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Abstract 

The result of a trader’s decision-making process, to buy or sell a stock, has a direct impact on 

the complex behaviour of financial markets and data. The use of machine learning in the 

finance domain can be seen as a significant change through enabling the prediction of stock 

prices and patterns with the use of algorithms. The aim of this project is to consider different 

elements that impact the financial market and by implementing algorithms, explore the 

effectiveness of these tools to help traders in trying to predict public companies’ stock prices.  
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1. Introduction 
Stock markets influence both private investor’s lives, and the relevant financial institutions that 

have the sole purpose of trading stocks. Ranging from economic upheaval to sustainable 

growth within a community, or in some cases, whole continents, the behavior of such markets 

can be vastly complex and difficult to predict. Due to the ever-increasing regulations and the 

constant ‘watching eye’ of the world-renowned regulations around such infrastructure, 

research around the movements of stock markets has been, considering the relation to prior 

years, easier with very passing day. As such, with each passing day, an increasing amount of 

people have been trying to analyze this very behavior.  

Data provided from financial transactions may in turn affect a trader’s decision-making, 

especially when it comes to the initialization of buying or selling stocks. Through modern 

means, and with ease of access to the Internet and the relevant data that may come with it, 

such information may influence a retail trader’s decision.  

The biggest incentive that drives retail investors to the stock market is profit maximization.  On 

the stock market, individuals can buy and/ or sell shares of publicly traded companies, in a 

regulated environment. Many different tactics, ideologies, views, and ideas exist, no matter the 

scenario. The “push and pull” scenario where are people buying and selling stocks, is exactly 

what drives the relevant Demand & Supply of the specified markets, as well as setting its price. 

For one to maintain a profitable portfolio, he/she must be highly experienced and practiced, 

and have great knowledge in calculating futuristic outcomes.  

Further from Demand & Supply, many other factors may affect the price of stocks, especially in 

the modern day. One of the most trending matters of this era is social responsibility and how 
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companies choose to “behave” in certain circumstances. For instance, when Activision-Blizzard 

faced huge internal HR (Human Resources) issues, their stock price was seen to plummet, as it 

was made quite clear that many investors did not want to be affiliated with a company that has 

such a demeaning attitude towards its own personnel. (GmbH, 2021) Similarly, a company that 

may opt into certain ‘green’ strategies may find the public on its side and experience an 

unexpected increase in price due to the rising demand from their proper actions.  

Additionally, it has been found that political moves, natural disasters, and statements made by 

the market (i.e., an increase in regulations) may affect the price of certain indexes. (Wealth 

Advisors, 2021) The plethora of the matters, when complied into one, brings about the actual 

price of a stock. However, inflations may take place for short period of times, but the market 

will almost always set back itself into price equilibrium. Consequently, traders should always 

study the market and the specific share they are interested in extensively, and not be led by 

impulse-buying/ selling.  

Furthermore, it can be considered unquestionable that market investors would dwell towards 

AI (artificial intelligence) and ML (machine learning) to predict outcomes, make their lives easier 

and hope for a deeper understanding of the markets. Examples of machine learning models 

include the Prophet, LSTM and Random Forest Classifier.  

 It is important to highlight the fact that AI and ML have an immense impact on the financial 

sector including, the speeding of the underwriting process, portfolio composition and 

optimization. (Thomas, 2021) Additionally, many firms in the Fintech industry, albeit a new 

industry, but mostly composed of experienced code-writers, are using the strength of AI/ ML to 
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automate tasks and processes that were seen in the past as time consuming and mundane. 

Such actions were seen to be taken on by many banks and trading firms as well.  

In relation to other investing matters, investing in stocks can be considered to have a lower risk 

than opening your own business, or chasing a high- salary career. Investors have a chance to 

realize gains through owning actual stocks of publicly traded companies through an exchange 

or over-the-counter market. Furthermore, traders can explore currency trading, equities, and 

derivatives over actual platforms. However, traders (especially ones of retail nature) can be 

impacted by the high volatility that exists in the market. Automated Trading Systems and their 

relevant regulatory control, ‘Best Execution’ (where brokers are required by law to make the 

most advantageous order execution for their clients without considering prospective profits/ 

losses for the company) can perform trades much faster and much more efficiently than actual 

humans. Risk strategies and risk-nullification (which can almost always, not be completely 

nullified) must be applied, which can only be derived from human judgement. 
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2. Aims and Objectives 
The aim of this project is to test different algorithms and methods towards stock price 

prediction and compare their usability when trading stocks.  

The first approach considers the prediction of stock prices by using only historical data. To 

achieve this, three different machine learning algorithms will be developed and trained using 

the same data. The algorithms will then be used to predict actual stock values to evaluate their 

accuracy.  

The second approach will take into consideration twitter sentiment in combination with 

historical prices, to find whether the user sentiment affects the predictions positively. Datasets 

containing millions of user tweets throughout the years have been obtained, which will be 

processed and prepared to be used in a machine learning algorithm along with the historical 

data. 
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3. Background 
Two types of research were proposed in the initial stages. One of Fama, E.F., relating to the 

Efficient Market Hypothesis (“EMH”), and one of Horne, J.C., & Parker, G.G, that of the Random 

Walk Theory. Both concepts have theorized that market price cannot be predicted since prices 

are affected by information that does not relate to historical prices.  

EMH relies on the concept that newly released market information will impact the price of a 

stock, albeit it in a positive or negative matter. Additionally, it is stated that trading is done on 

the fair value of the instrument. Due to that, only by increasing the risk can a trader increase 

the yield, as nobody can sell the instruments at a price that is either undervalued or inflated.  

There are three scenarios which affect market price: 

1. Weak Form – Exclusively based on historical data. 

2. Semi-Strong Form – Current public data along with historical data is used to create a 

basis. 

3. Strong Form – Includes confidential data. 

The movement of the prices are stated to be “either a result of new released information or a 

random move that would prevent prediction models from success.” 

On the other hand, Horne, J.C., & Parker, G. G. have presented the Random Walk Hypothesis. 

This hypothesis provides a view that instrument prices change randomly and makes a point 

towards past price movement being independent of current movements. Up to a certain point, 

this viewpoint varies from EMH, as the emphasis is on the short-term patters of the stock 

market. Based on the hypotheses, the stock market may indeed follow an unplanned and 
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irregular movement, where the accuracy of attempting to predict and speculate on such 

movements may be impaired by up to 50%. 

 In opposition to the theories, studies conducted in the recent years have shown that 

instrument market price movements can be predicted, up to a certain point. Two types of 

varying financial analysis predict these instrument prices:  

1. Fundamental Analysis – Based on the health of the company in question, including both 

qualitative and quantitative factors through accounting formulas/ ratios (i.e., interest 

rate, return on assets, revenues, expenses, and price to earnings, amongst others). The 

specific target of this analysis was to verify the long-term sustainability and momentum 

of the specified company, for the purposes of a long-term investment.  

2. Technical analysis – Based on time-series data, where both retail and professional 

traders analyse historical data on price movements and patterns, considering time as 

perhaps the most important framework in the prognosis of the future price. 

Additionally, this analysis depends on three (3) decisive factors: (1) stock price 

movement [albeit seeming random at most times], (2) historical trends expected to 

repeat themselves during the progression of time, and (3) all relevant information 

regarding the instrument in question. 

Through most studies, varying machine learning techniques have been utilized to forecast stock 

prices. Machine learning has demonstrated it is a valuable tool utilized in the task of prediction, 

as many techniques have been employed in the analysis of speculating a prevailing diagram/ 

pattern. Varying machine learning models and risk strategies have been utilized to predict at 
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the very least, the direction of the price for varying timeframes, rather than using diversified 

components that may affect the market in question. 
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4. Theory 
4.1. Time Series 

A time series is a data set that looks at a certain metric over a period of time. (Dinevski et al., 

2021) An easy example of this would be the stock market. If we want to predict what a stock’s 

next price will be, we will have to analyse historical prices data over a period of time to learn 

the patterns and estimate what will happen. Certain variables that could influence stock’s price 

are the time of year, recurring or single events, investor’s sentiment levels and more. A time 

series analysis looks at the relationship between the dependent variables in comparison to the 

independent variables to determine the impact of each. A time series analysis can also look at 

how timing impacts the dependent variable in the form of seasonality or overall upward or 

downward trends. (Dinevski et al., 2021) 

Seasonality are trends within the data that occur at specific times. A time series analysis should 

be able to find that trend and incorporate it when forecasting the price. A time series should 

also be able to consider macro trends. (Dinevski et al., 2021) In the stock price, a macro trend 

would be if a given stock has been seeing an increase or decrease in price over time because of 

inflation. 

Several machine learning algorithms can be implemented to help analyse time series data and 

be then used to predict the actual values. 

4.2. Model Training 
Machine learning models are not able to distinguish what is what when they are created. At 

first, the models are not able to do anything specific therefore they cannot provide a useful 

output. To make them learn how to do specific tasks, or predict an output, training takes place. 
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First, splitting the dataset in subsets is a good practice to do for each subset to be used for a 

different purpose while training. Some of the data is used for training the model while the rest 

is used to evaluate the trained model. The splitting task can be performed either by manually 

splitting the dataset or with the aid of Python libraries like Keras. When the training is complete 

and the data is evaluated, the programmer decides whether the model fit is ideal. What should 

be avoided, is overfitting or underfitting the model because these outcomes affect the 

predictability of the model. 

 

Figure 1. Training fitments (Amazon Learning, 2020) 

Overfitting  

When a model overfits, it means that the training was too accurate. In theory this should be a 

good thing since the target of a machine learning model is to achieve a high accuracy but having 

too high accuracy, or overfitting the model, results in a bad generalization. This will make the 

model perform well only on the training dataset given but it will have a substandard 

performance on the testing dataset, or any other data given. When overfitting exists the model 

instead of getting trained to do what it is meant to do, it focuses on learning the “noise” in the 

training data. In the case of stock price prediction, a model that is overfitted, it will only predict 
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patterns identical or like the training patterns, but it will perform poorly on the testing dataset 

or future predictions.  

Underfitting  

Underfitting a model is the opposite of overfitting. It means that the model’s predictions do not 

match the training dataset and will thus not have a satisfactory performance on any other data 

given. This is usually the outcome when the model is not configured correctly, not enough 

training was performed or if there is not enough data. A model that underfits will not perform 

well in predicting testing data or future value predictions.  

Balanced fitting  

The best machine learning model fit is where the model’s prediction trend is close to the 

training data but does not try to match every datapoint. To achieve this fit, the programmer 

should use good fitting practices and review the model after every training iteration with the 

help of metrics such as the mean squared error and plots. The sweet spot is the point just 

before the error on the test dataset starts to increase where the model has good skill on both 

the training dataset and the unseen test dataset. (Brownlee, 2021) 

4.3. Algorithms 
4.3.1. Prophet 

Facebook’s Prophet is an open-source algorithm for creating time-series models. It works 

exceptionally well at modelling time series that have multiple seasonalities and at its core the 

Prophet procedure is an additive regression model with four main components. (Facebook 

Research, 2021) It is the sum of three functions of time plus an error term: growth g(t), 

seasonality s(t), holidays h(t), and error et: 
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Figure 2. Taylor SJ, Letham B. 2017 

The Prophet algorithm was designed to automatically find the correct set of hyperparameters 

for the model and make predictions using the data. The Prophet’s default settings produce 

forecasts that are often accurate as those produced by skilled forecasters, with much less 

effort. (Facebook Research, 2021) In combination with an analyst, even one that has no 

experience or training in time series methods, the model can be further improved. See Figure 3 

for the ideal learning loop. 

 

Figure 3. Most efficient forecasting process using the Prophet (Facebook Research, 2021) 

4.3.1.1. The Growth Function 
The growth function shapes the general trend of the data. The Facebook Prophet is created on 

the idea that the growth trend can be present at all points in the data or can be altered at what 

Prophet calls “changepoints.” 
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The changepoints are defined as the times where data changes direction and the Prophet can 

detect them automatically or the programmer can set them manually. The amount of data 

considered when changepoints are detected can also be adjusted. 

The growth function is consisted of three options: 

 Linear Growth: It is the default parameter for the algorithm which uses a set of 

piecewise linear equations with differing slopes between the changepoints. (Krieger, 

2021) When the growth is linear, the growth term looks similar to the typical y = mx + c 

equation for the straight line, with the difference that the slope(m) and offset(c) will 

change at each changepoint. 

 Logistic Growth: It is used when the time series dataset has a cap or a floor which results 

in values becoming saturated because they cannot surpass a maximum or minimum 

value. When the growth is logistic, the growth term looks similar to the typical equation 

of a logistic curve (see Figure 4) with the difference that the carrying capacity (C) will 

vary as a function of time and the growth rate (k) and the offset(m) are variable and will 

change value at each change point. (Krieger, 2021) 

 

Figure 4. Prophet’s growth function (Krieger, 2021) 

 Flat: Finally, a flat trend can be selected where there is no growth over time. When a flat 

growth function is selected, the growth will be a constant value. 
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4.3.1.2. The Seasonality Function 
The seasonality function is simply a Fourier Series as a function of time. (Krieger, 2021)  

The Fourier series sum can estimate almost any cyclical pattern or in the case of Facebook 

Prophet, the seasonality in the data. The seasonality function mathematical equation is defined 

below: 

 

Figure 5. Prophet’s seasonality function equation (Taylor SJ, Letham B. 2017) 

If the analyst has the required understanding of the Fourier Series, they can choose the number 

of terms in the series, or otherwise known as the Fourier order. The Facebook Prophet can be 

used even with no knowledge on the Fourier series though since it can automatically find the 

optimum Fourier order. 

4.3.1.3. The Holiday/Event Function 
The Facebook Prophet is able to alter the forecasting when there is a holiday or an important 

event. This is possible with the use of lists of dates containing the holidays or events, and when 

the specific dates are present in the dataset it alters the value based on historical movements 

on the same holiday or event. The algorithm can also recognize a range of days around the 

aforementioned dates. 

4.3.2. LSTM 
Neural networks are a type of machine learning which are related to biology and neuroscience, 

which were created to mimic how the human brain works. The human brain is consisted out of 



17 
 

approximately eighty-six (86) billion neurons that are interconnected with approximately 1014 - 

1015 synapses (Karpathy, n.d.), or in other words connections, and together they put together 

the human nervous system.  

 

Figure 6. Mathematical representation of a neuron (Karpathy, n.d.) 

In mathematical terms, the neuron is consisted out of the axons of a previous neuron which 

carry the signals represented by ‘x’ and are then multiplied by the weights represented by ‘w,’ 

to give the input dendrite ‘w0x0’. Every input dendrite is added up and their sum make the cell 

body of the new neuron. The aim of this process is that the weights are adjustable and 

manipulate the influence of one neuron to another. When the sum in the cell body is bigger 

than a threshold, the neuron is activated and sends a signal along its output axon. Only the 

frequency of the activation gives out information in the mathematical model instead of taking 

into consideration precise timings of activations. Based on this rate code interpretation, we 

model the firing rate of the neuron with an activation function f, which represents the 

frequency of the spikes along the axon. (Karpathy, n.d.) 



18 
 

The LSTM is type of neural networks called Recurrent Neural Networks. The acronym stands for 

Long short-term memory (LSTM) and it is a popular type of network used in the field of deep 

learning. Because RNNs can learn the result from the previous round, this gives RNN a time 

series context. However, RNNs can only read the results from the previous round. For stock 

price data, there are thousands of points of data. Therefore, only remembering the previous 

round result is not enough, because the stock price might also be influenced by the price weeks 

ago or months ago. LSTM is introduced into this report because LSTM can address this problem. 

The LSTM architecture fixes the lack of ability to learn long-term dependencies by introducing a 

memory cell that can preserve states over long periods of time.  

Normally neural networks operate via feedforwarding, but the LSTM has feedback connections 

instead. Other than being able to process single data points (e.g., images), it can also process 

whole series of data (such as speech or video inputs). The LSTM networks can save information 

over a period or in other words they have a memory capacity which is especially useful when 

dealing with Time-Series.  

 

Figure 7. LSTM network (Olah, 2021) 
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Looking at Figure above, the output of an LSTM at a particular point in time is dependent on 

three things: 

▹ The current long-term memory of the network - known as the cell state which is the 

horizontal line at the top of the Figure. 

▹ The output at the previous point in time - known as the previous hidden state which is the ht-

1. (“LSTM Networks | A Detailed Explanation | Towards Data Science”) 

▹ The input data at the current time step which is xt. 

When using an LSTM model, the information that will be stored and discarded can be decided. 

This is done with the use of gates which can be thought of as filters. Each gate is their own 

neural network layer. 

Gates in LSTM are the sigmoid activation functions. This means they output a value between 0 

or 1 and in most of the cases it is either 0 or 1. (Thakur, 2021) The sigmoid function is used for 

the LSTM gates because only positive values should be output between 0 and 1 to help decide 

on which features should be kept or dropped. ‘0’ means that the gates are blocking everything 

and ‘1’ means that the gates are allowing everything to pass through it. 

Tanh is a non-linear activation function which adjusts the values going across the network, 

making sure the values remain between -1 and 1. For information to stay intact, it is required to 

use a function with a second derivative that can last longer.  
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Figure 8. A detailed view of an LSTM Cell (Singhal and RNN, 2021) 

Three types of gates engage in each LSTM model with the goal of controlling the state of each 

cell. 

Forget Gate: It decides the information that will be kept or dropped by looking at the output of 

the previous hidden state, ht-1, and the input at the current timestep, xt. It then provides a 

number between 0 and 1 for every number in the cell state Ct-1, where 1 means ‘keep all the 

information’ and 0 means “ignore all this information”. 
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Figure 9. LSTM cells forget gate (Olah, 2021) 

Input Gate: A sigmoid layer that is followed by a tanh layer decide the new data that is going to 

be stored in the cell. The sigmoid layer, named as ‘input gate layer’ selects which values will be 

modified. The tanh layer that follows, creates a vector, �ሚ௧ with the new possible values that 

could be added to the cell state. (Saiful and Hossain, 2020) 

 

Figure 10. LSTM cell input gate (Olah, 2021) 

 

After processing the information through the Forget and Input gates, the new cell state Ct is 

updated. To do that, the old state is multiplied by ft and discards the processed information. 
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Then the new possible values in vector �ሚ௧, are scaled based on how much it was decided to 

update each value, it. 

 

Figure 11. LSTM cell, cell state update (Olah, 2021) 

Output Gate:  Decides the final output. "The yielded value will be based on the cell state along 

with the filtered and newly added data. (Goel and Bajpai, 2020) A sigmoid layer is run first to 

decide the parts of the cell state that are going to be output. Then the cell state goes through a 

tanh function and is multiplied by the output of the sigmoid function to output only the parts 

that were decided. 

 

Figure 12. LSTM cell output gate (Olah, 2021) 
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4.3.3. Random forest 
The Random Forest algorithm is a supervised machine learning algorithm which is primarily 

used to solve regression and classification problems. It utilizes ensemble methods, and it is 

applied in several industries such as banking to predict behaviours and outcomes.  

Ensemble methods that were mentioned above, is a machine learning method that combines 

many models to create a better predictive model. Ensemble means a group or a set and in this 

situation, a group of decision trees and grouped together they are called ‘Random Forest.’ 

Individual models have less accuracy compared to ensemble models since they compile the 

results from the individual models and provide an outcome.  

In simpler terms, a random forest is consisted out of several decision trees which helps to deal 

with the issue of overfitting in decision trees. Decision trees are a nonparametric machine 

learning algorithm that is very flexible and is subject to overfitting training data. (Brownlee, 

2021) The reason a random forest deals with the overfitting issue is that takes the average of all 

the decision trees’ predictions, and it cancels out the biases. These decision trees are built 

randomly by choosing random features from the given dataset.  

4.3.3.1. Decision trees 
Decision trees, have a hierarchical structure that looks like a tree with branches. The branches 

of a decision tree function as nodes and a certain decision is finally taken by going through 

these nodes which are based on the responses garnered from to the parameters related to the 

nodes.  
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Figure 13. Decision Tree terminology (Chauhan, 2021) 

 Root Node: This is the whole dataset that will be divided into smaller subsets. 

 Splitting: it is the procedure of breaking a node into sub-nodes. 

 Decision Node: This is a sub-node that will be further split in other sub-nodes. 

 Leaf / Terminal Node: A terminal node is a sub-node that does not split any further. 

 Branch / Sub-Tree: This is a subdivision of the entire tree which is therefore called a 

branch or sub-tree. 

 Parent and Child Node: When a node is split in sub-nodes, it is called a parent node 

while the sub-nodes it split into are called child nodes. 

As a simple example, the classic Dog or Cat problem will be used to explain how a decision tree 

without branches works. 
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Figure 14. Decision Tree Dog/Cat example (Shastri, 2021) 

In this example, the decision tree’s root node is the one that asks if the animal’s ears are pointy. 

The root node is split in a decision and a terminal node. if the answer to the root node is ‘No’ 

the algorithm decides that the animal is a dog, if the answer is ‘Yes’ it goes on to ask another 

question if the animal barks to help the algorithm decide. If the answer is ‘Yes’ then the 

decision tree’s decision is that the animal is a dog but if the answer is ‘No’ then the decision is 

cat. 

4.3.3.2. Ensemble Learning 
Ensemble learning gives credence to the idea of the “wisdom of crowds,” which suggests that 

the decision-making of a larger group of people is typically better than that of an individual 

expert. (Education, 2021) Similarly, ensemble learning refers to several learning models working 

together to achieve a better prediction compared to one. When a single model, or also known 

as a weak learner, is used it is susceptible to high bias which leads to problems when trying to 

achieve a good prediction in machine learning. Yet, if several weak learners are aggregated, 
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they can yield a better model performance because this combination reduces the bias. Decision 

trees are the most common example of ensemble learning because this algorithm is prone to 

overfitting and underfitting, so several decision trees are combined to form a stronger 

algorithm, also known as the Random Forest algorithm. 

There are several types of ensemble learning and BAGGing, or Bootstrap AGGregating is one of 

them, it gets its name because it combines Bootstrapping and Aggregation to form one 

ensemble model (Lutins, 2021). BAGGing is a method that is used to deal with a noisy dataset 

by reducing variance. It works by taking several random samples of data from the training set, 

with the selected datapoints being able to be chosen more than once. When the samples are 

generated, the multiple weak learners are trained individually and when they all produce a 

prediction, the average value of these predictions is taken to produce a more accurate final 

value. A classification example of BAAGing, is a sample dataset with five (5) bagged decision 

trees, predicting between three (3) colours: Blue, Red, Green. If three (3) or more trees’ output 

is Blue, then the final prediction of the BAGGed model will be Blue. This is illustrated in Figure 

15.  
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Figure 15. BAGGing illustration (Bootstrap aggregating - Wikipedia, 2021) 

Random Forest models are like BAGGing with a slight tweak. BAGGed decision trees can choose 

between the full range of features when deciding where to split and how to make decisions. 

(Lutins, E., 2021) This can lead to decision trees breaking off the data to subsamples similar to 

each other because they attempt to minimize error using an algorithm which chooses which 

variables to split on. This is where Random Forest differs to BAGGed decision trees since this 

model decides how to break the data in subsamples based on a random selection of features. 

Rather than leaving each tree to decide on which features to use and end up having similar 

features throughout each node, the Random Forest model creates a structure with 

differentiated trees with distinctive features. This technique provides a better accuracy when 

predicting values since it leads to a greater ensemble to aggregate over. An illustration of a 

Random Forest model can be seen in Figure 16. 
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Figure 16. Illustration of a Random Forest algorithm (Javatpoint, 2021) 
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5. Implementation 
5.1. Dataset acquisition 

Both approaches to the project required datasets of stocks historical prices. The 

datasets were acquired from the Yahoo Finance website by searching for the specific 

stock and accessing the ‘Historical Data’ tab. (See Figure 17) 

Figure 17. Yahoo finance’s historical data tab 

The datasets contained the Date, Open price, High price, Low price, Close price, and 

Adjusted Close price as well as the Volume. Regarding the columns, the only useful data 

is the Date, adjusted close price which is the close price, adjusted for splits and 

dividend and/or capital gain distributions and the Volume.  

In this project, the datasets used was Apple Inc. past 5-year historical prices. This range 

has been used because of the explosion of prices in technology related stocks in the 
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past 5 years. Also, for the purpose of consistency and comparability, the historical price 

dataset used was only for Apple Inc., but any stock can be used simply by changing the 

first cell of code where the file is loaded.  

 

5.2. Prophet 
The first and most simple implementation was the Prophet algorithm. To use Prophet for 

predicting values, the algorithm needs the data to be in the form of a Pandas data frame. After 

the data is loaded in this form, a Prophet object is defined and configured. Then the ‘fit’ 

function is called to pass time series data and fit the dataset. The arguments taken by the 

object that are used to configure the model are type of growth, type of seasonality and more.  

Also, for the data frame to be passed in the model, a specific format must be set. The first 

column has to be named ‘ds’ and include the date-times. It is also required to be converted to 

date-time objects. The second column must be named ‘y‘ and include the observations. 

 

The ‘fbprophet’ library was installed and after importing all the required packages the .csv file 

containing the historical data for the Apple Inc. stock were loaded using Pandas. Then the Date 

and Adjusted Close columns were filtered to be renamed as ‘ds’ and ‘y’ respectively as the 

algorithm requires. (See Figure 18) 
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Figure 18. Inspection of the loaded data and filtered/renamed columns while using the Prophet. 

 

Now the data frame is ready to be fitted in the Prophet algorithm. Since the Prophet was not 

explored in depth, only the default settings were used and since the dataset contained daily 

data, the ‘daily_seasonality’ setting was set to True. (See Figure 19) 
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Figure 19. Prophet model 

 

The next step was to plot the model predictions by indicating the days in the future to be 

predicted. (See Figure 20) 

 
Figure 20. Prophet’s results visualization 

Then, from the predicted output of the Prophet, the range of predictions for the historical 

prices was gathered, called ‘yhat_lower’ and ‘yhat_upper’, filtered and renamed appropriately. 

(See Figure 21) 

 
Figure 21. Prophet’s range of predictions of the historical prices 

 

Next, by using a similar approach, the future predictions are shown. (See Figure 22) 

 
Figure 22. Prophet’s range of predictions of the future prices 
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Finally, an inspection of the predicted values, called ‘yhat’ in the models’ predictions, against 

the actual values was performed by creating a data frame comparing them in two columns 

called ‘Predictions’ for the predicted values against ‘Actual Values’ for the Adjusted Closing 

values from the dataset provided. (See Figure 22) 

 
Figure 22. Prophet’s predictions against the actual values 

 

5.3. LSTM 
To begin the implementation of the LSTM model, a file with the stock’s historical prices was 

loaded and inspected as a Pandas data frame. (See Figure 23) 
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Figure 23. Inspection of the loaded data while using the LSTM 

Then a new dataset that contained only the Adjusted Closing price column was created since 

that is the only data needed in the file. Next, using the dataset, by convention 80% of all the 

data was taken to be used later as the training data, with the use of the math package and the 

‘ceil’ and ‘len’ functions. Furthermore, the data was scaled and transformed using the 

‘MinMaxScaler’ to make all the data values range from 0 to 1. (See Figure 24) 

 
Figure 24. Getting the training dataset and scaling the data. 
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Then using the training dataset, the data is split in in X and y which are the dependent and 

independent training variables, respectively. Using a ‘for’ loop, until the script reaches the end 

of the data, sixty (60) values are appended in the ‘X_train’ dataset while the 61st value is 

appended in the ‘y_train’ dataset. (See Figure 25) 

 
Figure 25. Splitting and appending the training dataset to the X and y variables 

The training datasets are then converted to ‘Numpy’ arrays so they could then be reshaped to 

become 3-dimensional to fit the required LSTM model dimensions. (See Figure 26) 

 
Figure 26. Data is converted to numpy arrays and reshaped to become 3D 

The next step was building the LSTM network which was done using the ‘Sequential’ function 

from Keras models and the Dense, Dropout and LSTM layers from the Keras layers package. 

Four LSTM layers with fifty (50) units were added with Dropout to avoid overfitting. Finally, the 

output layer is added using Dense. (See Figure 27) This model has over 71,000 trainable 

parameters and the final shape is in one (1) dimension. (See Figure 28) 
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Figure 27. LSTM model creation 

 
Figure 28. LSTM model summary 
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Now that the LSTM model was built, it was compiled using the the “Adam” optimizer which is 

an algorithm for first-order gradient-based optimization of stochastic objective functions, based 

on adaptive estimates of lower-order moments. (Kingma and Ba, 2014) Also the loss function 

was set which is the parameter that the model would attempt to reduce. In this case, mean 

squared error (MSE) function was selected. (See Figure 29) 

 
Figure 29. LSTM model compilation 

Next was the model training which was defined as ‘history’ to be accessed later. That used the 

‘X’ and ‘y’ training datasets that were created in the previous steps along with the ‘batch_size’ 

and ‘epoch’ parameters. (See figure 30) 

The number of epochs is a hyperparameter that defines the number times that the learning 

algorithm will work through the entire training dataset. (Brownlee, 2021) Training the model for 

a high number of epochs usually means that the model will be trained better.  

The batch size is the number of sub samples given to the network after which parameter 

update happens. (Keshari, 2019) A very low amount of batch size would increase the training 

time and could lead to overfit, while a very high amount would lead to lower training times but 

also underfitting and lower quality of training. 

 
Figure 30. LSTM model training 

With the model trained, the next step was to create a ‘test_data’ array containing the rest 20% 

of the scaled values that were not used for training. These are the values that the model has 

never seen before. To do this, a similar approach to the training dataset was used with a ‘for’ 

loop appending the past sixty (60) scaled values in ‘X_test’. For ‘y_test’ though, the values used 

were not scaled since these are the actual values that the model will attempt to predict. Next, 

the ‘X_test’ data was converted to a NumPy array and reshaped to be used in the LSTM model. 

(See Figure 31) 
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Figure 31. Testing dataset creation, convertion to numpy array and reshape 

With the model built and trained, the only thing that was left to do was predicting the actual 

values. This was done by using the ‘predict’ function and then inverse transforming the scaled 

data to turn it back to the actual values. Also, the root mean squared error is found to evaluate 

the model, the lower the root mean squared, the better the model fit. (See Figure 32) 

 
Figure 32. Root mean squared error 

Finally, a plot is done to visualize the effectiveness of the model by plotting the training, testing, 

and predicted values against the dates. (See Figure 33) 

 
Figure 33. LSTM results visualization 
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5.4. Random Forest Classifier 
In contrast to the previous algorithms, the Random Forest algorithm used twitter sentiment 

analysis in combination with historical data. This was done to explore the potential effect 

tweets have on the stock prices. 

To begin, an attempt was made to scrape twitter sentiment manually with the use of ‘tweepy’ 

package. After creating a Twitter Developer account and getting the required keys, the program 

could scan Twitter for a word and return specified number of tweets. This was deemed 

ineffective though because of the limits Twitter has imposed on data scraping. Only one 

thousand tweets could be gathered every 15 minutes which is not enough.  

Eventually, it was decided to use datasets that were available online and contained millions of 

tweets from 2015 to 2019 for the big five (5) companies: Apple, Tesla, Amazon, Google, and 

Microsoft. This would provide better results since Machine Learning is a data hungry method 

and it would save countless of hours waiting for the created script to scape this data manually. 

5.4.1. Sentiment analysis 
To begin, the twitter sentiment should be processed in an appropriate .csv file that will then be 

merged with another .csv file containing the historical data of the specific stock. Since we had 

three (3) files containing different data, all the files were loaded. (See Figure 34) 

 

Figure 34. Loading files containing tweets 
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Then a new data frame was created called ‘tweets’ with the user tweets merged with the 

company tweets using the ‘tweet_id’ column that was common. (See Figure 35) 

 

Figure 35. Merging the files 

 

Figure 36. Inspection of merged datasets 

The next step was to create a new column in the data frame called ‘Date’ to contain a readable 

date format since the date in ‘post_date’ was unreadable. This was done with the use of pandas 

‘to_datetime’ and lambda functions. (See Figure 37) 

 

Figure 37. Converting Date to readable format 

The data frame was then tidied up by dropping the columns that were of no use for the 

remaining of the script. (See Figure 38) 

 

Figure 38. Dropping of irrelevant columns 



41 
 

Then with the use of the ‘ticker_symbol’ column, each company was labeled accordingly and 

the number of tweets for each were counted. (See Figure 39) 

 

Figure 39. Count of tweets related to each company 

For the next step, the Afinn package was used to score the tweets sentiment. (See Figure 40) 

Afinn is a sentiment analysis package that contains 3300+ words with a polarity score 

associated with each word. (Wings, 2021) Due to the large amount of data, this step took a lot 

of time to run. 

 

Figure 40. Sentiment analysis of tweets using Afinn 

The next task was to create a calendar using Pandas that would only take into consideration the 

sentiment on days that the stock market was open, thus US federal holidays and weekends 

should be excluded from the data frame. Also, the appropriate time zone should be used. (See 

Figure 41) 
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Figure 41. Calendars containing weekends and US Federal holidays 

Since there were multiple tweets in a single day, the tweets were grouped by date and a new 

column was created denoting the volume of tweets on the specific date. Then the data that is 

not in the calendar specified before is dropped. The last step was to export the data frame to a 

.csv file. (See Figure 42) 

 

Figure 42. Preparing data to be exported to .csv format 

5.4.2. Merge datasets 
To merge the datasets of sentiment analysis and historical prices, the files were first loaded and 

inspected. After processing the twitter sentiment file, there was now an equal number of rows 

in both files and since the ‘Date’ columns were the same, the files were merged using the date. 

A new data frame called ‘merged’ now contained all the data required to proceed with the 

price prediction script and it was finally exported to a csv file. (See Figure 43) 

 

Figure 43. Merging twitter sentiment with historical stock prices 
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5.4.3. Price prediction 
Now that the required file is available, the algorithm can be implemented. After the file is 

loaded, a new data frame is created where the ‘High’ and ‘Low’ price columns are dropped 

since only the close price will be used and the date column is set as the index. (See Figure 44) 

 

Figure 44. Dropping irrelevant columns 

The next step was to visualize the sentiment polarity which was done with the help of a 

histogram. (See Figure 45) 

 

Figure 45. Visualization of tweet polarities with the help of a histogram 

The visualization was important before proceeding to the next step where the sentiment would 

manually be classified as ‘Positive’, ‘Negative’ or ‘Neutral’. In the Microsoft example, the most 



44 
 

frequent polarity was around 0.4, therefore the ‘Neutral’ threshold was considered anything 

from 0.3 to 0.75 while anything lower or more than these values was considered ‘Negative’ or 

‘Positive’ respectively. The upper and lower thresholds were set after running the final script 

several times until the highest accuracy was achieved. Finally for this step, a new column was 

added to the data frame called ‘Sentiment’ labeling each day’s sentiment accordingly. (See 

Figure 46) 

 

Figure 46. Setting sentiment thresholds and labeling them accordingly in a new column 

 

Figure 47. Inspection of the updated dataframe 
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Another visualization was carried out in the form of a pie chart to inspect the sentiment 

analysis for the stock. (See Figure 48) 

 

Figure 48. Counting sentiments in each category and plotting a pie chart with the data 

The next task was to create a stock trend column that would indicate whether the price has 

risen or fallen compared to the previous day. To do this, the price difference was calculated 

between the two days and then using NumPy this was converted to 1 for ‘Rise’ and 0 for ‘Fall’. 

(See Figure 50) The first row of the data frame must be dropped since there is no previous value 

to be compared to. (See Figure 49) 

 

Figure 49. Creating a new column called “Price Difference” with the price difference compared 

to the previous day and dropping the first row 
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Figure 50. Creating a new column called “Stock Trend” saying if the price Rose or Fall compared 

to the previous day 

 

Figure 51. Inspection of the updated dataframe 

The next step was to perform binary encoding of sentiment which was done so the machine 

learning model would be able to distinguish what ‘Positive’, ‘Negative’ and ‘Neutral’ sentiment 

is. This was done by creating a new data frame, splitting the ‘Sentiment’ column in three other 

columns using the Pandas function ‘get_dummies’. Each column contained only 0 and 1 where 

0 means False and 1 means True. (See Figure 52) 

 

Figure 52. Creating a new data frame containing dummy columns of “Sentiment” 
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Figure 53. Inspecting the new dataframe 

Now that the sentiment was binary encoded, the data could be labeled as ‘X’ which is the input 

and independent variable and ‘y’ which is the dependent variable. Therefore, X was just a copy 

of the ‘new_dataframe’ that contained all the information required to make the prediction just 

without the ‘Stock Trend’ column since this is what the algorithm needs to predict. (See Figure 

54) 

 

Figure 54. Creating variable X with a copy of the new data frame 

Next was ‘y’ which will contain the aim of the algorithm which in this case is to predict the stock 

trend in 0 or 1 for Fall and Rise respectively. Therefore, ‘y’ will contain the values of ‘Stock 

trend’ column of ‘new_dataframe’ reshaped from -1 to 1. (See Figure 55) 

 

Figure 55. Creating variable y using the “Stock Trend” column and reshaping the values 

The datasets will then be split into training and testing. This means that some data will be used 

to train the machine learning algorithm while the rest will be used to test the accuracy of it with 
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data that will be omitted form the training and the program has never seen it before. By 

convention, 80% of the data is used for training and 20% is used for testing. (See Figure 56) 

 

Figure 56. Splitting the variable values to training and testing datasets. 

Now that the data is split, the next step was to scale the data in ‘X’ since there is a large 

difference in the values as the price is in the tens while volume is in the millions, and this would 

cause a bias towards volume rather than the stock price. To do that, the ‘StandardScaler’ class 

was used from the Sci-Kit package to transform the data to be on the same scale without 

affecting the distribution. (See Figure 57) 

 

Figure 57. Scaling and transforming the training and test values using ‘StandardScaler’ 

Finally, the data processing is complete and next is the building of the machine learning model. 

The Random Forest Classifier was provided by the Sci-Kit package and only the number of 
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estimators and random state arguments had to be set manually. Then, with the use of the ‘fit’ 

function to train the model, the ‘X_train_scaled’ was input along with ‘y_train’ followed by the 

ravel function to flatten the array since the model requires a 1-dimensional list. (See Figure 58) 

The final arguments for number of estimators and random stage were decided after acquiring 

the best accuracy from several runs of the model. 

 

Figure 58. Building the Random Forest model 

Then the model attempted to predict the stock trend values that were omitted from the 

training phase, with the use of the ‘predict’ function and ‘X_test_scaled’ data. The predictions 

were then compared to the actual values in a binary format where 0 meant Fall in price and 1 

meant Rise in price. (See Figure 59) 
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Figure 59. Making the built Random Forest model predict the testing data set and comparing 

results 

Finally, with the use of the ‘accuracy_score’ class from the Sci-Kit package, the accuracy of the 

model was found. (See Figure 60) 

 

Figure 60. Finding the accuracy of the model 

6. Results and Discussion 
6.1. Prophet 

For the Prophet algorithm only the default settings were used, it was the simplest and easiest 

algorithm to implement whilst also providing high accuracy results. There was no data 

processing required other than renaming the two columns while the model configuration only 

took one argument. Then by using the ‘make_future_dataframe’ function of the library, the 

Prophet could predict specified number of days in the future using the historical data. The 
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predictions were provided as a range of values rather than exact values. This was illustrated 

while plotting the results and in the data frame of the predictions. (See Figure 61 & Figure 62) 

 

Figure 61. Plotting the results of the Prophet 
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Figure 62. Inspecting the low and high predictions of the model on each day 

The range of predictions for the dates that the data was provided remains constant to ten (10) 

dollars difference from high to low predictions and is very close to the validation data. When 

the actual values are inspected against the predicted values of the model, the predictions are 

always within a range of two (2) dollars difference to the actual values. (See Figure 63) 
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Figure 63. Models’ predictions compared to actual values 

For the future predictions though, this range increased proportionally to the number of days in 

the future. This means, the more distant future, the bigger the range of predicted values which 

made these predictions become useless.  
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Figure 64. Attempting to predict prices in more distant future 
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Figure 65. Range of predictions in more distant future 

As it is seen from the data frame, the first days of the future predictions have a difference of 10 

dollars from the low to the high prediction, but this difference increases to 60 dollars from low 

to high predictions a year from now. (See Figures 64 & 65) 

Therefore, it can be deduced that the Prophet algorithm is a useful tool since it is easy to 

implement and provides good short-term predictions, but it cannot be trusted for long-term 

predictions. 

6.2. LSTM 
The LSTM implementation required much more work compared to the previous two methods. 

The dataset had to be split to training and testing datasets, scaled, and transformed based on 
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the requirements of the model. Also, even though the layers were provided from relevant 

libraries, the network had to be built layer by layer rather than using a preset model.  

After processing and splitting the data, while using the 5-year dataset for Apple Inc., the model 

was given 947 rows of training data. (See Figure 66) 

 

Figure 66. Inspecting number of training rows 

On the first iteration of the model with hyperparameters of 1 epoch and batch size 1, the loss 

function was at 0.075 and the root mean square error was found to be around 14 which did not 

seem bad at first. (See Figure 67) 

 

Figure 67. Visualization of model training with one (1) epoch and batch size one (1) 
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Figure 68. Comparing Actual values to the model’s predictions 

After visualizing the data though, it was observed that the model roughly followed the testing 

pattern, but the predicted values were significantly lower than the actual values, thus the 

training was not enough. (See Figure 68) 

As an attempt to make the model more accurate, the hyperparameters were changed. At first 

the batch size number was increased to 10 which resulted in a better result and a closer fit to 

the validation data. The loss dropped to 0.0013 while the root mean squared error was down to 

5.5. (see Figure 69) 
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Figure 69. Visualization of model training with one (1) epoch and batch size ten (10) 

 

Figure 70. Comparing actual values to the model’s new predictions 
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The predicted values were also much closer to the actual values but there was still space for 

improvement. Therefore, the number of epochs was increased to 20 resulting in a significant 

reduction of the loss function down to 0.0008. (See Figure 71) 

 

Figure 71. Visualization of loss value after each epoch of training 

The root mean squared error was also reduced to around four (4) and after plotting the results, 

it was observed the results were improved even further. (See Figure 72) 
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Figure 72. Visualization of model training with twenty (20) epoch and batch size ten (10) 

 

Figure 73. Comparing actual values to the model’s new predictions 
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Increasing the epochs even more, resulted in a decrease of the loss function but an increase of 

root mean squared error which meant that the fitment was worse than the previous attempt. 

(See Figure 74)  

 

Figure 74. Visualization of model training with fifty (50) epoch and batch size ten (10) 

Therefore, it can be deduced that too much training does not result in better accuracy. In the 

last attempt which made the model train over fifty (50) epochs, the model appeared to be 

overfitting since the pattern was almost the same as the actual testing dataset, but the height 

of the curve was less accurate than with 20 epochs, leading to less accurate predicted values. 

This demonstrates that the epochs of training for the LSTM models have a random effect on the 

performance when predicting time-series datasets. 

To conclude, it can be said that the LSTM model is a very useful tool that when built, tuned, and 

trained correctly it can produce accurate predictions even on the long-term. The same model 
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though cannot be used to predict other stocks’ prices without training it again on the specific 

dataset. 

6.3. Random Forest Classifier 
For this approach, instead of trying to predict actual values, the algorithm was programmed to 

predict whether the stock rose or fall on the specific day using binary encoding. Therefore, 

instead of evaluating the accuracy using root mean squared or a plot, the algorithm was 

evaluated by the times it accurately predicted the rise or fall on the specific day. 

Beginning from the sentiment analysis, the datasets provided 4,336,445 user tweets to be 

processed from 01/01/2015 until 31/12/2019. (See Figure 74) 

 

Figure 74. Inspecting the tweets data frame 
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As it can be seen from the ‘ticker_symbol’ column, were not exclusively for one company. By 

filtering the data using their symbols, the tweets for each company were counted with Apple 

Inc. having the largest chunk of the data. (See Figure 75) 

 

Figure 75. Number of tweets for each company 

Since Apple Inc. data was analyzed in the previous algorithms, this will be the case here as well 

but with the matching dates to the tweets dataset. It should be noted that the data still covers 

5 years but instead of the past 5 years from now, it is from 2015 until 2019. After the sentiment 

was calculated using the ‘Afinn’ library, the data was merged with the historical data. (See 

Figure 76) 
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Figure 76. Merged historical prices and volume to tweets polarity and volume on each day  

By plotting a histogram of the polarity, it was noticed that most of the tweets had a polarity of 

0.5 and more but the most frequent polarities were 0.4 and 0.5 followed by 0.3. (See Figure 77) 
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Figure 77. Tweet polarities visualized with the help of a histogram 

Based on this data, the sentiment thresholds had to be altered and to choose the appropriate 

thresholds, the price chart of the stock was inspected. 

 

Figure 78. Visualization of Apple Inc. trend from 2015 to 2019 



66 
 

Since the trend was going upwards (See Figure 78), most of the sentiment should be positive 

therefore as a starting point the positive threshold was set to 0.7 and the negative threshold to 

0.4. 

 

Figure 79. Pie chart of the sentiment analysis based on the chosen thresholds 

With the thresholds set, the positive sentiment was 52.3%, neutral was 28.8% and the negative 

sentiment was 19% of the data indicating a positive sentiment towards the stock. (See Figure 

79) 

After processing and preparing the data, the Random Forest Classifier algorithm was built with 

the hyperparameters ‘number of estimators’ and ‘random state’ set to 100 and 10, 

respectively. (See Figure 80) 
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Figure 80. Random Forest hyperparameters set to one hundred (100) estimators and random 

state to ten (10) 

Out of the 1255 rows of the original data, since the validation dataset was only 20%, the 

algorithm was left with 251 rows to predict which is a low amount of data. (See Figure 81) 
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Figure 81. Random Forest predictions compared to Actual values in binary form 

And with the current set up the accuracy was only at 53.8% which just a little over 50% that 

indicates a random guessing. (See Figure 82) 

 

Figure 82. Model’s accuracy with current hyperparameters 

As a first attempt to improve the accuracy of the model the number of estimators in the model 

was changed from 100 to 50 resulting in an accuracy of 57.3%. 
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Figure 83. Random Forest hyperparameters set to fifty (50) estimators and random state to ten 

(10) 

 

Figure 84. Model’s accuracy with current hyperparameters 

The next thing to change in an attempt improve the model’s predictions accuracy was the 

sentiment thresholds since the day’s sentiment affect the model’s predictions. Eventually, the 

thresholds that were found to provide the best accuracy were the ones used from the start, 0.7 

and 0.4 for positive and negative respectively which meant that the logic used when selecting 

them was correct. 
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The final and best accuracy that was found by the Random Forest Classifier was 57.3% which is 

not a reliable accuracy to use for trading since it is only a little better than guessing randomly.  

This approach has proven that twitter user sentiment does not affect the stock price 

significantly and that it is not a suitable method to use when using machine learning to aid with 

trading stocks. Therefore alternative approaches should be explored. 
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7. Conclusion 
Reflecting on the results of all the tested methods, each algorithm had its strengths and 

weaknesses. 

The Facebook Prophet algorithm was efficient in the task of predicting stock prices because of 

easier implementation without compromising on prediction accuracy. This makes it ideal for 

situations where the analyst does not have a lot of experience or background knowledge on 

complex machine learning algorithms. It was also very easy to configure the parameter to 

perform future predictions rather than just splitting the dataset in training and testing subsets. 

The downsides of the algorithm though, is that it is limited to the seasonality and special events 

features and it won’t be able to help in multi-level product hierarchy challenges. 

Moving on to the LSTM, the algorithm is a more advanced model and required more experience 

and background knowledge to implement. In the hands of an experienced analyst though, it can 

be optimized to perform better than the default Prophet settings. This is because the LSTM has 

many tunable hyperparameters which can be adjusted to make the model perform better on 

each specific dataset. As LSTMs are trained to learn long term correlations in a series, they can 

model complex multivariate sequences without the need to specify any time window. On the 

other hand, even though LSTM networks can be made to perform exceptionally well on a 

specific time-series dataset, the same network will perform poorly on a different dataset. 

Finally, the Random Forest algorithm was the most complex and advanced method. Even 

though the data preprocessing and model creation was like the LSTM, the twitter user 

sentiment added the extra complexity which made this method not suitable for inexperienced 

people. The predictions of this model were portrayed differently than the previous two models, 
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instead of plotting graphs and inspecting predicted values against the actual values, the 

Random Forest method was evaluated by trying to predict rise or fall to the stock’s prices. The 

result of this method was disappointing since it was expected that the extra work you also lead 

to better results but after tuning the model to find the ideal hyperparameters, the best it could 

do was around 60% which is just 10% above 50%. Therefore, the Random Forest only 

performed a little better than random guessing. 

In general, as mentioned in the introduction, predicting the stock market prices is believed to 

be impossible because the stock market can be random and closely correlated with real time 

events. Sometimes the stocks can follow specific patterns that can, at a certain degree, be 

predicted with the help of machine learning algorithms, but other times the same stock’s 

movements can be totally random compared to the past. The aim of this report was to indicate 

possible methods and algorithms that can be used to help human decision making when 

investing in stocks but from the tests that have been done and the results received, people 

cannot solely rely on the predictions of the models when investing. The results can be used 

though, cooperated with human experiential knowledge to make financial decisions. "Machine 

learning and deep learning methods do not yet deliver on their promise for univariate time 

series forecasting and there is much research left to be done." (“ARIMA/SARIMA vs LSTM with 

Ensemble learning Insights for ...”) 

  



73 
 

8. Further Work 
Something that could be done to further improve the work in this project, was to increase the 

amount of data that was fed in the models to find if accuracy would be enhanced. The idea of 

using only the past 5 years as mentioned before was based on the fact that the market 

behavior was significantly different from 2015 onwards, compared to the previous years, 

especially in technology related stocks, but other timelines could be used to test the results like 

1990-2000. 

Also, the sentiment approach could be further explored to find if there was a better 

relationship between the news articles or professional posts sentiment rather than only using 

user tweets sentiment and volume which were proven to have no effect.  

Another task that could be carried out to test the accuracy of the algorithms, was the use of 

more volatile and unregulated market stocks instead of public companies like cryptocurrencies 

such as the Bitcoin or Ethereum. Or on the opposite side, commodities like Gold, Silver and Oil 

could be used which have must more stable prices and could produce better predictions. 

Finally, some theories related to the algorithms could be tested. For example, instead of 

training the algorithms on every stock separately, they could be trained on one stock and be 

then implemented on a different one to see how accurate the trained model predictions are. 

This would explore the generalization of the model’s fitment and test the theories that 

networks such as the LSTM cannot perform well on different stocks other than the specific one 

it was trained on.  
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9. Reflection 
Our society becomes increasingly dependable on machine learning and artificial intelligence in 

every imaginable way. This project and the experience I gained while working on it will help me 

in the future where the use of machine learning and artificial intelligence in all sectors are 

inevitable.  

Through the research and work I have performed during this project I expanded my knowledge 

and experience on Machine Learning. I learnt the theory behind some of the most important 

machine learning algorithms such as the LSTM how they work when given a time series dataset. 

Also, I learnt how to implement these algorithms by preprocessing time series datasets and 

developing models that can use this data for predicting values, in this case stock prices.  
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