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Abstract 

A house might be the most crucial consumption in one’s life. Everyone is willing to 

live in an enjoyable environment. To design a home, a good floorplan needs to be 

created first. However, it is challenging to create a home or a floorplan at a low price. 

 

This paper describes a new graph-constrained generative adversarial network that 

creates a floorplan. We use relational architecture to build our generator and 

discriminator of the network. The main structure of this project is from House-GAN 

(Nauata, 2020). We improved the House-GAN by changing the graph generation 

network of them. 

 

We measured the quality of the floorplan generated by our system from user test, FID 

and subjective feelings. We think we made a great success.  
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1. Introduction 

1.1 Problems 

House design usually takes a long time for it needs for constant iteration. Usually, it 

contains four steps: 

1. Draw a “bubble diagram” to reflect the number, type, and connection of rooms. 

2. Generate floorplan according to the bubble diagram, then collect feedback 

from customers. 

3. Readjustment according to the feedback from customers. 

4. Iteration. 

 Designers and their customers often need to compromise on design quality due to 

budget and time limitations. Thus, automatic floorplan generation technology has 

enormous potential in the construction and real-estate industries. 

The purpose of this project is to generate a set of different but accurate and 

compatible floorplan by taking a “bubble diagram” as input. The bubble diagram is a 

graph containing edges and nodes. The edges represent the wall, and the nodes 

represents the room type. And for house layout includes a set of room bounding boxes 

aligned with the axis. 

   

Figure 1: A sample bubbled diagram and two generated floorplans. 
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In 2014, Goodfellow et al. (2014) proposed a new generative model called Generative 

Adversarial Network (GAN). This brings a breakthrough in Computer Vision. It has 

considerable advantages in producing images; for example, it can create very realistic 

human faces (Karras et al., 2017), animation characters (Jin et al., 2017). Later, from 

2017, GAN also proved to be highly effective in constrained image generation. 

Image-to-image translation has been a hot topic. In this area, the constraints are the 

images, for example, generating high-resolution face images from low-resolution (Bin 

et al., 2017). 

The floorplan generator presents a new challenge: the graph should be a constraint. In 

this project, we use a GAN to generate floorplans from bubble diagrams which main 

structure of the GAN is from House-GAN (Nauata et al., 2020). The generator and 

discriminator are relational. We combine CNN and integer programming to generate 

floorplans. According to Nauata et al. (2020), this is much better than other graph 

generating networks. 

By using House-GAN as the baseline, we compare our work with the House-GAN. 

We think our project is better. 
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1.2 Roadmap of report 

This paper contains five sections, which are: 

1. Introduction 

Briefly introduce the project, contributions and writing system. 

2. Literature review 

Introducing basis and latest technology of using GAN in floorplan generation. 

3. Dataset 

Introducing dataset we use in this project 

4. Methodology 

Introducing how we do this project and how the project works. 

5. Implementation details 

Introducing some implementation details and the GAN structure. 

6. Experimental Result 

Introducing the result of this project. 

7. Future work 

Introducing some improvements, which we will make in the future. 

8. Conclusion 

The summary of the whole project.  
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2. Literature Review 

There are three sections in this part. The first section contains four parts, which are 

about the latest works in generative deep learning methods for structured data such as 

floorplan, animation, etc. The second section includes three parts which are about the 

related work used in this project containing four parts. The third section contains three 

parts which are about GAN and graph generation network. The last part is about 

PyTorch. 

2.1 Traditional methods 

Traditional algorithms design or optimise manual rules for structured data generation. 

One early successful way is procedural modelling for three-dimension building 

models. For example, Müller et al. (2006) proposed a model to generate high visual 

quality building shells. Due to the context-sensitive shape rules, it allows the user to 

specify interactions between different hierarchical shapes. Another way is to use 

integer programming to generate models of objects in the way of a set of tiles. For 

example, Peng et al. (2014) proposed a model with two steps: first is a discrete step to 

layout the approximate template position, second is a continuous step to refine the 

shape of the templates. For floorplans, usually use a Bayesian network to learn the 

distributions of components of buildings to generate random samples. For example, 

Merrell et al. (2010) proposed a model based on a Bayesian network and uses 

stochastic optimisation. 
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2.2 One step neural network 

With the development of deep learning, single-step model generation using deep 

neural networks (DNNs) has been prevalent. For example, Wu et al. (2019) proposed 

a way by using a convolutional neural network (CNN) to add objects into rooms, 

Wang et al. (2019) proposed a model called PlanIT for scene generation using DNNs. 

Instead of generation, Roadtracker (Bastani et al., 2018) reconstruct road layouts from 

satellite images using a CNN network. 

2.3 Joint generation neural network 

Comparing the two methods in the previous section, using multiple components in a 

structured model is more complicated. Wu et al. (2019) proposed a way that generates 

floorplans with given boundaries containing two steps: first locating rooms beginning 

with positioning a living room, and iteratively generating other rooms. Secondly, 

walls are generated and refined to vectors by specific rules. Image generation has 

been a hot topic of research. For example, You et al. (2018) proposed a recurrent 

neural network called GraphRNN to generate graphs by breaking the graph generation 

process into a node and edge generation sequence. Another related area is natural 

language generation. For example, Liao et al. (2020) proposed a probabilistically 

masked language model with superior quality to generate text in arbitrary order. This 

project use mask and adversarial training for two-dimensional floorplan generation in 

which estimates masks of each component and can iteratively improve the design, 
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2.4 Joint generation with refinement neural network 

Recently, interactive sample refinement has become popular. Lira et al. (2020) 

proposed a new model called GANHopper, which is an image translation network in 

the form of image-to-image. The kernel of GANHopper is similar to this project. The 

key difference is that this project training process is non-sequential, and the result is 

structured. 
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2.5 Vectorizing World Buildings: Planar Graph Reconstruction by 

Primitive Detection and Relationship Inference (Nauata et al., 

2020) 

This project solved the problem of vectorising 2D architecture from one RGB image 

to a 2D floorplan. They proposed a series of new algorithms that use CNN to analyse 

the geometric primitives and relationships and integer programming that convert 

information to a 2D floorplan. According to the authors, they think their project has 

made a great success. 

 

Figure 2. System overview (Nauata et al., 2020). 

In our project, we use the way they generate the image. This will be discussed in 

section five. 
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2.6 House-GAN: Relational Generative Adversarial Networks for 

Graph-constrained House Layout Generation (Nauata et al., 2020)  

Nauata et al. proposed a new way of generating floorplan, which is using a generative 

adversarial network. They use Conv-MPN (Zhang et al., 2020), which is called 

convolutional message passing neural networks, to generate the graph. Compared to 

the graph convolutional networks (GCNs), a node in Conv-MPN stores a feature that 

represents a room and Conv-MPN update features convolutional. According to the 

authors, this is more effective for composing layouts and validating adjacency 

constraints. (Nauata et al., 2020) 

In this project, we use the idea of their structure and change the way they generate the 

graph. 
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2.7 House-GAN++: Generative Adversarial Layout Refinement 

Networks (Nauata et al., 2021) 

This is the update of the House-GAN. They still use the Conv-MPN for graph 

generation. On the other hand, they use the RPLAN dataset (Wu et al., 2018) as the 

input, which contains 60 000 vector-graphics floorplans. Like the House-GAN, they 

still use bubble diagrams as their graph structure. But there are three differences: 

1. There are new edges carry information of doors 

2. A two-dimensional segmentation mask is added to each node or edge as an 

additional input associated with a new loss. 

3. Conv-MPN is redesigned to exchange features between edges and nodes. 

According to the author, they think the floorplan they generate is better than before. 

 

Figure 3: Evaluations from House-GAN++, cyan the best, orange the second, magenta 

the third (Nauata et al., 2021)  
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2.8 GAN 

Goodfellow et al. (2014) have proposed a new generative model based on deep 

learning. It is a very powerful network and has been so popular these years. It can be 

applied to natural language processing, semi-supervised learning and computer vision. 

Inspired by the zero-sum game theory, GAN regards the data generation as a game or 

confrontation between generator and discriminator, both of which are deep learning 

networks. For example, in image generation, the generator generates images, and the 

discriminator distinguishes the generated images by the generator from the actual 

images. The generator network tries to create samples that are closer to the actual 

samples. Correspondingly, the discriminator tries to distinguish the difference 

between generated image and actual image more perfectly. In this way, the two 

networks progressed in the confrontation and continued to confront after the progress. 

The samples generated by the generator network are getting more and more perfect, 

getting closer and closer to the actual samples, and realising the function of the 

generative model. 

However, there are still some disadvantages of the GAN: 

1. The training speed is slow because there are two models running at the same 

time. 

2. GAN is not suitable for processing discrete forms of data, like text. 

3. The loss of the GAN is high compared with other networks. 

In this project, we used GAN as the system structure and will be discussed in section 

six. 
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2.9 Wasserstein Generative Adversarial Networks (Arjovsky et al., 

2017) (WGAN) 

Since the GAN (Goodfellow et al., 2014) was proposed, it has had three problems; 1) 

difficult to train. 2) The loss of discriminator and generator cannot indicate the 

training process and 3) The generated samples lack diversity. Since then, in order to 

solve these problems, many attempts have been made, but the results is not 

satisfactory. However, WGAN has successfully managed to make the following 

points: 

1. Solve the instability of training GAN completely. Therefore, we do not need to 

balance the training process of discriminators and generators anymore. 

2. The problem of collapse mode is basically solved, and the diversity of generated 

data is guaranteed. 

3. During the process of training, a value is made which can indicate the training 

progress. The smaller the value, the better the quality of GAN training.  

4. All the advantages above do not need a carefully designed network. Only a simple 

multi-layer fully connected network can achieve all of these. 

Surprisingly, WGAN only changed four points compared to the original GAN: 

1. The sigmoid function is removed from the last layer. 

2. The logarithm is not used in the loss function of generator and discriminator. 

3. Whenever the parameters of the discriminator are updated, their absolute value is 

set to a value that does not exceed a fixed constant 

4. Instead of using momentum-based optimisation algorithms (such as ADAM), 

RMSProp is recommended, and SGD is also good. 
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According to the authors, the generated sample of the WGAN is significantly better 

than the GAN. 

Following is the algorithm of WGAN. 

 

Algorithm 1: structure of WGAN (Arjovsky et al., 2017) 
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2.10 Detecting edges primitives (Nauata et al., 2020) 

In the paper mentioned in section 2.5, the author proposed a new model called 

detecting edges primitives (PE). It contains the DRN-D-105 in Dilated Residual 

Networks (DRN) (Yu et al., 2017). DRN-D is a series of networks, which is a 

simplified version of DRN-C. The structure of DRN-C is below:  

 

Figure 4: DRN structure (Yu et al., 2017). This figure contains the structures of 

different classes of DRN. 

In DRN-A, the author uses dilated convolution instead of down-sampling to keep the 

same field of view, but it will cause gridding artefacts.  

 

Figure 5: A gridding artefact 

Figure (a) in figure 4 is a feature map with a significan single pixel, and then after a 

dilated convolution, it becomes figure (c) and becomes a grid-like output. It can be 
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said that gridding artefact is a phenomenon produced by the nature of dilated 

convolution. 

To reduce this problem, the author makes some improvements. In DRN-B and DRN-

C, the author cancelled the pooling layer and used convolution with stride=2 as the 

down-sampling because the author found that pooling can make degridding more 

serious. In addition, the author added several convolutional layers with expansion 

coefficients of 2 and 1 at the end of DRN-B and DRN-C to eliminate degridding. 

Among them, DRN-C cancels the jump layer structure of the last few layers of 

convolution. After all, expanded convolution will produce degridding, so the aim of 

letting the final output use the general convolution output is to avoid this structure . 

Then, the jump layer structure is cancelled because it will make the degridding 

directly connect to the final output result. 

2.11 PyTorch 

PyTorch is an open-source Python machine learning library. The advantage of 

PyTorch is that it supports GPU acceleration and is easy to use. In this project, we use 

PyTorch to build our system. 
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3. Dataset 

3.1 Overview 

LIFULL HOME's database (Kiyota, 2018) offers about 5.1 million floorplans which 

are drawn by architecture in real life. We chose 145,220 from it and rescaled them to 

256*256 resolution.  

 1-3(A) 4-6(B) 7-9(C) 10-12(D) 13+(E) ALL 

Number of Samples 9,111 34,731 52,957 38,007 10,696 145,220 

Living Room 1.2/0.0 3.1/0.0 4.8/0.1 5.6/0.3 5.9/0.3 5.1/0.1 

Kitchen 1.3/0.6 3.3/1.0 4.5/1.2 5.4/1.1 5.3/1.3 4.4/1.1 

Bedroom 1.3/0.4 2.8/0.8 3.5/1.3 3.9/2.0 4.1/2.8 3.6/1.4 

Bathroom 1.2/0.7 2.4/1.6 2.9/2.6 3.3/3.0 3.5/3.4 3.0/2.4 

Closet 1.2/0.3 2.2/1.0 2.6/1.6 3.1/2.4 3.2/3.6 2.8/1.7 

Balcony 0.9/0.2 1.2/0.6 1.5/0.9 1.9/1.0 2.0/1.3 1.6/0.8 

Corridor 1.1/0.1 2.6/0.1 3.7/0.4 4.6/1.0 5.0/1.4 4.3/0.5 

Dining Room 1.5/0.0 3.0/0.0 3.6/0.0 3.2/0.0 1.9/0.0 2.9/0.0 

Table 1: We divide the whole dataset into five groups. The second row is the total 

number of each sample. The eight rows below contain two digits per block, left are 

average numbers of edge connections per room and right are the average number of 

rooms. 

Because the dataset is collected from Japan and living rooms in Japan are often 

interchangeable with kitchen, the room counts of living rooms are small. 
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3.2 Processing the Data 

The images in the dataset are in JPEG format, and the database does not contain 

bubble diagrams. And the process is mainly done by the House-GAN (Nauata et al., 

2020). We use a floor plan vectorisation algorithm proposed by Liu et al. (2017) to 

convert from JPEG format to vector-graphic format. And then convert into bubble 

diagrams. The bubble diagrams are in a format of image that contains several nodes 

and edges. The node represents a room and includes the room type, while the edge 

represents the relationship between rooms. If the Manhattan distance is less than eight 

pixels, these two rooms will be treated as connected. The output of this project are 

floorplans in the format of several axis-aligned boxes representing the room, and the 

colour of the box represents the room type. 

 Living Room  Kitchen   Bedroom   Dining room 

 Balcony            Corridor   Closet   Bathroom 

 

Figure 6: Samples of bubble diagrams and floorplans drawn from the dataset. 



 22 / 40 

 

3.3 Assumptions 

To simplify the problem, we make three assumptions:  

1. The room size is not customisable. 

2. The shape of a room is always rectangular. 

3. Do not contain the information of doors. 

Note: A round of training takes five to seven days, and due to the time limitation, we 

only managed to complete two groups of training: group B and group C.  
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4. Methodology 

4.1 Overview 

In this project, we used a relational GAN to generate the floorplan. It contains a 

generator and a discriminator. 

 

Figure 7: Structure of the project. The generator is the top, and discriminator is the 

bottom. PE is Detecting edges primitive network, which is the backbone architecture. 

The constraint of input is encoded into the structure of the graph. 
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4.2 Motivation 

There are serval ways to improve the performance of deep learning neural networks, 

such as enhancing performance from data, improving performance from the algorithm, 

improving performance from the algorithm tuning, improve performance from model 

fusion. In order to improve the neural network in House-GAN, we choose the way of 

enhancing graph structure, which will also enhance the performance of the deep 

learning network. The reason we choose this way is that Conv-MPN they used in 

House-GAN is a kind of graph structure, and we infer it could be improved. 

Thus, we found two articles; one is called Vectorizing World Buildings: Planar Graph 

Reconstruction by Primitive Detection and Relationship Inference (Nauata et al., 2020) 

and the other is called Structured Outdoor Architecture Reconstruction by 

Exploration and Classification (Zhang et al., 2021). By comparing each method in 

these two articles, we choose the PE in the first article. The reason is that using this 

way, the network transfers information between each layer, and according to the 

author, they find a better information transfer rule between graph nodes, which is 

better than Conv-MPN (Zhang et al., 2020).  

We did not choose the best way the article provided because the network is very 

complex, and we speculate that if the best network is used, the training time will be 

too long. So, we choose the most straightforward way in the article, which is also the 

fourth-best performance between the methods they provided,  
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4.3 Detecting regions primitive (Nauata et al., 2020) (PE) 

PE contains a DRN and a three-layer CNN. We use DRN-D-22 to do this instead of 

using other DRN is because the result of the DRN-D is, according to Yu (2018). 

There are also serval DRN-D such as DRN-D-105, DRN-D-54 etc. The main 

difference between them is the number of network blocks of each layer. 

The structure of DRN-D will be placed in the appendix. 

 

Figure 8: Error rate comparison by Yu (2018) 

The three-layer CNN is used to convert the feature to masks. This will be explained in 

section 5.3 and section 5.4.  
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5. Implementation Details 

Each model takes about 5 to 7 days on our machine. 

5.1 Hardware 

CPU: Single Intel i7-4770K 

GPU: Single NVIDIA RTX 2080Ti 

Memory: 16GB 

5.2 Software 

OS: Ubuntu 18.04 LTS 

Python 3.8 with Anaconda 

PyTorch 1.5.0 with CUDA 10.2 

And we use PyGraphviz 1.6 to generate the graph. 
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5.3 Floorplan Generator 

The inputs of the generator are noise vectors for each room. The generator generates a 

floorplan in the form of axis-aligned boxes representing rooms. The bubble diagram is 

in the format of a graph, which contains nodes and edges. Nodes represent the room 

and contain the information of room type as the colour is different. Edges represent 

spatial adjacency. 

The first step of the generation is generating nodes represented for rooms. Next, we 

use a 128-dimension noise vector to initialise it, which is sampled from the normal 

distribution. Then connected it with a 10-Dimension vector representing the room 

type. The result of this step is a 138-Dimension vector. Then we use PE to update the 

features. PE contains a DRN and a three-layer CNN. The three-layer CNN is used to 

convert the feature into a room mask. And this mask will be passed to the 

discriminator to refine. Finally, we generate the tightest axis-aligned box in order to 

create the floorplan. 
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5.4 Floorplan Discriminator 

The operation of the discriminator is like the generator but in reverse order. The 

inputs of it are segmentation masks of rooms in the form of the graph from the 

generator and an accurate floorplan. To combine the room information from each 

mask, a 10-Dimensional vector representing the room type is used. Then append and 

use reshape function to convert tensor. After that, a three-layer CNN corrects the 

feature, and two PE and down-sampling are used. At last, the room feature is 

transformed into a 128-dimensional vector. We add all the vectors and compare them 

to the actual samples. 
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5.5   GAN structure 

We use WGAN-GP (Gulrajani et al., 2017) as the GAN structure. The WGAN-GP is 

an improved version of WGAN (Arjovsky et al., 2017). It improves by three points. 1) 

Replace weight clipping with gradient penalty. 2) Add Gaussian noise to the 

generated image. 3) The optimiser uses Adam instead of RMSProp. 

 

Algorithm 2: WGAN-GP structure (Gulrajani et al., 2017) 

We set the gradient penalty assessed to 10. And we use the way proposed by 

Gulrajani et al. (2017) to compute the gradient penalty: the mask of the room is 

linearly and evenly inserted between the actual sample and generated sample, and the 

relational graph structure is fixed at the same time. 

We use ADAM optimizer where the �1 =  0.5, �2 = 0.999 . We trained for 100 

epochs. The batch size is set to 16. The learning rate is 0.0001 for both generator and 

discriminator. We use Leaky-ReLUs where � = 0.1 for all non-linearities steps. 
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6. Experimental Results 

6.1 Overview 

We evaluate our system from three aspects: user test, FID and subjective feelings. The 

user test and FID score is the objective part. The subjective part is from our own 

feelings. We did not validate a compatibility test for this project is because, according 

to Nauata et al. (2020), all methods in this area perform fairly well. Due to the time 

limit, a whole training takes about five to seven days, we only managed to complete 

the group contains five to six rooms, and the group contains seven to nine rooms. We 

choose House-GAN as the comparison, and the setup of the House-GAN is the same 

as our project. We train the House-GAN with ADAM optimizer where �1 =  0.5,�2 = 0.999. We trained for 100 epochs. The batch size is set to 16. The learning rate 

is 0.0001 for both generator and discriminator. We used Leaky-ReLU where � = 0.1 

for all non-linearities steps. 
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6.2 User Test 

We conducted a user test with 10 participants, eight of them are in unrelated 

occupations, and two of them are in the construction industry. Each of them compares 

15 pairs of floorplans sampled from our system and House-GAN. If they think our 

result is better, we will add one mark for our project. If they think both are equally 

well, then no mark will be added. If they feel House-GAN is better, we will subtract 

one mark for our system. We calculate the average number of the final mark for each 

participant, and here is the result. 

 

Unrelated 

Occupations 

House-GAN Construction 

Industry 

House-GAN 

Ours 0.82 Ours 0.45 

Table 2: Realism evaluation. The left two columns are the score from the people in 

unrelated occupations, and the right two rows are the score from the people in the 

construction industry. 

From the table, we can see that our project is better. 
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6.3 FID 

We randomly chose 5000 bubble diagrams and let both methods generate ten 

floorplans for each input. Then we compute the FID score using a third-party library 

for python called pytorch-fid (Seitzer, 2020). FID is Fréchet Inception Distance. It 

calculates the distance at the feature level. It can retreat the features of the image as a 

vector and output the category of the image. For actual real images that already have, 

the vectors retreated by FID obey a kind of distribution. For the vectors retreated from 

those images generated by the GAN system, it also obeys a sort of distribution. And 

the goal of GAN is to make these two distributions as similar as possible, which 

means the lower the FID, the better the diversity and the higher the quality of the 

generated samples. 

We found our project have better performance in this evaluation. A round of training 

takes about five to seven days, and due to the time limitation, we only managed to 

finish two groups of data mentioned in section 4.2, which are the group contains four 

to six rooms, and the group contains seven to nine rooms. Here is the result. 

 

 4-6 7-9 

House-GAN 24.1 15.5 

Ours 20.1 12.0 

Table 3: Diversity evaluation. The FID score for each group for each method. 

From the table, we can see that our project is much better than the House-GAN. But 

in according to the author of the House-GAN, their FID is around 15. We infer this is 
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because their number of training rounds is larger than ours. But if we add more 

training rounds, the FID of our system will decrease too. So, this is not important. 

 

 

 

 
Figure 9: Generated images from House-GAN and our project. For each row, the first 

image on the left is ground-truth, the rest ten images are generated samples. The first 

two rows are generated by House-GAN and in Group B and C. the last two rows are 

generated by our system in Group B and C. 

6.4 Subjective results 

During the training of our project, the loss of generator and discriminator did not 

exceed four digits. On the contrary, during the training of House-GAN, the loss of 

generator and discriminator even exceeded 10,000, which we think is an advantage of 

our system compared with House-GAN. The floorplan our system generated is tidier 

and squarer than the House-GAN from the view.  
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7. Future Work  

In this project, we did not use the best network from Vectorizing World Buildings: 

Planar Graph Reconstruction by Primitive Detection and Relationship Inference 

(Nauata et al., 2020) and also did not try to change the graph generation network into 

the way Structured Outdoor Architecture Reconstruction by Exploration and 

Classification (Zhang et al., 2021) provided. In the future, we will try to change the 

graph generation network into the best way from the first article and also try to use the 

way the second article provided to justify the result. 

On the other hand, we made some assumptions during processing the dataset, which 

are: 

1. The room size cannot be customised. 

2. The shape of the room is always rectangular. 

3. Do not contain the information of doors. 

So, in the future, we will make some change to the node to make it contains the 

information on room size and change the shapes of rooms to make it customisable. 

Also, for the edge, we will make it includes the information of the door location. 
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8. Conclusion  

In conclusion, this paper improves the House-GAN by changing the graph generation 

network in the GAN structure. We use Detecting Edge Primitive network instead of 

Conv-MPN to generate the graph. We use three ways to justify our method is better 

and set the House-GAN as the baseline. We think our project makes a real 

improvement in this area. 

  



 36 / 40 

 

Reference 

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., 

Courville, A. and Bengio, Y., 2014. Generative adversarial nets. Advances in neural 

information processing systems, 27. 

Karras, T., Aila, T., Laine, S. and Lehtinen, J., 2017. Progressive growing of gans for 

improved quality, stability, and variation. arXiv preprint arXiv:1710.10196. 

Jin, Y., Zhang, J., Li, M., Tian, Y., Zhu, H. and Fang, Z., 2017. Towards the 

automatic anime characters creation with generative adversarial networks. arXiv 

preprint arXiv:1708.05509. 

Bin, H., Weihai, C., Xingming, W. and Chun-Liang, L., 2017. High-quality face 

image SR using conditional generative adversarial networks. arXiv preprint 

arXiv:1707.00737. 

Nauata, N. and Furukawa, Y., 2020, August. Vectorizing World Buildings: Planar 

Graph Reconstruction by Primitive Detection and Relationship Inference. 

In European Conference on Computer Vision (pp. 711-726). Springer, Cham. 

Zhang, F., Nauata, N. and Furukawa, Y., 2020. Conv-mpn: Convolutional message 

passing neural network for structured outdoor architecture reconstruction. 

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (pp. 2798-2807). 

Nauata, N., Chang, K.H., Cheng, C.Y., Mori, G. and Furukawa, Y., 2020, August. 

House-gan: Relational generative adversarial networks for graph-constrained house 



 37 / 40 

 

layout generation. In European Conference on Computer Vision (pp. 162-177). 

Springer, Cham. 

Nauata, N., Hosseini, S., Chang, K.H., Chu, H., Cheng, C.Y. and Furukawa, Y., 2021. 

House-GAN++: Generative Adversarial Layout Refinement Networks. arXiv preprint 

arXiv:2103.02574. 

Müller, P., Wonka, P., Haegler, S., Ulmer, A. and Van Gool, L., 2006. Procedural 

modeling of buildings. In ACM SIGGRAPH 2006 Papers (pp. 614-623). 

Peng, C.H., Yang, Y.L. and Wonka, P., 2014. Computing layouts with deformable 

templates. ACM Transactions on Graphics (TOG), 33(4), pp.1-11. 

Merrell, P., Schkufza, E. and Koltun, V., 2010. Computer-generated residential 

building layouts. In ACM SIGGRAPH Asia 2010 papers (pp. 1-12). 

Wu, W., Fu, X.M., Tang, R., Wang, Y., Qi, Y.H. and Liu, L., 2019. Data-driven 

interior plan generation for residential buildings. ACM Transactions on Graphics 

(TOG), 38(6), pp.1-12. 

Liao, Y., Jiang, X. and Liu, Q., 2020. Probabilistically masked language model 

capable of autoregressive generation in arbitrary word order. arXiv preprint 

arXiv:2004.11579. 

Lira, W., Merz, J., Ritchie, D., Cohen-Or, D. and Zhang, H., 2020, August. 

Ganhopper: Multi-hop gan for unsupervised image-to-image translation. In European 

Conference on Computer Vision (pp. 363-379). Springer, Cham. 



 38 / 40 

 

Wu, W., Fu, X.M., Tang, R., Wang, Y., Qi, Y.H. and Liu, L., 2019. Data-driven 

interior plan generation for residential buildings. ACM Transactions on Graphics 

(TOG), 38(6), pp.1-12. 

Kiyota, Y., 2018, June. Promoting Open Innovations in Real Estate Tech: Provision 

of the LIFULL HOME'S Data Set and Collaborative Studies. In Proceedings of the 

2018 ACM on International Conference on Multimedia Retrieval (pp. 6-6). 

Liu, C., Wu, J., Kohli, P. and Furukawa, Y., 2017. Raster-to-vector: Revisiting 

floorplan transformation. In Proceedings of the IEEE International Conference on 

Computer Vision (pp. 2195-2203). 

Yu, F., 2018. GitHub - fyu/drn: Dilated Residual Networks. [online] Dilated Residual 

Networks. Available at: <https://github.com/fyu/drn> [Accessed 2 December 2021]. 

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A., 2017. 

Improved training of wasserstein gans. arXiv preprint arXiv:1704.00028 

Arjovsky, M., Chintala, S. and Bottou, L., 2017, July. Wasserstein generative 

adversarial networks. In International conference on machine learning (pp. 214-223). 

PMLR. 

Seitzer, M., 2020. GitHub - mseitzer/pytorch-fid: Compute FID scores with PyTorch. 

[online] GitHub. Available at: <https://github.com/mseitzer/pytorch-fid> [Accessed 3 

December 2021]. 

  



 39 / 40 

 

Appendix 



 40 / 40 

 

1. DRN Structure 

 

Appendix 1: The structure of DRN-D-22. Each rectangle represents a Conv block, a 

Batch Norm Block and a Leaky-ReLU block. The number in the rectangular 

represents the filter size and the channels number in the layer. Blue rectangles are a 

Conv block, a Batch Norm Block and a Leaky-ReLU block. with stride 2. The blue 

lines represent for down sampling. The purple rectangles use dilated convolutions 

instead of standard convolutions. The dilated factor of each layer is described at the 

bottom of the image. 


