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Abstract

Traditional image decolourisation methods often impair color contrast when

converting color images to greyscale images. Gooch et al. proposed

Salience-preserving color removal model, which better preserves information

such as contrast and brightness of an image during grayscale of color images.

However Gooch's model usually performs less well than the traditional

greyscale representation when it tries to map a wide range of chromatic

gradients to some independently distinguishable levels. To address this

shortcoming, an optimization algorithm is proposed that preserves the

perceptual differences between colors. The algorithm proposes the concept of

"extended neighborhood", adopts the CIE L * a * b * color space and local

mapping techniques, and aims to improve detail capture and contrast. Finally,

quantitative experimental results verify the feasibility and effectiveness of the

proposed algorithm.
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1. Introduction

In the ever-evolving realm of computer science, image processing emerges as

a beacon of innovation, shaping the way we visualize, analyse, and interpret

the vast array of visual data that constantly surrounds us. Harnessing the

power of algorithms and computational techniques, it breathes life into a

multitude of applications, ranging from the life-saving realm of medical imaging

to the sophisticated intricacies of facial recognition and the vigilant eye of

surveillance systems [1, 2]. It involves the processing and analysis of images

to extract meaningful information, improve image quality and facilitate

interpretation. Image processing techniques have become more sophisticated

with advances in technology and computing power, enabling us to extract more

value from images.

In some cases, images are converted into greyscale images for ease of

processing or compatibility with certain systems. This process is known as

"image decolorization", which focuses on mapping colors into different shades

of grey based on luminance, thus converting a color image into a

single-channel image [3]. It has a wide range of application scenarios in daily

life, such as black-and-white printing [4], e-ink technology (Kindle reader),

black-and-white scanning and so on. In the field of image processing,

grey-scale maps are also often used in non-realistic image rendering and

single-channel image processing, such as image recognition and edge

detection. The reason for this is that intensity typically captures much of the

visually important information presented in the color counterpart [5]. Since

decolorization reduces the dimensionality of the input signal, it inevitably leads

to information loss. The purpose of decolorization is to maintain as much

information as possible about the original color image while providing

perceptually satisfactory greyscale outputs [6, 7].
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1.1 The Problem

Image decolorization is the process of converting a color image of 3D data into

a greyscale image of 1D data. When an image is decolorised, the data

undergoes a dimensionality reduction, which inevitably results in the loss of

detail and structure in the color image [6, 7]. The widely used color-to-grey

scale image transformation method in image processing is to take the Y

channel in the chroma i.e. YUV color space or the L channel in the luminance

[8, 9], i.e. CIE Lab space as the greyscale image [6]. Neither of them considers

the correlation between the pixels, so the contrast information is lost when the

image is decolorized, resulting in the loss of details and features in the grey

scale map. loss of details and features in the grey scale map. As shown in

Figure 1, the blue numbers 2 and 5 cannot be distinguished in the grey scale

map in the results of Y and L channels. Therefore, it is very necessary to study

the decolorization algorithm.

Figure 1: Left: original image; Middle: Y-channel image; Right: L-channel

image

In summary, image decolorization of color images inevitably results in

greyscale images, and although decolorization works well in many practical

situations, intuitive methods such as extracting the luminance channel in the

CIE Lab color space [9] do not explicitly capture important appearance

features and tend to reduce saliency structures. In this process, how to present

the original chroma, luminance and color saturation of color images in
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greyscale solid images is the focus of decolorization research. Therefore, how

to maintain the brightness and contrast information becomes the core of

decolorization research, which is what we call contrast maintenance. In order

to maintain color contrast, some recent methods for color-to-grey conversion

impose constraints on spatial intensity variations and require that the grey

scale contrast be similar to that of the color input.

1.2 Objectives

The overall goal of this research is to refer to and improve the Color2Gray [10]

party, and to develop an improved image decolourisation method that

preserves as much of the perceived difference between colours as possible

during the conversion of colour images to greyscale images. This goal stems

from the problem observed in the field of image processing, where key details

are lost during the conversion process, thus affecting the analysis and

interpretation of the resulting image.

The specific objectives of this study are as follows:

To study the mechanisms of information loss: this research will first

provide insight into the mechanisms by which important information is lost

during decolorization. It will investigate how color channels in an image are

converted to greyscale and why certain features become indistinguishable

when color information is removed. This objective will provide the basis for

identifying key areas where current decolorization techniques are inadequate

and where improvements can be made.

Examination of existing techniques: an extensive examination of existing

decolorization techniques will be undertaken. The study will assess how these

techniques work, what image features they are able to retain, and where they

fail. Understanding the current state of current decolorization methods will help
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to identify opportunities for innovation and improvement.

Improvement of the decolorization method: Based on the investigation of

the problem and the study of existing techniques, the research aims to improve

a new method of image decolorization. The focus of this method of image

decolorization is to effectively reduce the loss of critical features during the

conversion process and to preserve image characteristics.

Evaluation of Existing Methods: Upon completion of our method, a

comprehensive evaluation will be conducted to assess its performance using

quantitative assessments. We will compare our method with existing

techniques using a variety of images and scenes. Evaluate the extent to which

our method preserves important image features.

2. Related Research

The process of converting color images to greyscale (known as decolorization)

is a widely used tool in a variety of image and video processing applications,

including digital printing and stylised black and white photography. Despite its

importance, conventional decolorization methods usually fail to preserve the

original color contrast, resulting in significant loss of information. Some of the

research on greyscale algorithms has focused on preserving the chromatic

aberration, color contrast, etc. of the image while retaining the brightness

information of the image from the perspective of maximising the preservation

of the original image information. In recent years, a large number of novel

decolorization algorithms have been proposed, such as using the Y channel of

the CIE XYZ color space [9], Lu, et al. [11] proposed a contrast preserving

decolorization algorithm, Gooch, et al. [10] proposed a "color2gray" color

image greyscale algorithm, and Bala and Eschbach [12] proposed a spatial

method for converting from color to greyscale, and so on.
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Currently, greyscale algorithms can be classified as global mapping methods,

local mapping methods and mixed methods. In addition, there are some image

decolorization techniques that use the color space for decolorization, but these

techniques do not belong to the traditional mapping function paradigm. Table 1

lists some representative classical methods in each category.

Table 1: Some methods of image decolorization

Section Author Method

Global

mapping

method

Gooch [10] Salience-preserving color removal

Rasche [13,

14]

Detail preserving reproduction of color images

for monochromats and dichromats

Re-colouring images for Gamuts of lower

dimension

Grundland [15] The decolorize algorithm for contrast

enhancing, color to grayscale conversion

Kim [16] Robust color-to-gray via nonlinear global

mapping

Local

mapping

method

Bala [12] Spatial color-to-grayscale transform preserving

chrominance edge information

Smith [17] Apparent greyscale: A simple and fast

conversion to perceptually accurate images and

video

Local

mapping

and global

mapping

Lu [11] Contrast preserving decolorization

Lu [18] Real-time contrast preserving decolorization

Color

Space

CIEXYZ [9]

YcrCb [19]
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CIELab [20]

First I will describe three methods of color space based decolorization.

2.1 Color Space Based Decolorization Modeling Approach

Color Space is also known as the color gamut [21]. In color science, people

have established a variety of models used to portray the color space, usually

one-dimensional, two-dimensional, three-dimensional or even

four-dimensional space to specifically portray the color, the color range that

can be defined by this structure is the color space. At present, the more

commonly used color space includes: CIEXYZ color space [9], YCrCb color

space [19], CIELab color space [20]. The color space referenced in the

methodology of this thesis, the CIELab color space, is the aforementioned

color space that I will introduce below.

First of all, a few basic concepts:

 Brightness (lightness or intensity or luminance): is the role of light in the

human eye caused by the brightness of the feeling, it is related to the

luminous intensity of the object being observed, mainly to show the light

of the strong and weak;

 chromaticity (hue): is when the human eye to see one or more

wavelengths of light produced by the color feeling, it reflects the type of

color, is to determine the basic characteristics of color;

 Color saturation (saturation): refers to the purity of a color, i.e., the

degree of adulteration of white light, indicating the degree of color

shades.
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Traditionally, it is believed that the luminance information mentioned above can

be used as the reference result of color image decolorization, however, this

operation will have many shortcomings in practical application, in order to

make the problem clear, next, we specifically introduce three typical color

spaces based on the decolorization method.

2.1.1 CIEXYZ Color Space

The simplest and most widely used method for converting color to grayscale

involves utilizing the luminance channel, thereby ignoring the chrominance

channels. This technique serves as a grayscale representation of the original

color image. One such method employs the Y channel of the CIE XYZ color

space [9]. In this method, after converting the color image to the XYZ space,

the Y value is taken as the grayscale value. This approach is straightforward

and computationally efficient. However, it may not be suitable for all images,

especially those with colors of equal luminance. Since it only considers the

luminance channel information, it struggles with grayscale conversion of

different colors that share the same luminance value. In practice, this can lead

to loss of detail or differences between colors in a greyscale image that would

be apparent in a color image.

Referring to Figure 2, it can be seen that relative to the original image, the

image exported by the method of decolorization through the Y channel of CIE

XYZ lacks a lot of image information, for example, the numbers 2 and 5 in the

circular image are almost impossible to find in the grey scale image. In another

set of comparison images, the color images have obvious color differences,

while the CIE_Y images lose the color contrast. Therefore, the method of

decolorization using the Y channel of CIE XYZ does not work well.
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Figure 2: On the left is the original image, on the right is the image after

greyscale conversion of the Y-channel of CIE XYZ

2.1.2 YCrCb Color Space

The YCrCb color space, where Y stands for luminance, and "Luminance" is

established from the RGB input signal by superimposing specific portions of

the RGB signal [19]. The term "chroma" refers to two qualities of color: chroma

and color saturation, which are represented by the letters Cr and Cb,

respectively. Cr represents the difference between the red component of the

RGB input signal and the RGB signal's luminance value, whereas Cb

represents the difference between the blue part of the RGB input signal and

the RGB signal's luminance value.

The YCrCb color space has a conversion relationship with the RGB color

space as follows:

Y = 0.299R + 0.578G + 0.114BCr = (0.500R − 0.4187G − 0.0813B) + 128Cb = ( − 0.1687R − 0.3313G + 0.500B) + 128
Or write it in the form of a matrix:
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YCrCb − 0.299 0.578 0.1140.500 −0.418 −0.0813−0.1687 −0.3313 0.500 RGB + 0128128
The transformation relationship between RGB color space and YCrCb color

space can be written in the following form:

RGB = 1 1.4020 01 −0.7141 −0.34411 0 1.7720 0Cr − 128Cb − 128
2.1.3 CIE Lab Color Space

The CIE chromaticity model is one of the first models used by the International

Commission on Illumination [21]. It is a three-dimensional model, which, x and

y two-dimensional definition of color, the third dimension defines the luminance.

CIE Lab color space is the CIE in 1976 for non-self-illumination of the color

space, called CIE1976 L * a * b *, or CIE Lab. Lab using b *, a * and L * to

establish the axes to define the CIE color space. Among them, the L* value

represents the luminance, its value from 0 (black) to 100 (white). b* and a*

represent the chromaticity coordinates, of which a* represents the red-green

axis, b* represents the yellow-blue axis, their values from 0 to 10, a* = b* = 0

means no color, so L* represents the scale factor from black to white [22]. The

concept of opposing color coordinates (opponent color coordinate) stems from

the idea that a color cannot be both red and green or yellow and blue at the

same time, but can be conceived of as a mixture of red and yellow, red and

blue, green and yellow, and green and blue [23]. Any bit of color in nature can

be expressed in the CIE Lab color space, which is larger than the RGB color

space. Furthermore, regardless of the technology, this mode digitally describes

the human visual experience. As a result, it compensates for the fact that the

RGB color space must be dependent on the color properties of the device.

Because the CIE Lab color space is bigger than the RGB color space, any

color information that can be expressed by the RGB color system may be
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shaded in the CIE Lab color space.

2.2 Tone Mapping

Before introducing the methods, we introduce the classification of tone

mapping [24] colors with the advantages and disadvantages of the

classification methods. Tone mapping methods can be roughly divided into two

categories: global methods and local methods. In image processing, the

choice between global and local mapping can have a significant impact on the

final result. Global algorithms process each pixel uniformly based on its

intrinsic characteristics, often yielding results suitable for images with limited

depth (e.g., 12-bit), but may flatten images with a wider dynamic range and

wash out complex details. In contrast, local mapping takes into account the

spatial context of each pixel, ensuring adaptive processing [25]. Although this

approach requires higher computational power due to the meticulous

processing, it does a good job of preserving and highlighting local details,

especially highlights and shadows. While global mapping provides simplicity,

the context-aware transformation of local mapping provides a more nuanced

image rendering [26].

2.2.1 Global Mapping

Several methods of global mapping are described below:

Researchers such as Gooch, et al. [10] proposed a grayscale method for color

images called "Color2Gray". They noticed that when converting a color image

to grayscale, because the luminance and color are often equal, it is easy to

cause the loss of chromatic aberration information. To address this problem,

the algorithm aims to preserve color gradients as much as possible. The

method involves comparing the grayscale and color differences between two

pixels and trying to maintain the color differences as much as possible in a

least squares sense.
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The results of Color2Gray provide users with important information that is

missing in traditional grayscale image generation methods. Although the

Color2Gray method does a better job of maintaining the color contrast of the

original image, it may not be able to maintain both luminance and chrominance

information when dealing with colorful images. When the algorithm attempts to

map a wide range of chromaticity gradients to some independently

distinguishable levels, it typically performs less well than a traditional grayscale

representation. For example, the first row of Figure 3 shows this limitation. For

natural scenes with large variations in brightness, Color2Gray does not

provide significant improvement. However, for images with large areas, similar

brightness, and only a few different chromaticity values, this method can

significantly improve the results. For example, in the second row of Figure 3,

Color2Grey succeeded in making the two hills behind the car clearly

distinguishable. The Color2Gray optimization process has a computational

complexity of O(N4), which makes outputting the image slow due to the fact

that the size of the matrix involved is equal to the square of the number of

pixels in the image. The amount of computation can be reduced by sampling a

smaller neighborhood of pixels. This report refers to that method, however, this

report improves on the method used and the output is better compared to

Gooch's method.

Color Source Photoshop Gray Color2Gray

Figure 3: Images with a variety of colors lead to a Color2Gray result, which



16

does not provide a great improvement over Photoshop greyscale.

The global optimization approach was proposed earlier by Rasche with two

related papers [13, 14]. The paper [14] called "Detail preserving reproduction

of color images for monochromats and dichromats" defines constraints directly

on different color pairs to achieve accelerated linear color mapping. Their

strategy aims at maintaining the stability of contrast and luminance at the

same time. The error function is set based on matching the gray scale

difference with the corresponding color difference. The central goal of the

method is to find the optimal color conversion by minimizing this error function.

The linear method used in this thesis for monochrome and dichromatic color

image reduction has several advantages: the size of the dataset can be

reduced quickly and simply using color quantization without manipulating the

entire dataset, unlike traditional nonlinear methods. Linear operations are very

fast to compute and easy to implement. In contrast, processes like LLE require

finding the eigenvectors of very large sparse matrices [27]. It is easy to

incorporate other perceptual distance metrics. The linear approach of this

thesis does not require tuning, such as the neighborhood size parameter often

found in nonlinear methods. See Figure 4 for a demonstration of the results of

applying this method to an image in grayscale (for the pigment defect case).

Figure 4a shows the original image, Figure 4b shows the original image as

seen by a simulated observer with pigmentation defects, and Figure 4c shows

the original image after recoloring.
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Figure 4: In situ defects: (a) the color image in Figure 1, (b) the image seen by

the simulated in situ observer, and (c) the image seen by the simulated in situ

observer recolored for the in situ observer.

The paper [13] called "Re-colouring images for gamuts of lower dimension"

obtained a similar optimization function between all the color groups, and

obtained the sampled colors by color quantization, tried to keep the greyscale

differences between the sampled colors as colorful as possible, and obtained

the greyscale values of all the colors by the difference, their methodology aims

to keep the contrast while maintaining a consistent brightness. The goal is to

minimize the error function to find an optimal conversion. But true color images

because of the large color sample size linear interpolation sometimes does not

give good results. As shown in Figure 5, there is not enough perceptual

bandwidth to map each blade of a windmill to a distinct shade of grey in a

windmill picture that has too many color variations.

Figure 5: Too many color variations: there isn't enough perceptual bandwidth

here to map each windmill blade to a separate shade of grey.

Grundland and Dodgson [15] proposed a decolorize algorithm for contrast

enhancement and for converting colors to grayscale. It incorporates innovative

techniques for image sampling and dimensionality reduction, color difference

sampling using Gaussian pairing, and color difference analysis via principal
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component analysis. This algorithm not only enhances the contrast of an

image, but also performs grayscale conversion, i.e., converting a color image

into a grayscale map while adding a certain amount of chromaticity in terms of

luminance. Their approach is to achieve global grayscale conversion by

representing grayscale as the RGB primary color and its saturation, combined

with a segmented linear mapping associated with the image. In addition, They

employ three parameters to regulate contrast enhancement, color selection,

and noise suppression, and have set image-independent default values for

these parameters. The benefits of this technique include continuous mapping,

global consistency, and grayscale preservation, in addition to speed and

simplicity, as well as predictable brightness, saturation, and hue ordering

features. Referring to Figure 6, it can be seen that the example processed

image in this decolorization algorithm enhances contrast by increasing

luminance to reflect chromatic aberration.

Figure 6: Recovering chromatic contrasts in grayscale:(a) color image, (b)

luminance channel, (c) Their enhanced grayscale.

Kim, et al. [16] proposed a more flexible nonlinear mapping in the CIE LCH

color space similar to the Fairchild model for measuring the

H-K(Helmholtz-Kohlrausch) effect to achieve global color contrast

enhancement [16]. The CIE LCH color space is used, which is divided into

three channels, L (Luminance) for luminance, C (Chrome) for saturation, and H
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(Hue) for chromaticity information. A nonlinear mapping function is established

on this color space, in which an important basis is to weight the value of

chromaticity change according to the information of saturation, the higher the

saturation, the larger the range of chromaticity can be changed, and vice versa,

the smaller it is. Although the method can be applied to nonlinear mapping in

video transformations, the method causes the image to lose or blur edge

features. In the CIE LCH color space, the chroma and luminance information

are not independent, which produces a large variation of gray and dark colors,

but a small variation of bright colors instead, and it will not give good results.

The color to greyscale conversion in [16] does not explicitly consider features

for global contrast, but focuses more on local features. Compared to the

method of [10] which may lose smaller feature details, the method of [16]

retains more image feature details. See Figure 7 for a graphical representation

of the results of this algorithm compared to Gooch's algorithm.

(a)Input (b)Kim (c)Gooch

Figure 7: Comparison of color to grayscale image conversion results. (a) Input

image. (b) Kim, et al. [16]. (c) Gooch, et al. [10].

2.2.2 Local mapping

The local mapping-based color removal method focuses on the distribution

differences of colors in local spatial locations, and adjusts the pixel intensities

at local locations according to the local distribution differences, which can
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better preserve the local color features of the original color image. For local

mapping, there are several methods as follows:

Smith, et al. [17] proposed a decoloring algorithm for converting complex

images and videos into perceptually accurate grayscale versions. Their use of

a two-step approach starts with assigning grayscale values globally and

employing the Helmholtz-Kohlrausch color appearance effect for color

ordering, and secondly, extracting edge information using Laplace pyramids

for local contrast enhancement. See Figure 8, where Smith, et al. [17] method

was applied to two images from Gooch, et al. [10] to demonstrate their ability

to distinguish between colors of equal luminance.

Original CIE_Y Smith

Figure 8: Original image on the left, CIE Y-channel grayscale with essentially

unsharpened enhancement in the middle, and Smith's method on the right.

And Bala and Eschbach [12] proposed a spatial-based color-gray scale

transformation technique. This method preserves color edges locally by adding

high-frequency color information to the luminance channel. The final effect is

obtained by applying spatial high-pass filtering to the color channel and

weighting the output with a luminance-dependent factor, and then combining
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this output to the luminance channel. As shown in Figure 9, this algorithm

helps to recover the chromatic details lost in a standard grey scale (L*) image,

but the local algorithm enhances all the color differences in the image, and

along with the image detail enhancement, it enhances some of the defects at

the same time.

(a) (b)

Figure 9: (a) standard and (b) spatial color to greyscale mapping

The greyscale algorithms proposed by Bala and Eschbach [12] and Smith, et

al. [17]. both give a greyscale algorithm that enhances local features by

obtaining high-frequency information through high-frequency filtering of the

chroma layer saturation layer, and then multiplying it by a luminance-related

weight, which is then added to the luminance layer. Although the local mapping

method can find out the local color difference of each channel of the color

image, so that the decolorized image can better retain the local details of the

original color image. However, most of the local mapping algorithms cannot

guarantee the overall consistency of the color, i.e., the same color is mapped

to the same gray value in the greyscale process of the color image. Moreover,

artifacts will appear in the image after decolorization using local mapping

algorithms.

2.2.3 Mixing of global and local mappings

In addition to global and local mapping, there are also methods that mix the
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two: Lu, et al. [28] proposed an optimization method based on maximizing the

preservation of original color contrast, i.e., after global mapping using finite

multivariate polynomials, the bimodal contrast is preserved by solving a

bimodal contrast-preserving objective function based on weakening the

constraints of the color order restrictions. This method preserves and

enhances the image contrast to some extent, but the time complexity is limited

by the values of the weights in the global mapping, so later they proposed a

real-time contrast-preserving decolorization method by linearly combining the

color channels with three parameters, discretizing the solution space of the

parameters, and scaling the high-resolution input image to a fixed size [18].

Although this algorithm has some advantages in contrast preservation and

speed, its grayscale results occasionally still have the phenomenon that the

color consistency features of the image are corrupted, losing some important

contrast information, and they did not consider the problem of grayscale pixel

features.

This chapter discusses how greyscale results can be improved by using the

theory of color vision from three starting points: global mapping [10, 13-16],

local mapping [12, 17] and mixed methods [18, 28], respectively. Although the

Gooch, et al. [10] method is computationally expensive for computing the

differences between pixel pairs, it may transfer distinct colors of neighbouring

pixels to different greyscale values. Therefore, I propose an improved color to

greyscale algorithm, based on Gooch, et al. [10].

3. Methodology

This chapter focuses on the type of tone mapping to be used in this paper, the

proposed new color image decolorization method, which covers specifically

the existing methods and theories on which this paper relies and the

theoretical model and methodology of this paper. The theoretical model of this
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paper is carried out on the basis of Gooch's image decolorization method, we

change the target difference function in its decolorization model, calculate the

difference between each pixel and its neighboring pixels and non-neighboring

pixels, and use the nonlinear function crunch to process the chromaticity

difference and save all the differences into a sparse matrix, so as to obtain an

image decolorization method with better results than the previous methods.

3.1 Existing methods

3.1.1 The basic idea of "Color2Gray"

When a color image is converted to greyscale, key visual features of the image

may be diminished. In the paper of Gooch, et al. [10], an algorithm called

"Color2Gray" is presented that aims to reduce the loss of these key features in

color images. The basic premise of the algorithm is to compute signed

chromatic distances in the CIE L * a * b * chromaticity plane. In this way, the

chroma and luminance variations of the original image are transposed to a

greyscale version, resulting in a target image that captures and preserves the

salient features of the original color image.

The algorithm consists of three key steps:

(1) Converting the input RGB image into a perceptually uniform CIE L * a * b *

color space. This representation is characterized by the L * a * b * color space,

which has three components:

L: represents the luminance of the image. Luminance values are between 0

and 100, where 0 represents black and 100 represents white. larger values of

L indicate higher luminance.

a: This component goes from green to red. The value can vary from negative

to positive, e.g. -128 to +127 indicates a transition from green to red. b:

Indicates the transition from blue to yellow.
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b: This represents the spectrum from blue to yellow, and its value can also vary

from negative to positive, with -128 indicating blue and +127 indicating yellow.

An important feature of this transition is its perceptual consistency. Essentially,

even if the L*a*b* values change by the same amount, the visual perceptual

differences remain relatively consistent.

(2) Create target grayscale images: create grayscale target differences using

adjacent pixel chromaticity differences and luminance differences.

(3) Optimize the transformation: selectively adjust the luminance difference of

the original image to affect the chrominance difference of the original image

using the least squares method.

3.1.2 Salience-Persevering Color Removal

Color removal of a color image is the process of converting a color image into

a grayscale image, in which we hope that the color contrast of the original color

image can be maintained in the new grayscale image by the luminance and

chromaticity information as well. According to this purpose, the color difference

between pixels in a color image is expressed as a set of signed scalar values,

and then a grayscale image is constructed using these values. For each pixel

labeled i and its neighboring pixels j , a different scalar value is determined

based on their luminance and chromaticity differences δij. These scalar values
subsequently affect the composition of the grayscale image, denoted by g. The
difference in grayscale between a pixel and can be described by (gi − gi). The
optimal conversion from color to grayscale is to ensure that all these (gi − gi )
differences are consistent with their respective δij values. Therefore, we need
to first define what is called the target difference [10].
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3.1.3 Target differences

To define the target difference δij, we compared the luminance difference ∆L��
and chromaticity difference ∆C王屎屎屎 ij in the CIE Lab color system, referred to as

(∆Aij，∆Bij). Since ∆Lij is a scalar and ∆C王屎屎屎 ij is a two-bit vector, we compute its
Euclidean norm to map to one dimension and then assign sign to ∆C王屎屎屎 ij since it
is always positive. The parameter θ controls which color differences are

mapped to increases or decreases in the luminance value of the light source,

and the chromaticity difference can be calculated by the following equation:

∆C王屎屎屎 ij ∙ cos θ , sin θ
The target difference is defined as luminance difference or chromaticity

difference and δij is defined as follows:
δ α, θ ij = ∆Lijcrunch(||∆C王屎屎屎 ij||)crunch(−||∆C王屎屎屎 ij||)

|∆Lij| > crunch(||∆C王屎屎屎 ij||)∆C王屎屎屎 ij ∙ cos θ , sin θ ≥ 0otherwise
Crunch is defined as:

crunch x = α ∙ tan x/α
where α is the amount of chromaticity change that controls the luminance

value applied to the light source [10].

3.1.4 Optimization

The algorithm solves an optimization problem that selectively adjusts the

grayscale representation according to the chromaticity variation of the source



26

image. This step ensures that the perceived color differences are preserved in

the grayscale output. Where gi and gj are the grayscale values of the

neighboring pixels and GII is the target difference in grayscale between these

pixels computed using the aforementioned nonlinear function. The goal of the

optimization problem is to minimize the squared difference between the actual

grayscale values of adjacent pixels and the target grayscale value [10]. This

helps to achieve the desired grayscale representation while preserving the

color information. The objective function for minimization is defined as follows:f g = (i,j)∈K (gi − gj) − δij 2布
Where K is the set of all pixel pairs to be compared.

3.2 The proposed algorithm

3.2.1 Introduction to the algorithm

The main goal of our algorithm is to refer to and improve the Color2Gray[10]

method, which converts color images to greyscale while trying to maintain the

perceived differences between colors. The algorithm consists of the following

three steps:

(1) Color to grayscale conversion using CIE L * a * b * color space.

(2) Calculate the difference between each pixel and its neighboring and

non-neighboring pixels under CIE L * a * b * color space, including chromaticity

difference and luminance difference. The method of incremental calculation of

extended neighbors is proposed.

(3) Process the chromaticity difference to get the greyscale target difference

by the nonlinear function crunch(x).

(4) Referring to Color2Gray's method of selectively adjusting the greyscale
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representation according to the chromaticity variation of the source image, the

optimisation problem is solved to adjust the final greyscale map.

3.2.2 Adoption of local mapping approach

The algorithm proposed by Gooch, et al. [10]. uses the global mapping method,

while my algorithm uses local mapping, which has the following advantages

over global mapping:

 Adaptive transformation: unlike the global approach which applies a fixed

formula to all parts of the image, local mapping adapts to the specific

features of each region. This ensures that each part of the image, whether

it is shaded, highlighted or has a different color gradient, receives an

appropriate grayscale representation.

 preserves perceptual differences: since the transformation is localized,

color variations that may be perceptible in one region of the image (but not

in others) can be more accurately converted to grayscale. This produces a

grayscale reproduction that is more faithful to human perception.

 Enhanced Detail and Contrast: Local mapping amplifies subtle differences

between neighboring pixels, ensuring that no intricate detail is lost in the

conversion process. This typically results in the generation of grayscale

images with better contrast.

Combined with the local mapping approach, my algorithm takes full advantage

of local mapping by meticulously considering the luminance information

around each pixel, ensuring that the resulting image not only retains its

intrinsic contrast, but also vividly demonstrates subtle details that are often

overlooked by the global approach.
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3.2.3 Delta Calculation for Extended Neighbors

One of the main drawbacks of existing grayscale conversion methods lies in

the limited spatial analysis of pixels. Conventional techniques usually evaluate

only the nearest neighbors of a pixel to calculate its grayscale value. For

example, Gooch's method only considers luminance differences and

chrominance differences between neighboring pixels. The resulting grayscale

image has low contrast due to the loss of some information in the color image.

Our study aims to address this limitation by introducing an "extended neighbor"

approach in the incremental computation of grayscale conversion. Instead of

considering only neighboring pixels, our method extends the analysis to

consider a wider neighborhood around each pixel.

Definitions:

Neighborhood Definition: for each pixel, a "neighborhood" is defined, which

includes not only near neighboring pixels, but also pixels further away.

Chromaticity Difference: The color difference between a pixel � and another
pixel � within its extended neighborhood, denoted as ∆C��.
Methodology:

Our novel approach extends pixel analysis beyond the direct neighborhood by

incorporating the concept of extended neighborhood. This extended analysis

helps to capture the original color information in more detail, thus enriching the

grayscale conversion process.

Difference Calculation:

For each pixel � calculate the relationship between the chromaticity difference∆C�� and the luminance difference ∆L�� between that pixel � and other pixels �
in its extended neighborhood.
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3.3 Result

Figure 10 compares the greyscale patterns of the Color2Gray algorithm and

our algorithm on various images. In the image in row 5, the low color contrast

letter R disappears from the Color2Gray results. The results of our algorithm

sometimes retain more detailed features of the image than the Color2Gray

algorithm, e.g., the clouds in the sky are noticeably whiter (line 1), the roofs are

noticeably darker, and the trees are more clearly distinguished from the

houses next to them (line 3).

However, our method is not universally superior; it exhibits limitations in

regions with subtle color transitions, such as the number "2"'s in the fourth row

of Figure 10 which are not evident in the image. In addition, both algorithms

have limited efficacy when dealing with high dynamic range scenes with large

fluctuations in brightness, as exemplified in the seventh row. However, our

algorithm outperforms Color2Gray in processing images with equal luminance

and little change in chroma, and this ability is best demonstrated in row six,

where our technique achieves a more accurate representation of chroma so

that each color in the chroma table is clearly distinguishable.
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original image Color2Gray Ours

Figure 10: Comparison of color source images, Color2Gray results and Our

results.

4. Evaluation and analysis

4.1 Overview

In this section, we rigorously assess our proposed decolorization algorithm

using both subjective and objective quantitative evaluations. We employ a

diverse set of 14 images from the Ĉadík [29] datase, which offer a rich variety

of structural textures and color information. Quantitative evaluation of the
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performance of our algorithms, we compare it against seven widely recognized

decolorization methods, namely: Bala [12], CIE Y [9], Color2Gray [10],

Grundland [15] , Kim [16], Rasche [13], and Smith [17].

4.2 Subjective quantitative evaluations

To gauge the quality of the grayscale images produced, we first undertake a

subjective evaluation. The primary criteria are the maintenance of the original

image's overall characteristics and the high contrast between differing colors.

We conduct this comparative study across natural landscape images, the

results of which are presented in Figure 11.

a b c d e f g h i

Figure 11: Natural landscape images processed by our methods and other

methods (a) Original color image, (b) Bala [12], (c) CIE Y channel [9], (d)

Color2Gray [10], (e) Grundland [15], (f) Kim [16] (g) Rasche [13], (h) Smith [17],

(i) Ours.

In Fig. 12, our algorithm demonstrates its strength in generating grayscale

images that excel in both luminance and chromaticity differences, resulting in

high contrast that closely matches human perception. Although it does not

always outperform the other algorithms in all images (especially the image

shown in Fig. 13), its performance is commendable.
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a b c d e f g h i

Figure 12: Color images with a wide range of colors processed by our

algorithm and other methods (a) Original color image, (b) Bala [12], (c) CIE Y

channel [9], (d) Color2Gray [10], (e) Grundland [15], (f) Kim [16] (g) Rasche

[13], (h) Smith [17], (i) Ours.

a b c d e f g h i

Figure 13: Color image processed by our algorithm and other methods (a)

Original color image, (b) Bala [12], (c) CIE Y channel [9], (d) Color2Gray [10],

(e) Grundland [15], (f) Kim [16] (g) Rasche [13], (h) Smith [17], (i) Ours.

Moreover, Figures 11-13 reveal an interesting trend. Our algorithm performs

modestly on images featuring natural landscapes, which often exhibit

significant variations in brightness. Nevertheless, the algorithm excels in

images with uniform brightness regions but differing chromaticity.

In summary, while our proposed decolorization algorithm is not universally

superior across all types of images, it exhibits marked improvements in

grayscale images with balanced brightness regions and chromatic variance,

confirming its efficacy under specific conditions.

4.3 Objective quantitative assessment

In this section, I compare the de-coloring method proposed in this paper with

the following seven methods by means of two existing types of objective

metrics: the : Bala [12], CIE Y [9], Color2Gray [10], Grundland [15] , Kim [16],

Rasche [13], and Smith [17].
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4.3.1 Decolorized image metrics: CCPR, CCFPR and E-score

CCPR, CCFR and E-score are metrics defined for contrast-preserving color

removal algorithms [11].

Color Contrast Preservation Ratio (CCPR) aims to quantitatively evaluate the

contrast preserved by the decolorization algorithm: if the color difference δ is

smaller than the threshold τ , it is almost indistinguishable in human vision.

Therefore, preserving the contrast of color removal means preserving the color

change that can be perceived by humans. The specific definition of CCPR is

as follows:

CCPR = # x, y x, y ∈ Ω, Gx − Gy ≥ τ∥ Ω ∥
where all pixel pairs (x, y) in Ω satisfy the color contrast δx,y ≥ τ and Ω denotes

the number of pixel pairs contained in the set Ω.# x, y x, y ∈ Ω, Gx − Gy ≥ τ represents the number of pixel pairs in the set

Ω for which the grey scale contrast is still not less than the threshold τ after

decolorization.

Color Content Fidelity Ratio (CCFR) measures the content similarity and

identifies the credibility of a grayscale map in terms of its content structure.

CCFR is defined as:

CCFR = 1 − # x, y x, y ∈ Θ, δx,y ≤ τ∥ Θ ∥
where Θ is the set of pixel pairs consisting of pixel pairs whose gray scale

contrast Gx − Gy is greater than a threshold τ. CCFR can be used to test the

percentage of undesired artifacts produced by the decolorization algorithm.
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E-score is the reconciled mean of CCPR and CCFR, and its highest E-score

value means that the color contrast of the input color image is retained in the

output grayscale image without forming any new edges [11]. The specific

definitions are as follows:

E − score = 2 ∙ CCPR ∙ CCFRCCPR + CCFR
Figure 14 illustrates the CCPR, CCFR, and E-score results for the second

column of images in Figure 12. the E-score is essentially in line with human

perception. Ideally, when all color contrast is preserved in the grayscale results

without creating new edges, the values of CCPR and CCFR are both close to 1

when the E-score value is the highest.

CCPR=NA

CCFR=NA

E-score=NA

CCPR=0.9376

CCFR=0.8439

E-score=0.8849

CCPR=0.1519

CCFR=0.8450

E-score=0.2322

CCPR=0.8574

CCFR=0.8784

E-score=0.8646

CCPR=0.8788

CCFR=0.9207

E-score=0.8974

(a) (b) (c) (d) (e)

CCPR=0.9183

CCFR=0.6902

E-score=0.7801

CCPR=0.9376

CCFR=0.8439

E-score=0.8849

CCPR=0.6180

CCFR=0.9008

E-score=0.7173

CCPR=0.9574

CCFR=0.7693

E-score=0.8529

(f) (g) (h) (i)

Figure 14: CCPR, CCFR, and E-Score for different grayscale results at τ = 5. a
Input images. b-h Results for CIE Y [9], Bala [12], Color2Gray [10], Grundland

[15], Kim [16], Rasche [13], and Smith [17]. (i) Our results.
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4.3.2 Structural Similarity Index Measure SSIM

The Structural Similarity Index SSIM is used to measure the similarity between

two color images and is closely related to the human visual system [30]. The

human visual perception system is able to extract structural information from a

scene to recognize the information difference between the reference scene

and the sample scene, so SSIM evaluates the similarity by three aspects:

brightness, contrast and structure.

Let x and y be the image blocks at the same position of the images to be

compared, and the luminance comparison term l x, y , the contrast

comparison term d x, y and the structure comparison term s x, y at x and y

are defined as.

l x, y = 2μxμy + C1μx + μy + C1
d x, y = 2σxσy + C2σx + σy + C2
s x, y = σxy + C32σxσy + C31

where μ ,σ and σxy represent the mean, standard deviation and covariance,

respectively. C1, C2 and C3 are very small normal values, avoiding the case

where the denominator is 0. The SSIM index is obtained by multiplying the

three components:

SSIM x, y = l x, y α ∙ d x, y β ∙ s x, y γ
where α , β and γ are positive parameters. The SSIM metrics for the whole

image are obtained by traversing the image blocks of the whole image and



36

taking the mean values.

4.3.3 Evaluation based on CCPR, CCFR, and E-score Metrics

To ensure a comprehensive assessment of image decolorization techniques,

we employed a curated dataset that combines 14 images from the renowned

Ĉadík [29] dataset along with other greyscale images generated using the

decolorization method of Kim, et al. [16]. This augmentation was undertaken to

bring a broader context to the evaluation. We employed three pivotal

metrics—Color Contrast Preservation Ratio (CCPR), Color Constancy Fidelity

Ratio (CCFR), and E-score—for the quantitative evaluation. Each of these

metrics brings unique perspectives into the decolorization quality and artifact

formation.

In our analytical framework, we selected two distinct threshold values, τ = 15

and τ = 40, to scrutinize the impact of different intensity levels on the

aforementioned metrics. The outcomes are systematically documented in

Tables 2 and 3, and illustrated in Figures 15 and 16.

Table 2: CCPR, CCFR, and E-score at τ = 15 for different grayscale results.
Bala CIE Y Color2Gray Grundland Kim Rasche Smith Ours

CCPR 0.7545 0.6733 0.7914 0.8201 0.8235 0.8524 0.6889 0.847

CCFR 0.8414 0.9039 0.8795 0.8807 0.8853 0.8413 0.8729 0.9368

E-score 0.7672 0.7092 0.8237 0.8369 0.834 0.8345 0.7161 0.8857

Table 3: CCPR, CCFR, and E-score at τ = 40 for different grayscale results.
Bala CIE Y Color2Gray Grundland Kim Rasche Smith Ours

CCPR 0.5965 0.5184 0.5886 0.6512 0.6784 0.7153 0.5283 0.7161

CCFR 0.8363 0.8802 0.8570 0.8505 0.8754 0.7750 0.8376 0.8723

E-score 0.6244 0.5684 0.6386 0.6879 0.7323 0.7170 0.5651 0.7679
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Figure 15: Comparison of Bala [12], CIE Y [9], Color2Gray [10], Grundland

[15] , Kim [16], Rasche [13], and Smith [17], and our method in terms of CCPR,

CCFR, and E-score on 14 images at τ = 15. The x-axis represents the different
thresholds τ, and the y-axis represents the corresponding CCPR, CCFR, and

E-score values. score values.

Figure 16: Comparison of Bala [12], CIE Y [9], Color2Gray [10], Grundland

[15] , Kim [16], Rasche [13], and Smith [17], and our method in terms of CCPR,

CCFR, and E-score on 14 images at τ = 40. The x-axis represents the different
thresholds τ, and the y-axis represents the corresponding CCPR, CCFR, and

E-score values. score values.

Upon applying our analytical lens to the image decolorization methodologies

sourced from the Ĉadík [29] dataset and Kim's [16] approach, several salient

trends emerged across the metrics of CCPR, CCFR, and E-score. Techniques

devoid of content-specific considerations, typified by the CIE Y-channel [9],

routinely produced subpar CCPR outcomes, thus highlighting their inefficacy in

preserving color contrast. Contrarily, methods such as Bala manifested lower

CCFR scores, signaling the likelihood of artifact introduction. Notably, E-score

revealed itself as a nuanced evaluation metric that gains interpretive depth
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when juxtaposed with CCPR and CCFR metrics. Our approach manifested

consistently robust E-score values, thereby corroborating its balanced

decolorization efficacy.

Our algorithm demonstrates robust performance, particularly excelling in

CCFR with a score of 0.9368 at τ = 15. It also achieves competitive results in

CCPR and E-score, suggesting a balanced decolorization performance. While

methods such as Rasche [13] exhibit higher CCPR scores in some instances,

their performance lacks consistency across all metrics. In terms of E-score, a

crucial aggregate metric, our method consistently outperforms competitors at

both intensity levels. Specifically, at τ = 40, our algorithm reaches a maximum

E-score of 0.7679, illustrating its aptitude for generating high-quality grayscale

images even under varying conditions.

For a broader understanding, Table 4 evaluates our algorithm at τ = 5 across

six representative images. Here, we observed high E-score values, peaking at

0.9644, affirming our algorithm's efficacy.

While our CCPR metrics were robust, they were occasionally outpaced by

other techniques like Rasche [13]. Despite this, our CCFR scores were

exceptionally high, cresting at 0.9897 in certain scenarios. Collectively, these

findings lend credence to our algorithm's balanced and efficacious

performance, especially when evaluated across the multifaceted metrics of

CCPR, CCFR, and E-score.
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Table 4: Comparison of CCPR, CCFR and E-score of Image1-6 at τ = 5
Test image Metric Bala CIE Y Color2Gray Grundland Kim Rasche Smith Ours

CCPR 0.7969 0.8020 0.8389 0.8937 0.9132 0.9008 0.8105 0.8692

CCFR 0.7419 0.8019 0.8294 0.7542 0.8100 0.6817 0.7575 0.9073

E-score 0.7680 0.8020 0.8341 0.8158 0.8570 0.7702 0.7827 0.8878

CCPR 0.9299 0.9095 0.9217 0.9371 0.9653 0.9299 0.9280 0.9805

CCFR 0.8147 0.8265 0.8184 0.8121 0.9644 0.8147 0.8046 0.9449

E-score 0.8682 0.8658 0.8667 0.8696 0.9648 0.8682 0.8618 0.9623

CCPR 0.9327 0.9285 0.9212 0.9404 0.9339 0.9327 0.9275 0.9372

CCFR 0.8677 0.8621 0.7812 0.8347 0.9598 0.8677 0.8151 0.9897

E-score 0.8984 0.8925 0.8428 0.8828 0.9462 0.8984 0.8660 0.9626

CCPR 0.9092 0.9122 0.9194 0.9145 0.8630 0.9225 0.9162 0.9225

CCFR 0.9811 0.9906 0.9774 0.9845 0.9862 0.9844 0.9681 0.9879

E-score 0.9432 0.9493 0.9472 0.9478 0.9197 0.9522 0.9412 0.9539

CCPR 0.9342 0.9327 0.9326 0.9249 0.9334 0.9436 0.9358 0.9346

CCFR 0.9664 0.9964 0.9945 0.9937 0.9928 0.9928 0.9898 0.9965

E-score 0.9500 0.9633 0.9624 0.9578 0.9620 0.9675 0.9619 0.9644

CCPR 0.4441 0.3280 0.9156 0.8825 0.9639 0.9100 0.3789 0.9577

CCFR 0.5788 0.9910 0.8116 0.8848 0.2031 0.4370 0.9530 0.8516

E-score 0.4599 0.4233 0.8579 0.8785 0.3295 0.5816 0.4889 0.9003

Bold values indicate the highest E-score value for each image.
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4.3.4 Structural Similarity Index Measure (SSIM) Evaluation

Ĉadík [29] conducted a comprehensive evaluation of seven major

color-to-grayscale algorithms using a dataset of 168 images. Preference

scores were aggregated from 20,328 user responses involving 119

participants. The algorithm with the highest preference score per image was

considered the best-performing one. Their results show that the algorithms of

Smith, et al. [17] and Grundland et al.[15] obtained high scores in the user

survey. To extend upon Ĉadík's work, we selected 14 representative images

from the original dataset to assess various algorithms, including our own,

through Structural Similarity Index Measure (SSIM).

SSIM assesses image similarity in terms of three key components: luminance

(brightness), contrast, and structure [30]. Each of these dimensions provides

insights into how closely an algorithm approximates the 'best-performing'

method as per Ĉadík's preference scores. As shown in table 5.

Observations:

 High Similarity: Generally, our algorithm shows high similarity to the

'best-performing' methods across most of the selected images, especially

in terms of luminance and structure.

 Exceptions: However, the performance dips for specific color images,

which invites further investigation into potential causes.

 Competitive Performance: As evidenced by Table 5, our method

performs competitively, holding middle-ground when ranked based on

average SSIM values.

Table 5: The table compares the SSIM values of various algorithms against
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each image. A star (★) indicates the most favored algorithm according to

Ĉadík's study. Bolded values denote the closest SSIM to the best-performing

algorithm, while values in yellow font signify the lowest SSIM for each image.

Id color image Bala CIE Y Color2Gray Grundland Kim Rasche Smith Ours

image1 0.7628 0.8153 0.8899 ★ 0.7917 0.8718 0.8457 0.8296

image2 0.9503 0.8360 0.8595 ★ 0.6881 0.9503 0.8469 0.5990

image3 0.8094 0.9800 0.9442 0.8948 0.8030 0.8094 ★ 0.8367

image4 0.9178 0.9555 0.9508 ★ 0.9062 0.8074 0.9678 0.9215

image5 0.9017 0.9546 0.9509 0.7993 0.8692 0.9034 ★ 0.9159

image6 0.8480 0.9000 0.7544 ★ 0.6322 0.5638 0.8859 0.5497

image7 0.8864 0.8647 ★ 0.8334 0.8864 0.7652 0.8582 0.9054

image8 0.7037 0.7690 0.1722 ★ 0.6776 0.5602 0.7841 0.4294

image9 0.9650 0.9788 0.9607 0.9398 0.9168 0.9650 ★ 0.9405

image10 0.6829 0.8770 0.7880 ★ 0.7288 0.6864 0.8388 0.7965

image11 0.7438 0.7383 0.6376 ★ 0.5002 0.7438 0.7048 0.3430

image12 0.8142 0.8414 0.6281 ★ 0.8142 0.8779 0.8209 0.7791

image13 0.8646 0.8673 0.7936 ★ 0.7738 0.8646 0.8446 0.8025

image14 0.9621 0.9475 0.9519 0.9090 0.8355 0.9621 ★ 0.8543
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4.3.5 Comprehensive evaluation of image decolorization

A comprehensive evaluation framework is essential for understanding the

multifaceted performance of color-to-grayscale conversion algorithms. In this

study, we employ four key metrics: Structural Similarity Index Measure (SSIM),

Color Contrast Preserving Ratio (CCPR), Color Content Fidelity Ratio (CCFR),

and E-score. These metrics capture different dimensions of image quality and

conversion fidelity, thereby providing a nuanced and comprehensive

assessment. As shown in Table 6.

In a comprehensive evaluation of image processing algorithms utilizing a

multifaceted framework, which includes the Structural Similarity Index

Measure (SSIM), Color Contrast Preservation Ratio (CCPR), Color Contrast

Fidelity Ratio (CCFR), and E-score metrics, two algorithms—Grundland [15]

and our proposed method—emerged as leading performers. Grundland [15]

demonstrated superior performance in SSIM, alongside commendable results

in CCPR, CCFR, and E-score. In contrast, our algorithm excelled in CCPR,

CCFR, and E-score while delivering moderate performance in SSIM. Each

algorithm manifested distinct strengths: Grundland [15] was notably effective in

preserving structural information at the expense of some color contrast and

fidelity, whereas our method offered a balanced performance across metrics,

even achieving above-average results in SSIM.

Further underscoring the robustness of our proposed algorithm, it consistently

yielded competitive performance across the board. Particularly, it

outperformed most existing algorithms in CCFR and E-score, signifying a high

degree of fidelity and overall image quality. However, our method did exhibit

areas for improvement, specifically in the SSIM and CCPR metrics, for

particular types of color images. Thus, while our algorithm demonstrates

versatility and robustness, these results also highlight avenues for future

optimization.
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Table 6 : SSIM, CCPR, CCPF, and E-score were scored at τ = 15 on 14

representative images from the original Ĉadík [29] dataset.

Id Metric Bala CIE Y Color2Gray Grundland Kim Rasche Smith Ours

Image1

SSIM 0.7628 0.8153 0.8899 1 0.7917 0.8718 0.8457 0.8296

CCPR 0.7969 0.8020 0.8389 0.8937 0.9132 0.9008 0.8105 0.8692

CCFR 0.7419 0.8019 0.8294 0.7542 0.8100 0.6817 0.7575 0.9073

E-score 0.7680 0.8020 0.8341 0.8158 0.8570 0.7702 0.7827 0.8878

Image2

SSIM 0.9503 0.8360 0.8595 1 0.6881 0.9503 0.8469 0.5990

CCPR 0.9299 0.9095 0.9217 0.9371 0.9653 0.9299 0.9280 0.9805

CCFR 0.8147 0.8265 0.8184 0.8121 0.9644 0.8147 0.8046 0.9449

E-score 0.8682 0.8658 0.8667 0.8696 0.9648 0.8682 0.8618 0.9623

Image3

SSIM 0.8094 0.9800 0.9442 0.8948 0.8030 0.8094 1 0.8367

CCPR 0.9327 0.9285 0.9212 0.9404 0.9339 0.9327 0.9275 0.9372

CCFR 0.8677 0.8621 0.7812 0.8347 0.9598 0.8677 0.8151 0.9897

E-score 0.8682 0.8658 0.8667 0.8696 0.9648 0.8682 0.8618 0.9623

Image4

SSIM 0.9178 0.9555 0.9508 1 0.9062 0.8074 0.9678 0.9215

CCPR 0.9092 0.9122 0.9194 0.9145 0.8630 0.9225 0.9162 0.9225

CCFR 0.9811 0.9906 0.9774 0.9845 0.9862 0.9844 0.9681 0.9879

E-score 0.9432 0.9493 0.9472 0.9478 0.9197 0.9522 0.9412 0.9539

Image5

SSIM 0.9017 0.9546 0.9509 0.7993 0.8692 0.9034 1 0.9159

CCPR 0.9342 0.9327 0.9326 0.9249 0.9334 0.9436 0.9358 0.9346

CCFR 0.9664 0.9964 0.9945 0.9937 0.9928 0.9928 0.9898 0.9965

E-score 0.9500 0.9633 0.9624 0.9578 0.9620 0.9675 0.9619 0.9644

Image6

SSIM 0.8480 0.9000 0.7544 1 0.6322 0.5638 0.8859 0.5497

CCPR 0.4441 0.3280 0.9156 0.8825 0.9639 0.9100 0.3789 0.9577

CCFR 0.5788 0.9910 0.8116 0.8848 0.2031 0.4370 0.9530 0.8516

E-score 0.4599 0.4233 0.8579 0.8785 0.3295 0.5816 0.4889 0.9003
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Image7

SSIM 0.8864 0.8647 1 0.8334 0.8864 0.7652 0.8582 0.9054

CCPR 0.9181 0.9209 0.9229 0.9325 0.9334 0.9340 0.9178 0.9269

CCFR 0.8755 0.9381 0.9011 0.9066 0.9626 0.8859 0.9168 0.9461

E-score 0.8961 0.9291 0.9118 0.9192 0.9474 0.9092 0.9169 0.9360

Image8

SSIM 0.7037 0.7690 0.1722 1 0.6776 0.5602 0.7841 0.4294

CCPR 0.5831 0.5141 0.8594 0.8351 0.7828 0.8660 0.5480 0.9132

CCFR 0.9129 0.9966 0.9924 0.9940 0.9184 0.8870 0.9916 0.9210

E-score 0.6987 0.6655 0.9201 0.9059 0.8421 0.8753 0.6915 0.9171

Image9

SSIM 0.9650 0.9788 0.9607 0.9398 0.9168 0.9650 1 0.9405

CCPR 0.9142 0.8952 0.8597 0.8721 0.8946 0.9142 0.8591 0.9064

CCFR 0.8547 0.9055 0.8847 0.8731 0.9306 0.8547 0.8645 0.9221

E-score 0.8833 0.9003 0.8720 0.8726 0.9121 0.8833 0.8617 0.9141

Image10

SSIM 0.6829 0.8770 0.7880 1 0.7288 0.6864 0.8388 0.7965

CCPR 0.9194 0.9387 0.9017 0.9325 0.9399 0.9192 0.9234 0.9191

CCFR 0.9275 0.9661 0.9637 0.9655 0.9740 0.9337 0.9312 0.9914

E-score 0.9232 0.9522 0.9316 0.9487 0.9564 0.9262 0.9271 0.9538

Image11

SSIM 0.7438 0.7383 0.6376 1 0.5002 0.7438 0.7048 0.3430

CCPR 0.9376 0.1519 0.8574 0.8788 0.9183 0.9376 0.6180 0.9574

CCFR 0.8439 0.8450 0.8784 0.9207 0.6902 0.8439 0.9008 0.7693

E-score 0.8849 0.2322 0.8646 0.8974 0.7801 0.8849 0.7173 0.8529

Image12

SSIM 0.8142 0.8414 0.6281 1 0.8142 0.8779 0.8209 0.7791

CCPR 0.8900 0.9017 0.8857 0.9080 0.8900 0.9275 0.8977 0.9150

CCFR 0.9937 0.9118 0.8661 0.8992 0.9937 0.8827 0.8863 0.9574

E-score 0.9383 0.9066 0.8758 0.9036 0.9383 0.9045 0.8920 0.9356

Image13

SSIM 0.8646 0.8673 0.7936 1 0.7738 0.8646 0.8446 0.8025

CCPR 0.9419 0.9205 0.9136 0.9300 0.9258 0.9419 0.9192 0.9323

CCFR 0.9394 0.9667 0.9519 0.9432 0.9762 0.9394 0.9495 0.9741

E-score 0.9407 0.9429 0.9323 0.9366 0.9502 0.9407 0.9340 0.9527
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5. Conclusion

The process of image decolorization is a process of data dimensionality

reduction, which can easily lead to the loss of structure and details of the

original image. This project provides an optimization algorithm for converting

color images into greyscale images. Our approach utilizes the CIE L * a * b *

color space and employs a local mapping technique, as opposed to the global

mapping approach commonly found in the literature, such as that employed by

Gooch et al. This efficacy is further enhanced by the inclusion of the "extended

neighborhood" concept, which improves detail capture and contrast

improvement.

A comprehensive evaluation was carried out using a range of established

metrics including Structural Similarity Index (SSIM), Colour Contrast Retention

(CCPR), Colour Contrast Fidelity (CCFR) and E-score. Comparative analyses

with existing methods show a substantial improvement in the performance of

the algorithm, especially in terms of CCFR and E-score. This demonstrates the

capability of our algorithm in preserving color features that are critical for

human perception and various professional applications. Nonetheless, the

algorithm shows moderate degradation in SSIM and CCPR metrics, which

points to potential directions for future research.

Despite its strengths, our algorithm is not without limitations. It performs poorly

in regions with subtle color transitions. In addition, the algorithm shows limited

results in high dynamic range scenes with large brightness fluctuations. Due to

Image14

SSIM 0.9621 0.9475 0.9519 0.9090 0.8355 0.9621 1 0.8543

CCPR 0.9414 0.9296 0.9275 0.9526 0.9302 0.9414 0.9373 0.9159

CCFR 0.8843 0.9150 0.9154 0.8874 0.9150 0.8843 0.8808 0.9876

E-score 0.9119 0.9222 0.9214 0.9188 0.9222 0.9119 0.9082 0.9501
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the extended neighborhood analysis, our method also requires a higher

computational load, which can be a barrier for real-time applications.

6. Feature work

Adaptive Neighbourhood Resizing

One of the most pressing issues identified in our current algorithm is its

inability to perform optimally in high dynamic range environments. To address

this, one promising avenue for future work is the incorporation of adaptive

strategies for dynamically resizing the "extended neighborhood." In such

adaptive mechanisms, the neighborhood size could automatically adjust

according to the local image statistics, such as luminance or texture complexity.

This would enable the algorithm to more effectively handle a wide range of

scenarios, from low-contrast scenes to high dynamic range environments.

Computational Efficiency

The computational overhead of our current approach is another crucial

concern. Although our algorithm has demonstrated strong efficacy in

preserving chromatic aberration and other perceptual features, the

computational cost, particularly associated with the "extended neighborhood"

analysis, needs to be optimized for real-time applications. Future work could

explore the use of more efficient data structures, parallel processing, or even

hardware acceleration to mitigate this issue.

Machine Learning and Deep Learning Approaches

Another intriguing direction for future research is the use of machine learning

algorithms to predict optimal parameters for our grayscale conversion process.

Given a large enough dataset of color and corresponding high-quality

grayscale images, a machine learning model could potentially learn to predict

the ideal settings for converting new, unseen images. This could include not
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just basic parameters like neighborhood size but also more complex features

like weighting functions for different color channels. Another potential

approach is to use a deep learning algorithm, such as a convolutional neural

network (CNN) [31], to learn the best grey scale conversion method for a given

image or set of images.

Human Perception Models

Our work has primarily focused on quantitative metrics like CCFR and E-score

to evaluate image quality. However, human perception of image quality can be

influenced by a multitude of factors that may not be entirely captured by these

metrics. Therefore, future research could focus on integrating models of

human visual perception into the algorithm. Such models could be based on

psychophysical experiments that quantify how humans perceive color and

grayscale images under various conditions.

Extension to Other Media Types

The current work focuses exclusively on the conversion of static color images

to grayscale. An intriguing expansion of this work would be to apply the

algorithm to different types of media, such as video or 3D models [32]. The

unique challenges presented by these media types, such as temporal color

changes in video or the additional spatial dimension in 3D models, would

require algorithmic adjustments and could provide interesting avenues for

future work.

Large-Scale Validation and Robustness

Our preliminary validation has been constrained by the scope of the current

study. Future research should consider large-scale validation efforts that

incorporate a diverse array of image types, subject matters, and conditions.

This would not only validate the general applicability of the algorithm but also

contribute to its robustness by revealing any edge cases or anomalies that
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have not been previously considered.

In conclusion, although our algorithm has made some progress in the field of

greyscale image conversion, there is still much work to be done to further

improve its capabilities. These future research directions are crucial for the

algorithms to adapt to different application scenarios.
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