
Cardiff University School of Computer
Science and Informatics

“Using Machine Learning to Detect
Cryptocurrency Scams”

Author: Callum Haine

Supervisor: Amir Javed

Page 2 of 26

Table of Contents

1 Preamble ... 4

1.1 Abstract ... 4

1.2 Acknowledgments... 4

2 Introduction .. 4

3 Background & Related Works ... 5

3.1 Cryptocurrency .. 5
3.1.1 Overview .. 5
3.1.2 Cryptocurrency Exchanges .. 5
3.1.3 Lack of Regulation ... 6
3.1.4 Conventional Pump and Dump Schemes ... 6
3.1.5 Crypto Pump and Dump Schemes ... 6

3.2 Twitter API V1.1 .. 7
3.2.1 Overview .. 7
3.2.2 ‘Full Archive’ and ’30 Day’ Endpoints ... 7
3.2.3 ‘Tweet’ JSON Objects ... 8
3.2.4 Query Language ... 8

3.3 Machine Learning Concepts and Techniques ... 8
3.3.1 Overview .. 8
3.3.2 Bag of Words vectorization ... 8
3.3.3 Word Embedding ... 9
3.3.4 Support Vector Machine .. 9
3.3.5 Artificial Neural Networks ... 9
3.3.6 Convolutional Neural Networks .. 10

3.4 Python Libraries ... 10
3.4.1 Overview .. 10
3.4.2 Sci-kit learn .. 10
3.4.3 Keras .. 10

3.5 Existing Works ... 10

4 Problem ... 10

5 Aims and Objectives ... 11

5.1 Data Collection ... 11

5.2 Data Pre-Processing ... 11

5.3 Model Training and Evaluation .. 12

6 Approach .. 12

6.1 Data Collection ... 12
6.1.1 Joining Pump and Dump groups .. 12
6.1.2 Creating record of previous Pump and Dumps .. 12
6.1.3 Querying Twitter API .. 12
6.1.4 Gathering non-suspicious activity .. 13

6.2 Data pre-processing.. 14

6.3 Retweets... 14

6.4 Removing Stop words .. 14

6.5 Vectorization techniques.. 14
6.5.1 ‘Bag of Words’ Vectorization .. 14
6.5.2 Training Word Embeddings ... 14
6.5.3 Word2vec Word Embeddings .. 15

Page 3 of 26

6.6 Neural Network Layers ... 15
6.6.1 Embedding Layer ... 15
6.6.2 Convolutional Layer... 15

6.7 Baseline Model .. 15

6.8 Model Training and Evaluation .. 15
6.8.1 Performance Metrics .. 15
6.8.2 Models to Be Tested... 16
6.8.3 Generating and Testing models .. 16
6.8.4 Identification of Most Suitable Model ... 16

7 Implementation .. 16

7.1 Data Collection ... 17
7.1.1 Joining ‘United Binance Pumps’ ... 17
7.1.2 Recording Historic schemes ... 17
7.1.3 Collecting Tweets with GetTweets.py .. 17
7.1.4 Gathering non-suspicious activity .. 18

7.2 Data Pre-processing ... 18
7.2.1 Loading JSON files .. 18

7.3 Model Training ... 19
7.3.1 Baseline Model... 19
7.3.2 Keras models .. 20
7.3.3 Vectorization techniques .. 20
7.3.4 Embedding Layers ... 21
7.3.5 Convolutional Layers ... 21
7.3.6 Measuring training and vectorization times ... 21
7.3.7 Collecting Performance Metrics .. 21
7.3.8 Naming models using __repr__() .. 21
7.3.9 Generating models ... 21

8 Results ... 22
8.1.1 Numbering models ... 22
8.1.2 Precision ... 22
8.1.3 Recall.. 22
8.1.4 F1 Score ... 23
8.1.5 Accuracy .. 23
8.1.6 Training time .. 23
8.1.7 Vectorization time .. 23
8.1.8 Most Suitable Model .. 23

9 Analysis ... 24

10 Conclusion .. 24

11 Future Work ... 24

12 Reflection .. 25

13 References .. 25

1 Preamble
1.1 Abstract
This paper will explore the possibility of using
machine learning and deep learning algorithms
to identify Twitter traffic relating to
cryptocurrency Pump and Dump schemes.
 To do this, historic examples of
schemes will be used to construct a suitable
dataset. This dataset will then be utilised to
train both neural networks and support vector
machine classifiers. Performance metrics will
then be used to suggests the most fit for
purpose classifier.

1.2 Acknowledgments
I would like to thank my supervisor, Amir, for
his continued support.

2 Introduction
The past few years has seen a marked increase
in public interest towards cryptocurrencies as a
means to store, grow and protect personal
wealth. It is estimated that 3.3 million
individuals in the UK – around 5% of the
population - currently own some form of
cryptocurrency (1). More recently, the
COVID-19 pandemic seems to have spurred
the growth in popularity for cryptocurrency
assets; in Q1 of 2021, during the third national
lockdown, 3 of the 10 most downloaded apps
relate to the buying and selling of
cryptocurrencies (2), and the value of Bitcoin
has risen astronomically. The aforementioned
statistic truly highlights the fact that
cryptocurrencies have reached mainstream
appeal; they are simply a few taps away and
can be purchased by individuals who have no
knowledge of the technical intricacies on
which they rely.
 Unfortunately, this means that many
make uninformed investments. Unlike
traditional stock investments, where buyers
carry out due diligence on the stocks they wish
to buy, many crypto investors purchase based
on the recommendations of others. This opens
the door for scammers who, aided by the
ubiquitous and instantaneous nature of the
internet, are able to scam unsavvy investors
into purchasing cryptocurrencies for their own
gain. This is illustrated by the reported £146
million worth of damages though to be caused
by cryptocurrency scams in 2021 alone (3).
This is not a diminishing issue, with a 30%

increase in damages already being recorded in
2021 when compared to 2020 (3).
 One reported class of cryptocurrency
scam is the ‘Pump and Dump’. Similar to a
traditional pump and dump scheme, this scam
involves spreading false positive information
regarding a cryptocurrency with the intention
of artificially spiking its price. Those running
the scam can then sell their pre-bought
cryptocurrency at the inflated price, with those
convinced by misinformation left incurring
losses. Social media platforms such as Twitter
are often used as the vector over which this
misinformation is spread (4).
 It is clear this class of scam is an
emerging threat which has grown naturally
alongside the growth of the currencies they
rely upon. As such, methods of detection and
prevention are, and will continue to be,
invaluable. Currently, most literature focuses
on using statistical analysis techniques on
price movement, buying, and selling data in
order to discern suspicious activity from
legitimate. These methods may be an effective
means of classification, however their use as a
means of prevention is questionable. In order
for suspicious price movement to be detected,
a buying spike will already have to have
occurred. This means victims have already
been convinced to purchase the currency, and
the scam has already been somewhat
successful.
 This paper will explore another
approach for detection and prevention, based
not on price movement but on social media
data generated during the incidents,
specifically Twitter traffic. This data will be
used to train a range of machine learning
classifiers, with the aim of producing a
classifier capable of discerning suspicious
tweets, or those which content suggests a
Pump and Dump is occurring, from benign. By
classifying Tweets in this way, the potential to
stop or hinder the spread of this damaging
information is presented.

This approach has scarcely been explored
in literature, and an implementation of this
approach on Twitter itself is not possible. As
such, this paper will act as one of the first
proof-of-concepts of the idea. Data will be
collected using the Twitter API. Analysis of
text vectorization techniques will then be
conducted in order to process the text into a
format suitable for training machine learning
and deep learning algorithms. Finally a set of

Page 5 of 26

neural network classifiers, each of which
comprised of different layers and using
different vectorization techniques, will be
trained on the dataset. This classifier will be
compared to a ‘baseline’ classifier using a
simpler machine learning algorithm – ‘Support
Vector Machine’. The aim of this is to
investigate what type and structure of model,
and what method of vectorization is most
suitable for this classification problem. If
implemented effectively, it is hoped that the
final classifier identified would be suitable for
use on large volumes of live traffic.

3 Background & Related

Works
3.1 Cryptocurrency

3.1.1 Overview
In the last decade, the term ‘cryptocurrency’
has risen to ubiquity both online and in
financial circles. A ‘cryptocurrency’ is defined
in the Meriam-Webster dictionary as:

“Any form of currency that only exists
digitally, that usually has no central issuing or

regulating authority but instead uses a
decentralized system to record transactions
and manage the issuance of new units, and

that relies on cryptography to prevent
counterfeiting and fraudulent transactions

(5)”

This concept was originally proposed and
implemented by the pseudonym ‘Satoshi
Nakamoto’ in the famous Bitcoin White Paper
(6). This paper proposed a peer-to-peer digital
currency in which transactions could be
guaranteed non-repudiation and integrity via
digital signatures and solved the double
spending problem through a decentralised
ledger known as a ‘blockchain’ and a concept
called ‘proof-of-work’. The latter of these two
ideas was unprecedented and has proven to be
conceptually sound to this very day. In the 11
years since Nakamoto’s Bitcoin began trading,
its value has increased from $0.0008 to over
$47,6001.

Following Bitcoin’s continued
popularity, a host of new Cryptocurrencies
have been brought to the market. These

1 As of writing this paper. The value of
cryptocurrencies is prone to wild fluctuation.

currencies, referred to as altcoins, often aim to
either improve on an aspect of Bitcoin such as
transaction speed and energy efficiency, or
provide additional/differing functionality.
Some well-known examples of altcoins
include ‘Ethereum’, ‘Cardano’, and
‘Dogecoin’ (7).

3.1.2 Cryptocurrency Exchanges
As discussed previously, cryptocurrencies are
often bought and sold for more traditional fiat
currency. The demand to buy and sell
cryptocurrencies has resulted in a plethora of
online ‘exchanges’ which facilitate these
transactions being opened. Currently the
largest of these exchanges, named ‘Binance’,
lists over 385 different cryptocurrencies and
can facilitate over $27 Billion worth of trades
in a 24-hour period (8).
 Exchanges such as Binance often
function similarly to a traditional stock
exchange. Currencies are represented by 3-4
letter symbols (e.g., ‘BTC’, ‘ETH’) much like
the ticker symbols used to represent publicly
traded stocks (e.g., $TSLA). Much of the
terminology used in the stock markets has
been ported over to these new exchanges.
Some notable terms include:

Market Capitalization/ Market Cap - For a
cryptocurrency like Bitcoin, market
capitalization (or market cap) is the total value
of all the coins in circulation. It’s calculated by
multiplying the number of coins in circulation
by the current market price of a single coin
(9).

Volume – The total value of crypto traded in a
given timeframe. For example, 24 Hour
Volume would describe the total value of
trades completed in a 24-hour time period
(10).

Liquidity – A measure of how quickly an asset
(in the context of this report a crypto asset) can
be exchanged for another asset or currency. A
cryptocurrency with low liquidity will be
harder to buy and sell, and additionally be
susceptible to large market value fluctuations
from small orders (11).

https://www.merriam-webster.com/dictionary/cryptography

Page 6 of 26

3.1.3 Lack of Regulation
The similar terminology and presentation of
cryptocurrency exchanges to traditional stock
markets may lead some to believe that both are
-for all intents and purposes- identical.
However, this is currently not the case; having
existed for upwards of 200-years, stock
markets worldwide are legally well established
and governed by regulatory bodies. In the UK,
the regulatory body is known as the ‘Financial
Conduct Authority’ (FCA). Other examples
include the ‘Securities and Exchange
Commission’ of the USA and the ‘Securities
and Exchange Surveillance Commission’ of
Japan (12) (13) (14).
 These bodies have a broad range of
responsibilities and are tasked with ensuring
markets involving financial securities such as
stocks and futures remain fair, efficient, and
safe for investors. Of relevance to this project
are the regulations surrounding market
manipulation. The ‘Market Abuse
Regulations’ (MAR) enforced by the FCA
clearly define the following actions to be
classed as Market Abuse, and therefore illegal
(15):

Taking a long position in a qualifying
investment and then disseminating misleading
positive information about the qualifying
investment with a view to increasing its price;

This practice, commonly referred to as
a ‘Pump and Dump’, is universally recognised
as illegal by regulating authorities worldwide.

Unfortunately, Cryptocurrency
exchanges are not subject to the same
protective regulations as financial securities
exchanges. The FCA currently only regulates
the use of cryptocurrencies for money
laundering. As such, various scams involving
cryptocurrencies such as Pump and Dumps are
currently legal and as noted by the FCA are
rife (16).

3.1.4 Conventional Pump and Dump

Schemes
Thought to be one of the oldest forms of
securities fraud, the first recorded Pump and
Dump scheme, known as the ‘South Sea
Bubble’ occurred in 1720. This scheme
involved ‘South Sea Company’ insiders

2 Largest community reported in literature
consisted of over 200,000 members.

making ‘the most extravagant of rumours’
pertaining to the company’s value and
potential for shareholders to profit. These
rumours spurred a speculative frenzy of
investment which in turn drastically inflated
the South Sea Company’s stock price from
£128 to over £1000 in several months (17).
This frenzied buying was naturally
unsustainable, and the inevitable crash in the
stock price led to financial ruin for many.
 Modern P&D schemes function
similarly, although can happen much in a
shorter timescale when facilitated by the
internet. Currently, securities target by P&D
scammers tend to be either ‘micro-cap’ or
‘small-cap’, e.g., their market capitalization is
very small. These stocks are targeted because
their low market caps mean it does not take as
many buyers to inflate the price. In addition to
this, the exchanges these stocks are listed on
tend to be less scrutinised regulating bodies
(18). Once a target stock has been picked,
scammers will purchase said stock before
attempting to promote it online with
exaggerated or even false claims. In some
cases, a scammer may claim to have insider
info on the target stock. These claims could be
spread via email, internet message boards, or
more recently social media. If successful, the
fraudulent claims will entice enough victims to
buy the stock, artificially driving up the price.
At this point, the scammers will sell their stock
(19).

3.1.5 Crypto Pump and Dump

Schemes
As discussed previously, Cryptocurrency
Pump and Dump schemes are currently
unregulated and as such a popular choice for
scammers online.
 From current documentation and
reports online relating the topic, as well as
evidence provided later in this report, it
appears crypto P&Ds generally occur as
follows (4) (20):

1. A scammer or group of scammers
build a large community2, usually on
anonymous messaging platforms such
as Discord or Telegram.

2. The individual or group behind the
scam promises members quick profits,
and posts materials that reiterate this

Page 7 of 26

such as fake “success stories” or
screen shots of past pump and dumps.

3. Scammers pick a target
cryptocurrency with a low market cap
and liquidity (for the same reason
small-cap stocks are chosen in
conventional P&Ds). They purchase
this currency for themselves before the
‘pump’.

4. They then begin a countdown to a
‘pump signal’. They will release a
series of announcements to create
hype around a coin and promise to
reveal the crypto chosen at the end of
the countdown.

5. After hyping the pump with a
countdown, they will release the name
of the target cryptocurrency. Members
of the group will then flock to
purchase said crypto, driving up its
price dramatically. Members of the
P&D group are also encouraged to
promote the chosen crypto on social
media.

6. Scammers will sell their stake almost
immediately, locking in profits for
themselves. They are essentially
selling their pre-bought currency to
members of the group for inflated
prices.

7. Shortly after (sometimes as quickly as
10 minutes) the crypto’s price will
return to normal as the buy pressure
stops. Those who purchased the
currency at the increased price are left
‘holding the bag’.

3.2 Twitter API V1.1

3.2.1 Overview
The Twitter API is designed to provide
developers with direct access to data such
Tweets, Users, Direct Messages, Media, and
Trends on the Twitter platform. The V1.1 API
(utilised in this project) achieves this through a
collection of more than 20 endpoints. These
endpoints can be accessed by making specific
HTTP requests. In order to get a valid
response, an OAuth 2.0 bearer token must be
provided as part of the request. This token can
be obtained by a user given they have a
Twitter Developer Account and a properly
configured Application. ‘Full Archive’ and ’30
Day’ are the names of the two endpoints used
predominately in this project.

3.2.2 ‘Full Archive’ and ’30 Day’
Endpoints

These two endpoints function similarly,
however the Twitter API V1.1 ‘Full Archive’
endpoint provides access to every single
public tweet made since the beginning of the
platform in 2006; while the 30 Day endpoint
only provides access to the last 30 days of
activity.
 Tweets can be retrieved from the
endpoints by sending a HTTP POST request
which contains a query written in a custom
query language, as well as other parameters
including ‘to’ and ‘from’ dates. The results of
a given query will be returned to the user in
JSON format. An example request sent to the
endpoint using the ‘curl’ command line tool
would be:

curl --request POST \
 --url
https://api.twitter.com/1.1/tweets/search/<TYPE
>/<ENV>.json \
 --header 'authorization: Bearer
<BEARER_TOKEN>' \
 --header 'content-type: application/json' \

 --data '{

 "query":"<QUERY>",

 "maxResults": "100",

"fromDate":"<YYYYMMDDHHmm>",

 "toDate":"<YYYYMMDDHHmm>"
 }'

There are several things to note about the
structure of this request. Firstly, which
Endpoint is being accessed is determined in
the URL. Setting ‘TYPE’ in the above request
to ‘fullarchive’ would send the request to the
full archive endpoint, while setting TYPE to
‘30day’ would direct the request to the 30 Day
endpoint.
 The URL must contain an
environment name (‘ENV’). An environment
can be created in the Twitter ‘developer portal’
if the user has an authorised developer
account.
‘Bearer token’ must be included in the request
header and refers to the OAuth 2.0 token
discussed previously.
 The ‘data’ section of the request is
where parameters such as query, number of

Page 8 of 26

results to retrieve, and the time period for the
tweets can be specified.

3.2.3 ‘Tweet’ JSON Objects
As mentioned previously, valid requests to
both 30 Day and Full Archive endpoints will
return a JSON Object. The Object will consist
of a set of unique ‘Tweet’ child objects. Each
child is given a number, starting at 0, e.g.:

 ‘results’
 0

 1

 2

 3

 4

 5

The ‘Tweet’ objects themselves contain a
wealth of information stored as attributes. As
well as root-level attributes, tweets also
contain nested child objects with further
attributes. Some notable attributes (21)
include:

created_at – The UTC datetime at which the
tweet was posted.

text – The contents of the tweet itself. In the
case that the tweet is an extended tweet (140-
280 characters long) this attribute will contain
the first 140 characters.

id_str – A unique string which can be used to
identify a tweet.

Some important child objects include:

user – This object contains attributes
pertaining to the author of a tweet. Attributes
include username, screen name, bio, and
number of followers.

extended_tweet – If tweet is classed as an
‘extended’ (over 140 characters) then this
object will contain the full text.

retweeted_status – In the case that a tweet is a
retweet, this object will contain all the
information about the original tweet and
author.

3.2.4 Query Language
As outlined previously, requests sent to the
API endpoints include a query written in a
custom query language. This query language

contains several logical operators which can
be combined in order to collect a refined set of
relevant tweets. Some examples of the
operators available in this language are
explained in the table below (22):

Table 1 - Common Twitter API Search Operators

Operator Explanation

Watching Now Tweets containing the
word ‘watching’ and the
word ‘now’. The space
between the words can
be thought of as a logical
‘and’ operator.

Watching OR
Now

Tweets containing either
the word ‘watching’ or
now.

Watching -Now Tweets containing the
word ‘Watching’, but
not Now

lang:en Tweets in English
language only.

It is also worth noting that brackets can be
used in the query language to build more
complex queries, e.g.:

(Hello OR World) (Testing OR Language)
lang:en

Would return English language tweets with
either the word ‘Hello’ or ‘World’, and either
‘Testing’ or ‘Language’
3.3 Machine Learning Concepts

and Techniques

3.3.1 Overview

3.3.2 Bag of Words vectorization
Text vectorization refers to the process of
converting human-readable text in a numerical
representation of features which can be
processed by a machine learning algorithm.
Currently, there are several approaches to
vectorizing text. Two of these approaches are
of particular interest to this project.
 Firstly, there is the ‘Bag of Words’
term frequency approach. This simple
approach converts strings of variable size into
fixed-length vectors. Firstly, a ‘vocabulary’ is
created which contains every word present in
the collection of strings. For example, given
the following strings:

‘computer science is fun to learn’

Page 9 of 26

‘computer science is my favourite’
‘i enjoy computer science’

The vocabulary produced could be:

[computer, science, is, my, fun, to, learn,

favourite, i, enjoy]

After a vocabulary similar to the example
above has been produced, each string is
compared to it. The frequency that each word
in the vocabulary appears in the string is
recorded in a vector. The position of each
integer in the vector corresponds to that
word’s position in the vocabulary, for example
using the example vocabulary, the string:

‘i learn computer science’

Would be represented by the vector:

[1, 1, 0, 0, 0, 0, 1, 0, 1, 0]

This representation will always produce a
vector of equal length to the vocabulary.
Unfortunately, bag of words vectorization
does not encode any positional information
about words in a string or any semantic
meaning of the words themselves.

3.3.3 Word Embedding
 The second method of vectorization to
be considered is word embedding. The general
concept behind word embedding is that
semantic meaning and context of a word
within a string should also be encoded in its
vectorized form.
 Generally, this is done by mapping a
vocabulary of ‘embeddings’ into a higher
dimensional vector space. Words with similar
semantic meanings will be grouped together in
this embedding space.

One popular implementation of the

word embedding concept is ‘Word2Vec’. This
neural network-based vectorization algorithm
developed by Tomas Mikolov (23) aims to
capture the semantic menacing and similarity
of words geometrically in an ‘embedding
space’. In Word2Vec, word embeddings are
‘learned’ by a neural network trained on a
large corpus of data. Several pre-trained
Word2Vec models are available online,
including one trained on all 100 billion words
available on google news (24).

3.3.4 Support Vector Machine
Support Vector Machine is a machine learning
algorithm. It is possible to use this algorithm
for regression, however in most cases it is used
for classification problems. It is favoured for
certain classification tasks due to its
exceptionally low computational overheads.
 The algorithms works by first
mapping data into N-dimensional space, where
N is the number of features. Its objective is
then to find an N+1 dimensional hyperplane
which clearly divides the datapoints by their
classifications.
 There will be an assortment of
different hyperplanes which can achieve this
goal. As such, part of the job of the SVM is to
identify the hyperplane which does so with the
greatest margin (distance between datapoints
and hyperplane).
 A ‘Support Vector’ is a datapoint
which lies close to the hyperplane, and as such
influences its orientation and position.

3.3.5 Artificial Neural Networks
An artificial neural network is a technique
used for artificial intelligence tasks, in which
information is processed by a series of
simulated ‘neurons. These neurons are
normally densely connected, and receive and
transmit information to ‘layers’ of neurons
ahead and behind of themselves (25).
 Each node assigns a ‘weight’ to the
data it receives from downstream nodes. This
weight is multiplied by numbers received from
nodes. The sum of these products is then used
to discern whether the node ‘activates’ – or in
other words, transmits a value to nodes in the
‘upstream’ layer. Activation is decided using
an ‘activation function’.

Figure 1 - Basic Example of the concept of an 'embedding space'

Page 10 of 26

3.3.6 Convolutional Neural Networks
A convolutional neural network is a
specialised variation of the concept of a neural
network, which contains one or more
convolutional layers.
 The main use case for convolutional
neural networks has typically been computer
vision – they have proved very effective at
allowing for the complex pattern recognition
that class of problems require. There has,
however, also been success using this type of
Network for one dimensional data such as text.
(26)

3.4 Python Libraries

3.4.1 Overview
The following section will provide background
on the two machine learning libraries used in
this project.

3.4.2 Sci-kit learn
Sci-kit learn, also referred to as SKlearn, is a

Python library which contains a range of out-

of-the-box machine learning tools (27).

 Functions of particular relevance to

this project include an implementation of the

support vector machine (SVM) machine

learning algorithm, and a Count Vectorizer

used to map strings to feature vectors

appropriate for a machine learning algorithm.

3.4.3 Keras
Keras is an open-source Python library which
acts as an API for the TensorFlow library. It
can be used to compile and train neural-
network based deep learning models with a
vast array of different possible network
structures.
 Networks are defined using ‘Layers’
objects. Each ‘layer’ can have its own
parameters such as activation function, and
type e.g. convolutional, embedding.

3.5 Existing Works
Currently, academic literature surrounding the
detection of cryptocurrency pump and dumps
remains relatively sparse. This section aims to
present and critically analyse some of the
existing literature in order to identify ways in
which this dissertation can build upon current
knowledge.
 One approach put forward by Weili
Chen et al. utilises the leaked transaction
history of the once-popular cryptocurrency

exchange known as ‘Mt. Gox’ (28). Using this
transaction data, ‘buy matrices’ could be
constructed. These matrices are then fed into a
novel algorithm which has the purposes of
detecting groups of users which appear to be
buying simultaneously. This approach was
somewhat successful, however had several
shortcomings. Firstly, some of the irregular
buying activity recorded in the matrices was
believed to have come from the exchange
itself. This may have a skewing effect on the
final algorithm produced. In addition to this,
this approach is unapplicable to future pump
and dumps as it requires an individual user’s
buying activity – something which would be a
breach of privacy if implemented by an
exchange.
 Another suggested approach (4)
involves monitoring the price movement data
and using anomaly detection to flag any
suspicious activity. This approach uses
publicly available information and so is more
feasible in the real world. Results suggest that
price movement analysis is a promising
method of detecting pump and dumps –
however the application used only covers 20
days of data with hourly granularity.
 From all of the solutions considered in
previous works, none appear to take the
approach of monitoring data on 3rd party
platforms such as twitter. Currently, all
approaches relies on transaction activity taken
from crypto exchanges themselves. This
suggests that this solution may be an option
worth exploring.

4 Problem
The key problem which this paper aims to
address, or at least begin addressing, is
prevention of cryptocurrency ‘Pump and
Dump’ schemes. As noted in the previous
section, this is a class of scheme which has
become far more popular in recent years.
 As mentioned previously, these
schemes rely on the orchestrated spreading of
positive sentiment towards a targeted currency
on social media. Twitter appears to be the
most common platform used for this. As such,
if a method for classifying, and in turn
flagging, suspicious Tweets was available, the
spread of this misinformation could be limited.
In turn, potential victims of the scheme could
be saved.

Page 11 of 26

 Unfortunately, there is currently no
such way of automatically discerning
suspicious Tweets from non-suspicious. This
is the problem to be addressed in this paper.
The way in which it will be tackled is through
the use of machine-learning and deep-learning
algorithms. Currently, there have been no
attempts at solving this issue.
 There are several challenges unique to
this problem. Firstly, if a classifier is to be
deemed ‘fit for purpose’ for the task, it must
be feasible for it to classify large volumes of
data quickly and efficiently. If this is not the
case, then although it may seem to be a well-
performing model, it is of little real-world use.
 A classifier must also be trained using
an appropriate dataset. Currently, no such
dataset exists. Therefore, before different
classifiers are trained, data must first be
collected. If poor-quality data is collected,
then the classifiers it produces will once again
be of little or no use.

5 Aims and Objectives
This section will outline the overarching aims
of the paper, as well as setting out some
technical objectives.

5.1 Data Collection
Aim 1: Identify an active pump and dump
group, or groups.

Objective 1: Gain access to at least 1 discord
or Telegram group in which Pump and Dumps
are being orchestrated. This group should have
at least 10 historic and verifiable Pump and
Dumps. This should allow for sufficient and
varied data to be collected.

Aim 2: Using access to this group, create a
record of past incidents.

Objective 2: Use the Group(s) identified in
Objective 1 to find the time, date, and
cryptocurrency involved for at least 10 historic
pump and Dumps. Store this information
appropriately in such a way to be easily
accessed by scripting languages, and
expandable if new cases are discovered after
initial creation.

Aim 3: For each aforementioned case,
formulate a suitable Twitter API query.

Objective 3: Using the Twitter API query
language described in Section 3.2.4, write a set
of queries which collects Tweets relevant to
each case posted within a suitable time

window following the Pump announcement.

Aim 4: Formulate API requests using records
of past Pump and Dumps. Save responses to
these requests appropriately.

Objective 4a: Use records of previous cases
(Objective 2) and queries (Objective 3) to
formulate valid Twitter API requests. The
requests should be built automatically based
on the record and set to a timeframe relevant
to the case. If a new case is added to the
record, it should be possible to generate and
API request relevant to it – maintaining
expandability.

Objective 4b: Save the responses to API
requests in such a way that they can be
accessed programmatically. It should also be
clear which response relates to which
cryptocurrency.

5.2 Data Pre-Processing
Aim 5: Extract from saved API responses a
single string which represents each Tweet.
Investigate which Tweet attributes lead to best
classifier performance when extracted.

Objective 5: For each Tweet in the set of saved
API responses- incorporate Tweet contents,
and any other attributes of the Tweet Object
which improve classifier performance
(evaluated by accuracy, precision, recall, and
f1 score) into a single String. Store these
strings in an appropriate data structure.

Aim 6: Produce a labelled dataset from the
saved API responses.

Objective 6: Programmatically build a second
data structure, which contains data labels for
the strings described in Objective 5.

Aim 7: Investigate Vectorization techniques,
determine the most suitable technique.

Objective 7: Identify and implement at least

two vectorization techniques on the extracted
strings. Compare and analyse their effects on
classifier performance, as well as their speed

Page 12 of 26

(time taken to vectorize strings) and efficiency
(memory/processor usage).

5.3 Model Training and Evaluation
Aim 8: Train and evaluate performance of a
simple classifier, to act as a baseline model.

Objective 8: Select an appropriate machine
learning (not deep learning) algorithm. Train
algorithm on labelled dataset in order to attain

‘baseline’ performance (precision, recall,
accuracy, f1 score), which can be compared to
other models in order to gauge their
effectiveness.

Aim 9: Train and optimise a neural network-
based classifier.

Objective 9: Using labelled dataset Train two

or more neural network classifiers. Compare
different vectorization techniques and a
selection of different layers in order to
maximise performance. Identify the most
effective model trained.

Aim 10: Identify the best classifier produced.
Aim 10: Critically compare the best neural
network-based classifier to the baseline model.
Consider all the aforementioned performance
metrics, as well as computational efficiency, in
order to justify a choice of the most effective
classifier produced.

6 Approach
This section will outline a planned approach to
meet the objectives outlined in Section 3. Like
the Objectives, the approach can be sub-
divided into four main sections: Data
Collection, Data Pre-processing, Model
Training, and Model Evaluation. Where
necessary, justifications for the approach are
provided.

6.1 Data Collection
This section of the approach focusses on the
initial collection of data, which can
subsequently be pre-processed and used to
train machine learning algorithms. This
process is likely to pose a variety of challenges
which will need to be addressed.

6.1.1 Joining Pump and Dump groups
To begin building a useful dataset, historic
examples of Pump and Dump schemes would
first need to be identified. As mentioned in
Section 3.1.5, these schemes are often

orchestrated over Discord and Telegram
servers. As such, the first step would be to join
one of these servers and gain access to its chat
logs. This would provide insight into times,
dates, and affected Cryptocurrencies for
previous P&Ds. As these groups rely on self-
promotion to bring in new victims, it was
hoped that a simple google search would be
enough to uncover and join them. Joining at
least one Pump and Dump group will achieve
Objective 1 outlined in Section 3.

6.1.2 Creating record of previous

Pump and Dumps
Once at least one P&D group had been joined,
the next task will be to use the chat logs to
create a record of previous schemes. To make
the record accessible programmatically as
described in Objective 2, the Comma
Separated Variable (CSV) file format will be
used. This file format was chosen as it is not
only lightweight, but also easily accessed
using Python’s built-in ‘CSV’ module. The
planned structure of the file is as follows:

Name, Symbol, Pump Date, Pump Time, Query

Each new line in the file will represent a
different case.

‘Name’ refers to the full name of the
cryptocurrency. It is useful to include this
information as it helps distinguish each case. It
may also become useful when removing
keywords in the pre-processing stage.

‘Symbol’ refers to the three- or four-
letter symbol of the cryptocurrency. For
example, for bitcoin this would be $BTC. This
information is useful to record for much the
same reason as ‘Name’.

As the names suggest, Pump Date and
Pump Time refer to the date and time at which
the Pump was initiated.

Finally, query refers to a query which
could be sent as part of an API request in order
to gather Tweets relevant to the currency in
question. This will differ from currency to
currency and will likely take some
experimentation for each in order to optimise.

This record will be referred to as log.csv
in subsequent sections.

6.1.3 Querying Twitter API
As mentioned in the Background section, the
30-day and full archive search API endpoints
offered by Twitter can be accessed using
HTTP Post requests with specific parameters.

Page 13 of 26

 To access these endpoints, a Twitter
Developer account will first be required. This
will require authorisation from Twitter. Upon
gaining developer access, a bearer token can
be generated, which will be used for

authentication when making API requests. It
should be noted that unlimited access to the
API endpoints is only available to academic
developer accounts – should Twitter not
approve this then this project will be
constrained to a limited number of requests.
 Once developer access is obtained, a
python script, which from now on referred to
as GetTweets.py will be written which should
act as follows:

• Reads log.csv line by line.

• Displays to the user a list of recorded
cases.

• Allows the user to select a case.

• Uses the fields Pump Date, Pump
Time, and query to automatically
form a valid HTTP POST request for
the selected case.

• Send this request, save the JSON
response to an appropriately named
file.

In this way, data for each recorded case can be
accessed programmatically, request
formulated, and responses saved- as set out in
Objective 4a and Objective 4b. It should be
noted that requests could be hand-written for
each case, however the above approach has a
number of benefits.
 Firstly, if a new case is added to
log.csv at a later point, then GetTweets.py will
allow an API request/response to be sent and
received seamlessly.
 Secondly, this method reduces the
possibility of a human error leading to an
invalid or inaccurate API request. As
illustrated in Section 3.2.2, API requests do
not have user-friendly formatting. A single
mistype may result in the wrong data being
collected, which in turn would lead to a worse
classifier down the line.
 Finally, as touched on previously –
there may be a limit on the number of API
requests that can be made to each endpoint. If
this is the case, then GetTweets.py can be used
to select the appropriate endpoint based on the
date of the case. This will be beneficial to
working around the constraint.

6.1.4 Gathering non-suspicious

activity
To build a useful dataset, attention must also
be given to collecting baseline activity. This

activity should be representative of ‘normal’
traffic for a cryptocurrency, and as such
should be collected when it can be 100%
certain a Pump and Dump scheme is not
underway.
 Using the list of previously pumped
cryptocurrencies stored in log.csv may be
challenging. This is since, as discussed in
Section 3.1.5, the same cryptocurrency will
often be targeted multiple times. It is difficult
to ensure that traffic is ‘normal’, and a pump is
not being instigated by another group.
 For this reason, a different approach
will be taken to collect baseline data. A new
set of Cryptocurrencies will be selected; those
with a large enough market cap where it would
be nearly impossible for a single group to
Pump. In this way, it can be guaranteed that
the traffic was not taken as a P&D is
happening.
 To ensure that the dataset remains
balanced, the number of baseline Tweets
gathered should be close to the number of
suspicious Tweets. A balanced 50/50 split will
be aimed for - although 10% either way will
be deemed acceptable.
 In order to collect these Tweets, the
functionality of GetTweets.py will be
expanded. A second file, called baseline.csv,
with the same structure as log.csv will be read
to formulate queries. This will happen much in
the same way as described in the previous
section. The script should provide this
functionality based on user input.
 As mentioned previously, the target
cryptocurrencies for which non-suspicious
activity will be collected should have high
market caps. As of writing this paper, the 10
currencies with the greatest market caps are:

Figure 2 - Using GetTweets.py to access the API endpoints

Page 14 of 26

1) Bitcoin (BTC)
2) Ethereum (ETH)
3) Cardano (ADA)
4) Tether (USDT)
5) XRP (XRP)
6) Dogecoin (DOGE)
7) Polkadot (DOT)
8) Solana (SOL)
9) Terra (LUNA)
10) Avalanche (AVAX)

It was decided that these will be the target
cryptocurrencies recorded in baseline.csv. Due
to their popularity, it is expected that there will
be a wealth of Twitter traffic regarding them.

6.2 Data pre-processing
Following its collection, data must next be
processed into a format suitable for machine
learning algorithms.

6.3 Retweets

6.4 Removing Stop words
One of the difficulties faced when training
machine learning and deep learning classifiers
is the risk of overfitting. For this reason,
before the collected data was used for training,
efforts would be made to prevent overfitting.
 To do this, all keywords relating to the
subject cryptocurrency of a Tweet will be
stripped from its contents. It is believed this
will benefit the final classifiers because it will
prevent overfitting. Classifiers will not make
predictions based on the subject
cryptocurrency. For example, if non-
suspicious traffic is collected for the
cryptocurrency ‘DOGE’, a classifier may
classify any Tweets containing DOGE-related
keywords as non-suspicious. The aim of this
project is to create a classifier capable of
making predictions regardless of the target
currency, therefore this should be avoided.
 Removing all mention of the subject
cryptocurrency should be fairly
straightforward. The approach taken to do this
will involve first keeping record of the subject
cryptocurrency of each Tweet.
 This string representing the subject
can then be used to generate a set of other
variations of the cryptocurrency’s name. The
name variations which will be removed will
be:

• # + Crypto Symbol

• $ + Crypto Symbol

• # + Crypto full name

• $ + Crypto full name

• Crypto Symbol

• Crypto Full Name
These strings should be simple to generate and
strip from the contents of the Tweet.
 In this way, the subject cryptocurrency
of each Tweet should become ambiguous.

6.5 Vectorization techniques
After initial pre-processing, the contents of the
Tweets must be vectorized. As discussed in
the background section, there are many
different approaches which can be taken to
generate a vector representation of a string. In
this paper, three such methods will be
implemented and evaluated. The following
section will discuss each method and identify
an approach which can be taken to implement
them.

6.5.1 ‘Bag of Words’ Vectorization
This simplistic approach to vectorization
encodes data relating to the frequency of each
word within a string as a vector. As discussed
in Section Error! Reference source not f

ound., no data regarding the semantic
meaning or position of a word can be encoded
in ‘Bag of Words’ vectorization. It was still,
however, decided that this technique was
worth exploring because:

• Computationally light. This approach
does not require complex computation
or training.

• It is still widely regarded as an
effective feature extraction method for
classification of text.

Considering implementation, strings can be
vectorized using Sklearn’s built in
Countvectorizer function.

6.5.2 Training Word Embeddings
Word embedding techniques vectorize words
within text in such a way that semantic and
positional information is also encoded. When
vectorized, words with similar meaning should
be close to one another in the vector space. In
order to build an ‘embedding space’, word
embeddings must be trained. Some approaches
to this training include using neural networks
(e.g. word2vec), or matrix factorization (e.g.
GloVe). The next approach to be considered
for vectorization will be to generate an
‘embedding space’ from the dataset and use
this to vectorize each word contained in the
Tweets. This approach was chosen to
investigate because:

Page 15 of 26

• Unlike Bag of Words, also encodes
semantic meaning behind words.

• One of the most common methods of
vectorization available today.

Word embedding vectorization can be
implemented using the built in Keras Class
Tokenizer and the layer Embedding.

6.5.3 Word2vec Word Embeddings
The final method of vectorization to be
considered will also use the concept of word
embeddings – however, this approach will take
a set of pre-trained embeddings created by the
aforementioned ‘word2vec’ neural network.
This approach wil be considered because:

• These embeddings were created using
a considerably more sizeable dataset
(3 billion words taken from google
news). As such they are likely to
encode semantic meaning more
accurately.

To implement this approach, the precomputed
embeddings will first have to be downloaded
from the official source. Following this, the
Genism package can be used to load the file
and produce an ‘embedding matrix’. This
embedding matrix can then be passed to a
Keras embedding layer.

6.6 Neural Network Layers
Following pre-processing and vectorization, a
series of different neural network layouts can
be tested. These networks will use different
combinations of Keras layers. The keras layers
to be added and removed will be discussed in
this section.

6.6.1 Embedding Layer
The Keras embedding layer can be utilised to
embed semantic meaning of vectorized words.
Some of the vectorization methods described
previously can be implanted with or without
this embedding layer. For these, the effects of
adding and removing the layer will be
measured. In this way, performance/time
payoff of including this layer can be analysed.
 Implementing an embedding layer
using Keras is fairly simple, it is available as a
subclass of the layer class, called
layers.Embedding.

6.6.2 Convolutional Layer
Convolutional neural networks (CNN) are at
the forefront of two dimensional computer
vision and pattern recognition. However, they
are versatile enough as to where they are also
capable of one dimensional text classification

problems. Because of this, it was decided to
also investigate whether using a convolutional
layer in the network structure yields better
performance. Convolutional layers were an
area of interest because:

• Proven ability in other fields such as
computer vision

• Effective at recognising complex
patterns

Implementation should once again be done
using Keras. Specifically, the conv1d layer
type.

6.7 Baseline Model
Alongside the neural-network classifiers, a
‘baseline’ model should be trained. The
algorithms chosen for this model will be the
‘support vector machine’ algorithm discussed
previously. This algorithm was chosen
because:

• It is known to be very computationally
light.

• Known to be especially effective for
classification problems.

It should be straightforward to implement this
classifier using Sklearn. It was deemed
necessary to train a baseline model because:

• Allows a frame-of-reference when
analysing the neural models. If the
neural models do not perform better
than a simplistic approach such as
SVM, then their suitability for the task
at hand is brought into question.

6.8 Model Training and Evaluation
The previous section outlines the different
Vectorization methods and Network structures
which will be investigated. Following this, an
approach for how best to test and compare
these models will be laid out.

6.8.1 Performance Metrics
The metrics of performance which will be
used to evaluate the models produced are:

• Accuracy. This metric measures the
number of correct classifications made
by a model over all predictions. As
this metric is especially useful when
classes in the dataset are balanced, it
will be used for comparison.

• Precision. Provides an indication of
what proportion of Tweets which were
predicted a certain label are actually
that label. This will be included as it is
another useful way of measuring and
comparing classifier performance

Page 16 of 26

• Recall. This measure will indicate
what proportion of Tweets of a given
label (suspicious or non-suspicious)
were correctly identified as such.
Another useful measure of classifier
performance.

• F1 Score. A measure which combines
precision and recall. Will be included
as it is useful for visualising both
simultaneously.

• Vectorization Time Taken. As
discussed in Aims and Objectives, one
of the key goals for the solution
produced is to not only perform well,
but also quickly. A fast, lightweight
model would be more suitable for this
type of task as if it was to be applied
to ‘real world’ live data, it would have
to make a significant number of
predictions as quickly as possible. As
such, the time taken for vectorization
to be carried out will also be recorded
and analysed.

• Training Time Taken. For identical
reasons to vectorization time, training
time will also be recorded.

6.8.2 Models to Be Tested
There are several different combinations of
models to train, based on the variables set out
in Sections 6.5 and 6.6.
 The possible model combinations
based on these variables are:

1. Bag of Words vectorization, no
embedding layer, no convolutional
layer

2. Keras Tokenizer vectorization, no
embedding layer, no convolutional
layer

3. Keras tokenizer, with embedding
layer, no convolutional layer

4. Keras tokenizer, with embedding layer
and convolutional layer

5. Word2vec vectorization, with
embedding layer, no convolutional
layer.

6. Word2vec vectorization, with
embedding layer and convolutional
layer.

7. Baseline model

6.8.3 Generating and Testing models
It would undoubtedly be too time consuming
to hand-code each model separately. As such,
a programmatic solution for generating each

model should be implemented. This should be
done as follows:

• Define a new Python class,
Model

• This class should initialise
with arguments describing
model structure, e.g.
embedding layer = True,
vectorization = ‘Bag of
Words’ etc.

• Based on these arguments, the
Class should generate a
corresponding model.

• The class should then have an
attribute which stores the
defined performance metrics
for the model.

• The class should also time
how long training and
vectorization take for the
specified model, and store this
information as an attribute.

Using this approach will allow each model to
be created quickly, and its performance
recorded automatically. This approach greatly
reduces the risk of a human error introduced
into code leading to invalid results.

6.8.4 Identification of Most Suitable

Model
Collecting the aforementioned performance
metrics will be of no use unless they can be
analysed to identify the most ‘fit for purpose’
model trained. This decision should be made
not only on which model scores the highest
performance, but also how time efficient a
given model is. How this decision is made
depends on the results produced, however a
justification of the decision should be
provided.

7 Implementation
The following section will describe how the
approach set out in Section 6 was followed. In
cases where it has been deviated from, a
justification of why this was necessary will be
given.

Page 17 of 26

7.1 Data Collection

7.1.1 Joining ‘United Binance Pumps’
To begin the data collection process, the Pump
and Dump discord group ‘United Binance
Pumps’ was joined. This group proved simple
to identify and join using the method outline in
Section 6.1.1.

7.1.2 Recording Historic schemes
After gaining access to the group, a file named
log.csv was made. This CSV file would be
used to record details of previous pump and
dumps.
 The previous pump announcements
for the group were then observed. For each
announcement, its price action on Binance at
the time of the announcement was used to
cross reference and confirm a pump had taken
place. In this way, a list of confirmed incidents
was built. When each incident had been
confirmed, it would be recorded by hand in
log.csv.

Figure 4 - Example of historic Pump on 'United Binance
Pumps'

Fortunately, the group had partaken in
multiple schemes, so there was a wealth of
examples to pick from. The structure used for
log.csv was identical to that planned in Section
6.1.2 – excepting one change. As Twitter had
not approved academic access to the API for

this paper, the 30-day and full archive
endpoints would have to switched between in
order to avoid the access limits set. To allow
this to happen, another column was added to
log.csv, named which specified which
endpoint to use to make the query. 15 Cases
were recorded in total.

7.1.3 Collecting Tweets with

GetTweets.py
Next, a Python script – ‘GetTweets.py’ was
written. This script was designed to function
as described in Section 6.1.3. It uses a custom
function, named premium search to query the
API, and saves the JSON response. It provides
a basic interface to allow selection of which
case recorded in log.csv to access.

It takes the dates stored in log.csv and converts
them into the format required by the API
endpoints.

Figure 5 - 'United Binance
Pumps' Discord Group Chat

Figure 3 - The contents of log.csv

Figure 6 - A function capable of formulating Twitter API

queries

Page 18 of 26

Once a case is selected, a corresponding JSON
response is received and dumped to a file.
 One complication which arose at this
point was the fact that some of the queries
written in log.csv were not fit for purpose.
They either returned irrelevant Tweets or
contained invalid syntax. In cases where this
was true, a trial-and-error approach was taken
in order to formulate a more effective query.
In this way, data was collected for every case
recorded in log.csv.

7.1.4 Gathering non-suspicious

activity
The next step laid out in the approach was to
collect non-suspicious activity. This was
achieved by creating a second log.csv file in a
different directory and extending the
functionality of GetTweets.py.
 The structure of this second log.csv is
similar to the original, however the
information stored relates the 10 large-cap
currencies identified in Section 0. A query to
send as part of the API request was once again
written.

Figure 10 - Secondary interface added for collection of
non-suspicious Tweets

7.2 Data Pre-processing

7.2.1 Loading JSON files
Following data collection, two directories
named ‘base’ and ‘case’ respectively had been
generated. Inside these directories were sets of
JSON files containing API responses received
by GetTweets.py. The next step outlined in the
Approach involved taking these files and

producing ‘algorithm ready’ data structures
from them.

Figure 7 - Interface provided by GetTweets.py

Figure 9 - Additional code added to GetTweets.py to allow non-
suspicious Tweets to be collected

Figure 8 - Directory structure following
collection of suspicious and non-suspicious

Tweets

Page 19 of 26

 To begin this process, a Python Class
named Dataset was written. This Class
initialises with one argument – Data
Locations. This argument is a tuple which
contains the paths to the two directories
containing API responses. This Class has two
other attributes, Dictionary and Annotated
List. The dictionary attribute is a python
dictionary, in which every Tweet from each
JSON response is stored. Each Tweet within

the dictionary is given a unique ‘ID’. All
Tweet information contained in a Tweet object
is stored in this Dictionary.
Tweets in this Dictionary are also given two
new attributes named ‘annotation’ and
‘keywords’. The annotation attribute will be
equal to 0 if a Tweet is deemed suspicious,
and 1 if not. Keywords contains a list of words
relating to the cryptocurrency which are to be
stripped from the Tweet to avoid the issues
described in 6.4. The words included in
keywords for a given currency, as set out in
the approach, are:

• # + Crypto Symbol

• $ + Crypto Symbol

• # + Crypto full name

• $ + Crypto full name

• Crypto Symbol

• Crypto Full Name
It should be noted that a case-insensitive
approach was taken, so keywords are stored in
uppercase only.
 The second property of the Dataset
class is Annotated List. This property is a tuple
containing two lists. The first item in this tuple
is a list of Tweet contents, and the second is a
list of annotations. The location of an item in
the first lists corresponds to the location of an
annotation in the second. ‘Tweet contents’

refers to the text extracted from the Tweet
objects stored in the Dictionary attribute.
It should be noted that the information stored
in the newly created ‘Keywords’ attribute for

each Tweet is stripped from the Tweet text
before being added to the Tweets list. Extra
whitespace is also removed from Tweets.

7.3 Model Training

7.3.1 Baseline Model
The first model trained was the ‘baseline’
model. This model uses the support vector
machine algorithm to train a binary classifier.
 Firstly, an instance of the Dataset
class is created, which reads all of the saved
API responses to form a list of Tweets and a
list of annotations, as discussed previously.
Once these lists have been generated they are
divided into training and test sets using
Skelarn’s Train_Test_Split() function.

Before being fed into the algorithm,

Tweets are vectorized using CountVectorizer –
an implementation of the Bag of Words
vectorization method provided in the Sklearn
package. Once the vectorizer is fitted to the
training data, it can be used to transform both
the training and test set of Tweets.

Figure 12 - Dictionary property of 'Dataset' class

Figure 11 - Stripping keywords from tweet contents

Figure 13 - Creating Dataset instance and splitting data

into training and testing sets

Figure 14 - Bag of Words vectorization of training
and test sets

Page 20 of 26

Following this, an instance of a svm classifier
is created and fitted to the data.

Finally, the model is used to make predictions
on the test set. The predicted annotations are
then compared to the real annotations in order
to gather performance metrics. Metrics are
gathered using Sklearn’s classification_report
function, and saved to a file. As well as
performance metrics, the time taken for
vectorization and model training is also
recorded and saved.

Figure 16 - Recording time and classifier performance
metrics

7.3.2 Keras models
Following the creation of the baseline model, a
series of deep learning models were created,
and their performance measured using Keras.
As multiple models were to be created and
analysed, a new class was written, called
Model. This class initialises with the following
arguments:

• vectorization – A string which denotes
which vectorization technique the
model should use.

• embedding_layer – A Boolean which
is set to true if th model includes an
embedding layer

• conv_layer – A Boolean which is set
to True if the model is convolutional
(contains a convolutional layer)

• dataset – An instance of the
previously defined Dataset class
which contains the data used to train
the models.

7.3.3 Vectorization techniques
The first variable to be investigated when
training the model was the vectorization
technique used. As set out in the approach, the
vectorization techniques chosen to be
investigated are:

• Bag Of Words

• Word embeddings trained only on
dataset

• Pre-trained word embeddings based
on ‘Word2Vec’

In order to implement each of these
techniques, the Model class was expanded.
 During initialisation, the argument
vectorization is checked, and depending on its
value, the tweets contained in the dataset are
vectorized in different ways. For example, if
the value of the vectorization argument is set
to the string ‘Keras’, then the Tweets are
vectorized using the Keras tokenizer function,
as shown in the below figure.

If it is set to ‘BoW’, then Sklearn’s count
vectorizer is implemented:

And finally, if it is set to ‘Word2Vec’, then
pretrained Word embeddings based on the

google news dataset will be implemented:

Figure 15 - Training the baseline model

Figure 17 - The initialisation function for the Model class

Figure 18 - Vectorization using the keras 'tokenizer'

function

Page 21 of 26

7.3.4 Embedding Layers
The second network feature to be investigated
is the inclusion of an embedding layer. Once
again, whether to include this layer or not is
set during the initialisation of a Model
instance. It should be noted that for the
word2vec vectorization method, it is not
possible to leave out the Keras embedding
layer. A simple if statement within the model
class allows the embedding layer to be
added/excluded for a given model. The
embedding layer will also include different
parameters when used with word2vec.

Figure 19 - Using the model class to control whether a
given model includes an embedding layer or not.

7.3.5 Convolutional Layers
A one-dimensional convolutional layer could
also be added/removed from the model using
an argument passed during the initialisation of
a Model object. The convolutional layer could
only be added to those models which already
contain an embedding layer.

Figure 20 - Logic for adding a convolutional layer to the

neural network

7.3.6 Measuring training and

vectorization times
The time taken for each model to vectorize
and train was recorded using Python’s built in
time.time().

7.3.7 Collecting Performance Metrics
As demonstrated, the Model class would build
a neural network based on arguments given to
it during initialisation. This allowed multiple
models to be built quickly, without manually
typing them out. The next functionality which

was added to the Model class would allow
metrics for a given network to be saved, and
later used for comparison and analysis.
 In order to do this, the generated
model would be used to make a set of
predictions on the training set of Tweets (in
the same way the baseline model had

previously). The Sklearn classification_report
could then be used to compare the predictions
to the actual labels and calculate precision,
recall, accuracy, and f1 metrics.
The method eval_model() in the Model class
provided this functionality. It would return the
classification report as a Dictionary, adding in
vectorization and training times.

7.3.8 Naming models using __repr__()
It was important that after being initialised,
which instance of class represented which
model could be easily distinguished. This was
achieved using the built-in __repr__()
function. This function was overridden so that
it output the parameters for a given model, in
the format:

vectorization= embedding= convolutional=

This would allow the construction of a model
to be tested easily by calling str(model).

7.3.9 Generating models
Upon finishing the Model Class, the set of
models to be analysed could be generated
quickly and easily. Six instances of this class
were created, each of which representing a
different neural network.

Figure 21 - Using 'word2vec' pretrained word

embeddings

Figure 22 - Using the generated model to make
predicitons for the test set and creaing a classification
report

Figure 23 - The six different neural network configurations tested

Page 22 of 26

The result of running the eval_model()
function on each of these instances was then
combined in a single dictionary. The key
representing a model was equivalent to the
output of its __repr__() function. This
dictionary was then dumped to a file using the
JSON module.

8 Results
8.1.1 Numbering models
Each model has been given a number which
will be used to represent it. This was done to

improve graph readability. The full name to
number pairings can be viewed below:

Model
number

Configuration

1 vectorization=’BoW’
embedding=False
convolutional=False

2 vectorization=’Keras’
embedding=False
convolutional=False

3 vectorization=’Keras’
embedding=True
convolutional=False

4 vectorization=’Keras’
embedding=True convolutional=True

5 vectorization=’word2vec’
embedding=True
convolutional=False

6 vectorization=’word2vec’
embedding=True convolutional=True

7 Baseline

Graphs were created using matplotlib, taking
data directly from the files generated in
Section 7.3.9.

8.1.2 Precision
As illustrated in the graph above, the best
performing models in terms of precision are
models 1 and 3 both of which had a precision
of 0.94.
 There is little to separate
Models 1, 3, 4, 5, 6, and 7. Model 2 scores
considerably worse than the other models,

with a score of 0.62. In this case, it appears the

neural network based approach scores only
0.01 better than the baseline (model 7).

8.1.3 Recall
Once again, models 1 and 2 score best in this
metric. They are closely followed by models 4,
5, 6, and 7. With only a 0.03 difference in
score between all of these models.
 Model 2 once again lags considerably
with a score of 0.61.
 In this case, models 1 and 3 score 0.02
higher than the baseline model.

Figure 24 - Saving performance metrics for each model

generated

Page 23 of 26

8.1.4 F1 Score
As the harmonic mean of precision and recall,
it is no surprise to see models 1 and 3 score
highest for this metric.

8.1.5 Accuracy

Considering accuracy, there is once again little
to separate each model. Models 3-7 have
identical scores, while model 1 scores 0.01
lower.
 Once again, the only outlier is model
2, with an accuracy of 0.58 (slightly better
than random).

8.1.6 Training time

Viewing the training times for each model,
greater differences begin to emerge. As
expected, the Support vector machine-based
baseline model trains in a fraction of the time
of the deep-learning models.
 The two models that take the longest
are 4 and 5. Interestingly, despite the
additional convolutional layer in model 6, it
trains faster than its non-convolutional
counterpart model 5.
 Models one and two train considerably
faster than the other neural models, possibly as
these do not have an embedding layer.

8.1.7 Vectorization time

The results of this measurement clearly
indicate that the ‘word2vec’ word embeddings
concede a significant time penalty for training,
as these two models take hundreds of times
longer to vectorize.
 Vectorization times for the other
models, including the baseline, are negligible.

8.1.8 Most Suitable Model
The final goal of this project is to identify the
most suitable model for the task at hand-
detecting Twitter traffic which indicates a
Pump and Dump is occurring. To do this, all
the metrics touched upon previously will be
considered and used to justify a final decision.
 As mentioned previously, models 1
and 3 have the joint highest Precision, Recall,
Accuracy, and F1 scores. They are therefore
the ‘best performing’ models. One key
difference between these models is training
time. While Model 3 took 65 seconds to train,
model 1 took a mere 6.89. This suggests that it
is far less computationally intensive.
 Due to the fact that Model 1 has the
best performance metrics and takes almost a
tenth of the time to train in comparison to

Page 24 of 26

model 2, it seems that this is the most suitable
model.
 It should be noted that another
contender for the most suitable model would
be the ‘baseline’ model – model 7. This model
scores marginally lower (between 0.01 and
0.02 on most metrics), but trains in a miniscule
amount of time when compared to the neural
models. Further testing, possibly on more
unseen data, would be required to surely
determine whether this model is as effective as
it seems.

9 Analysis
The chosen model, and all but one other model
generated, scores 0.9+ in all relevant metrics,
which on the surface appears impressive.
 However, there are several possible
explanations for why these models all
performed so well. First, there is a possibility
that the models are overfitted to the dataset.
The decision was made earlier in the project to
collect all Twitter traffic, including retweets,
for each cryptocurrency. As a result of this, the
data includes some Tweets repeated multiple
times. There is a possibility that due to the
repetition of some Tweets, the models became
trained to those Tweets specifically, and as
such had no need to use the semantic meaning
or language of the Tweet to make a
classification for much of the test set.
 There is also the possibility that
overfitting has occurred due to other decisions
made during the data collection process. For
example, the decision was made to collect
‘non-suspicious’ data for different
cryptocurrencies to those targeted for
‘suspicious’ data. Although efforts were made
to make the tweets more ambiguous (by
removing any mention of the subject
currency), there is a possibility that the
different sources caused some ‘data leakage’.
Perhaps users talk about different currencies
using different language, or the measures
taken to delete any mention of the currency
were not effective enough.
 Although massively popular for a
wide range of uses, the results of this project
indicate that neural network based approaches
may not be the most suitable solution to the
problem. Despite taking considerably longer,
the results that they produce were only
fractionally better than the SVM algorithm.
The SVM algorithm is considerably more

‘lightweight’, therefore more suitable for use
on large datasets in the future.
 Despite the possibility that the models
are overfitted, the results are still promising.
This is one of the first attempts at producing a
model for this binary classification problem,
and so it is not unsurprising there are errors
made in parts of the approach. Tweaks made
to the dataset to reduce overfitting could
provide further improvements to the final
classifier.

10 Conclusion
This paper aimed to provide a solution for
detecting, and theoretically preventing,
cryptocurrency Pump and Dumps. This was
approached by first carefully recording historic
cases, and using these to construct a dataset of
Tweets. These Tweets could then be used to
train a classifier. Investigation into what type
of machine learning classifier best fit the
problem at hand was then carried out.
 The final classifier produced appears
to perform impressively. It scores highly (over
0.9) for precision, recall, accuracy, and f1
score. It also appears that the time required to
vectorize text and train a classifier is minimal
in comparison to other models, taking just 6
seconds for training.
 Although this appears promising, there
are several other explanations for the high
numbers, all of which are centred around the
dataset used for training. These explanations
include overfitting and data leakage. Further
improvements into the data collection process
outlined in this paper may therefore improve
upon the classifier generated.

11 Future Work
The dataset produced in this project could
certainly benefit from expansion. Around 15
pump and dump cases were used to build the
dataset. With additional research more cases
could be identified and added, increasing the
size of the dataset and potentially improving
the future classifiers.
 Work could also centre on filtering the
contents of the dataset in order to combat
overfitting and data leakage. Possibly
exploring options such as ignoring retweets or
stripping all punctuation could lead to a more
fit-for-purpose classifier.
 Finally, there are certainly far more
possible algorithms and neural network classes

Page 25 of 26

which could be considered. From simplistic
approaches such as logistic regression, to
exploring different classes of neural network
such as recurrent neural networks, there are a
host of possibilities which may be explored.

12 Reflection
Despite difficulties faced as a result of the
COVID-19 pandemic, I am happy with the
final result of this project.
 Despite this, it has certainly been more
challenging than I initially expected. Even the
first task – gaining a Twitter researcher
account – did not go as planned. Initially the
project plan was to incorporate the chosen
classifier into some kind of live monitor,
however this proved unfeasible as the time
required for data collection was longer than
expected.
 I believe that this project has
hopefully contributed something to combatting
these Pump and Dump schemes. The
pandemic has undoubtedly created financial
vulnerability for many, and any new methods
of preventing these people from being
exploited should be explored.

13 References
1. Triple A. Crypto Ownership Data UK.
[Online] https://triple-a.io/crypto-ownership-
united-kingdom/.
2. Lennighan, Mary. UK Consumers Go
Crazy For Cryptocurrency Apps In Third
Lockdown. Telecoms. [Online]
https://telecoms.com/509292/uk-consumers-
go-crazy-for-cryptocurrency-apps-in-third-
lockdown/.
3. Flanagan, Peter. Crypto Fraud Costs More
Than $200 Million This Year, U.K. Police
Say. Bloomberg. [Online]
https://www.bloomberg.com/news/articles/202
1-10-18/crypto-fraud-costs-more-than-200-
million-this-year-u-k-police.
4. Josh Kamps, et al. To the moon: defining
and detecting cryptocurrency pump-and-
dumps. Crime Science Journal. [Online]
https://crimesciencejournal.biomedcentral.com
/articles/10.1186/s40163-018-0093-5.
5. Meriam-Webster Dictionary.
Cryptocurrency Definition. [Online]
https://www.merriam-
webster.com/dictionary/cryptocurrency.
6. Nakamoto, Satoshi. Bitcoin: A Peer-to-
Peer Electronic Cash System. [Online]

https://www.ussc.gov/sites/default/files/pdf/tra
ining/annual-national-training-
seminar/2018/Emerging_Tech_Bitcoin_Crypt
o.pdf.
7. Tretina, Kat. Top 10 Cryptocurrencies
2021. Forbes. [Online]
https://www.forbes.com/advisor/investing/top-
10-cryptocurrencies/.
8. Coinmarketcap. Top Cryptocurrency Spot
Exchanges. Coinmarketcap. [Online]
https://coinmarketcap.com/rankings/exchanges
/.
9. Coinbase. Crypto Basics. Coinbase.
[Online]
https://www.coinbase.com/learn/crypto-
basics/what-is-market-cap.
10. What is Volume? Coin Market Cap.

[Online]

https://coinmarketcap.com/alexandria/gloss

ary/volume.

11. Binance. What is Liquidity? Binance.

[Online]

https://academy.binance.com/en/articles/liq

uidity-explained.

12. Financial Conduct Authority. [Online]

https://www.fca.org.uk.

13. Securities and Exchange Commission.

[Online] https://www.sec.gov.

14. Securities and Exchange Surveilance

Commision. [Online]

https://www.fsa.go.jp/sesc/english/index.ht

m.

15. FCA. FCA Handbook. FCA. [Online]

https://www.handbook.fca.org.uk/handboo

k/MAR/1/7.html?date=2016-03-07.

16. —. Regulation of Cryptoassets. FCA.

[Online]

https://www.fca.org.uk/consumers/cryptoas

sets.

17. Carlos, Ann M. Bank of England

shareholders during and after the South

Sea Bubble, 1720–251 . researchgate.

[Online]

https://www.researchgate.net/publication/2

27708231_The_micro-

foundations_of_the_early_London_capital_

market_Bank_of_England_shareholders_d

uring_and_after_the_South_Sea_Bubble_1

720-251.

18. Munichiello, Katrina. How does a pump

and dump scam work? Investopedia.

[Online]

https://www.investopedia.com/ask/answers/

05/061205.asp.

Page 26 of 26

19. Siering, Michael. All Pump, No Dump?

The Impact Of Internet Deception On Stock

Markets. AIS. [Online]

https://aisel.aisnet.org/ecis2013_cr/115/.

20. Martineau, Paris. Inside the group chats

where people pump and dump

cryptocurrency. TheOutline. [Online]

https://theoutline.com/post/3074/inside-the-

group-chats-where-people-pump-and-

dump-cryptocurrency.

21. Twitter. Data Dictionary. Developer

Portal. [Online]

https://developer.twitter.com/en/docs/twitte

r-api/v1/data-dictionary/object-

model/tweet.

22. —. Rules and Filtering. Developer

Portal. [Online]

https://developer.twitter.com/en/docs/twitte

r-api/v1/rules-and-filtering/search-

operators.

23. Mikolov, Tomas. Efficient Estimation of

Word Representations in Vector Space.

Cornell University. [Online]

https://arxiv.org/abs/1301.3781.

24. Google. word2vec tool. Google Code.

[Online]

https://code.google.com/archive/p/word2vec

/.

25. Hardesty, Larry. Explained: Neural

Networks . MIT. [Online]

26. Valueva, M. V. Application of the

residue number system to reduce hardware

costs of the convolutional neural network

implementation. Science Direct. [Online]

https://www.sciencedirect.com/science/articl

e/abs/pii/S0378475420301580?via%3Dihub.

27. scikit learn. Machine Learning in

Python. Scikit-learn. [Online] https://scikit-

learn.org/stable/index.html.

28. Chen, Weili. Detecting "Pump & Dump

Schemes" on Cryptocurrency Market Using

An Improved Apriori Algorithm.

ieeexplore. [Online]

https://ieeexplore.ieee.org/abstract/docume

nt/8705858?casa_token=LdE3fLV21YEAA

AAA:f07etMY553XRc00KFeUTSF8I_Js98

Qlit6ULKXvA2VxTa6Zi7f-

9NdkRNitYMa2_-s9chJM.

