

Hearing the future: Predicting the next piece of audio

This dissertation is submitted in partial fulfilment of the requirements for

the degree of MSc Advanced Computer Science

Yiwei Su

Supervised by Dr. Dave Marshall

School of Computer Science and Informatics

Cardiff university

September 2023

i

Abstract
Music is a comprehensive art form that integrates emotional expression, information dissemination,

and audience engagement. With the rapid rise of digital music platforms and the explosive growth of

music content, there is a growing interest in developing intelligent systems with the capability to

understand and create music. One highly notable research direction involves predicting the future

few seconds of a musical composition based on preceding segments. This technology has vast

application prospects, including music recommendation systems, automatic music composition, and

improvisational music. However, traditional methods of music prediction exhibit limitations when

dealing with nonlinear and complex time-series data. Hence, there is an urgent need for more

advanced approaches to enhance the accuracy of music prediction.

To address this challenge, this study introduces Long Short-Term Memory (LSTM), a powerful deep

learning model particularly suitable for modeling time-series data. In the context of music prediction,

melodies in music often repeat at different positions within a song. LSTM's excellent ability to

capture long-term dependencies in music data makes it an ideal choice for addressing music

prediction, especially in handling the repetitive melodies that frequently appear in music. This paper

provides a detailed explanation of how LSTM works and justifies the rationale for choosing LSTM

as the proposed solution.

By training the LSTM model on a diverse dataset comprising over 1000 music compositions, the

model learns the fundamental structures and patterns of music sequences. Experimental results

demonstrate a notable advancement in music sequence prediction. The model performs well in

predicting known music styles and exhibits the ability to make simple melody predictions for

unknown music styles, albeit with slightly reduced accuracy. These findings provide strong support

for the further development of music generation systems and the enhancement of the intelligence

level in music composition, opening new possibilities for future music creation and music

technology research.

ii

Acknowledgements

Firstly, I would like to thank my supervisor, Dr Dave Marshall, for his invaluable advice on the writing

of my dissertation, which enabled me to complete my dissertation successfully. Secondly, I would like

to express my special thanks to my parents for their financial and emotional support on my academic

journey. It's their trust that keeps me going.

iii

Table of Contents

Abstract ... i

Acknowledgements ... ii

Table of Contents ... iii

1.Introduction ... 1

1-1. Motivation and Applications ... 1

1-2. Roadmap of Dissertation .. 3

2.Background .. 4

2-1. Music Theory ... 4

2-2. MIDI ... 4

2-3. Machine Learning and Neural Network.. 5

2-4. Underfitting and Overfitting ... 7

2-5. Problem Statement and Approach .. 8

2-5-1. RNN ... 9

2-5-2. LSTM .. 10

3. Software and Associated Libraries Used in This Project ... 14

3-1. TensorFlow ... 14

3-2. Keras ... 14

3-3. Music21 .. 15

iv

3-4. NumPy .. 15

3-5. Matplotlib .. 16

4.Data Processing .. 17

4-1. Dataset Selection ... 17

4-2. Extracting Music Information from Files ... 17

4-3. Standardizing Key Signatures .. 18

4-4. Encoding Symbolic Music .. 19

4-5. Converting to One-hot Encoding ... 21

4-6. Sampling from Output Vectors .. 21

4-7. Some Problems in Data Processing ... 22

4-7-1. Handling Chords ... 22

4-7-2. Handling Multi-Track Music .. 23

5. Model Description... 25

5-1. Model Architecture .. 25

5-2. Parameter Selection ... 27

5-2-1. Activation Function .. 28

5-2-2. Loss Function ... 28

5-2-3. Optimizer ... 29

5-2-4. Batch Size .. 29

v

6.Implementation ... 30

6-1. Importing Libraries and Data Reading ... 30

6-2. Data Analysis and Data Processing ... 30

6-3. Using LSTM Model for Prediction .. 32

6-4. Generating Music Files ... 33

7. Results .. 37

7-1. Model Assessment ... 37

7-2. Score Evaluation ... 40

7-3. Results Analysis ... 52

8. Conclusion and Future Work ... 53

8-1. Conclusion ... 53

8-2. Future Work ... 55

9. Personal Reflection ... 57

References .. 59

1

1.Introduction

1-1. Motivation and Applications

Music, as a universal art form, possesses a potent capacity for emotional expression, information

conveyance, and audience engagement. With the widespread adoption of digital music platforms and

the continuous emergence of musical content, there is an increasing need to develop intelligent

systems capable of comprehending and generating music. Such systems hold the potential to

revolutionize various aspects of the music domain. To illustrate, by predicting the musical direction

of a song in the upcoming few seconds, we can enhance the performance of music recommendation

systems, enabling personalized transitions between tracks and thereby delivering more captivating

music experiences for enthusiasts. In the realm of automated composition, music generation

technologies offer novel inspiration to composers, expanding their creative horizons and exploring

diverse musical possibilities. Furthermore, music generation technologies can serve as tools for

improvisation, serving as robust aides for musicians during spontaneous performances. By analyzing

the current musical segment, these systems can generate harmonious melodies, enriching the

diversity of musical performances. Hence, a strong interest in the field of music generation is natural,

and the development of a system capable of accurately predicting the musical trajectory based on

preceding segments of a musical composition holds significant importance. This has the potential to

benefit numerous domains, including music recommendation systems, automated composition, and

improvisational creativity, with the prospect of catalyzing revolutionary advancements in the music

industry.

The prediction of music sequences has been a long-standing research topic among both scholars and

music enthusiasts. In fact, there have been various traditional methods for music generation even

before the exploration of neural networks for music generation (Yamshchikov & Tikhonov, 2020).

These traditional approaches typically rely on rule-based statistical methods to generate or predict

musical patterns. However, these methods have certain limitations when it comes to capturing the

intricate and nuanced relationships within music. With the recent advancements in machine learning

and deep learning techniques, there is now an opportunity to leverage these tools to enhance the

accuracy and complexity of music prediction.

2

Long Short-Term Memory (LSTM) is a form of recurrent neural network (RNN) that has shown

exceptional performance in capturing long-term dependencies and sequential patterns in various

domains such as natural language processing and speech recognition. LSTM models can remember

and utilize information from the past while processing new input, making them particularly suitable

for tasks involving sequence prediction. By training LSTM on large datasets of musical

compositions, it is possible to enable the models to learn the underlying structures and patterns.

LSTM models have the potential to capture the intricate relationships between musical elements such

as rhythm, melody, and harmony, and generate coherent and musically relevant continuations.

Another model used in the field of music generation is the Transformer. Transformer is a model

architecture based on the attention mechanism, designed to handle a variety of sequence tasks. One

of its most prominent features is the incorporation of the attention mechanism, enabling the model to

simultaneously consider all positional information within a sequence, unconstrained by local

information. This capability empowers the model to capture intricate relationships within sequences,

significantly enhancing its ability to comprehend contextual information. Building upon this

theoretical framework, Huang et al. (2017) introduced the Transformer into the field of music

generation and successfully developed the Music Transformer, a SeqToSeq model specifically

designed for the domain of music. By combining the Transformer architecture with music theory, this

model can understand and capture the complex relationships between musical notes, rhythms, and

harmonies, thereby generating stylistically consistent thematic music successfully. However, it is

worth noting that Transformer exhibits high computational resource and large-scale data

requirements, along with a relatively complex configuration compared to traditional RNN-based

models (Karita et al., 2019). In this research, the priority will be given to the use of neural network

models based on traditional RNN.

In summary, the objective of this research is to delve deeply into the feasibility of music prediction.

To achieve this goal, I will meticulously select suitable models and validate their effectiveness

through a series of rigorous experiments. I aspire that the outcomes of this study will provide robust

3

support for the development of more intricate and intelligent music generation systems in the future,

thereby paving the way for advancements in this field.

1-2. Roadmap of Dissertation

In this dissertation, the content of each chapter is organized as follows. Chapter Two delves into the

background knowledge of music prediction, providing a detailed exploration of the challenges and

the approach taken. Chapter Three focuses on the software and libraries employed in the practical

implementation, offering readers a comprehensive understanding of the tools and resources

necessary for practical application in similar projects. Chapter Four concentrates on the data

processing procedures, elaborating on data acquisition and preparation. Chapter Five outlines the

construction of neural network models and the selection of parameters. Chapter Six presents the

various steps of the experiment in code form for reproducibility. Chapter Seven discusses the model's

evaluation methods and assesses the model. Chapter Eight summarizes the experimental results and

explores directions for future work. Chapter Nine offers personal reflections on the research journey.

4

2.Background

2-1. Music Theory
Music is a universal art loved by people all around the world, and its essence lies in the combination

of sounds in the dimension of time. Before the widespread application of artificial intelligence, music

composition was considered a creative art form mastered only by talented musicians. In recent years,

artificial intelligence (AI) technology has made significant advancements, and people have begun to

explore the use of AI in music composition. In modern Western music, the primary notation system

used to represent music is the staff notation, as shown in the diagram below:

The most essential component of staff notation is the note, which represents different durations of

sound. The whole note, half note, quarter note, eighth note, and sixteenth note are the most common

types of notes. Rests are used to indicate intervals of silence corresponding to different durations of

sound.

Melody involves the temporal sequence of note events, representing at least pitch, onset, and

duration (including rests) of a single (monophonic) voice (Rohrmeier & Rebuschat, 2012). Different

instruments may use the same pitch and work together to form a composition.

2-2. MIDI

MIDI (Musical Instrument Digital Interface) is a standard established collaboratively by electronic

instrument manufacturers, often metaphorically referred to as the "computer-understandable musical

score." It aims to facilitate the exchange of information and control signals between computer music

programs, synthesizers, and other electronic audio devices, laying a robust technological foundation

for the advancement of the electronic music field (Moore, 1988). MIDI files, as the offspring of this

standard, bear crucial sound attribute information from music, including played notes, instrument

selections, note timings, accompaniments, and more. In essence, the MIDI system constructs a

comprehensive framework for composition, orchestration, and electronic simulation performance,

5

providing robust support for music creation and performance.

MIDI employs instructions such as notes and control parameters to represent music, specifying

which note to play and at what volume, among other details. In this study, our primary focus revolves

around the manipulation of note data generated by instruments. Therefore, MIDI format is

considered an ideal choice for this task. A typical MIDI file typically comprises one or multiple

tracks, each presenting musical notes in a staff-like notation. These notes, when combined, form a

complete MIDI file, with the data collectively representing various elements and characteristics of

the music, including melodies, harmonies, rhythms, and more. A key function of MIDI is to guide

digital music processors in simulating sounds. These digital music processors are responsible for

playing sounds based on their internal representations of analog instruments (Breve et al., 2021).

In practice, using the MIDI format for music data offers several advantages. Firstly, MIDI files do

not contain actual sound waveform data, which results in their typically compact file sizes, allowing

them to convey rich musical information with relatively small file sizes. Secondly, MIDI data is

highly editable, enabling convenient modifications and adjustments to elements like notes, volumes,

and instrumentations, providing musicians and composers with significant flexibility. Additionally,

programming languages like Python offer excellent support for MIDI format, facilitating the saving

of generated music data as readily accessible MIDI files through data streams. In summary, MIDI

provides critical support and assistance in various fields, including machine learning and music

composition (Loy, 1985).

2-3. Machine Learning and Neural Network

Machine Learning is a branch of Artificial Intelligence (AI) that enables computers to learn from

data and improve performance on specific tasks without explicit programming. It revolves around the

concept of algorithms and statistical models that recognize patterns, relationships, and insights in

datasets. The process begins with data collection, where relevant information is gathered and

transformed into features. These features are then used to train machine learning models to make

predictions, classify data, or solve complex problems. Machine learning is typically divided into

6

three main phases: data preprocessing, model training, and evaluation. Data preprocessing involves

converting raw, unstructured data into a format that computers can understand (Zhou et al., 2017).

Model training involves selecting appropriate algorithms and tuning their parameters. The final

evaluation phase is used to assess whether machine learning is achieving the desired goals. For

example, classifier performance evaluation may involve error estimation, dataset selection and

performance measurement. After the evaluation, model training can be adjusted based on the

evaluation results, such as modifying the selected learning algorithm or adjusting its various

parameters (Japkowicz & Shah, 2011).

Neural networks, as a pivotal branch of machine learning, draw inspiration from the principles

governing the operation of neurons in the human brain and have found extensive applications in

addressing various machine learning and artificial intelligence tasks. Neural networks are comprised

of multiple layers, each containing varying numbers of neurons, interconnected through weighted

connections. The fundamental building blocks of a neural network, including how they handle input

values, compute results, and establish connections among themselves, can be altered, collectively

defining what is known as the network architecture. Modifying these aspects can lead to changes in

the network's learning behavior, predictive accuracy, and more (Michelucci, 2018).

Neural networks offer significant advantages when it comes to handling complex data patterns,

particularly in the domain of music data processing. Music data typically exhibits highly intricate

nonlinear characteristics, and music prediction tasks demand models capable of capturing temporal

information within music. It is precisely due to these characteristics that neural networks have

emerged as the ideal choice for music data analysis and modeling. It is worth noting that neural

networks employ activation functions to introduce nonlinearity, thereby enabling them to learn and

represent complex data patterns. Without activation functions, each layer in a neural network would

perform a linear transformation of the input from the preceding layer. Regardless of the network's

depth, this would ultimately result in a simple linear combination of inputs. The introduction of

activation functions empowers neural networks with the capacity for nonlinear modeling, enabling

them to approximate various complex nonlinear functions. This makes neural networks excel in

7

handling a wide range of nonlinear modeling tasks (Sharma, 2017).

2-4. Underfitting and Overfitting

The concepts of overfitting and underfitting have been introduced early in fundamental classifiers in

machine learning, such as linear regression and logistic regression. Overfitting occurs when the

model excessively learns from the training data, capturing not only the underlying patterns but also

noise and random fluctuations. As a result, this type of model performs excellently on the training

data but often fails to generalize well to unseen or new data (Ying, 2019). This leads to a decrease in

performance and the creation of overly complex models that may consume unnecessary learning

time and computational resources. On the other hand, overfit models tend to perfectly fit every detail

of the training data, overlooking the hidden patterns in the data (Wu & Shapiro, 2006). Conversely,

underfitting occurs when the model is too simplified and fails to capture the true relationships within

the data. It performs poorly on both the training data and unseen data because it oversimplifies the

problem. Underfit models cannot grasp the complexity inherent in the data.

To better comprehend these two scenarios, let's consider linear regression as an example. In linear

regression, as illustrated in the figure below, the model attempts to fit a straight line to describe the

data's relationship. If the model chooses an overly simple linear function, it may fail to capture the

true underlying patterns in the data, resulting in underfitting. Conversely, if the model selects a

function that is overly complex, it may find unnecessary minor fluctuations in the data, leading to

overfitting.

8

In this study, when using LSTM neural networks to predict music, we also face the challenges of

overfitting and underfitting. When our model underfits, it means that it has not effectively captured

the core features and complexity of the music in the training dataset. This can lead to overly random

and chaotic predictions when trying to forecast actual music. In other words, the model has not

learned enough rich musical features and patterns, so its predictions may not accurately reflect the

true essence of the music.

Overfitting, on the other hand, is a more challenging issue to address. In contrast to underfitting,

when the model overfits, it almost perfectly fits the music information in the training dataset. While

this may perform well on the training data, it may lead to a problem: the model's ability to generalize

to new music data is limited. In other words, the model may generate predictions highly like the

music in the training dataset, and it may even end up mimicking the music from the training data.

This is because the model is too focused on specific examples in the training dataset and lacks the

ability to learn the broader features and underlying patterns of the music.

2-5. Problem Statement and Approach

This section will delve into the challenges faced in music prediction tasks and perform a comparative

analysis of methods used in music prediction tasks. Lastly, I will provide a detailed exposition of the

chosen method and elucidate the reasons for this selection.

In this research, the music prediction task confronts two primary challenges. Firstly, the nerual

network model necessitates the capability of long-term memory. Music compositions often consist of

recurring elements across different time axes. Consequently, in the process of music prediction, the

model must possess the capacity to recall previous elements, enabling it to comprehend and forecast

future musical trends (Huang et al., 2018). Secondly, it is imperative to devise effective methods for

capturing diverse information within the music, with the most crucial elements being musical pitch

and note duration. Pitch determines the melody and harmony of the music, while note duration

influences the rhythm and timing of musical sequences. Therefore, accurate extraction of these

musical features is essential in processing music data to achieve predictions about the future

9

developments in music. This aspect will be elaborated upon further in the subsequent "Data

Processing" chapter.

Addressing these challenges is crucial for the success of music prediction tasks. Insufficiencies in

long-term memory and information capture may result in inaccurate predictions by the model,

consequently affecting the overall coherence of the music. The following sections will introduce two

models that have been utilized in music prediction tasks.

2-5-1. RNN

Recurrent Neural Networks (RNN) belong to a class of neural networks that process sequences of

data as inputs and produce sequences of data as outputs, operating recursively in the direction of

sequence progression. All nodes within RNN, known as recurrent units, are connected in a chain-like

manner. What distinguishes RNN is their ability not only to consider the current input but also to

maintain a form of "memory" of past information. This is manifested in the network's ability to

remember previous information and apply it to the computation of the current output. Specifically,

the nodes in the hidden layers are interconnected, and the input to the hidden layers includes not only

the output from the input layer but also the output from the hidden layer at the previous time step

(Ciaburro & Venkateswaran, 2017).

Consider an example: when comprehending the meaning of a sentence, understanding each word in

isolation is insufficient; one needs to process the entire sequence of words connected. The same

principle applies to music prediction—if you want to predict the next few seconds of a piece of

music, you need knowledge of the entire melody.

As shown in the diagram, a typical RNN network comprises an input (ܺ�), an output (ℎ�), and a

10

neural network unit (A). Unlike regular neural networks, the neural network unit in an RNN is not

only connected to inputs and outputs but also forms a loop back to itself. This network structure

reveals the essence of RNN: information from the previous time step's network state influences the

network state in the next time step. In more detail, this can be seen as decomposing the RNN into

multiple independent neural network units. At time 0, the initial input is ܺ଴, the output is ℎ଴, and the

network unit's state at time 0 is stored in A. When the next time step arrives, the state of the network

unit currently is influenced not only by the input at time 1 (ܺଵ) but also by the state of the unit at

time 0. This pattern continues until the end of the time sequence at time t.

In previous research, many scholars have attempted to employ RNN models to learn musical patterns

for the purpose of music prediction. For instance, Todd (1989) trained RNN models to predict both

the pitch and duration of musical notes, subsequently generating music note by note. However, the

implementation of RNN has encountered a series of challenges, with the most prominent ones being

the issues of gradient vanishing and gradient explosion. These problems arise during the training of

deep RNN, where information fails to effectively propagate across lengthy sequences, consequently

constraining the network's capacity to model long-term dependencies effectively (Sherstinsky, 2020).

These challenges are especially notable in the field of music generation, particularly when generating

longer musical compositions. As the length of the musical piece increases, RNN face challenges

concerning their performance and stability. This increase in complexity can lead to instability and

inconsistency in the musical structure. Furthermore, for lengthy sequences like music data, RNN

encounter the issue of high storage and computational costs, making it difficult to handle large-scale

music datasets in practical applications.

2-5-2. LSTM

Music data often requires the long-term storage of specific information. For example, in a song, a

particular melody may persist throughout the entire composition. However, traditional RNN are not

the optimal choice in such cases due to their limitations in effectively handling long-term

dependencies. LSTM are a specialized variant of RNN designed to handle long-term dependencies in

sequential data. Unlike traditional RNN, LSTM automatically retain long-term information internally

11

without the need for explicit learning (Yang et al., 2018). LSTM achieve this by introducing gate

mechanisms, including the forget gate, input gate, and output gate, which efficiently capture and

preserve essential information in music sequence data. This design effectively overcomes the

vanishing gradient problem often encountered in traditional RNN, significantly enhancing their

capability to process long sequences of data.

In applications like music prediction, a LSTM's ability to handle long-term dependencies is

particularly crucial. This is because works of the same music style often share certain common

elements that need to be retained throughout the music generation process. However, the music data

in this study often exhibits vast and intricate characteristics, posing challenges for a traditional RNN

that tend to lose essential information when handling complex, long sequential music data.

Consequently, the adoption of LSTM networks proves advantageous in better capturing and

leveraging the long-term dependencies in music, ultimately leading to improved accuracy and quality

in music prediction.

Moreover, when confronted with intricate music prediction tasks, by using the previous layer's

hidden state as input for the current LSTM layer, the structure of the LSTM network can be further

strengthened through the stacking of multiple layers (Donahue et al., 2015). This structural

enhancement enables a LSTM to capture and preserve intricate patterns and long-term memory,

thereby further improving its performance in music prediction more effectively.

12

At the heart of LSTM lies the concept of a "cell state," which functions like a conveyor belt running

along the entire sequence. It allows for the long-term storage of information with minimal alteration.

The gate mechanisms serve as selective filters for information passage and consist of a sigmoid

neural network layer and element-wise multiplication operations. The sigmoid layer outputs values

between 0 and 1, determining how much information should pass through.

Specifically, the forget gate plays a pivotal role in deciding which information should be discarded or

forgotten from the cell state and is computed as follows: �� = �(�ܹ ⋅ [ℎ� − ͳ, ܺ�] + �ܾ)

Where � represents the sigmoid function, �ܹ is the weight matrix, ℎ�−ଵ denotes the previous time

step's hidden state concatenated with the current time step's input ܺ�, and �ܾ is the bias term.

The input gate decides which new information should be added to the cell state and consists of two

parts, calculated as follows: �� = �ሺ ⅈܹ ⋅ [ℎ� − ͳ, ܺ�] + ܾⅈሻ ܿ� = tanhሺ �ܹ ⋅ [ℎ�−ଵ, ܺ�] + ܾ�ሻ

Where ⅈܹ, �ܹ, ܾⅈ and ܾ� are the weight matrices and bias terms, respectively.

The output gate determines how information from the cell state should be passed to the current time

step's hidden state and output. It also comprises three parts: �� = �ሺ �ܹ ⋅ [ℎ�−ଵ, ܺ�] + ܾ�ሻ �� = �݂ ⋅ ��−ଵ + �� ⋅ ܿ� ℎ� = ��⋅ tanhሺ��ሻ

Where �ܹ and ܾ� are the weight matrix and bias term, respectively.

With the continuous advancement of deep learning technology, LSTMs have found widespread

application in music prediction tasks. Previous research, such as that by Eck and Schmidhuber

(2002), fully leveraged the long-term memory capabilities of a LSTM, successfully learning complex

structures in blues music and using them to create creatively unique and coherent musical melodies.

Similarly, Colombo et al. (2017) employed a LSTM to generate monophonic melodies in folk music.

These studies highlight the substantial potential of a LSTM in the field of music composition,

13

providing robust support for a deeper understanding and advancement of innovation in the realm of

music.

Given the outstanding performance of LSTMs in addressing long-term dependencies and its

remarkable capabilities in handling lengthy sequences of musical data, this research will also employ

LSTM technology for music prediction.

14

3. Software and Associated Libraries Used in This Project
3-1. TensorFlow

TensorFlow is a versatile and scalable software library designed for numerical computation using

data flow graphs. This library empowers users to efficiently develop, train, and deploy neural

networks and various machine learning models for practical applications. TensorFlow's core

algorithms are written in C++ and CUDA and have been meticulously optimized. It provides APIs in

multiple programming languages, with Python offering the most comprehensive and stable support.

TensorFlow usage typically consists of two phases: construction and execution. During the

construction phase, TensorFlow functions are used to build the computational graph of the machine

learning model. In TensorFlow, all computations are transformed into nodes on a computational

graph, with edges between nodes describing dependencies between computations. TensorFlow offers

essential building blocks such as fully connected layers, convolutional layers, RNN modules, and

nonlinear activation functions. Constructing and adding these modules layer by layer in Python

makes TensorFlow convenient to use. Additionally, TensorFlow provides various loss functions like

cross-entropy and mean squared error, and adding loss computation operations to the output tensor

completes the forward pass of a neural network model (Pang et al., 2019).

3-2. Keras

Keras (Ketkar & Ketkar, 2017) is an advanced neural network API written in Python, serving as an

interface for effortlessly creating and training deep learning models. It provides a user-friendly,

modular, and extensible framework for constructing various types of neural networks, including

feedforward, convolutional, recurrent, and more. Its simplicity and abstraction make it suitable for

both beginners and experienced machine learning practitioners. With Keras, users can rapidly

prototype and experiment with different neural network architectures, facilitating the development of

cutting-edge machine learning solutions for tasks like image recognition, natural language

processing, and more. This dissertation primarily employs the Keras API on the TensorFlow platform

for constructing deep learning models.

15

3-3. Music21

Music21 is a powerful Python library designed for computational musicology research. This library

employs a fundamental data structure known as "stream" to represent the temporal sequence of

music. With Music21, we can extract various musical attributes from MIDI files, including pitch,

notes, chords, scales, and tonality. Furthermore, Music21 provides a suite of general-purpose

functions for reading, writing, and processing musical scores, along with tools for generating music

fragments and chord progressions. These capabilities enable us to effortlessly extract information

from MIDI files and save music generated by neural network models as MIDI files.

One of Music21's strengths is its cross-platform compatibility and its ability to handle various music

data formats. It seamlessly interfaces with MusicXML, a universal format used by major notation

software, facilitating the analysis, construction, and storage of music data. In addition to MusicXML,

Music21 supports kern files, MIDI files and other formats, greatly simplifying large-scale corpus

analysis (Tymoczko, 2013).

In summary, Music21 offers convenience in music processing, combining adaptability with the

robustness of Python. It empowers users to work with music data efficiently and effectively. In this

dissertation, we primarily utilized Music21 for preprocessing MIDI-format music data.

3-4. NumPy

NumPy is a fundamental Python library for numerical computation. It supports the creation and

manipulation of large, multi-dimensional arrays and matrices, and provides a wide range of

mathematical functions for working with these data structures. In the fields of science and data

analysis, NumPy is considered an indispensable tool, enabling efficient data processing,

mathematical operations, and seamless integration with other data science libraries. One of the key

features of NumPy is its N-dimensional array object, ndarray, which is designed to store data in

memory, leading to faster batch operations on array elements (Idris, 2015). In this study, we will

utilize the NumPy library to convert labels in the training dataset into NumPy arrays, enabling more

efficient array operations and numerical computations, such as finding the maximum value in an

array or performing dimension expansion.

16

3-5. Matplotlib

Matplotlib is a powerful Python data visualization library that has become an indispensable tool in

the field of Python data science (Bisong, 2019). It is widely used for generating various types of

charts and plots, including static, dynamic, and interactive visualizations. Matplotlib provides a rich

set of tools and functionalities that enable users to effortlessly create high-quality graphics, such as

line plots, scatter plots, and more.

The primary goal of data visualization is to gain deeper insights into data through visual

representations (Telea, 2014). In the context of this research, data visualization plays a crucial role in

assessing the results of music prediction. Through Matplotlib, we can intuitively display the

comparison between the model's predictions and the actual values, which aids in evaluating the

accuracy of the model in music prediction tasks. Furthermore, Matplotlib allows us to visualize the

model's performance during the training process, including changes in accuracy and loss functions.

This visualization provides valuable guidance for optimizing the model, enabling me to gain a better

understanding of its performance and make necessary improvements.

17

4.Data Processing

For a machine learning model to make accurate predictions, a substantial amount of data is required

for support. Music21 can read various formats of music data, such as MIDI and Kern, and converting

melodies represented in different formats into numerical forms that can be accepted by neural

networks for model training. The following steps outline the data processing:

4-1. Dataset Selection

The model struggles to comprehend subtle differences in various music styles. Including songs from

different genres as part of the dataset might pose a challenge for the model, as it needs to attempt to

identify commonalities among these distinct music styles, which can be quite challenging.

In this study, we chose a dataset comprising music pieces with similar styles, sourced from Kaggle.

This dataset consists of over a thousand songs and possesses relatively simple and uniform melodic

features. This characteristic makes the dataset highly suitable for model training, as its music features

are not extremely broad but rather fall within a certain observable range.

It is worth noting that, when predicting the music of a specific song, training the model on a single

song, as opposed to using multiple different songs for training, may yield superior performance. This

approach allows the model to focus more on a particular song, thereby gaining a deeper

understanding of and making better predictions regarding its musical development and structure. In

contrast, training on multiple songs may lead the model to become confused between different songs

due to the distinct musical styles, emotions, and elements they encompass. However, employing a

single song as a dataset may encounter issues related to insufficient data volume, potentially

resulting in overfitting. Therefore, in this research, we have decided to train the model on a dataset

containing multiple songs to ensure that it possesses better generalization capabilities across various

music styles and elements.

4-2. Extracting Music Information from Files

18

Music21 provides the ‘music21.converter. parse ()’ function for reading music files in different

formats. It returns a Score class instance, which typically includes a collection of instruments that

perform the music. Different instruments play different parts within the same Score. Each part can

contain musical elements like note, rest, and chord. These elements each contain information about

pitch and duration, which need to be extracted during data preprocessing for use by the neural

network model.

4-3. Standardizing Key Signatures

In music theory and notation, a key signature is a symbol used to represent the key or tonality of a

musical composition. Key signatures are typically displayed in sheet music, appearing immediately

after the clef sign at the beginning of a staff. In the Western music system, there are a total of 15

different key signatures:

Each key signature corresponds to both a major and a minor key, in different key signatures, the

positions and relationships of individual notes change. Furthermore, it's common for the distribution

of key signatures in a dataset to be uneven, with some key signatures appearing more frequently than

others. This non-uniform distribution can pose challenges, as it may make it difficult for the neural

network to systematically learn the distribution patterns of notes in different key signatures,

potentially leading to inaccurate predictions. Therefore, handling key signatures is a crucial step in

preprocessing music data.

19

This task is challenging because it involves processing key signatures for all songs in the dataset.

One approach is to determine the key signature used in all songs by analyzing the frequency of

occurrence. However, this method is error-prone and carries the risk of contaminating the dataset.

I later discovered that Music21 can read the key signature attributes within measures of a song and

modify them. Given this capability, I decided to use Music21 to process key signatures in songs. The

approach involves standardizing the key signatures of all songs to either C major or A minor to

eliminate the influence of key signatures on the dataset. The process begins by iterating through each

song, if a song's key signature is already C major or A minor, it is skipped. If the key signature of the

song is not C major or A minor, or if the key signature cannot be determined, it is modified to either

C major or A minor. The following pseudocode outlines this step:

4-4. Encoding Symbolic Music

Neural networks require numerical inputs, so I need an encoding method to relate musical notes to

numerical values. In this study, I adopted a symbolic music encoding method suitable for neural

networks, where I use MIDI pitch values to represent the pitch of notes. This way, each note

corresponds to a unique MIDI pitch value.

There are a total of 128 MIDI notes, represented by the numbers 0 to 127, corresponding to the basic

pitches in Western music. This allows me to map notes to numbers and use them for training the

neural network. The following chart illustrates the MIDI pitch values for the C major scale:

20

In this dissertation, I used the music21 library to extract each individual note from every song and

mapped them to their corresponding MIDI pitch values. Rests were represented using the lowercase

letter "r." When the situation involves chords, it becomes more complex, and I will provide an

explanation later. Next, I needed to handle the duration of notes, in most vocal compositions, note

values shorter than sixteenth notes are uncommon. Therefore, in this research, I used sixteenth notes

as the base unit of duration and represented note durations using "-". Each number or "-" represented

the duration of a sixteenth note. For example, "60 - - - r - 65 - 62 -" signifies a sequence of a quarter

note C4, an eighth note rest, an eighth note F4, and an eighth note D4. The following pseudocode

outlines this step:

After extracting the data representing notes and their durations from the musical composition, we

needed to store this information along with their corresponding numerical values. To optimize

efficiency during training, I chose to create a list to store the relationships between notes and their

corresponding MIDI pitch values. This list of notes and their associated MIDI pitch values would be

used during the model's training and later in the music prediction phase, where the model's output in

21

numerical form would be converted back to MIDI pitch values using this list and then used to

generate the music using the music21 library.

4-5. Converting to One-hot Encoding

In the context of the music prediction task presented in this dissertation, the output architecture of the

LSTM neural network model is connected to the Softmax activation function. The output of the

Softmax activation function is structured to represent a complete probability distribution, which is

utilized for the model's classification task. Each output value within a category signifies the

predictive probability of the respective category. Consequently, it becomes imperative for the input

labels to be presented in the form of a probability distribution, facilitating meaningful comparisons

with the model's output.

One-Hot encoding provides an ideal solution for this requirement. It represents the labels of actual

samples as a categorical variable with a length equal to the total number of possible elements, where

only the variable corresponding to the given element has a value of 1, and all other variable values

are set to 0 (Briot, 2021).This encoding method not only aligns seamlessly with the output

requirements of the Softmax activation function but also enables us to employ a straightforward

formula for computing cross-entropy loss, this approach significantly enhances the efficiency and

intuitiveness of model training and performance evaluation. Keras provides the

keras.utils.to_categorical function, which seamlessly transforms integer-encoded MIDI note values

into a matrix-based one-hot encoding.

4-6. Sampling from Output Vectors

The results obtained through model predictions are in the form of a probability vector, indicating the

probability of each category. At this point, it is necessary to employ a sampling method to sample

from the probability distribution and select a value as the result. Experimental findings suggest that

while training models based on likelihood can yield outstanding performance in language

understanding tasks, decoding methods that maximize output probabilities (e.g., greedy sampling)

can lead to overly repetitive or unimaginative text generation (Holtzman et al., 2019). Therefore,

22

introducing a degree of randomness is essential during music sequence prediction to avoid the

degradation of generated results.

In this dissertation, we choose to employ temperature sampling as our sampling method.

Temperature sampling involves introducing the parameter �, which alters the probability distribution,

followed by random sampling from the modified probability vector. By adjusting the temperature

parameter � ∈ [Ͳ, ∞ሻ, we aim to strike a balance between the authenticity and diversity of the

generated results. Specifically, when � < ͳ, it biases the distribution towards high-probability events,

effectively amplifying the significance of larger probabilities.

4-7. Some Problems in Data Processing

4-7-1. Handling Chords

A chord refers to a group of three or more notes stacked vertically at intervals of thirds or non-thirds,

forming sound with specific pitch relationships (Hewitt, 2008). During the preprocessing of musical

note data, encounters with chords are quite common. As chords typically consist of three or more

notes, handling chords is inherently more complex compared to dealing with individual notes (Oore

et al., 2018). When employing the previously mentioned encoding method for notes and their

durations to process chords, we designate the root note of a chord as the first note, followed by

encoding the remaining notes in sequential order. For instance, the C Major Triad, composed of C, E,

and G notes, might be encoded as "60 64 67 -" using the encoding method described earlier for a

quarter note. However, this encoding approach is evidently an erroneous data preprocessing method

as it distorts the original intent of the musical composition. This erroneous encoding approach may

lead to significant errors in music prediction by neural network models. Hence, the encoding method

mentioned earlier may not be suitable for encoding chords composed of multiple notes.

I have devised three approaches to address this issue. The first approach involves traversing all the

notes within a chord and randomly selecting one note to represent the chord's sound. However, this

method is susceptible to issues when dealing with chords that span a wide range, as the randomly

chosen to note may inadequately represent the chord, leading to significant fluctuations in the

predicted musical pitch by the neural network model due to erroneous notes.

23

The second approach aims to mitigate the issue by selecting the central note within the chord to serve

as its representative. While this approach partially addresses the challenge posed by large-span

harmonic notes, it still carries limitations, including the potential for data contamination within the

dataset.

Ultimately, the third approach was adopted, involving the extraction of multiple notes from a chord,

and encoding them as a tuple to represent the chord. For instance, a C Major Triad comprising the

notes C, E, and G is encoded as the tuple (60, 64, 67). This approach retains the chord's intrinsic

meaning while minimizing information loss.

4-7-2. Handling Multi-Track Music

In multi-track music, each instrument or voice has its own staff in the musical notation, representing

its independent notes and pitches. This approach allows different instruments or voices to play

simultaneously, creating rich musical textures. When dealing with single-track music, data

preprocessing usually involves encoding a single voice, but in the case of multi-track music, there

arises a challenge. Multi-track compositions often include various instruments playing in harmony,

and each instrument has its own separate staff. Representing an entire piece of music using just one

staff is inadequate, as it fails to capture the full musical complexity and leads to dataset

contamination, resulting in significant errors during model training and music prediction.

To address this challenge, it becomes necessary to preprocess all tracks of a music piece individually,

converting each track into a numerical format suitable for neural network models, using the encoding

method discussed earlier. However, each track may have distinct musical characteristics. For

instance, a piano track may consist of single notes as well as chords, whereas a percussion track may

predominantly feature consecutive single notes. If different tracks are fed into the same neural

network for training, it may struggle to systematically learn the underlying patterns in a music piece,

leading to significant fluctuations or inaccuracies in generating music predictions.

24

To tackle this issue, I developed a function that, if a music piece contains multiple tracks, iterates

through all the tracks. It encodes the notes of each instrument track and feeds them into separate

neural network models. For instance, it extracts all piano tracks from the dataset and uses them as

input to an independent neural network model. After training individual models for each track, it

independently predicts the music for each track. Finally, all tracks are combined to produce a

complete musical composition. This approach allows each neural network model to receive data

from the same type of instrument, enhancing the accuracy of music prediction. However, it does

place higher demands on the dataset, as different music pieces may use varying instruments, and the

musical styles across tracks can differ significantly.

25

5. Model Description

5-1. Model Architecture

To achieve accurate predictions of music trends, it is essential to select and construct an appropriate

neural network model that maximally captures the temporal relationships and patterns within the

music data. During the model selection process, attention will be focused on the following key

factors:

• Neural Network Architecture Design: The architecture of the neural network plays a pivotal

role in model performance. Two critical factors within this are the network's depth (number

of layers) and width (number of neurons in each layer). Deeper networks often possess

stronger representational capabilities but are susceptible to overfitting. In this study, careful

consideration of the dataset's complexity will be undertaken to determine the optimal

network architecture.

• Layer Selection: The choice of various neural network layers is equally vital. This includes

decisions regarding the use of LSTM layers, GRU layers, or Dense layers, as well as

defining the input and output of each layer. These choices will directly impact the model's

performance and capabilities.

• Overfitting Mitigation Strategies: Attention will be devoted to addressing overfitting during

the model construction process. In this dissertation, the inclusion of Dropout layers will be

employed to prevent model overfitting.

The basic neural network model consists of an input layer, hidden layers, and an output layer. The

number of neurons in each layer can be adjusted based on the specific requirements of the task.

Alterations in the number of layers and nodes can lead to different outcomes. The depth of a neural

network is a primary factor influencing its expressive capacity (Huang et al., 2016). Deeper neural

networks are capable of fitting more complex data. However, due to the presence of overfitting, there

is not a strictly positive correlation between the depth of the network, the number of neurons, and

prediction accuracy. To obtain an appropriate model, it is necessary to arrive at conclusions through

repeated experiments.

26

Below is a schematic diagram of a simple neural network comprising a 3-node input layer, two

hidden layers, and a 4-node output layer:

The research conducted in this dissertation pertains to the prediction of music temporal sequences.

RNN and their variants, particularly LSTM networks, have emerged as cutting-edge models for

handling sequential tasks (Vaswani et al., 2017). The selection of the LSTM model for music

prediction tasks is contingent on its outstanding performance in dealing with complex music

sequences.

Firstly, music compositions typically exhibit a multi-level structure, encompassing themes,

harmonies, melodies, and recurring patterns. The long-term memory mechanism within LSTM

networks enables them to capture these long-range dependencies in music sequences. Furthermore,

their gate mechanisms effectively mitigate the vanishing gradient problem, aiding in understanding

the overall structure of music compositions and thereby enhancing accuracy in predicting future

notes.

Secondly, temporal relationships are crucial in music, such as the durations between notes, the way

chords are played, and the coordination between instruments. LSTM networks are sensitive to

27

temporal relationships, making them well-suited for handling temporal information within music

sequences.

In summary, employing an LSTM model for music prediction is an excellent choice. The LSTM

model constructed in this dissertation consists of two LSTM layers, two Dropout layers, one Dense

layer, and a Softmax activation function, as illustrated in the diagram below:

In this model, the LSTM layer is characterized by three parameters: input_shape, which is used to

specify the length and features of the input sequence. In this dissertation, the model takes one-hot

encoding as input. Units specify the number of neurons in a single layer, and return_sequences is set

to True to return the entire sequence rather than just the output of the last time step. The Dropout

layer (Srivastava et al., 2014) is a commonly employed regularization technique in neural networks.

It mitigates overfitting risk by concealing the output of a fraction of neurons during model training.

In this model, the Dropout layer parameter is set to 0.4 to mask 40% of the neurons. The final layer

of this model consists of a fully connected layer, with the 'units' parameter set to the number of

distinct musical notes at the input layer. Its purpose is to map the output from the LSTM layers to the

ultimate musical note predictions.

5-2. Parameter Selection

Parameter selection is a crucial factor influencing the predictive capability of the model. The

following are several key parameters:

• Learning Rate: An appropriate learning rate controls the step size of model parameter

updates at each iteration, ensuring a smooth and efficient training process. Some optimizers

feature adaptive learning rates.

28

• Activation Function: Activation functions introduce nonlinearity into neural networks,

enabling them to learn and represent complex nonlinear relationships. Generally, Softmax is

a common choice.

• Loss Function: The loss function is used to measure the model's performance by quantifying

the gap between predicted values and actual values.

• Optimizer: The optimizer determines the strategy for updating model parameters, directly

impacting the speed and stability of the training process. In this study, Adam is a well-suited

choice.

• Batch Size: An appropriate batch size not only affects the training speed but also relates to

model performance. The selection of batch size should consider factors such as

computational resources and the distribution of training data to achieve the best training

results.

5-2-1. Activation Function

In this study, the Softmax activation function was chosen for the output layer to determine the most

probable answer for classification problems. It takes the output from the Dense layer and maps it to a

set of probability values, representing the prediction probabilities for each note. The note with the

highest probability is then selected as the output. The formula is as follows:

�ⅈ = ݁��∑ ݁����=ଵ

� = arg max �ⅈ

5-2-2. Loss Function

The loss function serves as the objective function for model optimization, guiding the direction of

model parameter updates during training (Hennig & Mahmut, 2007). Sparse categorical cross-

entropy loss function was utilized in this study. This variant of the cross-entropy loss function

considers sparsity between categories when calculating the loss. Traditional cross-entropy loss treats

all categories equally, while sparse categorical cross-entropy applies weights to sparse categories,

suitable for cases where labels are integer-encoded. The loss function is computed as follows:

29

� = − ͳ� ∑ [�ⅈ logሺ�̂ⅈሻ + ሺͳ − �ⅈሻ logሺͳ − �̂ⅈሻ]�ⅈ=ଵ

Where �ⅈ represents the true labels, and �̂ⅈ represents the predicted labels.

5-2-3. Optimizer

The Adam optimizer (Kingma & Ba, 2014) was employed in this research, which is an efficient

gradient descent algorithm. Adam combines the advantages of AdaGrad, suitable for sparse

gradients, and RMSProp, effective for online learning. Adam is characterized by low memory usage

and adaptive learning rates. It incorporates the concept of momentum, accelerating convergence by

maintaining first-order moment estimates (mean) and second-order moment estimates (square of the

mean) of gradients. The momentum term helps in traversing flat regions in the parameter space,

reducing the risk of getting trapped in local minima. Adam's default parameters generally perform

well across various deep learning tasks, simplifying hyperparameter tuning.

This study also considered using the RMSProp optimizer with time-varying adaptive learning rates.

It shares similarities with the AdaGrad optimizer but replaces the sum of square gradients with

moving averages of square gradients, reducing gradient scaling. Although Adam and RMSProp often

exhibit similar performance (Haji & Adnan, 2021), Adam was ultimately chosen as the optimizer for

the music prediction task after experimental comparisons.

5-2-4. Batch Size

In this study, due to the large volume of the music dataset, it is necessary to train the model by

feeding the data in batches to improve training efficiency and reduce computational costs. To

enhance the model's generalization ability, it is advisable to limit the ratio of batch size to learning

rate as much as possible (He et al., 2019). Therefore, in this research, the batch size during model

training is set to 64, meaning that 64 samples are specified for updating parameters each time the

model is trained.

30

6.Implementation

In this chapter, we will delve into the specific implementation details of music prediction, including

the introduction of relevant libraries, data preprocessing and preparation, the construction and

training of neural network models, and the saving of prediction results. We will gradually introduce

the necessary code and methods to ensure that the entire implementation process is clear and

understandable and can be easily reproduced when needed.

6-1. Importing Libraries and Data Reading

In this study, we utilized NumPy for data format operations and numerical computations, the

matplotlib library for data visualization, the music21 library as a tool for processing music data, and

the pickle library for file read and write operations. The following code shows the importation of

these libraries:

import pickle

import numpy as np

import music21 as m21

import matplotlib.pyplot as plt

With the functions provided by the music21 library, we can easily read music data from a folder and

transform it into instances of the Score class. The following code serves as an example of reading the

dataset:

song = m21.converter.parse(file)

6-2. Data Analysis and Data Processing

After obtaining information from the music dataset, it was essential to conduct data analysis and

processing. Initially, we needed to identify the different tracks and instruments used in the dataset:

parts = m21.instrument.partitionByInstrument(song)

for i in range(len(parts.parts)):

 instrument_name = parts.parts[i].getInstrument().instrumentName

31

Before encoding the MIDI pitches of the music work, it was necessary to parse the tonality

information of the music work and transpose the music objects relative to the key of C to facilitate

further music analysis and processing, as shown below:

for element in score.recurse():

 # find the key

 if isinstance(element, m21.key.Key):

 # find the tonic

 if element.mode == 'major':

 tonic = element.tonic

 else:

 tonic = element.parallel.tonic

 # Transpose according to the main tonic

 gap = m21.interval.Interval(tonic, m21.pitch.Pitch('C'))

 score = score.transpose(gap)

 break

 # can not find the key

 elif isinstance(element, m21.note.Note) or

 isinstance(element, m21.note.Rest) or

 isinstance(element, m21.chord.Chord):

 break

 else:

 continue

Next, we iterated through each instrument, encoding the notes into elements based on sixteenth notes

as the fundamental unit. Chords were encoded as tuples, notes as corresponding MIDI pitches, and

rests as 'r', with '-' indicating note duration, as demonstrated here:

for event in part.flat.notesAndRests:

 #handle chord

 if isinstance(event, m21.chord.Chord):

 symbol = tuple(event.normalOrder)

32

 #handle note

 elif isinstance(event, m21.note.Note):

 symbol = str(event.pitch.midi)

 #handle rest

 elif isinstance(event, m21.note.Rest):

 symbol = "r"

 string_part.append(symbol)

 duration = event.duration.quarterLength * 4

 while(duration > 1):

 string_part.append("-")

 duration -= 1

6-3. Using LSTM Model for Prediction

To perform music generation, it was crucial to prepare training data for input to the neural network.

In music generation tasks, we utilized the first 65 musical symbols of a sequence to predict the 65th

musical symbol. Consequently, we constructed training examples, each comprising a fixed-length

music sequence of 65 elements and the corresponding prediction target, as shown below:

x = []

y = []

num_sequences = len(int_notes) - SEQUENCE_LENGTH

for i in range(num_sequences):

 x.append(int_notes[i:i+SEQUENCE_LENGTH])

 y.append(int_notes[i+SEQUENCE_LENGTH])

encoding sequence to one-hot

x = keras.utils.to_categorical(x, num_classes=unique_notes_num)

y = np.array(y)

print(f"There are {len(x)} sequences.")

33

After preparing the training data, we input it into an LSTM model for training. First, we imported the

necessary libraries for model construction. In this study, keras served as the primary tool for building

the model, as illustrated below:

import tensorflow.keras as keras

from keras.models import Sequential

from keras.layers import Activation, Dense, LSTM, Dropout

from sklearn.model_selection import train_test_split

Before feeding the training data into the model, we partitioned 10% of the data as a test set to

evaluate the performance of the trained model on unseen data. Additionally, 10% of the training data

was allocated as a validation set to detect potential overfitting or underfitting issues. This process is

demonstrated as follows:

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1,

random_state=42)

Subsequently, we constructed an LSTM model and fine-tuned the parameter values as needed:

model = Sequential()

model.add(LSTM(128, input_shape=(None, unique_notes_num),

return_sequences=True))

model.add(Dropout(0.4))

model.add(LSTM(128))

model.add(Dropout(0.4))

model.add(Dense(unique_notes_num, activation='softmax'))

model.compile(loss='sparse_categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

Finally, the training data was input into the model for training, and training results were obtained:

history = model.fit(x_train, y_train, epochs = 150, verbose = 1,

batch_size = 64, validation_split = 0.1)

6-4. Generating Music Files

34

After training the model and achieving the desired performance, the next step was to use the model

for music composition. Firstly, we extracted the last 64 musical symbols of the music piece we

wanted to predict, transformed them into one-hot format suitable for input into the neural network,

and then used the model to generate a probability vector based on the input sequence. Finally, we

applied temperature sampling to generate a sequence of notes based on the model's output

probabilities. This process was repeated until we generated the desired length of the music sequence.

The following code demonstrates this:

melody = encode_part(part)[-64:]

map seed to int

seed = [note_to_int[index] for index in melody]

for _ in range(300):

 # encoding the seed to one-hot

one_hot_seed = keras.utils.to_categorical(seed,

num_classes=len(note_to_int))

 one_hot_seed = one_hot_seed[np.newaxis, ...]

 # make a prediction

 probabilities = model.predict(one_hot_seed)[0]

 # [0.1, 0.2, 0.1, 0.6] -> 1

 prediction = np.log(probabilities) / 0.6

 probabilities = np.exp(prediction) / np.sum(np.exp(prediction))

 #choices = range(len(probabilities)) # [0, 1, 2, 3]

output_int = np.random.choice(range(len(probabilities)),

p = probabilities)

 # update seed

 seed.append(output_int)

 # map int to our encoding

 output_symbol = [k for k, v in note_to_int.items() if v == output_int][0]

 # update melody

35

 melody.append(output_symbol)

We needed to decode the generated music sequence into symbolic music data. This involved

handling notes, chords, and rests, and combining them into a musical stream. Specifically, while

processing the music sequence, we iterated through each element. When we encountered MIDI pitch

or a rest, we created a new musical event and recorded its duration. For rests, we handled them as

well. If the symbol was "-", we incremented a step counter to indicate a longer duration. Here's the

code illustrating this process:

for i, symbol in enumerate(melody):

 # check if the symbol is "-" or if it's the last symbol in the melody.

 if symbol != "-" or i + 1 == len(melody):

 # if there's a previously encountered symbol, create a musical event.

 if start_symbol is not None:

 quarter_length_duration = 0.25 * step_counter

 # handle rest

 if start_symbol == "r":

 m21_event = m21.note.Rest(quarterLength=quarter_length_duration)

 # handle chord

 elif isinstance(start_symbol, tuple):

 m21_event = m21.chord.Chord(list(start_symbol),

quarterLength=quarter_length_duration)

 #handle note

 else:

 m21_event = m21.note.Note(int(start_symbol),

quarterLength=quarter_length_duration)

 unique_part.append(m21_event)

 # reset the step counter for the next sequence of symbols.

 step_counter = 1

 start_symbol = symbol

 # if symbol is -, increment the step counter to indicate a longer duration.

36

 else:

 step_counter += 1

Finally, we wrote the music sequence into a stream using the music21 library and saved the music

file locally.

37

7. Results

7-1. Model Assessment
For the effective evaluation of music generation results, it not only aids in identifying the

shortcomings of music generation models but also contributes to the continual improvement of the

model to achieve superior music generation performance. However, evaluation in fields such as

music, literature, and art often involve subjectivity, making it challenging to objectively assess the

outcomes of these creative endeavors (Yamshchikov & Tikhonov, 2020). When it comes to

performance evaluation of music prediction models, unlike tasks with well-defined criteria such as

classification, the evaluation of music prediction models typically requires the consideration of

subjective factors. While subjective assessment is more fitting in the domain of artistic creation, it

presents issues with cumbersome evaluation methods and result instability. Conversely, objective

evaluation metrics have distinct advantages in some cases as they provide a more reliable and

actionable way to assess model performance. These objective metrics often involve quantitative

analyses of model outputs, such as the structure of generated music, the coherence of notes, and the

diversity of melodies. However, objective evaluation may, in some respects, become overly

theoretical and fail to fully capture the complexities of the music domain.

Despite significant advancements in automated music evaluation techniques, there are still some

limitations (Agarwal et al., 2018). Therefore, while considering the complexity of model evaluation

and the reliability of evaluation results, this dissertation will primarily focus on objectively assessing

the performance of music generation models from a mathematical perspective. This approach will

combine the analysis of objective metrics with experimental results from subjective evaluations to

gain a comprehensive understanding of the model's performance in various aspects, thereby

providing better guidance for model refinement and optimization directions.

First, we will discuss the model's loss function values, accuracy on the training set, and loss function

values and accuracy on the validation set, as shown in the following figure:

38

From the figure above, it can be observed that after undergoing continuous training for 3 hours, the

model achieved a satisfactory accuracy of approximately 95% on the training dataset. However, its

performance on the validation dataset was slightly lower, reaching only approximately 90%

accuracy, and the loss function exhibited fluctuations towards the end. This observation has

prompted consideration of two potential factors:

Firstly, it is possible that the model is experiencing overfitting, wherein it excessively adapts to

specific features of the training data during the training process, leading to a reduced ability to

generalize to new data. This becomes particularly evident when dealing with independent data, such

as the validation set.

Secondly, our dataset comprises many mutually independent musical compositions, each possessing

its unique musical style and characteristics. This diversity may pose challenges for the model when

making predictions on the validation set, as it may contain music compositions of different styles not

encountered during training. These variations in musical style could potentially have a negative

impact on the model's predictive ability, as the model needs to adapt to different musical styles and

melodic patterns. Increasing the size of the dataset may help alleviate this issue, as a smaller dataset

39

may not adequately capture the diversity and complexity of the music domain, thereby limiting the

model's performance.

Next, we will assess the performance of the trained model using the test dataset, with the results

presented below:

It can be observed that the performance of the model on the test dataset is generally satisfactory. It

can make predictions to a certain extent on music compositions with similar musical styles that it has

not previously encountered. This result indicates the reasonable effectiveness of the hyperparameters

set before model training. Furthermore, through validation on the test dataset, we have further

confirmed the model's generalization ability, i.e., its performance on new data. Overall, the model is

well-constructed, and further evaluation of its performance can be considered.

40

7-2. Score Evaluation

For the evaluation of music prediction models, relying solely on results from the test set is evidently

insufficient. The test set may encompass works of various musical styles, and an outstanding music

prediction model should possess not only the ability to predict notes but also a certain level of

musical theory knowledge, enabling it to comprehend the relationships between notes and musical

rules. Ideally, as the model continues to train, the generated music should progressively approach

real music, rather than merely replicating input data mechanically. Therefore, we will further validate

and assess the model in this study. Generally, music possesses a certain logical structure, and

predictions for a song should make sense rather than being random and devoid of logic. We expect

the model's predictions to align with the inherent structure of the music itself. For example, when

predicting for a song that features the repetition of a single note, the ideal prediction should also

include the repetition of that single note. Similarly, when predicting ascending musical notes in a

stepwise fashion, the results should continue the upward trend, which is in line with logical

expectations. Consequently, in the subsequent tests, we will use music scores with specific patterns

to evaluate the model's performance. This testing approach will provide a more in-depth assessment

of the model's capability in music generation, verifying whether the model genuinely comprehends

the underlying principles and theories of music.

When evaluating the model's prediction ability, we have opted for a greedy sampling approach over

temperature sampling for the obtained probability distribution. The primary objective behind this

decision is to minimize the uncertainty introduced when the model samples probabilities as much as

possible. Greedy sampling leans toward selecting predictions with the highest probabilities, thereby

reducing the impact of stochastic factors in model predictions, decreasing output variability, and

obtaining more stable and reliable results. This contributes to a clearer evaluation of the model's

performance in music generation tasks, mitigating result fluctuations caused by randomness and

enabling us to more accurately judge whether the model's predictions align with expectations.

However, during model training, as the model is not constrained to receive sequences of fixed

lengths, when using shorter sequences to request predictions from the model, it takes that segment as

41

context for predicting the next outcome. Consequently, employing sequences of different lengths to

predict music for the same song may yield different prediction outcomes. To ensure result

consistency and comparability, in subsequent testing, we will employ fixed-length sequences to

predict subsequent notes, guaranteeing that we can more accurately compare prediction results in

different contexts when evaluating model performance.

In this research, four metrics will be used to evaluate the model's performance: R-squared, BLEU

(Bilingual Evaluation Understudy), accuracy, and F1 score. R-squared and BLEU are employed to

gauge the fitting between the model's prediction output and actual observed data, while the F1 score

measures the model's performance in multi-class classification tasks.

42

As shown in the figure below, the presented musical score belongs to the most basic form of music

notation, utilizing a 4/4-time signature, which means each measure consists of four beats, with each

beat represented by a quarter note. This musical passage consists of seven consecutive measures,

totaling 28 quarter notes of G4. The duration, pitch, and timing intervals between each note are

consistent. However, it is essential to note that since this musical passage comprises 28 consecutive

G4 quarter notes in the key of C major, it is highly likely that it is not included in the training dataset.

In other words, the model's predictions for the subsequent notes in this passage rely entirely on the

model's learned music patterns from the training dataset, rather than simple copying or memorization

of musical patterns in the training data.

For this test, the model should be able to predict the progression of subsequent notes effortlessly.

From a music theory perspective, any model should have the capability to learn the potential pattern

of consecutive occurrences of the same note. If the model predicts notes different from G4 in this

test, it suggests that the model has not well understood the inherent relationships between notes. This

could be due to an insufficiently large dataset, a lack of diverse music patterns in the dataset, or

inherent flaws in the model itself.

As shown in the figure above, the model demonstrates the ability to predict consecutive repeated

notes, and the prediction metrics are presented in the table below:
R- squared BLEU Accuracy F1 score

1.0 1.0 1.0 1.0

43

Based on the data provided in the table, we can conclude that the model exhibits a fundamental

ability to handle repeated notes. This indicates that the model has at least learned to recognize and

predict one of the simplest music sequence patterns, namely, the repetition of a single note. However,

it is essential to note that this test scenario represents the model's performance when dealing with the

simplest and highly repetitive musical segments. In practical music composition and generation, an

excessive repetition of single notes is not desirable.

In the upcoming evaluation of the model's predictive capabilities, we will consider musical passages of

different styles and forms to gain a comprehensive understanding of the model's potential in predicting

unknown melodies. This will test the model's generalization abilities across diverse musical elements and

creative styles.

44

As shown in the figure below, this musical score is relatively more complex compared to the

previous one, still employing a 4/4-time signature. This musical passage consists of two types of

notes, namely G4 and B4, which appear alternately within one measure, as illustrated below. This

alternating note pattern may impose higher demands on the model's music sequence modeling

because the model needs to learn how to accurately capture the alternating relationships between

different notes for precise music generation.

We expect the model not only to accurately capture the pitch of the alternating notes in the music but

also to precisely identify the duration of the notes. The figure below displays the model's

performance in this regard:

From the observation of the figure, it can be noted that when there are fluctuations in the ground

truth curve, the prediction curve exhibits a similar trend of changes. Although in some fluctuation

cases, they are not entirely identical, this still indicates that the model has successfully learned the

rhythmic patterns of the music to some extent. However, concerning the pitch of the notes, the

model's learning performance appears slightly inadequate. This suggests that the model may face

some challenges in capturing pitch and requires further training to enhance the accuracy of its pitch

predictions.
R- squared BLEU Accuracy F1 score

0.617 0.674 0.876 0.574

From the provided table data, it is evident that there is a clear correlation between the predicted

values by the model and the actual values of the song. This indicates that the model has indeed

45

learned some properties related to the musical rhythm rather than making meaningless random

predictions.

46

To test the model's level of understanding of music theory, the following musical segments were

designed for testing:

As observed, this musical segment is entirely composed of gradually ascending single notes. For

someone with a moderate understanding of music theory, predicting the next note should be a

relatively simple task. However, for our LSTM model in this research, it may pose a challenging

task. This is because the model focuses on the absolute position of notes rather than the relative

position between notes. Specifically, the model's input is the MIDI pitch of the notes, not the pitch

change values between notes. The comparative chart of predictions is shown below:

From the chart, it is evident that the model can hardly predict the direction of the next note

accurately. This is primarily because the model is constructed based on the absolute values of pitch

and does not consider the trend of pitch changes between notes. If we were to feed the model with a

sequence of pitch change values as input, it might be easier for the model to accurately predict the

pitch direction ahead.
R- squared BLEU Accuracy F1 score

0.137 0.591 0.681· 0.136

Based on the data in the table, we can conclude that the model has certain limitations in learning

music theory. Its predictions for musical segments mainly rely on the time series of note occurrences

in the training dataset without a deep understanding of the fundamental principles of music. Using

more complex encodings for notes to encompass more essential information might help overcome

the model's limitation in understanding music theory. For instance, training the LSTM model with

47

music transcriptions expressed in advanced notation like ABC symbols has shown promising results

(Sturm et al., 2016).

48

In the previous model validation tests, we primarily focused on the model's performance when

dealing with structured sequences of notes. However, for a more comprehensive assessment of the

model's generalization capability, we need to consider a wider range of musical contexts. Therefore,

the following validation tests will be conducted using segments from musical compositions to

simulate more diverse musical scenarios. In this test, a completely new musical segment was used,

which had not appeared in our training data. However, compared to the musical works in the training

set, this musical segment shares a similar musical style and characteristics. Our expectation is that

the model, when faced with such a similar style of music, can generate predictions with a certain

degree of regularity and musicality. This testing scenario is crucial for evaluating the model's

potential and adaptability in real music composition scenarios, as it better simulates the model's

performance in real music composition situations.

When making predictions for this musical segment, if the model has successfully learned and

mastered the patterns and rules of this specific music style, it is expected to apply the musical

features and style it learned from the training data to produce a music segment like the training set.

This also indicates the model's potential in learning and understanding music styles and the

possibility of making reasonable predictions for unknown musical segments. Therefore, this test will

assess the model's generalization capability when dealing with music scenarios of similar styles but

different specific content. Below is a partial comparison chart of predicted results and actual results:

49

By comparing the curves of predicted values and actual values, we can observe a certain degree of

similarity between them. Although the curves are not entirely identical, their overall trends are quite

similar, indicating a degree of consistency between them, which means that the model can capture

some important features and trends in the musical segment. The various prediction metrics are

presented in the table below:
R- squared BLEU Accuracy F1 score

0.214 0.727 0.797 0.477

Considering both the comparison curves and the data in the table, while the model achieves an

accuracy of approximately 80% for this musical segment, the R-squared value is only 0.214. This

discrepancy may be due to the model capturing relationships related to note duration but falling short

in predicting pitch accurately. This observation is also supported by the BLEU score, which, while

relatively high, suggests that the model's predictions are correlated with actual values but lack

precision in predicting individual pitches.

50

The music segment tested in this study is a small part of "Happy Birthday", which is a piece of music

does not present in the training set and possesses a completely independent style. This music

segment incorporates various types of notes, including eighth notes, quarter notes, and half notes,

forming a melody with relatively low note complexity, making it an ideal choice for validation

testing. Below is the musical notation for this segment:

Different music genres typically exhibit differences in various aspects, such as rhythm complexity,

note density, and note interval variations, as seen between jazz and rock music. Given this

consideration, expecting the model to predict accurately is almost unrealistic. However, we expect

the model to capture some patterns related to rhythm or pitch in the music. The figure below

illustrates the comparison between the model's predictions and the actual values:

Based on the observed comparison, it is evident that the model's performance in accurately

predicting pitch is relatively poor. However, it is worth noting that the model appears to have learned

certain rhythmic pattern variations in the music. Specifically, it can distinguish differences between

eighth notes and quarter notes. The inaccuracy in note prediction may be attributed, in part, to the

relatively small size of the dataset. Increasing the size and complexity of the dataset could introduce

more diverse music patterns, potentially improving the model's pitch prediction performance.

51

R- squared BLEU Accuracy F1 score

0.037 0.628 0.649 0.158

Based on the data presented in the table, it can be concluded that the model's performance in this

music segment is relatively poor. Its primary success lies in learning rhythmic features in the music,

but it falls short in accurately predicting pitch changes. Moreover, a significant contribution to

prediction accuracy comes from the prediction of note durations.

52

7-3. Results Analysis

In this study, the model's capabilities in music prediction were evaluated by selecting specific music

segments. While subjective judgment inevitably played a role in the selection of music samples, the

carefully chosen segments aimed to ensure their representativeness, covering various key aspects of

music, including melody, music theory, and pitch accuracy. Through the first two experiments, we

observed that the model demonstrated a certain learning ability when dealing with simple melodies.

However, instances of inaccurate pitch prediction during the experiments indicated that the model

has limitations when faced with complex pitch prediction tasks. Furthermore, the model performed

poorly in tests related to music theory and in tests involving unknown music styles. However, it still

showed some potential in predicting music for similar styles. From the validation experiments

conducted, we draw the following insightful conclusions:

Firstly, when predicting ascending musical notes, the model exhibited more imitation behavior and

failed to fully grasp the core principles of music theory. Its responses were more akin to simulating

patterns from the training dataset rather than deeply comprehending the music theory behind the

dataset.

Secondly, the model exhibited limitations in predicting pitches that were not present in the training

dataset. This limitation was evident when predicting ascending notes as well. Specifically, when

tasked with predicting notes that had never appeared in the training dataset, the model struggled to

provide accurate predictions. This phenomenon may be related to the encoding of pitch, as the model

heavily relies on existing data during training and lacks sufficient information for novel pitches.

Lastly, we observed that the model's ability to grasp music rhythm clearly surpassed its

understanding of pitch. While the model exhibited relatively accurate rhythmic predictions, there was

a noticeable gap in pitch prediction. This disparity may also be related to the chosen pitch encoding

method, particularly when dealing with a high occurrence of quarter notes or half notes, where

frequent use of '-' symbols may have led the model to learn some inaccurate patterns.

53

8. Conclusion and Future Work

This chapter takes the experimental results as a starting point to discuss the challenges encountered

during the research and the conclusions drawn from them. Additionally, we will explore potential

directions for future research and provide recommendations for further work.

8-1. Conclusion

The objective of this study was to predict the future trends in music using neural network models.

After considering the requirements of the task for time series processing and the overall complexity

of implementation, we opted for a music prediction model based on LSTM networks. The core task

of this model was to predict the pitch and duration of the next note by extracting the temporal

relationships of notes from MIDI music files. Through a series of experiments and evaluation using

specific musical scores, we have arrived at some key conclusions.

Firstly, we observed that the model performed reasonably well in predicting repeated notes,

achieving an accuracy of 79.7% when predicting music in the same style. This finding indicates that

the model successfully captured musical patterns within these segments. It suggests that deep

learning models exhibit a certain level of learning capability when dealing with melodic patterns of

the same musical style. Furthermore, the model demonstrated relatively accurate predictions when

dealing with known music styles, highlighting the influence of the dataset on model performance.

With the continuous expansion of available datasets, it is expected that the model's performance will

further improve. However, it is crucial to carefully balance dataset size and model fit, as excessively

large datasets may lead to underfitting and decreased accuracy in music prediction.

On the other hand, the model's performance appeared to be less satisfactory when faced with

different music styles. Although this does not invalidate the experimental results, it also underscores

certain limitations inherent to the model. Experimental results indicated that when the model

encountered music works of unknown styles, it could only make relatively accurate predictions of

note duration while exhibiting significant errors in pitch predictions. This phenomenon may stem

from the diversity of music styles and some inherent limitations of the model. Specifically, the model

54

has limitations in dealing with music theory and core melodies, making it challenging to accurately

predict musical performance in these scenarios.

In summary, this study provides valuable insights into the field of music prediction. While the model

demonstrated good learning ability in specific contexts, the results suggest that it lacks the ability to

learn music theory.

55

8-2. Future Work

This study has conducted a series of experiments and validations using neural networks in the

domain of music prediction. While the model has shown certain issues in music prediction, I firmly

believe that employing neural networks for note prediction holds substantial research potential.

Nonetheless, there are still various unexplored directions and areas for improvement in the current

stage. Future research can expand in the following aspects:

• Dataset and Encoding: The current encoding methods employed for music data exhibit certain

limitations in terms of efficiency. It may be necessary to consider the introduction of a more

efficient encoding method in the future, especially when dealing with larger-scale music

datasets. Additionally, the current dataset being utilized has certain limitations in terms of

diversity in music styles, making it difficult to encompass a sufficiently rich range of musical

styles. Therefore, in future efforts aimed at enhancing music prediction models, a dual focus on

improving both dataset quality and quantity becomes imperative.

• Music Generation Patterns: Another critical consideration is that machine learning methods

often imitate existing musical patterns, leading to a tendency for music generated by neural

networks to exhibit monotonous rhythms. During long-term music prediction, without guidance

from external variables, generated music can easily fall into meaningless repetitive loops. To

enhance future music prediction models, one feasible approach is to attempt to extract the

intrinsic emotions or sentiments within the music, such as identifying whether the music is

cheerful, melancholic, or in another emotional state. Different emotional states in music may

require distinct rhythms, tones, and harmonic patterns, thus potentially improving the accuracy

of music prediction. Additionally, enhancing interaction with humans during the music

generation process is an avenue worth exploring. Research indicates that incorporating AI-

human interaction into music generation significantly enhances the quality of generated music,

aligning it more closely with people's expectations (Huang et al., 2020). Specifically, elevating

interactivity during music prediction allows for human intervention to provide guidance and

direction to the model, promptly correcting any erroneous developmental directions, thereby

markedly enhancing the accuracy of music prediction. The introduction of such interactivity

56

renders music prediction more flexible and precise, enabling better collaboration between

individuals and the model to collectively create high-quality music.

• Music Generation Evaluation Methods: An appropriate evaluation method is crucial in the field

of music generation. However, it is worth noting that using different evaluation criteria can yield

vastly different results (Theis et al., 2015). The evaluation of the same musical composition

often produces significantly different outcomes under different standards. Currently employed

methods for evaluating music generation models typically include both subjective and objective

aspects, with the two often complementing each other in the field of music. However, objective

evaluation methods typically only involve comparing the generated music with actual music

results, without giving due consideration to music theory or aesthetic factors. Meanwhile,

subjective evaluation methods, although providing richer information, come with drawbacks

such as requiring substantial time and resources, as well as issues related to the subjectivity and

reliability of results. Therefore, future research should aim to develop more comprehensive and

accurate music generation evaluation methods. This might include incorporating music theory

knowledge, professional opinions from musicians, and more comprehensive aesthetic standards,

thereby better assessing the quality and artistry of generated music.

57

9. Personal Reflection

I have always been deeply interested in the integration of music and the field of computer science.

Despite my passion for music, my knowledge of music theory and related areas was relatively

limited before embarking on this project. The first-time exposure to music theory took some time for

me to understand the meaning of each symbol in a musical score. This lack of knowledge drove me

to delve deeper into the theory and practice of music. Through this research project, I not only gained

a comprehensive understanding of the intersection of music generation and deep learning but also

developed a stronger interest in music theory and related domains. It can be said that this project

brought me the joy and opportunity of learning new knowledge.

During the concrete implementation of the project, I encountered numerous challenges and learning

opportunities. This project might well be one of the most academically and professionally demanding

research endeavors I have faced thus far, especially as a student new to the field of deep learning. I

have always aspired to gradually master the knowledge and skills in this domain through practical

experience. From initially sifting through extensive literature to preprocessing the dataset and

constructing the model, and finally evaluating the overall research results, despite the numerous

difficulties, I believe all these efforts have been worthwhile.

In the data preprocessing phase, I faced various challenges. I carefully considered several methods to

convert music into usable data, each with its own advantages and disadvantages. Given my relatively

limited experience in data processing, I ultimately opted for a relatively straightforward approach.

However, as the project progressed, I gradually realized the limitations of this method. Especially

during the final evaluation stage, I discovered some flaws in this approach, resulting in lower data

utilization efficiency. This experience deepened my understanding of the critical role of data

preprocessing in the field of machine learning because it directly impacts the model's performance

and the credibility of research results. If given the opportunity to redo the project, I would pay

greater attention to the choice of data processing methods and dedicate efforts to improving data

preprocessing. Nevertheless, this does not imply that I consider this project a failure; on the contrary,

I believe this experiment has successfully demonstrated the potential of LSTM in melody prediction.

58

Undoubtedly, the most time-consuming aspect of this project was parameter tuning. Given my

relatively limited experience in the field of deep learning, the selection of each parameter, such as the

number of layers in the neural network, the number of neurons, and the loss function, required

multiple experiments and fine adjustments. Unfortunately, hardware limitations meant that each

parameter adjustment required a substantial amount of time to obtain results. Despite the time-

consuming nature of this process, it is crucial for ensuring the ultimate effectiveness of the model. I

have come to a profound realization that parameter tuning is an indispensable key step in optimizing

deep learning model performance. Throughout this process, I accumulated a wealth of techniques

and experiences related to parameter tuning. For instance, narrowing down parameter ranges to a

smaller scope and conducting fine searches within that range to identify the best parameter

combinations. I also gradually understood the interactions between different parameters and their

impact on model performance. Finally, within the constraints of limited time, I managed to

accomplish the established objectives by prioritizing tasks effectively.

I firmly believe that the fusion of machine learning and the field of music holds immense potential

for widespread applications in the future. This field can not only provide new tools and methods for

music composition but also drive innovation and improvement in various domains, including music

education, music therapy, and the entertainment industry. Fueled by my strong interest in this field, I

look forward to delving deeper into research and advancing its development in the future. Ultimately,

I aspire to apply automatic music generation technology to real-life scenarios, promoting societal

progress and development. Whether by providing creative inspiration to music composers or

introducing innovations in the realms of music education and therapy, I hope that my research can

have a practical and positive impact.

59

References

Agarwal, S., Saxena, V., Singal, V., & Aggarwal, S. (2018, November). Lstm based music generation

with dataset preprocessing and reconstruction techniques. In 2018 IEEE symposium series on

computational intelligence (SSCI) (pp. 455-462). IEEE.

Bisong, E. (2019). Matplotlib and seaborn. Building Machine Learning and Deep Learning Models

on Google Cloud Platform: A Comprehensive Guide for Beginners, 151-165.

https://doi.org/10.1007/978-1-4842-4470-8_12

Breve, B., Cirillo, S., Cuofano, M., & Desiato, D. (2022). Enhancing spatial perception through

sound: Mapping human movements into Midi. Multimedia Tools and Applications, 81(1), 73–94.

https://doi.org/10.1007/s11042-021-11077-7

Briot, J. P. (2021). From artificial neural networks to deep learning for music generation: History,

concepts and trends. Neural Computing and Applications, 33(1), 39–65.

https://doi.org/10.1007/s00521-020-05399-0

Ciaburro, G., & Venkateswaran, B. (2017). Neural Networks with R: Smart models using CNN, RNN,

deep learning, and artificial intelligence principles. Packt Publishing Ltd.

Colombo, F., Seeholzer, A., & Gerstner, W. (2017). Deep artificial composer: A creative neural

network model for automated melody generation. In Computational Intelligence in Music, Sound,

Art and Design: 6th International Conference, EvoMUSART 2017, Amsterdam, The Netherlands,

April 19–21, 2017, Proceedings 6 (pp. 81-96). Springer International Publishing.

Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., &

Darrell, T. (2015). Long-term recurrent convolutional networks for visual recognition and

description. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.

2625-2634).

60

Eck, D., & Schmidhuber, J. (2002). Finding temporal structure in music: Blues improvisation with

LSTM recurrent networks. In Proceedings of the 12th IEEE workshop on neural networks for signal

processing (pp. 747-756). IEEE.

Haji, S. H., & Abdulazeez, A. M. (2021). Comparison of optimization techniques based on gradient

descent algorithm: A review. PalArch's Journal of Archaeology of Egypt/Egyptology, 18(4), 2715-

2743.

He, F., Liu, T., & Tao, D. (2019). Control batch size and learning rate to generalize well: Theoretical

and empirical evidence. Advances in neural information processing systems, 32.

Hennig, C., & Kutlukaya, M. (2007). Some thoughts about the design of loss functions. REVSTAT-

Statistical Journal, 5(1), 19-39. https://doi.org/10.57805/revstat.v5i1.40

Hewitt, M. (2008). Music theory for computer musicians. Course Technology, CENGAGE Learning.

Huang, C. Z. A., Koops, H. V., Newton-Rex, E., Dinculescu, M., & Cai, C. J. (2020). AI song

contest: Human-AI co-creation in songwriting. arXiv preprint arXiv:2010.05388.

Huang, C. Z. A., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, C., ... & Eck, D.

(2018). Music transformer. arXiv preprint arXiv:1809.04281.

Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. Q. (2016). Deep networks with stochastic

depth. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,

October 11–14, 2016, Proceedings, Part IV 14 (pp. 646-661). Springer International Publishing.

Idris, I. (2015). NumPy: Beginner's Guide. Packt Publishing Ltd.

61

Japkowicz, N., & Shah, M. (2011). Evaluating learning algorithms: a classification perspective.

Cambridge University Press.

Karita, S., Chen, N., Hayashi, T., Hori, T., Inaguma, H., Jiang, Z., Someki, M., Soplin, N. E.,

Yamamoto, R., Wang, X., Watanabe, S., Yoshimura, T., & Zhang, W. (2019). A comparative study on

transformer vs rnn in speech applications. In 2019 IEEE Automatic Speech Recognition and

Understanding Workshop (ASRU) (pp. 449-456). IEEE.

https://doi.org/10.1109/asru46091.2019.9003750

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Loy, G. (1985). Musicians make a standard: The Midi phenomenon. Computer Music Journal, 9(4),

8–26. https://doi.org/10.2307/3679619

Michelucci, U. (2018). Applied deep learning. A Case-Based Approach to Understanding Deep

Neural Networks. Apress Berkeley, CA. https://doi.org/10.1007/978-1-4842-3790-8

Moore, F. R. (1988). The dysfunctions of Midi. Computer Music Journal, 12(1), 19–28.

https://doi.org/10.2307/3679834

Oore, S., Simon, I., Dieleman, S., Eck, D., & Simonyan, K. (2020). This time with feeling: Learning

expressive musical performance. Neural Computing and Applications, 32, 955–967.

https://doi.org/10.1007/s00521-018-3758-9

Pang, B., Nijkamp, E., & Wu, Y. N. (2020). Deep learning with tensorflow: A review. Journal of

Educational and Behavioral Statistics, 45(2), 227-248. https://doi.org/10.3102/1076998619872761

Rohrmeier, M., & Rebuschat, P. (2012). Implicit learning and acquisition of Music. Topics in

62

Cognitive Science, 4(4), 525–553. https://doi.org/10.1111/j.1756-8765.2012.01223.x

Sharma, A. (2017, March 30). Understanding activation functions in neural networks. Medium.

https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-

networks-9491262884e0

Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and long short-term

memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306.

https://doi.org/10.1016/j.physd.2019.132306

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a

simple way to prevent neural networks from overfitting. The journal of machine learning

research, 15(1), 1929-1958.

Sturm, B. L., Santos, J. F., Ben-Tal, O., & Korshunova, I. (2016). Music transcription modelling and

composition using deep learning. arXiv preprint arXiv:1604.08723.

Telea, A. C. (2014). Data visualization: principles and practice. CRC Press.

Theis, L., Oord, A. V. D., & Bethge, M. (2015). A note on the evaluation of generative models. arXiv

preprint arXiv:1511.01844.

Todd, P. M. (1989). A connectionist approach to algorithmic composition. Computer Music Journal,

13(4), 27–43. https://doi.org/10.2307/3679551

Tymoczko, D. (2013). Review of Michael Cuthbert, music21: A toolkit for computer-aided

musicology (http://web.mit.edu/music21/). Music Theory Online, 19(3).

https://doi.org/10.30535/mto.19.3.11

63

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &

Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing

systems, 30.

Wu, H., & Shapiro, J. L. (2006). Does overfitting affect performance in estimation of distribution

algorithms. Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation,

433–434. https://doi.org/10.1145/1143997.1144078

Yamshchikov, I. P., & Tikhonov, A. (2020). Music generation with variational recurrent autoencoder

supported by history. SN Applied Sciences, 2(12), 1937. https://doi.org/10.1007/s42452-020-03715-w

Yang, Y., Zhou, J., Ai, J., Bin, Y., Hanjalic, A., Shen, H. T., & Ji, Y. (2018). Video captioning by

adversarial LSTM. IEEE Transactions on Image Processing, 27(11), 5600–5611.

https://doi.org/10.1109/tip.2018.2855422

Ying, X. (2019). An overview of overfitting and its solutions. Journal of Physics: Conference Series,

1168(2), 022022. https://doi.org/10.1088/1742-6596/1168/2/022022

Ketkar, N., & Ketkar, N. (2017). Introduction to keras. Deep learning with python: a hands-on

introduction, 97-111. https://doi.org/10.1007/978-1-4842-2766-4_7

Zhou, L., Pan, S., Wang, J., & Vasilakos, A. V. (2017). Machine learning on Big Data: Opportunities

and challenges. Neurocomputing, 237, 350–361. https://doi.org/10.1016/j.neucom.2017.01.026

