatory body is known as the ‘Financial 
Conduct Authority’ (FCA). Other examples 
include the ‘Securities and Exchange 
Commission’ of the USA and the ‘Securities 
and Exchange Surveillance Commission’ of 
Japan (12) (13) (14).  
 These bodies have a broad range of 
responsibilities and are tasked with ensuring 
markets involving financial securities such as 
stocks and futures remain fair, efficient, and 
safe for investors. Of relevance to this project 
are the regulations surrounding market 
manipulation. The ‘Market Abuse 
Regulations’ (MAR) enforced by the FCA 
clearly define the following actions to be 
classed as Market Abuse, and therefore illegal 
(15): 
 
Taking a long position in a qualifying 
investment and then disseminating misleading 
positive information about the qualifying 
investment with a view to increasing its price; 
 

This practice, commonly referred to as 
a ‘Pump and Dump’, is universally recognised 
as illegal by regulating authorities worldwide.  

Unfortunately, Cryptocurrency 
exchanges are not subject to the same 
protective regulations as financial securities 
exchanges. The FCA currently only regulates 
the use of cryptocurrencies for money 
laundering. As such, various scams involving 
cryptocurrencies such as Pump and Dumps are 
currently legal and as noted by the FCA are 
rife (16). 

3.1.4 Conventional Pump and Dump 

Schemes 
Thought to be one of the oldest forms of 
securities fraud, the first recorded Pump and 
Dump scheme, known as the ‘South Sea 
Bubble’ occurred in 1720. This scheme 
involved ‘South Sea Company’ insiders 

 
2 Largest community reported in literature 
consisted of over 200,000 members. 

making ‘the most extravagant of rumours’ 
pertaining to the company’s value and 
potential for shareholders to profit. These 
rumours spurred a speculative frenzy of 
investment which in turn drastically inflated 
the South Sea Company’s stock price from 
£128 to over £1000 in several months (17). 
This frenzied buying was naturally 
unsustainable, and the inevitable crash in the 
stock price led to financial ruin for many. 
 Modern P&D schemes function 
similarly, although can happen much in a 
shorter timescale when facilitated by the 
internet. Currently, securities target by P&D 
scammers tend to be either ‘micro-cap’ or 
‘small-cap’, e.g., their market capitalization is 
very small. These stocks are targeted because 
their low market caps mean it does not take as 
many buyers to inflate the price. In addition to 
this, the exchanges these stocks are listed on 
tend to be less scrutinised regulating bodies 
(18). Once a target stock has been picked, 
scammers will purchase said stock before 
attempting to promote it online with 
exaggerated or even false claims. In some 
cases, a scammer may claim to have insider 
info on the target stock. These claims could be 
spread via email, internet message boards, or 
more recently social media. If successful, the 
fraudulent claims will entice enough victims to 
buy the stock, artificially driving up the price. 
At this point, the scammers will sell their stock 
(19).  

3.1.5 Crypto Pump and Dump 

Schemes 
As discussed previously, Cryptocurrency 
Pump and Dump schemes are currently 
unregulated and as such a popular choice for 
scammers online.  
 From current documentation and 
reports online relating the topic, as well as 
evidence provided later in this report, it 
appears crypto P&Ds generally occur as 
follows (4) (20): 

1. A scammer or group of scammers 
build a large community2, usually on 
anonymous messaging platforms such 
as Discord or Telegram.  

2. The individual or group behind the 
scam promises members quick profits, 
and posts materials that reiterate this 
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such as fake “success stories” or 
screen shots of past pump and dumps. 

3. Scammers pick a target 
cryptocurrency with a low market cap 
and liquidity (for the same reason 
small-cap stocks are chosen in 
conventional P&Ds). They purchase 
this currency for themselves before the 
‘pump’. 

4. They then begin a countdown to a 
‘pump signal’. They will release a 
series of announcements to create 
hype around a coin and promise to 
reveal the crypto chosen at the end of 
the countdown.  

5. After hyping the pump with a 
countdown, they will release the name 
of the target cryptocurrency. Members 
of the group will then flock to 
purchase said crypto, driving up its 
price dramatically. Members of the 
P&D group are also encouraged to 
promote the chosen crypto on social 
media.  

6. Scammers will sell their stake almost 
immediately, locking in profits for 
themselves. They are essentially 
selling their pre-bought currency to 
members of the group for inflated 
prices.  

7. Shortly after (sometimes as quickly as 
10 minutes) the crypto’s price will 
return to normal as the buy pressure 
stops. Those who purchased the 
currency at the increased price are left 
‘holding the bag’. 

3.2 Twitter API V1.1 

3.2.1 Overview 
The Twitter API is designed to provide 
developers with direct access to data such 
Tweets, Users, Direct Messages, Media, and 
Trends on the Twitter platform. The V1.1 API 
(utilised in this project) achieves this through a 
collection of more than 20 endpoints. These 
endpoints can be accessed by making specific 
HTTP requests. In order to get a valid 
response, an OAuth 2.0 bearer token must be 
provided as part of the request. This token can 
be obtained by a user given they have a 
Twitter Developer Account and a properly 
configured Application. ‘Full Archive’ and ’30 
Day’ are the names of the two endpoints used 
predominately in this project.  

3.2.2 ‘Full Archive’ and ’30 Day’ 
Endpoints 

These two endpoints function similarly, 
however the Twitter API V1.1 ‘Full Archive’ 
endpoint provides access to every single 
public tweet made since the beginning of the 
platform in 2006; while the 30 Day endpoint 
only provides access to the last 30 days of 
activity.  
 Tweets can be retrieved from the 
endpoints by sending a HTTP POST request 
which contains a query written in a custom 
query language, as well as other parameters 
including ‘to’ and ‘from’ dates. The results of 
a given query will be returned to the user in 
JSON format. An example request sent to the 
endpoint using the ‘curl’ command line tool 
would be:  
 
curl --request POST \ 
  --url 
https://api.twitter.com/1.1/tweets/search/<TYPE
>/<ENV>.json \ 
  --header 'authorization: Bearer 
<BEARER_TOKEN>' \ 
  --header 'content-type: application/json' \ 

  --data '{ 

                "query":"<QUERY>", 

                "maxResults": "100", 

                

"fromDate":"<YYYYMMDDHHmm>",  

                "toDate":"<YYYYMMDDHHmm>" 
                }' 
 
There are several things to note about the 
structure of this request. Firstly, which 
Endpoint is being accessed is determined in 
the URL. Setting ‘TYPE’ in the above request 
to ‘fullarchive’ would send the request to the 
full archive endpoint, while setting TYPE to 
‘30day’ would direct the request to the 30 Day 
endpoint. 
 The URL must contain an 
environment name (‘ENV’). An environment 
can be created in the Twitter ‘developer portal’ 
if the user has an authorised developer 
account. 
‘Bearer token’ must be included in the request 
header and refers to the OAuth 2.0 token 
discussed previously.  
 The ‘data’ section of the request is 
where parameters such as query, number of 
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results to retrieve, and the time period for the 
tweets can be specified.  

3.2.3 ‘Tweet’ JSON Objects 
As mentioned previously, valid requests to 
both 30 Day and Full Archive endpoints will 
return a JSON Object. The Object will consist 
of a set of unique ‘Tweet’ child objects. Each 
child is given a number, starting at 0, e.g.: 
 

 ‘results’ 
 0 

 1 

 2 

 3 

 4 

 5 
 

The ‘Tweet’ objects themselves contain a 
wealth of information stored as attributes. As 
well as root-level attributes, tweets also 
contain nested child objects with further 
attributes. Some notable attributes (21) 
include: 
 
created_at – The UTC datetime at which the 
tweet was posted.  
 
text – The contents of the tweet itself. In the 
case that the tweet is an extended tweet (140-
280 characters long) this attribute will contain 
the first 140 characters. 
 
id_str – A unique string which can be used to 
identify a tweet. 
 
Some important child objects include: 
 
user – This object contains attributes 
pertaining to the author of a tweet. Attributes 
include username, screen name, bio, and 
number of followers. 
 
extended_tweet – If tweet is classed as an 
‘extended’ (over 140 characters) then this 
object will contain the full text.  
 
retweeted_status – In the case that a tweet is a 
retweet, this object will contain all the 
information about the original tweet and 
author.  

3.2.4 Query Language 
As outlined previously, requests sent to the 
API endpoints include a query written in a 
custom query language. This query language 

contains several logical operators which can 
be combined in order to collect a refined set of 
relevant tweets. Some examples of the 
operators available in this language are 
explained in the table below (22): 
 
Table 1 - Common Twitter API Search Operators 

Operator Explanation 

Watching Now Tweets containing the 
word ‘watching’ and the 
word ‘now’. The space 
between the words can 
be thought of as a logical 
‘and’ operator. 

Watching OR 
Now 

Tweets containing either 
the word ‘watching’ or 
now. 

Watching -Now Tweets containing the 
word ‘Watching’, but 
not Now 

lang:en Tweets in English 
language only.  

 
It is also worth noting that brackets can be 
used in the query language to build more 
complex queries, e.g.: 
 
(Hello OR World) (Testing OR Language) 
lang:en 
 
Would return English language tweets with 
either the word ‘Hello’ or ‘World’, and either 
‘Testing’ or ‘Language’ 
3.3 Machine Learning Concepts 

and Techniques 

3.3.1 Overview 

3.3.2 Bag of Words vectorization 
Text vectorization refers to the process of 
converting human-readable text in a numerical 
representation of features which can be 
processed by a machine learning algorithm. 
Currently, there are several approaches to 
vectorizing text. Two of these approaches are 
of particular interest to this project.  
 Firstly, there is the ‘Bag of Words’ 
term frequency approach. This simple 
approach converts strings of variable size into 
fixed-length vectors. Firstly, a ‘vocabulary’ is 
created which contains every word present in 
the collection of strings. For example, given 
the following strings: 
 

‘computer science is fun to learn’ 
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‘computer science is my favourite’ 
‘i enjoy computer science’ 

 
The vocabulary produced could be: 

 
[computer, science, is, my, fun, to, learn, 

favourite, i, enjoy] 
 

After a vocabulary similar to the example 
above has been produced, each string is 
compared to it. The frequency that each word 
in the vocabulary appears in the string is 
recorded in a vector. The position of each 
integer in the vector corresponds to that 
word’s position in the vocabulary, for example 
using the example vocabulary, the string: 
 

‘i learn computer science’ 
 
Would be represented by the vector: 
 

[1, 1, 0, 0, 0, 0, 1, 0, 1, 0] 
 
This representation will always produce a 
vector of equal length to the vocabulary. 
Unfortunately, bag of words vectorization 
does not encode any positional information 
about words in a string or any semantic 
meaning of the words themselves. 

3.3.3 Word Embedding 
 The second method of vectorization to 
be considered is word embedding. The general 
concept behind word embedding is that 
semantic meaning and context of a word 
within a string should also be encoded in its 
vectorized form.  
 Generally, this is done by mapping a 
vocabulary of ‘embeddings’ into a higher 
dimensional vector space. Words with similar 
semantic meanings will be grouped together in 
this embedding space. 

 
One popular implementation of the 

word embedding concept is ‘Word2Vec’. This 
neural network-based vectorization algorithm 
developed by Tomas Mikolov (23) aims to 
capture the semantic menacing and similarity 
of words geometrically in an ‘embedding 
space’. In Word2Vec, word embeddings are 
‘learned’ by a neural network trained on a 
large corpus of data. Several pre-trained 
Word2Vec models are available online, 
including one trained on all 100 billion words 
available on google news (24).  
 

3.3.4 Support Vector Machine 
Support Vector Machine is a machine learning 
algorithm. It is possible to use this algorithm 
for regression, however in most cases it is used 
for classification problems. It is favoured for 
certain classification tasks due to its 
exceptionally low computational overheads.  
 The algorithms works by first 
mapping data into N-dimensional space, where 
N is the number of features. Its objective is 
then to find an N+1 dimensional hyperplane 
which clearly divides the datapoints by their 
classifications.  
 There will be an assortment of 
different hyperplanes which can achieve this 
goal. As such, part of the job of the SVM is to 
identify the hyperplane which does so with the 
greatest margin (distance between datapoints 
and hyperplane). 
 A ‘Support Vector’ is a datapoint 
which lies close to the hyperplane, and as such 
influences its orientation and position.  

3.3.5 Artificial Neural Networks 
An artificial neural network is a technique 
used for artificial intelligence tasks, in which 
information is processed by a series of 
simulated ‘neurons. These neurons are 
normally densely connected, and receive and 
transmit information to ‘layers’ of neurons 
ahead and behind of themselves (25).  
 Each node assigns a ‘weight’ to the 
data it receives from downstream nodes. This 
weight is multiplied by numbers received from 
nodes. The sum of these products is then used 
to discern whether the node ‘activates’ – or in 
other words, transmits a value to nodes in the 
‘upstream’ layer. Activation is decided using 
an ‘activation function’. 

Figure 1 - Basic Example of the concept of an 'embedding space' 
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3.3.6 Convolutional Neural Networks 
A convolutional neural network is a 
specialised variation of the concept of a neural 
network, which contains one or more 
convolutional layers.  
 The main use case for convolutional 
neural networks has typically been computer 
vision – they have proved very effective at 
allowing for the complex pattern recognition 
that class of problems require. There has, 
however, also been success using this type of 
Network for one dimensional data such as text. 
(26)  
  

3.4 Python Libraries 

3.4.1 Overview 
The following section will provide background 
on the two machine learning libraries used in 
this project.  

3.4.2 Sci-kit learn 
Sci-kit learn, also referred to as SKlearn, is a 

Python library which contains a range of out-

of-the-box machine learning tools (27).  

 Functions of particular relevance to 

this project include an implementation of the 

support vector machine (SVM) machine 

learning algorithm, and a Count Vectorizer 

used to map strings to feature vectors 

appropriate for a machine learning algorithm.  

3.4.3 Keras 
Keras is an open-source Python library which 
acts as an API for the TensorFlow library. It 
can be used to compile and train neural-
network based deep learning models with a 
vast array of different possible network 
structures. 
 Networks are defined using ‘Layers’ 
objects. Each ‘layer’ can have its own 
parameters such as activation function, and 
type e.g. convolutional, embedding. 
 

3.5 Existing Works 
Currently, academic literature surrounding the 
detection of cryptocurrency pump and dumps 
remains relatively sparse. This section aims to 
present and critically analyse some of the 
existing literature in order to identify ways in 
which this dissertation can build upon current 
knowledge. 
 One approach put forward by Weili 
Chen et al. utilises the leaked transaction 
history of the once-popular cryptocurrency 

exchange known as ‘Mt. Gox’ (28). Using this 
transaction data, ‘buy matrices’ could be 
constructed. These matrices are then fed into a 
novel algorithm which has the purposes of 
detecting groups of users which appear to be 
buying simultaneously. This approach was 
somewhat successful, however had several 
shortcomings. Firstly, some of the irregular 
buying activity recorded in the matrices was 
believed to have come from the exchange 
itself. This may have a skewing effect on the 
final algorithm produced. In addition to this, 
this approach is unapplicable to future pump 
and dumps as it requires an individual user’s 
buying activity – something which would be a 
breach of privacy if implemented by an 
exchange.  
 Another suggested approach (4) 
involves monitoring the price movement data 
and using anomaly detection to flag any 
suspicious activity. This approach uses 
publicly available information and so is more 
feasible in the real world. Results suggest that 
price movement analysis is a promising 
method of detecting pump and dumps – 
however the application used only covers 20 
days of data with hourly granularity. 
 From all of the solutions considered in 
previous works, none appear to take the 
approach of monitoring data on 3rd party 
platforms such as twitter. Currently, all 
approaches relies on transaction activity taken 
from crypto exchanges themselves. This 
suggests that this solution may be an option 
worth exploring. 

4 Problem 
The key problem which this paper aims to 
address, or at least begin addressing, is 
prevention of cryptocurrency ‘Pump and 
Dump’ schemes. As noted in the previous 
section, this is a class of scheme which has 
become far more popular in recent years.  
 As mentioned previously, these 
schemes rely on the orchestrated spreading of 
positive sentiment towards a targeted currency 
on social media. Twitter appears to be the 
most common platform used for this. As such, 
if a method for classifying, and in turn 
flagging, suspicious Tweets was available, the 
spread of this misinformation could be limited. 
In turn, potential victims of the scheme could 
be saved.  
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 Unfortunately, there is currently no 
such way of automatically discerning 
suspicious Tweets from non-suspicious. This 
is the problem to be addressed in this paper. 
The way in which it will be tackled is through 
the use of machine-learning and deep-learning 
algorithms. Currently, there have been no 
attempts at solving this issue.  
 There are several challenges unique to 
this problem. Firstly, if a classifier is to be 
deemed ‘fit for purpose’ for the task, it must 
be feasible for it to classify large volumes of 
data quickly and efficiently. If this is not the 
case, then although it may seem to be a well-
performing model, it is of little real-world use. 
 A classifier must also be trained using 
an appropriate dataset. Currently, no such 
dataset exists. Therefore, before different 
classifiers are trained, data must first be 
collected. If poor-quality data is collected, 
then the classifiers it produces will once again 
be of little or no use.  
  

5 Aims and Objectives 
This section will outline the overarching aims 
of the paper, as well as setting out some 
technical objectives. 

5.1 Data Collection 
Aim 1: Identify an active pump and dump 
group, or groups. 
 
Objective 1: Gain access to at least 1 discord 
or Telegram group in which Pump and Dumps 
are being orchestrated. This group should have 
at least 10 historic and verifiable Pump and 
Dumps. This should allow for sufficient and 
varied data to be collected. 
 
Aim 2: Using access to this group, create a 
record of past incidents. 
 
Objective 2: Use the Group(s) identified in 
Objective 1 to find the time, date, and 
cryptocurrency involved for at least 10 historic 
pump and Dumps. Store this information 
appropriately in such a way to be easily 
accessed by scripting languages, and 
expandable if new cases are discovered after 
initial creation. 
 
Aim 3: For each aforementioned case, 
formulate a suitable Twitter API query. 
 

Objective 3: Using the Twitter API query 
language described in Section 3.2.4, write a set 
of queries which collects Tweets relevant to 
each case posted within a suitable time 

window following the Pump announcement.  
 
Aim 4: Formulate API requests using records 
of past Pump and Dumps. Save responses to 
these requests appropriately. 
 
Objective 4a: Use records of previous cases 
(Objective 2) and queries (Objective 3) to 
formulate valid Twitter API requests. The 
requests should be built automatically based 
on the record and set to a timeframe relevant 
to the case. If a new case is added to the 
record, it should be possible to generate and 
API request relevant to it – maintaining 
expandability. 
 
Objective 4b: Save the responses to API 
requests in such a way that they can be 
accessed programmatically. It should also be 
clear which response relates to which 
cryptocurrency.  
 

5.2 Data Pre-Processing 
Aim 5: Extract from saved API responses a 
single string which represents each Tweet. 
Investigate which Tweet attributes lead to best 
classifier performance when extracted. 
 
Objective 5: For each Tweet in the set of saved 
API responses- incorporate Tweet contents, 
and any other attributes of the Tweet Object 
which improve classifier performance 
(evaluated by accuracy, precision, recall, and 
f1 score) into a single String. Store these 
strings in an appropriate data structure. 
 
Aim 6: Produce a labelled dataset from the 
saved API responses. 
 
Objective 6: Programmatically build a second 
data structure, which contains data labels for 
the strings described in Objective 5.  
 
Aim 7: Investigate Vectorization techniques, 
determine the most suitable technique. 
 
Objective 7: Identify and implement at least 

two vectorization techniques on the extracted 
strings. Compare and analyse their effects on 
classifier performance, as well as their speed 
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(time taken to vectorize strings) and efficiency 
(memory/processor usage). 

5.3 Model Training and Evaluation 
Aim 8: Train and evaluate performance of a 
simple classifier, to act as a baseline model. 
 
Objective 8: Select an appropriate machine 
learning (not deep learning) algorithm. Train 
algorithm on labelled dataset in order to attain 

‘baseline’ performance (precision, recall, 
accuracy, f1 score), which can be compared to 
other models in order to gauge their 
effectiveness. 
 
Aim 9: Train and optimise a neural network-
based classifier. 
 
Objective 9: Using labelled dataset Train two 

or more neural network classifiers. Compare 
different vectorization techniques and a 
selection of different layers in order to 
maximise performance. Identify the most 
effective model trained.  
 
Aim 10: Identify the best classifier produced. 
Aim 10: Critically compare the best neural 
network-based classifier to the baseline model. 
Consider all the aforementioned performance 
metrics, as well as computational efficiency, in 
order to justify a choice of the most effective 
classifier produced.  

6 Approach 
This section will outline a planned approach to 
meet the objectives outlined in Section 3. Like 
the Objectives, the approach can be sub-
divided into four main sections: Data 
Collection, Data Pre-processing, Model 
Training, and Model Evaluation. Where 
necessary, justifications for the approach are 
provided.  

6.1 Data Collection 
This section of the approach focusses on the 
initial collection of data, which can 
subsequently be pre-processed and used to 
train machine learning algorithms. This 
process is likely to pose a variety of challenges 
which will need to be addressed. 

6.1.1 Joining Pump and Dump groups 
To begin building a useful dataset, historic 
examples of Pump and Dump schemes would 
first need to be identified. As mentioned in 
Section 3.1.5, these schemes are often 

orchestrated over Discord and Telegram 
servers. As such, the first step would be to join 
one of these servers and gain access to its chat 
logs. This would provide insight into times, 
dates, and affected Cryptocurrencies for 
previous P&Ds. As these groups rely on self-
promotion to bring in new victims, it was 
hoped that a simple google search would be 
enough to uncover and join them. Joining at 
least one Pump and Dump group will achieve 
Objective 1 outlined in Section 3.  

6.1.2 Creating record of previous 

Pump and Dumps 
Once at least one P&D group had been joined, 
the next task will be to use the chat logs to 
create a record of previous schemes. To make 
the record accessible programmatically as 
described in Objective 2, the Comma 
Separated Variable (CSV) file format will be 
used. This file format was chosen as it is not 
only lightweight, but also easily accessed 
using Python’s built-in ‘CSV’ module. The 
planned structure of the file is as follows: 
 
Name, Symbol, Pump Date, Pump Time, Query 

 
Each new line in the file will represent a 
different case.  

‘Name’ refers to the full name of the 
cryptocurrency. It is useful to include this 
information as it helps distinguish each case. It 
may also become useful when removing 
keywords in the pre-processing stage.  

‘Symbol’ refers to the three- or four-
letter symbol of the cryptocurrency. For 
example, for bitcoin this would be $BTC. This 
information is useful to record for much the 
same reason as ‘Name’.  

As the names suggest, Pump Date and 
Pump Time refer to the date and time at which 
the Pump was initiated.  

Finally, query refers to a query which 
could be sent as part of an API request in order 
to gather Tweets relevant to the currency in 
question. This will differ from currency to 
currency and will likely take some 
experimentation for each in order to optimise. 

This record will be referred to as log.csv 
in subsequent sections. 

6.1.3 Querying Twitter API 
As mentioned in the Background section, the 
30-day and full archive search API endpoints 
offered by Twitter can be accessed using 
HTTP Post requests with specific parameters.  
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 To access these endpoints, a Twitter 
Developer account will first be required. This 
will require authorisation from Twitter. Upon 
gaining developer access, a bearer token can 
be generated, which will be used for 

authentication when making API requests. It 
should be noted that unlimited access to the 
API endpoints is only available to academic 
developer accounts – should Twitter not 
approve this then this project will be 
constrained to a limited number of requests. 
 Once developer access is obtained, a 
python script, which from now on referred to 
as GetTweets.py will be written which should 
act as follows: 

• Reads log.csv line by line. 

• Displays to the user a list of recorded 
cases. 

• Allows the user to select a case. 

• Uses the fields Pump Date, Pump 
Time, and query to automatically 
form a valid HTTP POST request for 
the selected case. 

• Send this request, save the JSON 
response to an appropriately named 
file. 

In this way, data for each recorded case can be 
accessed programmatically, request 
formulated, and responses saved- as set out in 
Objective 4a and Objective 4b. It should be 
noted that requests could be hand-written for 
each case, however the above approach has a 
number of benefits. 
 Firstly, if a new case is added to 
log.csv at a later point, then GetTweets.py will 
allow an API request/response to be sent and 
received seamlessly. 
 Secondly, this method reduces the 
possibility of a human error leading to an 
invalid or inaccurate API request. As 
illustrated in Section 3.2.2, API requests do 
not have user-friendly formatting. A single 
mistype may result in the wrong data being 
collected, which in turn would lead to a worse 
classifier down the line.  
 Finally, as touched on previously – 
there may be a limit on the number of API 
requests that can be made to each endpoint. If 
this is the case, then GetTweets.py can be used 
to select the appropriate endpoint based on the 
date of the case. This will be beneficial to 
working around the constraint.  
 

6.1.4 Gathering non-suspicious 

activity 
To build a useful dataset, attention must also 
be given to collecting baseline activity. This 

activity should be representative of ‘normal’ 
traffic for a cryptocurrency, and as such 
should be collected when it can be 100% 
certain a Pump and Dump scheme is not 
underway.  
 Using the list of previously pumped 
cryptocurrencies stored in log.csv may be 
challenging. This is since, as discussed in 
Section 3.1.5, the same cryptocurrency will 
often be targeted multiple times. It is difficult 
to ensure that traffic is ‘normal’, and a pump is 
not being instigated by another group.  
 For this reason, a different approach 
will be taken to collect baseline data. A new 
set of Cryptocurrencies will be selected; those 
with a large enough market cap where it would 
be nearly impossible for a single group to 
Pump. In this way, it can be guaranteed that 
the traffic was not taken as a P&D is 
happening.  
 To ensure that the dataset remains 
balanced, the number of baseline Tweets 
gathered should be close to the number of 
suspicious Tweets. A balanced 50/50 split will 
be aimed for - although 10% either way will 
be deemed acceptable. 
 In order to collect these Tweets, the 
functionality of GetTweets.py will be 
expanded. A second file, called baseline.csv, 
with the same structure as log.csv will be read 
to formulate queries. This will happen much in 
the same way as described in the previous 
section. The script should provide this 
functionality based on user input. 
 As mentioned previously, the target 
cryptocurrencies for which non-suspicious 
activity will be collected should have high 
market caps. As of writing this paper, the 10 
currencies with the greatest market caps are: 

Figure 2 - Using GetTweets.py to access the API endpoints 



Page 14 of 26 
 

1) Bitcoin (BTC) 
2) Ethereum (ETH) 
3) Cardano (ADA) 
4) Tether (USDT) 
5) XRP (XRP) 
6) Dogecoin (DOGE) 
7) Polkadot (DOT) 
8) Solana (SOL) 
9) Terra (LUNA) 
10) Avalanche (AVAX) 

It was decided that these will be the target 
cryptocurrencies recorded in baseline.csv. Due 
to their popularity, it is expected that there will 
be a wealth of Twitter traffic regarding them.  

6.2 Data pre-processing 
Following its collection, data must next be 
processed into a format suitable for machine 
learning algorithms.  

6.3 Retweets 
 

6.4 Removing Stop words 
One of the difficulties faced when training 
machine learning and deep learning classifiers 
is the risk of overfitting. For this reason, 
before the collected data was used for training, 
efforts would be made to prevent overfitting. 
 To do this, all keywords relating to the 
subject cryptocurrency of a Tweet will be 
stripped from its contents. It is believed this 
will benefit the final classifiers because it will 
prevent overfitting. Classifiers will not make 
predictions based on the subject 
cryptocurrency. For example, if non-
suspicious traffic is collected for the 
cryptocurrency ‘DOGE’, a classifier may 
classify any Tweets containing DOGE-related 
keywords as non-suspicious. The aim of this 
project is to create a classifier capable of 
making predictions regardless of the target 
currency, therefore this should be avoided. 
 Removing all mention of the subject 
cryptocurrency should be fairly 
straightforward. The approach taken to do this 
will involve first keeping record of the subject 
cryptocurrency of each Tweet.  
 This string representing the subject 
can then be used to generate a set of other 
variations of the cryptocurrency’s name. The 
name variations which will be removed will 
be: 

• # + Crypto Symbol 

• $ + Crypto Symbol 

• # + Crypto full name 

• $ + Crypto full name 

• Crypto Symbol 

• Crypto Full Name 
These strings should be simple to generate and 
strip from the contents of the Tweet. 
 In this way, the subject cryptocurrency 
of each Tweet should become ambiguous. 
  

6.5 Vectorization techniques 
After initial pre-processing, the contents of the 
Tweets must be vectorized. As discussed in 
the background section, there are many 
different approaches which can be taken to 
generate a vector representation of a string. In 
this paper, three such methods will be 
implemented and evaluated. The following 
section will discuss each method and identify 
an approach which can be taken to implement 
them.  

6.5.1 ‘Bag of Words’ Vectorization 
This simplistic approach to vectorization 
encodes data relating to the frequency of each 
word within a string as a vector. As discussed 
in Section Error! Reference source not f

ound., no data regarding the semantic 
meaning or position of a word can be encoded 
in ‘Bag of Words’ vectorization. It was still, 
however, decided that this technique was 
worth exploring because: 

• Computationally light. This approach 
does not require complex computation 
or training.  

• It is still widely regarded as an 
effective feature extraction method for 
classification of text.  

Considering implementation, strings can be 
vectorized using Sklearn’s built in 
Countvectorizer function.  

6.5.2 Training Word Embeddings 
Word embedding techniques vectorize words 
within text in such a way that semantic and 
positional information is also encoded. When 
vectorized, words with similar meaning should 
be close to one another in the vector space. In 
order to build an ‘embedding space’, word 
embeddings must be trained. Some approaches 
to this training include using neural networks 
(e.g. word2vec), or matrix factorization (e.g. 
GloVe). The next approach to be considered 
for vectorization will be to generate an 
‘embedding space’ from the dataset and use 
this to vectorize each word contained in the 
Tweets. This approach was chosen to 
investigate because: 
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• Unlike Bag of Words, also encodes 
semantic meaning behind words.  

• One of the most common methods of 
vectorization available today. 

Word embedding vectorization can be 
implemented using the built in Keras Class 
Tokenizer and the layer Embedding.  

6.5.3 Word2vec Word Embeddings 
The final method of vectorization to be 
considered will also use the concept of word 
embeddings – however, this approach will take 
a set of pre-trained embeddings created by the 
aforementioned ‘word2vec’ neural network. 
This approach wil be considered because: 

• These embeddings were created using 
a considerably more sizeable dataset 
(3 billion words taken from google 
news). As such they are likely to 
encode semantic meaning more 
accurately.   

To implement this approach, the precomputed 
embeddings will first have to be downloaded 
from the official source. Following this, the 
Genism package can be used to load the file 
and produce an ‘embedding matrix’. This 
embedding matrix can then be passed to a 
Keras embedding layer.  

6.6 Neural Network Layers 
Following pre-processing and vectorization, a 
series of different neural network layouts can 
be tested. These networks will use different 
combinations of Keras layers. The keras layers 
to be added and removed will be discussed in 
this section. 

6.6.1 Embedding Layer 
The Keras embedding layer can be utilised to 
embed semantic meaning of vectorized words. 
Some of the vectorization methods described 
previously can be implanted with or without 
this embedding layer. For these, the effects of 
adding and removing the layer will be 
measured. In this way, performance/time 
payoff of including this layer can be analysed.  
 Implementing an embedding layer 
using Keras is fairly simple, it is available as a 
subclass of the layer class, called 
layers.Embedding.  

6.6.2 Convolutional Layer 
Convolutional neural networks (CNN) are at 
the forefront of two dimensional computer 
vision and pattern recognition. However, they 
are versatile enough as to where they are also 
capable of one dimensional text classification 

problems. Because of this, it was decided to 
also investigate whether using a convolutional 
layer in the network structure yields better 
performance. Convolutional layers were an 
area of interest because: 

• Proven ability in other fields such as 
computer vision 

• Effective at recognising complex 
patterns 

Implementation should once again be done 
using Keras. Specifically, the conv1d layer 
type.  

6.7 Baseline Model 
Alongside the neural-network classifiers, a 
‘baseline’ model should be trained. The 
algorithms chosen for this model will be the 
‘support vector machine’ algorithm discussed 
previously. This algorithm was chosen 
because: 

• It is known to be very computationally 
light. 

• Known to be especially effective for 
classification problems. 

It should be straightforward to implement this 
classifier using Sklearn. It was deemed 
necessary to train a baseline model because: 

• Allows a frame-of-reference when 
analysing the neural models. If the 
neural models do not perform better 
than a simplistic approach such as 
SVM, then their suitability for the task 
at hand is brought into question. 

6.8 Model Training and Evaluation 
The previous section outlines the different 
Vectorization methods and Network structures 
which will be investigated. Following this, an 
approach for how best to test and compare 
these models will be laid out. 

6.8.1 Performance Metrics 
The metrics of performance which will be 
used to evaluate the models produced are: 

• Accuracy. This metric measures the 
number of correct classifications made 
by a model over all predictions. As 
this metric is especially useful when 
classes in the dataset are balanced, it 
will be used for comparison. 

• Precision. Provides an indication of 
what proportion of Tweets which were 
predicted a certain label are actually 
that label. This will be included as it is 
another useful way of measuring and 
comparing classifier performance 
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• Recall. This measure will indicate 
what proportion of Tweets of a given 
label (suspicious or non-suspicious) 
were correctly identified as such. 
Another useful measure of classifier 
performance. 

• F1 Score. A measure which combines 
precision and recall. Will be included 
as it is  useful for visualising both 
simultaneously. 

• Vectorization Time Taken. As 
discussed in Aims and Objectives, one 
of the key goals for the solution 
produced is to not only perform well, 
but also quickly. A fast, lightweight 
model would be more suitable for this 
type of task as if it was to be applied 
to ‘real world’ live data, it would have 
to make a significant number of 
predictions as quickly as possible.  As 
such, the time taken for vectorization 
to be carried out will also be recorded 
and analysed.  

• Training Time Taken. For identical 
reasons to vectorization time, training 
time will also be recorded.  

6.8.2 Models to Be Tested 
There are several different combinations of 
models to train, based on the variables set out 
in Sections 6.5 and 6.6. 
 The possible model combinations 
based on these variables are: 
 

1. Bag of Words vectorization, no 
embedding layer, no convolutional 
layer 

2. Keras Tokenizer vectorization, no 
embedding layer, no convolutional 
layer 

3. Keras tokenizer, with embedding 
layer, no convolutional layer 

4. Keras tokenizer, with embedding layer 
and convolutional layer 

5. Word2vec vectorization, with 
embedding layer, no convolutional 
layer. 

6. Word2vec vectorization, with 
embedding layer and convolutional 
layer. 

7. Baseline model 

6.8.3 Generating and Testing models 
It would undoubtedly be too time consuming 
to hand-code each model separately. As such, 
a programmatic solution for generating each 

model should be implemented. This should be 
done as follows: 

• Define a new Python class, 
Model 

• This class should initialise 
with arguments describing 
model structure, e.g. 
embedding layer = True, 
vectorization = ‘Bag of 
Words’ etc.  

• Based on these arguments, the 
Class should generate a 
corresponding model. 

• The class should then have an 
attribute which stores the 
defined performance metrics 
for the model.  

• The class should also time 
how long training and 
vectorization take for the 
specified model, and store this 
information as an attribute.  

Using this approach will allow each model to 
be created quickly, and its performance 
recorded automatically. This approach greatly 
reduces the risk of a human error introduced 
into code leading to invalid results.  

6.8.4 Identification of Most Suitable 

Model 
Collecting the aforementioned performance 
metrics will be of no use unless they can be 
analysed to identify the most ‘fit for purpose’ 
model trained. This decision should be made 
not only on which model scores the highest 
performance, but also how time efficient a 
given model is. How this decision is made 
depends on the results produced, however a 
justification of the decision should be 
provided.  

7 Implementation 
The following section will describe how the 
approach set out in Section 6 was followed. In 
cases where it has been deviated from, a 
justification of why this was necessary will be 
given. 
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7.1 Data Collection 

7.1.1 Joining ‘United Binance Pumps’ 
To begin the data collection process, the Pump 
and Dump discord group ‘United Binance 
Pumps’ was joined. This group proved simple 
to identify and join using the method outline in 
Section 6.1.1.  

7.1.2 Recording Historic schemes 
After gaining access to the group, a file named 
log.csv was made. This CSV file would be 
used to record details of previous pump and 
dumps.  
 The previous pump announcements 
for the group were then observed. For each 
announcement, its price action on Binance at 
the time of the announcement was used to 
cross reference and confirm a pump had taken 
place. In this way, a list of confirmed incidents 
was built. When each incident had been 
confirmed, it would be recorded by hand in 
log.csv.  

 
Figure 4 - Example of historic Pump on 'United Binance 
Pumps' 

 
Fortunately, the group had partaken in 
multiple schemes, so there was a wealth of 
examples to pick from. The structure used for 
log.csv was identical to that planned in Section 
6.1.2 – excepting one change. As Twitter had 
not approved academic access to the API for 

this paper, the 30-day and full archive 
endpoints would have to switched between in 
order to avoid the access limits set. To allow 
this to happen, another column was added to 
log.csv, named which specified which 
endpoint to use to make the query. 15 Cases 
were recorded in total.  

 
 

7.1.3 Collecting Tweets with 

GetTweets.py 
Next, a Python script – ‘GetTweets.py’ was 
written. This script was designed to function 
as described in Section 6.1.3. It uses a custom 
function, named premium search to query the 
API, and saves the JSON response. It provides 
a basic interface to allow selection of which 
case recorded in log.csv to access.  

It takes the dates stored in log.csv and converts 
them into the format required by the API 
endpoints.  

Figure 5 - 'United Binance 
Pumps' Discord Group Chat 

Figure 3 - The contents of log.csv 

Figure 6 - A function capable of formulating Twitter API 

queries 
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Once a case is selected, a corresponding JSON 
response is received and dumped to a file.  
 One complication which arose at this 
point was the fact that some of the queries 
written in log.csv were not fit for purpose. 
They either returned irrelevant Tweets or 
contained invalid syntax. In cases where this 
was true, a trial-and-error approach was taken 
in order to formulate a more effective query. 
In this way, data was collected for every case 
recorded in log.csv.  

7.1.4 Gathering non-suspicious 

activity 
The next step laid out in the approach was to 
collect non-suspicious activity. This was 
achieved by creating a second log.csv file in a 
different directory and extending the 
functionality of GetTweets.py.  
 The structure of this second log.csv is 
similar to the original, however the 
information stored relates the 10 large-cap 
currencies identified in Section 0. A query to 
send as part of the API request was once again 
written.  

 
Figure 10 - Secondary interface added for collection of 
non-suspicious Tweets 

7.2 Data Pre-processing 

7.2.1 Loading JSON files 
Following data collection, two directories 
named ‘base’ and ‘case’ respectively had been 
generated. Inside these directories were sets of 
JSON files containing API responses received 
by GetTweets.py. The next step outlined in the 
Approach involved taking these files and 

producing ‘algorithm ready’ data structures 
from them.  

Figure 7 - Interface provided by GetTweets.py 

Figure 9 - Additional code added to GetTweets.py to allow non-
suspicious Tweets to be collected 

Figure 8 - Directory structure following 
collection of suspicious and non-suspicious 

Tweets 
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 To begin this process, a Python Class 
named Dataset was written. This Class 
initialises with one argument – Data 
Locations. This argument is a tuple which 
contains the paths to the two directories 
containing API responses. This Class has two 
other attributes, Dictionary and Annotated 
List. The dictionary attribute is a python 
dictionary, in which every Tweet from each 
JSON response is stored. Each Tweet within 

the dictionary is given a unique ‘ID’. All 
Tweet information contained in a Tweet object 
is stored in this Dictionary.  
Tweets in this Dictionary are also given two 
new attributes named ‘annotation’ and 
‘keywords’. The annotation attribute will be 
equal to 0 if a Tweet is deemed suspicious, 
and 1 if not. Keywords contains a list of words 
relating to the cryptocurrency which are to be 
stripped from the Tweet to avoid the issues 
described in 6.4. The words included in 
keywords for a given currency, as set out in 
the approach, are: 

• # + Crypto Symbol 

• $ + Crypto Symbol 

• # + Crypto full name 

• $ + Crypto full name 

• Crypto Symbol 

• Crypto Full Name 
It should be noted that a case-insensitive 
approach was taken, so keywords are stored in 
uppercase only.  
 The second property of the Dataset 
class is Annotated List. This property is a tuple 
containing two lists. The first item in this tuple 
is a list of Tweet contents, and the second is a 
list of annotations. The location of an item in 
the first lists corresponds to the location of an 
annotation in the second. ‘Tweet contents’ 

refers to the text extracted from the Tweet 
objects stored in the Dictionary attribute.  
It should be noted that the information stored 
in the newly created ‘Keywords’ attribute for 

each Tweet is stripped from the Tweet text 
before being added to the Tweets list. Extra 
whitespace is also removed from Tweets. 

7.3 Model Training 

7.3.1 Baseline Model 
The first model trained was the ‘baseline’ 
model. This model uses the support vector 
machine algorithm to train a binary classifier.  
 Firstly, an instance of the Dataset 
class is created, which reads all of the saved 
API responses to form a list of Tweets and a 
list of annotations, as discussed previously. 
Once these lists have been generated they are 
divided into training and test sets using 
Skelarn’s Train_Test_Split() function. 

 
Before being fed into the algorithm, 

Tweets are vectorized using CountVectorizer – 
an implementation of the Bag of Words 
vectorization method provided in the Sklearn 
package. Once the vectorizer is fitted to the 
training data, it can be used to transform both 
the training and test set of Tweets. 

Figure 12 - Dictionary property of 'Dataset' class 

Figure 11 - Stripping keywords from tweet contents 

Figure 13 - Creating Dataset instance and splitting data 

into training and testing sets 

Figure 14 - Bag of Words vectorization of training 
and test sets 
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Following this, an instance of a svm classifier  
is created and fitted to the data.  

Finally, the model is used to make predictions 
on the test set. The predicted annotations are 
then compared to the real annotations in order 
to gather performance metrics. Metrics are 
gathered using Sklearn’s classification_report 
function, and saved to a file. As well as 
performance metrics, the time taken for 
vectorization and model training is also 
recorded and saved.  

 
Figure 16 - Recording time and classifier performance 
metrics 

7.3.2 Keras models 
Following the creation of the baseline model, a 
series of deep learning models were created, 
and their performance measured using Keras. 
As multiple models were to be created and 
analysed, a new class was written, called 
Model. This class initialises with the following 
arguments: 

• vectorization – A string which denotes 
which vectorization technique the 
model should use.  

• embedding_layer – A Boolean which 
is set to true if th model includes an 
embedding layer 

• conv_layer – A Boolean which is set 
to True if the model is convolutional 
(contains a convolutional layer) 

• dataset – An instance of the 
previously defined Dataset class 
which contains the data used to train 
the models.  

 

7.3.3 Vectorization techniques 
The first variable to be investigated when 
training the model was the vectorization 
technique used. As set out in the approach, the 
vectorization techniques chosen to be 
investigated are: 

• Bag Of Words 

• Word embeddings trained only on 
dataset 

• Pre-trained word embeddings based 
on ‘Word2Vec’ 

In order to implement each of these 
techniques, the Model class was expanded.  
 During initialisation, the argument 
vectorization is checked, and depending on its 
value, the tweets contained in the dataset are 
vectorized in different ways. For example, if 
the value of the vectorization argument is set 
to the string ‘Keras’, then the Tweets are 
vectorized using the Keras tokenizer function, 
as shown in the below figure. 

If it is set to ‘BoW’, then Sklearn’s count 
vectorizer is implemented: 

And finally, if it is set to ‘Word2Vec’, then 
pretrained Word embeddings based on the 

google news dataset will be implemented: 
 
 

Figure 15 - Training the baseline model 

Figure 17 - The initialisation function for the Model class 

Figure 18 - Vectorization using the keras 'tokenizer' 

function 
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7.3.4 Embedding Layers 
The second network feature to be investigated 
is the inclusion of an embedding layer. Once 
again, whether to include this layer or not is 
set during the initialisation of a Model 
instance. It should be noted that for the 
word2vec vectorization method, it is not 
possible to leave out the Keras embedding 
layer. A simple if statement within the model 
class allows the embedding layer to be 
added/excluded for a given model. The 
embedding layer will also include different 
parameters when used with word2vec. 

 
Figure 19 - Using the model class to control whether a 
given model includes an embedding layer or not. 

7.3.5 Convolutional Layers 
A one-dimensional convolutional layer could 
also be added/removed from the model using 
an argument passed during the initialisation of 
a Model object. The convolutional layer could 
only be added to those models which already 
contain an embedding layer.  

 
Figure 20 - Logic for adding a convolutional layer to the 

neural network 

7.3.6 Measuring training and 

vectorization times 
The time taken for each model to vectorize 
and train was recorded using Python’s built in 
time.time().  

7.3.7 Collecting Performance Metrics 
As demonstrated, the Model class would build 
a neural network based on arguments given to 
it during initialisation. This allowed multiple 
models to be built quickly, without manually 
typing them out. The next functionality which 

was added to the Model class would allow 
metrics for a given network to be saved, and 
later used for comparison and analysis.  
 In order to do this, the generated 
model would be used to make a set of 
predictions on the training set of Tweets (in 
the same way the baseline model had 

previously). The Sklearn classification_report 
could then be used to compare the predictions 
to the actual labels and calculate precision, 
recall, accuracy, and f1 metrics.  
The method eval_model() in the Model class 
provided this functionality. It would return the 
classification report as a Dictionary, adding in 
vectorization and training times. 

7.3.8 Naming models using __repr__()  
It was important that after being initialised, 
which instance of class represented which 
model could be easily distinguished. This was 
achieved using the built-in __repr__() 
function. This function was overridden so that 
it output the parameters for a given model, in 
the format: 
 

vectorization=  embedding=  convolutional=  
 
This would allow the construction of a model 
to be tested easily by calling str(model).  

7.3.9 Generating models 
Upon finishing the Model Class, the set of 
models to be analysed could be generated 
quickly and easily. Six instances of this class 
were created, each of which representing a 
different neural network. 

Figure 21 - Using 'word2vec' pretrained word 

embeddings 

Figure 22 - Using the generated model to make 
predicitons for the test set and creaing a classification 
report 

Figure 23 - The six different neural network configurations tested 
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The result of running the eval_model() 
function on each of these instances was then 
combined in a single dictionary. The key 
representing a model was equivalent to the 
output of its __repr__() function. This 
dictionary was then dumped to a file using the 
JSON module.  
 

8 Results 
8.1.1 Numbering models 
Each model has been given a number which 
will be used to represent it. This was done to 

improve graph readability. The full name to 
number pairings can be viewed below: 

Model 
number 

Configuration 

1 vectorization=’BoW’ 
embedding=False 
convolutional=False 

2 vectorization=’Keras’ 
embedding=False 
convolutional=False 

3 vectorization=’Keras’ 
embedding=True 
convolutional=False 

4 vectorization=’Keras’ 
embedding=True convolutional=True 

5 vectorization=’word2vec’ 
embedding=True 
convolutional=False 

6 vectorization=’word2vec’ 
embedding=True convolutional=True 

7 Baseline 

Graphs were created using matplotlib, taking 
data directly from the files generated in 
Section 7.3.9.  

8.1.2 Precision 
As illustrated in the graph above, the best 
performing models in terms of precision are 
models 1 and 3 both of which had a precision 
of 0.94.  
  There is little to separate 
Models 1, 3, 4, 5, 6, and 7. Model 2 scores 
considerably worse than the other models, 

with a score of 0.62. In this case, it appears the 

neural network based approach scores only 
0.01 better than the baseline (model 7). 

8.1.3 Recall 
Once again, models 1 and 2 score best in this 
metric. They are closely followed by models 4, 
5, 6, and 7. With only a 0.03 difference in 
score between all of these models. 
 Model 2 once again lags considerably 
with a score of 0.61. 
 In this case, models 1 and 3 score 0.02 
higher than the baseline model.  
 

Figure 24 - Saving performance metrics for each model 

generated 
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8.1.4 F1 Score 
As the harmonic mean of precision and recall, 
it is no surprise to see models 1 and 3 score 
highest for this metric.  

8.1.5 Accuracy 

Considering accuracy, there is once again little 
to separate each model. Models 3-7 have 
identical scores, while model 1 scores 0.01 
lower.  
 Once again, the only outlier is model 
2, with an accuracy of 0.58 (slightly better 
than random). 

8.1.6 Training time 

 

Viewing the training times for each model, 
greater differences begin to emerge. As 
expected, the Support vector machine-based 
baseline model trains in a fraction of the time 
of the deep-learning models.  
 The two models that take the longest 
are 4 and 5. Interestingly, despite the 
additional convolutional layer in model 6, it 
trains faster than its non-convolutional 
counterpart model 5.  
 Models one and two train considerably 
faster than the other neural models, possibly as 
these do not have an embedding layer.  

8.1.7 Vectorization time 

The results of this measurement clearly 
indicate that the ‘word2vec’ word embeddings 
concede a significant time penalty for training, 
as these two models take hundreds of times 
longer to vectorize.  
 Vectorization times for the other 
models, including the baseline, are negligible.  

8.1.8 Most Suitable Model 
The final goal of this project is to identify the 
most suitable model for the task at hand- 
detecting Twitter traffic which indicates a 
Pump and Dump is occurring. To do this, all 
the metrics touched upon previously will be 
considered and used to justify a final decision.  
 As mentioned previously, models 1 
and 3 have the joint highest Precision, Recall, 
Accuracy, and F1 scores. They are therefore 
the ‘best performing’ models. One key 
difference between these models is training 
time. While Model 3 took 65 seconds to train, 
model 1 took a mere 6.89. This suggests that it 
is far less computationally intensive.  
 Due to the fact that Model 1 has the 
best performance metrics and takes almost a 
tenth of the time to train in comparison to 
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model 2, it seems that this is the most suitable 
model.  
 It should be noted that another 
contender for the most suitable model would 
be the ‘baseline’ model – model 7. This model 
scores marginally lower (between 0.01 and 
0.02 on most metrics), but trains in a miniscule 
amount of time when compared to the neural 
models. Further testing, possibly on more 
unseen data, would be required to surely 
determine whether this model is as effective as 
it seems.   

9 Analysis 
The chosen model, and all but one other model 
generated, scores 0.9+ in all relevant metrics, 
which on the surface appears impressive.  
 However, there are several possible 
explanations for why these models all 
performed so well. First, there is a possibility 
that the models are overfitted to the dataset. 
The decision was made earlier in the project to 
collect all Twitter traffic, including retweets, 
for each cryptocurrency. As a result of this, the 
data includes some Tweets repeated multiple 
times. There is a possibility that due to the 
repetition of some Tweets, the models became 
trained to those Tweets specifically, and as 
such had no need to use the semantic meaning 
or language of the Tweet to make a 
classification for much of the test set.  
 There is also the possibility that 
overfitting has occurred due to other decisions 
made during the data collection process. For 
example, the decision was made to collect 
‘non-suspicious’ data for different 
cryptocurrencies to those targeted for 
‘suspicious’ data. Although efforts were made 
to make the tweets more ambiguous (by 
removing any mention of the subject 
currency), there is a possibility that the 
different sources caused some ‘data leakage’. 
Perhaps users talk about different currencies 
using different language, or the measures 
taken to delete any mention of the currency 
were not effective enough.  
 Although massively popular for a 
wide range of uses, the results of this project 
indicate that neural network based approaches 
may not be the most suitable solution to the 
problem. Despite taking considerably longer, 
the results that they produce were only 
fractionally better than the SVM algorithm. 
The SVM algorithm is considerably more 

‘lightweight’, therefore more suitable for use 
on large datasets in the future.  
 Despite the possibility that the models 
are overfitted, the results are still promising. 
This is one of the first attempts at producing a 
model for this binary classification problem, 
and so it is not unsurprising there are errors 
made in parts of the approach. Tweaks made 
to the dataset to reduce overfitting could 
provide further improvements to the final 
classifier. 

10 Conclusion 
This paper aimed to provide a solution for 
detecting, and theoretically preventing, 
cryptocurrency Pump and Dumps. This was 
approached by first carefully recording historic 
cases, and using these to construct a dataset of 
Tweets. These Tweets could then be used to 
train a classifier. Investigation into what type 
of machine learning classifier best fit the 
problem at hand was then carried out.  
 The final classifier produced appears 
to perform impressively. It scores highly (over 
0.9) for precision, recall, accuracy, and f1 
score. It also appears that the time required to 
vectorize text and train a classifier is minimal 
in comparison to other models, taking just 6 
seconds for training.  
 Although this appears promising, there 
are several other explanations for the high 
numbers, all of which are centred around the 
dataset used for training. These explanations 
include overfitting and data leakage. Further 
improvements into the data collection process 
outlined in this paper may therefore improve 
upon the classifier generated.  

11 Future Work 
The dataset produced in this project could 
certainly benefit from expansion. Around 15 
pump and dump cases were used to build the 
dataset. With additional research more cases 
could be identified and added, increasing the 
size of the dataset and potentially improving 
the future classifiers. 
 Work could also centre on filtering the 
contents of the dataset in order to combat 
overfitting and data leakage. Possibly 
exploring options such as ignoring retweets or 
stripping all punctuation could lead to a more 
fit-for-purpose classifier.  
 Finally, there are certainly far more 
possible algorithms and neural network classes 



Page 25 of 26 
 

which could be considered. From simplistic 
approaches such as logistic regression, to 
exploring different classes of neural network 
such as recurrent neural networks, there are a 
host of possibilities which may be explored. 

12 Reflection 
Despite difficulties faced as a result of the 
COVID-19 pandemic, I am happy with the 
final result of this project.  
 Despite this, it has certainly been more 
challenging than I initially expected. Even the 
first task – gaining a Twitter researcher 
account – did not go as planned. Initially the 
project plan was to incorporate the chosen 
classifier into some kind of live monitor, 
however this proved unfeasible as the time 
required for data collection was longer than 
expected.  
  I believe that this project has 
hopefully contributed something to combatting 
these Pump and Dump schemes. The 
pandemic has undoubtedly created financial 
vulnerability for many, and any new methods 
of preventing these people from being 
exploited should be explored.  
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