
1 / 61

Mapping Locations in Texts
Supervisor - Prof Christopher Jones

Ce Guo | Aug 2021

2 / 61

Abstract
Location information is one of the essential information in natural language text, extracting it
from the text and mapping it to a visual geographic information system has become a
concern in natural language processing. However, due to the complexity of natural language,
not all location information appears in detailed descriptions, and many locations are
described using relative spatial relationships. The goal of this project is to address these
difficulties.

By using effective named entity recognition methods to extract location information in natural
language texts and marking them on a map in a visual geographic information system. We
develop a web application to form a solution to the research problem eventually.

3 / 61

Content
Mapping Locations in Texts..1

Abstract.. 2
Content... 3
1. Introduction...4
2. Background...5

2.1 Project Challenge..5
2.2 Solution Status.. 5
2.3 Introduction to Named Entity Recognition..6
2.4 Evaluative Method.. 7
2.5 Introduction to Geographic Information System...8

3. Methodology...9
3.1 Software Tool Selection.. 9
3.2 Data Processing.. 12
3.3 NER... 12
3.4 Geocoding...14
3.5 Geographic Information Visualization.. 15
3.6 Web Application.. 15

4. Implementation.. 17
4.1 Data Processing.. 17
4.2 NER... 22
4.3 GIS...32
4.4 Web Application.. 43

5. Results And Evaluation... 48
5.1 NER... 48
5.2 Data Layer... 50
5.3 Web Application.. 52

6. Discussion...53
6.1 Reflection.. 53
6.2 Future Work.. 55

7. Conclusion.. 57
Acknowledgment... 58
Reference... 59

4 / 61

1. Introduction
With the development of the information age, a significant quantity of natural language texts
are accumulated every day, such as people's daily chat conversations, text messages on
websites, and processes in certain office systems.

We focus on natural language texts connected to geographic location data in this project,
which are captured and kept in a variety of databases and files. However, extracting and
parsing them properly is difficult. We generally cannot locate its exact position in a phrase of
geographic information description due to the peculiarity of natural language in geographic
location, and we can only capture it through relative spatial connections. "The British
Museum" for example, can be described as "1-mile north of Waterloo". In certain cases, a
new moniker was used to substitute a locality. "New York" for example, is referred to as "Big
Apple".

When users record precise location information, a lot of textual effort might become tedious.
However, as compared to word, images have a more intuitive visual impact on humans, and
an image human-computer interface system can even offer individuals joy. This textual task
will become vivid and efficient if the position in the text information can be translated into
coordinates and shown on the map, and the user may interact with them.

As a result, the chance for this endeavour arose. The aim is to create a web application that
identifies the location of text in geographic description information using an appropriate
named entity recognition approach and then parses the actual coordinates of the place using
effective geocoding. Finally, these locations are shown on the map, where users may
interact with them by clicking and interacting with them. Writers can better organise a huge
amount of geographical place description material this way.

5 / 61

2. Background
This section will provide some background information about the research study. The goal is
to acquaint everyone with the project's principles and underpinnings, particularly those
connected to NER and geocoding, because these two technologies are unfamiliar in the
broader software sector. Other components, like as GIS and web application development,
are well-known ideas. The author will give a quick overview of their background.

2.1 Project Challenge

The specific objects studied in this project are New Zealand locality data, which are
sentences describing geographic locations. Let us use one of the sample data as an
example to demonstrate:

"2.4 kilometers south-west Waitaki-Steward Road, 46 meters south of high terrace on east
side of road."

The goal of the project is to figure out how to locate the precise place mentioned in this
sentence. This actual position is the intersection of two relative positions, and its name does
not appear in this description. That is why we say the natural language is complex, and we
must investigate and discover solutions in the project.

2.2 Solution Status

(Melo and Martins, 2017) conducted research on text-based document geocoding and
summarized some of the existing four solutions for predicting latitude and longitude
geospatial coordinates based on text content.

 The early document geocoding system used heuristic methods to query the place
names mentioned in the text.

 Probabilistic language modelling method uses the words that appear in the
geo-referenced training document to generate a model and then predicts the words that
have not been seen before in the test document.

 Combinations of different models and heuristic models, including clustering process,
feature selection methods and language models constructed from different sources.

 The latest method is based on the discriminative classification model.

The current mature solution systems include:

 STEWARD ("Spatio-Textual Extraction on the Web Aiding Retrieval of Documents"),
which uses machine learning-based NER to find location labels in texts, is also a
solution closer to the research of this project (Lieberman et al., 2007).

 Frankenplace uses a new indexing method called geoboost to boost the terms
associated with the cells on the discrete global grid, and finally presented in the form of a
heat map in the visual map (Adams, McKenzie and Gahegan, 2015).

 Web-a-Where, which retrieves the name of the place mentioned in the text of the

6 / 61

webpage and determines the geographic location pointed to by each name and is
dedicated to solving the problem of geographic ambiguity (Amitay, Sivan and Soffer,
2004).

2.3 Introduction to Named Entity Recognition

As the project's fundamental technology, the author would like to start with some background
information on Named Entity Recognition (NER). The job of information extraction and
retrieval requires the use of NER. Its goal is to detect and categorize the text elements that
represent named entities (Mohit, 2014).

With the development of computer technology, the in-depth research of natural language
understanding and text mining, and the rise of digital humanities research, text semantic
knowledge has become more critical. Because named entities are necessary semantic
knowledge in texts, identifying them has become a significant research problem (Mansouri,
Affendey and Mamat, 2008).

From rule techniques to statistical machine learning, NER solutions are continually improved.
This challenge is far from being addressed due to the arbitrary nature, complexity, and
unpredictability of named entities. NER remains a significant and difficult research issue.
Here are three main approaches to NER implementation.

2.3.1 Dictionary-based NER

The dictionary-based NER technique involves matching text phrases to terms in a dictionary.
People can mix certain heuristics, such as creating words that exist in the object, to avoid
strict matching. The drawback of stringent matching is that it can only detect words from the
dictionary and will miss any text phrases that aren't in the dictionary. However, rigorous
matching based on dictionary resources has the advantage of improving recognition
accuracy (Eftimov, Koroušić Seljak and Korošec, 2017).

2.3.2 Rule-based NER

Artificial rulesets are used to label text in rule-based NER. To create rule sets, recognition
algorithms employ grammar, syntax, spelling features, or dictionaries, all of which rely on
manual coding rules and manually produced corpora. The recognition results of rule-based
NER are excellent within the constraints of the ruleset, but it does not allow for autonomous
learning. That is to say, it lacks portability and robustness (Mansouri, Affendey and Mamat,
2008). Furthermore, because such techniques are generally domain and language specific,
they may not be effectively adaptable to other domains and languages, data changes result
in significant maintenance costs for the ruleset.

2.3.3 Machine Learning-based NER

The goal of machine learning-based NER is to convert the recognition problem into a
classification problem that can be solved using statistical classification models. In this
method, the system builds a machine learning model to find the relationship between text
and patterns (Mansouri, Affendey and Mamat, 2008), to identify nouns and classify them into

7 / 61

specific categories such as person, place, time, and others, using statistical models and
machine learning algorithms.

2.4 Evaluative Method

People demand a systematic evaluation for NER recognition outcomes or model correctness.
As assessment criterion, we must utilize the following data values. There are four indications
in the confusion matrix: a, b, c, and d (Visa et al., 2011).

 a is the number of correct negative predictions.

 b is the number of incorrect positive predictions.

 c is the number of incorrect negative predictions.

 d is the number of correct positive predictions.

Predicted negative Predicted positive
Actual negative a b
Actual positive c d

Following the steady growth of NER recognition evaluation, four frequently used metrics
emerged: accuracy, recall, precision, and F1-score (Wang and Li, 2019).�������� = � + �� + � + � + ���������� = �� + ������� = �� + �
The accuracy, recall, and precision values were initially used to evaluate the accuracy of the
NER model, but in the case of unbalanced positive and negative samples, these indicators
have significant flaws because the difference in the sample itself determines the massive
difference in these indicators.

For example, there are one positive sample and 99 negative samples in a total of 100
samples, and we will identify all 100 samples as negative samples, then in the case of
paying attention to positive samples:� = 99，� = 0，� = 1，� = 0
 Accuracy = 99 / 100 = 99%

 Recall = 0 / 1 = 0%

 Precision = 0 / 0 = 0%

The result shows the massive difference, which makes it impossible to evaluate the model
correctly. Therefore, we have introduced the F1-score for evaluation, and the formula is:

8 / 61

�1 = 2��� + �
F1-score weights both Precision and Recall and comprehensively considers the model
precision and recall calculation results. The value is towards the index with a smaller value.
The larger the F1-score, the higher the quality of the model (Wang and Li, 2019).

2.5 Introduction to Geographic Information System

2.5.1 Geocoding

Geocoding refers to the process of converting addresses into geographic coordinates, and
the opposite is reverse geocoding. (Goldberg, Wilson and Knoblock, 2007) said that there
are two commonly used geocoding methods: geocoding services and database queries.

2.5.2 Geographic Information Visualization

(Elwood, 2011) has a theory that geographic information visualization is a map visualization
based on geographic data, including two essential parts: map visualization and geographic
data visualization.

With the development of the Internet, web maps allow users to search and browse spatial
information and become extremely popular due to its convenience and low-cost features.

Having a web map is not enough because the browser can only display static pictures by
default, so it is not easy to display an interactive map in the browser. If we want to achieve
human-computer interaction with the map, such as dragging, zooming, marking and panning,
we need the help of a suitable map library.

9 / 61

3. Methodology
This section introduces the methodology of project development, including software tool
selection strategies, project development ideas and processes, and problems and solutions
encountered in the project.

3.1 Software Tool Selection

3.1.1 NER

NER is associated with most of the resources and functionality in this project, so we needed
to choose the framework associated with it carefully. This project is ultimately implemented
as a web application whose most important feature is lightweight. The framework for NER
should also follow the speed feature and not go against it.

One problem is how to balance speed and accuracy. Because a framework's accuracy and
speed are at odds with each other, we need to evaluate choosing frameworks with a high
level of accuracy while maintaining speed.

(‘Natural Language Processing NER – Which model to use?’, 2020) examines the four
currently dominant NER frameworks, NLTK, SpaCy, Stanza and Polyglot, and demonstrates
that SpaCy is the fastest of them all.

NLTK SpaCy Stanza Polylot
Time(sec) 14 3.15 184 7.6

CPU 1 core 100% 1 core 100% 2 core 100% 1 core 100%
Memory 340MB 1.1GB 1.6GB 150MB

Performance comparison

(Shelar et al., 2020) further explores SpaCy, Apache OpenNLP and TensorFlow and
concludes that SpaCy has the highest accuracy and the best results according to the
evaluation criteria presented in section 2.4.

TensorFlow and
Keras SpaCy OpenNLP

Training
accuracy 0.9955 1.0000 1.0000

Training loss 0.0219 0.00000001427 OpenNLP NER model does
not show loss

F1-score 0.9700 1.0000 1.0000
Prediction
probability 0.9800 1.0000 0.9969

Accuracy comparison

TensorFlow and Keras SpaCy OpenNLP
Time for
prediction 0.2 µs 0. 2 µs 2 to 3 ms

Ease of training Conversion of text data to Directly works Directly works

10 / 61

numerical data is required for
training of the model

on text data on text data

Size of model for
30 data rows 2,807 bytes 41,51,896

bytes 1,870 bytes

Size of model for
15000 data rows 2,808 bytes 40,10,784

bytes 10,239 bytes

Comprehensive comparison

3.1.2 Geographic Information Visualization

The selection in Geographic Information Visualization development focuses on two main
parts: the selection of maps and the selection of map manipulation libraries.

For the choice of maps, we compare the two most common maps, Google Maps and
OpenStreetMap (OSM). (Pant, no date) has a study showing that Google Maps has powerful
features such as route planning, satellite imagery and street view mode. However, it also has
obvious limitations. It is not free, it is not open source, and it has API access restrictions. In
contrast, OSM can solve these problems. Although it is not as powerful as Google Maps, it
has the basic functionality to meet the project's needs. It is also open-source, the map data
is updated quickly, and the community is active and rich in solutions, which fits the
requirements of this project perfectly.

On the other hand, for the choice of map manipulation library, we are concerned with its
support for source JavaScript and the effectiveness of the core functionality. In the same way,
we chose between two commonly used open-source map libraries, Leaflet and OpenLayers.
(Ledur et al., 2015) research proved that Leaflet is lighter, has a more advanced API and is
easier to use than OpenLayers. Users can create applications more efficiently. However, on
the contrary, it also reflects the disadvantages of Leaflet, which are also the advantages of
OpenLayers. Because Leaflet is overly encapsulated and cannot call the underlying API, it
becomes inflexible for complex functionality and often requires the use of third-party plug-ins
to do so. OpenLayers, on the other hand, has more powerful underlying functionality and
community resources to support it. Users can use its API to perform complex functions. So
for this project, where custom development is required for map operations, OpenLayers was
a better fit for our selection.

3.1.3 Geocode

After the NER module has recognised the name of the location in the text, we need to use a
suitable geocoding system to query the actual coordinates of the location, and with the
location coordinates, we can label the location in the map. This project proposes to use
SpaCy as a framework for NER in section 3.1.1 and OSM as a map for geographic
information visualisation in section 3.1.2. The geocoding part of the functionality needs to be
used in conjunction with the front and back end, so it should be developed in Python and
formatted to conform to the OSM standard format. (Welcome to GeoPy’s documentation! —
GeoPy 2.2.0 documentation, no date a) investigated a well-established Python-based
geocoding system, GeoPy, in which we can use a variety of geolocation services such as
Google Maps, Bing Maps or Nominatim. in the geopy.geocoders class package. For

11 / 61

example, we will use the Nominatim class, which provides the OSM map service, and when
we instantiate its geocoder, we can get the location information of the string through its
location resolution method. It has a clear workflow, is free to use and comes with detailed
documentation. The features it has are ideally suited to the requirements of this project, so
we have chosen GeoPy as the geocoding library.

3.1.4 Web Application

The trend in software engineering from C/S frameworks to B/S frameworks is becoming
more and more common, so this project caters for the mainstream development approach,
and the final presentation will be a web application. Therefore, a good web framework is
essential for the development of web applications. There are many benefits to using a web
framework, such as simplified debugging, reduced code length and improved database
proficiency. The choice of the Python-based SpaCy as the core NER framework was
presented in 3.1.1, and the choice of the Python-based GeoPy as the core geocoding
parsing tool was presented in 3.1.2. Therefore, we should also use a Python-based web
application framework to accompany the development of the core functionality. (Ghimire,
2020) compared the two most commonly used frameworks for Python-web, Flask and
Django.

(Holovaty and Kaplan-Moss, 2009) looked at the advantages of Django, which has a
complete framework and a strong community, and Django, which has many features that
Flask lacks, such as an easy-to-use interface, support for ORMs to handle databases, and a
variety of caching mechanisms. However, the downside of Django is that as an overall
platform, it relies heavily on the Django ORM and has much code that becomes very bloated
for small projects. Conversely, (Grinberg, 2018) demonstrates that Flask's greatest strength
is its lightweight nature, allowing applications to be developed with minimal code. Of course,
this also shows that Flask is not a panacea. For example, it usually needs the help of
WTForms for forms, SqlAlchemy for ORM operations, and cannot even handle
asynchronous requests. However, as the core functionality of this project is NER and GIS,
these shortcomings of Flask do not affect the needs of this project but rather meet the
requirements of the project for lightness and speed. Therefore, we chose Flask as the web
application framework for this project.

In web application development, the three layers of architecture are the presentation layer
(View), the logic layer (Controller) and the data layer (Model), which is known as the MVC
design pattern. The presentation and logic layers can be developed and implemented in a
web framework. The data layer needs to be implemented with a suitable storage and
interaction model, and its function is mainly responsible for accessing the database system
and various files.

This project is a web application, and JSON is the industry standard response format, so the
files are stored in JSON format. SQL is a relational database that requires an exact data
format to be specified and uses a solid declarative language for queries, has transaction
processing to maintain data consistency and supports complex queries. NoSQL is a
non-relational database that can hold data in an unspecified format and offers excellent
performance and scalability. The data in this project includes source data, training data, test
data, and display data. The format (fields) of this data is defined and does not frequently

12 / 61

change at random. The project itself does not involve high concurrent requests or distributed
storage, so the flexibility of NoSQL cannot be used in the project. MySQL is the most widely
used SQL database. It is open source, has excellent performance and service stability, and
has strong community support. Therefore, we chose MySQL as the database for this project.

3.2 Data Processing
Section 2.1 mentioned that the primary research background of this project is New Zealand
locality data. We need New Zealand’s official gazetteer and place name description data.

3.2.1 Data Source

The source of the data is the official website of the New Zealand Gazetteer (NZGB
Gazetteer | linz.govt.nz, no date), which contains all geographical locations and features
within the jurisdiction of the New Zealand Geographical Council Ngā Pou Taunaha o
Aotearoa (NZGB) (New Zealand Gazetteer of place names, no date).

3.2.2 Data Storage

The data storage solution of the project is oriented to all the data used in the project,
including source data, training data and result data. We use a double backup mechanism,
and each piece of data will be stored in both the file and database in the project to ensure
the security and traceability of data storage.

3.3 NER
Following the introduction of NER in section 2.3, this section continues to discuss the
research methods of NER. Entities are words in the text that correspond to specific types of
data. They can be numbers, times, names, locations, and geopolitical entities (GPE). The
entity is the content with specific tags marked in the text by the NLP researcher.

The function of the NER part of the project is to develop and train a model that can find
location entities in the text. For example, the following sentence:

“Walker Estate, 2.4 km north of Plimmerton, on main north highway.”

The ideal situation is to recognize “Walker Estate” and “Plimmerton” as location (LOC), “2.4
km” as distance (DIS), and “north of” as direction (DIR). This preliminary has the conditions
to locate the location described in this sentence accurately.

In this project, we will use both the rule-based model and the machine learning model to
identify NER and compare them. In the following part, we will explore the theoretical
recognition method of NER step by step.

3.3.1 Create Rule-based Model

As mentioned in section 3.1.1, the project uses SpaCy as the framework for NER, so it must
follow its pipeline to configure the model. SpaCy provides several matching methods for
rule-based NER, including token matcher, phrase matcher, dependency matcher, and entity
ruler. An entity ruler is one of them, which is usually not generated during model initialization

13 / 61

and needs to be manually added to the pipeline. It can find matching entities in the text
according to the pattern tags we set and add them to the entity set of the text (Rule-based
matching · spaCy Usage Documentation, no date a). Because it can be used for both
rule-based models and can help generate the training set required by machine learning
models, it is a component we need to use in our projects.

To use the entity ruler, we need to add an entity pattern object to it. Entity patterns are
dictionaries with two keys: "label", specifying the label to assign to the entity if the pattern is
matched, and "pattern", the match pattern. The entity ruler accepts two types of patterns
(Rule-based matching · spaCy Usage Documentation, no date a):

 Phrase pattern for exact string matching (string).

1. {"label": "ORG", "pattern": "apple"}

 Token patterns (lists) that have a dictionary describing a token.

1. {"label": "GPE", "pattern": [{"LOWER": "SAN"}, {"LOWER": "Francisco"}]}

Because this project is about identifying location names, section 3.2.1 mentions that the
resource we obtained is a dictionary of the New Zealand Gazetteer. So we choose the first
type of entity pattern, the phrase pattern. Finally, we generated the rule-based NER model
by adding the created entity ruler as a pipeline to the language model.

3.3.2 Create Training Data

Creating a training set is the basis for generating a machine learning-based NER model.
This section explains the format of the spacy training set and the process of using entity ruler
and rule-based NER model to work together to create it.

The required form of the spacy training set is as follows:

1. TRAIN_DATA = [(text, {"entities": [(start_char, end_char, label)]})]

It is unrealistic to manually label every sentence (especially in extensive training data), so it
is an excellent way to use the previous entity ruler and rule-based NER. We can obtain the
start_char, end_char and label of the entity in the text based on the entity set they recognize,
and then create a training set that meets our required format through simple code
processing. It is important to note that the training set obtained at this time may not be
completely accurate. The purpose of this operation is to enable users to reduce the workload
of manually labelling entities. If we want to use this training set to train a machine learning
model, we must manually check it to keep it correct.

3.3.3 Create Machine Learning-based Model

In this project, we use supervised learning in machine learning, which is the process by
which a system learns from a set of inputs with known labels. We treat the annotated and
labelled text in section 3.3.2 as known data and use them for training the machine learning
model. We divide the input data into two categories: training data and validation data. While
there is no fixed ratio between the two, a good rule of thumb is to use 80% of all annotated
data for training and the remaining 20% for validation. The project provides two formats for
storing training and validation data. One is a JSON file, which is suitable for training with

14 / 61

code. The other is a binary file, suitable for training with configuration files.

The unit of the training process is a single data iteration (epoch) in which the SpaCy
framework uses the training data to tune the statistical model by a pre-defined algorithm.
The SpaCy framework checks the model's accuracy by comparing the input labels with the
predicted correct labels and adjusting them accordingly. When all the training data is viewed
and predicted, an epoch is completed. The model is then tested for accuracy against the
validation data. Because the validation data is not part of the training process, it can be used
to verify the model's accuracy. The training data is then randomised and passed into the
model for the next epoch. There is no standard value for the number of epochs in the same
proportion as the previously split annotated data, but a good rule of thumb is to set it at ten
epochs.

The training process is complete when the model repeats the process for the specified
number of iterations. The SpaCy framework then tunes the model's parameters and finally
provides us with two versions of the model: the most recent version and the best version. We
can store the models for later use using the model saving API provided by SpaCy.

3.3.4 Using Models to Identify Entities in Text

After obtaining the NER models by the above methods, the SpaCy framework allows us to
use these models to perform named entity recognition on text. SpaCy provides an API for
loading models and generating a NLP instance, which can then be used to parse the text to
obtain a collection of entities in the text. The location entities we are interested in are also in
this collection, and we can identify them by their label attributes and obtain their names for
use in subsequent steps of the project.

Due to the diversity of natural language, there can be many ways to describe the location,
and they are often not detailed location descriptions. Such as "4 miles north of Auckland
Road", "5 miles from the end of Auckland Road", and "At the intersection of Auckland Road
and New Port Road". These uncertain relative positions increase the difficulty of text
recognition because it is impossible to rely on manual rule sets to match all the descriptions
of relative positions.

After looking at the data to be tested, we found that most location descriptions had two forms,
so we also set up two mechanisms for determining the location. One can directly locate the
location name, such as "Auckland Road". We will recognize this location as “Auckland Road”.
The other is identifying the "direction of location" format, such as "4 miles north of Auckland
Road". We will recognize this place as “north of Auckland Road”. As we cannot rely on
manual rules to cover all cases, we can only identify the two cases above. Although this is
not a perfect solution and will reduce the accuracy of our system, it is already an excellent
solution to the technical difficulty of identifying relative positions.

3.4 Geocoding

3.4.1 Coordinate Geocoding

In section 3.3.4, we have obtained the location names, which means that the NER part of the
work is almost complete, and all that remains to be done is to translate the location names

15 / 61

into the corresponding coordinates to be rendered on the map. Here we need to use the
GeoPy tool mentioned in section 3.1.3 and use the API it provides for converting strings into
coordinates.

3.4.2 Coordinate Validation and Coordinate System

Once we have found the coordinates corresponding to the location, we need to validate
them, as the coordinates parsed by the geocoding service may deviate from the actual
coordinates of the location. The coordinate format provided by Gazetteer is the New Zealand
Map Grid (NZMG) (New Zealand Map Grid (NZMG), no date) , which is not based on
geometric projections, but instead uses complex polynomial expansions. Although this has
the advantage of minimal scale distortion, it is a uniquely New Zealand projection. Therefore
people may be challenging to use or program it into computer software. Therefore, we will
need to convert its coordinates and use the online conversion tool available on the official
website to convert NZMG coordinates to standard WGS84 coordinates via a web request
(New Zealand Coordinate Conversions, no date).

3.5 Geographic Information Visualization

3.5.1 Map Elements and Interactions

In section 3.1.2, we describe the OpenLayers map manipulation library that provides APIs
for manipulating the OSM. We can use them to pan and zoom the map, add (delete)
elements to the map and implement click (hover) interaction events for map elements
(OpenLayers v6.6.1 API - Index, no date).

3.5.2 Data Visualization

The data visualisation for this project consists of a map element data visualisation and a
statistical chart data visualisation. In the map element data visualisation, we also use the
OpenLayers map manipulation library API to display locations as markers on the map and
display information about the location as pop-ups and text in the appropriate places next to
the markers. This project uses ECharts, an open-source JavaScript visualisation library that
provides a wide range of visual charts, beautiful effects, and deep interactive exploration to
design statistical charts (Apache ECharts, no date). We will choose an appropriate form of
chart to display the data of interest in the project.

3.6 Web Application

3.6.1 User Interface

16 / 61

UI

3.6.2 Functionality

The web application is divided into four functional sections: the map section, the NER
section, the geocoding section and the visualisation section.

The map section contains the map display and map interaction functions. Users can pan and
zoom the map, click on the map elements and view the location information of the markers.

The NER section contains training functions for training models and data. Users can train
two rule-based models, two training data based on them and two machine learning models
based on the two training data.

The geocoding section contains functions for geocoding locality data and generating the
resulting data. Users can use four different models to obtain the result data after geocoding
the identified location data.

The visualisation section contains map data visualisation and statistical chart visualisation.
The user can choose to display the four different results of the geocoded data on the map
and see the statistical analysis of the results.

17 / 61

4. Implementation
This section describes how each part of the project is implemented. We will explain how
each part of the project is connected from the macro-architecture to the micro-code, how the
software development and framework make sense, and how to move logically towards the
final goal.

Overall project structure

4.1 Data Processing
In section 3.2.1, we have explained how to obtain a valid data source. So in the data
processing section, we will focus on describing the implementation of the data cleaning and
data storage processes in the project.

18 / 61

Data processing

4.1.1 Clean Data

The Locality data and the Gazetteer data we obtained from the official website are shown
below.

Original Locality Data

19 / 61

Original Gazetteer Data

For the Locality data, we focus on three columns (East, North and Locality), where the
Locality column stores the description of the target location we need to identify and find,
while the East and North columns represent the target location's NZMG coordinates.

For the Gazetteer data, we are looking at the following columns (name, status, crd_latitude,
crd_longitude and info_description), where the name column is the name of the location, the
status column represents the status of the location, the crd_latitude and crd_longitude
columns record the WGS84 coordinates of the location and the info_description column
stores the description of the location.

After acquiring the data source, data cleansing is necessary, which involves cleaning
redundant data and correcting invalid data.

Redundant data is not needed or of interest to the project, and we need to remove it to
reduce the data storage load on the system. We do this by wrapping the data tables into
views that need to be used at the data layer. In Locality data, we remove the location
descriptions whose contents are empty strings, as they are meaningless.

1. SELECT North, East, Locality FROM locality_data WHERE Locality != ''

SQL query for filtering locality data

Cleaned Locality Data

In the case of the Gazetteer data, the operation is a little more complicated, as we query the
data table for data containing the following statuses with the following SQL:

1. SELECT DISTINCT status FROM gazetteer_data

20 / 61

SQL query for filtering status types in gazetteer data

Status of Gazetteer Data

We choose the data that is officially relevant because they are valid and accurate. In
reviewing the data, we find that any descriptions with 'Feature shown on:' only record image
information and do not have a specific description of the location, so these are redundant. In
the same way as Locality data, we will also exclude descriptions with empty strings.

Redundant data in Gazetteer Data

1. SELECT name, status, crd_latitude, crd_longitude, info_description FROM gazetteer_data WHER

E `status` LIKE 'Official%' AND info_description NOT LIKE '%Feature show

on:%' AND info_description != ''

SQL query for filtering gazetteer data

21 / 61

Cleaned Gazetteer Data

On the other hand, invalid data is data that is flawed and faulty. For example, 'DATA' and
'data' are two different words to the computer in subsequent natural language processing.
We need to standardise the data format. Location descriptions in locality data that are
entirely in uppercase letters need to be standardised to lowercase representation. In terms
of orientation descriptions, we also found various representations of 'south', such as "S" and
"SOUTH", which need to be standardised into the exact representation. These need to be
harmonised into a single representation. We use Python on the back end to process these
strings.

1. TODO Replace other expressions to standardized expression, for example: replace “S” to “south”

2. cleaned_text = cleaned_text.lower()

Uniform description

4.1.2 Data Storage

The project's data storage system uses a "double backup" model, where all critical data is
archived in the file system and the database, a common means of data storage in software
project development. This practice effectively prevents data loss or corruption and allows the
choice of two data loading methods during development depending on the state of the
network.

We implement both storage methods in the back-end, and the data to be stored contains
data sources, training data, and recognition results data. In the file mode, we use the API
provided by Python to wrap into a custom method for storing the data.

1. FUNCTION save_data(file, data):

2. TODO Save data to the file

3. with open(file, 'w', encoding='utf-8') as f:

4. json.dump(data, f, indent=4)

Save data to the file

In the database mode we use the API provided by SqlAlchemy to store the data.

22 / 61

1. FUNCTION add_train_data(train_data):

2. TODO Save data to the database

3. db.session.add_all(train_data)

4. db.session.commit()

Save data to the database

4.2 NER

NER

4.2.1 Create Entity Ruler

The first step in creating an entity ruler is to generate an entity pattern. This project requires
the recording of three label types of entity pattern, “LOC” (non-GPE locations), “GPE”
(counts, cities, states) and “DIR” (directions) (Annotation Specifications · spaCy API
Documentation, no date).

23 / 61

named-entities annotation

After reading the Gazetteer data from the database, we used the data in the "name" column
as "LOC" labelled entities. We used the data in the "land_district" column as "GPE" labelled
entities. Then defined the eight directions as custom 'DIR' labelled entities.

1. TODO Create a list record pattern

2. FOR each location of locations:

3. TODO Create a pattern instance with the label "LOC"

4. patterns.append(pattern)

5. END FOR

6. FOR each GPE of GPEs:

7. TODO Create a pattern instance with the label "GPE"

8. patterns.append(pattern)

9. END FOR

10.FOR each direction of directions:

24 / 61

11. TODO Create a pattern instance with the label "DIR"

12. patterns.append(pattern)

13.END FOR

Create entity pattern

Once the entity pattern has been generated, we need to add it to the entity ruler via the API
provided by SpaCy.

1. entity_ruler.add_patterns(patterns)

Add entity pattern to entity ruler

4.2.2 Create Rule-based NER Model

Section 3.3.1 introduced SpaCy's pipeline mechanism, which typically consists of a tagger, a
lemmatizer, a parser, and an entity recognizer. SpaCy transforms text into Doc objects,
which are cascaded through the pipeline. Each pipeline component returns the processed
Doc object, which is passed on to the next component (Language Processing
Pipelines · spaCy Usage Documentation, no date a).

SpaCy pipeline

We create two rule-based models, one created purely using the entity ruler and the other
using SpaCy's model combined with the entity ruler. The difference is that the first uses an
empty language model, which only has a pipeline of the entity ruler we added (Rule-based
matching · spaCy Usage Documentation, no date a) . The second uses an existing language
model combined with the entity ruler pipeline, which has multiple pipelines allowing for more
annotations and labels, so we can use more tools to process the text, which could potentially
improve the accuracy of NER (Rule-based matching · spaCy Usage Documentation, no date
b). However, this is only a guess, and the complexity of natural language is such that it is
impossible to determine which model works better, and we will provide a detailed
comparison in section 5.

The creation is also simple. Just add the entity ruler we have already made in section 4.2.1
to the NLP model. The first NLP model is an empty, simple English language model created
using the code below.

1. nlp = English()

2. entity_ruler = nlp.add_pipe('entity_ruler', config=config)

Add entity ruler to English model

The second model is slightly different, and we need to choose a suitable SpaCy language

25 / 61

model for the combination. SpaCy provides four trained English language models, and their
accuracy for NER is shown below (English · spaCy Models Documentation, no date).

en_core_web_sm en_core_web_md en_core_web_lg en_core_web_trf
ENTS_P 0.84 0.85 0.85 0.90
ENTS_R 0.83 0.85 0.85 0.90
ENTS_F 0.84 0.85 0.85 0.90

SpaCy English model comparison

We see that "en_core_web_trf" is the model that works best for NER, so we choose it to
generate the second model. In the "add_pipe()" method, we can also set the value of the
before parameter to determine the position of the entity ruler in the pipeline, e.g.
before="ner" means we place the entity ruler before the ner component.

1. nlp = spacy.load('en_core_web_trf')

2. entity_ruler = nlp.add_pipe('entity_ruler', before='ner', config=config)

Add entity ruler to “en_core_web_trf” model

Once the two models were created, we used the API provided by SpaCy to store them
separately for future use.

1. nlp.to_disk(model_path)

Save NER model to local

We can verify the models' pipelines from the generated files and list their functions below.
We can see that the second model has more pipelines and functionality than the first model
(Language Processing Pipelines · spaCy Usage Documentation, no date b).

Name Component Description

transformer Transformer Assign the tokens and outputs of a transformer
model.

tagger Tagger Assign part-of-speech-tags.
parser DependencyParser Assign dependency labels.

entity_ruler EntityRuler Assign named entities based on pattern rules and
dictionaries.

ner EntityRecognizer Assign named entities.

attribute_ruler AttributeRuler Assign token attribute mappings and rule-based
exceptions.

lemmatizer Lemmatizer Assign base forms to words.

Component list

1. "pipeline":[

2. "entity_ruler"

3.]

The pipeline of the first NER model

1. "pipeline":[

26 / 61

2. "transformer",

3. "tagger",

4. "parser",

5. "entity_ruler",

6. "ner",

7. "attribute_ruler",

8. "lemmatizer"

9.]

The pipeline of the second NER model

4.2.3 Create Training Data

In section 3.3.2, we introduced the idea of relying on the rule-based NER model and the
entity ruler to create training data, and it became clear that we needed to generate training
data in the following format.

1. TRAIN_DATA = [(text, {"entities": [(start_char, end_char, label)]})]

Format of TRAIN_DATA

Once the Doc object has been pipelined through the NER model, we can access the list of
entities in the text via the "doc.ents" property. For each entity in the list, we can obtain its
start and end position in the text via its "start_char" and "end_char" properties and its label
information via its "label_" property. So we can easily manipulate the list of entities to
produce the data format we want by using the following code.

1. TODO Obtain the Doc instance processed by NER model and create a list to record entity

2. FOR each entity of entities in Doc:

3. entities.append((ent.start_char, ent.end_char, ent.label_))

4. END FOR

5. IF entity list has entity:

6. train_data = [text, {"entities": entities}]

7. END IF

Create train data generated by each text

In section 4.2.2, we mentioned that the project generates two types of rule-based NER
models with different functions, and each of them has a different list of entities that can be
obtained. For example, we process the above code for the following description.

“Leading from Garden of Eden Ice Plateau and draining into Perth River about half a mile
above its confluence with Adverse Creek. Tyndall Survey District.”

1. [

27 / 61

2. "Leading from Garden of Eden Ice Plateau and draining into Perth River about half a mil

e above its confluence with Adverse Creek. Tyndall Survey District.",

3. {

4. "entities": [

5. [13, 39, "LOC"],

6. [58, 69, "LOC"],

7. [114, 127, "LOC"]

8.]

9. }

10.]

Train data for the first NER model

1. [

2. "Leading from Garden of Eden Ice Plateau and draining into Perth River about half a mil

e above its confluence with Adverse Creek. Tyndall Survey District.",

3. {

4. "entities": [

5. [13, 39, "LOC"],

6. [58, 69, "LOC"],

7. [70, 87, "QUANTITY"],

8. [114, 127, "LOC"],

9. [130, 137, "GPE"]

10.]

11. }

12.]

Train data for the second NER model

We can see that both models identify "Garden of Eden Ice Plateau" (locations from 13 to 39,
labelled "LOC"), "Perth River" (locations from 58 to 69, labelled "LOC") and "Adverse Creek"
(locations from 114 to 127, labelled "LOC"). However, the second model additionally
identifies "about half a mile" (locations from 70 to 87, labelled "QUANTITY") and "Tyndall"
(locations from 130 to 137, labelled "GPE"). This phenomenon is because they have
different pipelines. The first model only includes our defined entity ruler pipeline, which
contains only our defined entity patterns labelled "LOC", "GPE", and "DIR". It cannot
recognise entities outside of these entity patterns. The second model contains the entity
ruler pipeline and the other pipelines in the "en_core_web_trf" model to recognise more
entities.

28 / 61

So far, it looks like we have completed the construction of our training data, but there is one
more step to check our annotations for accuracy. The safest thing to do is to check the
annotation of each sentence manually. However, as mentioned in section 3.3.2, due to the
large amount of data we have (around 8000+ descriptions), it is not practical to check them
all manually, and SpaCy provides a component called PhraseMatcher. When we need to
match large lists of terms, we can use PhraseMatcher and create Doc objects instead of
markup schemas, which is more efficient overall (Rule-based matching · spaCy Usage
Documentation, no date c). Therefore, we have chosen to use it to help us do a basic check
and then do a manual spot check, which is implemented as follows.

1. TODO Obtain the Doc instance processed by NER model and create a set record entity position

2. FOR each entity of entities in Doc:

3. set.update(range(entity.start, entity.end))

4. END FOR

5. TODO Create a matcher and add location dictionary to matcher

6. TODO Get the matches after matcher retrieves the text

7. FOR each match of matches, obtain its start and end position:

8. IF neither the start nor the end position is in the set record position:

9. TODO Create a Span instance as the omitted location and add it to Doc's entities

10. END IF

11.END FOR

Use PhraseMatcher check labelled train data

We use the model to identify the entities in the current text and record their locations, then
use the "make_doc()" method to add all the location names in the location dictionary to the
matcher. The matcher processes the current text again and checks if location entities in the
text exist in the dictionary but are not correctly identified in the entity list. If any are found, we
add them to the entity list. This completes the work of checking the entity annotations using
the PhraseMatcher, and we add all the text to the final training data after checking them one
by one. Finally, we manually sampled 200 of them to ensure their accuracy and saved them.

1. TODO Create a list record train data

2. FOR each text of texts:

3. TRAIN_DATA.append(train_data)

4. END FOR

5. TODO Save the TRAIN_DATA to local

Generate and save TRAIN_DATA

4.2.4 Create Machine Learning-based NER Model

29 / 61

In section 3.3.3, we described a method for training a machine learning-based NER model.
Moreover, in this section, we describe how to implement it. First, we need two already
labelled input sets, the training and validation sets. We split the “TRAIN_DATA” obtained in
section 4.2.3 into an 8:2 ratio as required in the method. 80% of them for training records
and 20% for validation records.

1. length = int(len(TRAIN_DATA) * 0.8)

2. train_data = TRAIN_DATA[:length]

3. valid_data = TRAIN_DATA[length:]

The training process then requires a training set and a validation set in binary format, as
required by SpaCy. We design a transformed binary file (.spacy) method based on SpaCy's
API.

1. FUNCTION generate_spacy_bin(data_set, output_path):

2. TODO Create an empty English language model and a binary Doc instance

3. FOR each data of the data set:

4. TODO Use the model to process the data’s text and create an entity list

5. FOR each entity of the data’s annotation:

6. TODO Create Span instance by entity’s start and end position and label

7. IF span exists:

8. TODO Add the span to the entity list

9. END IF

10. END FOR

11. TODO Update the Doc’s entities with the entity list

12. TODO Add the Doc to the binary Doc

13. END FOR

14. TODO Save the binary Doc to local

We then apply this method to convert the training and validation sets into binary format and
store them.

1. NLPHelper.generate_spacy_bin(train_data, train_spacy_path)

2. NLPHelper.generate_spacy_bin(valid_data, valid_spacy_path)

Finally, SpaCy requires us to have a configuration file to assist in training, which can be
generated by overriding the base configuration provided by SpaCy (Training Pipelines &
Models · spaCy Usage Documentation, no date). This can be achieved by changing the
base configuration file. We assign the binary path we have just obtained to its "train" and
"dev" attributes.

1. [paths]

30 / 61

2. train = train_spacy_path

3. dev = valid_spacy_path

Then we execute the following command to generate a custom configuration file.

1. python -m spacy init fill-config base_config.cfg custom_config.cfg

This leaves us with the final step in the machine learning-based NER model training, and we
continue to call the commands provided by SpaCy to perform the training process. The
parameters we need to specify are the name of the custom configuration file
(custom_config.cfg), the location where we want to save it (model_path), the training data
path (train_spacy_path) and the validation data path (valid_spacy_path).

1. python -m spacy train custom_config.cfg --output model_path --paths.train train_spacy_path

--paths.dev valid_spacy_path

The entire process of training a machine learning-based NER model finished. Section 4.2.3
explained that since we have two sets of training and validation data, this project will also
generate two machine learning-based NER models. Like the rule-based NER models, we
will also compare them and describe the results in Section 5.

The first machine learning-based NER model

31 / 61

The second machine learning-based NER model

4.2.5 Using Models to Identify Entities in Text

The concrete implementation of model recognition is simple, and we have used it several
times in the previous sections. All that is needed is to load the model we want to use and
process the text to get the entities in the text.

1. nlp = spacy.load(model_path)

2. doc = nlp(text)

3. entities = doc.ents

In section 3.3.4, we introduced two rules for identifying locations in the text. One is to locate
the location name directly, and the other is to identify the "direction of location". The first is
more accurate when the text describes a specific location, such as "Auckland Road".
Because the sentence itself describes Auckland Road, it is an exact location rather than a
relative one. However, the second approach is more accurate when the text describes a
relative location, such as "4 miles north of Auckland Road", because the location described
is a specific direction from the identified location. After looking at the pattern of locality data,
we found that the earlier the location name appears in the sentence, the more it matches the

32 / 61

location described in the sentence.

Therefore we examine the list of entities we have obtained. First, we need to determine
whether the location entity describes a specific location or a relative location by finding out if
the location entity has a format that matches the "direction of location". If we find a
description around the current location entity in this format, we determine that it describes a
relative location. Conversely, we determine that it describes a specific location (or a relative
location that does not satisfy the "direction of location" format, but we ignore this rare case).

1. TODO Create two lists to record relative and specific location entities

2. FOR each entity of entities:

3. IF The current entity is a location:

4. IF The current entity is the first entity of entities:

5. TODO The entity is not a relative one because it cannot match the format

6. TODO Add the entity to the specific location list

7. ELSE:

8. IF The previous entity matches the two conditions:

9. TODO Add the entity to the relative location list

10. ELSE:

11. TODO Add the entity to the specific location list

12. END IF

13. END IF

14. END IF

15.END FOR

In the above method, we will check if the text satisfies the following two conditions when
finding a location entity in the text.

 The previous entity is one word away from the target entity to determine if the phrase
satisfies the "word of location" form.

 The previous entity is marked as "DIR" to determine if the phrase satisfies the form
"direction of location".

If both of these conditions are met, we consider the location is relative because it satisfies
the "direction of location" format. Then we record them in the relative location list.
Conversely, we consider the location is not relative and record it in the list of specific
locations. Finally, we return the relative and specific location lists and use them for
subsequent GIS processing.

4.3 GIS

33 / 61

GIS

4.3.1 Geocoding

Section 4.2.5 obtained the list of relative and specific locations extracted from the text, which
means that the project has progressed from NER to GIS.

The next step was to select the target location from the list of relative and specific locations.
We first need to determine if the current text describes a relative or specific location based
on the state of both the relative and specific location lists.

1. IF The relative location list exists item:

2. TODO The text describes a relative position

3. ELSE:

4. TODO The text describes a specific position

Determine what the current text describes

We then find the target location in the selected list. The target location needs to satisfy two
conditions.

 It can be successfully geocoded by GeoPy.

 It belongs to New Zealand.

34 / 61

We set a flag bit and work with the information provided by the geocoding to find and record
the target location.

We chose Nominatim's API to query feature data that matches the OSM map (Overview -
Nominatim Documentation, no date), so we needed to instantiate a Nominatim type
geolocator and override its parameters as Nominatim's default user_agent violates
Nominatim's usage policy and can lead to HTTP errors (Nominatim Usage Policy, no date).

We have thousands of location descriptions to test, and each location's coordinate query
takes time to process the service response. Therefore we need to use RateLimiter to
generate the geocode instance when handling bulk data, which can gracefully handle error
responses and add latency when needed (Welcome to GeoPy’s documentation! — GeoPy
2.2.0 documentation, no date b).

1. geolocator = Nominatim(user_agent="mlit")

2. geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)

3. locations = geocode(location_name, exactly_one=False)

Geocoding location

Since there is a possibility of renaming places, for example, London in both the UK and the
US, therefore we need to set the exact_one parameter to False when using geocode to
resolve location coordinates so that it returns a list of locations with all the location
information for the query location name.

Each location has a raw attribute in the list of locations to get all the information about it. For
example, if we look up the location “Garden of Eden Ice Plateau”, we can get the following
information.

1. {'place_id': 257997152, 'licence': 'Data © OpenStreetMap contributors, ODbL 1.0. https://os

m.org/copyright', 'osm_type': 'relation', 'osm_id': 9690373, 'boundingbox': ['-43.3345227',

'-43.3042201', '170.6092522', '170.7241012'], 'lat': '-43.31936345', 'lon': '170.71358226

059598', 'display_name': 'Garden of Eden Ice Plateau, Westland District, West Coast, New Z

ealand / Aotearoa', 'class': 'natural', 'type': 'glacier', 'importance': 0.7}

Geocoded information example

We can observe and extract some important attributes and information, including “place_id”,
“importance”, “boundingbox”, “lat”, “lon” and “display_name”. GeoPy provides a mechanism
to sort all geographic information in descending order by the “importance” attribute value, the
more suitable locations come first. The “lat” and “lon” attribute values help us locate the
location's coordinates. We can also determine the identification accuracy by comparing the
range of the “boundingbox” with the coordinates of the location being measured. The
“display_name” attribute value describes the region in which the location is located and can
therefore help us filter for locations belonging to New Zealand. Using London as an example,
we can get the following list of locations with the attributes we are interested in.

1. {'place_id': 326508358} {'boundingbox': ['51.2867601', '51.6918741', '-0.5103751', '0.33401

55']} {'lat': '51.5073219'} {'lon': '-0.1276474'} {'display_name': 'London, Greater London,

England, United Kingdom'} {'importance': 0.9407827616237295}

35 / 61

2. {'place_id': 256872490} {'boundingbox': ['51.5068696', '51.5233122', '-0.1138211', '-0.0727

493']} {'lat': '51.5156177'} {'lon': '-0.0919983'} {'display_name': 'City of London, Great

er London, England, United Kingdom'} {'importance': 0.6865111547516773}

3. {'place_id': 310657642} {'boundingbox': ['42.8236747', '43.1436747', '-81.4096068', '-81.08

96068']} {'lat': '42.9836747'} {'lon': '-81.2496068'} {'display_name': 'London, Southweste

rn Ontario, Ontario, N6A 1G4, Canada'} {'importance': 0.6759177286656098}

4. {'place_id': 257760707} {'boundingbox': ['42.8245667', '43.0730461', '-81.3906556', '-81.10

70784']} {'lat': '42.9537654'} {'lon': '-81.2291529'} {'display_name': 'London, Southweste

rn Ontario, Ontario, Canada'} {'importance': 0.6759177286656098}

5. {'place_id': 256890671} {'boundingbox': ['37.079759', '37.15226', '-84.126262', '-84.035957

']} {'lat': '37.1289771'} {'lon': '-84.0832646'} {'display_name': 'London, Laurel County,

Kentucky, 40741, United States'} {'importance': 0.5512922449371916}

Information geocoded by London

Below we illustrate the specific implementation of this project for filtering, extracting and
validating target locations. When we find the first location in the list of locations located in
New Zealand, it is the most appropriate location for the query location that meets the
geographical range criteria, and we select it as a result and add it to the list of results.

1. IF The location entity successfully geocoded:

2. FOR each location of geocoded locations:

3. IF location belongs to New Zealand:

4. TODO location is the target location, add it to result list

5. END IF

6. END FOR

7. END IF

Find the target location

We will verify the target location when we get it. Section 4.1.1 explains that for each
description, we can get the East and North of it, and section 3.4.2 explains that we will use
the coordinate conversion system provided on the website to convert it to WGS84 latitude
and longitude. We compare this latitude and longitude to the range of the boundingbox to
determine if the location we find matches the area described in the text.

1. IF The target location’s coordinate is in the boundingbox area:

2. TODO The target location is correct

Verify the target location

4.3.2 Geographic Information Visualization

We have obtained a list of parsed geographic information about the location through
geocoding. The next step is to visualise the geographic information and display it on a web

36 / 61

map. 3.5.1 describes how we will use the API provided by OpenLayers to build the OSM,
add map effects and implement map interactions. They correspond to the three core
development parts: initialising the map and its components, adding the resultant data
visualisation layers to the map, developing the map's pan and zoom functionality, and click
interaction pop-ups.

The project provides a method for initialising the map, which determines the initial position of
the map display via the centre and initZoom parameters, the zoom range of the map via the
maxZoom and minZoom parameters and finally initialises a map with an OSM layer.

1. FUNCTION initMap(center, initZoom, maxZoom, minZoom) {

2. TODO Initialising map by properties

3. RETURN map

4. }

Initialising the map

Once the map has been created, we obtain the geocoded data via an HTTP request and use
it to generate coordinate point instances to be displayed on the map. This is achieved by first
fetching the result_locations completed in the previous section via a get request, then
converting the latitude and longitude into coordinates via the OpenLayers proj.fromLonLat()
method and assigning them to the geometry property of the Feature entity. Each Feature
entity is then assigned an icon style via the setStyle() method. Finally, all the features are
placed on a vector layer and this layer is added to the map using the addLayer() method.
This completes our task of adding the result data to the map in the form of icons.

1. FUNCTION initFeature(dataType) {

2. TODO Use get method request for result locations

3. FOR each location of result locations:

4. TODO Use location’s coordinate to generate point’s feature

5. TODO Use image to generate point’s style

6. pointFeatures.push(pointFeature);

7. END FOR

8. TODO Create a vector layer and use pointFeatures as its resource

9. map.addLayer(vectorLayer);

10.}

Initialising the feature

With the above steps, we have built up the basic functionality of the geo-information
visualisation, which can display the location of our parsed completion on the map. However,
as an information visualisation system, it lacks the necessary descriptive information and
dynamic interaction effects. So we continue to add these elements to the coordinate points.

37 / 61

The first thing is about adding descriptive information. We can display some helpful
information obtained by geocode, such as latitude, longitude and address, together with the
description of the parsed location in a panel next to the icon. It is achieved by adding custom
properties and assigning their values when generating the Feature entity.

1. let iconFeature = new ol.Feature({

2. TODO Add custom properties

3. });

Add custom properties to feature entities

The next task is to display them in the panel, which we do in the following way. First, add an
overlay layer to the map via the “addOverlay()” method and display the location information
panel on this layer.

1. FUNCTION initOverlay() {

2. TODO Create an overlay

3. map.addOverlay(overlay);

4. RETURN overlay;

5. }

Initialising the overlay

We then add the panel to the overlay layer. We extract the information stored in the feature
by using the "getProperties()" method and move the overlay to the position of the point so
that the panel can be displayed next to it by using the "setPosition()" method. We then
design a panel in HTML and place the information we need to display in it. Finally, the
"popover('show')" method is called to display the panel.

1. TODO Use point.getProperties() to obtain point’s properties

2. overlay.setPosition(coordinate);

3. TODO Create HTML element as an information panel

4. $(popup).popover('show');

Create information panel and display next to the feature

This completes the first half of the process of adding description information. Once we have
the description panel, we need an interactive function to trigger its display and a dynamic
effect for this process. The approach in this project is to use mouse clicks on the icon points
to trigger the panel's display and add a flight animation when switching between clicks on
different icon points. The following section describes the development of dynamic interaction
effects.

We initialise an "onOverlayClick()" method to monitor the map click event. When we click on
the map, we use the "getEventPixel()" method to get the pixel position of the click. This pixel
location is then queried via the "forEachFeatureAtPixel()" method to see if this pixel location
was clicked on a feature and retrieved the feature entity.

38 / 61

1. FUNCTION onOverlayClick(overlay) {

2. TODO Add event to map onClick ({

3. TODO Use “getEventPixel()” to obtain the clicked pixel point

4. TODO Use “forEachFeatureAtPixel()” to obtain the point on the pixel point

5. });

6. }

Create event listener when click on overlay

We then design an animation effect for the flight after the click. The core idea is to control the
smooth deflation and movement of the map by calling back the animate() method at fixed
intervals.

1. FUNCTION flyTo(location, done) {

2. TODO Create method to repeat animation callback();

3. TODO Create method to excuate animation animate(

4. callback();

5.);

6. }

Create animation effect

Finally, we combine the above describing the information panel and the dynamic interaction
development to implement the geographic information visualisation part of the work.

39 / 61

Final result

4.3.3 Data Visualization

The use of Echarts for data visualisation of the results in this project is described in section
3.5.2. We designed the data presentation for each model result with six dimensions

 the proportion of identified/unidentified locations in all description text

 the proportion of relative/specific locations in identified locations

 the proportion of successfully/unsuccessfully geocoded locations in identified locations

 the proportion of relative/specific locations in successfully geocoded locations

 the proportion of correct/incorrect coordinates in successfully geocoded locations

 the proportion of relative/specific locations in correct coordinates

We have already stored this data in the implementation logic in section 4.3.1, so in this
section we describe the process for implementing the visualisation. The main way to create
and display a visual chart is as follows. We initialise the chart using the “init()” method and
set the properties in its options using the “setOption()” method..

1. let myChart = echarts.init(chartDom);

2. let option = {...};

3. myChart.setOption(option);

As an example, we show the final visualisation of the results of the first Rule-based NER

40 / 61

model.

41 / 61

42 / 61

43 / 61

4.4 Web Application

44 / 61

Web Application

4.4.1 Structure Design

The project is described in section 3.1.4 as using the MVC design pattern to develop web
applications that can guarantee the flexibility and maintainability of the software. We have
designed the technical structure as follows.

Technical Flow

45 / 61

Resource Flow

4.4.2 Web API

The primary process of a web application is that the user sends an HTTP request to the
server using the client, the server accepts the request, calls the data layer resources for
logical processing, then returns the response content to the client, and finally, the client
logically processes the response content and renders it to the user. This section shows the
functionality included in the project in the form of the Web API.

Web API Parameter Return Description

'/' Index
page Get index page content.

'/train/model/<model_type>/' model_type Trained
model

Get the trained model of the
selected type.

'/train/data/<data_type>/' data_type Trained
data

Get the trained data of the selected
type.

'/geocode/<model_type>/' model_type Result
data

Identify and geocode the location in
the text using the selected model.

Get the location result data.

'/display/<data_type>/' data_type Result
data

Displaying location and statistics
charts from the result data.

Web API

4.4.3 User Interface

46 / 61

47 / 61

UI

48 / 61

5. Results And Evaluation
5.1 NER
In this part, we compare and contrast the identification outcomes of the four NER models
used in the research, as well as assess their accuracy.

5.1.1 NER Model Identification Results

Model
name

Total
count

Identified
count

Geocode
count

Correct
count

Rule-based (blank) 1333 404 349 114
Rule-based (en_core_web_trf) 1333 675 464 136
Machine learning-based 1 1333 480 290 84
Machine learning-based 2 1333 460 285 68

NER Model Identification Results

These are the results of the identification statistics for the four models and the concept of the
relevant metrics.

 Total count: the total number of locality data descriptions to be measured.

 Identified count: the number of locality data that can be identified.

 Geocode count: the number of descriptions that can be geocoded after being identified.

49 / 61

 Correct count: the number of descriptions that are located within the geocoded location
area.

From the statistical results, we can see that the rule-based (en_core_web_trf) model has the
most three indicators, so we can consider it the best of the four models. Although the
rule-based (blank) model has the least number of recognitions, it has the highest geocoding
accuracy rate. 349 of the 404 recognition results can be successfully geocoded. The
indicators of the two machine learning-based models are very close. Although they have a
higher number of recognitions than the rule-based (blank) model, their accuracy is not as
excellent. Overall, the rule-based model outperforms the machine learning-based model in
terms of recognition.

5.1.2 NER Model Evaluation

Model name ents_p ents_r ents_f
Rule-based (blank) 0.848 0.835 0.842
Rule-based (en_core_web_trf) 0.905 0.89 0.898
Machine learning-based 1 0.829 0.804 0.816
Machine learning-based 2 0.829 0.836 0.832

NER Model Evaluation Score

We introduce the indicators and methods of NER model evaluation in section 2.4. The above
tables and graphs show the precision, recall and f1-score of the four models.

As we can see from the statistics, the rule-based (en_core_web_trf) model has the highest

50 / 61

number of all three metrics, followed by the rule-based (blank) model, the machine
learning-based 2 model and the machine learning-based 1 model. The model metrics
assessment findings are consistent with the identification results given in the preceding
section, with the rule-based model outperforming the machine learning-based model in this
project.

5.2 Data Layer

51 / 61

52 / 61

Data Evaluation Results

According to the graphical data above, the successful conversion rate of locality data is
close to 50%, the successful conversion rate of geocoding is close to 30%, and the accurate
rate of the coded location is only around 10%. This implies that the quality of the location
data is poor, since there is a lot of redundant and incorrect information. The low percentage
of correctly encoded locations, on the other hand, indicates a mismatch between the
NZMG-based location data and the actual geographic coordinates in the locality data.

The data from another set of dimensions in the chart shows that the number of relative
locations in the text descriptions is minor than specific locations. This suggests that the
locality data is mainly written in a style that describes specific locations.

5.3 Web Application
The web application evaluation for this project is divided into two parts: software functionality
and software quality.

The software for this project can train a rule-based and machine learning-based NER model,
recognise and geocode descriptive text, and visualise the recognition results with
geographic information and graphics. The research directions of the project were followed,
and the requirements of the project were met.

The software quality of the project follows usability and maintainability. When the data in the
interface is updated, the software uses Ajax asynchronous requests to load the page so that
the interface is partially refreshed rather than redirected. It ensures the usability of the
software and satisfies the user experience. The software uses different interfaces to request
static elements and dynamic data for each page. The static interface returns the response of
the rendered page, and the dynamic interface returns data in standard JSON format.
Modular development makes the software easy to maintain and modify, and the coupling
between functions is reduced, keeping the software maintainable.

53 / 61

6. Discussion
6.1 Reflection

6.1.1 Technical Reflection

This section will discuss the author's abilities and lessons learned throughout the endeavour.
Reflection is a key component of project iteration, and the project's future progress can only
be advanced by returning to the summaries at each milestone.

Early in the project, the author analysed and reflected on the gaps between personal abilities
and project-specific skills, as planned learning and bridging these gaps was critical to the
project's completion.

The NER portion of NLP is used since the project objective is to extract the address from the
text, and SpaCy is chosen as the NER tool. As a result, the NER section focuses on
understanding the fundamentals of NER, studying NER techniques, and becoming skilled in
the use of SpaCy for NER.

Prior skills Initial
gap

Final
gap

Data preprocessing involves the application of python in data science,
such as pandas, numpy, and scipy Low Low

Use SpaCy to process NER tasks in a rule-based method, including
token matching, phrase matching, and regular expression matching High Low

Use SpaCy to process NER tasks in a machine learning-based method,
including processing pipelines and configuring training models High Low

NER Skills Reflection

Despite having a strong foundation in Python programming, the author lacks prior
understanding of NER and SpaCy development expertise. The author intends to devote two
weeks to studying the SpaCy official course (Advanced NLP with spaCy · A free online
course, no date) in order to master two approaches for handling NER jobs. Then, in the
following week, the software development for the project will be completed using SpaCy's
official documentation (spaCy 101: Everything you need to know · spaCy Usage
Documentation, no date). Through methodical learning of the course on the internet, the
author effectively overcame the early gaps and completed the development skill set
necessary for the project as the project progressed.

After utilising SpaCy to extract the location information in the text, it must be geocoded using
GeoPy. As a result, the geocode section focuses on mastering the use of geocoding in
GeoPy.

Prior skills Initial
gap

Final
gap

Basic knowledge of python programming and programming ability None None
Use geopy for geocoding of text addresses, including geocoders and

distance calculations High None

54 / 61

Geocode Skills Reflection

Although the author was proficient in Python for programme logic, he lacked GeoPy
programming skills. The author intends to study geocoding and methodically programme
development in a week using the official GeoPy documentation (Welcome to GeoPy’s
documentation! — GeoPy 2.2.0 documentation, no date a). According to GeoPy's official
documentation, the author learns to geocode using Nominatim and use it to parse place
names.

We need to see the geographical location in a GIS once the geographical coordinates have
been acquired using GeoPy. As a result, the GIS part focuses on learning how to use
OpenLayers to edit OSM and create interactive features.

Prior skills Initial
gap

Final
gap

Understand the basic elements of points, polygons, polygons, layers, etc.
in OSM None None

Proficient in drawing of points, polylines, polygons, layers, etc. and their
styles in the OpenLayers map library, as well as related animation and

visualization rendering techniques
None None

GIS Skills Reflection

Because the author has four years of GIS visualisation development expertise, he is
extremely knowledgeable about GIS and data visualisation. The creation of GIS-related
applications in the project is expected to take two weeks. And this aspect of the project ran
well the entire time.

After all of the functional components have been created, they must be combined into a web
application for presentation. As a result, the Web application section focuses on learning
Flask web programming.

Prior skills Initial
gap

Final
gap

Proficient in the basic capabilities of Web application development,
including front-end technology, back-end technology, and basic database

knowledge
None None

Proficient in Web application development framework Flask and its MVC
design pattern None None

Able to integrate GIS visualization functional components on the
front-end, and integrate NLP and geocoding functional components on

the back-end
None None

Web application Skills Reflection

Because the author has four years of MVC design pattern software development expertise
and two years of Flask web development experience, he is well familiar with their code
standards and development principles. It is anticipated that the integrated development of
the project's web application would take two weeks. The project's web application
development strives to achieve the software's functionality as well as fulfil the software's
quality requirements from start to end.

55 / 61

6.1.2 Time Reflection

Time Plan

The author utilises a Gantt chart to indicate the tasks and projected time of each phase of
the project, which is expected to take four months. The project follows the design process for
software research and development, the duration was correctly predicted, and the author
performed the intended work on time and with a high degree of execution.

6.2 Future Work

6.2.1 Insufficient Technicality

The analysis and evaluation of the results in section 5 show that the project has much future
work to remedy the current shortcomings.

Firstly, to ensure that the data is of high quality, there is a large amount of redundant and
erroneous data in the NZ locality description data provided in the project that needs to be
cleaned, and the irrelevant description text has a significant impact on the accuracy of the
NER model. The NZMG-based location data in the locality data needed to be checked to
ensure they were converted to WGS84 format and correct.

Secondly, the recognition rate of the text describing relative locations is not accurate enough
for this project. Due to the diversity of relative location texts, we can use an infinite number of
relative locations to describe the exact location, as there is an infinite number of relative
locations for a single location. The existing methods cannot meet the ability to recognise all
relative locations, so the recognition algorithm for relative locations needs to be updated in
the future.

Finally, we need to optimise the machine learning-based NER model. Although the
rule-based NER model outperformed the machine-learning-based NER model in this project,
this project was for New Zealand locality data. For many other countries and regions, the
rule-based NER model needs to constantly adjust its list of rules, which is undoubtedly a
huge task and challenge, which is why the machine-learning-based NER model is
necessary.

6.2.2 Inadequate Software Format

To show the software's capabilities to the user, this project is presently provided as a web
application. A mature project application, on the other hand, may require numerous types of
software to fulfil the demands of consumers utilising various end devices. For Windows

56 / 61

users, the project will also require a C/S based desktop programme, as well as an Android or
iOS based application for those who prefer mobile devices.

57 / 61

7. Conclusion
This project describes a web-based application that uses named entities to identify location
names described in natural language text in New Zealand locality data and subsequently
maps them to coordinates and presents them in a GIS for data analysis.

This project satisfies the research's objectives and assesses the creation and execution of
relevant techniques and instruments. We used SpaCy's NER technique to identify location
entities in natural language text, GeoPy to geocode the real coordinates of the location
entities, OpenLayers and OpenStreetMap to map the actual coordinates into the GIS, and
Echarts to visualise the identification results. The entire process is then wrapped up in a
Flask-based web application that users can interact with.

This project can be used as a fundamental solution to recognize locations described by
natural language text. Furthermore, we can optimize the technical deficiencies of data quality,
model recognition rate and algorithm accuracy. To expand the possibilities accessible to
consumers, we can also create C/S-based and mobile applications. By resolving the above
difficulties, the solution will become more exact and comprehensive.

58 / 61

Acknowledgment
Due to the covid-19 pandemic, the communication and guidance of the project are carried
out online. I want to thank Professor Christopher Jones for leading me to overcome
difficulties and ensure the smooth progress of the project.

59 / 61

Reference
Adams, B., McKenzie, G. and Gahegan, M. (2015) ‘Frankenplace: interactive thematic
mapping for ad hoc exploratory search’, in Proceedings of the 24th international conference
on world wide web, pp. 12–22.

Advanced NLP with spaCy · A free online course (no date) Advanced NLP with spaCy.
Available at: https://course.spacy.io/en (Accessed: 26 September 2021).

Amitay, E., Sivan, N.H.R. and Soffer, A. (2004) ‘Web-a-Where: Geotagging Web Content’.

Annotation Specifications · spaCy API Documentation (no date). Available at:
https://spacy.io/api/annotation#named-entities (Accessed: 7 September 2021).

Apache ECharts (no date). Available at: https://echarts.apache.org/en/index.html (Accessed:
3 September 2021).

Eftimov, T., Koroušić Seljak, B. and Korošec, P. (2017) ‘A rule-based named-entity
recognition method for knowledge extraction of evidence-based dietary recommendations’,
PloS one, 12(6), p. e0179488.

Elwood, S. (2011) ‘Geographic information science: Visualization, visual methods, and the
geoweb’, Progress in Human Geography, 35(3), pp. 401–408.

English · spaCy Models Documentation (no date) English. Available at:
https://spacy.io/models/en (Accessed: 8 September 2021).

Ghimire, D. (2020) ‘Comparative study on Python web frameworks: Flask and Django’.

Goldberg, D.W., Wilson, J.P. and Knoblock, C.A. (2007) ‘From text to geographic
coordinates: the current state of geocoding’, URISA journal, 19(1), pp. 33–46.

Grinberg, M. (2018) Flask web development: developing web applications with python.
O’Reilly Media, Inc.

Holovaty, A. and Kaplan-Moss, J. (2009) The definitive guide to Django: Web development
done right. Apress.

Language Processing Pipelines · spaCy Usage Documentation (no date a) Language
Processing Pipelines. Available at: https://spacy.io/usage/processing-pipelines (Accessed: 8
September 2021).

Language Processing Pipelines · spaCy Usage Documentation (no date b) Language
Processing Pipelines. Available at: https://spacy.io/usage/processing-pipelines#built-in
(Accessed: 22 September 2021).

Ledur, C. et al. (2015) ‘Towards a domain-specific language for geospatial data visualization
maps with big data sets’, in 2015 IEEE/ACS 12th International Conference of Computer
Systems and Applications (AICCSA). IEEE, pp. 1–8.

Lieberman, M.D. et al. (2007) ‘STEWARD: Architecture of a Spatio-Textual Search Engine’.

Mansouri, A., Affendey, L.S. and Mamat, A. (2008) ‘Named entity recognition approaches’,
International Journal of Computer Science and Network Security, 8(2), pp. 339–344.

60 / 61

Melo, F. and Martins, B. (2017) ‘Automated geocoding of textual documents: A survey of
current approaches’, Transactions in GIS, 21(1), pp. 3–38.

Mohit, B. (2014) ‘Named entity recognition’, in Natural language processing of semitic
languages. Springer, pp. 221–245.

‘Natural Language Processing NER – Which model to use?’ (2020) Druva, 5 November.
Available at:
https://www.druva.com/blog/natural-language-processing-ner-which-model-to-use/
(Accessed: 29 August 2021).

New Zealand Coordinate Conversions (no date). Available at:
https://www.geodesy.linz.govt.nz/concord/ (Accessed: 3 September 2021).

New Zealand Gazetteer of place names (no date) Toitū Te Whenua Land Information New
Zealand. Available at:
https://www.linz.govt.nz/regulatory/place-names/find-place-name/new-zealand-gazetteer-pl
ace-names (Accessed: 28 August 2021).

New Zealand Map Grid (NZMG) (no date) Toitū Te Whenua Land Information New Zealand.
Available at:
https://www.linz.govt.nz/data/geodetic-system/datums-projections-heights/projections/new-z
ealand-map-grid-nzmg (Accessed: 3 September 2021).

Nominatim Usage Policy (no date). Available at:
https://operations.osmfoundation.org/policies/nominatim/ (Accessed: 11 September 2021).

NZGB Gazetteer | linz.govt.nz (no date). Available at: https://gazetteer.linz.govt.nz/
(Accessed: 31 August 2021).

OpenLayers v6.6.1 API - Index (no date). Available at:
https://openlayers.org/en/latest/apidoc/ (Accessed: 3 September 2021).

Overview - Nominatim Documentation (no date). Available at:
https://nominatim.org/release-docs/develop/api/Overview/ (Accessed: 11 September 2021).

Pant, S. (no date) ‘Comparison of Google map features with Open Street Map’.

Rule-based matching · spaCy Usage Documentation (no date a) Rule-based matching.
Available at: https://spacy.io/usage/rule-based-matching#entityruler (Accessed: 25 August
2021).

Rule-based matching · spaCy Usage Documentation (no date b) Rule-based matching.
Available at: https://spacy.io/usage/rule-based-matching#models-rules (Accessed: 8
September 2021).

Rule-based matching · spaCy Usage Documentation (no date c) Rule-based matching.
Available at: https://spacy.io/usage/rule-based-matching#phrasematcher (Accessed: 8
September 2021).

Shelar, H. et al. (2020) ‘Named entity recognition approaches and their comparison for
custom ner model’, Science & Technology Libraries, 39(3), pp. 324–337.

spaCy 101: Everything you need to know · spaCy Usage Documentation (no date) spaCy

61 / 61

101: Everything you need to know. Available at: https://spacy.io/usage/spacy-101 (Accessed:
26 September 2021).

Training Pipelines & Models · spaCy Usage Documentation (no date) Training Pipelines &
Models. Available at: https://spacy.io/usage/training#quickstart (Accessed: 9 September
2021).

Visa, S. et al. (2011) ‘Confusion matrix-based feature selection.’, MAICS, 710, pp. 120–127.

Wang, R. and Li, J. (2019) ‘Bayes test of precision, recall, and F1 measure for comparison of
two natural language processing models’, in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 4135–4145.

Welcome to GeoPy’s documentation! — GeoPy 2.2.0 documentation (no date a). Available
at: https://geopy.readthedocs.io/en/stable/ (Accessed: 31 August 2021).

Welcome to GeoPy’s documentation! — GeoPy 2.2.0 documentation (no date b). Available
at: https://geopy.readthedocs.io/en/stable/#geopy.extra.rate_limiter.RateLimiter (Accessed:
11 September 2021).

