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Abstract 

The crypto currency market is now an important part of global financial markets, it seems to be 

driven by a different cohort of investor. These investors are very active on social media. Can 

understanding the sentiment on social media predict Bitcoin and other cryptocurrencies future price 

movements? Emotions are an important part of making investment decisions (Devi,2014) Bitcoin 

and other cryptocurrencies seem more volatile than other investment classes, is social media 

sentiment a dominant lead indicator? 

Sentiment analysis is a key tool in predicting a number of behaviours and consumer demand. It has 

its oƌigiŶs iŶ studies of the ϭϵϱϬ͛s iŶ the field of liŶguistiĐs. 

Its use gƌeǁ suďstaŶtiallǇ iŶ the eaƌlǇ ϮϬϬϬ͛s ǁith the staƌt of MǇ“paĐe aŶd theŶ otheƌ soĐial ŵedia. 
Initially it was used in politics and for political sentiment but this has evolved into key predictors of 

consumer and market behaviour. Sentiment analysis involves analysing text to determine whether it 

is positive, negative, or neutral in sentiment. There are two essential approaches used, using 

lexicons, or a machine learning approach. This project has focused on various machine learning 

approaches only. 

There is an investment theoƌǇ Đalled the ͞ĐǇĐle of ŵaƌket eŵotioŶs͟(Russell invesments,2021). This 

means that emotion comes first and reaction follows. If true, using sentiment analysis, can measure 

investor emotions from social media such as Reddit or Twitter, predict the price (up or down) of 

crypto currencies such as Bitcoin and other cryptocurrencies that are included in the cryptocurrency 

index. The following document sets out a series of machine learning approaches to analyse the 

correlation of one against the other, however, the exercise is subject to the limitations of the data, 

technology and algorithms used. 
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1 Introduction: 

This project aims to evaluate if there is a link between social media sentiment (towards digital 

currencies and Bitcoin in particular) and the historic price of Bitcoin and a price index of 

cryptocurrencies. 

Many younger investors are investing in digital currencies such as Bitcoin and overall, the price has 

moved very significantly over the last five-year period (Barrett,2018). Over this time, the price has 

been volatile and has moved both upwards and downwards. This project aims to discover if there is 

a direct link between sentiment analysis using historical data from January 1st, 2017, to 1st 

September 2021. This data set has been chosen for cost and resource reasons. The data is in 15 

minute periods, as the historic prices are available for free if they are for 15 minute periods. We 

have matched social media posts within the time periods of the price data. The project has selected 

the most appropriate technologies that are open source or that offer an amount of memory and 

processing power for free. The project uses a number of technologies and there are a lot of steps 

involved, from retrieving the data, parsing, storing and normalising the data. The project examines 

and then tests a number of text classifiers for sentiment analysis, it trains the models on the data. 

The data is then normalised, so that it can be compared with pricing data, where both are within 15 

minute intervals.  It then compares the results of different models used and also attempts to 

interpret the results. Its objective is to understand if it is possible, using the models, datasets and 

technology used to determine if social media sentiment can predict the price of Bitcoin and the price 

of the crypto currency index.  

1.1 Social media content as a data source for sentiment analysis: 

 

Social media consists of text, images and video. Both Twitter and Reddit are available through 

staŶdaƌd API͛s. This pƌojeĐt dealt ǁith faiƌlǇ laƌge ǀoluŵes of soĐial ŵedia data oǀeƌ a loŶg peƌiod of 
time. (There were also substantial amounts of historic pricing data used). There was considerable 

effort in selecting free technologies to extract, store and refine the data at different points.  

We look at both sources, extracting text from images and video as well as text. While social media 

texts are considered microblogs, they are widely used in the area of sentiment analysis (Ali et all , 

2017). We have used postings from both, Reddit also has sub-reddits and then Twitter has a lot of 

associated images and video along with text. In total over 625,000  social media posts were used, 

amounting to 51 GB of memory space for a period of over three years. 

 

1.2 Sentiment analysis: 

This was the most intensive part of the project. We used a machine learning approach and we ran a 

series of tests and trained data on three main classifier models. Classifiers have been initially 

selected based on their suitability to classify both Reddit and Twitter feeds, the level of training 

needed on the dataset and their suitability for sentiment analysis. In order to test the classifiers, the 

dataset was converted into vector representation, using both Scikit-learn and Spacy, both Python 

libraries. 

The classifiers selected were N.L.T.K. which calculates sentiment through VADEAR (Valence Aware 

Dictionary and Sentiment Reasoner) which constructs a list of lexical features, measuring and 

grouping intensity of the meaning behind a corpus of text.   

The other two methods BERT (DistilBERT) and Flair operate in the same transformer method , where 

bidirectional encoders speak to other vectors and autoregressive steps inform the next iteration of 
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the pƌeǀious iteƌatioŶ͛s pƌogƌess. Each of these methods strengths and weaknesses are evaluated 

and a conclusion is formed as to the optimum use of classifiers for sentiment analysis on the social 

media text. 

1.3 Regression analysis of datasets 

Once an overall approach for classification and scoring of sentiment was determined, the historic 

pricing of both Bitcoin and cryptocurrency index were obtained through Binance. All data sets were 

normalised and a number of regression models were run using a GPU, given the size of the datasets 

involved. Classification and regression models were used. These show that there is a definite 

correlation between social media sentiment and the future price trend of both Bitcoin and the 

cryptocurrency index. Given the relative size of Bitcoin, to the other cryptocurrencies within the 

index, Bitcoin on other tests of the historic data is the dominant variable within the index, meaning 

that the Bitcoin price and the cryptocurrency index are strongly related to each other (magas,2020). 

The models, using this particular set up cannot predict the Bitcoin price, but this method is useful for 

predicting the price trend. 

 

1.4 Research objectives 

The main research objectives of this project is to determine whether the end model is a sound 

option to use for buying and selling options for crypto currencies. The following objects will help to 

define overall success of the project which end in measuring accuracy of predictions as success.  

• To identify a correlation between sentiment of raw text regarding cryptocurrency from 

Twitter and Reddit and the future price movements of Bitcoin and other crypto currencies. 

• If there is a correlation between the sentiment analysis and Bitcoin prices as above, under 

what conditions does it have greatest impact? 

• To explore if there is any difference between social media sentiment of text from Twitter or 

Reddit in terms of sentiment or result in Bitcoin price? 

• To show causation between Bitcoin price fluctuations and movements in other 

cryptocurrency prices.  

• To build accurate sentiment classification models using BERT and other models to group the 

text between positive and negative sentiment. 

• Create an accurate classification regression model which can predict if the price will go up or 

down depending on the amount of sentiment posts at a given time. 
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2 Background 
There are a number of key areas of development and technologies used on the project. The main 

areas of the project use a number of aspects of an n-tier architecture, together with key text 

analytics methods, in terms of classification models, sentiment analysis models, big data and 

supercomputing to undertake regression analysis on large volumes of data. Finally, the most 

appropriate methods for the visualisation of the results are used. The figure below illustrated the 

steps that have been carried out and set out the methods used and the rationale for these methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Overall project schema 

 

2.1 Gathering Reddit & Twitter data 

A pƌopƌietaƌǇ API ǁas used iŶstead of usiŶg a Ŷuŵďeƌ of staŶdaƌd API͛s.  StaŶdaƌd API͛s suĐh as 
PSAW API and the PRAW API were initially considered. They were considered not suitable 

because of the restrictions in the amount of data that could be queried at one time (e.g. cannot 

filteƌ ďǇ dateͿ, the API͛s haǀe hit liŵits aŶd ĐaŶŶot guaƌaŶtee a fiǆed aŵouŶt of seaƌĐhes peƌ 
session. 
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The reason for deciding to build a proprietary API was due to the need to query any date on 

Reddit and sub-reddits. The same requirement was needed for Twitter, the ability to query on 

any date on a Twitter search since its foundation. 

 

jsoup and Spark were selected for the proprietary API, using the search bar web address on 

Twitter and the individual sub address for Reddit. There is built-in functionality contained in the 

metadata attached to the web address being queried. This can guarantee one hundred posts in 

each session/query (maximum per search) for both Reddit, sub-reddit and Twitter sources. The 

eǆistiŶg API͛s Đould Ŷot guaƌaŶtee a fiǆed Ŷuŵďeƌ of posts peƌ seaƌĐh. 
 

Jsoup operates from a HTML request library that can retrieve data points from web addresses 

(crawler). Spark was selected to insert a filter into the meta data, such as specific dates and 

times and key words through rejects commands.   

 

 

2.2 Store and normalise Reddit and Twitter data 

Initially the posts scraped from either Reddit or Twitter are stored as unstructured data in a 

datalake. A datalake was chosen, as the posts (or datapoints) are in a variety of text, images and 

video formats and initially should be in unstructured form. Unstructured data takes up less 

memory space than structured data, the approach is to initially store the scraped data in 

unstructured format, before it is filtered and refined, where a smaller number of records can be 

stored in a database. 

Mongo DB was chosen as the datalake, as it offered the highest storage for free (10 GB), which 

amounts to 3 years of unstructured data. It has many desirable features as an object database, 

however, the primarily concern is persistence storage at this phase of the process. This allows 

for additional processing of data to test hypothesis over a period of time. 

 

2.1.1 Filtering and Normalising the data 

All records are time stamped and filtered, so that the social media records are stored into 15 

minute time intervals. We do this because the historic Bitcoin and cryptocurrency price 

information is free in intervals of 15 minutes and these datasets will be compared with each 

other later. 

Each post is then sorted into text, image or video clip, or a combination of all three. Each 

record is also tagged by being either from Reddit, or Twitter, so that analysis can be 

performed on any variations between Twitter or Reddit user sentiment, or Bitcoin 

movements. 

Once each record has been tagged according to origin, timestamp, form (text, image or 

video), we start staging through decision trees. 

2.1.2 Database: 

(Jatana el all ,2021) Given that the records are now provisionally filtered, they need to be 

stored in a database. We have had three choices of database technology, an RDBMS (a 

relational database) or sometime ƌefeƌƌed to as a “QL dataďase, ǁheƌe the data is ͞ƌelated͟ 
or joined together. An object database (like MongoDB), where all the data elements are 

stored and operated as objects. Finally, a graph database was considered. Graph databases 

are schema-less databases which use graph data structures along with nodes, edges and 

certain properties to represent data.  



Page 11 of 45 

 

Given the requirements of all of the data to be normalised, so that we could run regression 

analysis against Bitcoin and other price information, PostgreSQL was selected as: 

 

It was the most efficient for the way the social media data needed to be structured. 

It was free for the amounts of data and iterations required. 

It matched the other technologies used and SQL is very accessible to most other systems. 

 

 

 

2.2 Normalisation of text, images and video related to Bitcoin and Crypto currencies: 

 

The diagram below shows how all the social media posts are classified. The diagram also shows 

the use of the Naïve Bayes model (which will be discussed later). The posts consist of text, video 

and images. Any text is extracted from posts with video or images, so the text can be classified 

as relevant to Bitcoin, or crypto currencies. See figure ( below) 

 

 

 
Figure 2: Data Gathering from source to insertion into DataLake 

 

2.4 Sentiment Analysis 

 

Sentiment analysis, or opinion mining, is a part of natural language processing that analyses 

opinions, sentiments, attitudes, and emotions in text and some other characters. Its use has 

greatly expanded as the amount and variety of social text has grown rapidly.  (Liu ,2012). Within 
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the scope of this project, the sentiment analysis relates to the classification and production of 

sentiment scores to the social media posts. 

 

There are two main approaches, either a lexicon approach, or a machine learning approach. The 

Lexicon approach relies on three proprietary data dictionaries LIWC  GI and Hu-Liu data 

dictionaries , (Taboada et all,2017). 

 

2.4.1 Machine Learning approaches to sentiment analysis: 

 

This relates to learning the sentiment of relevant text. There are a number of methods that we 

have considered, based on the quantity of messages and data available, versus the fact that the 

sentiment of Bitcoin and cryptocurrencies is of moderate complexity. 

 

The Naïve Bayes (NB) is a simple classifier that relies on Bayesian probability and the naïve 

assumption that feature probabilities are independent of one another.  

 

Initial Classification of Bitcoin/cryptocurrency in social media post is used. The figure below 

shows how the initial social media is filtered for mentions of social media text relevant to 

Bitcoin. For the filtering of the initial social media posts, a Naïve Bayes has been utilised as per 

figure2 above.  

 

Bayes for Multinomial classification  

 

This has been used for grouping entities or documents together into a group with predefined 

rules. Which is perfect for grouping data types together for processing. Notation for Multinomial 

Bayes or Naïve Bayes 

 ܾ݁ = ∏ ሻݕሺ� � ݔܽ݉�ݎܽ ݊� = ͳ �ሺݕ|�ݔሻ 

 

 

Decision Tree is tree structure where there are leaves and nodes. 

Each node ether has an actionable call for the data or passes the data along to the nearest leaf  

which passes it to the next, where the same action is taken until it finds an actionable node or it 

falls between an acceptable level probability that the node will accept. 

 

 

Maximum Entropy (ME) is a machine learning technique using exponential models using 

multinomial logistic regression. Unlike NB, ME makes no conditional independence assumption 

between features.  

 

Support Vector Machines (Steinwart, et all,2008) differ from both NB and ME models in that 

SVMs are non-probability classifiers which operate by separating data points in space using one 

or more hyperplanes (centrelines of the gaps separating different classes).  

 

2.4.2 Vector Representation: 
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For text to be processed by any of the ML models it needs to convert the text into points in 

space. It uses cosine or Euclidean distance to measure similarities or map relations in whole text, 

tokens or the stem of an individual word in a cohort of text. 

Cosine distance was chosen as duplicates appearing in the text matter as the goal is to analyse 

their overall context and sentiment. Cosine distance maps text to vectors by the cosine angle of 

two different pieces of text and determines whether they are pointing in the same direction and 

also determines their relationship (Prabhakaran,2018).  

The following formula represents cosine distance: 

�࢙࢕ࢉ   = ∙ ࢇ ÷ ࢈ ||࢈|| ||ࢇ|| =  ∑ �࢈�ࢇ૚࢔  ÷  √∑ ૚ࢇ૛࢏  √∑ ૚࢈૛࢔࢔ ࢏  

 

 

2.4.3 Transformers - neural networks 

 

The Ŷetǁoƌk eŵploǇs aŶ eŶĐodeƌ aŶd deĐodeƌ aƌĐhiteĐtuƌe ŵuĐh like tƌaditioŶal ‘NN͛s. The 
ŵaiŶ diffeƌeŶĐe ďetǁeeŶ tƌaŶsfoƌŵeƌ aƌĐhiteĐtuƌe aŶd ‘NN͛s is the seƋueŶĐe ĐaŶ ďe passed iŶ 
parallel. Transformers were initially devised for language translation but have been adapted for 

various NLP tasks including classification (Illia,et all , 2018). 

 

A typical transformer representation: 
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Figure 3: Transformer Architecture 

 

 

2.4.4 Input Embeddings – 

An input sentence is converted into an embedding in order to represent meaning to the machine 

using a positional vector in order to track context of that word in the sentence that is fed into 

the input layer.  

The below function to determine positional vector space: 

 

 ��ሺݏ݋݌, ʹ� + ͳ … . ሻ = ݏ݋݌ሺ݊�ݏ ÷ ͳͲͲͲͲʹ�݈݀݉݁݀݋ ሻ 

 

Figure 4: Function for positional space 

 

 

2.4.5 Classifiers 

N.L.T.K – Natural language Toolkit 
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NLTK calculates sentiment through VADEAR (Valence Aware Dictionary and Sentiment Reasoner) 

which constructs a list of gold-standard lexical features, measuring and grouping intensity of the 

meaning behind a corpus of text. Its result represent a normalized composite score from -1 to +1 

where -1 being negative and 1 being positive and 0 being neutral.  

It works by grouping re-emerging themes or tracking frequency of a given word root and 

grouping their appearance and importance to the intensity of the overall corpus 

inputted(yadav,2020). Flair is a standard BERT model that has been pretrained on a large corpus 

of social media text. As it is pre-trained,  it relies heavily on contextual embeddings , which 

according to (yadav,ϮϬϮϬͿ ĐaŶ ďe appliĐaďle to aŶǇ N.L.P tasks ǁhile takiŶg little of the ĐlieŶt͛s 
RAM or memory usage through being available solely through the internet. The client never 

downloads the model, is only given the ability to access, through the set of libraries given.  

Other than accessing the off the shelf and pre-trained BERT model, Flair operates in the same 

transformer method as BERT , where bidirectional encoders speak to other vectors and 

autoƌegƌessiǀe steps iŶfoƌŵ the Ŷeǆt iteƌatioŶ of the pƌeǀious iteƌatioŶ͛s pƌogƌess;yadav,2020). 

It uses a style of BERT with more bidirectional layers as it tries to classify unseen corpus based 

on what is has been trained on. 

 

BERT 

BERT stands for a Bidirectional Encoder Representation from Transformers with contextual word 

embeddings and can be easily fine-tuned for NLP tasks including classification, translations and 

sentence prediction . It was originally trained on the English Wikipedia. There are many 

variations where the difference relates to the size of the model and how many encoding and 

decoding blocks there are.  

The two original versions are the models on which other versions are based off and follow a 

similar process. 

 

 

 

 

Below chart Illia et.all 2018 

 

 

 
Figure 5: BERT & other models 
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Another chart from Illia et al , 2018, showing the difference between BERT and other models. 

BERT leǀeƌages tƌaŶsfoƌŵeƌs ǁith ďidiƌeĐtioŶal laǇeƌs. It͛s tƌaŶsfoƌŵeƌ laǇeƌs alloǁ foƌ 
contextual embeddings to be considered between data points. 

 

2.4.6 BERT Models Considered 

 

There are three BERT models that were considered, BERT, DistilBERT and RoBERTa. 

The main criteria used to select a method were: 

• Memory usage 

• Training time 

• Size and memory space required. 

• Performance degradation 

 

 

 

 

 

 

 

 

Figure 6: BERT Characteristics 

Another chart from Illia et al, 2018, showing the difference between BERT and other classification 

models. As can be seen BERT leǀeƌages tƌaŶsfoƌŵeƌs ǁith ďidiƌeĐtioŶal laǇeƌs. It͛s tƌaŶsfoƌŵeƌ laǇeƌs 
allow for contextual embeddings to be considered between data points. 

 

 

Figure 7: BERT and other classification models  

 

 

2.4.7 Training BERT for Sentiment Analysis Scoring: 

 

For Training BERT a sample dataset was taken from the data lake and was split into three further 

Model BERT Distil BERT RoBERTa 

Memory size (in 

millions)-bytes 110-340 66 110-340 

training time 8*V100 X 12 8*V100*3.5 1024*V100*1 

Performance 
first transformer 

model 

5% degradation 

from BERT 

2-20% Improvement 

over BERT 

Data 16GB  12GB 160GB 

Method 

Bidirectional 

transformer with 

MLM and NSP BERT distillation BERT without NSP 
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datasets for the purposes of training, validation and testing.  

Each of the datasets were given a column based on the text appearing for that data point which was 

a sentiment score using the Python library TextBlob giving each a sentiment ratio. 

The newly given sentiment ratio column was the label for the machine to predict. The features for 

the model to predict was the text. 

Text blob calculates sentiment in the following way: 

�࢚࢏࢘ࢇ࢒࢕࢖  = ૙. � ∗ ሺ૚ ÷ ૚. ૜ሻ ∗ �࢚࢏࢜࢏࢚ࢉ�࢐࢈࢛࢙  � = ሺ૚ ÷ ૚. ૜ሻ ∗ � 

࢚�࢓࢏࢚࢔�࢙     = �࢚࢏࢘ࢇ࢒࢕࢖ ÷  �࢚࢏࢜࢏࢚ࢉ�࢐࢈࢛࢙

 

Figure 8: Formula for Sentiment  

 

2.4.8 Sentiment Calculations 

The sentiment calculations used scores between 0 (positive sentiment), 1 neutral and 2 (negative 

sentiment).  

 

 

2.5 Regression Analysis 

Models are needed that can input sequential data in order to understand context of the text to 

determine the correlation between price and sentiment. Given that this will be correlated to time 

series price data, the ideal model should have strong predictive qualities in this environment. 

The following are candidate models: 

RNN -> Recurrent Neural network used because  

Recurrent neural network is suitable as it can consider sequential data while also being auto 

regressive it can input the pƌeǀious tokeŶ͛s state aŶd ǁeight iŶ oƌdeƌ to update itself duƌiŶg the 
optimization / training process. (IBM Cloud , 2021) 

Success of models with be determined by the following formula: 

 

Figure 9: Formula for Model Success   

 

ARIMA –> AutoRegressive Moving Average 

• ARIMA models can be an effective at price prediction using large amount of historical data 

and time series analysis.  

• ARIMA model is composed of three parts, Auto Regression, moving average and integration. 

This process can ensure it fits the data as accurately as possible.  
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• A‘IMA͛“ ŵodel paƌaŵeteƌs aƌe  
p: represents the order of the autoregressive model  

d: represents the degree of differencing  

q: represents the order of the moving average  

•  

Notation shown below:  

 

Figure 10: Formula for Moving Average   

 

• It is effective at predicting movements in established markets and has been a known 

predictive tool for some time.(whittle,2020) 

• Can embedded sentiment analysis into the ARIMA model by using a vectorized B.O.W model 

(bag of words) with the following equation, with sentiment being calculated as  

Precision: amount of positive rated text 

recall: number of entities rated neutral (unidentifiable to the BERT model) 

F1 score: combination of both  

 

 

 

Figure 11: Formula for F1 Sore   

 

• ARIMA can show future prediction of an asset and correlation through a multivariate input 

Issues with model: 

Cannot consider the sequence in which the words appear. It may be able to detect context 

through factors of frequency of the ǁoƌd͛s appeaƌaŶĐe, ďut it ŵaǇ Ŷot ďe as poǁeƌful as 
contextual embeddings. 

 

LSTM – Long Short-Term Memory  

This is a strong candidate for the following reasons: 

• Is an artificial recurrent neural network unlike other models it has feedback and feedforward 

connections.  These characteristics can be extremely useful for time series and sequential 

data. (Yuan, 2018) 

• Long short-term memory (LSTM) networks are a variant of the standard RNN. By replacing 

the basic hidden neurons with LSTM units in RNN, LSTM networks can better handle the 

problem of gradient vanishing and explosion of long-term dependencies. Yuan,(2018). 

• Every time step feeds the next data point is inputted alongside the hidden layer of the 

previous data point 
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• LTSM are more accurate for price prediction where long sequences exist in the data due to 

their memory gates and tracking the last input of the model , (Yuan,2019) 

• LSTM has three gates which update each other after every regressive step. 

These gates are formed of the input gate, the forget gate and the output gate with a cell at 

its centre which is connected to the gates by hidden layers.  Shown below - Yuan, Xiaofeng & 

Li, Lin & Wang, Yalin. (2019).  

 

 

 

 

Figure 12 LSTM architecture: 

 

• After each step, each gate stores the gradient during the optimization process to update 

each hidden layer in the network as it works through the input it has been fed.  

• These gates act as a form of memory with their gates and weights updated during the 

optimization process.  

• Gates are a way to let some information pass and blocking information deemed as 

unimportant to the computation. This is done through a sigmoid neural net layer and a point 

wise multiplication layer working simultaneously (Yuan,2019).   
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3.1 API – Data Gathering 

3.1.1 Identifying text for the use case 

A proprietary API was developed that uses keyword searches using filters connecting to both reddit 

aŶd tǁitteƌ API͛s, as discussed in Section 2. 

At first these were chosen at random with one hundred messages seeking random possible words 

used. A Spark programme was created to consistently review these key words and would filter and 

delete them until they all had a similar amount of drawback (data retrieved upon A.P.I call) from the 

API. 

 

3.1.2 Data gathering 

In the data acquisition stage of the project, the following considerations need to be taken into 

account: 

Concurrency (access); maximising the number of concurrent sessions (shared resource – over n 

tiers): mutual accuracy (where one crud action does not affect the integrity of the other); 

multithreading (multiple processes happening simultaneously). 

Memory Usage: Given that large amounts of data (circa 10GB)  data classification tools/methods 

(number of records, structured or unstructured text, image files, video files, large strings of text),  

memory use was an important consideration in determining classification method used.   

There were also a number of data integrity considerations leading to hashing data relating to the 

identification of the user, including user id, username and the original post being encrypted with a 

private key so that it could only be read when being processed. 

Parallel processing:  

Context manager, manages the connection with the API ensuring best practice for API connections 

to all data feeds (Twitter, Reddit) ensuring each is within a hit limit of 100 data points every ten 

minutes.  

3.2 Data Storage 

Before data is pre-processed it must be contained and stored in the datalake as multiple different 

datatypes (text, gif, videos, etc) need to co-exist in the same eco-system.   

A third-party hosted server HEROKU was selected as it offers the most availability in its free tier 

(what amount of services do they offer before they charge) – which in the case of HEROKU, is free 

for any  interactions below 512MB. There is clearly laid out documentation on how to deploy and 

manage the server on HEROKU . The jobs sent to the server are tasks such as data acquisition, data 

wrangling and data processing, which are expensive in terms of memory use, where not a lot of 

memory is allocated. This means that effective memory management must take place in order to 

operate within HEROKU͛“ fƌee tier (one dyno corresponds to 512MB of Memory). 

These three problems were addressed with the following:  
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• To limit memory use, generators were used to pass data intermittently between objects and 

to the database (MONGO DB). The looping overhead was reduced as much as possible 

minimising memory usage. Adopting this approach reduced memory use by 30% and 

eliminated the use of one dyno which represents 512mb of storage on HEROKU memory. 

• In order to handle the various types of data and the amount of data, a Spark programme 

was written to process data across three worker nodes concurrently.  

The Spark thread pooling programme consists of one master node with three worker nodes. 

Each node runs a connection to the designated API (Reddit, Twitter, Binnace) and classifies 

the data types with an auto tagging model before being sent to the master node for further 

staging into the data lake on MongoDB. Edge computing is achieved on the worker nodes 

having classified the data types it received and logging their order of appearance by index. 

This ultimately speeds up the processing at a later stage as the result is sent to a shared 

database . The diagram below illustrates this. 

 

 Figure 13: Spark processing 

 

• The Spark programme was deployed to HEROKU with server cronjob running every fifteen 

minutes. It was set to every fifteen minutes as the processing time could be prolonged due 

to images and gifs being present in the posts retrieved. 

• Fault Tolerance – when a cronjob initializes the master node and receives a response it first 

checks for three available nodes. It sends a request to previous nodes used to check if they 

are responsive. If not, it requests HEROKU to make another memory space available until it 

has three available nodes.  

If there is no response from the master node it requests a new memory space for the master 

node alongside three worker nodes to receive instructions. The below diagram shows this  

process 
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Figure14: Spark observer design 

 

• Each of those worker nodes were given a hit limit of one hundred posts (datapoints) and the 

server cronjob ran every fifteen minutes in order to adhere to user agreements with each 

API.  

• The data was stored on a MongoDB server in order to handle unstructured data with only a 

tag describing the type of data inserted alongside the time stamp which will help to identify 

that data entry at a later point as each timestamp is unique. 

• A map reduce function is used to group data types together into the MongoDB, where the 

datatype id is the key and actual data is the value. It helps to pass a large dataset in this case 

(82GB dataset) to set of key value pairs which can then be grouped at the end resource. It 

essentially is a powerful method to group a large dataset and identify groups which can be 

put into keys with the values then being computed at the end point. 

• Memory Management – Caching: 

To achieve load balancing and save memory space, a caching layer was introduced before 

the un-processed data is staged for submission to the data lake. This helped manage the 

requests and free up memory for new requests coming in. The un-processed data is stored 

in a queue style cache, where un-submitted data is held in the queue until enough RAM is 

free on the server to submit to the MongoDB. In the cache the data is stored in bytes in 

order to keep memory a low as possible. As BERT would commonly exceed memory usage of 

a dyno(HEROKU͛s teƌŵ foƌ aŵouŶt of ŵeŵoƌǇ used dyno=512MB) to stay within the 

confines of the free memory, the cache would free upload on the current server ultimately 

achieving a fair load balance on the HEROKU nodes. 

• The following diagram illustrates the operation of the nodes, the staging for the datalake 

and the management of the memory using a caching layer. 
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Figure 15 : API design   

 

 

3.3 Data wrangling - preparing a dataset for a specific model 

As multiple models were assessed for each phase of the project, each potential option required a 

different processing approach. To help show how each model was prepared, different data pre-

processing measures were taken.  

As each model has its own requirements and definitions of machine-readable code , data wrangling 

must be decoupled for preparation on each particular model; meaning each model will also have a 

unique data wrangling process to prepare the data for that given use-case.  

Data wrangling must be decoupled at this stage as if there was a unified approach to this task, not all 

models would perform at their peak. Memory is a sensitive area for this project due to the HEROKU 

server memory limitations, so it imperative that the data is leveraged for the strength of each 

particular model.   
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This is particularly apparent with a Transformer based architecture, where the goal of data wrangling 

is to reduce the amount of computation load taken by the model at input stage. The processing of 

the contextual embedding layer needs to reduce the memory intensity of each model, which is vital 

for the success of the optimum evaluation of each model.  

 

3.4 Classification Models For Sentiment Analysis: 

Three models (N.L.T.K; BERT transformer models; Flair) were considered and tested for sentiment 

classification compared against the following criteria: 

1. Time – time taken to compute the input into output – to compute in 0(n) or better 

2. Accuracy – can it predict at confidence level of 90% or greater. 

3. Size – can the model be easily deployed onto a memory sensitive server having 512 MB  and fed  

into Docker helping to distribute the model as unified architecture across the distributed system. 

Docker is used to create a virtualisation container for the input to interact with the cloud and 

Kubernetes will help manage the output of the contained model while deployed onto the cloud 

server. Without Platfrom as a service (Docker); the model size would be inflated and consistently 

have an overflow; as memory usage would be at least twice as large. For example, BERT memory 

usage before contamination would be 512GB. This would result in server time-outs and data loss if 

deployed with these models.  

We evaluate and measure all of the main classification methods described below against the above 

criteria: 

 

3.4.1 N.L.T.K – Natural language Toolkit  

This is a well-established model that has been used continuously for some time (Yadav, 2020) and as 

described in Section2. 

N.L.T.K is a vector space model where each word sits in axis or dimension. (Yadav, 2020) the text is 

represented as a vector in this multidimensional space.  

The method although popular and industry standard takes a lot pre-reprocessing to complete.  

The process of preparing text for N.L.T.K sentiment classification tool are as follows: 

1. Data wrangling  

Is the process of preparing raw data in this case to be machine readable by programme(cumminsky, 

et.al,2019). For N.L.T.K. this means that each piece of text must be normalised in order for that text 

to be compare against each other when the text corpus is being tokenized. 

2. Tokenisation  

Is breaking down the given text into groups of either sentences, phrases, paragraphs or their 

individual words for interpretation depending on the programme being used. In this case NLTK feeds 

a BOW model meaning that each sentence or data point will be tokenized this also allows for stop 

words removal to take place simultaneously .(cumminsky,et.al,2019) 

4. Lemmatization  

Lemmatizing will take words from the previous step and set to group them by context or the actual 

meaning behind the word itself(cumminsky,et.al,2019) in terms of N.L.T.K this means grouping those 
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into underlying meaning in a bag of words model and counting their frequency of occurrence in the 

text. 

5. Stemming 

This involves removing the suffix of a word and reducing the word to its root word. For example, 

flying after stemming becomes both ͞fly͟ and ͞ing͟ . Where the word has now been reduced to its 

word root is more efficient to vectorize and become machine readable. N.L.T.K searches through the 

bag of words and groups them further into their stem.  

6. Sentiment of the stemmed word 

VADER style calculation is used to map frequency with intensity of the word return two sets of 

numbers both containing different calculations. One being polarity and the other being subjectivity. 

The sum of these consists of a number between -1 and 1.  The following function calculates 

sentiment in VADER – note alpha is always set to fifteen in VADER which approximates the maximum 

value of x. 

ݔ  ÷ ʹݔ√ + � 

Figure 16: VADER calculation for sentiment analysis 

3.4.2 Text processing for BERT  

BERT differs from traditional models in that it only needs three pre-processing steps. 

These steps are Tokenization, Stemming and Lemmatization. It takes less processing, as BERT can 

consider contextual embeddings ( Ethayarajh,2020) meaning it can deduce context from a piece of 

text.   

However, tokenisation in BERT is a larger process and consists of  three areas which are token 

embeddings, segment embeddings and positional embeddings.  

Therefore, tasks such as lower casing and noise removal may haƌŵ the ŵodel͛s peƌfoƌŵaŶĐe 

depending on what is in the text. As BERT uses contextual embeddings it may give a piece of text a 

different score if the text was not exactly as it was  in the original source of the text. 

for example, it could interpret the following differently:  

text_one = ͞no I doŶ͛t ďelieǀe this ͞, teǆt_two =   ͞NO!! I DON͛T BELIEVE THIS ͞ 

Produces neutral with confidence interval of 98% for text_one and text_two was negative with 96% 

confidence interval for the uppercase text with special characters using the BERT Model. 

The main part of data wrangling for a BERT model is removing white spaces and other characters 

which may add to length to the sentence without aiding the predictive power of the model.  

An example of this may be the following:  

͞This is uŶďelieǀaďle       …..           Messi Is leaǀiŶg BaƌĐeloŶa !!!!       ͞ 

As the BERT model uses contextual embeddings it would assign every character a token after 

tokenisation. Empty spaces and full stops would hold their own token and would be fed back into 

the autoregressive model of BERT.  This means unnecessary computation is carried while not adding 

further value or insight into the model.  
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Data wrangling is still needed for BERT or the transformer model, but the focus of the cleaning 

process is on how to decrease unnecessary autoregressive steps while maintaining a high predictive 

power.  

After prepossessing the piece of text becomes:  

͞This is unbelievable. Messi Is leaving BaƌĐeloŶa! ͞   

Both produced the same result (negative 98%) from the trained model. However, the second piece 

of text ran in 0.27 seconds and the initial text ran in 1.0 second overall which was the time of the 

unprocessed piece of text.  

Instead of implementing stop words removal; some evaluation of the text in terms of what is 

important to the overall message must be analysed to reduce or remove unneeded autoregressive.  

This was implemented using Spark and using regex built in functions regex.sub, regex.findall and 

regax.split. Spark would take these functions and apply as soon as input was retrieved from the A.P.I 

to remove future tokens which potentially would not add any value to output.  

Diagram for Distil Bert Data wrangling 

 

 

Figure 17: Data wrangling 

Flair  

Flair N.L.P is built on-top of Pytorch and has access to various approaches for contextual embedding 

all including BERT  Character Embeddings and uses contextual embeddings for string classification 

tasks (Saxena,2019). 

It essentially acts as a container with access to these models through an easy-to-use Python library. 

It can be affective depending on the use case but it depends on the task at hand. It may be 

applicable in this use case as Twitter data has been referenced as being trained on (Saxena,2019).  

Flair is an out of the box model meaning it has been pre-trained and is ready for production. ( 

Saxena,2019) 

In common with BERT, the same processing steps must be taken with a focus on reducing 

computation that will not add value to the prediction. 

3.5 Python Libraries Used 

There were many overlapping Python libraries needed including the following: 

Json, Tensorflow, Numpy, Pandas, Pysopg2, Pytorch, Math and Pymongo. 

Json: used as an intermediary data storage point. 

Tensorflow: for its machine learning and A.I. based libraries.  

Pandas: to work with data while it is being trained. 
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Pycopg2: the API layer for PostgreSQL. 

Math: to help complete Mathematical elements of the code involved in training. 

Pymongo: the Python API to access MongoDB. 

 

Each model needed a Python library not appropriate to the others: 

N.L.T.K : 

NLTK, Sklearn , Scapy.  

NLTK  as this library has access to an efficient VADER classficiation tool. 

Sklearn is used for its ability of statistical modelling and regression analysis, it was used here for its 

random forest decision tree algorithm to help group sentiment based on the VADER score. 

Scapy is  a network manipulation tool used to distribute the work over various nodes in the 

distributed framework. 

The N.L.T.K library was applied to the data after the six steps of processing the data outlined in 

section 2.4.4. The result of the VADER calculation is then sent to Sklearn libraries for staging for 

machine learning; before being sent into random forest libraries, the data is normalised in order to 

be interpretable by Sklearn random Forrest algorithm, where each data point is transformed into a 

node.  

After this has been actioned new data or training data can be inputted into the random Forrest 

algorithm where it also goes through a normalisation stage before classifying the text inputted.  

 

It is then contained within Scapy in order to be available on the Spark nodes working on the 

distributed network.   

BERT: 

The following specific Python libraries were used: 

HuggingFace, Keras , Tensorflow-gpu 

HuggingFace for access to the untrained BERT MODEL 

Keras -> to use as a front end to access and contain the trained model 

Tensorflow-gpu -> to use a version of Tensorflow that is purpose built for use on a GPU 

Hugging face was used to access the untrained BERT model in a container and to install onto the 

local environment. Keras was used in order to act in between the inputs layer and the model in 

order to fine tune the model with pre-set instructions before being trained. Koras also worked 

alongside Spark in order to pass each epoch through worker nodes along with Spark where each 

epoĐh͛s ƌesult Đould ďe updated to the ŵasteƌ Ŷode. TesŶfoƌfloǁ-gpu was installed in-order to take 

full advantage of the GPU made available through Google Collab .  

Flair: 

Flair , Genism 

Flair library is the access point for the standard BERT (meaning pretrained model)  model 

Genism helped to manage the pulling of data from the inputs into the Flair model 

Genism acted as a wrapper to access the flair model. It contained the data in a format initially 

instructed in order to prevent less data cleansing and staging when the data is received back whilst 

also introducing normalization with the other data that was received.  
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3.6 Implementing the Code 

The approach taken was to ensure that each model was run in its own sandbox and that one model 

running on the GPU did not slow down another. Each model was tested in its own environment on 

Google Collab which is an executable file on a distributed system which can be controlled locally, 

with access to its own isolated worker nodes independent of others in the system. 

The code of each model was given its own fine-tuned environment to ensure the most effective 

performance would be achieved. 

For BERT-based models this meant HIGH-RAM storage to enable the model to update itself as often 

as possible. The purpose of Transformer based architectures is to always reduce the amount of 

autoregressive steps that could occur, as the runtime is usually 0(N) making it an efficient runtime as 

it predicts the input length.  

For Flair this meant having backup worker nodes to ensure a stable internet connection throughout 

the testing process. This required an observer class to watch the worker node assigned to ensure a 

stable connection was always available. It would send requests to the Node every thirty seconds 

during testing and if it did not receive a response in the next thirty seconds it assigns a backup node 

to the current worker node.  

 

For NLTK this required an approach where each data wrangling stop had a looping overhead and 

data is stored in bytes, as the VADER model is memory intensive and can be n*2 in terms of runtime. 

This means that the lead up to processing this must be kept as efficient as possible in order to allow 

the algorithm (VADER) to perform in an acceptable time frame.  

3.7 Testing Approach 

Analysis of each method was tested against three selection criteria: 

Each model was tested on some text data, each having processed for the specific model. The one 

needing the least pre-processing was Flair, as this is already a trained model. This would mean that if 

Flair was selected, it would have the quickest production time.  

 

BERT took the longest to prepare as it needs to be tweaked to be effective. However, after training, 

the output was over the memory threshold.  

3.7.1 Performance & Training of N.L.T.K. 

N.L.T.K took a similar amount to produce as BERT. However, although it took less memory compared 

to the other two both; it͛s ƌuŶ tiŵe aŶd aĐĐuƌaĐǇ ǁeƌe faƌ ďeloǁ ǁhat ǁould ďe required 

forsentiment analysis. This means N.L.T.K  was eliminated at this stage of the analysis.  

Criteria  Flair DistilBERT N.L.T.K 

Speed 0(n)  0(nlogn) 0(n*2) 

Size (After 

containerization) 

199 MB 505 MB 421 MB 

Accuracy 93% 96% 81% 

 

Figure 18: N.L.P model comparisons   
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3.7.2 Performance and training of BERT: 

To maximise results, a BERT model was trained on Google Collab with an access to a GPU. 

As mentioned previously BEST base uncased was used i.e. DistilBERT, as it is a smaller model that 

takes ŵuĐh less ŵeŵoƌǇ due it͛s tǁelǀe eŶĐodiŶg laǇeƌs iŶstead of twenty four compared to regular 

BERT.  

Four trained sessions were carried out with their hyperparameters listed below  

 

parameters  run_time_1 run_time_2 run_time_3 run_time_4 run_time_5 

epochs 5 10 14 18 22 

batch size 20 40 60 80 100 

max_len 240 240 240 240 240 

random_seed 30 35 40 45 50 

 

Figure 19: Hyperparameters tested 

 

The optimal runtime was run_time_2 with the following training results. Anytime past ten epochs 

introduced over training and anything below ten epochs did not guarantee accuracy of the overall 

model.  

 
 

Figure 20: Training result of run_time_3 
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Confusion matrix for BERT – as you can see from the below confusion matrix, it was successful at 

group text between selecting sentiment as Positive, Neutral and Negative. From the production 

model the neutral weighting will be removed. It was included as recommended from the original 

paper written by Google research Team, 2018 (Devlin,et all, 2018) and edited in production. This was 

to ensure the training accuracy was as high as possible.  

 

 

 

Figure 21: confusion matrix for chosen LSTM model 

BERT is the ŵost aĐĐuƌate ŵodel. Hoǁeǀeƌ, it͛s shoƌtĐoŵiŶgs aƌe its memory usage and 

computational time. It had an n(logn) computation time and reached the maximum memory limit. 

This would mean that it may be called upon more than intended and may cause the system to be 

generally slow. However, as this portion of the process has been allocated more time  for being 

more intensive than other parts; it is a e compromise in order to achieve the accuracy needed.  

For context, DistilBERT scores sentiment as either  (0= positive, 1 = Neutral , 2 = Negative).  

 

Testing Flair  

Flair in theory had the best results of all models combined. However, it is also the most unreliable, as 

what makes it take up little memory, is also its weakness. It needs a stable internet connection to 

connect through Keras to its pre-trained model. There is a risk of a node failing during the 

connection would result in a data loss, as each node holds one unique data point, if that node fails 

that data would be lost when the node fails during processing. 

 

 

3.8 Solution Chosen based on Test Results: 

As both Flair and BERT models have significant strengths and weaknesses it has been decided to 

integrate both into different stages of the cloud stack. Where BERT would be the initial model used;  

if it takes up too much memory a caching layer would then store the unprocessed data. Flair would 
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then be used, if a data loss occurs when calling Flair through the cache, there is a record of its 

previous state before being calling the Flair model. This means both models strengths can be fully 

utilised in the overall system architecture. Below diagram shows how both models have been 

integrated together in one stack. This also sits on the same cloud server as the data acquisition stage 

on HEROKU and run every hour on a cronjob.  

 

Figure 22: How the model is accessed and contained on the cloud 

Some potential problems with this approach are, the risk of a continuous loop between calling Flair 

and sending a new batch job from the beginning of the cache. To mitigate this, if the connection has 

failed consecutively (twice in a row) the cache is split between two halves and two new worker 

nodes are requested via Spark in order to process the data and clear the current cache. The original 

node calling Flair is also replaced with a new node, in order to ensure that node has not failed. Every 

time a connection is made to the data lake a new node is requested from Spark before being fed into 

the BERT model, this node will determine if there is enough load or too much load thus pushing 

what it estimates it cannot manage to the cache.  
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3.9 Normalised data  

Certain data points were normalised  using minmaxScaler  in Java. 

The two main parts of data that needed to be normalised are the dates and the prices from Binnace 

(the Crypto price feed used).  

As the model will be grouping certain time frames together, the time stamps need to be normalised 

in order that efficient grouping and clustering of text can be carried out. 

The normalisation of prices will take rolling mean average for the time period which is trying to be 

predicted. i.e., for a 24-hour period the RMA for that period will become the price fed into  or 

associated with that data point alongside the ratio of positive to negative sentiment for the time 

period.   

Look back period  

The lookback period will start 365 days in the training stage and the model will point to what is an 

optional lookback period for one day forward prediction.  

3.10 Training model & Model Inputs: 

The model acts as a python dictionary where the key is the timestamp and contains a list with two 

elements for that time period. One being the average percentage of positive posts and the other 

being average rolling mean of the price of Bitcoin for the time period as the key. The time period in 

this case is defined as for example (3/05/2021 : 00:01 -> 04/05/2021 : 00:00).  

 ሺݏݐݏ݋݌ ݈ܽݐ݋ݐ ÷ ሻ  ݏݐݏ݋݌ ݁��ݐ�ݏ݋݌ ݈ܽݐ݋ݐ  − ሺݏݐݏ݋݌ ݈ܽݐ݋ݐሻ ∗ ͳͲͲ 

Figure 23: overall percentage calculation of positive posts  

3.11 Splitting the dataset   

The data has been split into training, testing and validation datasets. These three datasets are to 

help train the classifiers on different datasets. There is a concept known as cheating, whereby using 

the same dataset used for testing and validation is using test data multiple times to determine the 

best parameters. It should instead be decided on a validation dataset. The datasets have been 

broken down into the following sequences for training, testing and validation over different time 

periods:  

Three separate dataset -> (2017-01-2018-01), (2018-02,2019-5),(2019-6-2021-8) 

Training dataset is (2019-6-2021-8) sentiment and prices. 

Testing dataset is (2018-02,2019-5) sentiment and prices. 

Validation dataset is (2017-01-2018-01) sentiment and prices. 

 

 

3.12 Hyperparameters 

The hyperparameters are parameters whose values are used to control the learning process. Values 

of all other parameter types (typically node weights) are derived via training. 

Hyperparameters cannot be inferred while fitting the machine to the training set because they refer 

to the model selection task, that should have no influence on the performance of the model but 

affect the speed and quality of the learning process (Radhakrishnan, 2017). 
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In terms of hyperparameters used for LSTM model figure 22 shows the hyperparameters used in the 

model tested on different instances trained on the cloud and the optimal training was selected as 

the model. 

 

3.13 Model outputs/model environment 

To easily distribute the model across multiple nodes with an assigned GPU the model used a Keras 

API with a TensorFlow backed, which means Keras processes the input for the model and contained 

it and would then pass it to the TensorFlow which trains the model. 

Each model was given its own memory space to run on the cloud and then dispersed across nodes in 

the network.  

This allowed for multiple computations happening simultaneously allowing for a short turn over in 

training the model.  

All of the computation was done on Google Cloud and scripts being actioned through Google Collab. 
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4 Model training and results : 
4.1 Model training results 

The model was trained with a range of hyper parameters in order to obtain the most accurate 

model. The epochs and batch size will be trained on various iterations ranging from 100 to 500 

epochs and a batch size starting at 60 epochs and increasing by 20 epochs for every iteration of the 

LSTM model training.  

The optimization algorithm chosen was the Adam optimizer, designed to update network weights 

iteratively during the training process (Brownlee, 2017) meaning it could update weights between 

layers in the LSTM model using a single alpha during training. It did not need to update the learning 

rate; leading to a more efficient training process (Bronwlee, 2017). This also introduces the ability to 

counteract  over fitting while training. Overfitting is when a model performs exactly in-line with the 

training data inputted, meaning it cannot accurately perform on unseen data (IBM-DS, 2021). A cross 

entropy loss function was used as it can easily group and reduce the weighting of bad predictions in 

an LSTM model, by measuring the difference between two probability distributions for a set of 

events (Bronwlee, 2019).   

 

 The LSTM model chosen would run on to find the optimal hyperparameters. 

 

 

Figure 24 optimal hyperparameters   

After running each experiment on a separate thread on Google Collab the optimal hyperparameters 

were run_time_3 from the table above. 

Below shows the training performance over those epochs. 

Below is the gƌaph ͚‘esults of ƌuŶ_tiŵe_ϯ oŶ the L“TM ŵodel͛ which shows the result of training on 

run_time_3 where y-axis shows the percentage of loss at each stage and x-axis shows the current 

epoch being run. The train tag in the graph explains the performance of the model in the training 

data through each epoch and the test tag actually shows the amount of loss emitted through each 

parameters  run_time_1 run_time_2 run_time_3 run_time_4 run_time_5 

 Epochs 100 200 300 400 500 

batch size 60 80 100 120 140 

random seed 30 35 40 45 50 
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epoch. 

 

Figure 25: Loss over training results for run_time_3 

The accuracy of the model predictions on the training set and using the LSTM trained on 

run_time_3: 

Predicting Prices using Run_Time_3 

 
Figure 26: overall predictions power of run_time_3 

 

Initially the LSTM model was intended to take a two hundred day look back period. To make the 

LSTM model more memory efficient; an input of 120 day lookback period was used instead. This 
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reduced memory usage down by 15%. After making this adjustment the model was less accurate 

around the actual price predicted. Making the correct price prediction with a confidence interval of 

(15%) 38% of the time. It predicted accurately whether the price should go up or down accurately. It 

correctly predicted the price movement 78% of the time whether an increase or decrease would 

happen in the next 24 hour period.  

 

The graph below is a ͚Model performance on test dataset ͚ 
where 60k is 60,000 American dollars (price of Bitcoin or the index) on the y-axis and the x-axis 

represent the timeframe chosen at random.  

 

Figure 27: Performance on test data from periods May 2021 – Sept 2021 

The model used to test data from when the dataset was split earlier in the process and then run 

through the algorithm. It ran data for the period from the 3rd of May to the 3rd of September being 

120 days in all. 

Similar to the results of the training dataset, the model struggled to predict the actual price but 

performed well on predicting the future price trends for the next 24 hour period. 

It correctly predicted the trend 68% of the time which is significantly lower than the training data. 

However, this time period was chosen to test the rigor of the LSTM model as the time period was 

the most turbulent in terms of significant price drops in the last ten years (Harr, 2021).  Overall, the 

model performs well on predicting price trends given that there is a lot of price volatility in terms of 

significant price movements happening quickly. The predictions for the time period are lagging 

slightly behind when price movements happen but mostly act as a lead indicator from June 2021 to 

August 2021.  
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4.2 Model accuracy 

Metrics on performance over each dataset was analysed; in order to gauge total model performance 

over time.  

Time Period Overall Correct Predictions 

2017-01-2018-12 72% 

2019-01-2020-5  

(Training data) 67% 

2020-5-2021-6 62% 

 

Figure 28: overall prediction for sole Bitcoin predictions across all datasets 

From the above table, some years the model was more effective at predicting than others. This will 

be investigated further below. The below table shows the results for solely predicting the correct 

price movement, meaning did it predict correctly or did it not succeed in the prediction. 

 

Training index predictions over each time period 

Time Period Overall Correct Predictions 

2017-01-2018-12 53% 

2019-01-2020-5 60% 

2020-5-2021-6 58% 
Figure 29: overall predictions for index predictions across all datasets 

As the table illustrates the index prediction is much weaker then predicting the price of Bitcoin. 

There are multiple contributing factors that will be examined below.   
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4.3 Overall index predictions accuracy 

As indicated earlier in the project the results show that Bitcoin price movements are a good lead 

indicator for index price movements, which is a tangible measure for predicting a change in a data 

series (Marr, 2020).  

The index is made-up of eight of the main crypto currencies determined by market cap, including 

Bitcoin. 

The testing dataset was inputted into the model, giving the output below for 120 days between 03 

May 2021 and 03 September 2021.  

The chart below compares the actual index price of crypto-currencies over time, against the 

predicted price of Bitcoin and the predicted price of the Index using the LSTM model. 

 

The below chart shows the ͚Oǀeƌall pƌiĐe iŶdeǆ pƌediĐtioŶ͛, 
the y-axis is starting at 60k which represents 60,000 USD dollars (value of the cryptocurrencies) and 

x-axis representing the time frame chosen at random.  

Figure 30: overall index and Bitcoin prediction compared to actual index price 

 

From the above graph, the predicted price of Bitcoin from the model was a strong lead indicator of 

the index price movements (price increasing or decreasing for the following day). As expected, the 

model could not successfully predict the actual price of the index throughout the time period. This 

was tested on the testing dataset as the time periods are still from 03 May 2021 to 03 September 

2021. 
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4.4 Bias in model  

Upon further testing of the model, the test dataset was applied to the model for the 120 day  period 

03 May 2017 – 03 December 2017 to have an element of like-for-like comparison.  This showed that 

apart from the initial testing dataset there was a bias towards the index predictions following the 

price of Bitcoin far closer than the predicted price of the index. 

The below chart ͚MeasuƌiŶg peƌfoƌŵaŶĐe Đoŵpaƌed to the aĐtual iŶdeǆ aŶd the peƌfoƌŵaŶĐe of the 
iŶdeǆ pƌediĐted pƌiĐe͛, 
examines the performance of the Index price, Bitcoin price, index predicted price and the predicted 

price of Bitcoin.  

 

The y-axis shows the amount in US dollars starting at 8,000 USD and the time period chosen is 

along the x-axis (June 2017 – Nov 2017)  

 

Figure 31: detecting bias when Bitcoin outperforms the index 

As Bitcoin was chosen to be a lead indicator to predict the index price, a time period was analysed 

where Bitcoin outperformed the other cryptocurrencies in the index: June 2017 – November 2017. 

For the total time period observed, the predicted price movement matched the actual price 

movement 49% of the time. However, if the time period is split in two datasets (from June 2017 – 

September 2017 and October 2017 - November 2017) there are different results. In the first dataset, 

the index price movements were predicted correctly 61% of the time. The second dataset where 

Bitcoin outperformed the other cryptocurrencies in the overall index prediction was correct 14% of 

the time; as opposed to 71% of the time when solely predicting the price movement of Bitcoin. 

This shows that when Bitcoin is outperforming other cryptocurrencies significantly this model has 

limitations in predicting the total index performance of the model.  
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4.5 Evaluation of the model used (LSTM):  

Using random dates, we tested for a very small time period, (8 hours); social media sentiment as a 

parameter with the price of Bitcoin for that period and only inputting that price as a parameter.  

 
Figure 32: strength of sentiment as a feature 

Random data was chosen to predict from the 8 hour period of (Dec 11, 20:00 -> Dec 12, 04:00 , 

2017) and along with a 120 day look back period. The model predicted the price with and without 

the sentiment analysis feature. As the graph shows when the sentiment score is not included as a 

feature it outperforms when sentiments score is included as a feature. Using historical prices only; 

acted as a lag indicator which unlike a lead indicator is a tangible measure of data points in the series 

after the data point has changed (Marr, 2020). 
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5 Future work 

Since starting this project, it has become apparent that there are services using social media and 

Google searches as a lead indicator to predict the price of Bitcoin and other cryptocurrencies. We 

would in future add Google search data, together with social media sentiment analysis, to test the 

prediction of the Bitcoin price. 

It would also be worth including the total index price of cryptocurrencies, rather Bitcoin for training 

the model. 

The project, although used large amounts of historic information, was limited in terms of memory 

usage and a 15 minute delayed price feed. It would be worth evaluating both data sets with deeper 

time series information (in minutes, rather than 15 minutes). 

 

The project used a number of machine learning classifiers for sentiment analysis. It would be worth 

testing various lexicon approaches using standard datasets of three proprietary data dictionaries 

LIWC , (Liu 2012) GI and Hu-Liu data dictionaries. This approach would need to evaluate the 

technology stack needed in order to run these lexicons against the large volumes of historic data. 

Lexicon methods to sentiment analysis have a number of drawbacks, but when properly tuned can 

deliver high accuracy rates. It is not clear using this method, if accurate price predictions could be 

made, rather than just trend predictions. 

In addition to machine learning approaches, some deep learning model might be deployed. Deep 

learning would need more extensive supercomputing, however, it is far superior at undertaking 

analysis of video and images, rather than just text. This might change some of the sentiment analysis 

scores. 

Hugging Face auto NLP model, might also be considered, in order to see what model would be a best 

fit for the data available, rather than trial and error. The auto NLP model would have helped select 

the most suitable model based off the criteria fed into the model initially and returned a trained 

model best suited to the data and the desired result (Hugging Face 2021).  

There is an analysis method called the fear/greed index, (Bronwlee,2020) that is used as a lead 

indicator of investor sentiment. This could also be applied to test the models against this index, price 

movements and against sentiment analysis measurements themselves. 
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6 Key Challenges Encountered & Learning 
• Machine learning on the cloud introduces an added layer of complexity in terms of a 

container͛s aďilitǇ to access the model, due to memory management issues. Manipulating 

the models was less difficult than the many steps that needed to be taken to constantly 

manage the memory. It proved to be such a problem, that  low memory alternatives should 

have been considered at the very outset. This is despite the fact that memory availability 

was one of the initial model selection criteria. The memory usage of the models was also 

higher than anticipated during the actual implementation of the project. 

• All forms of BERT have much higher memory usage than all other models considered. The 

BERT models introduced a level memory issues that would make simpler traditional NLP 

method such as feature engineering a serious alternative to consider. 

• Using a graph database for data-lake staging introduces an un-necessary layer of complexity 

when indexing the data at a later stage of the project. Instead of the graph database we 

could have used a tabular data format to allow for more efficient indexing.  

• The rest API used ǁas ͞oǀeƌ-seƌǀiŶg͟ i.e., too much data was returned and slowed down the 

program in its later stages. Using a graphQL schema instead would have been more suitable 

than the restAPI. In a memory sensitive environment, it had a knock-on effect on all parts of 

the process.  

• Spark was an effective way of splitting work across the network but alternative methods 

should also have been considered.  Overall Spark is more suited to big data tasks from a 

noSQL data source. For  example,  alternative methods would have  Genism, Spacy and 

regular nodes, which all use less memory and are easier to deploy.  

• Google trends is an API whereby Google search information is available and trended, so that 

searches relating to Bitcoin, or cryptocurrencies could be used as an additional feed for 

regression analysis. The only issue is that Google charge commercial rates for this 

information.  
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7 Results & Conclusions 
We examine the results in the light of all of the research objectives as defined in Section 1. The 

following are the results for each of the research objectives: 

• To identify a correlation between sentiment of raw text regarding cryptocurrency from 

Twitter and Reddit and the future price movements of Bitcoin and other crypto currencies. 

The results show that using the dataset used against the machine learning models applied, that 

sentiment analysis is reasonably good indicator 63% of future price trends of Bitcoin and other 

cryptocurrencies that are either positive or negative. 

• If there is a correlation between the sentiment analysis and Bitcoin prices as above, under 

what conditions does it have greatest impact? 

The results show that using the dataset used against the machine learning models applied, that 

sentiment analysis is not a reliable indicator of future price predictions of Bitcoin and other 

cryptocurrencies within a 24 hour period. 

• To explore if there is any difference between social media sentiment of text from Twitter or 

Reddit in terms of sentiment or result in Bitcoin price.  

There was no measurable difference between the two datasets that were used.  

• To show causation between Bitcoin price fluctuations and movements in other 

cryptocurrency prices.  

It was noticed that in prices of high price volatility (+/- 50% changes) that the models do not work. 

When there is low volatility (+/-5%) the models work with 15% confidence intervals. 

• To build accurate sentiment classification models using BERT and other models to group the 

text between positive and negative sentiment. 

The optimum BERT model applied was DistilBERT, as it gave reasonably similar results 63% as the 

other BERT models but had much lower 30% memory usage. 

• Create an accurate classification model which can predict if the price will go up or down depending 

on the amount of sentiment posts at a given time.  

This was achieved with an overall accuracy of 69% across all datasets. The project has proved that 

social media sentiment on Bitcoin and cryptocurrencies is indeed a lead indicator, in that it can 

predict upward or downward movements in price. It cannot predict future prices, or price levels. 

This makes it a reasonably reliable tool to predict price trends. These conclusions are based on the 

limitations of the technology used, the data made available and also on the limitations of the models 

themselves. 
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