
1

CT Image Segmentation

Supervisor - Prof Yukun Lai

Zhongwang Li | Aug 2021

2

Abstract

With the widespread use of computers and the rapid development of artificial intelligence,

more and more things are being handed over to computers and artificial intelligence to

reduce staff workload. The segmentation of CT images is one of the tasks people want to

handle with artificial intelligence models. As a hot topic in computer vision, researchers have

been working to improve the accuracy and reliability of CT image segmentation. Today there

are several established solutions and models to solve this problem. This project will focus on

how one of the famous models, U-NET, performs on this task and can be adjusted and

improved to improve performance further. Several approaches were tried, including

increasing training data sets, using different feature extraction methods and adjusting the

Skip-connection structure of the U-Net network. We measured the accuracy of these models,

the Dice Score and the size of the models. We also visualize the prediction results of each

version of the models to compare the differences between them better. Finally, the limitations

of the project and the models used are discussed and possible future improvements.

3

Contents

CT Image Segmentation .. 1

Abstract ... 2

Contents .. 3

1. Introduction .. 4

2. Background .. 5

2.1 Current research ... 5

2.2 CT images and its segmentation .. 6

2.3 Convolutional Neural Network .. 7

3. Methodology .. 8

3.1 Loss ... 8

3.2 Optimization ... 9

3.3 U-Net .. 9

3.4 Feature Extraction module ... 10

3.5 Skip-connection .. 11

3.6 Data augmentation ... 12

4. Implementation ... 13

4.1 Framework ... 13

4.2 Code Deatails and Explanation ... 13

4.3 Model Version .. 18

5. Result & Discussion .. 19

6. Limitation and Future work .. 23

7. Conclusion ... 24

8. Reflective Learning .. 25

Acknowledgments .. 28

References .. 29

4

1. Introduction

In the medical area, there is a huge variety of images can have a major influence on doctors'

diagnosis. Examining these images manually necessitates a significant amount of time and

effort, such as detecting tissue borders, estimating tumor sizes and understanding the

anatomical structure of organs [1]. Fortunately, a number of computer applications can assist

doctors and researchers in analyzing the image, reducing their burden significantly. In these

analysis programs, one basic process is the prerequisite for most of the further analysis:

image segmentation. Once the target region has been isolated from the rest of the picture,

doctors can better study it and acquire more quantitative measures from the segmentation

result. Therefore, computer researchers and algorithm engineers have constantly been

working on how to accurately separate target regions.

In today's rapidly developing artificial intelligence (AI) environment, as one of AI's key

branches, computer vision plays a vital role in medical image segmentation. Until now, AI

researchers have used a variety of models and algorithms to distinguish target regions in

medical pictures. Several of these algorithms and models have shown excellent outcomes.

This project also aims to use computer vision models that have done well in previous studies

to challenge CT image segmentation.

CT images are usually large in number, with relatively simple texture and greyscale color.

These CT image properties are beneficial to the computer vision model. The model does not

need to learn and retain a large number of characteristics because of the greyscale color

and basic texture. The CT image data size ensures that it has enough samples to obtain and

learn the information and features. All of this demonstrates that utilizing computer vision to

complete the task of segmentation is sensible and feasible.

This project aims to build a machine learning model that can distinguish the target

area/organ and the background in a CT image. The model will be trained with CT images

and its masks. The mask is a binary color and pixel match image to the input CT image, with

white representing the target area and black representing the undesired background. The

final model will take CT pictures as input and output the CT image mask.

The heart of the implementation in this project is the U-NET architecture with convolutional

feature extraction module. Also, some attempts inspired by articles and to challenge oneself

have been tried implementing into the project. Although not necessarily improving the final

model in terms of score, these experimental attempts provide an additional way of thinking

and evidence of the author's thought process.

5

2. Background

2.1 Current research

Researchers have designed numerous frameworks that exploit the features of Convolutional

Neural Networks (CNNs) to deal with medical image segmentation. Long et al. [2] presented

the famous Fully Convolutional Network (FCN) to address the constraint that typical CNN

networks can only classify but not segment images. This makes it possible to use CNN to

output objects' mask.

However, the FCN has its limitations; it is unable to produce a clear and detailed result. To

improve the accuracy of the segmentation boundaries, Chen et al. [3] proposed DeepLab v1.

DeepLab v1 is modified based on the VGG-16 network, which is another well-known CNN

structure. Compared to FCN, DeepLab v1 adjusted the use of the pooling layer and added

atrous convolution. Therefore, DeepLab v1 has a wider receptive field, and the density of the

feature maps increases, leading to a better segmentation result. After that, DeepLab v2[4],

DeepLab v3[5], and DeepLab v3+[6] were proposed one by one. They used ResNet-101 as

the backbone and raised the idea of atrous spatial pyramid pooling (ASPP), and designed

the cascaded or parallel atrous convolution module to improve the result. In DeepLab v3+, a

decoder module is used to refine the boundary of the segmentation target, which shows an

effective way to improve the performance.

The SegNet[7] goes one step farther than the DeepLab v3+; it is an encoder-decoder

symmetric structure based on the FCN end-to-end approach for pixel-level image

segmentation. The encoder is used to extract and analyze object information, while the

decoder is used to construct the segmentation result using the information obtained during

the encoder phase.

In 2015, one of the most famous and widely used structure, U-Net was proposed by

Ronneberger et al [8]. It has a SegNet-like encoder-decoder design, and a unique

skip-connection design which can merge the low-level and high-level features. The low-level

features provide details to help improving accuracy, whereas the high-level features allow

model to extract features with more complicated expression. The combination of these two

special designs is why U-Net is outperformance in the medical image segmentation task.

The U-Net also has various of derivative such as V-Net[9], W-Net[10] and Res-UNet[11].

6

2.2 CT images and its segmentation

Computed tomography scan is usually known as CT scan, which uses the property that

x-rays attenuate differently in substances of different densities, using x-rays and its receivers

to scan, calculate and image the cross-sections of the human body. Due to the imaging

principle, the images will be grey, with varying shades of color indicating different densities of

bodily tissue. Image segmentation process can divides an image into several groups and by

classifying each pixel [12]. Through segmentation algorithms, different organs or objects can

be separated and used for further analysis.

Figure 1. An example of CT image and it's mask

7

2.3 Convolutional Neural Network

Convolutional neural network (CNN) is a very common artificial neural network applied in the

computer vision area [13].

The convolutional layer is the key design of CNN. A filter, also known as 'kernel', will sweep

over the input image in the convolutional layer. The kernel functions as a detector for a

certain item, and there may be hundreds or even thousands of them searching for and

capturing different objects or characteristics in the input. By integrating the search results of

these kernels, CNN will be taught to do tasks such as object identification, image

classification, and object segmentation. The CNN training process determines what type of

object detector (kernel) it will require to do its mission. The item that a kernel need to detect

is represented by the parameters in the kernel. In conclusion, during the training process,

the algorithms attempt to adjust all the kernels' parameters to recognize the valuable

features for the model to finish its task.

1 3 5 3 8

1 7 2 4 6

8 5 1 2 7

8 7 6 3 3

1 5 4 3 2

1 3 5 3 8

1 7 2 4 6

8 5 1 2 7

8 7 6 3 3

1 5 4 3 2

1 3 5 3 8

1 7 2 4 6

8 5 1 2 7

8 7 6 3 3

1 5 4 3 2

2 3 1

0 4 3

6 0 1

99

102

88

2 3 1

0 4 3

6 0 1

2 3 1

0 4 3

6 0 1

Figure 2. Kernel working mechanism example

8

3. Methodology

3.1 Loss

Loss function is used to obtain how difference between the predict result and the ground

truth. A good loss function can avoid gradient explosion and gradient disappear problems

while also shortening the model's convergence time. A classic loss function for the binary

classification task called binary cross-entropy loss[14] (BCE) is a good start for this project's

segmentation challenge.

BCE equation:

���� = 	− 1
������
����

	 . �! ∗ log �4! + (1 −	�!) ∗ 	log	(1 −
"#$%#$

&!'(

!)*

�4!)

The �4! is the �$+ scalar value of the model output, �! is the corresponding target value,

and output size is the number of scalar values in the model output. However, the model's

prediction value, �4!, might be some unreasonable large or small, which will cause the BCE

loss to become unstable. An advanced loss function called 'BCE WITH LOGITS LOSS' is

introduced and applied in this project.

BCEWITHLOGITSLOSS:

���� = 	− 1
������
����

	 . �! ∗ log	σ(�4!) + (1 −	�!) ∗ 	log	(1 −
"#$%#$

&!'(

!)*

σ(�4!))

BCEWITHLOGITSLOSS[15] will perform a sigmoid function on the �4! before calculating the

BCE loss. The sigmoid function[16] will normalize the �4! and converts it to a number

between 0 and 1. The advantage of doing so is that it avoid the instability produced by the

ludicrous prediction and speeds up the convergence time of the models.

Sigmoid function:

σ(x) = 	 1
1 + �,-

9

3.2 Optimization

The loss function tells the model how the difference between its prediction and the true result.

An optimizer is then required to correct its internal parameters and improve the prediction

result. The gradient descent approach is the fundamental theory of optimizer. It tries to

discover the potential global minimum point of the loss function. Optimizer used in this

project called Adaptive Moment Estimation[17] (Adam).

Adam optimizer can against high variance during the derivative calculation and correct the

gradient vanishing due to an unsuitable learning rate. Also, Adam can converge the model

rapidly. The tradeoff of these benefits is that it requires more computational power because

the first and second moments is required to be obtained.

3.3 U-Net

The U-Net framework is the backbone of this project. Various changes and adjustments will

be implemented on the U-Net.

The encoder, bottom convolution, and decoder are the three major components. The

number of layers in the encoder and decoder are the same. Both the encoder and decoder

portions employ double convolution.

Convolution is applied to the input in each encoder layer to double the picture channels, and

then max pooling is used to reduce the image size. The convolution part at the bottom is

identical to the encoder section, except that the image size is not decreased any more. The

decoder, on the other hand, employs convolution to cut the image channels in half and then

uses up-convolution to expand the image size.

One of the most important features of U-NET, the skip-connection, is how the decoder

concatenates the result of the preceding encoder at the same level to the current input of the

decoder, which doubling the picture channels.

In the final part of U-Net, the image is convolved to produce a masked image; the number of

channels is the number of types of segmentation required.

Figure 3. Sigmoid function

10

U-Net's encoder-decoder design allows each layer's convolution kernel view to be gradually

expanded, resulting in features of various sizes and kinds. Some of the data lost during

encoding stage can be restored by skip-connection. These two designs enable U-Net to

conduct image segmentation with greater accuracy while decreasing the number of

parameters that need to be trained.

In the U-Net, inspired by papers, feature extraction modules in the encoder-decoder and

skip-connection can be modified to improve outcomes.

3.4 Feature Extraction module

Feature Extraction module is used in bottom convolution and every encoder and decoder

layer. The main job of a feature extraction module is to learn one feature from the current

input. During the inference time, the feature extraction module will sweep through the input

and find out if a part of the image has a similar feature as the one it holds. A well-designed

feature extraction module is responsive to different image features while requiring little

computational resources.

3.4.1 DoubleConv

Double convolution is the one used in the original paper. It is an application of two unpadded

convolutions, each followed by a ReLU. A batch normalization unit is added after ReLU to

balance the data between layers and reduce training time.

3.4.2 SPConv

A split based convolutional operation module, called SPConv is proposed in [18]. In this

paper, it was found that some of the features obtained by the feature extraction module are

Figure 4. U-Net structure from the original paper

11

duplicated or very identical; if a mechanism can be developed to minimise the redundant

features, training and inference may be sped up even further. SPConv was one approach of

achieving this aim. The SPConv split features into two parts, one for representative feature

learning and the other to supplement minor useful information as a redundant portion. The

result demonstrates that this plug-and-play module has a better performance than Vanilla

convolution (the ground truth used in this paper).

In this project, due to the nature of CT images, the issue of redundant features will

undoubtedly occur. SPConv was implemented and expected to mitigate this problem.

3.4.3 MFEConv

Multi-scale Feature Extraction (MFE) module

Lesion regions in CT scans vary in size and shape for different people. The ordinary

convolution module can only extract feature information at one fixed scale, which cannot

capture multi-scale representation and high-dimensional information. Although, the

encoder-decoder can help with this issue in the model structure, the model's performance

will improve further if the multi-scale feature can be extracted in each convolution. Inspired

by [19], a MFEConv module is designed. The MFEConv split the channels or features of the

input into several parts. To generate different sizes of features, different convolution and

pooling methods will be used to each component. The features of various scale will then be

combined into a single feature map, which will be added to the original input to improve the

learnt multi-scale feature.

3.4.4 CIEConv

Context Information Extraction (CIE) module

One thing that is inevitable during the encoding phase is that information from the input will

be lost due to the Max Pooling compression procedure. U-Net attempted to solve this

problem with the skip-connection design. However, if more context content characteristics

can be collected during feature extraction, greater information loss may be compensated.

The CIE module [19] was created with this in mind. On the input feature map, CIEConv

performs a sequence of various rate of dilation convolutions, then fuses the dilation result to

allow the feature map to incorporate additional context information.

3.5 Skip-connection

3.5.1 Normal

In the U-Net's original architecture, there exist connecting pathways between the

corresponding layer level of encoding and decoding phase, as described in the U-Net

section. These routes allow the decoder to acquire information prior to Max Pooling loss,

resulting in improved segmentation accuracy and performance.

3.5.2 Residue Attention (RA) Module

On the decoder, skip-connection performs well with supplement detail information; however,

it brings the information before feature extraction, which may affect the segmentation result.

12

In the [19], a residue attention (RA) module is proposed to regulate the weights on the

connections, with the goal of suppressing irrelevant information and emphasize key features.

RA module requires current level encoder result and previous level decoder result as the

input. The below diagram illustrates the basic workflow of RA module.

3.6 Data augmentation

Multiple transformations were applied to the dataset to increase the dataset size and force

the model to learn against noise and the background. Rotation, horizontal and vertical

flipping and elastic transform were the major transformations applied.

Figure 5. An example of Data transformation in Data Augmentation process

13

4. Implementation

4.1 Framework

4.1.1 Python

The programming language used in this project was Python. Python is the most popular

programming language in the fields of data science and artificial intelligence at the moment.

It is simple to learn, and there are many mature and reliable libraries and packages, which

can greatly reduce the workload.

4.1.2 PyTorch[20]

PyTorch is one of the most famous machine learning libraries in python. It contains countless

classes and methods related. The superclass of the model used in this project inherits from

the nn.Module of the PyTorch and optimization method used to train the model and reduce

model loss is from the Optim module of PyTorch.

4.1.3 Colab[21]

Colab is a cloud computing platform provide by Google. It allows user to implement and test

their model and code with Google's powerful hardware and GPU. Models in this project are

all trained and test on the Colab.

4.2 Code Detail and Explanation

4.2.1 Dataset

A class called 'ImageDataset' inherited from the 'Dataset' class from 'torch.utils.data' is

created. The path to the images' and masks' folders, as well as the transformation the user

wants to apply to the images and masks, are the class's inputs. According to the specified

index, the class will return the image and its mask pair. The image will be opened and

converted to three-channel RGB data, after which it will be stored as a np.array type. Unlike

the image, the mask will be transformed to single channel 'L' data, which indicates greyscale,

and then stored as float32 np.array type data. The mask data will then be adjusted to [0,1]

from [0,255].

If any transform is fed in, it will be applied to both the image and mask. Mask should be still

able to cover all the target areas of the image after the transformation. Finally, the image and

mask will be returned.

4.2.2 Dataset augmentation

A dataset class script and a data augmentation script are used to increase the input data

size. The dataset script is nearly identical to the 'dataset.py' script, which is used to construct

dataset objects to store the image and mask. The dataset class used here is called

'LungCTImagesDataset'.

Package 'albumentations' is commonly used in data augmentation. The transformations

14

'Resize', 'Rotate', 'HorizontalFlip', 'VerticalFlip', and 'ElasticTransform' are specified in a

pipeline workflow called 'my transforms' in the 'data augmentation.py' file. Then, as two

'LungCTImagesDataset' objects, the training and validation data are read in and loaded.

The training and validation datasets are then read ten times, with the produced image and

mask files being saved independently each time. The image-mask pair's transformation will

be randomized for each time of image generation.

4.2.3 Model

4.2.3.1 U-Net

The core structure of U-Net is defined in this class 'UNET', which is inherited from

'nn.Module'. The default values for 'in channels', 'out channels', and 'features' in the 'UNET'

class are 3, 1 and [64, 128, 256, 512] accordingly. Five subparts of 'UNET' are defined in the

initialization section.

'self.pool' is the Max Pooling function used to reduce the image size during the encoding

phase.

'self.up' is a list of DoubleConv functions with gradually increased in_channels and features

(out channels). All these DoubleConv are used in the encoding phase. The number of

DoubleConv equals the number of encoding layers.

'self.down' is a list of ConvTranpose2d and DoubleConv. These modules are used in the

decoding phase. ConvTranpose2d is used to double the image size. DoubleConv functions

have gradually decreased in channels and out channels.

'self.bottleneck' is a DoubleConv used to double the feature number (image channels). It is

the bottom part of the U-Net.

'self.final_conv' is a Conv2d module with a kernel size equal to one. This convolution

'combines' all of the features to determine the class of a pixel point. As a result, the input

image channel has the fewest amount of features in the 'features' list, while the output

channel has only one.

The data flow of the input is defined in the forward function of the 'UNET' class. The

components in the 'self.down' processed input during the encoding phase. The result after

each processing was saved in the 'skip_connections', then the result is shrinked by

'self.pool'.

The 'self.bottleneck' is then applied, and the 'skip_connection' was reversed.

In the decoding phase, input was first processed by the 'ConvTranspose2d' in the 'self.up' to

recover the image size, then resized to match the saved data of the corresponding level in

the 'skip_connection'. The result of the 'skip_connection' is then concatenated with the

data from the 'skip connection'. To fuse the channels and learn the features, 'DoubleConv' is

applied to the data.

Finally, 'self.final_conv' is applied to obtain a single channel black and white mask image.

4.2.3.2 Feature Extraction

15

Feature Extraction is another part in the 'model.py'. It normally contains one or more class

used in the 'UNET' class.

l DoubleConv

A sequential module list is defined. It has two Conv2d with kernel size 3x3. Each of the

Conv2d followed by a BatchNorm2d and a ReLU. It requires user to define the number

of 'in_channels' and 'out_channels'.

l SPConv

This module's code comes from the code example provide by the original paper. In this

project, one version of model uses SPConv instead of the Conv2d in the DoubleConv

module.

l MFEConv

Because MFEConv only works when the input channel number exceeds 8, the input

channels must first be verified during the initialization phase. If the channel number is

less than 8, the input will be sent via a Conv2d to raise it to 8. The number of channels

needed for each branch is then calculated. This calculated result will then be utilized as

the Conv2d module's setting in each branch. MaxPool2d is defined since it will be used

in one of the branches. The 1x1 Conv2d module 'self.smoothConv1x1' is used to fuse

the four branches results.

The input channel will be checked and raised if it is less than 8 in the forward section.

The 'torch.split' method will then split the input into four parts in the view of the channel.

The splitting ratio is 1/4, 1/8, 1/2 and 1/8. Branch one will use a 1x1 convolution,

whereas branch two will use MaxPool first and then a 1x1 convolution. Branch three

does a 1x1 and a 3x3 convolution in turn, while branch four performs a 1x1 and two 3x3

convolutions in turn. 'torch.cat' will concatenate the results of the four branches in the

channel's view. Then 'self.smoothConv1x1' will fuse this result and add it to the original

input (the one before the channel was enlarged) as the final result.

Figure 6. DoubleConv Structure

16

l CIEConv

The initialization of CIEConv requires three settings: 'in channels', 'kernel size', and

'dilation'. By default, 'kernel size' is set to 3 and 'dilation' is set to [2,6,10]. Then three

Conv2d are constructed, each with a different dilation rate set in the 'dilation' parameter.

The 'self.Conv1x1' is a 1x1 Conv2d with three times of 'in_channel' as input channel

number and 'in_channels' as the output channel number. This is because the input must

restore to its original shape after passing through the three dilation convolutions and

being concatenated together.

In the forward part, the input will go through the three dilation convolutions individually,

stack together, and fuse by 'self.Conv1x1'. This result will then be added to the input.

l ConvModule

A module combines the CIEConv, DoubleConv and MFEConv.

1x1

Conv2d

3x3

MaxPool

1x1

Conv2d

1x1

Conv2d

1x1

Conv2d

3x3

Conv2d

3x3

Conv2d

3x3

Conv2d

1x1

Conv2d
Concat

Split

3x3 Conv2d

Rate = 2

Padding = 2

3x3 Conv2d

Rate = 6

Padding = 6

3x3 Conv2d

Rate = 10

Padding = 10

Concat
1x1 Conv2d

Stride = 1

Padding = 0

Figure 7. MFEConv Structure

Figure 8. CIEConv Structure (red spots represent different dilation rate of Conv2d)

17

4.2.3.3 Residue Attention (RA) module

The RA module is in the process of being decoded. Conv2D modules are designed to match

the current result and the next level's skip-connection data to the same channels and sizes.

Then, using 'nn.Unsample' with a scale factor of 2 and bilinear mode, they are added

together and up-sampled. After that, ReLU, a 1x1 Conv2d, and Sigmoid modules rectify and

normalize this result. The result or weight map is referred to as alpha, and it is multiplied by

skip-connection data before being added to the same skip-connection data. This result will

be taken as the new skip-connection data.

Figure 9. RA Structure

4.2.4 Utils

This file contains all of the tools needed for the training process. The checkpoint function

saves and loads model states, allowing the user to extract and restore the trained model.

The 'get loaders' function is used to transform the input images and masks into batch size

dataloader objects, which make training the model easier.

The 'check_accuracy' function will give the accuracy and dice score[22] feedback on the

given (validation) dataset under the current model.

The file's last function, 'save_predictions_as_imgs', does exactly what its name implies: it

uses the current model state to predict the mask of the supplied images and saves the result

as a file. This feature allows the user to more immediately and intuitively assess the model's

performance.

2x2 Conv2d

Stride = 2

Padding = 0

1x1 Conv2d

Stride = 1

Padding = 0

Unsample

scale_factor = 2

Mode = bilinear
ReLU

1x1 Conv2d

Stride = 1

Padding = 0
Sigmoid

18

4.2.5 Train

The core training procedure is contained in this file. At the top of the file, the

hyperparameters are defined. The training and optimization in each epoch takes place in the

function 'train_fn’. It will read the data in batches, with the model attempting to predict the

outcome for each batch. The loss function will then compare the predicted and true

outcomes. After that, the optimization function will update the model parameters in each

layer based on the loss function result. After the 'train_fn' go through the whole data once,

one epoch of training is finished.

The transformation used in the train and validation dataset is first defined in the 'main'

function. The model, loss function, and optimizer are then established. Following these initial

parameters, the function will use the 'get loaders' function to acquire the data loader and

begin training the model. Several epochs will be trained by the model. In each epoch, the

'train_fn' will run, then the checkpoint, which is the model's current status, will be saved.

Following that, the forecast image as well as the current model's accuracy will be created

and stored.

4.3 Model Version

l Ver1 UNET with DoubleConv, No Data Augmentation

l Ver2 UNET with DoubleConv, Data Augmentation

l Ver3 UNET with SPConv used in DoubleConv, Data Augmentation

l Ver4 UNET with DoubleConv, RA design implemented, Data Augmentation

l Ver5 UNET with ConvModule, RA design implemented, Data Augmentation

19

5. Result & Discussion
The following two figures show the prediction results of five versions of the model on the

validation set after training for 100 epochs. These images provide a visual representation of

the model's performance.

The target region can be segmented basically using Model Version 1. There are, however,

several apparent flaws. First, because the model has trouble distinguishing rounded edges,

the edges in the results are left with white borders. Because the width of the white borders is

so little, it has little effect on the accuracy, but it is plainly evident to the naked eye. The

model also contains a significant amount of misclassification. These are most likely due to

the limited training dataset. The model was unable to acquire enough features from the

training data, particularly for the target region's edges.

Figure 10. Predict result for the Model Version 1

20

The next four model versions all solve the problem of white edges in the predictions and

greatly enhance the segmentation results at the edges of the target region since the training

dataset is 10 times larger. The fourth model had the highest visual performance, maybe

because the RA module improved the classification results by improving the expressiveness

of the features and weakening the irrelevant information while recovering the information lost

during the encoding phase. Model Version 3 shows an apparent shortcoming, with unclear

classification in the target region as a grid style. It's conceivable that this is due to SPConv's

removal of too many redundant features, making it difficult to learn as many features as

other models with the same number of training epochs and batch size hyperparameters.

Model Version 5 contains a few more details and missing pieces than the solution, although

it was only trained for 10 epochs.

The two graphs below demonstrate how the accuracy of the five model versions varies over

time as they are trained.

Figure 11. Predict results for the Model Version 2, Model Version

3, Model version 4 and Model Version 5

21

At the 60th epoch, Model Version 1's accuracy begins to stabilize and eventually reaches

95%. The accuracy of the remaining four model variants all exceeds 90% at the start of

training and finally settles around 99%. It's conceivable that this is due to the large size of the

training dataset. Because the dataset is 10 times larger, one epoch of training for the

previous four versions of the model is roughly equivalent to performing ten epochs for Model

Version 1. As a result, these models can acquire better accuracy much more quickly. During

training, the accuracy of the Model Version 2 and Model Version 4 models changes relatively

slightly, with only a few major variations.

Model Version 3 has, on the other hand, seen unpredictable oscillations, dropping from 99

percent to 90 percent at times. This shaking was nevertheless taken into account since

SPConv eliminated too many features, resulting in fewer stable features being learnt, which

had a significant impact on the model's accuracy.

ver1

ver2

ver3

ver4

A
c
c
u

ra
c
y
 (

%
)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Epoch

0 20 40 60 80 100

Model Accurate Log during the Training

0.90

0.92

0.94

0.96

0.98

1.00

40 50 60 70 80 90

ver5

A
c
c
u

ra
c
y
 (

%
)

0.940

0.945

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

Epoch

0 1 2 3 4 5 6 7 8 9 10

Model Accurate Log during the Training (ver5)

Figure 12. Accuracy Log of Models

Figure 13. Accuracy Log of Model Version 5

22

Model Version 5 on the other hand, stabilized accuracy between 97% and 99% after 10

epochs of training, indicating that if the training is continued, it should at least attain similar

performance to Model Version 2.

The accuracy, dice score, and average inference time of the final version of the model

trained for 100 epochs are shown in the table below.

Model Total Epoch Number Final Accuracy (%) Dice Score
Average Inference time

(second per image)

ver1 100 95.56230307 0.941433191 0.029

ver2 100 99.28712249 0.985901713 0.095

ver3 100 98.98146987 0.980378211 0.141

ver4 100 99.31240082 0.986650705 0.129

ver5 10 98.69464636 0.969237983 0.538

Table 1. Accuracy, Dice score and Inference time result of the Models

Except for Model Version 1 and Model Version 5, the other three model versions had a Dice

Score over 0.98 and an accuracy of about 99%. In terms of average inference time, Model

Version 5 took the longest, taking nearly half a second to create the matching mask for the

input. The structure of the Model Version 5, which has twice as many model parameters as

the preceding versions, may be to blame for the lengthy inference time. Model Version 1 is

the fastest, although it has the same parameters as Model Versions 2 and 4. The reason for

this may be that Model Version 1 does not learn the parameters sufficiently. Therefore a

large number of parameters within layers could not extract enough features to participate in

the inference. The results might have been different if Model Version 1 could have performed

a more extended training period.

The model's size, parameters, number of layers, and other information are listed in the table

below.

Model
Total

params

Trainable

params

Forward/backward

pass size (MB)

Params size

(MB)

Estimated Total

Size (MB)
Layers

ModelState

Size (MB)

ver1 31,037,633 31,037,633 1272.03 118.4 1391.46 72 372.6

ver2 31,037,633 31,037,633 1272.03 118.4 1391.46 72 372.6

ver3 13,025,357 13,025,357 2945.22 49.69 2995.93 199 156.7

ver4 31,037,633 31,037,633 1266.84 118.4 1386.27 72 372.6

ver5 77,414,275 77,414,275 2826.71 295.31 3123.05 200 929.3

Table 2. Parameters Size of Models

Model Version 3 has the fewest trainable parameters, the smallest storage volume for

parameters and the smallest archive of model states, but it requires the largest runtime

volume, even more space than Model Version 5. However, both the Model Version 3 and the

Model Version 5 contain about 200 layers in their models, thus this is a reasonable

phenomena. Model Version 5’s state collection is the largest, with 929.3 MB, and also

contains the most parameters.

23

6. Limitation and Future work
There are several limits to this project. Although several computer vision models can be

used to solve the medical image segmentation task, the focus on UNET in this project

makes it impossible to compare the performance gap between different model frameworks.

The author, on the other hand, lacks the time and resources to experiment with UNET

variations such as VNET, UNET++, and Res-UNet. Furthermore, the research used just one

dataset for training, making it hard to verify that the model will perform similarly in other

medical images. It was unable to verify that all hyperparameters were constant due to the

low performance of the machine utilized for training (e.g. batch size). This has an

unquantifiable influence on the performance disparity between different models.

Furthermore, owing to the authors' talents and knowledge, the majority of the module design

and framework enhancements are based on solutions given in previous publications.

There are also several shortcomings in the way UNET is used. To begin with, the author

lacks the capacity to architecturally optimize the neural network, thus these versions of the

model will be computationally costly in certain areas. Second, while certain versions of the

model perform well (acc>99), the author is unable to determine what variations in the

versions have resulted in this performance. In subsequent research, the author is required to

examine and justify these differences using the feature maps learnt by the model. Due to the

model architecture and training dataset, which is typically insufficient in medical images

segmentation, the models only accomplished two-class segmentation in the final output.

Existing study findings have shown that multiple target locations of various classifications

may be segmented. UNET will be able to detect and segment multiple target regions of

various categories in the author's future research and model upgrades. Better feature

extraction modules, more cutting-edge methods, and other factors will be required to attain

this aim.

24

7. Conclusion
In conclusion, this project leaves behind results that meet the original objectives set. The

implementation of UNET and various attempts to optimize its segmentation results were

demonstrated in this project. Most of the versions were able to segment the target region

successfully. The model can also be used for other image segmentations simply by

replacing the data used for training. There are some regrets and incomplete parts of this

project, which will hopefully be overcome in future research.

25

8. Reflective Learning
This project taught me a lot.

Initially, I attempted to run it from my computer, but it was not supported on my system, and

there was no GPU support for training, so I went with Colab. I started by learning how to

process image data and build a training set based on the images. I learnt how to use Colab

to link data and code in the cloud, as well as how to install packages in the Colab

environment. Although I had some theoretical knowledge of machine learning and computer

vision, I had never studied how to create a model in a systematic way. Fortunately, there are

a plenty of tutorials available on YouTube.

I didn't spend much time on the most fundamental model framework. On YouTube, I saw a

pretty comprehensive tutorial on how to create a UNET model from the ground up. I went

over the code in the video several times and utilized it to create a prototype. Despite the fact

that the code was executable and the model was functional, I didn't completely get what was

going on in the model at the time. So, line by line, I began to read and comprehend the logic

in the code. From the code, I understood the basic construction of the PyTorch model and

how to design code to measure the model's performance and to visualize and save the

model predictions. However, sticking with the most basic version of the model was

insufficient to address the project's requirements, also the initial version model did not

perform as well as it should have after training. Although the accuracy display increased with

time, the anticipated masks contained a lot of random noise. The theory was that the model

had reached a local optimum, beyond which no further error reduction could be achieved. To

improve performance further, the model used a method of giving values to specific pixels at

random. This might be because the model was unable to extract and learn sufficient features

from the data.

So I had two choices: increase the quantity of data used for training or use a better feature

extraction module to enhance my model. I first chose to use data augmentation to try to

enhance the quantity of data used for training. I reviewed the original UNET article and saw

that stretching deformation was appropriate for the model's performance. I subsequently

learnt how to use 'albumentation' to handle the data, which allowed me to tenfold the dataset

size. The model performed better after being given a larger dataset, increasing its accuracy

from 95% to 99 percent and resolving the noise issue. The findings of the segmentation

were quite accurate.

The next phase of the research focused on using PyTorch and referring to relevant

publications to better optimize the UNET. Firstly, I considered that the number of channels

would increase during the down-sampling of the UNET and whether these features were

necessary. According to one study, neighboring features in feature extraction are often quite

similar. It would enhance the model's training and inference time if I could minimize feature

redundancy properly. Then I looked for sample code and attempted to include the feature

extraction module described in this article into an existing model. However, after installing it,

I discovered that the module requires the specified number of input channels. I tried adding

channels to the inputs in the dataset part's code at first, but the function still reported

problems. After that, I tried directly adding a 1x1 convolution module to the model's initial

input to increase the number of channels in the input to match the module's functioning

criteria, which succeeded. When I tested the module in Colab, I discovered that the memory

given by Colab was insufficient to run and train the model with the batch size set to the

26

original 16, thus for this version of the model, I reduced the batch size to 15.

After completing this version of the model, I decided to try to reproduce some of the modules

myself that were worthy of reference and use. After reading the paper MC-Net, I felt I had a

clear target. The functions of the MFE and CIE modules proposed in the article are

potentially optimizing for the model. Their design is also not overly complicated. So, based

on the architecture in the MC-Net article, I started building the MFE, CIE, and RA modules as

I understood them. I started by replicating the RA module, because the skip-connection

modification is about the model's structure and would be more interesting. The RA module

was difficult since it was a variation on the skip-connection and would put my knowledge of

the UNET model's architecture and code to the test. Because it does not need the addition of

training parameters, the RA module was easily implemented after I grasped the UNET

concept and the code.

Finally, I reproduced the MFE and CIE modules and embedded the model with DoubleConv,

modelled on the MC-Net design. In the process, I was able to build relatively simple modules

using PyTorch.

Throughout the process, I've come across a few minor problems that have been tough to fix

and have taken a lot of time. The above-mentioned SPConv section is an example of when

the channel input channel does not match. When validating the Dice indicator, I also

encountered an issue; the value would initially surpass 1 when the software displayed the

Dice index, but this was not allowed according to the Dice formula. As a result, I began

checking the code in sections rather than in chunks. Finally, when I double-checked the Dice

computation part, I discovered that the mask's pixel points were not in the 0 to 1 range as I

had specified, but considerably exceeded it. As a result, I inserted the binarization code to

the calculation area and was able to resolve the issue.

In working on this project, I discovered that many code-related errors are often hidden but

end up looking like simple errors. However, it took a long time for me to realize what was

wrong until I was able to pinpoint the source. So, as the project progressed, I gradually

developed the practice of modularizing the functionality I wanted to accomplish and testing

each module separately, only putting them together provided none of the needed

components were defective. This design pattern has helped me decrease the number of

errors I make when creating code and has given me a clear sense of what I'm attempting to

accomplish.

This project has enabled me to make significant progress in both practical work and artificial

intelligence modelling. I've improved my ability to handle training data, create reasonably

simple models fast, and write the modules I need based on the articles as a result of this

effort. I believe this is a milestone for my future study career. Furthermore, this project has

aided me in improving my project management, time management, communication, and

teamwork skills. I kept a daily journal of my work, articles read, and thoughts for the next

stages throughout the project. As a result, I always have a clear picture of my project and a

reference point for drafting my report. It also provided me a solid notion of the time range

and room to alter my schedule because it was documented everyday. In the end, despite the

fact that I did not have any technical issues that required assistance from my supervisor, my

correspondence with him served as a fantastic source of inspiration when I hit a roadblock in

my study. I couldn't have come up with these ideas on my own, and I realized once again

that interacting with people to solve difficulties is essential.

27

Finally, I'd want to express my gratitude to this project for helping me to develop both

technically and emotionally, make significant progress, and get a better understanding of my

future research direction. I'll put what I've learned from this endeavor to good use in my

future studies.

28

Acknowledgments

I'd want to express my gratitude to Professor Yukun Lai, my project supervisor, for his

invaluable assistance.

Secondly, I would like to thank my parents for everything they have done for me.

Finally, I would like to thank my friends and classmates Chutong Zhong and Ce Guo for their

support and friendship during my Master's degree.

29

References
[1] N. Sharma and L. M. Aggarwal, ‘Automated medical image segmentation techniques’, J

Med Phys, vol. 35, no. 1, pp. 3–14, 2010, doi: 10.4103/0971-6203.58777.

[2] J. Long, E. Shelhamer, and T. Darrell, ‘Fully Convolutional Networks for Semantic

Segmentation’, arXiv:1411.4038 [cs], Mar. 2015, Accessed: Oct. 07, 2021. [Online].

Available: http://arxiv.org/abs/1411.4038

[3] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, ‘Semantic Image

Segmentation with Deep Convolutional Nets and Fully Connected CRFs’, arXiv:1412.7062

[cs], Jun. 2016, Accessed: Oct. 07, 2021. [Online]. Available: http://arxiv.org/abs/1412.7062

[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, ‘DeepLab:

Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully

Connected CRFs’, arXiv:1606.00915 [cs], May 2017, Accessed: Oct. 07, 2021. [Online].

Available: http://arxiv.org/abs/1606.00915

[5] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, ‘Rethinking Atrous Convolution for

Semantic Image Segmentation’, arXiv:1706.05587 [cs], Dec. 2017, Accessed: Oct. 07, 2021.

[Online]. Available: http://arxiv.org/abs/1706.05587

[6] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, ‘Encoder-Decoder with

Atrous Separable Convolution for Semantic Image Segmentation’, arXiv:1802.02611 [cs],

Aug. 2018, Accessed: Oct. 07, 2021. [Online]. Available: http://arxiv.org/abs/1802.02611

[7] V. Badrinarayanan, A. Kendall, and R. Cipolla, ‘SegNet: A Deep Convolutional

Encoder-Decoder Architecture for Image Segmentation’, arXiv:1511.00561 [cs], Oct. 2016,

Accessed: Oct. 07, 2021. [Online]. Available: http://arxiv.org/abs/1511.00561

[8] O. Ronneberger, P. Fischer, and T. Brox, ‘U-Net: Convolutional Networks for Biomedical

Image Segmentation’, arXiv:1505.04597 [cs], May 2015, Accessed: Jul. 28, 2021. [Online].

Available: http://arxiv.org/abs/1505.04597

[9] F. Milletari, N. Navab, and S.-A. Ahmadi, ‘V-Net: Fully Convolutional Neural Networks for

Volumetric Medical Image Segmentation’, arXiv:1606.04797 [cs], Jun. 2016, Accessed: Oct.

07, 2021. [Online]. Available: http://arxiv.org/abs/1606.04797

[10] X. Xia and B. Kulis, ‘W-Net: A Deep Model for Fully Unsupervised Image Segmentation’,

arXiv:1711.08506 [cs], Nov. 2017, Accessed: Oct. 07, 2021. [Online]. Available:

http://arxiv.org/abs/1711.08506

[11] F. I. Diakogiannis, F. Waldner, P. Caccetta, and C. Wu, ‘ResUNet-a: a deep learning

framework for semantic segmentation of remotely sensed data’, ISPRS Journal of

Photogrammetry and Remote Sensing, vol. 162, pp. 94–114, Apr. 2020, doi:

10.1016/j.isprsjprs.2020.01.013.

[12] G. Stockman and L. G. Shapiro, Computer Vision, 1st ed. USA: Prentice Hall PTR,

2001.

[13] M. V. Valueva, N. N. Nagornov, P. A. Lyakhov, G. V. Valuev, and N. I. Chervyakov,

‘Application of the residue number system to reduce hardware costs of the convolutional

neural network implementation’, Mathematics and Computers in Simulation, vol. 177, pp.

232–243, Nov. 2020, doi: 10.1016/j.matcom.2020.04.031.

[14] K. P. Murphy and F. Bach, Machine Learning: A Probabilistic Perspective, Illustrated

edition. Cambridge, MA: MIT Press, 2012.

[15] ‘BCEWithLogitsLoss — PyTorch 1.9.1 documentation’.

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html (accessed Oct.

07, 2021).

30

[16] J. Han and C. Moraga, ‘The influence of the sigmoid function parameters on the speed

of backpropagation learning’, in From Natural to Artificial Neural Computation, Berlin,

Heidelberg, 1995, pp. 195–201. doi: 10.1007/3-540-59497-3_175.

[17] D. P. Kingma and J. Ba, ‘Adam: A Method for Stochastic Optimization’, arXiv:1412.6980

[cs], Jan. 2017, Accessed: Oct. 07, 2021. [Online]. Available: http://arxiv.org/abs/1412.6980

[18] Q. Zhang et al., ‘Split to Be Slim: An Overlooked Redundancy in Vanilla Convolution’,

arXiv:2006.12085 [cs], Jun. 2020, Accessed: Aug. 22, 2021. [Online]. Available:

http://arxiv.org/abs/2006.12085

[19] H. Xia, M. Ma, H. Li, and S. Song, ‘MC-Net: multi-scale context-attention network for

medical CT image segmentation’, Appl Intell, May 2021, doi: 10.1007/s10489-021-02506-z.

[20] ‘PyTorch’. https://www.pytorch.org (accessed Oct. 07, 2021).

[21] ‘Google Colaboratory’. https://colab.research.google.com/?utm_source=scs-index

(accessed Oct. 07, 2021).

[22] A. Carass et al., ‘Evaluating White Matter Lesion Segmentations with Refined

Sørensen-Dice Analysis’, Sci Rep, vol. 10, p. 8242, May 2020, doi:

10.1038/s41598-020-64803-w.

