
Deep Learning based Floor Plan Synthesis

Author:

Youning Shang(C2055661)

Supervisor:

Dr Yipeng Qin

MSc Computing

School of Computer Science & Informatics

Cardiff University

December 2021

 1 / 40

Abstract

A house might be the most crucial consumption in one’s life. Everyone is willing to

live in an enjoyable environment. To design a home, a good floorplan needs to be

created first. However, it is challenging to create a home or a floorplan at a low price.

This paper describes a new graph-constrained generative adversarial network that

creates a floorplan. We use relational architecture to build our generator and

discriminator of the network. The main structure of this project is from House-GAN

(Nauata, 2020). We improved the House-GAN by changing the graph generation

network of them.

We measured the quality of the floorplan generated by our system from user test, FID

and subjective feelings. We think we made a great success.

 2 / 40

Acknowledgements

The excellent one-year teaching at Cardiff University for a master’s degree in

computing allowed me to take this challenging and valuable thesis topic.

I want to thank my dissertation advisor Yipeng Qin for his patient and advice, which

keep me in the right direction.

I also want to thank my family and friends for their support and encouragement.

 3 / 40

Declaration

I hereby declare that this thesis and the attached documents are my own work, and

others’ work has been correctly quoted. I have not submitted for an evaluation before,

and I have not intentionally allowed others to copy. I understand that using others’

work as my own is plagiarism. I also understand that plagiarising the work from other

people or deliberately allowing others to plagiarise my works is against university

regulations. Doing so will result in loss of qualification and withdrawal.

 4 / 40

Content

Abstract .. 1

Acknowledgements .. 2

Declaration ... 3

Content ... 4

1. Introduction .. 6

1.1 Problems .. 6

1.2 Roadmap of report .. 8

2. Literature Review... 9

2.1 Traditional methods .. 9

2.2 One step neural network ... 10

2.3 Joint generation neural network ... 10

2.4 Joint generation with refinement neural network .. 11

2.5 Vectorizing World Buildings: Planar Graph Reconstruction by Primitive Detection

and Relationship Inference (Nauata et al., 2020).. 12

2.6 House-GAN: Relational Generative Adversarial Networks for Graph-constrained

House Layout Generation (Nauata et al., 2020) .. 13

2.7 House-GAN++: Generative Adversarial Layout Refinement Networks (Nauata et al.,

2021) 14

2.8 GAN .. 15

2.9 Wasserstein Generative Adversarial Networks (Arjovsky et al., 2017) (WGAN) 16

2.10 Detecting edges primitives (Nauata et al., 2020) .. 18

2.11 PyTorch .. 19

3. Dataset.. 20

3.1 Overview .. 20

3.2 Processing the Data ... 21

3.3 Assumptions .. 22

4. Methodology .. 23

4.1 Overview .. 23

4.2 Motivation ... 24

 5 / 40

4.3 Detecting regions primitive (Nauata et al., 2020) (PE) .. 25

5. Implementation Details .. 26

5.1 Hardware ... 26

5.2 Software .. 26

5.3 Floorplan Generator .. 27

5.4 Floorplan Discriminator ... 28

5.5 GAN structure .. 29

6. Experimental Results ... 30

6.1 Overview .. 30

6.2 User Test .. 31

6.3 FID .. 32

6.4 Subjective results ... 33

7. Future Work ... 34

8. Conclusion ... 35

Reference ... 36

Appendix .. 39

1. DRN Structure .. 40

 6 / 40

1. Introduction

1.1 Problems

House design usually takes a long time for it needs for constant iteration. Usually, it

contains four steps:

1. Draw a “bubble diagram” to reflect the number, type, and connection of rooms.

2. Generate floorplan according to the bubble diagram, then collect feedback

from customers.

3. Readjustment according to the feedback from customers.

4. Iteration.

 Designers and their customers often need to compromise on design quality due to

budget and time limitations. Thus, automatic floorplan generation technology has

enormous potential in the construction and real-estate industries.

The purpose of this project is to generate a set of different but accurate and

compatible floorplan by taking a “bubble diagram” as input. The bubble diagram is a

graph containing edges and nodes. The edges represent the wall, and the nodes

represents the room type. And for house layout includes a set of room bounding boxes

aligned with the axis.

Figure 1: A sample bubbled diagram and two generated floorplans.

 7 / 40

In 2014, Goodfellow et al. (2014) proposed a new generative model called Generative

Adversarial Network (GAN). This brings a breakthrough in Computer Vision. It has

considerable advantages in producing images; for example, it can create very realistic

human faces (Karras et al., 2017), animation characters (Jin et al., 2017). Later, from

2017, GAN also proved to be highly effective in constrained image generation.

Image-to-image translation has been a hot topic. In this area, the constraints are the

images, for example, generating high-resolution face images from low-resolution (Bin

et al., 2017).

The floorplan generator presents a new challenge: the graph should be a constraint. In

this project, we use a GAN to generate floorplans from bubble diagrams which main

structure of the GAN is from House-GAN (Nauata et al., 2020). The generator and

discriminator are relational. We combine CNN and integer programming to generate

floorplans. According to Nauata et al. (2020), this is much better than other graph

generating networks.

By using House-GAN as the baseline, we compare our work with the House-GAN.

We think our project is better.

 8 / 40

1.2 Roadmap of report

This paper contains five sections, which are:

1. Introduction

Briefly introduce the project, contributions and writing system.

2. Literature review

Introducing basis and latest technology of using GAN in floorplan generation.

3. Dataset

Introducing dataset we use in this project

4. Methodology

Introducing how we do this project and how the project works.

5. Implementation details

Introducing some implementation details and the GAN structure.

6. Experimental Result

Introducing the result of this project.

7. Future work

Introducing some improvements, which we will make in the future.

8. Conclusion

The summary of the whole project.

 9 / 40

2. Literature Review

There are three sections in this part. The first section contains four parts, which are

about the latest works in generative deep learning methods for structured data such as

floorplan, animation, etc. The second section includes three parts which are about the

related work used in this project containing four parts. The third section contains three

parts which are about GAN and graph generation network. The last part is about

PyTorch.

2.1 Traditional methods

Traditional algorithms design or optimise manual rules for structured data generation.

One early successful way is procedural modelling for three-dimension building

models. For example, Müller et al. (2006) proposed a model to generate high visual

quality building shells. Due to the context-sensitive shape rules, it allows the user to

specify interactions between different hierarchical shapes. Another way is to use

integer programming to generate models of objects in the way of a set of tiles. For

example, Peng et al. (2014) proposed a model with two steps: first is a discrete step to

layout the approximate template position, second is a continuous step to refine the

shape of the templates. For floorplans, usually use a Bayesian network to learn the

distributions of components of buildings to generate random samples. For example,

Merrell et al. (2010) proposed a model based on a Bayesian network and uses

stochastic optimisation.

 10 / 40

2.2 One step neural network

With the development of deep learning, single-step model generation using deep

neural networks (DNNs) has been prevalent. For example, Wu et al. (2019) proposed

a way by using a convolutional neural network (CNN) to add objects into rooms,

Wang et al. (2019) proposed a model called PlanIT for scene generation using DNNs.

Instead of generation, Roadtracker (Bastani et al., 2018) reconstruct road layouts from

satellite images using a CNN network.

2.3 Joint generation neural network

Comparing the two methods in the previous section, using multiple components in a

structured model is more complicated. Wu et al. (2019) proposed a way that generates

floorplans with given boundaries containing two steps: first locating rooms beginning

with positioning a living room, and iteratively generating other rooms. Secondly,

walls are generated and refined to vectors by specific rules. Image generation has

been a hot topic of research. For example, You et al. (2018) proposed a recurrent

neural network called GraphRNN to generate graphs by breaking the graph generation

process into a node and edge generation sequence. Another related area is natural

language generation. For example, Liao et al. (2020) proposed a probabilistically

masked language model with superior quality to generate text in arbitrary order. This

project use mask and adversarial training for two-dimensional floorplan generation in

which estimates masks of each component and can iteratively improve the design,

 11 / 40

2.4 Joint generation with refinement neural network

Recently, interactive sample refinement has become popular. Lira et al. (2020)

proposed a new model called GANHopper, which is an image translation network in

the form of image-to-image. The kernel of GANHopper is similar to this project. The

key difference is that this project training process is non-sequential, and the result is

structured.

 12 / 40

2.5 Vectorizing World Buildings: Planar Graph Reconstruction by

Primitive Detection and Relationship Inference (Nauata et al.,

2020)

This project solved the problem of vectorising 2D architecture from one RGB image

to a 2D floorplan. They proposed a series of new algorithms that use CNN to analyse

the geometric primitives and relationships and integer programming that convert

information to a 2D floorplan. According to the authors, they think their project has

made a great success.

Figure 2. System overview (Nauata et al., 2020).

In our project, we use the way they generate the image. This will be discussed in

section five.

 13 / 40

2.6 House-GAN: Relational Generative Adversarial Networks for

Graph-constrained House Layout Generation (Nauata et al., 2020)

Nauata et al. proposed a new way of generating floorplan, which is using a generative

adversarial network. They use Conv-MPN (Zhang et al., 2020), which is called

convolutional message passing neural networks, to generate the graph. Compared to

the graph convolutional networks (GCNs), a node in Conv-MPN stores a feature that

represents a room and Conv-MPN update features convolutional. According to the

authors, this is more effective for composing layouts and validating adjacency

constraints. (Nauata et al., 2020)

In this project, we use the idea of their structure and change the way they generate the

graph.

 14 / 40

2.7 House-GAN++: Generative Adversarial Layout Refinement

Networks (Nauata et al., 2021)

This is the update of the House-GAN. They still use the Conv-MPN for graph

generation. On the other hand, they use the RPLAN dataset (Wu et al., 2018) as the

input, which contains 60 000 vector-graphics floorplans. Like the House-GAN, they

still use bubble diagrams as their graph structure. But there are three differences:

1. There are new edges carry information of doors

2. A two-dimensional segmentation mask is added to each node or edge as an

additional input associated with a new loss.

3. Conv-MPN is redesigned to exchange features between edges and nodes.

According to the author, they think the floorplan they generate is better than before.

Figure 3: Evaluations from House-GAN++, cyan the best, orange the second, magenta

the third (Nauata et al., 2021)

 15 / 40

2.8 GAN

Goodfellow et al. (2014) have proposed a new generative model based on deep

learning. It is a very powerful network and has been so popular these years. It can be

applied to natural language processing, semi-supervised learning and computer vision.

Inspired by the zero-sum game theory, GAN regards the data generation as a game or

confrontation between generator and discriminator, both of which are deep learning

networks. For example, in image generation, the generator generates images, and the

discriminator distinguishes the generated images by the generator from the actual

images. The generator network tries to create samples that are closer to the actual

samples. Correspondingly, the discriminator tries to distinguish the difference

between generated image and actual image more perfectly. In this way, the two

networks progressed in the confrontation and continued to confront after the progress.

The samples generated by the generator network are getting more and more perfect,

getting closer and closer to the actual samples, and realising the function of the

generative model.

However, there are still some disadvantages of the GAN:

1. The training speed is slow because there are two models running at the same

time.

2. GAN is not suitable for processing discrete forms of data, like text.

3. The loss of the GAN is high compared with other networks.

In this project, we used GAN as the system structure and will be discussed in section

six.

 16 / 40

2.9 Wasserstein Generative Adversarial Networks (Arjovsky et al.,

2017) (WGAN)

Since the GAN (Goodfellow et al., 2014) was proposed, it has had three problems; 1)

difficult to train. 2) The loss of discriminator and generator cannot indicate the

training process and 3) The generated samples lack diversity. Since then, in order to

solve these problems, many attempts have been made, but the results is not

satisfactory. However, WGAN has successfully managed to make the following

points:

1. Solve the instability of training GAN completely. Therefore, we do not need to

balance the training process of discriminators and generators anymore.

2. The problem of collapse mode is basically solved, and the diversity of generated

data is guaranteed.

3. During the process of training, a value is made which can indicate the training

progress. The smaller the value, the better the quality of GAN training.

4. All the advantages above do not need a carefully designed network. Only a simple

multi-layer fully connected network can achieve all of these.

Surprisingly, WGAN only changed four points compared to the original GAN:

1. The sigmoid function is removed from the last layer.

2. The logarithm is not used in the loss function of generator and discriminator.

3. Whenever the parameters of the discriminator are updated, their absolute value is

set to a value that does not exceed a fixed constant

4. Instead of using momentum-based optimisation algorithms (such as ADAM),

RMSProp is recommended, and SGD is also good.

 17 / 40

According to the authors, the generated sample of the WGAN is significantly better

than the GAN.

Following is the algorithm of WGAN.

Algorithm 1: structure of WGAN (Arjovsky et al., 2017)

 18 / 40

2.10 Detecting edges primitives (Nauata et al., 2020)

In the paper mentioned in section 2.5, the author proposed a new model called

detecting edges primitives (PE). It contains the DRN-D-105 in Dilated Residual

Networks (DRN) (Yu et al., 2017). DRN-D is a series of networks, which is a

simplified version of DRN-C. The structure of DRN-C is below:

Figure 4: DRN structure (Yu et al., 2017). This figure contains the structures of

different classes of DRN.

In DRN-A, the author uses dilated convolution instead of down-sampling to keep the

same field of view, but it will cause gridding artefacts.

Figure 5: A gridding artefact

Figure (a) in figure 4 is a feature map with a significan single pixel, and then after a

dilated convolution, it becomes figure (c) and becomes a grid-like output. It can be

 19 / 40

said that gridding artefact is a phenomenon produced by the nature of dilated

convolution.

To reduce this problem, the author makes some improvements. In DRN-B and DRN-

C, the author cancelled the pooling layer and used convolution with stride=2 as the

down-sampling because the author found that pooling can make degridding more

serious. In addition, the author added several convolutional layers with expansion

coefficients of 2 and 1 at the end of DRN-B and DRN-C to eliminate degridding.

Among them, DRN-C cancels the jump layer structure of the last few layers of

convolution. After all, expanded convolution will produce degridding, so the aim of

letting the final output use the general convolution output is to avoid this structure .

Then, the jump layer structure is cancelled because it will make the degridding

directly connect to the final output result.

2.11 PyTorch

PyTorch is an open-source Python machine learning library. The advantage of

PyTorch is that it supports GPU acceleration and is easy to use. In this project, we use

PyTorch to build our system.

 20 / 40

3. Dataset

3.1 Overview

LIFULL HOME's database (Kiyota, 2018) offers about 5.1 million floorplans which

are drawn by architecture in real life. We chose 145,220 from it and rescaled them to

256*256 resolution.

 1-3(A) 4-6(B) 7-9(C) 10-12(D) 13+(E) ALL

Number of Samples 9,111 34,731 52,957 38,007 10,696 145,220

Living Room 1.2/0.0 3.1/0.0 4.8/0.1 5.6/0.3 5.9/0.3 5.1/0.1

Kitchen 1.3/0.6 3.3/1.0 4.5/1.2 5.4/1.1 5.3/1.3 4.4/1.1

Bedroom 1.3/0.4 2.8/0.8 3.5/1.3 3.9/2.0 4.1/2.8 3.6/1.4

Bathroom 1.2/0.7 2.4/1.6 2.9/2.6 3.3/3.0 3.5/3.4 3.0/2.4

Closet 1.2/0.3 2.2/1.0 2.6/1.6 3.1/2.4 3.2/3.6 2.8/1.7

Balcony 0.9/0.2 1.2/0.6 1.5/0.9 1.9/1.0 2.0/1.3 1.6/0.8

Corridor 1.1/0.1 2.6/0.1 3.7/0.4 4.6/1.0 5.0/1.4 4.3/0.5

Dining Room 1.5/0.0 3.0/0.0 3.6/0.0 3.2/0.0 1.9/0.0 2.9/0.0

Table 1: We divide the whole dataset into five groups. The second row is the total

number of each sample. The eight rows below contain two digits per block, left are

average numbers of edge connections per room and right are the average number of

rooms.

Because the dataset is collected from Japan and living rooms in Japan are often

interchangeable with kitchen, the room counts of living rooms are small.

 21 / 40

3.2 Processing the Data

The images in the dataset are in JPEG format, and the database does not contain

bubble diagrams. And the process is mainly done by the House-GAN (Nauata et al.,

2020). We use a floor plan vectorisation algorithm proposed by Liu et al. (2017) to

convert from JPEG format to vector-graphic format. And then convert into bubble

diagrams. The bubble diagrams are in a format of image that contains several nodes

and edges. The node represents a room and includes the room type, while the edge

represents the relationship between rooms. If the Manhattan distance is less than eight

pixels, these two rooms will be treated as connected. The output of this project are

floorplans in the format of several axis-aligned boxes representing the room, and the

colour of the box represents the room type.

 Living Room Kitchen Bedroom Dining room

 Balcony Corridor Closet Bathroom

Figure 6: Samples of bubble diagrams and floorplans drawn from the dataset.

 22 / 40

3.3 Assumptions

To simplify the problem, we make three assumptions:

1. The room size is not customisable.

2. The shape of a room is always rectangular.

3. Do not contain the information of doors.

Note: A round of training takes five to seven days, and due to the time limitation, we

only managed to complete two groups of training: group B and group C.

 23 / 40

4. Methodology

4.1 Overview

In this project, we used a relational GAN to generate the floorplan. It contains a

generator and a discriminator.

Figure 7: Structure of the project. The generator is the top, and discriminator is the

bottom. PE is Detecting edges primitive network, which is the backbone architecture.

The constraint of input is encoded into the structure of the graph.

 24 / 40

4.2 Motivation

There are serval ways to improve the performance of deep learning neural networks,

such as enhancing performance from data, improving performance from the algorithm,

improving performance from the algorithm tuning, improve performance from model

fusion. In order to improve the neural network in House-GAN, we choose the way of

enhancing graph structure, which will also enhance the performance of the deep

learning network. The reason we choose this way is that Conv-MPN they used in

House-GAN is a kind of graph structure, and we infer it could be improved.

Thus, we found two articles; one is called Vectorizing World Buildings: Planar Graph

Reconstruction by Primitive Detection and Relationship Inference (Nauata et al., 2020)

and the other is called Structured Outdoor Architecture Reconstruction by

Exploration and Classification (Zhang et al., 2021). By comparing each method in

these two articles, we choose the PE in the first article. The reason is that using this

way, the network transfers information between each layer, and according to the

author, they find a better information transfer rule between graph nodes, which is

better than Conv-MPN (Zhang et al., 2020).

We did not choose the best way the article provided because the network is very

complex, and we speculate that if the best network is used, the training time will be

too long. So, we choose the most straightforward way in the article, which is also the

fourth-best performance between the methods they provided,

 25 / 40

4.3 Detecting regions primitive (Nauata et al., 2020) (PE)

PE contains a DRN and a three-layer CNN. We use DRN-D-22 to do this instead of

using other DRN is because the result of the DRN-D is, according to Yu (2018).

There are also serval DRN-D such as DRN-D-105, DRN-D-54 etc. The main

difference between them is the number of network blocks of each layer.

The structure of DRN-D will be placed in the appendix.

Figure 8: Error rate comparison by Yu (2018)

The three-layer CNN is used to convert the feature to masks. This will be explained in

section 5.3 and section 5.4.

 26 / 40

5. Implementation Details

Each model takes about 5 to 7 days on our machine.

5.1 Hardware

CPU: Single Intel i7-4770K

GPU: Single NVIDIA RTX 2080Ti

Memory: 16GB

5.2 Software

OS: Ubuntu 18.04 LTS

Python 3.8 with Anaconda

PyTorch 1.5.0 with CUDA 10.2

And we use PyGraphviz 1.6 to generate the graph.

 27 / 40

5.3 Floorplan Generator

The inputs of the generator are noise vectors for each room. The generator generates a

floorplan in the form of axis-aligned boxes representing rooms. The bubble diagram is

in the format of a graph, which contains nodes and edges. Nodes represent the room

and contain the information of room type as the colour is different. Edges represent

spatial adjacency.

The first step of the generation is generating nodes represented for rooms. Next, we

use a 128-dimension noise vector to initialise it, which is sampled from the normal

distribution. Then connected it with a 10-Dimension vector representing the room

type. The result of this step is a 138-Dimension vector. Then we use PE to update the

features. PE contains a DRN and a three-layer CNN. The three-layer CNN is used to

convert the feature into a room mask. And this mask will be passed to the

discriminator to refine. Finally, we generate the tightest axis-aligned box in order to

create the floorplan.

 28 / 40

5.4 Floorplan Discriminator

The operation of the discriminator is like the generator but in reverse order. The

inputs of it are segmentation masks of rooms in the form of the graph from the

generator and an accurate floorplan. To combine the room information from each

mask, a 10-Dimensional vector representing the room type is used. Then append and

use reshape function to convert tensor. After that, a three-layer CNN corrects the

feature, and two PE and down-sampling are used. At last, the room feature is

transformed into a 128-dimensional vector. We add all the vectors and compare them

to the actual samples.

 29 / 40

5.5 GAN structure

We use WGAN-GP (Gulrajani et al., 2017) as the GAN structure. The WGAN-GP is

an improved version of WGAN (Arjovsky et al., 2017). It improves by three points. 1)

Replace weight clipping with gradient penalty. 2) Add Gaussian noise to the

generated image. 3) The optimiser uses Adam instead of RMSProp.

Algorithm 2: WGAN-GP structure (Gulrajani et al., 2017)

We set the gradient penalty assessed to 10. And we use the way proposed by

Gulrajani et al. (2017) to compute the gradient penalty: the mask of the room is

linearly and evenly inserted between the actual sample and generated sample, and the

relational graph structure is fixed at the same time.

We use ADAM optimizer where the �1 = 0.5, �2 = 0.999 . We trained for 100

epochs. The batch size is set to 16. The learning rate is 0.0001 for both generator and

discriminator. We use Leaky-ReLUs where � = 0.1 for all non-linearities steps.

 30 / 40

6. Experimental Results

6.1 Overview

We evaluate our system from three aspects: user test, FID and subjective feelings. The

user test and FID score is the objective part. The subjective part is from our own

feelings. We did not validate a compatibility test for this project is because, according

to Nauata et al. (2020), all methods in this area perform fairly well. Due to the time

limit, a whole training takes about five to seven days, we only managed to complete

the group contains five to six rooms, and the group contains seven to nine rooms. We

choose House-GAN as the comparison, and the setup of the House-GAN is the same

as our project. We train the House-GAN with ADAM optimizer where �1 = 0.5,�2 = 0.999. We trained for 100 epochs. The batch size is set to 16. The learning rate

is 0.0001 for both generator and discriminator. We used Leaky-ReLU where � = 0.1

for all non-linearities steps.

 31 / 40

6.2 User Test

We conducted a user test with 10 participants, eight of them are in unrelated

occupations, and two of them are in the construction industry. Each of them compares

15 pairs of floorplans sampled from our system and House-GAN. If they think our

result is better, we will add one mark for our project. If they think both are equally

well, then no mark will be added. If they feel House-GAN is better, we will subtract

one mark for our system. We calculate the average number of the final mark for each

participant, and here is the result.

Unrelated

Occupations

House-GAN Construction

Industry

House-GAN

Ours 0.82 Ours 0.45

Table 2: Realism evaluation. The left two columns are the score from the people in

unrelated occupations, and the right two rows are the score from the people in the

construction industry.

From the table, we can see that our project is better.

 32 / 40

6.3 FID

We randomly chose 5000 bubble diagrams and let both methods generate ten

floorplans for each input. Then we compute the FID score using a third-party library

for python called pytorch-fid (Seitzer, 2020). FID is Fréchet Inception Distance. It

calculates the distance at the feature level. It can retreat the features of the image as a

vector and output the category of the image. For actual real images that already have,

the vectors retreated by FID obey a kind of distribution. For the vectors retreated from

those images generated by the GAN system, it also obeys a sort of distribution. And

the goal of GAN is to make these two distributions as similar as possible, which

means the lower the FID, the better the diversity and the higher the quality of the

generated samples.

We found our project have better performance in this evaluation. A round of training

takes about five to seven days, and due to the time limitation, we only managed to

finish two groups of data mentioned in section 4.2, which are the group contains four

to six rooms, and the group contains seven to nine rooms. Here is the result.

 4-6 7-9

House-GAN 24.1 15.5

Ours 20.1 12.0

Table 3: Diversity evaluation. The FID score for each group for each method.

From the table, we can see that our project is much better than the House-GAN. But

in according to the author of the House-GAN, their FID is around 15. We infer this is

 33 / 40

because their number of training rounds is larger than ours. But if we add more

training rounds, the FID of our system will decrease too. So, this is not important.

Figure 9: Generated images from House-GAN and our project. For each row, the first

image on the left is ground-truth, the rest ten images are generated samples. The first

two rows are generated by House-GAN and in Group B and C. the last two rows are

generated by our system in Group B and C.

6.4 Subjective results

During the training of our project, the loss of generator and discriminator did not

exceed four digits. On the contrary, during the training of House-GAN, the loss of

generator and discriminator even exceeded 10,000, which we think is an advantage of

our system compared with House-GAN. The floorplan our system generated is tidier

and squarer than the House-GAN from the view.

 34 / 40

7. Future Work

In this project, we did not use the best network from Vectorizing World Buildings:

Planar Graph Reconstruction by Primitive Detection and Relationship Inference

(Nauata et al., 2020) and also did not try to change the graph generation network into

the way Structured Outdoor Architecture Reconstruction by Exploration and

Classification (Zhang et al., 2021) provided. In the future, we will try to change the

graph generation network into the best way from the first article and also try to use the

way the second article provided to justify the result.

On the other hand, we made some assumptions during processing the dataset, which

are:

1. The room size cannot be customised.

2. The shape of the room is always rectangular.

3. Do not contain the information of doors.

So, in the future, we will make some change to the node to make it contains the

information on room size and change the shapes of rooms to make it customisable.

Also, for the edge, we will make it includes the information of the door location.

 35 / 40

8. Conclusion

In conclusion, this paper improves the House-GAN by changing the graph generation

network in the GAN structure. We use Detecting Edge Primitive network instead of

Conv-MPN to generate the graph. We use three ways to justify our method is better

and set the House-GAN as the baseline. We think our project makes a real

improvement in this area.

 36 / 40

Reference

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A. and Bengio, Y., 2014. Generative adversarial nets. Advances in neural

information processing systems, 27.

Karras, T., Aila, T., Laine, S. and Lehtinen, J., 2017. Progressive growing of gans for

improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.

Jin, Y., Zhang, J., Li, M., Tian, Y., Zhu, H. and Fang, Z., 2017. Towards the

automatic anime characters creation with generative adversarial networks. arXiv

preprint arXiv:1708.05509.

Bin, H., Weihai, C., Xingming, W. and Chun-Liang, L., 2017. High-quality face

image SR using conditional generative adversarial networks. arXiv preprint

arXiv:1707.00737.

Nauata, N. and Furukawa, Y., 2020, August. Vectorizing World Buildings: Planar

Graph Reconstruction by Primitive Detection and Relationship Inference.

In European Conference on Computer Vision (pp. 711-726). Springer, Cham.

Zhang, F., Nauata, N. and Furukawa, Y., 2020. Conv-mpn: Convolutional message

passing neural network for structured outdoor architecture reconstruction.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (pp. 2798-2807).

Nauata, N., Chang, K.H., Cheng, C.Y., Mori, G. and Furukawa, Y., 2020, August.

House-gan: Relational generative adversarial networks for graph-constrained house

 37 / 40

layout generation. In European Conference on Computer Vision (pp. 162-177).

Springer, Cham.

Nauata, N., Hosseini, S., Chang, K.H., Chu, H., Cheng, C.Y. and Furukawa, Y., 2021.

House-GAN++: Generative Adversarial Layout Refinement Networks. arXiv preprint

arXiv:2103.02574.

Müller, P., Wonka, P., Haegler, S., Ulmer, A. and Van Gool, L., 2006. Procedural

modeling of buildings. In ACM SIGGRAPH 2006 Papers (pp. 614-623).

Peng, C.H., Yang, Y.L. and Wonka, P., 2014. Computing layouts with deformable

templates. ACM Transactions on Graphics (TOG), 33(4), pp.1-11.

Merrell, P., Schkufza, E. and Koltun, V., 2010. Computer-generated residential

building layouts. In ACM SIGGRAPH Asia 2010 papers (pp. 1-12).

Wu, W., Fu, X.M., Tang, R., Wang, Y., Qi, Y.H. and Liu, L., 2019. Data-driven

interior plan generation for residential buildings. ACM Transactions on Graphics

(TOG), 38(6), pp.1-12.

Liao, Y., Jiang, X. and Liu, Q., 2020. Probabilistically masked language model

capable of autoregressive generation in arbitrary word order. arXiv preprint

arXiv:2004.11579.

Lira, W., Merz, J., Ritchie, D., Cohen-Or, D. and Zhang, H., 2020, August.

Ganhopper: Multi-hop gan for unsupervised image-to-image translation. In European

Conference on Computer Vision (pp. 363-379). Springer, Cham.

 38 / 40

Wu, W., Fu, X.M., Tang, R., Wang, Y., Qi, Y.H. and Liu, L., 2019. Data-driven

interior plan generation for residential buildings. ACM Transactions on Graphics

(TOG), 38(6), pp.1-12.

Kiyota, Y., 2018, June. Promoting Open Innovations in Real Estate Tech: Provision

of the LIFULL HOME'S Data Set and Collaborative Studies. In Proceedings of the

2018 ACM on International Conference on Multimedia Retrieval (pp. 6-6).

Liu, C., Wu, J., Kohli, P. and Furukawa, Y., 2017. Raster-to-vector: Revisiting

floorplan transformation. In Proceedings of the IEEE International Conference on

Computer Vision (pp. 2195-2203).

Yu, F., 2018. GitHub - fyu/drn: Dilated Residual Networks. [online] Dilated Residual

Networks. Available at: <https://github.com/fyu/drn> [Accessed 2 December 2021].

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A., 2017.

Improved training of wasserstein gans. arXiv preprint arXiv:1704.00028

Arjovsky, M., Chintala, S. and Bottou, L., 2017, July. Wasserstein generative

adversarial networks. In International conference on machine learning (pp. 214-223).

PMLR.

Seitzer, M., 2020. GitHub - mseitzer/pytorch-fid: Compute FID scores with PyTorch.

[online] GitHub. Available at: <https://github.com/mseitzer/pytorch-fid> [Accessed 3

December 2021].

 39 / 40

Appendix

 40 / 40

1. DRN Structure

Appendix 1: The structure of DRN-D-22. Each rectangle represents a Conv block, a

Batch Norm Block and a Leaky-ReLU block. The number in the rectangular

represents the filter size and the channels number in the layer. Blue rectangles are a

Conv block, a Batch Norm Block and a Leaky-ReLU block. with stride 2. The blue

lines represent for down sampling. The purple rectangles use dilated convolutions

instead of standard convolutions. The dilated factor of each layer is described at the

bottom of the image.

