

CMT403 – Final Report – 60 credits

A Personal Diary App for People with Obsessive-Compulsive Disorder

Author: Joe Pointon

Student Number: C1623024

Project Supervisor: Alia I Abdelmoty

Project Moderator: Dr Katarzyna Stawarz

04/11/2021

MSc Computing School of Computer Science and Informatics, Cardiff University

Abstract

This dissertation project covers the design, implementation, and evaluation of a journaling

application for people with OCD and their therapists. This project is significant because it

makes it easy for people to keep a journal and improves the connection between patients and

therapists.

The app was designed with user-centred principles in mind and implemented using React

Native. User testing was carried out with a System Usability Scale questionnaire and

observations. The app received positive feedback and the participants agreed with

stateﾏeﾐts suIh as さI thought the s┞steﾏ ┘as eas┞ to useざ aﾐd さI thiﾐk I ┘ould like to use this

s┞steﾏ fヴeケueﾐtl┞ざ, showing the real-world function of the app. The significant implication of

this is that online journaling could play a large roll in CBT, demonstrating the growing demand

for previously unconsidered technological solutions for both patients and therapists.

Acknowledgments

I would like to thank my supervisor Alia Abdelmoty for help in shaping the direction of the project

and her guidance throughout.

I would also like to thank my sister for proofreading the report, my partner for picking me up when I

was down, and those who volunteered their time to participate in my testing.

Contents

1- Introduction ___ 1

2 - Background ___ 3

2.1 - Obsessive-Compulsive Disorder ___ 3

2.2 - Impacts of OCD ___ 4

2.3 - Treatment of OCD __ 4

2.4 - Journaling ___ 5

3 - Problem __ 6

3.1 - Existing solutions ___ 7

3.2 Summary of App Reviews __ 12

3.3 - User Personas ___ 14

3.4 - OCD Diary Research __ 15

3.5 - Constraints ___ 18

4 - Approach __ 19

4.1 Development methodology ___ 19

4.2 Mobile app vs website ___ 19

4.3 Technologies chosen: __ 19

4.4 – Learning resources __ 21

5 – Products __ 22

5.1 Requirements __ 22

5.2 Use cases__ 25

6 – Design __ 30

6.1 – Colour ___ 30

6.2 – Initial UI Wireframes ___ 31

6.3 – Heuristic Evaluation ___ 38

7 – Implementation __ 41

7.1 Class Diagram __ 41

7.2 Back-end __ 42

7.4 Front-end ___ 50

8 – Evaluation ___ 70

8.1 – Test Cases ___ 70

8.2 - Acceptance criteria results___ 70

8.3 - User testing __ 72

9 – Conclusion ___ 77

10 – Future work___ 79

11 – Refection of learning ___ 81

12 – Reference List ___ 83

1

1- Introduction
Obsessive-Compulsive Disorder (OCD) is a debilitating mental illness affecting many people

globally. Currently the most successful treatment is Cognitive Behavioural Therapy (CBT),

which can improve the symptoms of 75% of patients (OCD UK 2020). Journaling is an essential

part of CBT because it allows patients to track their thought patterns and make connections

between their thoughts and their behaviours. However, this often relies on patients recording

this information in a physical journal, which can be inconvenient in many ways. While there

are existing applications available for CBT journaling, none of them are designed specifically

for OCD and they lack features such as being able to share entries with therapists.

This project therefore looks at this problem in a new way and aims to create a thought journal

mobile application that assists patients and therapists in the process of treating OCD through

CBT.

In order to meet this aim, the following main objectives have been set out:

1. To allow users to add a journal entry describing a triggering event along with all

relevant aspects of the event and the subsequent thought processes

2. To allow therapists to view and edit their list of patients, and view and search their

patieﾐtsげ journal entries

3. To allow users to view/edit/delete their past journal entries in a searchable list, which

can be filtered in ways such as date or time period

4. To allow users to perform a quick check-in of their emotions and activities

5. To allow users to read and learn about cognitive distortions

In this report I will cover the background knowledge of OCD and its treatment through CBT

(Section 2), the problem the app will solve, reviews of existing solutions and their shortcoming

(Section 3), the approach taken to the implementation and management of the solution

(Section 4), the definition of requirements and use cases (Section 5), initial user interface

design and a heuristic analysis of these (Section 6), a detailed account of the implementation

of the app (Section 7), an evaluation of the product through the use of test cases and user

testing (Section 8), a conclusion on the success of the project (Section 9), recommendations

2

for future work (Section 10) and, finally a reflection on my learning experience throughout

the project (Section 11).

3

2 - Background

2.1 - Obsessive-Compulsive Disorder

OCD is a recent medical term for a medical condition that has been around for centuries.

Evidence of what are now recognised as common OCD related behaviours can be observed

throughout the 18th and 19th centuries; examples of washing, checking, and excessive fear of

disease were described in literature, and in the 19th century the modern theory of OCD was

formed. In the 20th century the theory was expanded by the distinction between obsessions

and compulsions. (OCD UK 2019)

In modern times OCD is acknowledged as a serious mental condition that affects 1.2% of the

population (~750,000 people). The American Psychiatric Association (2013) state that around

50% of cases are severe and <25% are mild.

An important aspect of the understanding of OCD is the distinction between obsessions and

compulsions. Obsessions are intrusive, unwanted, and often irrational thoughts, whereas

compulsions are the behaviours people with OCD feel the need to perform in response to

their obsessive thoughts. Usually, people with OCD can tell that their thoughts are irrational,

but still feel the need to perform compulsive behaviours in response to an obsessive thought.

These actions normally provide a temporary relief form the anxiety brought about due to their

obsessive thoughts. (OCD UK 2018)

The most common categories of obsessive thought are (NICE 2005):

1. Contamination form dirt, germs, viruses, etc. (38%)

2. Fear of harm (24%)

3. Excessive concern with order or symmetry (10%)

4. Obsessions with the body or physical symptoms (7%)

The most types of compulsive behaviours are (NICE 2005):

1. Checking (e.g. repeatedly checking gas taps are off, doors are locked or that a loved

one is ok) (29%)

2. Cleaning and washing (e.g. repetitively washing hands after using a public bathroom,

shaking hands or touching a door handle) (27%)

4

3. Repeating acts (11%)

4. Mental compulsions (e.g. repeating a series of words in your head) (11%)

2.2 - Impacts of OCD

Some OCD suffers may spend a large amount of their time carrying out compulsions and be

unable to carry out normal daily activities, while others may seem to be coping outwardly but

are suffering a great amount of stress and anxiety from their obsessions. In either case the

impacts of OCD are vast and can affect every aspect of a peヴsoﾐげs life, as ┘ell as those of theiヴ

friends and families.

Impacts may include but are not limited to:

• Poor performance in education or employment

• Strain on relationships

• General quality of life

• Physical damage from compulsions (e.g. raw skin from repetitive cleaning)

• Substance abuse

• Friends and family may become involved in obsessions (e.g. avoiding certain places,

excessive washing)

2.3 - Treatment of OCD

One method of treatment for OCD is cognitive behavioural therapy (CBT). Ponniah et al.

(2013), a meta-ヴe┗ie┘ of ヴヵ ヴaﾐdoﾏized Ioﾐtヴolled tヴials, fouﾐd CBT to He けeffiIaIious aﾐd

speIifiIげ foヴ OCD tヴeatﾏeﾐt. The theoヴ┞ Hehiﾐd CBT is Hased oﾐ the idea that d┞sfuﾐItioﾐal

thoughts, emotions, and behaviours are all related, and that examining your thoughts at a

deeper level can lead to an improvement in condition (Beck 2011).

The purpose of CBT for OCD is to break the link between obsessive thoughts and compulsive

behaviours. Patients can learn to deal with their thoughts through the realization that

everyone experiences intrusive thoughts, but attach different meanings and react in different

ways. By controlling their reactions to intrusive thoughts, they can lessen/overcome their

OCD. (Veale 2007)

5

One way in which people can analyse their thought, behaviour, and emotion patterns is the

ABC model developed by Albert Ellis (1957). The model is a framework for users to gain an

understanding of their behaviours by looking at:

A. The activating event – An event that is the source of some obsessive thinking. (e.g.

touching a door handle in a public place)

B. Beliefs – The beliefs that occurred due to the event (e.g. feeling as though you have

been contaminated and will become ill)

C. Consequence – The emotions and actions that follow on from the beliefs (e.g. anxiety

and the compulsive need to repeatedly wash your hands)

Using the ABC framework is a method to break the link between thoughts and behaviours by

emphasising to users that it is their beliefs about an event, not the event itself, that trigger

their compulsive behaviours.

2.4 - Journaling

Journaling is often used as part of CBT and has been shown to have many benefits. For

example, it is a useful tool in the process of connecting thoughts, feelings, and actions (Hubbs

and Brand 2005) and helps with the mental processing that occurs after stressful events

(Ullrich and Lutgendorf 2002). Also, Purdon et al. (2006) demonstrated that there was a

sigﾐifiIaﾐt Ioヴヴelatioﾐ Het┘eeﾐ the se┗eヴit┞ of soﾏeoﾐeげs OCD aﾐd the aﾏouﾐt to ┘hiIh the┞

tried to suppress their obsessive thoughts, implying a direct benefit to patients who record

their thoughts in a journal.

6

3 - Problem
Traditionally, physical paper journals are used during therapy. However, these do come with

some drawbacks, as well as some challenges related to journaling in general. Summarised

below are the issues identified in Haymen et al. (2012), King and LaRocco (2006), Stone et al.

(2002) and Phipps (2005), with two of my own general ideas in addition in the last two rows.

Table 1 - Issues with paper journals and benefits of E-journals.

Issue with a physical journal

How an E-journal could solve this issue

Patients may not be able to take their

physical journal everywhere with them as

it could be cumbersome, they may also

often forget to keep it on their person.B

The journal cannot be lost as the data would be

stored in the cloud.D

Nowadays it is normal to always carry your mobile

phone with you, so patients are likely to always be

able to make a journal entry.

Therapists may find it hard to read the

patients handwriting, this may be

exaggerated if the patient wrote their

journal entry while in a panicked/ anxious

state.D

Journal entries would be typed

Patients often forget or do not want to fill

out their journal for a few days and then

retrospectivel┞ fill out those da┞sげ eﾐtヴies.
This is an issue as recall is not reliable and

it changes the journaling exercise from a

reflective exercise to a memory test.C, D

Some data such as timestamps can be

automaticallyD included so that the therapist would

be aware if journal entries had been retroactively

filled out. Also, notifications could be sent to

pヴoﾏpt useヴs if the┞ hadﾐげt Ioﾏpleted aﾐ┞ jouヴﾐal
entries for a certain amount of time.

Patients may feel exposed due to writing

down personal/intimate details in the

journal,A and because of the possibility that

anyone could pick up and read a physical

journal.

E-journals would be inherently more secure than a

physical journal. The information would be stored

behind a password so only the user and therapist

would be able to see it.

The awkward nature of data transfer from

a physical journal - patients would have to

take pictures or scan their journal if their

therapist wanted to see it before their

session, or the therapist would have to

read the journal at the start of a therapy

session.

Therapist could have continuous access to their

patieﾐtsげ jouヴﾐals, data Iaﾐ easil┞ He sho┘ﾐ the
therapist on demand.D,E

Current stigma around mental health

issues may mean that people feel self-

conscious filling out their journal in public

and skip journal entries.

Filling out an e-journal on a phone is unlikely to

garner any attention in public.

A = (Hayman et al 2012), B = (King and LaRocco 2006), C = (Stone et al. 2002), D = (Phipps 2005), E =

(Billings 2006)

7

3.1 - Existing solutions

There are many apps available for people undergoing CBT, as well as the general population,

who wish to keep a journal of their thoughts and feelings. In order to identify key features of

these apps and where they fall short, I have reviewed a selection apps available on the google

play store.

Table 2 - CBT Thought Diary – Mood tracker, Journal & Record (Inquiry Health LLC)

Primary

Functions

This app has two primary functions that are accessed from the hoﾏe page, さCheIk
Iﾐざ aﾐd さGuided Jouヴﾐalsざ.
Check-In

Check-In is a quick way of inputting some data about your current feelings without

having to do a full journal entry. To check-in you go through a series of 4 screens to

eﾐteヴ: さho┘ aヴe ┞ou doiﾐgざ ヴated oﾐ a seヴies of faIes, さ┘hat eﾏotioﾐs did ┞ou feelざ
choseﾐ out of a seヴies of positi┗e aﾐd ﾐegati┗e eﾏotioﾐs, さ┘hat aIti┗ities ha┗e ┞ou
Heeﾐ doiﾐgざ Ihoseﾐ fヴoﾏ a list, aﾐd theﾐ the optioﾐ to t┞pe soﾏe te┝t to elaHoヴate if
the user wants to.

The ability to input data from a list of options makes the process quick and is a useful

way to prompt users. While there is a good range of options, adding custom ones is a

premium feature which limits the experience for non-premium users. This feature

has little guidance for users not sure about what to enter; for example, the final

sIヴeeﾐ is siﾏpl┞ a te┝tHo┝ ┘ith the title け┘aﾐt to elaHoヴate?げ. “oﾏe stimulating

questions or example entries might help users who are not used to writing about

their thoughts, although considering the function is just for checking in perhaps the

users are not expected to write much here. Overall, this feature fulfils its purpose as

a simple and quick way to record your feelings, but could use slight improvements.

Guided journal

The Guided Journal function allows the user to make various types of journal entries,

guiding them through each one using questions to which the user must type their

response. The categories for the guides are: Thoughts & Feelings, Gratitude,

Relationships, Goals & Values, and Take Action. Two guides, analyse thought and

practice gratitude, are available to users without the premium subscription.

Analyse thought takes the user through a series of steps to come to a deeper

understanding of their mental process:

1. けWhat ﾐegati┗e thoughts do ┞ou ha┗e?げ
2. けDid ┞our thoughts contaiﾐ aﾐ┞ Iogﾐiti┗e distoヴtioﾐsげ ┘ith a list to Ihoose

from such as catastrophizing, emotional reasoning and self-blaming?げ
3. けHo┘ Iaﾐ ┞ou Ihalleﾐge ┞our negative thoughts?げ
4. けWhat is aﾐotheヴ ┘a┞ of iﾐteヴpヴetiﾐg the situatioﾐ?げ

These questions can be a very useful function for users new to journaling, helping

guide their thinking. Bringing up each question one step at a time means that users

are less likely to find the task too dauting as they only have to consider one section

at a time. Only having 2 of 28 guides available to non-premium users greatly limits

the utility of this function, which is unfortunate considering that it is one of the main

parts of the app. While this app is not primarily designed for OCD users, the ideas

here could easily be adapted for this more specific purpose.

Secondary

Functions

Insights

8

As implied by its name, this function aims to provide users with an insight into their

condition through the use of statistics. The statistics provided on this page are:

Current Streak, Total Entries, Totals for Each Mood, Mood by Day, Mood by Time,

Top Positive Emotions, Top Negative Emotions, Top Cognitive Distortions, and Post-

Entry Feelings.

Insights is a promising feature, and many of the statistics it provides could be

interesting to users. However, a system that was able to draw together and compare

diffeヴeﾐt aspeIts of the useヴsげ data ┘ould pヴo┗ide ﾏuIh ﾏoヴe iﾐsight. Foヴ e┝aﾏple,
Ioﾏpaヴiﾐg useヴsげ ﾏood ┘ith aIti┗ities uﾐdeヴtakeﾐ oヴ people ﾏet ﾏa┞ He ┗eヴ┞ useful
to users trying to identify what events trigger certain emotional states.

Discover tab

The discover tab aims to inform the user about a variety of topics related to mental

health. The function coves topics such as: tackling negative thoughts, cognitive

distortions, stress, and relationships. Upon clicking on a topic information is provide

through series of screens that you must swipe through. Most of the topics are only

available to premium users of the app; if you are a premium user then this function

fulfils its purpose and provides copious information in an easily digestible manner.

Additional

comments

When you load each section of the app for the first time you are given a quick

tutorial on how to use it. This improves app useability and makes it more accessible

to users who are not very computer savvy.

The premium version of the app costs £29.99 per year and provides these additional

features: personalized insights, sync, backup and passcode, and custom emotions are

listed as the benefits of pro version. Having so many features behind paywall greatly

limits the useability of the app and could put off a lot of users.

Link https://play.google.com/store/apps/details?id=com.moodtools.cbtassistant.app

Rating Average rating of 4.5/5, 2786 total reviews

Reviews

1 star –

さ… The update is ugly, complex, and reduces functionality. It is now effectively an advertisement

foヴ the pヴo ┗eヴsioﾐ.ざ

さUﾐdeヴ ho┘ do ┞ou feel ﾐo┘ ┞ouヴ optioﾐs aヴe: Hetteヴ, a little Hetteヴ, ┘oヴse thaﾐ Hefoヴe. Wheﾐ
you click on worse than before, a message pops up that say "oh thats a bummer.." It dismisses

soﾏethiﾐg seヴious aﾐd ﾏakes ┞ou feel hoヴヴiHle. …ざ

3 star –

さUsed to be great. But with the new update, I don't like it as much. U have to pay for a password

protection now. I don't want people knowing what I write iﾐ Iase the┞ use ﾏ┞ phoﾐe.ざ

さThe app is good Hut ┘e Iaﾐ't edit the date to ヴeIoヴd past iﾐIideﾐts, ﾐe┘ eﾐtヴ┞ al┘a┞s Ioﾏe ┘ith
toda┞s date oﾐl┞ ┘hiIh is ﾐot editaHle. It also doesﾐ't ha┗e the google dヴi┗e oヴ Iloud HaIk upざ

5 star –

さHelpful app that has Heeﾐ esseﾐtial to ﾏ┞ peヴsoﾐal ヴeIo┗eヴ┞ of OCD. Highl┞ ヴeIoﾏﾏeﾐd.ざ

さEas┞ to use aﾐd helpful. A ﾐiIe alteヴﾐati┗e to jouヴﾐaliﾐg.ざ

Table 3 - Mind journal: Diary, Mood tracker & Gratitude (Bazimo)

Primary

Functions

Emotion

This function is a way for users to quickly add an emotion and an associated event to

their day. From the main screen (journal tab) you can choose to add an emotion to

the day. You then get to choose from a series of emotions with the ability to add

your own custom emotions. Once an emotion is chosen you are then taken to a new

sIヴeeﾐ ┘heヴe ┞ou aヴe asked さ┘hat did ┞ou do?ざ ┘ith a seヴies of possiHle aIti┗ities

9

such as work, sleep, or cooking, as well as the ability to add custom activities. At the

bottom of this page there is also the option to add a note in a simple text box. Once

aﾐ eﾏotioﾐ has Heeﾐ added it is displa┞ed oﾐ the Iuヴヴeﾐt da┞げs page iﾐ the jouヴﾐal
tab, which is set out like pages of a physical journal. This function is a useful and

simple way for users to quickly note how they are feeling, and the journal-style

layout makes for a simpler transition for users switching from a regular journal to an

E-journal.

Create a story

From the journal tab you also have the option to create a story, which is a way to add

some more detail to your day than an Emotion entry in a set format. This function is

a seヴies of ヵ pages that ┞ou s┘ipe up to pヴoIeed thヴough ┘hiIh ask the useヴ: さho┘
was ┞ouヴ da┞?ざ usiﾐg a ヴouﾐd slideヴ oﾐ a sIale fヴoﾏ a┘ful to a┘esoﾏe, さho┘ ┘as
┞ouヴ da┞? E┗eﾐts, eﾏotioﾐs, feeliﾐgs…ざ ┘ith a te┝t Ho┝, ┞ouヴ top ン ┗iItoヴies of the
da┞, a fiﾐal ケuestioﾐ that Ihaﾐges eaIh tiﾏe, aﾐd fiﾐall┞ さ┘ould ┞ou like to gi┗e ┞ouヴ
story a ﾐaﾏe?ざ. E┝aﾏples of the fiﾐal ケuestioﾐ aヴe: さWhat aヴe soﾏe feaヴs I used to
ha┗e? Ho┘ ┘as I aHle to o┗eヴIoﾏe theﾏ?ざ oヴ さIf ﾏ┞ ┘oヴst feaヴs ┘eヴe to Ioﾏe tヴue,
┘hat ┘ould I do? Would I He aHle to haﾐdle that?ざ.
Firstly, the layout of this function is not ideal: the vertical scrolling is not very

intuitive and sometimes cuts off the question, and round slider for inputting

emotions is an unusual format. These design choices could be very frustrating to

users with low technical knowledge. On the text input sections there is nothing in the

way of guidance for the section and no example inputs. There is an audio guide for

each section when using the app for the first time that explained the purpose and

how to fill it out, which made the app feel very welcoming and personalised and

would be of great help to users new to journaling. It would be a big improvement if

this audio guide were always available, not just on the first use, and if it were also

available in text format. The question at the end of this section that changes each

time is an interesting idea which is potentially useful in keeping people interested in

using the app and encouraging them to think in different ways, as it might otherwise

get repetitive filling out the same questions every day. Another good feature of this

function is the way it encourages users and is positive towards them. Firstly, when

typing, the app has a progress bar encouraging the user to write a certain amount,

sa┞iﾐg さT┞pe a Hit ﾏoヴe foヴ a Hetteヴ effeItざ, さKeep it Up!ざ aﾐd さYouげヴe doﾐe!ざ.
Secondly the app has the section for the user to fill out their top 3 victories of the

day, which offers the user some positive support.

Overall, this function does allow the user to add some basic information about their

day, although the user interface can be clunky at times.

Secondary

Functions

Feed

The feed section aims to educate the user about general mental health wellness

information. It achieves this with a simple user-friendly interface and by presenting

the information in small sections with pictures.

Insights

This function contains reflection prompts designed to increase self-awareness, and

guided meditations covering gratitude, anxiety, mindfulness and much more. As this

is a premium feature I cannot comment on its effectiveness.

Link https://play.google.com/store/apps/details?id=com.diary.journal

Rating Average rating of 4.6/5, 9793 total reviews

Reviews

1 star –

さIs not really working. You can't customise dates, so if you are writing your journal after midnight,

it will autoﾏatiIall┞ set the date, aﾐd ┞ou Iaﾐ't ┘ヴite foヴ the ﾐe┝t date.ざ

10

3 star –

さLike the story concept and mood tracking but this app is lacking basic features. Unable to edit

story title once saved. No option to add photos to stories. Don't see external saving or export

optioﾐs. DiffiIult to ﾐa┗igate & seleIt the ﾏoods at tiﾏes. UI is oIIasioﾐall┞ glitIh┞. Uﾐiﾐstalled.ざ

5 star –

さI like this app it helps me a lot, I feel positive when something good happens and I write about it,

when there's something bad then I feel light after writing. Its nice to have someone ask you how

┘as uヴ da┞ aﾐd ヴeﾏiﾐd u of uヴ little ┗iItoヴies.ざ

Table 4 - Thoughts – CBT trainer and thought diary (Vivid mind)

Primary

Functions

Learn CBT

Clicking on learn CBT from the home page takes you to the learn CBT page. This page

contains a list of topics (e.g. automatic thoughts, distortions, core beliefs) which

when clicked take you through to another page with information about each topic.

The information is presented in digestible sections alongside illustrations, often with

concrete examples of each topic. The user interface is sometimes inconsistent; for

example, the button to return to the list of topics sometimes says continue,

sometimes says back, and on one occasion is missing. Also, many of the screens are

slightly bigger than the phone screen meaning you have to scroll to see the

continue/back button, but without any indication that you are able to scroll. These

flaws in the design could make this section hard to use for users with low

technological skills, and annoying for others. If the purpose of this function is to

teach CBT, as the name suggests, then it falls short. However, this is probably a

naming issue, and though the interface could be simpler and more consistent the

function does provide some useful mental health/ mindfulness information.

Practice CBT

Although this function is called practice CBT, what it really aims to do is allow the

users to express their feelings in a diary entry. This function contains two sections; a

guide on how to use the diary, and the diary itself. The guide gives help on how to fill

out each part of the diary with example entries. The diary pages talk the user

through making a diary entry step by step across 3 pages. On the first page you enter

the date, the event/trigger, how stressed you felt (on a slider), and what emotions

you are feeling now. On the next page you enter your thoughts in response to the

event, any cognitive distortions you can identify from a list, and an alternative

perspective you can take on the situation. On the final screen you can enter your

behaviour, your distress after your actions (on a slider), and if there is anything else

that you could have done to make the situation better.

The how to use the diary page is a useful part of this function, and the explanation

and example inputs could be very helpful to users who are either unsure what to

write or lacking confidence in their writing. It would be an improvement if this help

was available as you went through the process of making a journal entry, as with the

current setup if a user wanted to look at the help whilst still completing a diary entry,

they would lose their progress by doing so.

For the process of making a diary entry, it is helpful that the inputs are spread out

over three pages and that the titles of the inputs are descriptive. For example, rather

thaﾐ aﾐ iﾐput Ho┝ sa┞iﾐg けthoughtsげ the title is さIdeﾐtif┞ the thought that aヴose iﾐ
response to the event. Identify the thoughts that are leading to the emotions or

feeliﾐgs that ┞ou eﾐteヴedざ. This is helpful foヴ useヴs ┘ho aヴe stヴuggliﾐg ┘ith ┘hat to
write and may help them to get the most out of the journaling process.

11

There are some design and ease of use improvements that could be made to the

diary entry screens. Firstly, the cursive font (also used on the home page) used for

some of the headings in yellow on a white background makes it difficult to read.

Furthermore, the text input fields only have a border along the bottom, meaning it is

not always obvious where to click to enter text. Finally, the titles for the inputs are

placeholder text inside the textboxes that disappears once you start typing,

something that would be inconvenient for users who would like to refer back to the

prompts in the title. Altogether this function succeeds in allowing the user to make

diary entries, and helps them to do so with useful guidance and thought-provoking

question covering a large range of topics. However, the user interface could be

improved by making it clearer where to type, by not having the titles as placeholder

text, and by making some of the text easier to read.

Secondary

Functions

This app contains no other functions.

Link https://play.google.com/store/apps/details?id=org.thevividmind.thoughts

Rating Average rating of 4/5, 35 total reviews

Reviews

5 star –

さGヴeat joH. E┝aﾏples aヴe ┗eヴ┞ helpful to uﾐdeヴstaﾐd the IoﾐIepts.ざ

4 star –

さGreat! Although the explanations of the 'distortions' would be nice to have an option to read it

dor longer, as the explanatioﾐs oﾐl┞ seeﾏ to sho┘ foヴ a ケuiIk seIoﾐd Hefoヴe the┞ disappeaヴ.ざ

Table 5 - CBT Diary (Continuum)

Primary

Functions

Record Event

The record event function allows the user to enter: Time, Date, Event, Body

Sensation, Emotions, Behaviour, Automatic Thoughts, Belief, Automatic Thought,

Circumstances and Remarks. This function succeeds in its basic purpose that a user

can record an event in a structured and analytical manner; however, there is no

explanation of how to fill out the form, why they might want to, or any example

inputs.

Record Thought

Recording a thought allows the user to enter: Time, Date, Thought, Belief, Body

Sensation, Behaviour, Circumstances and Remarks. As with the record event function,

this function would be useful to someone looking for a very simple diary app but not

for a new user who needs guidance.

Record Emotions

This function provides a way for the user to rate 9 emotions from 0-9 by simply

typing the number in each respective box. There is a method for the user to add

custom emotions in the settings, although this would be more convenient if it were

contained in the emotions function. The function is a successful basic way for the

user to quickly record their emotions.

Secondar

y

Functions

Show Charts

This fuﾐItioﾐ is a ﾏethod foヴ ┗isualisatioﾐ of the useヴsげ data. Oﾐ the fiヴst sIヴeeﾐ ┞ou
must enter chart type (Pie Top Emotions, Line Top Emotions, Pie All Emotions, Line

Choseﾐ Eﾏotioﾐsぶ aﾐd the staヴt aﾐd& eﾐd da┞ oヴ peヴiod. “ho┘iﾐg the useヴげs
emotions over time is a great addition to the app that could be very useful in tracking

their condition.

Generate Report

12

The generate report function allows the user to choose a time period from which to

extract the data and then generates a report of their entries. The ability to produce a

report from your diary entries could be very useful in a therapy setting where the

user needs to regularly share their entries with a therapist. As this function is behind

a paywall I cannot comment on its effectiveness. A license can be bought for 3

months, 1 year or 99 years, with the cheapest option being £36.49 for 99 years.

Link https://play.google.com/store/apps/details?id=pl.com.continuum.cbtbasicemotionsd

iary

Rating Average rating of 4.2/5, 256 total reviews

Reviews

1 star –

さI became so sick of the constant alerts that I eventually had to uninstall it. I'd not even used it,

and tried changing the settings innumerable times with no joy. Way too much hassle and

aﾐﾐo┞iﾐg!ざ

3 star –

さ…However there are times now I rely want access to it on my laptop/desktop so that I can record

events faced at work with angry emails etc. さ

5 star –

さI appヴeIiate the siﾏpliIit┞ of the app. It Hヴiﾐgs soﾏe disIipliﾐe iﾐto ﾏ┞ dail┞ jouヴﾐalliﾐg aﾐd I Iaﾐ
always access my information no matter where I am. I can also see how my emotional states

progress throughout a week and re-read my previous entriesざ

さExporting option is a great plus for sharing your records (probably to a therapist) in a

spreadsheet. My only complaint: pressing the help button while having partially filled a record

seeﾏs to Iause ┞ouヴ ヴeIoヴd gettiﾐg lostざ

さ…I really like how I Iaﾐ add thoughts, eﾏotioﾐs, etI. iﾐstead of ヴel┞iﾐg oﾐ the default ﾏode…ざ

3.2 Summary of App Reviews

Common Primary Functions –

Rating emotions:

Three of the apps have a function where the users can quickly add an entry where they rate

their eﾏotioﾐs. Iﾐ all of the appげs useヴs Iould Ihoose eﾏotioﾐs fヴoﾏ a seヴies of optioﾐs, ofteﾐ

with accompanying emoticons. This speeds up data entry for users significantly in comparison

to typing out each emotion they want to enter, and having the visual aspect of the emoticons

Iaﾐ also ┘oヴk to help useヴs ideﾐtif┞ ho┘ the┞げヴe feeliﾐg iﾐ a ┘a┞ that a Hlaﾐk te┝t Ho┝ ﾏight

not. The CBT Diary app was the only one to make the users rate their emotions out of ten

rather than simply choosing which emotions they felt; this method provides more insight into

the useヴげs state of ﾏiﾐd ┘ithout ヴeケuiヴiﾐg ﾏuIh ﾏoヴe effoヴt. CBT Thought Diaヴ┞ aﾐd Miﾐd

Journal both have additional questions about the activities the user has been doing chosen

from an editable list - again this is useful to speed up data entry and simplify the experience

for the user. These extra questions also add more purpose to this function, as recording that

you felt happy after a certain activity or anxious after another is much more useful and

insightful than simply recording that you were happy or anxious.

13

Diary Entries:

All of the apps had methods for adding various forms of diary entries. There were a few

common themes where this function was implemented well. The first of these was spreading

out form inputs over multiple pages. This allows the user to focus on one part of the process

at a time without becoming overwhelmed by the whole process. Also, for analyses such as

the ABC model with defined different areas of analysis, having these sections split across

separate pages could help users to separate them mentally. The second theme was helpful

guidaﾐIe oﾐ jouヴﾐal eﾐtヴies. This ヴaﾐged fヴoﾏ the guided jouヴﾐal eﾐtヴies oﾐ けCBT Thought

Diaヴ┞げ to the audio guides oﾐ けMiﾐd Jouヴﾐalげ aﾐd the e┝aﾏple iﾐputs oﾐ けThoughtsげ. EaIh of

these features makes for a comfortable, supportive experience for users, something which is

very important in an environment where users may feel anxious and exposed about

expressing their intimate thoughts. Finally, a simple UI was a key aspect to successfully

implementing this function. Mind Journal was the only app to have problems with the UI such

as dodgy scrolling, sometimes cutting off questions, and circular sliders. Issues such as these

may be very frustrating to users with low levels of technical knowledge and could put them

off using the app.

Common Secondary Functions –

Mental Health Information:

Three of the apps had a section which included information about mental health. Each of

these was laid out well and presented the information to the users in readable chunks

accompanied by illustrations. For my purposes, information about cognitive distortions will

be the most important to include as it gives the users the means to identify cognitive

distortions in their beliefs about their mental intrusions.

Statistics:

CBT Thought Diary and CBT Diary both have a function for displaying some summary statistics

to the user based off their journal entries. CBT Diary have implemented this feature slightly

better as it provided a way for users to visualize how their emotions have changed over time,

whereas CBT Thought Diary mainly listed cumulative statistics such as top emotions and top

cognitive distortions.

14

 Missing/ poorly designed features:

• Lack of continuity between different sections of the app. Foヴ e┝aﾏple, iﾐ けThoughtsげ

the help is all available on one page so if you want to view the help halfway through a

journal entry you have to discard your progress to be able to go to the help page.

• Only CBT Diary had the ability to extract data from the app to share easily with a

therapist through its create report feature. This would be very important for users

using the app in a therapy setting, and solves one of the problems identified in section

2.4 with physical journals.

• None of the apps have a way to search through past journal entries.

Additional well-designed features:

• On the first time loading the app a tutorial explaining how to use the app is useful to

help introduce users to the app.

• The forms on all of the apps had very few required fields, often just the first one. This

could be very useful to users who are not feeling up to writing a full diary entry and

just want to get some information down and fill out the details later.

3.3 - User Personas

In order to keep my work on track I have written the following 3 user personas that capture

the main user groups my application is intended to serve. Keeping these personas in mind

through the development process will help to focus my work on the important aspects that

seヴ┗e ﾏ┞ useヴげs ﾐeeds, aﾐd allow me to think of the product through not just my own

perspective.

Patient Persona 1

Name: Edward Shaw

Description: Age 20, he has just started with therapy and has a low level of knowledge about

his condition and OCD in general. He has moderate OCD, with obsessive thoughts about

contamination which leads to compulsive cleaning behaviours. Edward has a high level of

technical knowledge.

Needs/ aims: Edward has no previous experience of journaling so is worried he might not

know how to fill out the journal or might not stick to journaling regularly. For these reasons

he wants an E-journal that can give him some guidance on his entries and encourage him to

15

use it regularly, as well as the benefit of always having it with him on his phone. Through

journaling he wants to gain an understating into his mental processes, e.g. thought patterns

and cognitive biases, to help with their CBT.

Patient Persona 2

Name: Emma Cook

Description: At age 40, Emma has been undergoing therapy for a number of years and is

familiar with her condition and thought processes. She has severe OCD, mainly related to

obsessive checking due to a fear of leaving their doors unlocked, leaving the oven on etc.

Needs/ aims:

Emma has been journaling every day for a while with a physical journal but is looking to switch

to an E-journal as she wants to be able to easily share her journal with her therapist, view

statistics and visualisations based on her journal entries, and easily search through previous

journal entries. Emma has a low level of technological knowledge so is looking for an E-journal

that is easy to use with simple interfaces.

Therapist Persona

Name: Eve Brown

Description: Has been a therapist carrying out CBT with people with OCD for a number of

years.

Needs/ aims: E┗e fiﾐds that heヴ patieﾐts ofteﾐ foヴget theiヴ ph┞siIal jouヴﾐals oヴ doﾐげt ┘aﾐt to

fill them out in public. She would therefore like to start using E-journals with them but there

are currently no E-journal applications designed specifically for OCD. Also, she finds it

IuﾏHeヴsoﾏe to eitheヴ ha┗e to He seﾐt piItuヴes of jouヴﾐals oヴ ヴead thヴough heヴ patieﾐtげs

journals in her therapy sessions. She would therefore like an E-journal that is tailored to OCD

and allows her patients to easily share their data with her.

3.4 - OCD Diary Research

To He aHle to uﾐdeヴstaﾐd ┘hat ﾐeeds to He iﾐIluded iﾐ ﾏ┞ appliIatioﾐ to ﾏeets ﾏ┞ useヴげs

needs, some examples of CBT diaries and exercises for OCD must be reviewed.

Iﾐ けThe OCD WoヴkHookげ ふヲヰヰヶぶ H┞ﾏaﾐ aﾐd PedヴiIk desIヴiHe a ﾏethod of Iogﾐiti┗e

ヴestヴuItuヴiﾐg desigﾐed to Ihalleﾐge paヴtiIipaﾐtsげ fault┞ Heliefs H┞ ideﾐtif┞iﾐg the Iogﾐiti┗e

16

errors at work, and writing a more realistic appraisal of/ response to the situation. The

exercise requires the participant to record 8 items:

1. Activating event

2. Intrusive thought

3. Discomfort on a subjective units of distress scale (SUDS)

4. Faulty belief

5. How much they believe their faulty belief to be true (0-100%)

6. What type of cognitive errors are at work

7. Realistic response or coping statement, used to talk back to the OCD

8. How much they believe the realistic response to be true (0-100%)

An example of this exercise from the book is:

1. Touching a handle in a public bathroom with bare skin

2. What if I contract a disease?

3. 50

4. I will become sick if I do not act

5. 40%

6. Overestimating risk, intolerance of uncertainty

7. If I doﾐげt aIt oﾐ ﾏ┞ ﾐeed foヴ aHsolute Ieヴtaiﾐt┞, the uヴge to do a ヴitual ┘ill diﾏiﾐish. I

must learn to take a chance in order to get better

8. 50%

This exercise is intended to show the participants that they have a choice in the way that they

interpret their thoughts, that doing so can relieve the symptoms of their OCD, and that by

analysing their thoughts they can become more objective the next time they experience them

and learn to control their reactions.

17

Clark (2007) highlights the importance of recognizing an additional step in thinking past

analysing the faulty beliefs. Clark proposes that in addition to misinterpreting their

obsessions, people with OCD also falsely evaluate their efforts to control their obsessions and

the perceived consequences of failing to control their obsessions. Expanding on this idea, he

proposes that these false appraisals of thought control are a key factor in the frequency of

obsessions, and that there are two ways to reduce the reaction to unwanted mental

intrusions. Firstly, the recognised route of interpreting the reaction differently, and secondly

through adapting the appraisal of failed thought control. One example Clark gives of this

thinking is a religious individual who has unwanted sexual obsessions; they may interpret

their lack of/failure to control these obsessions as proof that they are of a sinful nature. In

this case and the others Clark highlights, individuals are continually struggling to control their

obsessions due to their falsely perceived consequences/implications of not doing so.

Clark also gives an example of a similar exercise to that of Hyman and Pedrick (2006), in which

individuals must note: date/ time, situational trigger, obsession, interpretation of importance,

and main appraisal patterns (cognitive errors). This exercise is used to teach patients to

separate their faulty interpretations of their obsessions from the obsessions themselves, then

to challenge these faulty appraisals.

Two additional diary exercises (figures 1 and 2) studied also included questions about triggers,

emotional response, obsession/worry, reaction/compulsion, alternative response, and the

outcome.

Figure 1 - Example OCD thought record sheet (Think CBT 2017)

Figure 2- Second example OCD though record sheet (Get self-help 2010)

Based on these observations, I will prompt users to write about: activating events and the

associated intrusive thoughts, the following obsessions and associated anxiety, how much

they believe their evaluation of the situation to be true, any cognitive errors they can identify

18

in their thinking, and a more realistic assessment of the situation. In the final section I will

iﾐIlude iﾐfoヴﾏatioﾐ aHout Claヴkげs seIoﾐd step of thiﾐkiﾐg to get the useヴs to also thiﾐk aHout

their lack of control over their obsessions.

3.5 - Constraints

There were two main constraints on the scope of this project; the amount of time, and my

knowledge going into the project.

In total there were 14 weeks to complete the project. This included all aspects of the project

development lifecycle (research, design, implantation, testing and evaluation). Fitting all of

these stages into 14 weeks is a tight schedule, and limits the number of features than can be

included in the end product. To help mitigate this issue a plan was created at the start of the

project to keep each major part of the work within certain timeframes.

At the start of the project, I had very little knowledge about two important aspects of the

work; OCD and React Native applications (my chosen application framework as will be

discussed in later sections). My lack of knowledge of OCD meant that during the research

phase I often had to do extra reading to understand many of the common terms and themes

in the literature, and had to make sure that what I was reading was consistent with the current

schools of thought. My lack of knowledge of React Native applications and lack of experience

developing them firstly slowed down the implementation phase of the project, as I was

tackling many problems for the first time without prior experience to draw on, and secondly

increased the difficulty of the design phase as I was sometimes unsure of the possibilities and

limitations within React Native.

19

4 - Approach

4.1 Development methodology

I will use the Kanban board development methodology for the implementation phase of this

project. Kanban boards are an agile project management tool which use three sections to

organize the work; to do, in progress, and complete. By splitting up the development work

into small individual tasks they can be easily organised on the board in order to visually track

their progress, along with the overall progress of the work. Further, as an agile methodology

this allows for more tasks to be easily added if they arise as the work progresses. This is useful

to an individual like myself who has limited experience planning large projects, as if I were

using a non-agile methodology such the waterfall process, I would not be able to adapt the

project throughout the process.

My development will focus initially on coヴe featuヴes of the app defiﾐed as the けﾏust ha┗eげ

features in the requirements definition (Section 5). Only once these features have been

iﾏpleﾏeﾐted ┘ill I ﾏo┗e oﾐto the けshould ha┗eげ aﾐd けIould ha┗eげ featuヴes of the appliIatioﾐ.

To keep my progress on track, at the start of the development phase I will plan a timeframe

for when I intended to complete each feature. This will allow me to keep within the strict

timescale for the project and give me many smaller deadlines throughout the process to keep

me motivated.

4.2 Mobile app vs website

I have chosen to produce a mobile app, rather than a website, as they are generally more

responsive and easier to use than mobile websites. As users may want to write in their diary

5+ times a day, it is far more convenient to use an app installed on their phone than it is to

have to load a website every time. (Diduh 2021)

4.3 Technologies chosen:

4.3.1 Framework

To create my application, I will be using React Native. React Native is a framework that allows

you produce apps for both android and IOS devices using one language (JavaScript), as

opposed to Iヴeatiﾐg eaIh platfoヴﾏげs app iﾐ a diffeヴeﾐt laﾐguage ふ“┘ift foヴ IO“ aﾐd

Kotlin/Java/C++ for android). This is a great advantage for this project, as it would have been

unfeasible to create an app for each platform due to time and knowledge constraints.

However, with React Native, I can effectively double the potential user base of the app. React

20

Native also integrates well with the libraries I plan to use for the back-end of the app; Node.js,

Express.js, and MongoDB, as they all use JavaScript and JSON data.

4.3.2 Database

As my application will require the storage of information such as usernames, passwords, and

diary entries, I will need a way to securely store all this information. For this need I will be

using Node.JS, Express.JS, MongoDB, and mongoose.

MongoDB

MongoDB is a NoSQL database that stores documents with a JSON style notation (Taylor

2021). This is my preferred method over using a SQL database, as I will be able to use JSON

data throughout the application, thus simplifying my workflow. To host the database I will be

using MongoDB Atlas, where a free account provides between 512MB to 5GB of storage.

Node.js and Express.js

Node.js is a JavaScript runtime environment that was built to facilitate the running of

JavaScript programs outside of a browser (Patel 2018). Express.js is a web framework built for

node which allows the handling of http requests using routes and http verbs.

Mongoose

Mongoose is an object modelling library that provides a layer of abstraction on top of

MongoDB. In a mongoose schema you define the properties of a MongoDB collection. For the

properties you can define attributes such as data type, whether they are required fields, and

whether they are unique fields.

Node.js, Express.JS, and mongoose will be used to connect the application to the database by

using a series of routes to handle different requests. For example, if the front-end made a

GET request to the URL /:user/entries, there may be a express.js route that uses mongoose

to retrieve all the diary entries from the database for that user and then sends them back to

the front-end.

4.3.3 UI

Wheﾐ desigﾐiﾐg ﾏ┞ UI, I ┘ill He iﾐIoヴpoヴatiﾐg Googleげs ﾏateヴial desigﾐ staﾐdaヴds ┘heヴe I see

fit. This will mean that the design of my app is in line with what users are used to experiencing,

thereby minimizing the time it takes for users to feel comfortable using my app. When

implementing the UI I will be making use of the npm package react-native-paper. This package

21

provides a collection of React Native elements that can be used to assemble a consistent UI

in accordance with the material design principles.

4.4 – Learning resources

Prior to starting the development work on the project, needed to acquire new skills and learn

to use the chosen technologies. First of all, the tutorial in the React documentation was

followed (React [no date][c]). This tutorial gives an introduction to react concepts such as

props, state, class and functional components. Secondly, to learn the fundamentals of node.js

aﾐd e┝pヴess.js a YouTuHe tutoヴial H┞ さfヴeeCodeCaﾏpさ was used (freeCodeCamp.org 2021). To

learn how to set up a mongoDB database and integrate it with node.js and express.js a

YouTuHe tutoヴial H┞ さThe Net Niﾐjaざ ┘as used ふThe Net Niﾐﾐja ヲヰヲヰぶ. To suppleﾏeﾐt these

resources a further set of two videos demonstrating the creation a full stack app were used

(JavaScript Mastery 2020a and 2020b). Finally, when starting to code, the introduction guide

in the React Native documentation was used (React Native 2021).

22

5 – Products

5.1 Requirements

Based on the reviews of existing solutions and OCD exercises in the literature, the following

functional (table 6) and non-functional (table 7) requirements for my solution have been

defined

Table 6 - Functional Requirements

No. Requirement Acceptance Criteria

Must have

1 The system will allow patient users to

write a diary entry

Patients have the option to add a new diary

entry, which on completion saves the entry to a

database

2 In the diary entry, the patient can include

information about an activating event,

associated intrusive and obsessional

thoughts and their related anxiety

Within a diary entry, the user is prompted and

able to enter information about an activating

event, associated intrusive and obsessional

thoughts and their related anxiety

3 In the diary entry the patient can include

information about cognitive errors and

their faulty beliefs

Within a diary entry, the user is prompted and

able to enter information about cognitive

errors and their faulty beliefs

4 In the diary entry the patient can include

information about alternative ways to

interpret their intrusive thoughts

Within a diary entry, the user is prompted and

able to enter information about alternative

ways to interpret their intrusive thoughts

5 In the diary entry the date and time

should be automatically filled, although

the user should be able to edit them

Within a diary entry the date and time are

automatically set to the current values, the

user can choose to edit them if they wish

6 The system will allow patient users to

search through their previous entries

Patients can enter a word or series of words

and the system will return the diary entries

matching all or parts of the string

7 The system will allow patient users to

view all the details of a previous diary

entry

Patients can choose a specific diary entry from

a list of all their entries, and view the details of

that entry

8 The system will allow patient users to

edit their previous diary entries

Patients can choose to edit any of their

previous diary entries, upon saving their edits

the database will be updated with the new

version

9 The system will allow patient users to

view their previous entries and filter and

sort by date

Patients can choose to view their diary entries

and see a list of all diary entries. Patients are

able to choose a date or range of dates to filter

the entries by and can sort by ascending or

descending chronological order

10 The system will allow user to select

entries to become private, which their

theヴapist Iaﾐげt see

Patients can specify when creating a diary

entry, or in retrospect, that the entry should be

private. This entry will then not be visible to

their therapist

11 The system will require all users to create

an account with an e-mail and password

On first us of the application the system will

require users to create an account, users will

not be able to access the application without

being logged into an account

23

12 The system will allow users to change

their password

While logged in, a user can change their

password by entering their old password and

new password, which will then be saved in the

database

13 The system will allow patient user to

perform a check-in

Patients have the option to check-in, which on

completion will be saved into the database

14 In the check-in the patient can choose

and rate their emotions from a list

Patients can select any number of emotions

from a list of options and rate the strength of

each of these emotions on a scale of 1-10

15 The system will allow patient users to

edit the list of emotions

Patients can remove default emotions and add

or delete their own custom emotions

16 In the check-in the patient can choose

what activities they have been doing

Patients can select any number of activities

from a list

17 The system will allow the patient users to

edit the list of activities

Patients can remove default activities and add

or delete their own custom activities

18 In the check-in the patient can add a note Patients can type a text note that is saved with

the check-in

19 The system will allow users to view and

edit a previous check-in

Patients can view a list of their check-ins and

can choose to edit any of these, upon saving

their edits the database will be updated with

the new version

20 The system will allow therapist users to

view their patients

Therapists are able to see a list of all of their

patients

21 The system will allow therapist users to

add/delete patients to their list

Therapists are able to add new patients to their

list and delete patients they are no longer

seeing from their list

22 The system will allow therapist users to

see and search through all of the non-

private entries of each of their patients

Upon selecting a patient, the therapist can see

a list of all of their non-private diary entries.

The therapist is able to search this list using

search terms and sort the list by date

Should have

22 The system should have a function to

provide information about cognitive

errors to the patient users.

Patients are able to view a list of cognitive

errors, upon clicking on an error the user is

taken to a page with information about that

error

23 The system should have a function to

display summary statistics to the users

Patients can choose to see summary statistics

based on their diary entries, such as common

emotions, activating events, or cognitive

distortions

24 The system should have a function to

display useful comparisons to patient

users.

Patients can view useful comparisons drawn

from their entries, for example a graph of their

emotions over time or a list of which activities

produce the most anxiety

Could have

25 In a diary entry, the patient user could be

able to tag their location

Patient is able to add their location to a diary

entry either through their devices location or

by typing a location

26 The system could send a notification to

the patient user if they have not done an

entry in an amount of time specified by

the user

Patient can choose to be sent a reminder

notification after their chosen time period of

no diary entries. A notification prompting the

user will be sent after the time period

24

27 The system could let patient users save

common items such as people and places

so they can be referenced between diary

entries

User can tag common items and use them

when writing their diary

28 In a diary entry, the patient user could be

able to add a photo

Patient is able to attach a photo to a diary

entry either through taking a photograph or

choosing a photo from their device

Table 7 - Non-Functional Requirements

No. Requirement Measure

Must have

1 The system must provide example inputs

for each section of the diary

On each diary input section, patients will be

able to view an example input for that section

to demonstrate the type of thing they might

want to enter

2 The system must explain the purpose of

each section of the diary

On each diary input section, patients can view

some text that explains the reasons behind and

purpose of that section

3 The system must be easy to use,

navigate, and understand

A heuristic evaluation of the UI will be carried

out to evaluate the useability of the system

4 The system must be reliable Test cases will be produced and carried out to

ensure the system functions correctly

Should have

5 The system should be fast to respond to

user input

Other than actions that interact with the

database, the system should respond very

quickly (<1 second) to user input

25

5.2 Use cases

The following use cases cover the main tasks that each type of user will be able to undertake

within the app.

Figure 3 - Use case diagram

Patient Use Cases

Table 8

Name: Log a diary entry Number: 1

Description: Users can log a guided diary entry

Pre-conditions and Trigger: User must be logged into a patient account

Main Flow:

1. Useヴ seleIts さNe┘ Diaヴ┞ Eﾐtヴ┞ざ oﾐ the ﾏaiﾐ ﾏeﾐu

2. User enters title

3. User enters data and time (optional, as these are auto filled to current values)

4. User enters activating event and intrusive thoughts

26

5. User enters their obsessions

6. User rates their anxiety on a slider

7. User clicks next page button

8. User rates their belief in their evaluation on a slider

9. User chooses cognitive errors from a list

10. User enters identified faulty beliefs

11. User clicks next page button

12. User enters alternative interpretation of situation

13. User selects radio button if they would like the entry to be private

14. User clicks submit entry button

Alternative Flow:

User can click the hamburger menu and click save and exit at any time after they have entered the

title to exit the flow back to the main menu.

Table 9

Name: Edit or delete a previous diary entry Number: 2

Description: From viewing a list of diary entries the user can choose to edit or delete a diary entry

Pre-conditions: User must be logged into a patient account and have completed 1 or more diary

entries.

Main Flow:

1. Useヴ seleIts さ┗ie┘ seaヴIh aﾐd filteヴ eﾐtヴiesざ fヴoﾏ the ﾏaiﾐ ﾏeﾐu

2. User shown list of previous diary entries

3. User clicks on delete button next to their chosen entry

4. User click confirm and the entry is deleted

Alternative Flow 1:

1. Useヴ seleIts さ┗ie┘ seaヴIh aﾐd filteヴ eﾐtヴiesざ fヴoﾏ the ﾏain menu

2. User shown list of previous diary entries

3. User clicks on edit button next to their chosen entry

4. System displays their previous inputs

5. User edits their desired sections and click save

Table 10

Name: Perform a check-in of emotions and activities Number: 3

Description: Users can do a quick check-in where they can choose emotions from a list and

activities from a list and add a text note.

Pre-conditions: User must be logged into a patient account

Main Flow:

1. User seleIts さCheck-inざ fヴoﾏ the ﾏaiﾐ ﾏeﾐu

2. User chooses the emotions they are feeling from a list of emotions

3. User chooses the activities they have been doing from a list of activities

4. User enters a text note

5. User click submit

Alternative Flow 1:

1. User opts to add a custom emotion at stage 2 of the main flow by clicking add emotion

2. User enters name of emotion

3. User chooses an emoticon to represent the emotion

27

4. User clicks save and returns to main flow

Alternative Flow 2:

1. User opts to add a custom activity at stage 2 of the main flow by clicking add activity

2. User enters name of activity

3. User chooses an emoticon to represent the activity

4. User clicks save and returns to main flow

Table 11

Name: Read and learn about cognitive distortions Number: 4

Description: User is able to read about common cognitive distortions that may be present in their

thinking.

Pre-conditions: User must be logged into a patient account

Main Flow:

1. Useヴ seleIts さLeaヴﾐ aHout Iogﾐiti┗e distoヴtioﾐsざ fヴoﾏ the ﾏaiﾐ ﾏeﾐu

2. System displays a list of cognitive distortions

3. User clicks on a cognitive distortion

4. System displays information about the chosen cognitive distortion

Table 12

Name: View past diary entries Number: 5

Description: Users can view can a list of their diary entries, where they can select individual

entries to view.

Pre-conditions: User must be logged into a patient account and have completed one or more diary

entries.

Main Flow:

1. Useヴ seleIts さVie┘ seaヴIh aﾐd filteヴ eﾐtヴiesざ fヴoﾏ the ﾏaiﾐ ﾏeﾐu

2. User shown list of previous diary entries

3. User clicks on a chosen entry

4. System displays all the information from that entry (from here they can edit or delete an

entry, use case 2)

Table 13

Name: Search and sort past diary entries Number: 6

Description: Users can search through their diary entries or filter them by date.

Pre-conditions: User must be logged into a patient account and have completed 1 or more diary

entries.

Main Flow:

1. User seleIts さ┗ie┘ seaヴIh aﾐd soヴt eﾐtヴiesざ fヴoﾏ the ﾏaiﾐ ﾏeﾐu

2. User enters search terms into search box and clicks search

3. System returns the list of entries matching the search terms

Alternative Flow:

1. Useヴ seleIts さ┗ie┘ seaヴIh aﾐd soヴt eﾐtヴiesざ fヴoﾏ the main menu

2. User chooses sort newest or oldest first

3. System returns the list of entries in the chosen order

28

Table 14

Name: View summary statistics based off inputs Number: 7

Description: User can view summary statistics, based on their check-ins and diary entries, such as

most common emotions and most common cognitive distortions.

Pre-conditions: User must be logged into a patient account and have completed one or more diary

entries

Main Flow:

1. Useヴ seleIts さVie┘ “tatistiIsざ fヴoﾏ ﾏaiﾐ ﾏeﾐu

2. System displays statistics to user

Therapist Use Cases

Table 15

Name: Add a patient to list Number: 8

Description: Therapists add a new patient to their list

Pre-conditions: User must be logged into a therapist account

Main Flow:

1. Useヴ seleIts さAdd Patieﾐtざ fヴoﾏ ﾏaiﾐ ﾏeﾐu

2. User enters email of patient they wish to add to their list

3. If the email is registered as a patient account the associated user is added to the list. If

there is no associated account the user is prompted to check the email is correct.

Table 16

Name: View list of patients Number: 9

Description:

Pre-conditions: User must be logged into a therapist account

Main Flow:

1. Useヴ seleIts さVie┘ Patieﾐtsざ fヴoﾏ ﾏaiﾐ ﾏeﾐu

2. System displays a list of all the patients for the therapist currently logged in

Table 17

Name: Remove a patient from list Number: 10

Description: Therapists can delete patients they are no longer seeing from their list

Pre-conditions: User must be logged into a therapist account and have one or more assigned

patients

Main Flow:

1. Useヴ seleIts さ‘eﾏo┗e Patieﾐtざ fヴoﾏ ﾏaiﾐ ﾏeﾐu

2. User enters patients name or e-ﾏail aﾐd IliIks さ‘eﾏo┗e Patieﾐtざ

3. User clicks Confirm and patient is removed from their list

Alternative flow:

2. User enters patients name or e-mail aﾐd IliIks さ‘eﾏo┗e Patieﾐtざ

3. “┞steﾏ displa┞s ﾏessage sa┞iﾐg さﾐo useヴ fouﾐd ┘ith that ﾐaﾏe/e-ﾏailざ

4. User re-enters correct name/e-mail

5. User clicks Confirm and patient is removed from their list

29

Table 18

Name: View Diary entries of individual patients Number: 11

Description: Therapists can select a user and view their diary entries

Pre-conditions: User must be logged into a therapist account and have one or more assigned

patients

Main Flow:

1. Useヴ seleIts さVie┘ Patieﾐtsざ fヴoﾏ ﾏaiﾐ ﾏeﾐu

2. System displays a list of all the patients of the therapist currently logged in

3. Useヴ IliIks the さVie┘ Diaヴ┞ざ Huttoﾐ ﾐe┝t to the desiヴed patieﾐt
4. “┞steﾏ displa┞s a list of the patieﾐtげs diaヴ┞ eﾐtヴies

5. User can select a diary entry to view all the information

Table 19

Name: Search and filter diary entries of individual patients Number: 12

Description: Therapists can select a user and view their diary entries

Pre-conditions: User must be logged into a therapist account and have one or more assigned

patients

Main Flow:

1. Useヴ seleIts さVie┘ Patieﾐtsざ fヴoﾏ ﾏaiﾐ ﾏeﾐu

2. System displays a list of all the patients of the therapist currently logged in

3. Useヴ IliIks oﾐ さVie┘ Diaヴ┞ざ Huttoﾐ ﾐe┝t to the desiヴed patieﾐt
4. System displays list of diary entries for that patient

5.

a. User enters search terms and clicks search

b. User enters date or data range in filter tab and clicks filter

6. System displays searched/filtered list of diary entries

Table 20

Name: View summary statistics of individual patients Number: 13

Description: User can view summary statistics of their patients, based on their check-ins and diary

entries, such as most common emotion and most common cognitive distortions.

Pre-conditions: User must be logged into a therapist account and have one or more assigned

patients

Main Flow:

1. Useヴ seleIts さVie┘ Patieﾐtsざ fヴoﾏ ﾏaiﾐ ﾏeﾐu

2. System displays a list of all the patients of the therapist currently logged in

3. Useヴ IliIks oﾐ the さVie┘ “tatistiIsざ Huttoﾐ ﾐe┝t to the desiヴed patieﾐt
4. System displays statistics for the chosen patient

30

6 – Design
To ensure a high standard of design for my application, wireframes of the UI have been

produced to show how the user will be able to interact with the system. These wireframes

were produced with the use cases and requirements in mind to guarantee all of the functions

of the application can be carried out. The wireframes will be explained and then subject to a

heuristic analysis according to Nielseﾐげs ヱヰ heuヴistiI pヴiﾐIiples, afteヴ ┘hiIh aﾐ┞ ideﾐtified

improvements will be made.

6.1 – Colour

In accordance with the material design principles, I will make use of a primary colour (with

multiple hues) as the main theme for the app, and a secondary colour to bring users attention

to important areas of the application. The chosen colours are shown below in figure 4. Blue

was a common colour in the apps reviewed in section 3.2, and has been chosen as it is

commonly associated with feelings of tranquillity or calmness (Cherry 2019). Light orange will

be used as the secondary colour as it contrasts with the blue, and together they are suitable

for colourblind users (Shaffer 2016). The secondary colour will be used to highlight buttons to

the user; by giving them all a common theme they will stand out and provide a consistent

experience throughout the app.

Figure 4 - Colour scheme

31

6.2 – Initial UI Wireframes

Note: images are represented by placeholder icons of a square with a cross

Patient and Therapist screens

Table 21 – Log in and sign up screens

Screens 1 and 2

The screen on the left is the log in screen where users will log in to the application with their email

and password. Users can also choose to not have to log in each time they load the app by

seleItiﾐg the けヴeﾏeﾏHeヴ ﾏeげ ヴadio Huttoﾐ. This is the first screen a user will see when loading the

app for the first time. If a user is not registered, they can click the sign-up button, which will take

them to screen 2, the sign-up screen. On this screen user can enter their name, email, password

and choose whether they are a patient or therapist to create an account.

Table 22 – Patient home and therapist home

32

Screens 3 and 4

These screens are the home pages for the patient and therapist accounts, on the left and right

respectively. These are the home screens that users will see once logged in. From here users can

access all the main functions of the app. Clicking the hamburger menu icon in the top right brings

up the menu shown above, where users can access the settings, about page, and logout.

33

Patieﾐtげs “Iヴeeﾐs

Table 23 – Diary entry screens

 Screens 5,6,7 and 8

These four screens show the process of making a diary entry, the primary function for patients.

The pヴoIess is aIIessed thヴough the さNe┘ Diaヴ┞ Eﾐtヴ┞ざ Huttoﾐ fヴoﾏ the hoﾏe page ふsIヴeeﾐ ┝ぶ.
Clicking the question mark next to each input box will bring up a help dialog explaining the

purpose of the seItioﾐ aﾐd desIヴiHiﾐg soﾏe e┝aﾏple iﾐputs. Useヴs ﾏust IliIk the けﾐe┝t pageげ
button at the bottom of the screen to advance through the process, and the back arrow in the top

left corner if they wish to go back a step. Screen 7 shows the pop-up displayed when clicking on

the plus sigﾐ iﾐ the けIogﾐiti┗e eヴヴoヴsげ seItioﾐ of sIヴeeﾐ ヶ. Oﾐl┞ the title field ┘ill He ヴeケuiヴed, aﾐd if
the useヴ ┘ishes to e┝it at aﾐ┞ tiﾏe the┞ Iaﾐ pヴess the haﾏHuヴgeヴ ﾏeﾐu aﾐd seleIt さsa┗e & e┝itざ,
as shown in screen 5. The date and time will be automatically filled out to the current values.

34

Table 24 – Check-in screens

Screens 9, 10, 11, and 12

These ヴ sIヴeeﾐs sho┘ the pヴoIess of IheIkiﾐg iﾐ, aIIessed thヴough the さCheck-inざ Huttoﾐ oﾐ the
home screen (screen 3). As with the diary entry screens, the user can progress through the

pヴoIess H┞ pヴessiﾐg the けﾐe┝t pageげ Huttoﾐ at the Hottoﾏ, aﾐd go HaIk ┘ith the HaIk aヴヴo┘ iﾐ the
top left. On screens 9 and 11 the arrow at the bottom indicates to the user that they are able to

scroll down to view more emotions/activities; this is a common icon which will be used across the

application. If the user wants to edit the list of emotions or activities, they can use the hamburger

menu and then select which list they wish to edit, as shown in screen 9.

35

Table 25 – View diary entries

Screen 13

This screen is where the user can view a list of their past diary entries. It is accessed through the

さVie┘ Diaヴ┞ Eﾐtヴiesざ Huttoﾐ fヴoﾏ the hoﾏe page ふsIヴeeﾐ ンぶ. At the top is the seaヴIh Haヴ aﾐd けfilteヴ
& soヴtげ optioﾐs; pヴessiﾐg the けfilteヴ & soヴtげ dヴop do┘ﾐ ┘ill Hヴiﾐg up the ﾏeﾐu sho┘ﾐ to the ヴight. If
the user clicks on an entry, they will be taken to a page showing them all the details of that entry.

Selecting edit will take them to the same page with editable inputs, and selecting delete will bring

up the confirmation dialog shown on the right.

Table 26 – Statistics screen

Screen 16

On this screen the user can view statistics generated from their diaries and check-ins. It is

aIIessed thヴough the さVie┘ “tatistiIsざ optioﾐ oﾐ the hoﾏe page. As ┘ith otheヴ sIヴeeﾐs, the aヴヴo┘
at the bottom indicates to the user that they can scroll down to view more content.

36

Table 27 – Cognitive Distortion screens

Screens 14 and 15

These are the screens where users can learn about cognitive distortions. Clicking on each of the

distortions on screen 14 will take the user to screen 15, where they will be provided with further

information about that cognitive distortion.

Therapist screens

Table 28 – Add patient screen

Screen 17

This is the screen where a therapist can add a new patient to their list, by entering their e-mail.

This screen is accessed thヴough the さAdd Patieﾐtざ Huttoﾐ oﾐ sIヴeeﾐ ヴ. If theヴe is ﾐo patieﾐt
registered with the e-mail entered, the user will be prompted to check the e-mail and try again.

37

Table 29 - Remove patient screen

Screen 18

This screen is where therapists can remove patients from their list that they are no longer seeing.

Entering the desired patients name or e-ﾏail, aﾐd IliIkiﾐg the けヴeﾏo┗e patieﾐtげ Huttoﾐ, Hヴiﾐgs up
the dialog on the right where the user can confirm their action.

Table 30 – View patients screen

Screens 19, 20 and 21

These sIヴeeﾐs aヴe ┘heヴe theヴapists Iaﾐ ┗ie┘ theiヴ list of patieﾐts ふsIヴeeﾐ ヱΓぶ, aﾐd eaIh patieﾐtげs
diaヴ┞ eﾐtヴies aﾐd statistiIs ふsIヴeeﾐs ヲヰ aﾐd ヲヱぶ. The┞ aヴe aIIessed thヴough the さVie┘ Patieﾐtsざ
button on scヴeeﾐ ヴ. Oﾐ the ざVie┘ Patieﾐtsざ sIヴeeﾐ the useヴ Iaﾐ seaヴIh thヴough theiヴ list of
patieﾐts usiﾐg the seaヴIh Haヴ at the top, aﾐd Ihoose to ┗ie┘ a patieﾐtげs diaヴ┞ oヴ statistiIs usiﾐg the
Huttoﾐs ﾐe┝t to eaIh patieﾐt. The さVie┘ Diaヴ┞ざ Huttoﾐ takes the useヴ to screen 20, which is the

saﾏe as the patieﾐtsげ diaヴ┞ eﾐtヴies ┗ie┘ ふsIヴeeﾐ ヱンぶ, ﾏiﾐus the edit aﾐd delete Huttoﾐs. CliIkiﾐg oﾐ

38

the さVie┘ “tatistiIsざ Huttoﾐ takes the useヴ to sIヴeeﾐ ヲヱ, ┘hiIh is agaiﾐ the saﾏe as the patieﾐtsげ
statistics view (screen 16).

6.3 – Heuristic Evaluation

While the initial wireframes described in the previous section cover all of the functional

requirements of the system, it is important that they also fulfil the third non-functional

ヴeケuiヴeﾏeﾐt stated iﾐ seItioﾐ ヴ.ヲ, さThe s┞steﾏ ﾏust be easy to use, navigate, and

uﾐdeヴstaﾐdざ. Nielseﾐげs ヱヰ heuヴistiI pヴiﾐIiples ┘ill theヴefoヴe He used to e┗aluate the

wireframes. These principles are (Nielson and Molich, 1990):

1- Visibility of system status

2- Match between system and the real world

3- User control and freedom

4- Consistency and standards

5- Error prevention

6- Recognition rather than recall

7- Flexibility and efficiency of use

8- Aesthetic and minimalist design

9- Help users recognize, diagnose, and recover from errors

10- Help and documentation

These pヴiﾐIiples ┘ill He ヴated oﾐ Nielsoﾐげs ヵ-part severity scale:

0- I doﾐげt agヴee that this is a usaHilit┞ pヴoHleﾏ at all

1- Cosmetic problem only: need not be fixed unless extra time is available on project

2- Minor usability problem: fixing this should be given low priority

3- Major usability problem: important to fix, so should be given high priority

4- Usability catastrophe: imperative to fix this before product can be release

Table 31 – Heuristic evaluation 1

Heuristic Evaluation No 1

Screen No 1 and 2

39

Principle(s) violated Help user recognise, diagnose, and recover form errors.

Problem There are no error messages related to the form input; for example, if

the user gets their password wrong, or tries to sign up with an email

that is already registered. This could be very confusing to users as they

┘ouldﾐげt He a┘aヴe of ┘hat ┘as Iausiﾐg the issue.
Severity Rating 3

Solution Include a text area for errors to be displayed which describes to the

useヴ ┘hat the┞ ha┗e doﾐe ┘ヴoﾐg, e.g. さPass┘oヴd iﾐIoヴヴeItざ, oヴ さE-mail

alヴead┞ iﾐ useざ.

Table 32 – Heuristic evaluation 2

Heuristic Evaluation No 2

Screen No 3

Principle(s) violated 10

Problem The purpose of each section of the app that is accessed from this

screen is not explained.

Severity Rating 2

Solution Next to each button, add a help icon which brings up a dialog box that

explains what each section of the app is and what its purpose is.

Table 33 – Heuristic evaluation 3

Heuristic Evaluation No 3

Screen No 5,6,7,8

Principle(s) violated Visibility of system status, User control and freedom, and consistency

and standards.

Problem As the user is going through the diary entry process there is no

indication of their progress. The button at the bottom simply says

さNe┝t Pageざ oﾐ the fiヴst thヴee sIヴeeﾐs aﾐd さ“uHﾏit Eﾐtヴ┞ざ oﾐ the fiﾐal
screen.

Further, if the user wanted to go back through the form, they would

have to use the back arrow in the top right corner. This is usually used

to go back to the main menu rather than back through a functions

screens, so this could be confusing to the user.

Finally, if the user wished to exit without saving, they would have to go

back through each of the screens and then back once more to the main

menu.

Severity Rating 3

Solution Change the next page buttons to tabs; this way the user can see their

progress and easily skip through the form if they wish to go back. Also,

make the back arrow in the top bar exit the function from any of the

screens - this ┘ill sho┘ a dialog ﾏessage sa┞iﾐg さWould ┞ou like to exit

┘ithout sa┗iﾐgざ.

Table 34 – Heuristic evaluation 4

Heuristic Evaluation No 4

40

Screen No 9, 10, 11 and 12

Principle(s) violated Visibility of system status, User control and freedom, and consistency

and standards.

Problem As with evaluation 3, this series of screens (through the check-in

process) does not display the progress to the user and they have to use

the back arrow to go back through the screens of the individual

fuﾐItioﾐs. These sIヴeeﾐs also doﾐげt ha┗e a ┘a┞ to e┝it the function

from any of the screens.

Severity Rating 3

Solution As with evaluation 3, change the next page buttons to a series of tabs

and make the back arrow exit the function. Also add a save and exit

option into the hamburger menu.

41

7 – Implementation

7.1 Class Diagram

Figure 5 below shows a UML class diagram for the back-end of the system, in order to give an

overview of the architecture.

Figure 5 - UML class diagram of the application

The original design idea for the structure of the back-eﾐd had Heeﾐ to siﾏpl┞ ha┗e oﾐe さUseヴざ

IolleItioﾐ ┘hiIh Ioﾐtaiﾐed oﾐe doIuﾏeﾐt peヴ useヴ, ﾏakiﾐg use of aヴヴa┞s to stoヴe the useヴsげ

entries (and patients if they were a therapist). While this approach would have simplified the

stヴuItuヴe of the dataHase aﾐd ﾏeaﾐt that all of a useヴげs iﾐfoヴﾏatioﾐ ┘as stoヴed togetheヴ, it

also came with drawbacks. To the best of my knowledge, it is not possible to retrieve a single

element from an array in a MongoDB document, only to retrieve whole documents that

contain elements matching a search criteria (MongoDB [no date][a]). This would have led to

inefficiencies when performing operations such as retrieving a single diary entry, having to

ヴetヴie┗e all of the useヴげs iﾐfoヴﾏatioﾐ aﾐd theﾐ filteヴ out the desiヴed eﾐtヴ┞. Ha┗iﾐg aヴヴa┞s ┘ithiﾐ

42

a document also increases the complexity of searching for and retrieving a single item from

the array, and as the arrays get bigger they can impact the performance of the application

(MongoDB [no date][a]).

For these reasons a structure more akin to that of a SQL database, where foreign keys are

used to liﾐk sepaヴate IolleItioﾐs, has Heeﾐ used. The さ_idざ field of eaIh IolleItioﾐ ┘as used

as the ke┞ to Iヴeate these liﾐks; foヴ e┝aﾏple, the さuseヴざ field of a diaヴ┞ eﾐtヴ┞ ┘ould Ioﾐtaiﾐ

the さ_idざ field of the useヴ that Iヴeated the eﾐtヴ┞.

7.2 Back-end

At the start of the implementation phase I decided to focus my efforts on completing the

back-end of the system before starting on the front-end. There were two main reasons for

this decision; firstly, I was more confident in using the back-end frameworks (Node.js,

Express.js and MongoDB) than the front-end ones (React Native), so I could start work on the

back-end while continuing to learn React Native. Secondly, it was more efficient to work in

this way. As I had defined the methods that the back-end needed in my class diagram, it was

an obvious decision to produce all of these at once rather than working on the front- and

back-ends at the same time.

To test the back-eﾐdげs fuﾐItioﾐalit┞ the pヴogヴaﾏ Postﾏaﾐ ┘as used. Postﾏaﾐ is aﾐ API

(Application Programming Interface) platform that allows users to easily send http queries

aﾐd ┗ie┘ the seヴ┗eヴげs ヴespoﾐses. This is a useful featuヴe ┘heﾐ Huildiﾐg the HaIk-end of an

application as it allows for quick testing of routes without having to implement any front-end

features.

7.2.1 – File Structure

The structure of the back-end is simple and adheres to the principle of separation of concerns,

which is important for large projects like this as it provides a clear code structure that is easy

to expand upon in a modular fashion. The structure was inspired by JavaScript Mastery

(2020a).

In the root folder there is an index.js file where all the other files are imported to, the

connection to the database is made, and the server is run. The root folder also contains the

four other folders, which contain the code for the back-end: controllers, middleware, models,

and routes.

43

Models

Within the models folder there is a JavaScript file for each model used in the database:

checkIn.js, diary.js, patients.js and user.js. In each file a mongoose schema is created following

the attributes shown in the UML class diagram. From this a mongoose model is created which

is then exported. These models define the fields of each collection in the database and also

the attributes of these fields, such as the data type, if the field is required, and if the field is

unique. For example, in figure 6, the schema for check-ins defines the five fields as さuserざ,

さemotionsざ, さintensityざ, さactivitiesざ and note. These fields are a mixture of strings and arrays,

and only the さuserざ field is required.

Figure 6 - Model for check-ins

Controllers

Foヴ eaIh ﾏodel is a Ioヴヴespoﾐdiﾐg file iﾐ the Ioﾐtヴolleヴげs foldeヴ. These Ioﾐtaiﾐ the logiI foヴ

the ways in which the user will need to interact with each of the models. For example, the

useヴげs Ioﾐtヴolleヴ Ioﾐtaiﾐs ﾏethods foヴ Iヴeatiﾐg a ﾐe┘ useヴ aﾐd sigﾐiﾐg iﾐto an account, and

the diary controller contains methods for creating, updating, and deleting a diary entry.

Routes

For each controller, a corresponding routes file defines the routes that are used to access

each function and the http method for each route. For example, figure 7 below shows how

44

the ﾏethods defiﾐed iﾐ the theヴapist Ioﾐtヴolleヴげs file aヴe Houﾐd to theiヴ Ioヴヴespoﾐdiﾐg ヴoutes

and http verbs.

Figure 7 - Routes for the methods defined in the therapist controllers file

Middleware

The middleware folder contains functions that are bound to routes using the express.js

middleware feature. When a middleware function is bound to a route, it is executed each

time the route is accessed, before the controller function for that route is executed. I have

used this feature for token verification; all routes other than signing in and signing up require

a valid JSON web token in the header of the request.

7.2.2 Example Back-End Features

Following from the architecture of the back-end, a few examples of key functions will be

described. These are password encryption, signing in, and creating a diary entry.

Password encryption

Figure 8 - User password encryption

Iﾐ the useヴ ﾏodel a ﾏoﾐgoose さpヴeざ ﾏiddle┘aヴe is used to eﾐIヴ┞pt the useヴsげ pass┘oヴds.

“peIif┞iﾐg さsa┗eざ as the fiヴst aヴguﾏeﾐt iﾐ the pヴe-ware function means that the callback

function is executed before the data is saved into the database. Within the callback function,

the if statement checks if the password is different to the previous saved password, and only

hashes the password if this is the case. This means that if another part of the useヴげs

information was being edited, the password would not be re-hashed. To hash the password,

45

the npm library bcrypt was used. The library implements the bcrypt password hashing

function, which is based on the Blowfish cipher. Bcrypt is very secure as its complexity can be

scaled to match the increase in computing power, meaning it is resistant to brute force

cracking attacks (ref). Bcrypt provides a hash function with two parameters - a string and the

amount of salt rounds - salt being a small piece of data that is randomly generated and added

to the given string before hashing.

Figure 9 - example of how a password is stored in the database

If passwords were not encrypted in the database, a data leak would mean that anyone would

He aHle to aIIess useヴsげ peヴsoﾐal iﾐfoヴﾏatioﾐ. Foヴ e┝aﾏple, the ヴeIeﾐt leak of the data of Β.ン

million plain text passwords from the website DailyQuiz (Cimpanu 2021). Using salt when

hashing provides an additional security measure in the case of this happening. Without the

salt, hash lookup tables could be used to identify common passwords, i.e. さpass┘oヴdざ,

さケ┘eヴt┞ヱヲンざ. This ┘oヴks as hash fuﾐItioﾐs al┘a┞s pヴoduce the same output from the same

input; adding salt changes the output and eliminates this possibility.

Sign In

Figure 11 shows the signIn() function that is called when a user tries to sign in. The parameters

req and res are objects passed to the function by Express.js, and are the request and response

objects. The request object contains all the information about the request, such as query

strings, body, and HTTP headers, and the response object is the response that will be sent by

express. The method response.status() sets the HTTP response status code, and the method

response.send() sends the response, with the body of the response being defined as an object

in the brackets.

Wheﾐ sigﾐiﾐg iﾐ, the fiヴst aItioﾐ is ケueヴ┞iﾐg the さUseヴざ taHle foヴ a ﾏatIh ┘ith the entered

username (accessed through req.body.username). If there is an error or no user is found, then

a response is sent back with the HTTP code 500 or 404 respectively. Next, bcrypt is used to

check if the user has entered the right password. Bcrypt provides a compare function which

accepts a string and a hash and returns a Boolean value of true if the string and hash match.

If the password is invalid a response is sent to inform the user. If the password is valid a JWT

(JSON web token) that contains the useヴげs id, a Booleaﾐ ┗alue さisTheヴapistざ, aﾐd a Booleaﾐ

┗alue さヴeﾏeﾏHeヴMeざ is Ioﾏputed aﾐd the tokeﾐ is seﾐt HaIk to the fヴoﾐt-end with a status

https://auth0.com/blog/hashing-in-action-understanding-bcrypt/

46

code of 200 (successful response). An example of an access token can be seen below in figure

10.

Figure 10 - Example in Postman of the response of a successful request to /signin

Figure 11 – signIn() function

JWTs have two main uses, authorization and information exchange (Agarwal 2018), , both of

which are utilized in this example. After the token is sent to the user it is stored on their device

and attached in the header of any subsequent requests. The verifyToken() middleware (figure

12 below) is applied to all routes other than logging in and signing up; this ensures that only

logged in users can access the routes. Additionally, some views on the front-end need to

render different content based on the type of user, which can be checked using the

さisTheヴapistざ Booleaﾐ Ioﾐtaiﾐed iﾐ the tokeﾐ. The tokeﾐ also contains the information of

┘hetheヴ the useヴ ┘aﾐts to ha┗e theiヴ details ヴeﾏeﾏHeヴed, so the┞ doﾐげt ha┗e to log iﾐ oﾐ the

47

ﾐe┝t use, iﾐ the さヴeﾏeﾏHeヴMeざ Booleaﾐ. As JWTs aヴe sigﾐed Hased oﾐ the Ioﾐteﾐts of the

token, you can be sure that the content of the token is correct as it would be invalid when

verified if it had changed (Auth0 [no date]).

Figure 12 - Middleware to verify JSON web tokens

Creating and retrieving a diary entry

Figure 13 shows the code used to submit a diary entry into the database. After checking the

さtitleざ field is ﾐot Hlaﾐk, as this field is ヴeケuiヴed iﾐ the dataHase, a さDiaヴ┞ざ oHjeIt ふfヴoﾏ the

ﾏoﾐgoose ﾏodelぶ is iﾐstaﾐtiated Ioﾐtaiﾐiﾐg the さuseヴIdざ aﾐd the ヴeケuest Hod┞ spヴead usiﾐg

ES6 spread notation. Fiﾐall┞, the さDiaヴ┞ざ oHjeIt is sa┗ed usiﾐg ﾏoﾐgooseげs sa┗eふぶ fuﾐItioﾐ

which submits the object into the database. The ease of saving the data to the database

deﾏoﾐstヴates ho┘ useful ﾏoﾐgooseげs oHjeIt ﾏodelliﾐg featuヴe is.

Figure 13 – createDiaryEntry() function

Figure 14 shows the getEntry() function used to retrieve a specific diary from the database.

The mongoose find() method is used on the diary object to query the database for documents

(diary entries) with credentials matching the さuseヴIdざ aﾐd さdiaヴ┞Idざ passed fヴoﾏ the fヴoﾐt-

48

end. If there is no data found or an error occurs the appropriate response is sent, and if the

data is successfully retrieved it is sent to the front-end. (Note: this function is in a slightly

different foヴﾏat to さIヴeateDiaヴ┞Eﾐtヴ┞ざ iﾐ figure 13 as it called from two routes,

さ/getDiaヴ┞Eﾐtヴ┞ざ aﾐd さ/getPatieﾐtsEﾐtヴ┞ざ, ┘hiIh Ioﾐfiguヴe the さuseヴIdざ aﾐd さdiaヴ┞Idざ

variables before calling the function)

Figure 14 - getDiaryEntry() function

After developing any of the methods in the back-end they must be bound to a route, shown

in figure 15. The first step in the process is creating an express router object. A router object

has methods for each of the HTTP verbs (e.g. GET, POST, PUT) which are called with two

arguments, the URL and the callback function. For example, in the third line of figure 15 an

HTTP post ﾏethod is Heiﾐg defiﾐed oﾐ the U‘L さ/IヴeateDiaヴ┞Eﾐtヴ┞ざ, ┘heﾐ a ヴeケuest is seﾐt to

this U‘L the fuﾐItioﾐ さIヴeateDiaヴ┞Eﾐtヴ┞ざ is Ialled.

Figure 15 - Example of binding methods to routes

To expose these routes to the front-end, the router is imported into index.js (as diaryRoutes)

and applied using the use() method of the Express app object.

49

Figure 16 - Applying each of the sets of routes to the server

Conclusion

These two examples have been used as they display the typical structure of the back-end and

the patterns used for interacting with the database.

To summarize this structure, using the diary as an example:

1. A model is produced in the models folder which defines the attributes that can be

stored in the diary database table

2. Iﾐ the Ioﾐtヴolleヴげs foldeヴ diaヴies.js defiﾐes all of the ﾏethods foヴ iﾐteヴaItiﾐg ┘ith the

database

3. In the routes folder diaries.js a router is created which binds these methods to URLs

4. In index.js the router is applied to the Express app, which exposes the routes to

requests made from the front-end

The typical pattern of database interaction is as follows:

1. When putting information into the database there may be a check to make sure the

correct information is present, then the information is saved and either a successful

or error code is sent back to the front-end.

2. When retrieving information from the database there may be some check as to

whether the user is a patient or therapist and an assignment of variables accordingly,

then a mongoose function such as find(), findOne(), updateOne() or deleteOne() is

used to match the correct entry in the database. If the operation is successful, or there

is an error, the corresponding code and information are sent back to the frontend.

50

7.4 Front-end

7.4.1 Structure:

Figure 17 below shows an overview of the file structure of the system. This structure takes

ideas from Habilelabs (2021) and aims to keep the code in an organised and easy to

understand manner, making the development and any future expansion of the app organized

and efficient.

Figure 17 - File structure of the front-end of the application

The assets folder and constants.js are not fully utilized in this project, with the assets folder

only containing default pictures used by Expo and constants only containing one constant.

Therefore, they are included mainly for completeness and future expandability of the

application.

7.4.2 Expo CLI:

The first choice made in developing the front-end was between expo CLI or React Native CLI,

the two ways to build a React Native app.

Expo is a group of tools built on top of React Native that assist in the quick and easy

development of an app. Expo has 3 three main advantages over RN CLI (Feroze 2021):

1) You can use any code editor, rather than having to use Xcode and Android Studio.

When using RN CLI you have to have a computer running macOS to develop for iOS.

2) Setting up a project is very quick usiﾐg the さe┝po iﾐitざ Ioﾏﾏaﾐd. It oﾐl┞ takes a Iouple

of minutes to have a project structure setup.

51

3) Running the app is easy via a QR-code using Expo Go, an app available on the play and

ios stores. This will be very useful when carrying out the testing for my app as I can

simply share the QR code with my participants and they will be able to run the app on

their phones.

There are some drawbacks to using expo, mainly not being able to use native modules

(modules written specifically for android or iOS) (Expo [no date]).However, these are

concerned with features not used in my application, so for me using Expo CLI was the right

choice.

7.4.3 Navigation

As React Native does not have an in-built method for handling navigation, the documentation

suggests the use of the community package React Navigation. React Navigation is easy to

setup, has good documentation, and provides built-in navigators such as tabs, drawers, and

stacks that work on android and iOS, which made it a good choice for use in my app. I have

utilised two of the navigation types: a stack, and tabs.

Stack Navigator

A stack navigator operates using a stack data structure where screens can be pushed to or

popped from the top of the stack. I have used a stack for the main navigation through the app

as it is a very common method that will feel familiar to users. In addition to this, the stack

navigator in React Navigation is configured to function in the default way on IOS and Android,

providing a consistent user experience.

Within the application there are three sets of screens that can be displayed to the user; auth

screens (sign in and sign up), screens for patient users, and screens for therapist users. As can

be seen in figure 18, these groups are conditionally loaded into the stack based on the two

state ┗aヴiaHles, さis“igﾐedIﾐざ aﾐd さisTheヴapistざ.

Contained in each of the groups of screens are multiple screen components, each configured

through custom props. Figure 19 shows the screen component for the sign in screen where

thヴee pヴops aヴe pヴo┗ided: さﾐaﾏeざ, さoptioﾐsざ, aﾐd さIhildヴeﾐざ. The さoptioﾐsざ pヴop is used heヴe

to pヴo┗ide the iﾐfoヴﾏatioﾐ foヴ ┘hat the displa┞ iﾐ the headeヴ, aﾐd the さIhildヴeﾐざ pヴop

provides the screen component that is displayed when this screen is viewed.

52

Figure 18 - Navigation component

Figure 19 - Navigation screen component for the sign in screen

To pass props to the screen component, children must be set to a fat arrow function, which

returns the component with the props set in the usual way. As React Navigation has the

default さﾐa┗igatioﾐざ aﾐd さヴouteざ pヴops, the┞ ﾏust He passed thヴough the fuﾐItioﾐ aﾐd

spヴead, usiﾐg さ{…pヴops}ざ, foヴ theﾏ to He available in the screen component. Using this

53

method, the custom and default props can be directly accessed within the component (figure

20) using object destructuring syntax.

Figure 20 - SignInScreen component

To navigate between screens, the methods of the navigation object are used. The main

methods I used were goBack(), popToTop(), and navigate(). goBack() removes the screen from

the top of the stack, popToTop() pops all but the first screen from the stack, and navigate()

pushes a screen to the top of a stack if it is not in the stack or pops all the screens above it if

it is. Originally I had been using the push() method rather than navigate(), but with push() you

can push the same screen to the top of the stack multiple times (e.g. if a user spams a button),

which could have led to a confusing experience for users.

Together these methods provide a comprehensive set of tools that comprise all of the stack

navigation within the app.

Tab Navigator

In the heuristic evaluation in section 6.3, I identified the need for tabs showing users their

progression through the diary entry and check-in processes. Within the diary entry page, the

React Navigation material top tab navigator was used, and 3 screens/tabs (event,

examination, and interpretation) were defined. The definition of the tabs is shown below in

figure 21, and the result in the app is shown in figure 22. This solution allowed for quick and

easy navigation through the diary entry process for the users in an intuitive manner (either

click the tabs or swipe the screen), whilst also providing visual feedback of their progress

through the task.

54

Figure 21 - Definition of tabs in the diary entry screen

Figure 22 - Diary entry tabs in the app

55

Navigation overview

The two following figures demonstrate the ways in which patient users (figure 23) and

therapist users (figure 24) can navigate the app.

Figure 23 - Map of patient users’ navigation around the app

Figure 24 - Map of therapist users’ navigation around the app

7.4.5 Communication with back-end

As the application is made of a front- and back-end, communication between the two parts is

a vital part of the design. I decided to use the npm package axios, used to handle http requests

in the app, as it is a very popular package with good documentation. Axios provides methods

56

for each of the HTTP verbs such as axios.get() or axios.post(), and allows for easy configuration

of the body and header of requests.

Signing-in

The first communication with the back-end occurs when the user signs into the app, figure 25

shows the function that is called.

Figure 25 - signIn() function

The axios.postふぶ ﾏethod is used to seﾐd the details eﾐteヴed H┞ the useヴ to the さ/sigﾐIﾐざ ヴoute,

stoヴiﾐg the ヴespoﾐse iﾐ the さヴespoﾐseざ Ioﾐstaﾐt. The JWT that is attaIhed iﾐ the Hod┞ of the

response (back-end figure) is stored on local storage using the npm package expo-secure-

store. This package was chosen as it has an easy-to-use interface and stores date securely

using encryption, unlike the default React Native module AsyncStorage, which is not

eﾐIヴ┞pted. “toヴiﾐg the tokeﾐ loIall┞ allo┘s the さヴeﾏeﾏHeヴ ﾏeざ fuﾐItion to work, as each time

the app loads it checks the local storage for a valid token and automatically logs the user in if

oﾐe is fouﾐd. Ne┝t, the state ┗aヴiaHles さauthTokeﾐざ, さis“igﾐedIﾐざ aﾐd さisTheヴapistざ aヴe set.

These variables are used throughout the application to configure the display based on the

useヴげs state aﾐd t┞pe.

As with all axios requests in the application, this one is surrounded by a try-catch block. If the

response contains an error response code then axios rejects its promise and throws an error,

which is caught by the catch block. Within the catch block the appropriate action can be taken

- in this instance, informing the user that their username or password is incorrect.

Request with headers

Once the user has signed in and received a JWT, it must be attached to the header of all

subsequent requests to be verified on the back-end (as shown in figure 12). This adds to the

57

security of the system as only users signed into an account can access the methods of the

application.

Figure 26 - Axios instance definition

To attach the JWT to all requests it is shared throughout the app using context, then in each

screen where requests are sent an axios instance is created, with the token set in the default

headers (figure 26). This means that each time the instance is used, the token is automatically

attached to the header of the request, as shown in figure 27 below. At first, I had tried to

create a single axios instance in app.js with the headers attached and share this instance

thヴoughout the app usiﾐg Ioﾐte┝t. This didﾐげt ┘oヴk due to IoﾏpliIatioﾐs ┘ith the

asynchronous nature of fetching the token from storage and the way React handles updates

to objects in state, so multiple instances were used instead.

Figure 27 - submit() function

All of the other HTTP requests in the app work in the same manner as the submit() function

shown in figure 27.

58

7.4.6 AlertBar

Within the application I wanted to have a consistent way to show messages to the user. To

do this, I used the React Native Paper component Snackbar in a custom component shown

below in figure 29

Figure 29 - Alert bar component

 Figure 28 - Alert bar context

59

Iﾐ the AleヴtBaヴ Ioﾏpoﾐeﾐt, the “ﾐaIkHaヴげs pヴopeヴties

aヴe set Hased oﾐ the Ioﾐte┝t さaleヴtBaヴCoﾐte┝tざ. As the

context provides a method to set the text and visibility

(figure 28 above), it is very concise to display an error

message from anywhere in the app. First, make sure

the AlertBar is being rendered, then import the

Ioﾐte┝t aﾐd use the ‘eaIt さuseCoﾐte┝tざ hook to get

the value of the context (figure 29 above). Finally, call

the handleAlert() method from the context and pass

the message to be displayed(figure 30).

This method for displaying messages to the user is

optimal for a few reasons: the message is always

displayed in the same place meaning it is unlikely for

users to miss a message, is not intrusive to the rest of

the content on the page, and it is a common approach

used in many apps so will be familiar to the users.

Furthermore, storing the status of AlertBar in context means that the notifications persist

between screens; for example, when submitting a diary entry the user is navigated back to

the home page, but the alert still shows (figure 30).

 Figure 30 - Code for showing an alert to the user

and the resulting alert

60

7.4.7 Making a diary entry:

The main functionalities of the app are based around diary entries. To make a diary entry,

inputs must be collected from the user in a variety of ways and then be submitted to the

database. User inputs are collected through a variety of TextInput, Slider, and custom

components. The manifestation of each of these methods in the app can be seen in figure 22.

Text Input

TextInput is a React Native component used to receive keyboard input from the user. The

Te┝tIﾐput foヴ the さtitleざ field Iaﾐ He seeﾐ iﾐ figuヴe 31 below, and exemplifies the typical

patteヴﾐ foヴ te┝t iﾐputs. The さoﾐFoIusざ aﾐd さoﾐBluヴざ pヴopeヴties aヴe used to update state

variables to track which input the user has focused, providing feedback to the user on the

state of the appliIatioﾐ H┞ Ioﾐditioﾐall┞ iﾐIludiﾐg the さiﾐput.foIusedざ st┞les. The

さoﾐChaﾐgeTe┝tざ pヴopeヴt┞ is used to define the behaviours when the user changes the text of

a controlled component. Here, a callback function is passed to setUserInputs() in order to

access the previous state. Doing this in this way rather than using the state variable directly

ensures the up to date state value is used (React [no date][b]). Iﾐ the ヴetuヴﾐ, さpヴe┗“tateざ is

spread and just the title is updated. setUserInputs() is used this way as state cannot be directly

mutated. Instead, a new object is built and is shallow merged with the previous state (React

[no date][b]).

Figure 31 - TextInput component for the title field and the title field shown un-focused and focused

61

Slider

Sliders are implemented using the npm package, and are a simple component that lets the

user select a single value from a range. Figures 32 and 33 below show the implementation

of the slider and the result within the app.

Selection of cognitive Errors

The cognitive error boxes seen in figure 34 are rendered in a simple View component with

さfle┝Wヴapざ set to さ┘ヴapざ ふfiguヴe 35 below). This is an easy way to make sure the boxes fit

neatly, independent of the size of the screen the app is being viewed on.

Figure 34 - Cognitive error boxes, boxes highlighted on the right have been selected

Figure 35 - View container for the cognitive errors boxes

The cognitive errors boxes are made up of a custom component, SelectionItem, wrapped in a

React Native component, TouchableOpacity. SelectionItem is a reusable component for when

users need to select items from a list. It displays the title of an item passed to it, in this case

the name of the cognitive error, and conditionally changes the styles applied based on

whether it has been selected or not (example in figure 34). The TouchableOpacity component

ﾏakes eaIh of the iteﾏs IliIkaHle thヴough its さoﾐPヴessざ pヴopeヴt┞. A ﾏap fuﾐItioﾐ is used oﾐ

Figure 32 - Diary entry slider for users to rate their anxiety

Figure 33 - Slider produced by the code in figure 33

(note: labels added separately)

62

the さDataざ ┗aヴiaHle, to loop o┗eヴ eaIh iteﾏ aﾐd ヴetuヴﾐ a Ioﾏpoﾐeﾐt for each. This approach

has been used as it is very scalable and easy to edit; for example, in the future if the user

could edit the list of cognitive errors none of the code for rendering them would have to

change. Having simple components like SelectionItem that are re-used throughout the app

also leads to less repetition of code, and makes the project easier to maintain.

Figure 36 - renderCognitiveErrors() function and custom component SelectionItem

When any of the cognitive error boxes are clicked the function handleDistortionClick() is

called (figure 37 below), which is the function that handles the update to the state. When the

function runs, the first action is to check the previous state to see if the clicked distortion is

currently selected or not. If it is currently selected it is removed from the state using the

JavaScript array filter method, if it is not selected then it is added to the state.

Figure 37 - handleDistortionClick() function

Submitting

Fiﾐall┞, oﾐIe the useヴ has eﾐteヴed all the iﾐfoヴﾏatioﾐ the┞ ┘ish, the┞ Iaﾐ pヴess the さ“uHﾏitざ

button on the final tab or save and exit in the hamburger menu. This runs the submit()

function which submits the information into the database. (Submit() function can be seen in

figure 27)

63

Checking-in:

Alongside a diary entry, checking in is the other means for users to input data into the app.

As can be seen in figure 38 below, the same methods of collecting user input (text inputs,

sliders, and a list using SelectionItem) are utilized in checking-in and in a diary entry. These

methods are implemented in the same way, as has been explained in the previous sections,

so will not explained again here.

Figure 38 - Check-in screens

7.4.8 Diary

Viewing the diary

When a user has made a diary entry or check-in, it will appear in their diary together with

their other entries. The diary screen can be seen below in figure 39. The first time the diary

screen loads, the diary entries and check-ins are retrieved from the database, merged, sorted,

aﾐd stoヴed iﾐto the state ┗aヴiaHle さdataざ.

64

Figure 39 - Diary screen

EaIh of the tiles seeﾐ aヴe a Iustoﾏ Ioﾏpoﾐeﾐt さDiaヴ┞Tileざ. This component wraps the React

Native Paper component Card and handles the formatting and passing of data to the Card

Ioﾏpoﾐeﾐt. The Diaヴ┞Tile Ioﾏpoﾐeﾐts aヴe ヴeﾐdeヴed Hased oﾐ the さdataざ state variable using

a FlatList, a React Native component that is used to render a scrollable list of components.

FlatList is a very useful component for my purposes, as it can take any number of items and

ヴeﾐdeヴ theﾏ iﾐto a sIヴollaHle list, ﾏeaﾐiﾐg that ho┘e┗eヴ laヴge soﾏeoﾐeげs diaヴ┞ is it Iaﾐ all He

easily accessed. In addition to this it renders the items lazily, meaning that it only loads items

that are about to be displayed on the page. This is a great advantage over the similar React

Native component ScrollView, which renders all items in a list whether they are being

displayed or not, which could lead to performance issues for a user with a large diary.

Sorting the diary

In figure 39 above, within the hamburger menu, the sorting options can be seen.

Uﾐfoヴtuﾐatel┞, I didﾐげt ha┗e tiﾏe to full┞ iﾏpleﾏeﾐt this featuヴe. As a pヴoof of IoﾐIept, the

diaヴ┞ is soヴted H┞ the さIヴeatedAtざ tiﾏestaﾏp that is automatically applied to diary entries and

check-ins when they are submitted to the database. The diary is sorted by sorting the array

that the FlatList renders the DiaryTiles from; as the array is a state variable, the view

automatically updates with the new sorting.

65

In a fully developed feature, diary entries should be sorted by the date field entered by the

user, and more sophisticated features should be implemented as defined in the

requirements, such as being able to select a range of dates.

Deleting an entry

If a user wishes to delete an entry, they can click the delete button on the diary tile. This brings

up a confirmation dialog where they can confirm their action. When the user confirms, an

HTTP delete request is sent to the back-end, where the entry is deleted from the database. If

the entry is successfully deleted, a message will be displayed to the user. The entry is also

ヴeﾏo┗ed fヴoﾏ the state ┗aヴiaHle さdataざ; as the FlatList ヴeﾐdeヴs the Diaヴ┞Tiles fヴoﾏ さdataざ, the

page updates without having to refresh.

Figure 40 - Deleting a diary entry

Searching the diary

Users can search their diary entries using the search bar at the top of the page. As shown in

figure 41, when the search button is clicked, a request is made to the back-end with the search

term, and if the user is a therapist, the ID of the patient whose diary is being searched. If there

are no results then a message is displayed to the user saying so, and if there are results then

the┞ aヴe displa┞ed to the useヴ H┞ settiﾐg the state ┗aヴiaHle さdataざ, ┘ith the FlatList

automatically updating the DiaryTiles shown to the user. To see their diary again, the user can

66

IliIk the さsho┘ all eﾐtヴiesざ Huttoﾐ, the ┗isiHilit┞ of ┘hiIh is Ioﾐtヴolled H┞ the state ┗aヴiaHle

さseaヴIhDispla┞edざ.

Figure 41- Example diary search and code

7.4.9 Therapist mode

To be efficient and avoid the repetition of code, many of the same screen components are

used for patient and therapist users, with conditional rendering to slightly change to contents.

The Ioﾐte┝t ┗aヴiaHle さisTheヴapistざ holds the useヴ t┞pe aﾐd is used for this conditional

rendering. Context was used for this variable, rather than state, to avoid having to manually

pass the variable down through many layers of components to where it was needed,

therefore making the app much easier to maintain and more scalable. Context should not be

overused as it makes it harder to create re-useable components. However, for variables such

as さisTheヴapistざ that aヴe used aIヴoss ﾏaﾐ┞ Ioﾏpoﾐeﾐts, its use is of gヴeat benefit (React [no

date][a]). An example of conditional rendering can be seen below in figure 42; when the user

is ﾐot a theヴapist a さDeleteざ Huttoﾐ is displa┞ed oﾐ the diaヴ┞ tiles, ┘heﾐ the useヴ is a theヴapist

the さDeleteざ Huttoﾐ is ﾐot sho┘ﾐ.

67

Figure 42 - Conditional rendering based on isTherapist context

Another example of this method can be seen in figure 31, where text inputs in the diary entry

are not editable if the entry is being viewed by a therapist user.

7.4.10 Styling

When calling components in React Native, styles are passed to components using the style

prop. In a small project it might make sense to simply define each style wherever it is, as this

is simple to do and means the style and the component are found in the same place. However,

in a larger project this becomes very inefficient, as there will be a lot of repetition of code and

searching through code to find where styles are set. Therefore, all of the major styles for the

app are contained in src/styles, with a separate file for each category, for example button.js,

input.js (show in figure 43). Each of the groups of styles are imported into index.js and then

exported again (figure 44), meaning that all of the style objects can imported from one file

(figure 45). This structure was taken from Schoeman and Larsson (2019).

68

Figure 43 - Styles for inputs

Figure 44 - index.js

Figure 45 - Example of importing styles

This method makes it easy to manage styles and is suitable for a large project to avoid

repetition of code. Having styles defined in small sections also allows for the composition of

ﾏultiple st┞les. Foヴ e┝aﾏple, ┘heﾐ st┞liﾐg a Te┝tIﾐput Ioﾏpoﾐeﾐt, ┞ou iﾐIlude さiﾐput.iﾐputざ,

theﾐ Ihoose the size, e.g. さiﾐput.sﾏallざ, aﾐd theﾐ Ioﾐditioﾐall┞ add さiﾐput.foIusedざ. This

keeps each of the styles simple and makes it easy to customize the appearance of

components.

69

7.4.10 – Additional front-end features

Screenshots and brief explanations of the front-end features not yet described (signing in,

singing up, viewing cognitive error information, adding a patient, removing patient, viewing

list of patients) have been included in the appendix A. As these features have all been

implemented as, or very close to, described in section 6 and use similar methods as have

already been described no value would be gained by describing them thoroughly.

70

8 – Evaluation

8.1 – Test Cases

To assess the fuﾐItioﾐalit┞ of the s┞steﾏげs ﾏaiﾐ featuヴes, test cases covering all of the

implemented requirements have been produced; these can be found in appendix B. Test

cases are a useful tool for system evaluation as they help to remove bias in product testing

by defining a strict set of steps with specific data to input into the system. Three types of data

were used in the test cases: valid data, invalid data, and absent data. With each data type,

the test cases check that the system correctly handles the given input and provides an

appropriate response to the user.

Of the 17 test cases, there were 13 passes and 4 partial passes (cases 8, 11, 12, 13). Two of

the partial passes are related to submitting diary entries and check-ins - if the user spams the

submit button then the document will be saved into their diary multiple times, which is not

an intended feature. The other two partial passes are related to the sliders within diary entries

and check-ins - when viewing a past diary entry or check-in, the sliders all show a zero value

rather than the value previously selected.

Overall, however, these test cases outline the fact that the system is robust in its handling of

invalid and absent data. Of course, as the test cases were only written for implemented

requirements, this result does not reflect a 100% complete program. This will be discussed

section 8.2.

8.2 - Acceptance criteria results

To further evaluate the system, the two tables below judge the functional and non-functional

ヴeケuiヴeﾏeﾐts H┞ a Pass/Fail ﾏetヴiI. Of the ヲヵ さﾏust ha┗eざ fuﾐItioﾐal aﾐd ﾐoﾐ-functional

requirements, there were 6 failures and one partial failure, giving a pass rate of 74% (counting

the partial failure as a half). While implementing the app I focused my efforts on the more

vital requirements (e.g. creating and editing diaries and check-iﾐs, theヴapists ┗ie┘iﾐg patieﾐtsげ

diaries) first, leaving less important features until later on in the process. This approach was

required for two reasons. Firstly, a lack of knowledge of the complexity of each requirement

at the time of writing meant that some requirements, such as statistics, ended up being out

of the scope of the project, and secondly the limited time available for the implementation of

the requirements. Therefore, while this success rate leaves room to improve, the

71

requirements that have been implemented represent the most important functionalities of

the app.

8.2.1 Functional Requirements

No. Requirement Pass/Fail Test

case(s)

Must have

1 The system will allow patient users to write a diary entry Pass 03-08

2 In the diary entry the patient can include information about an

activating event, associated intrusive and obsessional thoughts, and

their related anxiety

Pass 05

3 In the diary entry the patient can include information about cognitive

errors and their faulty beliefs

Pass 06

4 In the diary entry the patient can include information about

alternative ways to interpret their intrusive thoughts

Pass 03

5 In the diary entry the date and time should be automatically filled,

although the user should be able to edit them.

Pass 04

6 The system will allow patient users to search through their previous

entries

Pass 10

7 The system will allow patient users to view all the details of a

previous diary entry

Pass 11

8 The system will allow patient users to edit their previous diary entries Pass 11

9 The system will allow patient users to view their previous entries and

filter and sort by date

Partial

pass

09

10 The system will allow user to select entries to become private, which

theiヴ theヴapist Iaﾐげt see

Fail -

11 The system will require all users to create an account with an e-mail

and password

Pass 01

12 The system will allow users to change their password Fail -

13 The system will allow patient user to perform a check-in Pass 12

14 In the check-in the patient can choose and rate their emotions from a

list

Pass 12

15 The system will allow patient users to edit the list of emotions Fail -

16 In the check-in the patient can choose what activities they have been

doing

Pass 12

17 The system will allow the patient users to edit the list of activities Fail -

18 In the check-in the patient can add a note Pass 12

19 The system will allow therapist users to view their patients Pass

20 The system will allow therapist users to add/delete patients to their

list

Pass 15, 16

21 The system will allow therapist users to see and search through all of

the non-private entries of each of their patients

Pass 17

Should have

22 The system should have a function to provide information about

cognitive errors to the patient users

Pass 14

23 The system should have a function to display summary statistics to

the users

Fail -

24 The system should have a function to display useful comparisons to

patient users

Fail -

72

Could have

25 In a diary entry, the patient user could be able to tag their location Fail -

26 The system could send a notification to the patient user if they have

not done an entry in an amount of time specified by the user

Fail -

27 The system could let patient users save common items such as

people and places so they can be referenced between diary entries

Fail -

28 In a diary entry, the patient user could be able to add a photo Fail -

8.2.2 Non-Functional Requirements

No. Requirement Pass/Fail

Must have

1 The system must provide example inputs for each section of the diary Fail

2 The system must explain the purpose of each section of the diary Fail

3 The system must be easy to use, navigate, and understand Pass

4 The system must be reliable Pass

Should have

1 The system should be fast to respond to user input Partial

Pass

8.3 - User testing

To property evaluate my product it is vital to gain feedback from prospective users. As the

developer of the application, I have my own biases about it and need to gather the thoughts

and opinions of others, to make sure that I have made a product suitable for the intended

audieﾐIe ふas laid out iﾐ ﾏ┞ けuseヴ peヴsoﾐasげ iﾐ seItioﾐ ン.ンぶ.

Two methods of user testing were incorporated into this project. Firstly, prospective users of

the app were questioned using the System Useability Scale (SUS) and three written questions

(what they liked about the app, what could be improved, and additional comments). As the

intended user population for the application is quite specific, it was not feasible to try and

carry out the SUS testing in person. Separate observational testing was therefore carried out

with participants of the general populace, in order to directly observe the participants using

the app.

8.3.1 – System Useability Scale Testing

The System Useability Scale (SUS) was created by John Brooke in 1986, for the purpose of

measuring the useability of terminal applications of the time. The SUS consists of ten

stateﾏeﾐts, suIh as さI fouﾐd the s┞steﾏ uﾐﾐeIessaヴil┞ Ioﾏple┝ざ aﾐd さI fouﾐd the ┗aヴious

fuﾐItioﾐs iﾐ this s┞steﾏ ┘eヴe ┘ell iﾐtegヴatedざ, ┘hiIh the useヴ ヴates oﾐ a sIale of ヱ-5 from

strongly disagree to strongly agree. The full list of questions can be found in appendix C.

73

While oヴigiﾐall┞ Heiﾐg desIヴiHed H┞ Bヴooke as さケuiIk aﾐd diヴt┞ざ, the “U“ has siﾐIe Heeﾐ sho┘ﾐ

to be a very useful tool in useability evaluation. Sauro (2011) summarises that the SUS is:

• Reliable: Results of a SUS are repeatable as users respond in a consistent manner. SUS

is also reliable in small sample sizes (as small as two participants), although small

samples do not necessarily accurately predict the SUS score of the whole user-

population.

• Valid: Useable and unusable systems can be successfully identified using the SUS.

Answers to the SUS correlate highly with other usability questionnaires.

• Not diagnostic: The SUS can tell you what is wrong with the system, only that

something is wrong.

Users were provided with dummy accounts and instructed to complete a series of tasks in the

application, covering each of the use cases of the app. For patient users the tasks were:

complete a diary entry, view and edit a diary entry, complete a check-in, and read about a

cognitive distortion. For therapist users these tasks were: add a patient to your list, remove a

patient from your list, View the diary of a patient, and search through diary entries of a

patient. Participants were not given detailed instructions for the tasks, in order to replicate

an authentic first-time experience of the app.

SUS scores for each participant are calculated by standardising the score for each question to

0-4, with 4 being a positive response, totalling the scores for each user, and then multiplying

this by 2.5 so the scale is 0-100. To calculate the overall SUS score, a mean average of the

scores of each participant is calculated.

In total five participants were recruited; four people with OCD, and one therapist. The

complete results for each question can be found in appendix C. The calculated SUS score for

the appliIatioﾐ ┘as ΒΑ.ヵ, a gヴade of さBざ, oヴ desIヴiptioﾐ of さE┝Ielleﾐtざ aIIoヴdiﾐg to the ﾏetヴiIs

in Bangor et al. (2009). This is a very positive result and indicates that the application does

not have any major useability issues.

While this is an encouraging result, and the SUS is reliable with small sample sizes, I was only

able to recruit five participants for my study, which may not be enough to be able to reliably

draw conclusions for the whole user population.

https://books.google.co.uk/books/about/A_Practical_Guide_to_the_System_Usabilit.html?id=BL0kKQEACAAJ&redir_esc=y
https://uxpajournal.org/determining-what-individual-sus-scores-mean-adding-an-adjective-rating-scale/

74

8.3.2 - Long answer questions

Alongside the SUS, the participants were given the opportunity to give written feedback on

the app. As the SUS is not diagnostic this is a valuable addition, with participants being able

to identify and talk about specific areas of the app. Three questions were asked:

1. さAヴe theヴe aヴe aﾐ┞ aヴeas of the appliIatioﾐ that thiﾐk aヴe particularly useful? If so,

┘h┞?ざ

2. さAヴe theヴe aﾐ┞ aヴeas of the appliIatioﾐ that Iould He iﾏpヴo┗ed? If so, ho┘ざ

3. さDo ┞ou ha┗e aﾐ┞ additioﾐal Ioﾏﾏeﾐts aHout the appliIatioﾐ?ざ

Whilst full te┝t of the paヴtiIipaﾐtsげ aﾐs┘eヴs Iaﾐ He fouﾐd iﾐ appeﾐdi┝ C, the feedback is

summarized below.

Design

Aligning with the SUS scores, multiple participants praised the general design of the app,

stating that it was simple and easy to use. Three participants commented on the use of tabs

for the diary entry screens; two stated that the┞ ┘eヴeﾐげt paヴtiIulaヴl┞ oH┗ious, aﾐd oﾐe

mentioned that when looking at a previous diary entry they would prefer it to be shown on

one page, as opposed to over three tabs. Finally, one participant highlighted the fact that with

a relatively large diary, flicking through a physical journal would be much easier than scrolling

and loading entries in the app.

Diary content

Oﾐe paヴtiIipaﾐt pヴaised the ケuestioﾐs iﾐ the diaヴ┞ as さpヴo┗okiﾐgざ, aﾐd the theヴapist

speIifiIall┞ liked the iﾐIlusioﾐ of さIogﾐiti┗e eヴヴoヴs ideﾐtifiIatioﾐざ, although suggested the use

of the teヴﾏ さuﾐhelpful thiﾐkiﾐg st┞lesざ iﾐstead as it is ﾏoヴe aIIessiHle. The theヴapist also

stated that gathering evidence for and against their thoughts is often what patients find the

most helpful, and while this is implicit in the last question of the diary, it may be useful to

make it more explicit or even include a separate thought gathering exercise. Two users

identified that for the multiple-choice questions, it would be useful to be able to edit the lists

of emotions, cognitive errors, and activities, a feature included in my functional requirements

that I didﾐげt ha┗e tiﾏe to iﾏpleﾏeﾐt. Fiﾐall┞, the theヴapist aﾐd t┘o otheヴ paヴtiIipaﾐts

recognised the need for examples/guidance for the questions of the diary, another feature I

had originally planned to include.

75

Functionality

Three participants, one being the therapist, expressed that they liked the ability for the

therapist to directly view the diaries of their patients. The therapist said this feature would

He e┝tヴeﾏel┞ useful to theﾏ as Iuヴヴeﾐtl┞ the┞ ha┗e to talk thヴough theiヴ patieﾐtげs diaヴies oﾐ

the phone, are lucky to get a document sent to them, and sometimes get patients who lie

about how much work they have done, which is a barrier to their treatment and recovery but

would not be possible if they were using the app.

Two participants commented that the app was sometimes slow to respond to their inputs,

one stating that when submitting an entry they were able to click submit multiple times and

get repeat entries in their diary.

Finally, the therapist suggested that it would be useful to be able to search through the diary

by date/time period, a requirement which I intended implement.

8.3.3 – Observational testing

As previously stated, the SUS testing could not be carried out in person, so observational

testing has also been undertaken. This is important to show directly how users interact with

my app, which parts are intuitive, which are not, and how my expectations of the UX differ

from reality. Four participants were recruited for the testing to cover the four following

categories: younger (<35) with good IT Skills, younger with poor IT skills, older (>35) with good

IT skills, and older with poor IT skills. These categories allowed me to observe a wide range of

users, covering my user personas defined in section 3.3.

The full observation sheets can be found in appendix D, and the findings are summarised

below:

• When completing a diary entry, three participants tried to scroll down on the page

with the keyboard open when they had finished one textbox in order to click on the

next one. They all then realised they could not scroll and have to close the keyboard

to click the next textbox.

• The same three participants took a moment to recognise the tabs after they had

completed the first page of the diary entry. Subsequently when completing a check-

76

in, they did recognise that the tabs worked in the same way as the diary and used

them straight away.

• When updating a diary entry, all four participants scrolled to the last tab to press

さUpdateざ, ヴatheヴ thaﾐ usiﾐg the さ“a┗e & E┝itざ Huttoﾐ iﾐ the haﾏHuヴgeヴ ﾏeﾐu. This

┘as pヴoHaHl┞ due to the faIt that the さsuHﾏitざ Huttoﾐ ┘heﾐ Iヴeatiﾐg a diaヴ┞ ┘as iﾐ

the same place, so this is where they knew to go.

• When instructed to edit the diary entry they had made, all participants realised they

had to IliIk さVie┘ diaヴ┞ざ aﾐd theﾐ go oﾐ the speIifiI diaヴ┞ eﾐtヴ┞.

• When the app is communicating with the database, i.e. when submitting a diary entry,

there is a small (~1-2 second) delay. In this gap, all of the participants paused waiting

for a response for their input. Some instant feedback here such as a loading symbol

could be useful.

8.3.4 – Testing summary

Overall, the testing has been very positive and informative. In the SUS testing the participants

┗oted iﾐ fa┗ouヴ of stateﾏeﾐts suIh as さI thought the s┞steﾏ ┘as eas┞ to useざ aﾐd さI thiﾐk I

┘ould use this s┞steﾏ fヴeケueﾐtl┞ざ, aﾐd the o┗eヴall sIoヴe of ΒΑ.ヴ, although fヴoﾏ a sﾏall saﾏple

size, indicates a very useable app. When suggesting improvements some participants

identified features that I had intended to include in the app: the ability to edit the lists of

emotions, activities, and cognitive errors, the need for examples and extra information for

the questions in the diary, and the ability to search through the diary by date/time period.

Participants also highlighted the fact that the tabs in the diary entry were not immediately

obvious, something that the observational testing corroborated. Additionally, two SUS

participants commented that the app was sometimes slow to respond to their inputs; when

observing users I could see that this was when they were performing actions such as

submitting a diary entry which require the app to interact with the database. Finally, it is very

encouraging that participants made comments that align with the problems with physical

journals outlined in section 3 (e.g. security of journal on phone, ease of use having journal

online, easily sending entries to therapist).

77

9 – Conclusion
This project aimed to produce a thought journal mobile application to assist patients and

therapists in the process of treating OCD though CBT. Reviewing the existing literature

highlighted issues with physical journals; for example, it can be difficult for the therapist to

┗ie┘ theiヴ patieﾐtsげ jouヴﾐals aﾐd iﾐIoﾐ┗eﾐieﾐt foヴ the patients to have to carry a physical

journal with them. Existing solutions for these problems were reviewed and it was found that

while there were many general mental health journal apps, there were none specifically for

OCD and none with the ability to easily share a journal with a therapist.

The main objectives for the project were:

1. To allow users to add a journal entry describing a triggering event along with all

relevant aspects of the event and the subsequent thought processes

2. To allow therapists to view and edit their list of patients, and view and search their

patieﾐtsげ jouヴﾐal eﾐtヴies

3. To allow users to view/edit/delete their past journal entries in a searchable list, which

can be filtered in ways such as date or time period

4. To allow users to perform a quick check-in of their emotions and activities

5. To allow users to read and learn about cognitive distortions

The application meets all of these objectives, although there are some shortcomings in

relation to the finer details set out in the requirements. Due to time constraints, there were

soﾏe さﾏust ha┗eざ ヴeケuiヴeﾏeﾐts which I was unable to implement: a statistics feature, the

ability to edit the lists of emotions, activities and cognitive errors in the diary entry and check-

in, the ability for users to change their password, filtering the diary by a time period, and

including example inputs and additional information with the questions in the diary. In

retrospect these would have been better Ilassified as さshould ha┗eざ featuヴes, as the core

functionality of the app works, and the five main objectives have been met.

Throughout the design and implementation stages, user experience and my user personas

were kept in mind. Choices such as minimizing the number of required fields, using standard,

recognisable material design components, and keeping a consistent styling throughout the

app, all contributed towards making the app as user friendly as possible.

78

User testing highlighted some areas for improvement in the app, but overall produced very

positive results which indicated that the app has no major useability issues and is fit for

purpose. The positive feedback demonstrates the value of online journaling for OCD patients.

The importance of the findings of this dissertation is that CBT can be enhanced, both for

people with OCD and their therapists when technological solutions are designed with users

at the centre of the development process.

79

10 – Future work
As it stands, the application is functional and achieves most of the requirements set out at

the start of the project. There are, however, some missing features and some improvements

that could be made to the implemented features. These would greatly improve the standard

of the app, and there are some that could be achieved in a short amount of time.

Firstly, I would like the refactor some of the code. As I was learning while coding, there are

some sections of the code which could be made more efficient and some sections where

repetition could be avoided.

Two of the failed non-functional requirements were to provide example inputs for, and

explain, the purpose of each section of the diary. Not including these requirements means

the app doesﾐげt Iateヴ ┗eヴ┞ ┘ell to ﾏ┞ fiヴst useヴ peヴsoﾐa ふ“eItioﾐ ン.ンぶ, a useヴ ┘ho doesﾐげt ha┗e

much previous in journaling. Adding these small bits of information would make the app much

more useable for those without much knowledge of CBT, increasing the potential user base.

Another easy improvement would be to finish the section of the app containing information

about cognitive errors; as the framework is already in place, this would only require typing

out the information. Additionally, being able to view the relevant cognitive error information

page straight from the diary when selecting it would be a nice addition.

Through the user testing it became apparent that the use of tabs in the diary entry and check-

in screens was not optimal, with many users taking some time to recognise how to get to the

next page. This could be improved in a number of ways; changing the colour of the tabs so

the┞ staﾐd out ﾏoヴe, plaIiﾐg theﾏ at the Hottoﾏ of the sIヴeeﾐ ┘heヴe useヴsげ atteﾐtioﾐ is afteヴ

they have filled out the last field of each page, oヴ addiﾐg さﾐe┝t pageざ aﾐd さpヴe┗ious pageざ

buttons to each screen. There were also a few other smaller UI issues that would need to be

fixed and put back to user testing for further evaluation.

Another issue discovered in the user testing is the delay in response when the app is

communicating with the database. This may be due to the fact that I am using free resources

to host the back-end of the program, and by upgrading these to paid versions the issue may

be solved. Another way this could be resolved is to simply have some instant feedback in the

app, such as a loading symbol, when a user initiates one of these actions.

80

One of the requirements which I was unable to implement was the ability for users to edit the

lists of emotions, activities, and cognitive errors. This is an important feature as its impossible

to predict all the different things a user may want to record in the app, and including it

therefore greatly increases the utility of the diary.

Additionally, a more secure way for therapists to add patients would be needed; in its current

format, the app only requires soﾏeoﾐeげs e-mail to be able to view their diary. To make this

process more secure patients could be given a unique code that is generated when they

create their account, which they would then provide to their therapist to be able to add them.

There could also be a way for patients to generate a new code in order to re-set the therapists

that have access to their diary.

Further to these improvements of existing functions, there are some additional features

which could be added to the app on larger timescale. Firstly, a statistics section. This was a

requirement of the app and a common feature of the reviewed existing solutions, but could

not be implemented within the timeframe of the project. A second additional feature is an

offline mode. Currently, using the app requires an internet connection, which could be

inconvenient in the real word. If users were able to save entries on their device when they

didﾐげt ha┗e aﾐ iﾐteヴﾐet IoﾐﾐeItioﾐ, aﾐd s┞ﾐI up to the dataHase ┘heﾐ the┞ did, this ┘ould He

a very helpful feature.

Finally, there are many more activities involved in CBT than journaling, such as exposure and

response prevention. Expanding the app to include these could greatly increase its utility in a

therapy setting.

81

11 – Refection of learning
At the start of the project, I had no knowledge of React Native, node.js, express.js, or

MongoDB. While this challenge was exciting as it gave me the opportunity expand my

technical knowledge, it was also quite intimidating to take on a big project using frameworks

that I had never used before. While learning these frameworks at the start of the project I

fouﾐd that I ┘asﾐげt al┘a┞s leaヴﾐiﾐg thiﾐgs that I was going to be able to apply to the project.

For this reason, I started the implementation once I had learnt the basics and simply did

further research where required, an approach which I found to be very useful in streamlining

my learning. Taking on this challenge has increased my confidence in my ability to quickly

learn and apply new skills, aﾐd Iげﾏ ┗eヴ┞ happ┞ to ha┗e Ihoseﾐ to do so.

My lack of knowledge of these frameworks at the start of the project did produce some issues

during the project, particularly during the planning stages. Firstly, when writing the

requirements, I found it hard to gauge the complexity of each of the features that I wanted

to include in the application. This led to an overly ambitious set of requirements which could

not all be implemented in the time available. Secondly, particularly during the

implementation of the front-end in React Native, I found it difficult to approach the

development in an efficient manner. My lack of knowledge sometimes led me down the

wrong path when trying to solve problems or implement features in ways which then had to

be changed later down the line. While learning through lectures and guides before a project

teaches you some things, nothing beats the experience gained through undertaking a large

project such as this. With my gained knowledge I feel much more confident going forwards

to future projects in my ability to define requirements that match the timescale of a project

and plan the implementation in a more methodical manner.

Another area in which I have learnt a lot is UI design, an area in which I previously had very

little experience. I learnt the importance of iterative design and critical analysis of prototypes

usiﾐg the Nielseﾐげs ヱヰ heuヴistiI pヴiﾐIiples, and gained insights from this which were influential

in the final design of the app. During the evaluation, the observational study was an eye-

opening experience. I had never before seen someone use an interface that I had created.

Most interestingly was the comparison between the way I expected people to interact with

the app, and the reality that I observed. Therefore, retrospectively, I should have included

user testing in the project at an earlier stage to give me the opportunity to incorporate the

82

feedback into the project, something that I was hesitant to do due to worries about time

constraints, as well as an underestimation of its importance.

Towards the end of the implementation phase I found it hard to stop coding and move on

with the project. This issue stemmed from two reasons; firstly, a desire to fix all the small

issues with the app, not wanting to leave bugs unresolved. Secondly, not having a strict

definition of a minimum viable product or a definite date to stop at. Unfortunately, this meant

that I was pushed for time at the end of the project, and has highlighted the importance of a

stricter time schedule for large projects.

The process of this project has been an experience full of learning and personal and academic

growth. The project has been an order of magnitude more involved and demanding than any

of the other work completed throughout the MSc, and the technical and management skills

acquired will be invaluable in my future.

83

12 – Reference List
Agarwal, M. 2018. What is JSON Web Token. Available at:

https://www.loginradius.com/blog/async/jwt/ [Accessed: 2 November 2021].

Arias, D. 2021. Hashing in Action: Understanding bcrypt. Available at:

https://auth0.com/blog/hashing-in-action-understanding-bcrypt/ [Accessed: 2 November

2021].

Auth0 [no date]. JSON Web Tokens. Available at:

https://auth0.com/docs/security/tokens/json-web-tokens [Accessed: 2 November 2021].

Billings, D. 2006. Journaling: A Strategy for Developing Reflective Practitioners. Kowalski,

K. ed. The Journal of Continuing Education in Nursing 37(3), pp. 104–105. doi:

10.3928/00220124-20060301-02.

Cherry, K. 2019. The Color Psychology of Blue. Available at:

https://www.verywellmind.com/the-color-psychology-of-blue-2795815 [Accessed: 2

November 2021].

Cimpanu, C. 2021. 8.3 million plaintext passwords exposed in DailyQuiz data breach.

Available at: https://therecord.media/8-3-million-plaintext-passwords-exposed-in-dailyquiz-

data-

breach/?__cf_chl_jschl_tk__=pmd_qQlE5P6gIsY5BZ8u8EZtuhLQzylhsYhkvBtjhTMihBQ-

1635164583-0-gqNtZGzNAnujcnBszQi9 [Accessed: 2 November 2021].

Diduh, A. 2021. Mobile app vs. website: What to choose for the business in 2021. Available

at: https://www.cleveroad.com/blog/mobile-app-vs-mobile-website [Accessed: 2 November

2021].

Expo [no date]. Already used React Native? - Expo Documentation. Available at:

https://docs.expo.dev/workflow/already-used-react-native/ [Accessed: 2 November 2021].

Feroze, U. 2021. React Native CLI vs Expo CLI — Which one do I choose? Available at:

https://levelup.gitconnected.com/react-native-cli-vs-expo-cli-which-one-do-i-choose-

bdf02ea457bf [Accessed: 2 November 2021].

84

freeCodeCamp.org 2021. Node.js and Express.js - Full Course. YouTube . Available at:

https://www.youtube.com/watch?v=Oe421EPjeBE&t=7096s [Accessed: 2 November 2021].

Get self help 2010. OCD / Perfectionism - Thought Record Sheet. Available at:

https://www.get.gg/docs/OCDThoughtRecordSheet.pdf [Accessed: 2 November 2021].

Habilelabs 2021. Best Folder Structure for React Native Project - Minds Verse - Medium.

Available at: https://medium.com/habilelabs/best-folder-structure-for-react-native-project-

a46405bdba7 [Accessed: 2 November 2021].

JavaScript Mastery 2020a. Full Stack MERN Project - Build and Deploy an App | React +

Redux, Node, Express, MongoDB [Part 1/2]. YouTube . Available at:

https://www.youtube.com/watch?v=ngc9gnGgUdA [Accessed: 2 November 2021].

JavaScript Mastery 2020b. Full Stack MERN Project - Build and Deploy an App | React +

Redux, Node, Express, MongoDB [Part 2/2]. YouTube . Available at:

https://www.youtube.com/watch?v=aibtHnbeuio&t=2553s [Accessed: 2 November 2021].

King, F. and LaRocco, D. 2006. E-journaling a strategy to support student reflection and

understanding. Current Issues in Education 9(4)

MongoDB [no date][a]. Avoid Unbounded Arrays. Available at:

https://docs.atlas.mongodb.com/schema-suggestions/avoid-unbounded-arrays/ [Accessed: 2

November 2021].

MongoDB [no date][b]. Query an Array. Available at:

https://docs.mongodb.com/manual/tutorial/query-arrays/ [Accessed: 2 November 2021].

Patel, P. 2018. What exactly is Node.js? Available at:

https://www.freecodecamp.org/news/what-exactly-is-node-js-ae36e97449f5/ [Accessed: 2

November 2021].

React [no date][a]. Context – React. Available at: https://reactjs.org/docs/context.html

[Accessed: 2 November 2021].

React [no date][b]. React.component – React. Available at: https://reactjs.org/docs/react-

component.html#setstate [Accessed: 2 November 2021].

85

React [no date][c]. Tutorial: Intro to React – React. Available at:

https://reactjs.org/tutorial/tutorial.html [Accessed: 2 November 2021].

React Native 2021. Introduction · React Native. Available at:

https://reactnative.dev/docs/getting-started [Accessed: 2 November 2021].

Shaffer, J. 2016. 5 tips on designing colorblind-friendly visualizations. Available at:

https://www.tableau.com/about/blog/examining-data-viz-rules-dont-use-red-green-together

[Accessed: 2 November 2021].

Stone, A., Shiffman, S., Schwartz, J., Broderick, J. and Hufford, M. 2002. Patient non-

compliance with paper diaries. BMJ 324(7347), pp. 1193–1194. doi:

10.1136/bmj.324.7347.1193.

Taylor, D. 2021. What is MongoDB? Introduction, Architecture, Features & Example.

Available at: https://www.guru99.com/what-is-mongodb.html.

The Net Ninja 2020. Node.js Crash Course Tutorial #9 - MongoDB. YouTube . Available at:

https://www.youtube.com/watch?v=bxsemcrY4gQ&t=304s [Accessed: 2 November 2021].

Think CBT 2017. OCD Thought Record. Available at:

https://thinkcbt.com/images/Downloads/Thought_Records/OCD-THOUGHT-RECORD-

THINK-CBT-V-09.07.18.pdf [Accessed: 2 November 2021].

Tull, M. 2021. Managing Catastrophic Thinking in PTSD. Available at:

https://www.verywellmind.com/managing-catastrophic-thoughts-2797222 [Accessed: 3

November 2021].

