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Abstract 
Music is a comprehensive art form that integrates emotional expression, information dissemination, 

and audience engagement. With the rapid rise of digital music platforms and the explosive growth of 

music content, there is a growing interest in developing intelligent systems with the capability to 

understand and create music. One highly notable research direction involves predicting the future 

few seconds of a musical composition based on preceding segments. This technology has vast 

application prospects, including music recommendation systems, automatic music composition, and 

improvisational music. However, traditional methods of music prediction exhibit limitations when 

dealing with nonlinear and complex time-series data. Hence, there is an urgent need for more 

advanced approaches to enhance the accuracy of music prediction. 

 

To address this challenge, this study introduces Long Short-Term Memory (LSTM), a powerful deep 

learning model particularly suitable for modeling time-series data. In the context of music prediction, 

melodies in music often repeat at different positions within a song. LSTM's excellent ability to 

capture long-term dependencies in music data makes it an ideal choice for addressing music 

prediction, especially in handling the repetitive melodies that frequently appear in music. This paper 

provides a detailed explanation of how LSTM works and justifies the rationale for choosing LSTM 

as the proposed solution. 

 

By training the LSTM model on a diverse dataset comprising over 1000 music compositions, the 

model learns the fundamental structures and patterns of music sequences. Experimental results 

demonstrate a notable advancement in music sequence prediction. The model performs well in 

predicting known music styles and exhibits the ability to make simple melody predictions for 

unknown music styles, albeit with slightly reduced accuracy. These findings provide strong support 

for the further development of music generation systems and the enhancement of the intelligence 

level in music composition, opening new possibilities for future music creation and music 

technology research.  
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1.Introduction 

1-1. Motivation and Applications 

Music, as a universal art form, possesses a potent capacity for emotional expression, information 

conveyance, and audience engagement. With the widespread adoption of digital music platforms and 

the continuous emergence of musical content, there is an increasing need to develop intelligent 

systems capable of comprehending and generating music. Such systems hold the potential to 

revolutionize various aspects of the music domain. To illustrate, by predicting the musical direction 

of a song in the upcoming few seconds, we can enhance the performance of music recommendation 

systems, enabling personalized transitions between tracks and thereby delivering more captivating 

music experiences for enthusiasts. In the realm of automated composition, music generation 

technologies offer novel inspiration to composers, expanding their creative horizons and exploring 

diverse musical possibilities. Furthermore, music generation technologies can serve as tools for 

improvisation, serving as robust aides for musicians during spontaneous performances. By analyzing 

the current musical segment, these systems can generate harmonious melodies, enriching the 

diversity of musical performances. Hence, a strong interest in the field of music generation is natural, 

and the development of a system capable of accurately predicting the musical trajectory based on 

preceding segments of a musical composition holds significant importance. This has the potential to 

benefit numerous domains, including music recommendation systems, automated composition, and 

improvisational creativity, with the prospect of catalyzing revolutionary advancements in the music 

industry. 

 

The prediction of music sequences has been a long-standing research topic among both scholars and 

music enthusiasts. In fact, there have been various traditional methods for music generation even 

before the exploration of neural networks for music generation (Yamshchikov & Tikhonov, 2020). 

These traditional approaches typically rely on rule-based statistical methods to generate or predict 

musical patterns. However, these methods have certain limitations when it comes to capturing the 

intricate and nuanced relationships within music. With the recent advancements in machine learning 

and deep learning techniques, there is now an opportunity to leverage these tools to enhance the 

accuracy and complexity of music prediction. 
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Long Short-Term Memory (LSTM) is a form of recurrent neural network (RNN) that has shown 

exceptional performance in capturing long-term dependencies and sequential patterns in various 

domains such as natural language processing and speech recognition. LSTM models can remember 

and utilize information from the past while processing new input, making them particularly suitable 

for tasks involving sequence prediction. By training LSTM on large datasets of musical 

compositions, it is possible to enable the models to learn the underlying structures and patterns. 

LSTM models have the potential to capture the intricate relationships between musical elements such 

as rhythm, melody, and harmony, and generate coherent and musically relevant continuations. 

 

Another model used in the field of music generation is the Transformer. Transformer is a model 

architecture based on the attention mechanism, designed to handle a variety of sequence tasks. One 

of its most prominent features is the incorporation of the attention mechanism, enabling the model to 

simultaneously consider all positional information within a sequence, unconstrained by local 

information. This capability empowers the model to capture intricate relationships within sequences, 

significantly enhancing its ability to comprehend contextual information. Building upon this 

theoretical framework, Huang et al. (2017) introduced the Transformer into the field of music 

generation and successfully developed the Music Transformer, a SeqToSeq model specifically 

designed for the domain of music. By combining the Transformer architecture with music theory, this 

model can understand and capture the complex relationships between musical notes, rhythms, and 

harmonies, thereby generating stylistically consistent thematic music successfully. However, it is 

worth noting that Transformer exhibits high computational resource and large-scale data 

requirements, along with a relatively complex configuration compared to traditional RNN-based 

models (Karita et al., 2019). In this research, the priority will be given to the use of neural network 

models based on traditional RNN. 

 

In summary, the objective of this research is to delve deeply into the feasibility of music prediction. 

To achieve this goal, I will meticulously select suitable models and validate their effectiveness 

through a series of rigorous experiments. I aspire that the outcomes of this study will provide robust 
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support for the development of more intricate and intelligent music generation systems in the future, 

thereby paving the way for advancements in this field. 

 

1-2. Roadmap of Dissertation 

In this dissertation, the content of each chapter is organized as follows. Chapter Two delves into the 

background knowledge of music prediction, providing a detailed exploration of the challenges and 

the approach taken. Chapter Three focuses on the software and libraries employed in the practical 

implementation, offering readers a comprehensive understanding of the tools and resources 

necessary for practical application in similar projects. Chapter Four concentrates on the data 

processing procedures, elaborating on data acquisition and preparation. Chapter Five outlines the 

construction of neural network models and the selection of parameters. Chapter Six presents the 

various steps of the experiment in code form for reproducibility. Chapter Seven discusses the model's 

evaluation methods and assesses the model. Chapter Eight summarizes the experimental results and 

explores directions for future work. Chapter Nine offers personal reflections on the research journey. 
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2.Background 

2-1. Music Theory  
Music is a universal art loved by people all around the world, and its essence lies in the combination 

of sounds in the dimension of time. Before the widespread application of artificial intelligence, music 

composition was considered a creative art form mastered only by talented musicians. In recent years, 

artificial intelligence (AI) technology has made significant advancements, and people have begun to 

explore the use of AI in music composition. In modern Western music, the primary notation system 

used to represent music is the staff notation, as shown in the diagram below: 

 

The most essential component of staff notation is the note, which represents different durations of 

sound. The whole note, half note, quarter note, eighth note, and sixteenth note are the most common 

types of notes. Rests are used to indicate intervals of silence corresponding to different durations of 

sound. 

 

Melody involves the temporal sequence of note events, representing at least pitch, onset, and 

duration (including rests) of a single (monophonic) voice (Rohrmeier & Rebuschat, 2012). Different 

instruments may use the same pitch and work together to form a composition. 

 

2-2. MIDI 

MIDI (Musical Instrument Digital Interface) is a standard established collaboratively by electronic 

instrument manufacturers, often metaphorically referred to as the "computer-understandable musical 

score." It aims to facilitate the exchange of information and control signals between computer music 

programs, synthesizers, and other electronic audio devices, laying a robust technological foundation 

for the advancement of the electronic music field (Moore, 1988). MIDI files, as the offspring of this 

standard, bear crucial sound attribute information from music, including played notes, instrument 

selections, note timings, accompaniments, and more. In essence, the MIDI system constructs a 

comprehensive framework for composition, orchestration, and electronic simulation performance, 
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providing robust support for music creation and performance. 

 

MIDI employs instructions such as notes and control parameters to represent music, specifying 

which note to play and at what volume, among other details. In this study, our primary focus revolves 

around the manipulation of note data generated by instruments. Therefore, MIDI format is 

considered an ideal choice for this task. A typical MIDI file typically comprises one or multiple 

tracks, each presenting musical notes in a staff-like notation. These notes, when combined, form a 

complete MIDI file, with the data collectively representing various elements and characteristics of 

the music, including melodies, harmonies, rhythms, and more. A key function of MIDI is to guide 

digital music processors in simulating sounds. These digital music processors are responsible for 

playing sounds based on their internal representations of analog instruments (Breve et al., 2021). 

 

In practice, using the MIDI format for music data offers several advantages. Firstly, MIDI files do 

not contain actual sound waveform data, which results in their typically compact file sizes, allowing 

them to convey rich musical information with relatively small file sizes. Secondly, MIDI data is 

highly editable, enabling convenient modifications and adjustments to elements like notes, volumes, 

and instrumentations, providing musicians and composers with significant flexibility. Additionally, 

programming languages like Python offer excellent support for MIDI format, facilitating the saving 

of generated music data as readily accessible MIDI files through data streams. In summary, MIDI 

provides critical support and assistance in various fields, including machine learning and music 

composition (Loy, 1985). 

 

2-3. Machine Learning and Neural Network 

Machine Learning is a branch of Artificial Intelligence (AI) that enables computers to learn from 

data and improve performance on specific tasks without explicit programming. It revolves around the 

concept of algorithms and statistical models that recognize patterns, relationships, and insights in 

datasets. The process begins with data collection, where relevant information is gathered and 

transformed into features. These features are then used to train machine learning models to make 

predictions, classify data, or solve complex problems. Machine learning is typically divided into 
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three main phases: data preprocessing, model training, and evaluation. Data preprocessing involves 

converting raw, unstructured data into a format that computers can understand (Zhou et al., 2017). 

Model training involves selecting appropriate algorithms and tuning their parameters. The final 

evaluation phase is used to assess whether machine learning is achieving the desired goals. For 

example, classifier performance evaluation may involve error estimation, dataset selection and 

performance measurement. After the evaluation, model training can be adjusted based on the 

evaluation results, such as modifying the selected learning algorithm or adjusting its various 

parameters (Japkowicz & Shah, 2011). 

 

Neural networks, as a pivotal branch of machine learning, draw inspiration from the principles 

governing the operation of neurons in the human brain and have found extensive applications in 

addressing various machine learning and artificial intelligence tasks. Neural networks are comprised 

of multiple layers, each containing varying numbers of neurons, interconnected through weighted 

connections. The fundamental building blocks of a neural network, including how they handle input 

values, compute results, and establish connections among themselves, can be altered, collectively 

defining what is known as the network architecture. Modifying these aspects can lead to changes in 

the network's learning behavior, predictive accuracy, and more (Michelucci, 2018). 

 

Neural networks offer significant advantages when it comes to handling complex data patterns, 

particularly in the domain of music data processing. Music data typically exhibits highly intricate 

nonlinear characteristics, and music prediction tasks demand models capable of capturing temporal 

information within music. It is precisely due to these characteristics that neural networks have 

emerged as the ideal choice for music data analysis and modeling. It is worth noting that neural 

networks employ activation functions to introduce nonlinearity, thereby enabling them to learn and 

represent complex data patterns. Without activation functions, each layer in a neural network would 

perform a linear transformation of the input from the preceding layer. Regardless of the network's 

depth, this would ultimately result in a simple linear combination of inputs. The introduction of 

activation functions empowers neural networks with the capacity for nonlinear modeling, enabling 

them to approximate various complex nonlinear functions. This makes neural networks excel in 
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handling a wide range of nonlinear modeling tasks (Sharma, 2017). 

 

2-4. Underfitting and Overfitting 

The concepts of overfitting and underfitting have been introduced early in fundamental classifiers in 

machine learning, such as linear regression and logistic regression. Overfitting occurs when the 

model excessively learns from the training data, capturing not only the underlying patterns but also 

noise and random fluctuations. As a result, this type of model performs excellently on the training 

data but often fails to generalize well to unseen or new data (Ying, 2019). This leads to a decrease in 

performance and the creation of overly complex models that may consume unnecessary learning 

time and computational resources. On the other hand, overfit models tend to perfectly fit every detail 

of the training data, overlooking the hidden patterns in the data (Wu & Shapiro, 2006). Conversely, 

underfitting occurs when the model is too simplified and fails to capture the true relationships within 

the data. It performs poorly on both the training data and unseen data because it oversimplifies the 

problem. Underfit models cannot grasp the complexity inherent in the data. 

 

To better comprehend these two scenarios, let's consider linear regression as an example. In linear 

regression, as illustrated in the figure below, the model attempts to fit a straight line to describe the 

data's relationship. If the model chooses an overly simple linear function, it may fail to capture the 

true underlying patterns in the data, resulting in underfitting. Conversely, if the model selects a 

function that is overly complex, it may find unnecessary minor fluctuations in the data, leading to 

overfitting. 
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In this study, when using LSTM neural networks to predict music, we also face the challenges of 

overfitting and underfitting. When our model underfits, it means that it has not effectively captured 

the core features and complexity of the music in the training dataset. This can lead to overly random 

and chaotic predictions when trying to forecast actual music. In other words, the model has not 

learned enough rich musical features and patterns, so its predictions may not accurately reflect the 

true essence of the music. 

 

Overfitting, on the other hand, is a more challenging issue to address. In contrast to underfitting, 

when the model overfits, it almost perfectly fits the music information in the training dataset. While 

this may perform well on the training data, it may lead to a problem: the model's ability to generalize 

to new music data is limited. In other words, the model may generate predictions highly like the 

music in the training dataset, and it may even end up mimicking the music from the training data. 

This is because the model is too focused on specific examples in the training dataset and lacks the 

ability to learn the broader features and underlying patterns of the music. 

 

2-5. Problem Statement and Approach 

This section will delve into the challenges faced in music prediction tasks and perform a comparative 

analysis of methods used in music prediction tasks. Lastly, I will provide a detailed exposition of the 

chosen method and elucidate the reasons for this selection. 

 

In this research, the music prediction task confronts two primary challenges. Firstly, the nerual 

network model necessitates the capability of long-term memory. Music compositions often consist of 

recurring elements across different time axes. Consequently, in the process of music prediction, the 

model must possess the capacity to recall previous elements, enabling it to comprehend and forecast 

future musical trends (Huang et al., 2018). Secondly, it is imperative to devise effective methods for 

capturing diverse information within the music, with the most crucial elements being musical pitch 

and note duration. Pitch determines the melody and harmony of the music, while note duration 

influences the rhythm and timing of musical sequences. Therefore, accurate extraction of these 

musical features is essential in processing music data to achieve predictions about the future 
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developments in music. This aspect will be elaborated upon further in the subsequent "Data 

Processing" chapter. 

 

Addressing these challenges is crucial for the success of music prediction tasks. Insufficiencies in 

long-term memory and information capture may result in inaccurate predictions by the model, 

consequently affecting the overall coherence of the music. The following sections will introduce two 

models that have been utilized in music prediction tasks. 

 

2-5-1. RNN 

Recurrent Neural Networks (RNN) belong to a class of neural networks that process sequences of 

data as inputs and produce sequences of data as outputs, operating recursively in the direction of 

sequence progression. All nodes within RNN, known as recurrent units, are connected in a chain-like 

manner. What distinguishes RNN is their ability not only to consider the current input but also to 

maintain a form of "memory" of past information. This is manifested in the network's ability to 

remember previous information and apply it to the computation of the current output. Specifically, 

the nodes in the hidden layers are interconnected, and the input to the hidden layers includes not only 

the output from the input layer but also the output from the hidden layer at the previous time step 

(Ciaburro & Venkateswaran, 2017). 

 

Consider an example: when comprehending the meaning of a sentence, understanding each word in 

isolation is insufficient; one needs to process the entire sequence of words connected. The same 

principle applies to music prediction—if you want to predict the next few seconds of a piece of 

music, you need knowledge of the entire melody. 

 

As shown in the diagram, a typical RNN network comprises an input (ܺ�), an output (ℎ�), and a 
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neural network unit (A). Unlike regular neural networks, the neural network unit in an RNN is not 

only connected to inputs and outputs but also forms a loop back to itself. This network structure 

reveals the essence of RNN: information from the previous time step's network state influences the 

network state in the next time step. In more detail, this can be seen as decomposing the RNN into 

multiple independent neural network units. At time 0, the initial input is ܺ଴, the output is ℎ଴, and the 

network unit's state at time 0 is stored in A. When the next time step arrives, the state of the network 

unit currently is influenced not only by the input at time 1 (ܺଵ) but also by the state of the unit at 

time 0. This pattern continues until the end of the time sequence at time t. 

 

In previous research, many scholars have attempted to employ RNN models to learn musical patterns 

for the purpose of music prediction. For instance, Todd (1989) trained RNN models to predict both 

the pitch and duration of musical notes, subsequently generating music note by note. However, the 

implementation of RNN has encountered a series of challenges, with the most prominent ones being 

the issues of gradient vanishing and gradient explosion. These problems arise during the training of 

deep RNN, where information fails to effectively propagate across lengthy sequences, consequently 

constraining the network's capacity to model long-term dependencies effectively (Sherstinsky, 2020). 

These challenges are especially notable in the field of music generation, particularly when generating 

longer musical compositions. As the length of the musical piece increases, RNN face challenges 

concerning their performance and stability. This increase in complexity can lead to instability and 

inconsistency in the musical structure. Furthermore, for lengthy sequences like music data, RNN 

encounter the issue of high storage and computational costs, making it difficult to handle large-scale 

music datasets in practical applications. 

 

2-5-2. LSTM 

Music data often requires the long-term storage of specific information. For example, in a song, a 

particular melody may persist throughout the entire composition. However, traditional RNN are not 

the optimal choice in such cases due to their limitations in effectively handling long-term 

dependencies. LSTM are a specialized variant of RNN designed to handle long-term dependencies in 

sequential data. Unlike traditional RNN, LSTM automatically retain long-term information internally 
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without the need for explicit learning (Yang et al., 2018). LSTM achieve this by introducing gate 

mechanisms, including the forget gate, input gate, and output gate, which efficiently capture and 

preserve essential information in music sequence data. This design effectively overcomes the 

vanishing gradient problem often encountered in traditional RNN, significantly enhancing their 

capability to process long sequences of data. 

 

In applications like music prediction, a LSTM's ability to handle long-term dependencies is 

particularly crucial. This is because works of the same music style often share certain common 

elements that need to be retained throughout the music generation process. However, the music data 

in this study often exhibits vast and intricate characteristics, posing challenges for a traditional RNN 

that tend to lose essential information when handling complex, long sequential music data. 

Consequently, the adoption of LSTM networks proves advantageous in better capturing and 

leveraging the long-term dependencies in music, ultimately leading to improved accuracy and quality 

in music prediction. 

 

Moreover, when confronted with intricate music prediction tasks, by using the previous layer's 

hidden state as input for the current LSTM layer, the structure of the LSTM network can be further 

strengthened through the stacking of multiple layers (Donahue et al., 2015). This structural 

enhancement enables a LSTM to capture and preserve intricate patterns and long-term memory, 

thereby further improving its performance in music prediction more effectively.  
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At the heart of LSTM lies the concept of a "cell state," which functions like a conveyor belt running 

along the entire sequence. It allows for the long-term storage of information with minimal alteration. 

The gate mechanisms serve as selective filters for information passage and consist of a sigmoid 

neural network layer and element-wise multiplication operations. The sigmoid layer outputs values 

between 0 and 1, determining how much information should pass through. 

Specifically, the forget gate plays a pivotal role in deciding which information should be discarded or 

forgotten from the cell state and is computed as follows:  �� = �( �ܹ ⋅ [ℎ� − ͳ, ܺ�] + �ܾ) 

Where � represents the sigmoid function, �ܹ is the weight matrix, ℎ�−ଵ denotes the previous time 

step's hidden state concatenated with the current time step's input ܺ�, and �ܾ is the bias term. 

The input gate decides which new information should be added to the cell state and consists of two 

parts, calculated as follows:  �� = �ሺ ⅈܹ ⋅ [ℎ� − ͳ, ܺ�] + ܾⅈሻ ܿ� = tanhሺ �ܹ ⋅ [ℎ�−ଵ, ܺ�] + ܾ�ሻ 

Where ⅈܹ, �ܹ, ܾⅈ and ܾ� are the weight matrices and bias terms, respectively. 

The output gate determines how information from the cell state should be passed to the current time 

step's hidden state and output. It also comprises three parts:  �� = �ሺ �ܹ ⋅ [ℎ�−ଵ, ܺ�] + ܾ�ሻ �� = �݂ ⋅ ��−ଵ + �� ⋅ ܿ� ℎ� = ��⋅ tanhሺ��ሻ 

Where �ܹ and ܾ� are the weight matrix and bias term, respectively. 

 

With the continuous advancement of deep learning technology, LSTMs have found widespread 

application in music prediction tasks. Previous research, such as that by Eck and Schmidhuber 

(2002), fully leveraged the long-term memory capabilities of a LSTM, successfully learning complex 

structures in blues music and using them to create creatively unique and coherent musical melodies. 

Similarly, Colombo et al. (2017) employed a LSTM to generate monophonic melodies in folk music. 

These studies highlight the substantial potential of a LSTM in the field of music composition, 
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providing robust support for a deeper understanding and advancement of innovation in the realm of 

music. 

 

Given the outstanding performance of LSTMs in addressing long-term dependencies and its 

remarkable capabilities in handling lengthy sequences of musical data, this research will also employ 

LSTM technology for music prediction.  
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3. Software and Associated Libraries Used in This Project 
3-1. TensorFlow 

TensorFlow is a versatile and scalable software library designed for numerical computation using 

data flow graphs. This library empowers users to efficiently develop, train, and deploy neural 

networks and various machine learning models for practical applications. TensorFlow's core 

algorithms are written in C++ and CUDA and have been meticulously optimized. It provides APIs in 

multiple programming languages, with Python offering the most comprehensive and stable support. 

TensorFlow usage typically consists of two phases: construction and execution. During the 

construction phase, TensorFlow functions are used to build the computational graph of the machine 

learning model. In TensorFlow, all computations are transformed into nodes on a computational 

graph, with edges between nodes describing dependencies between computations. TensorFlow offers 

essential building blocks such as fully connected layers, convolutional layers, RNN modules, and 

nonlinear activation functions. Constructing and adding these modules layer by layer in Python 

makes TensorFlow convenient to use. Additionally, TensorFlow provides various loss functions like 

cross-entropy and mean squared error, and adding loss computation operations to the output tensor 

completes the forward pass of a neural network model (Pang et al., 2019). 

 

3-2. Keras 

Keras (Ketkar & Ketkar, 2017) is an advanced neural network API written in Python, serving as an 

interface for effortlessly creating and training deep learning models. It provides a user-friendly, 

modular, and extensible framework for constructing various types of neural networks, including 

feedforward, convolutional, recurrent, and more. Its simplicity and abstraction make it suitable for 

both beginners and experienced machine learning practitioners. With Keras, users can rapidly 

prototype and experiment with different neural network architectures, facilitating the development of 

cutting-edge machine learning solutions for tasks like image recognition, natural language 

processing, and more. This dissertation primarily employs the Keras API on the TensorFlow platform 

for constructing deep learning models. 
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3-3. Music21 

Music21 is a powerful Python library designed for computational musicology research. This library 

employs a fundamental data structure known as "stream" to represent the temporal sequence of 

music. With Music21, we can extract various musical attributes from MIDI files, including pitch, 

notes, chords, scales, and tonality. Furthermore, Music21 provides a suite of general-purpose 

functions for reading, writing, and processing musical scores, along with tools for generating music 

fragments and chord progressions. These capabilities enable us to effortlessly extract information 

from MIDI files and save music generated by neural network models as MIDI files. 

One of Music21's strengths is its cross-platform compatibility and its ability to handle various music 

data formats. It seamlessly interfaces with MusicXML, a universal format used by major notation 

software, facilitating the analysis, construction, and storage of music data. In addition to MusicXML, 

Music21 supports kern files, MIDI files and other formats, greatly simplifying large-scale corpus 

analysis (Tymoczko, 2013). 

 

In summary, Music21 offers convenience in music processing, combining adaptability with the 

robustness of Python. It empowers users to work with music data efficiently and effectively. In this 

dissertation, we primarily utilized Music21 for preprocessing MIDI-format music data. 

 

3-4. NumPy 

NumPy is a fundamental Python library for numerical computation. It supports the creation and 

manipulation of large, multi-dimensional arrays and matrices, and provides a wide range of 

mathematical functions for working with these data structures. In the fields of science and data 

analysis, NumPy is considered an indispensable tool, enabling efficient data processing, 

mathematical operations, and seamless integration with other data science libraries. One of the key 

features of NumPy is its N-dimensional array object, ndarray, which is designed to store data in 

memory, leading to faster batch operations on array elements (Idris, 2015). In this study, we will 

utilize the NumPy library to convert labels in the training dataset into NumPy arrays, enabling more 

efficient array operations and numerical computations, such as finding the maximum value in an 

array or performing dimension expansion. 
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3-5. Matplotlib 

Matplotlib is a powerful Python data visualization library that has become an indispensable tool in 

the field of Python data science (Bisong, 2019). It is widely used for generating various types of 

charts and plots, including static, dynamic, and interactive visualizations. Matplotlib provides a rich 

set of tools and functionalities that enable users to effortlessly create high-quality graphics, such as 

line plots, scatter plots, and more. 

 

The primary goal of data visualization is to gain deeper insights into data through visual 

representations (Telea, 2014). In the context of this research, data visualization plays a crucial role in 

assessing the results of music prediction. Through Matplotlib, we can intuitively display the 

comparison between the model's predictions and the actual values, which aids in evaluating the 

accuracy of the model in music prediction tasks. Furthermore, Matplotlib allows us to visualize the 

model's performance during the training process, including changes in accuracy and loss functions. 

This visualization provides valuable guidance for optimizing the model, enabling me to gain a better 

understanding of its performance and make necessary improvements.  
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4.Data Processing 

For a machine learning model to make accurate predictions, a substantial amount of data is required 

for support. Music21 can read various formats of music data, such as MIDI and Kern, and converting 

melodies represented in different formats into numerical forms that can be accepted by neural 

networks for model training. The following steps outline the data processing: 

4-1. Dataset Selection 

The model struggles to comprehend subtle differences in various music styles. Including songs from 

different genres as part of the dataset might pose a challenge for the model, as it needs to attempt to 

identify commonalities among these distinct music styles, which can be quite challenging. 

 

In this study, we chose a dataset comprising music pieces with similar styles, sourced from Kaggle. 

This dataset consists of over a thousand songs and possesses relatively simple and uniform melodic 

features. This characteristic makes the dataset highly suitable for model training, as its music features 

are not extremely broad but rather fall within a certain observable range. 

 

It is worth noting that, when predicting the music of a specific song, training the model on a single 

song, as opposed to using multiple different songs for training, may yield superior performance. This 

approach allows the model to focus more on a particular song, thereby gaining a deeper 

understanding of and making better predictions regarding its musical development and structure. In 

contrast, training on multiple songs may lead the model to become confused between different songs 

due to the distinct musical styles, emotions, and elements they encompass. However, employing a 

single song as a dataset may encounter issues related to insufficient data volume, potentially 

resulting in overfitting. Therefore, in this research, we have decided to train the model on a dataset 

containing multiple songs to ensure that it possesses better generalization capabilities across various 

music styles and elements. 

 

4-2. Extracting Music Information from Files 
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Music21 provides the ‘music21.converter. parse ()’ function for reading music files in different 

formats. It returns a Score class instance, which typically includes a collection of instruments that 

perform the music. Different instruments play different parts within the same Score. Each part can 

contain musical elements like note, rest, and chord. These elements each contain information about 

pitch and duration, which need to be extracted during data preprocessing for use by the neural 

network model. 

 

4-3. Standardizing Key Signatures 

In music theory and notation, a key signature is a symbol used to represent the key or tonality of a 

musical composition. Key signatures are typically displayed in sheet music, appearing immediately 

after the clef sign at the beginning of a staff. In the Western music system, there are a total of 15 

different key signatures: 

 

Each key signature corresponds to both a major and a minor key, in different key signatures, the 

positions and relationships of individual notes change. Furthermore, it's common for the distribution 

of key signatures in a dataset to be uneven, with some key signatures appearing more frequently than 

others. This non-uniform distribution can pose challenges, as it may make it difficult for the neural 

network to systematically learn the distribution patterns of notes in different key signatures, 

potentially leading to inaccurate predictions. Therefore, handling key signatures is a crucial step in 

preprocessing music data. 
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This task is challenging because it involves processing key signatures for all songs in the dataset. 

One approach is to determine the key signature used in all songs by analyzing the frequency of 

occurrence. However, this method is error-prone and carries the risk of contaminating the dataset. 

 

I later discovered that Music21 can read the key signature attributes within measures of a song and 

modify them. Given this capability, I decided to use Music21 to process key signatures in songs. The 

approach involves standardizing the key signatures of all songs to either C major or A minor to 

eliminate the influence of key signatures on the dataset. The process begins by iterating through each 

song, if a song's key signature is already C major or A minor, it is skipped. If the key signature of the 

song is not C major or A minor, or if the key signature cannot be determined, it is modified to either 

C major or A minor. The following pseudocode outlines this step: 

 

 

4-4. Encoding Symbolic Music 

Neural networks require numerical inputs, so I need an encoding method to relate musical notes to 

numerical values. In this study, I adopted a symbolic music encoding method suitable for neural 

networks, where I use MIDI pitch values to represent the pitch of notes. This way, each note 

corresponds to a unique MIDI pitch value. 

 

There are a total of 128 MIDI notes, represented by the numbers 0 to 127, corresponding to the basic 

pitches in Western music. This allows me to map notes to numbers and use them for training the 

neural network. The following chart illustrates the MIDI pitch values for the C major scale: 
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In this dissertation, I used the music21 library to extract each individual note from every song and 

mapped them to their corresponding MIDI pitch values. Rests were represented using the lowercase 

letter "r." When the situation involves chords, it becomes more complex, and I will provide an 

explanation later. Next, I needed to handle the duration of notes, in most vocal compositions, note 

values shorter than sixteenth notes are uncommon. Therefore, in this research, I used sixteenth notes 

as the base unit of duration and represented note durations using "-". Each number or "-" represented 

the duration of a sixteenth note. For example, "60 - - - r - 65 - 62 -" signifies a sequence of a quarter 

note C4, an eighth note rest, an eighth note F4, and an eighth note D4. The following pseudocode 

outlines this step: 

 

After extracting the data representing notes and their durations from the musical composition, we 

needed to store this information along with their corresponding numerical values. To optimize 

efficiency during training, I chose to create a list to store the relationships between notes and their 

corresponding MIDI pitch values. This list of notes and their associated MIDI pitch values would be 

used during the model's training and later in the music prediction phase, where the model's output in 
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numerical form would be converted back to MIDI pitch values using this list and then used to 

generate the music using the music21 library. 

 

4-5. Converting to One-hot Encoding 

In the context of the music prediction task presented in this dissertation, the output architecture of the 

LSTM neural network model is connected to the Softmax activation function. The output of the 

Softmax activation function is structured to represent a complete probability distribution, which is 

utilized for the model's classification task. Each output value within a category signifies the 

predictive probability of the respective category. Consequently, it becomes imperative for the input 

labels to be presented in the form of a probability distribution, facilitating meaningful comparisons 

with the model's output. 

 

One-Hot encoding provides an ideal solution for this requirement. It represents the labels of actual 

samples as a categorical variable with a length equal to the total number of possible elements, where 

only the variable corresponding to the given element has a value of 1, and all other variable values 

are set to 0 (Briot, 2021).This encoding method not only aligns seamlessly with the output 

requirements of the Softmax activation function but also enables us to employ a straightforward 

formula for computing cross-entropy loss, this approach significantly enhances the efficiency and 

intuitiveness of model training and performance evaluation. Keras provides the 

keras.utils.to_categorical function, which seamlessly transforms integer-encoded MIDI note values 

into a matrix-based one-hot encoding. 

 

4-6. Sampling from Output Vectors 

The results obtained through model predictions are in the form of a probability vector, indicating the 

probability of each category. At this point, it is necessary to employ a sampling method to sample 

from the probability distribution and select a value as the result. Experimental findings suggest that 

while training models based on likelihood can yield outstanding performance in language 

understanding tasks, decoding methods that maximize output probabilities (e.g., greedy sampling) 

can lead to overly repetitive or unimaginative text generation (Holtzman et al., 2019). Therefore, 
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introducing a degree of randomness is essential during music sequence prediction to avoid the 

degradation of generated results. 

In this dissertation, we choose to employ temperature sampling as our sampling method. 

Temperature sampling involves introducing the parameter �, which alters the probability distribution, 

followed by random sampling from the modified probability vector. By adjusting the temperature 

parameter � ∈ [Ͳ, ∞ሻ, we aim to strike a balance between the authenticity and diversity of the 

generated results. Specifically, when � < ͳ, it biases the distribution towards high-probability events, 

effectively amplifying the significance of larger probabilities. 

 

4-7. Some Problems in Data Processing 

4-7-1. Handling Chords 

A chord refers to a group of three or more notes stacked vertically at intervals of thirds or non-thirds, 

forming sound with specific pitch relationships (Hewitt, 2008). During the preprocessing of musical 

note data, encounters with chords are quite common. As chords typically consist of three or more 

notes, handling chords is inherently more complex compared to dealing with individual notes (Oore 

et al., 2018). When employing the previously mentioned encoding method for notes and their 

durations to process chords, we designate the root note of a chord as the first note, followed by 

encoding the remaining notes in sequential order. For instance, the C Major Triad, composed of C, E, 

and G notes, might be encoded as "60 64 67 -" using the encoding method described earlier for a 

quarter note. However, this encoding approach is evidently an erroneous data preprocessing method 

as it distorts the original intent of the musical composition. This erroneous encoding approach may 

lead to significant errors in music prediction by neural network models. Hence, the encoding method 

mentioned earlier may not be suitable for encoding chords composed of multiple notes. 

 

I have devised three approaches to address this issue. The first approach involves traversing all the 

notes within a chord and randomly selecting one note to represent the chord's sound. However, this 

method is susceptible to issues when dealing with chords that span a wide range, as the randomly 

chosen to note may inadequately represent the chord, leading to significant fluctuations in the 

predicted musical pitch by the neural network model due to erroneous notes. 
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The second approach aims to mitigate the issue by selecting the central note within the chord to serve 

as its representative. While this approach partially addresses the challenge posed by large-span 

harmonic notes, it still carries limitations, including the potential for data contamination within the 

dataset.  

 

Ultimately, the third approach was adopted, involving the extraction of multiple notes from a chord, 

and encoding them as a tuple to represent the chord. For instance, a C Major Triad comprising the 

notes C, E, and G is encoded as the tuple (60, 64, 67). This approach retains the chord's intrinsic 

meaning while minimizing information loss.  

 

4-7-2. Handling Multi-Track Music 

In multi-track music, each instrument or voice has its own staff in the musical notation, representing 

its independent notes and pitches. This approach allows different instruments or voices to play 

simultaneously, creating rich musical textures. When dealing with single-track music, data 

preprocessing usually involves encoding a single voice, but in the case of multi-track music, there 

arises a challenge. Multi-track compositions often include various instruments playing in harmony, 

and each instrument has its own separate staff. Representing an entire piece of music using just one 

staff is inadequate, as it fails to capture the full musical complexity and leads to dataset 

contamination, resulting in significant errors during model training and music prediction. 

 

To address this challenge, it becomes necessary to preprocess all tracks of a music piece individually, 

converting each track into a numerical format suitable for neural network models, using the encoding 

method discussed earlier. However, each track may have distinct musical characteristics. For 

instance, a piano track may consist of single notes as well as chords, whereas a percussion track may 

predominantly feature consecutive single notes. If different tracks are fed into the same neural 

network for training, it may struggle to systematically learn the underlying patterns in a music piece, 

leading to significant fluctuations or inaccuracies in generating music predictions. 
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To tackle this issue, I developed a function that, if a music piece contains multiple tracks, iterates 

through all the tracks. It encodes the notes of each instrument track and feeds them into separate 

neural network models. For instance, it extracts all piano tracks from the dataset and uses them as 

input to an independent neural network model. After training individual models for each track, it 

independently predicts the music for each track. Finally, all tracks are combined to produce a 

complete musical composition. This approach allows each neural network model to receive data 

from the same type of instrument, enhancing the accuracy of music prediction. However, it does 

place higher demands on the dataset, as different music pieces may use varying instruments, and the 

musical styles across tracks can differ significantly.  
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5. Model Description 

5-1. Model Architecture 

To achieve accurate predictions of music trends, it is essential to select and construct an appropriate 

neural network model that maximally captures the temporal relationships and patterns within the 

music data. During the model selection process, attention will be focused on the following key 

factors: 

• Neural Network Architecture Design: The architecture of the neural network plays a pivotal 

role in model performance. Two critical factors within this are the network's depth (number 

of layers) and width (number of neurons in each layer). Deeper networks often possess 

stronger representational capabilities but are susceptible to overfitting. In this study, careful 

consideration of the dataset's complexity will be undertaken to determine the optimal 

network architecture. 

• Layer Selection: The choice of various neural network layers is equally vital. This includes 

decisions regarding the use of LSTM layers, GRU layers, or Dense layers, as well as 

defining the input and output of each layer. These choices will directly impact the model's 

performance and capabilities. 

• Overfitting Mitigation Strategies: Attention will be devoted to addressing overfitting during 

the model construction process. In this dissertation, the inclusion of Dropout layers will be 

employed to prevent model overfitting. 

The basic neural network model consists of an input layer, hidden layers, and an output layer. The 

number of neurons in each layer can be adjusted based on the specific requirements of the task. 

Alterations in the number of layers and nodes can lead to different outcomes. The depth of a neural 

network is a primary factor influencing its expressive capacity (Huang et al., 2016). Deeper neural 

networks are capable of fitting more complex data. However, due to the presence of overfitting, there 

is not a strictly positive correlation between the depth of the network, the number of neurons, and 

prediction accuracy. To obtain an appropriate model, it is necessary to arrive at conclusions through 

repeated experiments. 
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Below is a schematic diagram of a simple neural network comprising a 3-node input layer, two 

hidden layers, and a 4-node output layer: 

 

The research conducted in this dissertation pertains to the prediction of music temporal sequences. 

RNN and their variants, particularly LSTM networks, have emerged as cutting-edge models for 

handling sequential tasks (Vaswani et al., 2017). The selection of the LSTM model for music 

prediction tasks is contingent on its outstanding performance in dealing with complex music 

sequences. 

 

Firstly, music compositions typically exhibit a multi-level structure, encompassing themes, 

harmonies, melodies, and recurring patterns. The long-term memory mechanism within LSTM 

networks enables them to capture these long-range dependencies in music sequences. Furthermore, 

their gate mechanisms effectively mitigate the vanishing gradient problem, aiding in understanding 

the overall structure of music compositions and thereby enhancing accuracy in predicting future 

notes. 

 

Secondly, temporal relationships are crucial in music, such as the durations between notes, the way 

chords are played, and the coordination between instruments. LSTM networks are sensitive to 
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temporal relationships, making them well-suited for handling temporal information within music 

sequences. 

 

In summary, employing an LSTM model for music prediction is an excellent choice. The LSTM 

model constructed in this dissertation consists of two LSTM layers, two Dropout layers, one Dense 

layer, and a Softmax activation function, as illustrated in the diagram below: 

 

In this model, the LSTM layer is characterized by three parameters: input_shape, which is used to 

specify the length and features of the input sequence. In this dissertation, the model takes one-hot 

encoding as input. Units specify the number of neurons in a single layer, and return_sequences is set 

to True to return the entire sequence rather than just the output of the last time step. The Dropout 

layer (Srivastava et al., 2014) is a commonly employed regularization technique in neural networks. 

It mitigates overfitting risk by concealing the output of a fraction of neurons during model training. 

In this model, the Dropout layer parameter is set to 0.4 to mask 40% of the neurons. The final layer 

of this model consists of a fully connected layer, with the 'units' parameter set to the number of 

distinct musical notes at the input layer. Its purpose is to map the output from the LSTM layers to the 

ultimate musical note predictions. 

 

5-2. Parameter Selection 

Parameter selection is a crucial factor influencing the predictive capability of the model. The 

following are several key parameters: 

• Learning Rate: An appropriate learning rate controls the step size of model parameter 

updates at each iteration, ensuring a smooth and efficient training process. Some optimizers 

feature adaptive learning rates. 
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• Activation Function: Activation functions introduce nonlinearity into neural networks, 

enabling them to learn and represent complex nonlinear relationships. Generally, Softmax is 

a common choice. 

• Loss Function: The loss function is used to measure the model's performance by quantifying 

the gap between predicted values and actual values. 

• Optimizer: The optimizer determines the strategy for updating model parameters, directly 

impacting the speed and stability of the training process. In this study, Adam is a well-suited 

choice. 

• Batch Size: An appropriate batch size not only affects the training speed but also relates to 

model performance. The selection of batch size should consider factors such as 

computational resources and the distribution of training data to achieve the best training 

results. 

5-2-1. Activation Function 

In this study, the Softmax activation function was chosen for the output layer to determine the most 

probable answer for classification problems. It takes the output from the Dense layer and maps it to a 

set of probability values, representing the prediction probabilities for each note. The note with the 

highest probability is then selected as the output. The formula is as follows: 

�ⅈ = ݁��∑ ݁����=ଵ  

� = arg max �ⅈ 
 

5-2-2. Loss Function 

The loss function serves as the objective function for model optimization, guiding the direction of 

model parameter updates during training (Hennig & Mahmut, 2007). Sparse categorical cross-

entropy loss function was utilized in this study. This variant of the cross-entropy loss function 

considers sparsity between categories when calculating the loss. Traditional cross-entropy loss treats 

all categories equally, while sparse categorical cross-entropy applies weights to sparse categories, 

suitable for cases where labels are integer-encoded. The loss function is computed as follows: 
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� = − ͳ� ∑ [�ⅈ logሺ�̂ⅈሻ + ሺͳ − �ⅈሻ logሺͳ − �̂ⅈሻ]�ⅈ=ଵ  

Where �ⅈ represents the true labels, and �̂ⅈ represents the predicted labels. 

 

5-2-3. Optimizer 

The Adam optimizer (Kingma & Ba, 2014) was employed in this research, which is an efficient 

gradient descent algorithm. Adam combines the advantages of AdaGrad, suitable for sparse 

gradients, and RMSProp, effective for online learning. Adam is characterized by low memory usage 

and adaptive learning rates. It incorporates the concept of momentum, accelerating convergence by 

maintaining first-order moment estimates (mean) and second-order moment estimates (square of the 

mean) of gradients. The momentum term helps in traversing flat regions in the parameter space, 

reducing the risk of getting trapped in local minima. Adam's default parameters generally perform 

well across various deep learning tasks, simplifying hyperparameter tuning. 

 

This study also considered using the RMSProp optimizer with time-varying adaptive learning rates. 

It shares similarities with the AdaGrad optimizer but replaces the sum of square gradients with 

moving averages of square gradients, reducing gradient scaling. Although Adam and RMSProp often 

exhibit similar performance (Haji & Adnan, 2021), Adam was ultimately chosen as the optimizer for 

the music prediction task after experimental comparisons. 

 

5-2-4. Batch Size 

In this study, due to the large volume of the music dataset, it is necessary to train the model by 

feeding the data in batches to improve training efficiency and reduce computational costs. To 

enhance the model's generalization ability, it is advisable to limit the ratio of batch size to learning 

rate as much as possible (He et al., 2019). Therefore, in this research, the batch size during model 

training is set to 64, meaning that 64 samples are specified for updating parameters each time the 

model is trained.  
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6.Implementation 

In this chapter, we will delve into the specific implementation details of music prediction, including 

the introduction of relevant libraries, data preprocessing and preparation, the construction and 

training of neural network models, and the saving of prediction results. We will gradually introduce 

the necessary code and methods to ensure that the entire implementation process is clear and 

understandable and can be easily reproduced when needed. 

6-1. Importing Libraries and Data Reading 

In this study, we utilized NumPy for data format operations and numerical computations, the 

matplotlib library for data visualization, the music21 library as a tool for processing music data, and 

the pickle library for file read and write operations. The following code shows the importation of 

these libraries: 

import pickle 

import numpy as np 

import music21 as m21 

import matplotlib.pyplot as plt 

With the functions provided by the music21 library, we can easily read music data from a folder and 

transform it into instances of the Score class. The following code serves as an example of reading the 

dataset: 

song = m21.converter.parse(file) 

 

6-2. Data Analysis and Data Processing 

After obtaining information from the music dataset, it was essential to conduct data analysis and 

processing. Initially, we needed to identify the different tracks and instruments used in the dataset: 

parts = m21.instrument.partitionByInstrument(song) 

for i in range(len(parts.parts)): 

   instrument_name = parts.parts[i].getInstrument().instrumentName 
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Before encoding the MIDI pitches of the music work, it was necessary to parse the tonality 

information of the music work and transpose the music objects relative to the key of C to facilitate 

further music analysis and processing, as shown below: 

for element in score.recurse(): 

    # find the key 

    if isinstance(element, m21.key.Key): 

        # find the tonic 

        if element.mode == 'major': 

            tonic = element.tonic 

        else: 

            tonic = element.parallel.tonic 

        # Transpose according to the main tonic 

        gap = m21.interval.Interval(tonic, m21.pitch.Pitch('C')) 

        score = score.transpose(gap) 

        break 

    # can not find the key 

    elif isinstance(element, m21.note.Note) or 

         isinstance(element, m21.note.Rest) or 

         isinstance(element, m21.chord.Chord): 

        break 

    else: 

        continue 

Next, we iterated through each instrument, encoding the notes into elements based on sixteenth notes 

as the fundamental unit. Chords were encoded as tuples, notes as corresponding MIDI pitches, and 

rests as 'r', with '-' indicating note duration, as demonstrated here: 

for event in part.flat.notesAndRests: 

    #handle chord 

    if isinstance(event, m21.chord.Chord): 

        symbol = tuple(event.normalOrder) 
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    #handle note 

    elif isinstance(event, m21.note.Note): 

        symbol = str(event.pitch.midi) 

    #handle rest 

    elif isinstance(event, m21.note.Rest): 

        symbol = "r" 

    string_part.append(symbol) 

    duration = event.duration.quarterLength * 4 

    while(duration > 1): 

        string_part.append("-") 

        duration -= 1 

 

6-3. Using LSTM Model for Prediction 

To perform music generation, it was crucial to prepare training data for input to the neural network. 

In music generation tasks, we utilized the first 65 musical symbols of a sequence to predict the 65th 

musical symbol. Consequently, we constructed training examples, each comprising a fixed-length 

music sequence of 65 elements and the corresponding prediction target, as shown below: 

x = [] 

y = [] 

num_sequences = len(int_notes) - SEQUENCE_LENGTH 

for i in range(num_sequences): 

    x.append(int_notes[i:i+SEQUENCE_LENGTH]) 

    y.append(int_notes[i+SEQUENCE_LENGTH]) 

#  encoding sequence to one-hot 

x = keras.utils.to_categorical(x, num_classes=unique_notes_num) 

y = np.array(y) 

print(f"There are {len(x)} sequences.") 
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After preparing the training data, we input it into an LSTM model for training. First, we imported the 

necessary libraries for model construction. In this study, keras served as the primary tool for building 

the model, as illustrated below: 

import tensorflow.keras as keras 

from keras.models import Sequential 

from keras.layers import Activation, Dense, LSTM, Dropout 

from sklearn.model_selection import train_test_split 

Before feeding the training data into the model, we partitioned 10% of the data as a test set to 

evaluate the performance of the trained model on unseen data. Additionally, 10% of the training data 

was allocated as a validation set to detect potential overfitting or underfitting issues. This process is 

demonstrated as follows: 

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, 

random_state=42) 

Subsequently, we constructed an LSTM model and fine-tuned the parameter values as needed: 

model = Sequential() 

model.add(LSTM(128, input_shape=(None, unique_notes_num), 

return_sequences=True)) 

model.add(Dropout(0.4)) 

model.add(LSTM(128)) 

model.add(Dropout(0.4)) 

model.add(Dense(unique_notes_num, activation='softmax')) 

model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

Finally, the training data was input into the model for training, and training results were obtained: 

history = model.fit(x_train, y_train, epochs = 150, verbose = 1, 

batch_size = 64, validation_split = 0.1) 

 

6-4. Generating Music Files 
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After training the model and achieving the desired performance, the next step was to use the model 

for music composition. Firstly, we extracted the last 64 musical symbols of the music piece we 

wanted to predict, transformed them into one-hot format suitable for input into the neural network, 

and then used the model to generate a probability vector based on the input sequence. Finally, we 

applied temperature sampling to generate a sequence of notes based on the model's output 

probabilities. This process was repeated until we generated the desired length of the music sequence. 

The following code demonstrates this: 

melody = encode_part(part)[-64:] 

# map seed to int 

seed = [note_to_int[index] for index in melody] 

 

for _ in range(300): 

    # encoding the seed to one-hot 

one_hot_seed = keras.utils.to_categorical(seed, 

num_classes=len(note_to_int)) 

    one_hot_seed = one_hot_seed[np.newaxis, ...] 

    # make a prediction 

    probabilities = model.predict(one_hot_seed)[0] 

    # [0.1, 0.2, 0.1, 0.6] -> 1 

    prediction = np.log(probabilities) / 0.6 

    probabilities = np.exp(prediction) / np.sum(np.exp(prediction)) 

    #choices = range(len(probabilities)) # [0, 1, 2, 3] 

output_int = np.random.choice(range(len(probabilities)), 

p = probabilities) 

    # update seed 

    seed.append(output_int) 

    # map int to our encoding 

    output_symbol = [k for k, v in note_to_int.items() if v == output_int][0] 

    # update melody 
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    melody.append(output_symbol) 

We needed to decode the generated music sequence into symbolic music data. This involved 

handling notes, chords, and rests, and combining them into a musical stream. Specifically, while 

processing the music sequence, we iterated through each element. When we encountered MIDI pitch 

or a rest, we created a new musical event and recorded its duration. For rests, we handled them as 

well. If the symbol was "-", we incremented a step counter to indicate a longer duration. Here's the 

code illustrating this process: 

for i, symbol in enumerate(melody): 

    # check if the symbol is "-" or if it's the last symbol in the melody. 

    if symbol != "-" or i + 1 == len(melody): 

        # if there's a previously encountered symbol, create a musical event. 

        if start_symbol is not None: 

            quarter_length_duration = 0.25 * step_counter 

            # handle rest 

            if start_symbol == "r": 

               m21_event = m21.note.Rest(quarterLength=quarter_length_duration) 

            # handle chord 

            elif isinstance(start_symbol, tuple): 

                m21_event = m21.chord.Chord(list(start_symbol), 

quarterLength=quarter_length_duration) 

            #handle note 

            else: 

                m21_event = m21.note.Note(int(start_symbol), 

quarterLength=quarter_length_duration) 

            unique_part.append(m21_event) 

            # reset the step counter for the next sequence of symbols. 

            step_counter = 1 

        start_symbol = symbol 

    # if symbol is -, increment the step counter to indicate a longer duration. 
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    else: 

        step_counter += 1 

Finally, we wrote the music sequence into a stream using the music21 library and saved the music 

file locally.  
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7. Results 

7-1. Model Assessment 
For the effective evaluation of music generation results, it not only aids in identifying the 

shortcomings of music generation models but also contributes to the continual improvement of the 

model to achieve superior music generation performance. However, evaluation in fields such as 

music, literature, and art often involve subjectivity, making it challenging to objectively assess the 

outcomes of these creative endeavors (Yamshchikov & Tikhonov, 2020). When it comes to 

performance evaluation of music prediction models, unlike tasks with well-defined criteria such as 

classification, the evaluation of music prediction models typically requires the consideration of 

subjective factors. While subjective assessment is more fitting in the domain of artistic creation, it 

presents issues with cumbersome evaluation methods and result instability. Conversely, objective 

evaluation metrics have distinct advantages in some cases as they provide a more reliable and 

actionable way to assess model performance. These objective metrics often involve quantitative 

analyses of model outputs, such as the structure of generated music, the coherence of notes, and the 

diversity of melodies. However, objective evaluation may, in some respects, become overly 

theoretical and fail to fully capture the complexities of the music domain. 

Despite significant advancements in automated music evaluation techniques, there are still some 

limitations (Agarwal et al., 2018). Therefore, while considering the complexity of model evaluation 

and the reliability of evaluation results, this dissertation will primarily focus on objectively assessing 

the performance of music generation models from a mathematical perspective. This approach will 

combine the analysis of objective metrics with experimental results from subjective evaluations to 

gain a comprehensive understanding of the model's performance in various aspects, thereby 

providing better guidance for model refinement and optimization directions. 

First, we will discuss the model's loss function values, accuracy on the training set, and loss function 

values and accuracy on the validation set, as shown in the following figure: 
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From the figure above, it can be observed that after undergoing continuous training for 3 hours, the 

model achieved a satisfactory accuracy of approximately 95% on the training dataset. However, its 

performance on the validation dataset was slightly lower, reaching only approximately 90% 

accuracy, and the loss function exhibited fluctuations towards the end. This observation has 

prompted consideration of two potential factors: 

 

Firstly, it is possible that the model is experiencing overfitting, wherein it excessively adapts to 

specific features of the training data during the training process, leading to a reduced ability to 

generalize to new data. This becomes particularly evident when dealing with independent data, such 

as the validation set. 

 

Secondly, our dataset comprises many mutually independent musical compositions, each possessing 

its unique musical style and characteristics. This diversity may pose challenges for the model when 

making predictions on the validation set, as it may contain music compositions of different styles not 

encountered during training. These variations in musical style could potentially have a negative 

impact on the model's predictive ability, as the model needs to adapt to different musical styles and 

melodic patterns. Increasing the size of the dataset may help alleviate this issue, as a smaller dataset 
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may not adequately capture the diversity and complexity of the music domain, thereby limiting the 

model's performance. 

 

Next, we will assess the performance of the trained model using the test dataset, with the results 

presented below: 

 

It can be observed that the performance of the model on the test dataset is generally satisfactory. It 

can make predictions to a certain extent on music compositions with similar musical styles that it has 

not previously encountered. This result indicates the reasonable effectiveness of the hyperparameters 

set before model training. Furthermore, through validation on the test dataset, we have further 

confirmed the model's generalization ability, i.e., its performance on new data. Overall, the model is 

well-constructed, and further evaluation of its performance can be considered.  
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7-2. Score Evaluation 

For the evaluation of music prediction models, relying solely on results from the test set is evidently 

insufficient. The test set may encompass works of various musical styles, and an outstanding music 

prediction model should possess not only the ability to predict notes but also a certain level of 

musical theory knowledge, enabling it to comprehend the relationships between notes and musical 

rules. Ideally, as the model continues to train, the generated music should progressively approach 

real music, rather than merely replicating input data mechanically. Therefore, we will further validate 

and assess the model in this study. Generally, music possesses a certain logical structure, and 

predictions for a song should make sense rather than being random and devoid of logic. We expect 

the model's predictions to align with the inherent structure of the music itself. For example, when 

predicting for a song that features the repetition of a single note, the ideal prediction should also 

include the repetition of that single note. Similarly, when predicting ascending musical notes in a 

stepwise fashion, the results should continue the upward trend, which is in line with logical 

expectations. Consequently, in the subsequent tests, we will use music scores with specific patterns 

to evaluate the model's performance. This testing approach will provide a more in-depth assessment 

of the model's capability in music generation, verifying whether the model genuinely comprehends 

the underlying principles and theories of music. 

 

When evaluating the model's prediction ability, we have opted for a greedy sampling approach over 

temperature sampling for the obtained probability distribution. The primary objective behind this 

decision is to minimize the uncertainty introduced when the model samples probabilities as much as 

possible. Greedy sampling leans toward selecting predictions with the highest probabilities, thereby 

reducing the impact of stochastic factors in model predictions, decreasing output variability, and 

obtaining more stable and reliable results. This contributes to a clearer evaluation of the model's 

performance in music generation tasks, mitigating result fluctuations caused by randomness and 

enabling us to more accurately judge whether the model's predictions align with expectations. 

 

However, during model training, as the model is not constrained to receive sequences of fixed 

lengths, when using shorter sequences to request predictions from the model, it takes that segment as 
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context for predicting the next outcome. Consequently, employing sequences of different lengths to 

predict music for the same song may yield different prediction outcomes. To ensure result 

consistency and comparability, in subsequent testing, we will employ fixed-length sequences to 

predict subsequent notes, guaranteeing that we can more accurately compare prediction results in 

different contexts when evaluating model performance. 

 

In this research, four metrics will be used to evaluate the model's performance: R-squared, BLEU 

(Bilingual Evaluation Understudy), accuracy, and F1 score. R-squared and BLEU are employed to 

gauge the fitting between the model's prediction output and actual observed data, while the F1 score 

measures the model's performance in multi-class classification tasks.  
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As shown in the figure below, the presented musical score belongs to the most basic form of music 

notation, utilizing a 4/4-time signature, which means each measure consists of four beats, with each 

beat represented by a quarter note. This musical passage consists of seven consecutive measures, 

totaling 28 quarter notes of G4. The duration, pitch, and timing intervals between each note are 

consistent. However, it is essential to note that since this musical passage comprises 28 consecutive 

G4 quarter notes in the key of C major, it is highly likely that it is not included in the training dataset. 

In other words, the model's predictions for the subsequent notes in this passage rely entirely on the 

model's learned music patterns from the training dataset, rather than simple copying or memorization 

of musical patterns in the training data. 

 

For this test, the model should be able to predict the progression of subsequent notes effortlessly. 

From a music theory perspective, any model should have the capability to learn the potential pattern 

of consecutive occurrences of the same note. If the model predicts notes different from G4 in this 

test, it suggests that the model has not well understood the inherent relationships between notes. This 

could be due to an insufficiently large dataset, a lack of diverse music patterns in the dataset, or 

inherent flaws in the model itself. 

 

As shown in the figure above, the model demonstrates the ability to predict consecutive repeated 

notes, and the prediction metrics are presented in the table below: 
R- squared BLEU Accuracy F1 score 

1.0 1.0 1.0 1.0 
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Based on the data provided in the table, we can conclude that the model exhibits a fundamental 

ability to handle repeated notes. This indicates that the model has at least learned to recognize and 

predict one of the simplest music sequence patterns, namely, the repetition of a single note. However, 

it is essential to note that this test scenario represents the model's performance when dealing with the 

simplest and highly repetitive musical segments. In practical music composition and generation, an 

excessive repetition of single notes is not desirable. 

 

In the upcoming evaluation of the model's predictive capabilities, we will consider musical passages of 

different styles and forms to gain a comprehensive understanding of the model's potential in predicting 

unknown melodies. This will test the model's generalization abilities across diverse musical elements and 

creative styles.  
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As shown in the figure below, this musical score is relatively more complex compared to the 

previous one, still employing a 4/4-time signature. This musical passage consists of two types of 

notes, namely G4 and B4, which appear alternately within one measure, as illustrated below. This 

alternating note pattern may impose higher demands on the model's music sequence modeling 

because the model needs to learn how to accurately capture the alternating relationships between 

different notes for precise music generation. 

 

We expect the model not only to accurately capture the pitch of the alternating notes in the music but 

also to precisely identify the duration of the notes. The figure below displays the model's 

performance in this regard: 

 

From the observation of the figure, it can be noted that when there are fluctuations in the ground 

truth curve, the prediction curve exhibits a similar trend of changes. Although in some fluctuation 

cases, they are not entirely identical, this still indicates that the model has successfully learned the 

rhythmic patterns of the music to some extent. However, concerning the pitch of the notes, the 

model's learning performance appears slightly inadequate. This suggests that the model may face 

some challenges in capturing pitch and requires further training to enhance the accuracy of its pitch 

predictions. 
R- squared BLEU Accuracy F1 score 

0.617 0.674 0.876 0.574 

From the provided table data, it is evident that there is a clear correlation between the predicted 

values by the model and the actual values of the song. This indicates that the model has indeed 
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learned some properties related to the musical rhythm rather than making meaningless random 

predictions.  
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To test the model's level of understanding of music theory, the following musical segments were 

designed for testing: 

 

As observed, this musical segment is entirely composed of gradually ascending single notes. For 

someone with a moderate understanding of music theory, predicting the next note should be a 

relatively simple task. However, for our LSTM model in this research, it may pose a challenging 

task. This is because the model focuses on the absolute position of notes rather than the relative 

position between notes. Specifically, the model's input is the MIDI pitch of the notes, not the pitch 

change values between notes. The comparative chart of predictions is shown below: 

 

From the chart, it is evident that the model can hardly predict the direction of the next note 

accurately. This is primarily because the model is constructed based on the absolute values of pitch 

and does not consider the trend of pitch changes between notes. If we were to feed the model with a 

sequence of pitch change values as input, it might be easier for the model to accurately predict the 

pitch direction ahead. 
R- squared BLEU Accuracy F1 score 

0.137 0.591 0.681· 0.136 

Based on the data in the table, we can conclude that the model has certain limitations in learning 

music theory. Its predictions for musical segments mainly rely on the time series of note occurrences 

in the training dataset without a deep understanding of the fundamental principles of music. Using 

more complex encodings for notes to encompass more essential information might help overcome 

the model's limitation in understanding music theory. For instance, training the LSTM model with 
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music transcriptions expressed in advanced notation like ABC symbols has shown promising results 

(Sturm et al., 2016).  
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In the previous model validation tests, we primarily focused on the model's performance when 

dealing with structured sequences of notes. However, for a more comprehensive assessment of the 

model's generalization capability, we need to consider a wider range of musical contexts. Therefore, 

the following validation tests will be conducted using segments from musical compositions to 

simulate more diverse musical scenarios. In this test, a completely new musical segment was used, 

which had not appeared in our training data. However, compared to the musical works in the training 

set, this musical segment shares a similar musical style and characteristics. Our expectation is that 

the model, when faced with such a similar style of music, can generate predictions with a certain 

degree of regularity and musicality. This testing scenario is crucial for evaluating the model's 

potential and adaptability in real music composition scenarios, as it better simulates the model's 

performance in real music composition situations. 

 

When making predictions for this musical segment, if the model has successfully learned and 

mastered the patterns and rules of this specific music style, it is expected to apply the musical 

features and style it learned from the training data to produce a music segment like the training set. 

This also indicates the model's potential in learning and understanding music styles and the 

possibility of making reasonable predictions for unknown musical segments. Therefore, this test will 

assess the model's generalization capability when dealing with music scenarios of similar styles but 

different specific content. Below is a partial comparison chart of predicted results and actual results: 
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By comparing the curves of predicted values and actual values, we can observe a certain degree of 

similarity between them. Although the curves are not entirely identical, their overall trends are quite 

similar, indicating a degree of consistency between them, which means that the model can capture 

some important features and trends in the musical segment. The various prediction metrics are 

presented in the table below: 
R- squared BLEU Accuracy F1 score 

0.214 0.727 0.797 0.477 

Considering both the comparison curves and the data in the table, while the model achieves an 

accuracy of approximately 80% for this musical segment, the R-squared value is only 0.214. This 

discrepancy may be due to the model capturing relationships related to note duration but falling short 

in predicting pitch accurately. This observation is also supported by the BLEU score, which, while 

relatively high, suggests that the model's predictions are correlated with actual values but lack 

precision in predicting individual pitches.  
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The music segment tested in this study is a small part of "Happy Birthday", which is a piece of music 

does not present in the training set and possesses a completely independent style.  This music 

segment incorporates various types of notes, including eighth notes, quarter notes, and half notes, 

forming a melody with relatively low note complexity, making it an ideal choice for validation 

testing. Below is the musical notation for this segment: 

 

Different music genres typically exhibit differences in various aspects, such as rhythm complexity, 

note density, and note interval variations, as seen between jazz and rock music. Given this 

consideration, expecting the model to predict accurately is almost unrealistic. However, we expect 

the model to capture some patterns related to rhythm or pitch in the music. The figure below 

illustrates the comparison between the model's predictions and the actual values: 

 

Based on the observed comparison, it is evident that the model's performance in accurately 

predicting pitch is relatively poor. However, it is worth noting that the model appears to have learned 

certain rhythmic pattern variations in the music. Specifically, it can distinguish differences between 

eighth notes and quarter notes. The inaccuracy in note prediction may be attributed, in part, to the 

relatively small size of the dataset. Increasing the size and complexity of the dataset could introduce 

more diverse music patterns, potentially improving the model's pitch prediction performance. 
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R- squared BLEU Accuracy F1 score 

0.037 0.628 0.649 0.158 

Based on the data presented in the table, it can be concluded that the model's performance in this 

music segment is relatively poor. Its primary success lies in learning rhythmic features in the music, 

but it falls short in accurately predicting pitch changes. Moreover, a significant contribution to 

prediction accuracy comes from the prediction of note durations.  
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7-3. Results Analysis 

In this study, the model's capabilities in music prediction were evaluated by selecting specific music 

segments. While subjective judgment inevitably played a role in the selection of music samples, the 

carefully chosen segments aimed to ensure their representativeness, covering various key aspects of 

music, including melody, music theory, and pitch accuracy. Through the first two experiments, we 

observed that the model demonstrated a certain learning ability when dealing with simple melodies. 

However, instances of inaccurate pitch prediction during the experiments indicated that the model 

has limitations when faced with complex pitch prediction tasks. Furthermore, the model performed 

poorly in tests related to music theory and in tests involving unknown music styles. However, it still 

showed some potential in predicting music for similar styles. From the validation experiments 

conducted, we draw the following insightful conclusions: 

Firstly, when predicting ascending musical notes, the model exhibited more imitation behavior and 

failed to fully grasp the core principles of music theory. Its responses were more akin to simulating 

patterns from the training dataset rather than deeply comprehending the music theory behind the 

dataset. 

 

Secondly, the model exhibited limitations in predicting pitches that were not present in the training 

dataset. This limitation was evident when predicting ascending notes as well. Specifically, when 

tasked with predicting notes that had never appeared in the training dataset, the model struggled to 

provide accurate predictions. This phenomenon may be related to the encoding of pitch, as the model 

heavily relies on existing data during training and lacks sufficient information for novel pitches. 

 

Lastly, we observed that the model's ability to grasp music rhythm clearly surpassed its 

understanding of pitch. While the model exhibited relatively accurate rhythmic predictions, there was 

a noticeable gap in pitch prediction. This disparity may also be related to the chosen pitch encoding 

method, particularly when dealing with a high occurrence of quarter notes or half notes, where 

frequent use of '-' symbols may have led the model to learn some inaccurate patterns. 
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8. Conclusion and Future Work 

This chapter takes the experimental results as a starting point to discuss the challenges encountered 

during the research and the conclusions drawn from them. Additionally, we will explore potential 

directions for future research and provide recommendations for further work. 

8-1. Conclusion 

The objective of this study was to predict the future trends in music using neural network models. 

After considering the requirements of the task for time series processing and the overall complexity 

of implementation, we opted for a music prediction model based on LSTM networks. The core task 

of this model was to predict the pitch and duration of the next note by extracting the temporal 

relationships of notes from MIDI music files. Through a series of experiments and evaluation using 

specific musical scores, we have arrived at some key conclusions. 

 

Firstly, we observed that the model performed reasonably well in predicting repeated notes, 

achieving an accuracy of 79.7% when predicting music in the same style. This finding indicates that 

the model successfully captured musical patterns within these segments. It suggests that deep 

learning models exhibit a certain level of learning capability when dealing with melodic patterns of 

the same musical style. Furthermore, the model demonstrated relatively accurate predictions when 

dealing with known music styles, highlighting the influence of the dataset on model performance. 

With the continuous expansion of available datasets, it is expected that the model's performance will 

further improve. However, it is crucial to carefully balance dataset size and model fit, as excessively 

large datasets may lead to underfitting and decreased accuracy in music prediction. 

 

On the other hand, the model's performance appeared to be less satisfactory when faced with 

different music styles. Although this does not invalidate the experimental results, it also underscores 

certain limitations inherent to the model. Experimental results indicated that when the model 

encountered music works of unknown styles, it could only make relatively accurate predictions of 

note duration while exhibiting significant errors in pitch predictions. This phenomenon may stem 

from the diversity of music styles and some inherent limitations of the model. Specifically, the model 
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has limitations in dealing with music theory and core melodies, making it challenging to accurately 

predict musical performance in these scenarios. 

 

In summary, this study provides valuable insights into the field of music prediction. While the model 

demonstrated good learning ability in specific contexts, the results suggest that it lacks the ability to 

learn music theory.  
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8-2. Future Work 

This study has conducted a series of experiments and validations using neural networks in the 

domain of music prediction. While the model has shown certain issues in music prediction, I firmly 

believe that employing neural networks for note prediction holds substantial research potential. 

Nonetheless, there are still various unexplored directions and areas for improvement in the current 

stage. Future research can expand in the following aspects: 

• Dataset and Encoding: The current encoding methods employed for music data exhibit certain 

limitations in terms of efficiency. It may be necessary to consider the introduction of a more 

efficient encoding method in the future, especially when dealing with larger-scale music 

datasets. Additionally, the current dataset being utilized has certain limitations in terms of 

diversity in music styles, making it difficult to encompass a sufficiently rich range of musical 

styles. Therefore, in future efforts aimed at enhancing music prediction models, a dual focus on 

improving both dataset quality and quantity becomes imperative. 

• Music Generation Patterns: Another critical consideration is that machine learning methods 

often imitate existing musical patterns, leading to a tendency for music generated by neural 

networks to exhibit monotonous rhythms. During long-term music prediction, without guidance 

from external variables, generated music can easily fall into meaningless repetitive loops. To 

enhance future music prediction models, one feasible approach is to attempt to extract the 

intrinsic emotions or sentiments within the music, such as identifying whether the music is 

cheerful, melancholic, or in another emotional state. Different emotional states in music may 

require distinct rhythms, tones, and harmonic patterns, thus potentially improving the accuracy 

of music prediction. Additionally, enhancing interaction with humans during the music 

generation process is an avenue worth exploring. Research indicates that incorporating AI-

human interaction into music generation significantly enhances the quality of generated music, 

aligning it more closely with people's expectations (Huang et al., 2020). Specifically, elevating 

interactivity during music prediction allows for human intervention to provide guidance and 

direction to the model, promptly correcting any erroneous developmental directions, thereby 

markedly enhancing the accuracy of music prediction. The introduction of such interactivity 
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renders music prediction more flexible and precise, enabling better collaboration between 

individuals and the model to collectively create high-quality music. 

• Music Generation Evaluation Methods: An appropriate evaluation method is crucial in the field 

of music generation. However, it is worth noting that using different evaluation criteria can yield 

vastly different results (Theis et al., 2015). The evaluation of the same musical composition 

often produces significantly different outcomes under different standards. Currently employed 

methods for evaluating music generation models typically include both subjective and objective 

aspects, with the two often complementing each other in the field of music. However, objective 

evaluation methods typically only involve comparing the generated music with actual music 

results, without giving due consideration to music theory or aesthetic factors. Meanwhile, 

subjective evaluation methods, although providing richer information, come with drawbacks 

such as requiring substantial time and resources, as well as issues related to the subjectivity and 

reliability of results. Therefore, future research should aim to develop more comprehensive and 

accurate music generation evaluation methods. This might include incorporating music theory 

knowledge, professional opinions from musicians, and more comprehensive aesthetic standards, 

thereby better assessing the quality and artistry of generated music.  
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9. Personal Reflection 

I have always been deeply interested in the integration of music and the field of computer science. 

Despite my passion for music, my knowledge of music theory and related areas was relatively 

limited before embarking on this project. The first-time exposure to music theory took some time for 

me to understand the meaning of each symbol in a musical score. This lack of knowledge drove me 

to delve deeper into the theory and practice of music. Through this research project, I not only gained 

a comprehensive understanding of the intersection of music generation and deep learning but also 

developed a stronger interest in music theory and related domains. It can be said that this project 

brought me the joy and opportunity of learning new knowledge. 

 

During the concrete implementation of the project, I encountered numerous challenges and learning 

opportunities. This project might well be one of the most academically and professionally demanding 

research endeavors I have faced thus far, especially as a student new to the field of deep learning. I 

have always aspired to gradually master the knowledge and skills in this domain through practical 

experience. From initially sifting through extensive literature to preprocessing the dataset and 

constructing the model, and finally evaluating the overall research results, despite the numerous 

difficulties, I believe all these efforts have been worthwhile. 

 

In the data preprocessing phase, I faced various challenges. I carefully considered several methods to 

convert music into usable data, each with its own advantages and disadvantages. Given my relatively 

limited experience in data processing, I ultimately opted for a relatively straightforward approach. 

However, as the project progressed, I gradually realized the limitations of this method. Especially 

during the final evaluation stage, I discovered some flaws in this approach, resulting in lower data 

utilization efficiency. This experience deepened my understanding of the critical role of data 

preprocessing in the field of machine learning because it directly impacts the model's performance 

and the credibility of research results. If given the opportunity to redo the project, I would pay 

greater attention to the choice of data processing methods and dedicate efforts to improving data 

preprocessing. Nevertheless, this does not imply that I consider this project a failure; on the contrary, 

I believe this experiment has successfully demonstrated the potential of LSTM in melody prediction. 
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Undoubtedly, the most time-consuming aspect of this project was parameter tuning. Given my 

relatively limited experience in the field of deep learning, the selection of each parameter, such as the 

number of layers in the neural network, the number of neurons, and the loss function, required 

multiple experiments and fine adjustments. Unfortunately, hardware limitations meant that each 

parameter adjustment required a substantial amount of time to obtain results. Despite the time-

consuming nature of this process, it is crucial for ensuring the ultimate effectiveness of the model. I 

have come to a profound realization that parameter tuning is an indispensable key step in optimizing 

deep learning model performance. Throughout this process, I accumulated a wealth of techniques 

and experiences related to parameter tuning. For instance, narrowing down parameter ranges to a 

smaller scope and conducting fine searches within that range to identify the best parameter 

combinations. I also gradually understood the interactions between different parameters and their 

impact on model performance. Finally, within the constraints of limited time, I managed to 

accomplish the established objectives by prioritizing tasks effectively. 

 

I firmly believe that the fusion of machine learning and the field of music holds immense potential 

for widespread applications in the future. This field can not only provide new tools and methods for 

music composition but also drive innovation and improvement in various domains, including music 

education, music therapy, and the entertainment industry. Fueled by my strong interest in this field, I 

look forward to delving deeper into research and advancing its development in the future. Ultimately, 

I aspire to apply automatic music generation technology to real-life scenarios, promoting societal 

progress and development. Whether by providing creative inspiration to music composers or 

introducing innovations in the realms of music education and therapy, I hope that my research can 

have a practical and positive impact.  
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