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ABSTRACT

This report documents the completed work to perform a problem analysis through

mathematical modelling, here we built a model and simulation to help pinpoint the problem

zones concerning the control of any SEIR disease, in this report the disease is COVID-19. The

main aim was the creation of a successful, qualified, accurate and quantified system model

using mathematical modelling, which is the trusted way of modelling, simulating and

predicting the outburst of any disease and analysing proposed or in understanding new

control methods.

While there are ample studies being conducted to end this global pandemic, this project

offers an opportunity to help COVID-19 researchers, the NHS and the healthcare workers to

look at the model, analyse different scenarios and situations and better understand how we

can tackle existing or upcoming problems better.

During the making of the project, there have been weekly progress updates with my project

supervisor Frank C Langbein, to demonstrate the model creation, results and discuss further

plans. The modelling and analysis is done using Python and its various data science libraries.

Keywords:

Mathematical modelling, Control theory, COVID-19, Monte carlo simulations
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INTRODUCTION

1.1 Sketching the problem

We as a civilization have always thrived to constantly improve, aiming to achieve the best.

For centuries we’ve innovated in our ways of living to make the best out of our limited

resources. Although, with the population increasing everyday, it gets harder to provide for

every individual. And with healthcare being the epicenter; all of us depend on being healthy

to be able to function to our fullest. This is what this project is based upon, optimising and

analysing ways to make our healthcare systems better more specifically with COVID-19,

explained more briefly in the scope.

We are still in a pandemic, there is no question about the fact that COVID-19 has taken us all

with a storm. We still have not completely recovered from it. Humans are considered to be

social beings, and thus must be studied with relation to their environment. It is more

advantageous to us if, for eg: cases of COVID-19 can be prevented by imposing a lockdown,

or by the right vaccination policies than by successfully treating the declared cases of the

virus.

There is no question that the healthcare systems around the world work round the clock to

help make this world a better place. The current operating healthcare system in the UK is the

National Health Service, or the NHS. Over 9 million people in the UK have had the virus(Our

world in data. 2020), which means every 7th person in the country has had the virus. With

such risks and consequences, it is critically important to tackle the problem and aim to

achieve the best solutions for the citizens of the country.

1.2 Aim

Considering the previous section, a model for preventing the rapid spread of COVID-19 is

required as soon as possible to provide smart healthcare services. For any project to start

with, we must first analyse the problem. And thus pinpointing the problem was the very first

thing on my plate.

The goal of this project is to successfully create a compartmental model and simulate

results. Then applying optimising control techniques to these models, and finally checking

for the correctness of the models.

Objectives:

● Research and learn about compartmental modelling.

● Choose a suitable programming language/softwares with appropriate libraries.

● Research and create a SIR model, and its other variants.

● Apply control theories to the models, one of lockdown policies, vaccination policies

or impact of new medicines.
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● Check for its robustness with a stochastic model.

1.3 Scope of the project

Unlike other parts of the project like sketching the problem, the scope is a part which is

constantly being updated in the sense that it is being identified and discovered along its

process. This section concerns the ethical considerations of this project.

Primarily, the project was to find an optimal control method to the SEIR epidemic models.

The project was initially broken into two sections, one for the modelling and the next for the

optimal control. From the initial proposal on PATS, the general idea was to make an SEIR

model and then apply control techniques to it. Given the fact I am no expert in the field of

medical science, it was very interesting for someone like me to investigate the problem in

hand. Also, without any prior knowledge, I would be less biased to what the experts have to

say about the topic, and thus I could add a fresh brain into the problem.

I began with a revision course on calculus and mathematics, as without solid knowledge of

these, there was no point in going forward with the project. And along the side, I narrowed

my research with the recommendations from my technical advisor, Dr. Frank C Langbein, on

topics regarding SIR modelling.

After my initial explorations into the background, and after initial planning and

brainstorming. I split my focus into the SIR and SEIR models. The idea was to completely

understand the models, and then eventually try and increase its complexity to get more

realistic and accurate results. After I had my two models ready and setup, the next thing to

do was to add in a few more parameters to the model and increase its complexity, thus came

the SEIRS model. And finally to have an aspect of control governing the model, this could be

either lockdown methods, new variants or new medicines.  With the pandemic still going on,

the opportunity and the need to tackle this problem and to start building a model was very

clearly evident. This I believed was a very realistic scope for the project.

In the later stage of the project, in discussions with my Technical advisor. He suggested I also

add on an aspect to check the correctness of the model. This would show that the research

that was done was correctly implemented and that the models were robust. Moreover my

knowledge in electrical engineering has led me to investigate stochastic methods to do the

same.

And Finally, because of the nature of this research project, it is very important to address the

ethical considerations. The COVID-19 pandemic is a very sensitive topic and I needed to

ensure I was being ethically correct and was working rightfully with the information available

to me.
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1.4 Intended audience

Once the project comes to a successful end, it would primarily help the NHS or any

healthcare official who is looking to understand optimising a SIR (or its extended) model.

The secondary beneficiary would be people who are more prone to the disease due to

underlying or existing respiratory diseases. And to everyone in the country considering the

domino effect, as healthcare officials make better decisions using these models, the citizens

can expect the pandemic to end earlier with less number of people getting affected by it.

And finally, countries can learn from one another to tackle such problems, making this a

global domino.

1.5 Assumptions

The research proposed in the project is based on the assumptions and data presented

online, in the form of research papers, university lectures or ebooks. I have assumed the

data available online to be both correct and incorrect, and therefore gathered information

only from sources I believe are reliable, or in some cases if the information is frequently

repeated. This is crucial as for a project such as this, information keeps changing every

minute and something which proved to be true earlier becomes inapplicable.
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BACKGROUND

2.1 Wider context

The outbreak of any infectious disease can cause severe threats to mankind. With the

ongoing spread of the novel coronavirus or COVID-19, we are now in the midst of an urgent

global challenge to fight back. Taking a step back and looking at the bigger picture, we as a

civilization are constantly moulding ourselves, modernizing and evolving at a pace

unimaginable. Nevertheless, every now and then we are reminded of what is in our control

and what is not. It made us realize health by far is our greatest asset without which we

remain paralized.

With something like the COVID-19, which hit us like a storm. Being completely unexpected,

we panicked, the healthcare workers around the globe had no idea on how to tackle such a

situation. And with such rapid growth of the virus, researchers and scientists were forced to

urgently produce results and develop models which can help us tackle or pause this

outbreak.

It is no question about how important a lockdown is when a disease spreads linearly. But

with this fact comes a very important question, when should we impose a lockdown? With

millions of people already being victims to heart and lung diseases like Asthma, Bronchitis or

even the common cold. They became a lot more vulnerable to COVID-19 than others. About

65 million people suffer from chronic obstructive pulmonary disease (COPD) and 3 million

die from it each year, making it the third leading cause of death worldwide. About 334

million people suffer from asthma, the most common chronic disease of childhood affecting

14% of all children globally.(WHO - global impact of respiratory diseases)

There are several models on the covid 19 pandemic, yet not all are accurate or optimised.

There needs to be a model which can help us make the right decision and make smart

estimates of how to control this chaos. Also known in the medical industry as

‘smart-healthcare’.

2.2 Problem Definition

From understanding the problem as a whole, let me change the direction of the problem,

and dive in deeper and define the problem I am approaching.

Digging in deep, there are a lot of research papers and solutions online as to how to model

an epidemic mathematically and solve it as a set of differential equations. But there are only

a few which have a factor of control, to try and optimize the model as a whole. Having a

factor of control, healthcare workers can now look at the model and make better decisions

on when to implement a lockdown and what will be the most efficient way in doing so.
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A number of questions would arise here and in order to understand the complexity of the

problem and map out the entire scenario. Before solving any problem, it is very important

and I believe crucial to get to the root causes of the problem and every factor which is

related to it. I used the CATWOE analysis to do so, CATWOE analysis is used to analytically

solve any problem, or simply it is a checklist for solving problems. Each letter in “CATWOE”,

defines a key element to problem-solving(as shown in Table1: CATWOE Analysis).

Root Definition Element Root Definition Description Identified Definition

C - Customers Who are the beneficiaries of
the research and how the
issue affects them?

Primary: COVID-19 patients,
people with other
lung-related problems, NHS
staff
Secondary: NHS
management, UK
government

A - Actors Who is involved in the
situation?

NHS UK and all people in
the country.

T - Transformation How will the change I want
will be affected in practice?

Identify an optimal solution
to help the NHS make better
decisions for the future.

W - World View The ‘purpose’, what this
research wants to achieve?

The healthcare system
everywhere around the
globe was struggling with
managing the amounts of
patients and making better
decisions for our wellbeing.
The focus of this research is
on the United Kingdom
however it could be used as
a general-purpose model
making use of the right data
respectively.

O - Owners Who controls the system
and is accountable for it?

The NHS UK, and the entire
population. As the NHS can
terminate all its operations
while the population can
stop using the NHS.

E - Environment constraints The factors that influence
how the system works?
Could be political, social,
economic or natural.

The education system, TV
and media, businesses,
natural disasters, social
pressures(habits, or
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consumption)

Table 1: CATWOE Analysis

This helped me analyse my problem better and allowed me to carry on my research in a

stream of directions.

2.3 Background research

2.3.1 Methodology selected

The project was proposed by my supervisor Frank C Langbein, after discussions with him

regarding the project. The project became of great interest to me, due to a few reasons.

Firstly, this solves one of the issues that we are going through right now. Secondly, with my

background as an electrical engineer, this project gave me the perfect opportunity to put all

my leanings into one. My knowledge of control theory, mathematical modelling and calculus

were all put to the test along with its application all using computer science principles. And

with the technical advice from Frank C Langbein, I kept track to achieve this.

First and foremost, the introduction and definition of mathematical modeling are key.

Beginning this by defining the simple term model:

model (n): a miniature representation of something; a pattern of something to be made; an

example for imitation or emulation; a description or analogy used to help visualize

something that cannot be directly observed; a system of postulates, data and inferences

presented as a mathematical description of an entity or state of affairs

This means modelling is basically describing how objects or things we’re keen to know about

behave. Mathematical modelling is thus the representation of the model in mathematical

terms.
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Fig 1: An Elemental depiction of the scientific method that shows how our conceptual

models of the world are related to observations made within that real world(Dym and Ivey,

1980)

Thanks to high-speed computing power, mathematical modeling can help solve very

complex problems. As Xavier Avula states in his book ‘Encyclopedia of Physical Science and

Technology’, “Successful applications of mathematical modelling techniques in engineering

sciences have led the way to extend the techniques to more exotic areas of inquiry.”

Mathematical modelling, in practice it has both principles we need to apply, and the

methods we are to use in order to model something. Below is the most basic algorithm on

how we can mathematically model a system.

Fig 2: A First-order view of mathematical modeling(Taken from “Principles of mathematical

modeling, Clive L. Dym” )

On the other end of the spectrum, an alternate methodology could be agent-based

modeling, which essentially is a bottom-up approach, where the model simulated the

actions of an ‘agent’, individuals or group of individuals or an organization, all to understand

the system behavior. While mathematical modelling is a top-down approach. This is the

main difference between the two, where mathematical system modeling concerns the

behavior of the system while agent-based modeling is that of an individual.

Mainly, for this reason, the chosen methodology is modelling the epidemic system using

mathematical modelling as it focuses on the complete behaviour of the system and

applications of relevant real-world complex systems, which fits the requirements of this

research perfectly. Mathematical modelling enables us to create complicated models of the

system and later apply control theories to it. Agent based modelling on the other hand does
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not. Moreover, this will lead me to understand the problem with the help of the CATWOE

analysis method (see section 6.2 Problem definition), developed for soft system

modelling(SSM) by Peter Checkland.

Following the above step, the approach requires to begin the creation of mathematical

models, in our project, the SIR Model, SEIR Model and the SEIRS Model (see section 6.3.2

Epidemic modelling), or the epidemic models in general. Throughout the creation of these

models, it is vital to understand the core mathematics behind this. These models represent a

set of ordinary differential equations which can be solved with the help of Python, or any

mathematical programming language. These epidemiology models are very powerful and

can completely change our current story, given the parameters are based on our

assumptions and thus must be verified with justification. We can then run the simulations

and observe the trends that any linearly spread disease such as COVID-19 follows. The

parameters that go in as input can be played along with to view different scenarios in the

model, the very first model is the most basic epidemic model of any disease that spreads

linearly. Moving on we slowly increase the complexity of the model making it as realistic as

possible. This means the goal is to have a model that can depict the current real life

scenarios, and have the ability to integrate some control theory into the model. To be able to

see what is best for everyone and how a change in one elemental parameter can change the

shape of the model.

As mentioned above, after the model(s) is ready we then move to the control aspect of

things. There can be a lot of scenarios, from vaccination policies, to lockdown measures to

herd immunity or even future predictions with the development of new medications. The

chosen control aspect for this research are the lockdown measures. The measures can be

divided into three general categories, first is the worst case scenario i.e; no measures taken

or no lockdown, secondly some form of measure or partial lockdown and finally a complete

lockdown going into effect. Once these are understood and set, we then run simulations for

the model. These will show us the trends which are going to help us guide our policy actions

or interventions, or even recommendations to different proposed solutions. The chosen

control measure is so because the other aspects would require some form of a machine

learning algorithm in place to find the most optimal solution, which is out of the scope of

this research project.

The final step in the methodology is to check for the correctness or robustness of the

models that we have built. We do so with the help of Monte Carlo Simulations. As Will

Kenton mentioned, “Monte Carlo simulations are used to model the probability of different

outcomes in a process that cannot easily be predicted due to the intervention of random

variables. It is a technique used to understand the impact of risk and uncertainty in

prediction and forecasting models”. Given the uncertainty in making the models with so little

data and resources available, the Monte Carlo simulations are the perfect fit in the case for

our research project. There are a lot of ways to simulate the Monte Carlo simulations, the

one I used is the Gillespie Algorithm(see section 6.3.4 Monte Carlo simulations). The results
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of these validate our previous simulations and results, showing our model is accurate and

reliable.

2.3.2 Epidemic modelling

According to Daley and Gani (2005), John Gaunt was amongst the first who systematically, or

mathematically tried to analyse and quantify deaths and its causes in his book Natural and

Political Observations made upon the Bills of Mortality (1662), Daley and Gani also quoted

this theory to be, “a theory that is now well established among modern epidemiologists”.

Epidemic modelling, in its exact definition, dates back to 1760. Daniel Bernouli, a Swiss

mathematician and physicist, was one the first people to model effects of a disease for a

fixed population. He designed a mathematical model to show inoculation of the smallpox

virus, the results from his model showed that inoculation of the smallpox decreased life

expectancy.

McKendrick in 1926 was the first scientist to include the factor of randomness in an

epidemic model, where he observed real life outbreaks. This particular model is a stochastic

model of the Deterministic General Epidemic Model. But it was only until 1949, when

Bartlett observed the model by McKendrick extensively. And since then, all studies related to

scientific modelling in the field of epidemiology have been directed towards statistical

analysis.

This brings us to an important question, why use stochastic modelling in emerging diseases?

It is extremely crucial for the NHS or any healthcare official to make predictions concerning

the rise of any new disease which causes infections or fatalities, to be able to make

meaningful predictions about the future concerning the pandemic. And when a new disease

is rising, there is not enough data or knowledge to base any such decisions. Moreover with

no immunity in people concerning the pathogen, there is a risk of a very high outbreak.

Stochastic modelling is one of the most reliable tools for making predictive decisions and

assessing control strategies.

The randomness of these kinds of disease outbreaks, and its potential to spread throughout

the globe rapidly via medium of air, these diseases are a global problem from the very first

day. SARS (Severe Acute Respiratory Syndrome), Avian influenza and COVID-19 are a few

examples in recent history. This type of a problem can be solved using the Stochastic model,

it essentially is a tool to estimate probability distribution of the various possible outcomes

with the random variable as input(s) with respect to time.

The SARS model has been the center of several studies in order to find the reproduction

number and to understand the transmission dynamics in order to improve the intervention

strategies. Steven Riley(2003), along with his team modelled data of the first 10 weeks of the

SARS outbreak, they came to an estimate for the reproduction number of 2.7, i.e; 2.7

secondary infections were generated per human on an average in the first 10 weeks. There
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were other research articles based on the above model and they found out the reproduction

number to lie between 2.2 and 3.6. All these researches were based on deterministic

modelling of the SARS virus. A deterministic model is used when we have a very large

population, the population is divided into groups and assigned compartments (this type of

modelling is also called compartmental modelling), where each compartment represents a

certain stage in the epidemic.

In order for us to know control theories regarding this epidemic, it is essential for us to use

the deterministic model. This way we can see the results of each control policy and how that

is affecting each compartment in the model. This research is thus based on the SIR epidemic

model, the SEIR and the SEIRS compartmental model.

SIR Model

The standard SIR model is the most basic of all the models, it is at the very base of all

deterministic epidemic modelling.

In this model, the population in consideration is divided into three groups or compartments

- namely Susceptible, Infected/or Infective and Recovered. There is a transition of people

between these compartments. Susceptible are the people who can potentially have the

virus, then we have the infected people who have confirmed to have the virus and can thus

spread to other people. And finally we have the Recovered, these are the group of people

who have either recovered from the virus or have died from it. The complete pandemic is

too complicated to express as a set of ordinary differential equations, thus we make a

number of assumptions (explained below) in order to simplify the model.

1. The epidemic does not last for a long time, in order for the population to stay

constant (can also be vice versa).

2. The rate of increase in infectives is always proportional to contact between

susceptible and infectives.

3. In the recovered compartment, the rate for death or recovery remains constant.

Fig 3:The SIR compartmental model

Let us consider the total population to be N, the number of susceptible people be S, the

number of Infected people be I and the number of recovered people be R. The effective
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contact rate is going to be く (1/min) i,e; the rate at which disease spreads in the population,

and the recovery rate/mortality rate be け (1/min).

(1)

where ,

Total population: N = S + I + R

Susceptible: S = N - confirmed

Infected: I = confirmed - R - deaths

Recovered: R = recovered + deaths

Contact rate: く
Recovery rate: け

As the number of recoveries or deaths increase, the number of people in the infected

compartment decreases. While the people who come out of the recovered compartment,

cannot go back to the susceptible compartment.

Following are the ordinary differential equations(ODES) for the SIR model:

�佳�加 =  − パ佳�����加 = パ佳�� − ビ�
�価�加 =  ビ�

Where all the variables/constants are mentioned above, and T is the elapsed time beginning

from the start of the pandemic. These ODEs are used for simulating the model. At any given

point in time, these ODEs show the rate of change in every single variable.

Starting with the first equation, i.e; Susceptibles. The rate of change of the number of

susceptible over time. From our second assumption, we know that the number of

susceptibles are going to decrease over time as people move to the infected compartment.

Thus we have the minus sign, with  it decreasing at the rate of contact く. And again from the

second assumption, it is proportional to the Infected and the Susceptible people. The SI,

indicated some sort of a contact between the two compartments taking in consideration the

total population N.

Coming to the second equation, i.e; Infected. The rate of change of the number of infected

over time. Since the susceptibles are moving to the infected with the rate of change く, we

have the same element from the previous equation, but now with a plus sign. Now from the
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third assumption, we have the element of けI with a minus sign, signifying the number of

infected people moving into the recovered compartment with the rate of け.

Finally to the final equation, i.e; Recovered. The rate of change of the number of recovered

over time. This is the gain from the previous equation keeping the third assumption in mind,

but with a plus sign signifying people moving into the recovered compartment.

In order to solve the equations, we have to set the initial conditions for these equations. We

do so by giving S an initial value of S0, giving I an initial value of I0. Finally we give R the value

of 0 as we do not expect there to be any person who is recovered at the very start of the

epidemic.

Finally, talking about the very first assumption in the context of the model (ODEs), it states

the population must always remain constant. This means that the sum of the rate of change

of the susceptible, infected and recovered come out to be zero, since N = S + I + R. All of

these together make up our SIR model.

Now with our model ready, we can start asking questions.

Will the disease spread?

If the number of people in the infected compartment starts growing, then we have a spread.

This makes the rate of contact く very important. We must thus study the second ODE, but

before we do that we must first understand the first one. This is because it clearly states that

the rate of change of susceptibles is negative, given the three elements in the equation are

all positive values (く is a constant, I and S are people in a population and N is constant). Thus

we can say that S is always going to be smaller than its initial value, theoretically it makes

perfect sense, as initially everyone in the population is going to be susceptible in the

population. 佳 ≤ 佳Ä
If we consider, and plug this particular value of S into the second equation. We now have an

inequality. ���加 < パ佳Ä�� − ビ�
���加 < �排 パ佳Ä� − ビ敗

And we know that an epidemic will occur if I increases from I0, or mathematically in the

equation, the value of S0 has to be less than け/く. This value if flipped, i.eù佳Ä = パビ
16



This particular value is called the contact ratio. As defined by Dr. Tom Crawford at the

University of Oxford said, “This is the fraction of the population that comes into contact with

an infected individual during the period when they are infectious”.

We can also look at this ratio from a little different standpoint. By rearranging, multiplying

with く and dividing by け, we get a new parameter we call R0.価Ä =  パ佳Äビ
This is the basic reproduction number or the basic reproductive ratio. If this particular value

is greater than 1, meaning I increases from I0 and thus we will have an epidemic. Again

defined by Dr. Tom Crawford as, “this number represents the number of secondary

infections in the population caused by one initial primary infection”, simply put if a single

person has the virus, then this number tells us how many other people this one infected

person is going to average.

The exact number for this is still being determined for COVID-19, but it is estimated to be

somewhere between 2.5-4 based on studies for particular geographical locations.

The complexity of the model can be increased by adding in another compartment called the

Exposed compartment. This model is called the SEIR model.

SEIR Model

Increasing the complexity of the model, we now have the SEIR model.

In this model, the population in consideration is divided into four groups or compartments

instead of three - namely Susceptible, Exposed, Infected/or Infective and Recovered. All

three compartments taken from the SIR model serve the same purpose, the new edition is

the Exposed compartment: These are the people who have acquired the disease/virus but

are yet not contagious, or in simpler words there is a small period of time (called the latency

period or the incubation period) between a person acquiring the virus and for the person to

be able to spread it to others . This model, much like the SIR model, also has a number of

assumptions (explained below) in order to simplify the model.

1. The epidemic does not last for a long time, in order for the population to stay

constant (can also be vice versa).

2. The rate of increase in infectives is always proportional to contact between

susceptible and infectives.

3. The latency period remains constant.

4. In the recovered compartment, the rate for death or recovery remains constant.
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Fig 4: The SEIR compartmental model

We consider the same parameters as that of the SIR model, with an addition of σ(1/min)

which is the latency period. The total population to be N, the number of susceptible people

be S, the number of Infected people be I and the number of recovered people be R. The

effective contact rate is going to be く (1/min) i,e; the rate at which disease spreads in the

population, and the recovery rate/mortality rate be け (1/min).

Following are the ordinary differential equations(ODES) for the SIER model:

�佳�加 =  − パ佳�����加 = パ佳�� −  σ�
���加 =  σ� − ビ�

�価�加 =  ビ�
The way we write the differential equations are exactly the same as that for the SIR Model in

the previous section.

SEIRS Model

Further increasing the complexity of the model, we can come to the SEIRS model.

In this model also, the population in consideration is divided into four groups or

compartments exactly like the SEIR model- namely Susceptible, Exposed, Infected/or

Infective and Recovered. The complexity is increased in the sense that the people who move

out of the Recovered compartment can now come back to the Susceptible compartment. In

simple terms we now have a cycle, only in a few cases complete this cycle, but the logic

stands correct as we’ve seen with the current pandemic. Anyone who has tested positive for

the virus, and recovered, can be exposed to the virus(or its variant) and be infected again

thus making him/her susceptible even after recovery. To further add to the model, we can

add the birth rate and the death rate of the population into account to see its effects on the
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model, commonly known as demographics. These can also be eliminated if simulations are

not feasible.

The assumptions made for the SEIRS model are same as that for the SEIR model with the

addition:

1. For many respiratory infections, immunity after recovery is temporary and recovered

individuals will lose immunity and return to S after an average protected period of

1/ω.

2. Demographics contribute to the in and out flows in individual groups based on the

birth and death rate μ .

Fig 5: The SEIRS Model

The logic behind writing the differential equations are again exactly the same as we

discussed in the previous sections.

The ordinary differential equations for the SEIRS model:

�佳�加 = µ� − パ佳�� +  Ω価 − µ佳 
���加 = パ佳�� −  σ� − µ�

���加 =  σ� − ビ� −  排µ + バ敗�
�価�加 =  ビ� −  Ω価 −  µ価

The paper ‘The SEIR model for infectious disease dynamics’ estimated the, “The associated

basic reproduction number is

R0=[σ/(σ+μ)]×[く/(け+μ+α)]

because the infectious period is 1/(け+μ+α) and the probability of the index case becoming

infectious rather than dying while in E is σ/(σ + µ). For most acute infections, µ is much

smaller than the epidemic rates so realistic values do not appreciably alter the trajectories”.
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2.3.3 Control strategies or Optimal control theory

Control strategies or optimal control theory, deals with mathematical optimization where we

find the control techniques for a system over a period of time so as to optimize a function.

The idea behind these techniques is to develop an algorithm that will govern the inputs

given to the system, and will drive the system to any desired state, with reducing any errors

or delays or simply to get optimised results.

Optimal control is a mathematical optimization method in order to get control policies on a

certain problem.

In this project, optimal control theory will be used in order to see the various lockdown

measures that can be implemented based on the models we have previously made. There

are other control policies that can also be implemented using the control theory such as

Vaccination policies, or the introduction of a new variant, or the combination of two or

more.

Going by the mathematics of optimal control, it might get a little overwhelming. So let us

take a step back and understand with a simple example I thought of.

Consider sitting home on a hot summer day and thinking of having ice cream. Now one

would think of going to the local supermarket and getting ice cream, while someone else

might be ordering ice cream online. Both these steps have some advantages and drawbacks,

one might argue it is too hot to go outside or deliveries may take a lot of time. While a

control engineer might think of something completely different, he would consider all the

possibilities and think of the most efficient way of getting the ice cream. Not going into too

much detail, we need to find the quickest way to get the job done.

Bringing this logic to our problem, we need to find the fastest way to end the pandemic, and

so what should be the lockdown measures that we need to have in place in order for us to

call that the pandemic is officially over.

Mathematically, in the most simplest of statements:

We choose an action a(t) such that s(t) = s*(t), where s(t) is the current state while s*(t) is the

desired state. This condition is often impossible to achieve as we cannot have the desired

state exactly “now”.

So we write the action a(t) such that s(t) ≈ s*(t), where we approximate the desired state to

be the equal to the current state.

Quantifying this, we choose the action a(t) so that the chosen cost function(in our case

reducing the length of the pandemic); C(s(t)) is minimal.

In order to get to the desired state, I used the GEKKO optimization suite(see Section:

Implementation), and used iMode 7 which is Sequential simulation(SQS).
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J. Jaime Gómez-Hernández and Eduardo F. Cassiraga in their paper “Theory and practice of

sequential simulation”, defined sequential simulation as, “Sequential simulation is a

powerful stochastic simulation technique the theory of which relies on the ability to

determine, for a given multivariate model, the conditional probability of a single random

variable given any number of conditioning values. Sequential simulation can be used with

those multivariate models for which these conditional probabilities can be determined. In

practice, it is not enough to know how to determine the conditional probabilities, the

procedure must be feasible from an operational point of view. Because it is not so in most

cases, some approximations to the conditional probability distribution function are used in

the implementation of the technique. These approximations are shown not to have a large

impact in the performance of the technique, at least for the case in which the underlying

multivariate model is multiGaussian.”

In simpler terms, to bring this in the context of our problem, sequential simulation is a

process of simulating the various pathways that a particular person will take. To simulate, a

potential, infinite number of different scenarios and pathways. And finally present us with

the most optimal one. It has a lot of applications in the field of medical science:

1. Help in designing and producing new approaches in the medical industry.

2. Testing for new interventions and changes.

3. Helping people understand present and future medical systems.

These are just a few applications, all of which are of paramount importance to the project.

Specially points 1 and 2.

To understand how the simulation works, I took reference to another paper by J. Jaime

Gómez-Hernández, ‘One step at a time: The origins of sequential simulation and beyond’,

which very briefly explains sequential simulation, summarized as below:

Let us consider a completely random function {Z(u), u ∈ D}, characterized by all the

n-variate distribution functions for any n-tuple of points within D.

F(Z(u1), Z(u2),...,Z(un)), ∀n|(u1, u2,...un) ∈ D

Now according to the definition above, we need to take a continuous variable and transform

it into a collection of indicator variables.

Our random function, as defined above, can be converted or transformed into a set of

indicator random functions, {Ik(u), k=1,...,K}, corresponding to the maximum value of K

thresholds zk given by:

Ik(u) = 1, if Z(u) ≤ zk

Or

Ik(u) = 0, otherwise

Here z(u) would be equal to {ik, k=1,...,K}, which is being transformed to z(u).
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From the earlier understanding of sequential simulation. Any multidimensional random

function distribution can be rewritten as the product of univariate(observations on a single

type of attribute) distributions by recursively using conditional probability on it.

Thus we can write:

F(Z(u1), Z(u2),...,Z(un)) = F(Z(u1))·

F(Z(u2)|Z(u1))·

F(Z(u3)|Z(u1), Z(u2))···

F(Z(un)|Z(u1),...,Z(un-1))

Where each component is the conditional distribution of a random variable given all the

random variables that appear before the product.

The extension to generate realizations conditional to a set of (n0) data is given by:

F(Z(u1), Z(u2),...,Z(un)|(n0)) = F(Z(u1)|(n0))·

F(Z(u2)|(n0), Z(u1))·

F(Z(u3)|(n0), Z(u1), Z(u2))···

F(Z(un)|(n0), Z(u1),...,Z(un-1))

The simulation algorithm for the generation of a realization of a random function over a

point set of size N conditional to n0 observation data would be as follows:

1. Define a permutation of the numbers 1 to N that will identify the sequence in which

the conditional univariate distributions will be built.

2. Sequentially visit all nodes according to the previous ordering and compute, at each

node i, the conditional distribution of variable Z(ui) given the (n0) data and all

previously simulated random variables {Z(u1)=z1, Z(u2)=z2,...,Z(ui-1)=zi-1}

F(Z(ui)|(n0), Z(u1)=z1, Z(u2)=z2,...,Z(ui-1)=zi-1)

3. Draw a value zi from this distribution and incorporate it to the conditioning data set

for the simulation of the next node.

4. Go back to step 2 until all nodes have been simulated.

2.3.4 Monte Carlo Simulations

These simulations got their name from the capital of Monaco, Monte Carlo. And with

context to random sampling, this refers to the randomness in gambling which Monte Carlo is

famous for. Monte Carlo simulations are a set of computing algorithms which apply repeated

random sampling to get results. In simple words, these are simulations which over time
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evolve randomly. These were developed by John von Neumann and Stanislaw Ulam during

the second world war to help make better decisions during those uncertain times. Ever

since, these have been used to assess risk in many scenarios ranging from AI, stock markets,

sales and marketing, and of course epidemiology. These simulations have shown significant

improvements over modelling, for eg; the ability to see the correlation between any two

inputs. Or even sensitivity analysis, with the help of which we can see the impact caused by

individual input parameters.

Researchers and engineers at IBM gave us a set of steps in order to use the Monte Carlo

simulations given below(IBM cloud education, 2020):

1. Firstly set up the predictive model, identifying both the dependent variable to be

predicted and the independent variables(also known as the input, risk or predictor

variables) that will drive the prediction.

2. Specify probability distributions of the independent variables. Use historical data

and/or the analyst’s subjective judgement to define a range of likely values and

assign probability weights for each.

3. Run simulations repeatedly, generating random values of the independent variables.

Do this until enough results are gathered to make up a representative sample of the

near infinite number of possible combinations.

We can now ask some important questions, are these methods accurate? And why do we

need this?

Coming to the first question, checking the accuracy of these simulations. Let's take the

famous example of finding the value of π.

Imagine a circle is drawn with its center at (0,0) and radius 1. Now we isolate a quarter of

this circle and then  inscribe it inside a square of side 1, same as that of the radius of the

circle. We now select N number of points in the range (0,1), let the independent uniform

distributions be X and Y. Or X2 + Y2 < 1.

Experimentally we found out that the proportion of the number of points falling inside the

quadrant to the total number of points is π/4.

The standard deviation of the observed distributions is . This implies
排ù−π/4敗π/4� ≈ Ä.4ù�

that the higher the value of N, the more accurate the results are.

This said, risk engineers and analysts do not completely rely on this, the accuracy also

depends on the precisions of the computations and the quality of the random number

generator. Although there are many ways to calculate the value of π a lot faster and more

stable, Monte Carlo simulation is the best when it comes to higher order differential

equations.
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Fig 6: Probability distribution over the quadrant to

estimate the value of pi.

We now know the accuracy of the Monte Carlo simulations can be controlled and thus we

can make these really accurate. This answers our second question on why we need the

Monte Carlo simulations.

I used the Monte Carlo simulations to check for the robustness of the system. Now that we

know the Monte Carlo simulations are very accurate and trustworthy.

We can check if our models match with the monte carlo simulations, if so, it means that the

calculations and predictions are correct and we can thus validate the model.

There are a lot of different ways in which we can carry out a Monte Carlo simulation. I

choose to solve it with the help of the Gillespie Algorithm, also known as the SSA(Stochastic

simulation algorithm) method.

The Gillespie algorithm is the original stochastic modelling method, this is because this was

developed by a lot of people thus this algorithm evolved over time. But the name is

accredited to the last person who took the last step in inventing it, Dan Gillespie. The

method started off as to see the evolution of time for different stochastic processes, to

exponentially distributed systems, and even to study epidemic outbreaks. Dan Gillespie

wrote a paper on biochemical systems and solved them using the Gillespie algorithm, which

then popularized the algorithm.

In context with mathematics and probability theory, the Gillespie algorithm creates a

trajectory of the most possible solutions to a system of differential equations or any

stochastic system whose reaction rates are known.

The Gillespie model simulates individual reaction events, this is done by employing two

pseudorandom numbers. The first number chooses the time of the very next event, while

the next number chooses the next reaction. The history of these events occurring are then

essentially recorded, and given that we know that the numbers are chosen at random. Every

event will come out differently, but if we repeat over and over again. We will begin to see a

pattern, and as we increase the number of times we run the simulations. The results from

the Gillespie algorithm will approximate the results obtained from the simulations of the
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ordinary differential equations, or in some other scenarios these stochastic simulations may

capture characteristics lost in the common modelling methods.

In order to implement any Gillespie Algorithm for any system, we start off by writing out all

the possible events that could occur. Each event has a certain probability associated with it,

and this affects the next event in the algorithm, or the choice of the next event is based on

the probability of the previous one. This is the initial setup, and can be made specific to our

system.

The next step is to choose two random numbers; First number decides what the next

reaction will be, the selection is random but is weighted based on the individual rates of all

the events in the system. While the second number decides when the event will occur.

After the event is chosen, the algorithm will adjust all the concentrations of the individual

components to account for whatever event took place. This entire process of choosing the

event and updating is iterated to create a timeline for a single chain of random events until

some time(which will be set initially), has elapsed. The simulation is run from the starting

conditions many times, ideally as many times as feasible.

With a large set of data, we can combine the data in a number of ways to represent the

behaviour for the system.

This way of modelling will give us a more precise model compared to the standard ODE

models initially created.

To summarize and simplify the above implementation, we can consider the steps by Lewis

Cole, which are as follows:

1. Initialization - initialize the system, in the context of reaction kinetics this amounts to

the setting up initial chemical concentrations

2. Monte-Carlo -

1. Randomly simulate the time to the next event

2. Given an event has occurred randomly select which event has occurred

3. Update - based on 2. move the model time forward to the event time and update the

state of the system

4. Repeat - Iterate through steps 2. and 3. until some stopping criteria is met

A simple example of creating a dimer with the help of two monomers can be used to explain

the Gillespie Algorithm, which is as follows:

Consider two different molecules A and B. These two monomers reversibly combine to form

a dimer AB, considering the reactions are possible: A and B react to form AB, or AB

dissociates to form A and B. 屋 +  憶 →  屋憶
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And the reverse reaction is given by, 屋憶 →  屋 +  憶
Let us consider the rate of the forward reaction to be rf and the rate of the backward

reaction be rb. And at any given time t, the number of molecules of A be NA, that of B be NB

and that of the dimer AB be NAB.

Then the rate of the total reaction, R, can be written as:

R = rf NA NB  + rb NAB 

Now that we have set up our model, we can apply the Gillespie algorithm to it.

Let us say the forward reaction has occurred and was successful, then the probability PF of it

occurring is given by:

P(A+B→AB) = PF = (rf NA NB  )/R

And the probability of AB dissociating into A and B, PB, is simply 1 - PF, given by:

P(AB → A+B) = PB = 1 -(rf NA NB  )/R

Now with these two probabilities known, we can either create AB by reducing the number of

A and B(NA and NB), or create A and B by reducing the number of AB(NAB).

We have now reached time t + Δt, and have performed one reaction. The algorithm will just

repeat these steps for as many reactions as we would like, and simulate the stochastic

results.

This example was implemented by Lewis Cole, the results of which are given below:
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Fig 7: Various trajectories of creation of dimer and monomers along with their average.

This same principle can be applied to our various SIR models. (See section: Implementation).

2.3.5 Related research

In each research, it is very important to distinguish between the work that we are working

on and the nature of work that has already been done. It is meaningless if one repeats or

copies something that has already been accomplished, as said from the technological

standpoint ‘Reinventing the wheel’. This very concept acknowledges the need to make use

of existing data, knowledge and research, given there already is a sea of research to choose

from. Moreover, it is untrustworthy and irrelevant if people cannot relate to existing

research and knowledge present in the world.

The very first distinguishing factor in this project is the approach, to use mathematical based

modelling rather than agent based modelling, the second difference is the use of machine

learning to predict the future of the pandemic. Thus, for my final step of this background

research and literature review, I will talk about this existing area of Agent based modelling

and the use of machine learning algorithms. Although there are a number of research

papers and articles which use the above two methodologies, I would like to discuss the
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articles, (1) ‘Measuring and Preventing COVID-19 Using the SIR Model and Machine Learning

in Smart Health Care’ (Journal of healthcare engineering, 2020), and (2) ‘An agent-based

approach for modelling dynamics of contagious disease spread’ (Liliana Perez and Suzana

Dragicevic, 2009).

Coming to the first research article, on one hand this article is very comprehensive due to its

relevance in making use of data and understanding mathematical modelling. They correctly

constructed a model,  “A model measuring and preventing the continued spread of

COVID-19 is urgently required to provide smart health care services.”. They use the SIR

model for citizens in Saudi Arabia, “The proposed system predicts whether COVID-19 will

spread in the population or die out in the long run” (Journal of healthcare engineering,

2020). This shows the similarities in my approach to theirs.

On the other hand,  once the model is ready, they next use machine learning principles to

estimate the future, “Mathematical analysis and simulation results are presented here as a

means to forecast the progress of the outbreak and its possible end for three types of

scenarios: no action, lockdown and new medicines”. While I used optimization techniques to

see the effects of the lockdown to help make better decisions. Both the methods seem

similar yet serve different purposes. The paper predicts the future based on current

decisions while my research helps making decisions thus avoiding havoc in the future.

The second research article does not guide my research in any way, it simply shows a

different perspective on how we can view an epidemic. The objective of this study is  “to

develop an agent-based modelling approach that integrates geographic information systems

(GIS) to simulate the spread of a communicable disease in an urban environment, as a result

of individuals' interactions in a geospatial context.”. This study models a SEIR model, and

applies Agent based modelling principles to “provide insights into the application of the

model to calculate ratios of susceptible/infected in specific time frames and urban

environments”. This paper studies behaviors of individuals from the bottom up. My study on

the other hand does a top to bottom approach (see section 6.3.1 Methodology selected).

Combining the knowledge and ideology from these topics in the related research article sets

a parallel methodology to this project. The Journal of healthcare engineering article follows

the results of the simulation and discovers, “Based on the SIR model, the pandemic will most

probably be controlled by June 2021”. In parallel, this paper highlights what the research

agenda of the future work on this project would be (see section 6 Discussion and future

work)

This article has brought a lot of understanding of grasping the concepts of the SIR model and

the measures we can take, and shown relevance to this project's approach. It was thus very

beneficial for me to see these models and the results they show.
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SOFTWARE ANALYSIS

As I was planning on how to carry on my research during the initial brainstorming of the

subject, the very next step was to decide on the software(s) that I would use to create my

models and simulations. From an entire ocean of software packages and tools to select

from, I could not just randomly select a tool which “seems” useful. Thereby, I performed a

detailed comparison between the most trusted tools for the purpose. (see Table 2: Software

selection analysis)

Programming
Language /
Software

Last
Update(Year)

Advantages Disadvantages Personal
Comments

Python 2021 A very large
package library

for various
analytical and

statistical
analyses.

Very slow.
Dynamically
typed. Need

library packages
installed on the

computer to
run.

Proficient in
language

MATLAB 2021 Supports
modelling

approaches,
statistics, ODE

solvers and
other

mathematical
tools

Interpreted
language, and
thus very slow.

Not free.

Proficient in
language

Java 8 2014 Excellent
frameworks for

data
science/analytic

s. Fast
compilation

time.

Syntax is not
very user

friendly. Not
used very often

for data
analytics.

Used java only
for software
development

Javascript 2015 Fully browser
based. Good

data
visualization
library(d3).

Internet
connection

required. Hard
to use

compared to
other language

libraries.

Prefer python
over JS in order

to do data
science

R 2021 Ease of use.
Wide selection
of frameworks.

Very slow. Steep
learning curve.

Have no prior
knowledge of
the language
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Table 2: Software selection analysis

Of the many relevant languages and tools, I choose to use Python for my project. The entire

project is completed in Python and its various libraries. Originally the debate was between

Python and MATLAB, mainly because I am proficient in both when it comes to solving

scholastic problems. However I soon realised how widespread python is when it comes to

data science. Also it made more sense to use Python for the MSc Computing degree rather

than MATLAB.

Java and Javascript also made sense given the degree programme, yet my experience with

Java is confined to software development and that of Javascript for Front end web. It would

have been an interesting challenge to learn either of the two. But alongside my experience

in Python, it only made more sense given its relevance in the data science community.

R although comes par with Python in terms of solving mathematical problems, but I have

absolutely no prior knowledge about R, and given the complexity of the problem I have in

hand. I felt it was too big a risk to learn a language in less than 3 months and apply working

knowledge into simulating models.

On the technical side, there are a number of reasons for it. Primarily the vast sea of libraries

it offers to solve mathematical and statistical problems. It is very interesting to see how

there is a Python library for almost every problem out there. No other language offered

these many resources.

NumPy being the most useful library out of all for modelling the epidemic, while Matplotlib

for visualising the model.

NumPy offers comprehensive mathematical functions, random number generators, linear

algebra routines, Fourier transforms, and more. Some also call it an alternative for MATLAB

as both essentially use multidimensional arrays to solve mathematical problems. One can

argue why we need arrays when we can use a Python list, the answer is simple as NumPy

arrays are over 50x times faster than a Python list. Which is extremely beneficial when we

are solving complex mathematical problems.

Matplotlib is a library extension for NumPy, it is a plotting library. It was designed to be

similar to MATLAB, with the ability to use Python and make it open sourced and free to use.

There are also a large number of third party packages extending the functionality and

usability of the library, this also includes several high level plotting interfaces like seaborn

and ggplot. Also, having learnt this package in CMT218 Data Visualisation, it was the right

choice to select this.

Coming to the control side of the problem. Alongside NumPy and Matplotlib, I needed an

optimisation algorithm in order to understand the effects of different lockdowns on the

model. There are about 600 python repositories which focus only on optimisations. Going

through every single one is not logical, yet to find the one which would suit the purpose of

this project. I found the GEKKO optimisation suite to be the right tool for this purpose. As

mentioned in the article “GEKKO Optimisation Suite”, Logan D.R. Beal said, “GEKKO greatly
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facilitates the development and application of tools such as nonlinear model predictive

control (NMPC), real-time optimization (RTO), moving horizon estimation (MHE), and

dynamic simulation. GEKKO is an object-oriented Python library that offers model

construction, analysis tools, and visualization of simulation and optimization”.

And finally moving to the Monte Carlo simulations, the Gillespie algorithm (see section 6.4

Monte Carlo Simulations) is written using OOP concepts of Python, NumPy and Matplotlib.

I also made the decision to write all my code using a code editor (VS Code) rather than the

Jupyter notebook, as now my code can be run on any device that has Python installed.

Thereby removing the need to have Anaconda installed. Overall, with its vast library

selection and ease of use Python proved to be the perfect language for all my models,

simulations and optimisations.
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REQUIREMENTS

To meet certain expectations and have the results of the model functioning properly, we

must first make sure that a number of criteria are set out to be implemented. And these

criteria need to be met before running the simulations on any device. They can well be

divided into Functional and Non-Functional requirements as given below:

Functional requirements

Anyone who wishes to view the simulations must have these installed on the PC.

1. Python 3.8.1

2. NumPy 1.18.3

3. Matplotlib 3.4.2

4. Regular expressions 2.2.1

5. SciPy 1.6.3

With these softwares and packages installed on the computer, you can run the simulation on

any code editor.

Non-Functional requirements

1. Code Readability - The code must be clean without junk data and must be

commented clearly wherever applicable.

2. Performance - The application should collect the data (if any), process the code fast

and efficiently using minimal resources and time.

γβ



IMPLEMENTATION

I had already chosen Python to be my programming language for the project. In order for me

to successfully create my models and see simulated results, I needed to first brainstorm on

how I was going to go about making the models. I began by organising my research and

dividing the programming section into three different parts thereby narrowing areas based

on my background knowledge and assumptions.

The file structure is also divided subsequently into three folders, Epidemic modelling,

Control theory and Monte Carlo simulations.

5.1 Epidemic modelling

This folder contains all the source codes for the epidemic models. It contains the models for

SIR, SEIR and SEIRS model.

Given that I had to make 3 models, all of which would require me to solve ordinary

differential equations. It made more sense to make a different class for solving the

differential equations rather than rewriting the code over and over again. This method uses

Inheritance which was taught in CMT219 Algorithms, Data structures and Programming. The

file ODESolver.py contains code for a differential equations solver which is inherited by other

files which contain the code for the modelling. In this section I will explain the SIR model, as

the implementation for the rest of the models are exactly the same with the difference of

only the differential equations.

Ordinary Differential Equation Solver

This contains two classes, one parent class ‘ODESolver’ and one subclass ‘ForwardEuler’

which defines the method with which we will solve the differential equations.

This file can compute any set of ordinary differential equations and thus is very general.

The parent class, or the superclass, when called from the SIR.py file. Takes in model data and

equations, solves it and returns the solutions. As shown in the workflow below.
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Fig 8: Basic workflow.

The solver contains four functions, the first one is the initialization constructor, the second

one the ‘advance’ function, or any classes inheriting from the parent class must implement

the advance() function, a function to take in the initial conditions and stored within the class

to solve the ODEs.

And finally a solve() function, one of the arguments for this function is time_points. This

means we are going to solve every differential equation for a bunch of time points and this

also defines the precision that we will be using. The very first time points are going to be the

initial conditions set in SIR.py, and then the equations are integrated as we have a derivative

on the left hand side of the equation.

For example in the equation,
�佳�加 =  − パ佳��

Going by the definition of integration, for every small time interval we need to find the area

under the graph. Calling the advance() function (Fig:11).

Then we finally return the solutions.

We then move to the subclass, which inherits from the parent class ODESolver, using the

Forward Euler method; this is one of the simplest solvers for differential equations. And

given the complexity of this project is not too large compared to other high end projects

which require lots of data processing power. Thus, this method works perfectly given the

scope of this project.

This method is based on the Taylor series expansion, and explained below:

Consider tn to be the time at the nth time-step and the solution sn at this time-step be equal

to, sn = s(t=tn). There is a step size which is assumed constant for simplicity in calculations

and is given by tn - tn-1.

Then the forward euler method computes yn+1 to be:

yn+1 = yn + h * f(yn,tn)
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def advance(self):
u, f, i, t = self.u, self.f, self.i, self.t
dt = t[i+1] - t[i]
return u[i, :] + dt*f(u[i, :], t[i])

Fig 9: advance() function following the Forward Euler method

SIR model

This also contains a class which defines our problem. This class contains two functions, first

being the __init__() method or the constructor with all the initial conditions and the

parameters for the differential equations.

In order to make the function more robust, we make the parameters vary with time. We do

this with the help of the lambda function, if the parameter is an integer or a float, we

convert it into a function as shown in fig: 12 below. In simpler terms, for every ‘t’ we input,

the output will always be ‘nu’. This is done for all the parameters for the differential

equations.

self.nu = lambda t: nu

Fig 10: Converting parameter into a function

The second function is the __call__() method, this is used to make the class object callable.

The main function of this method is to evaluate the function at the current time step. This

function returns a numerical array in Python which essentially contains all the differential

equations.

We then finally have the driver code where we run and plot the results.

This is the exact same for the SIER and SIERS files, with the only difference being the initial

conditions, the parameters and the ordinary differential equations.

5.2 Optimal control theory

To optimally control the models, we have in place the lockdown measures. These measures

can be controlled and we can see the different results for each of the policies we put in.

In order to do this, I have used the GEKKO optimisation suite, as mentioned in the previous

sections.

After setting up the initial conditions and the parameter values, we then use the GEKKO

function to enter the differential equations in an array.

I also inserted some very small time steps in the functions.

In order to initialize the simulations, we then use IMODE=7, this is the sequential simulation

as explained in the section above.

And we finally plot these.
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m = GEKKO()
u = m.MV(0,lb=0.0,ub=0.8)

s,e,i,r = m.Array(m.Var,4)
s.value = s_initial
e.value = e_initial
i.value = i_initial
r.value = r_initial
m.Equations([s.dt()==-(1-u)*beta * s * i,\

e.dt()== (1-u)*beta * s * i - sigma * e,\
i.dt()==sigma * e - nu * i,\
r.dt()==nu*i])

Fig 11: Using the GEKKO package

After this we optimise this to adjust the lockdown measures to maintain within the

healthcare policies.

The optimization is done using the IMODE=6, this is done using the central limit

theorem(CLT).

Akhilesh Ganti defines CLT to be, “In probability theory, the central limit theorem (CLT) states

that the distribution of a sample variable approximates a normal distribution (i.e., a “bell

curve”) as the sample size becomes larger, assuming that all samples are identical in size,

and regardless of the population's actual distribution shape. ”

Thus using this probability theory technique we are able to simulate the results and get the

best solution with various lockdown policies in hand. As displayed in the results section

below.

5.3 Monte Carlo simulations

This as mentioned in the previous sections is done with the help of Gillespie algorithm.

The above flowchart is made by Prof. John Ralph at the University of Wisconsin. It is for the

monomers example discussed previously. This has helped me a lot in a better understanding

on how we can solve the problem.
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Fig 12: Flowchart for Gillespie algorithm

γ7



This section  is also solved with the help of classes. We have 2 classes, one for the SSA and

the other for the SSA model.

Class SSA and Class SSAModel

SSA stands for stochastic simulation algorithm.

The first class is responsible for solving the algorithm, it follows these steps:

1. Generate pseudo random numbers

2. Indefinite generator of direct method trajectories, this is a trajectory based solution

given the Gilespie algorithm generates a solution trajectory for the problem.

3. Indefinite generator for first reaction trajectories, this will evaluate the reaction time,

the next reaction time and the reaction itself.

The second class is responsible for initializing the model, following the given steps:

1. Initialize the model.

2. Check breakout of trajectories, i.e; see if there are any more reactions to do, if not

breakout from the loop.

3. Validate and invalidate model reactions, to see all the possible and the impossible

reactions.

4. Clear the trajectories, finally reset the species or parameters to the initial conditions.

Or to go back the steps as shown in the flowchart for the Monomers problem.(Fig:

14)

Driver code

This is the part where we initiate the SSA class and the SSAModel class with initial conditions

and then finally plot the results.

We give the initial conditions, and the sojourn times(or mean waiting time). The propensity

functions, which describe the probability while the reaction rates describe the changing rate.

And finally the change in the parameters or species for every propensity.

These are given to the SSAModel which will generate  the model, and the results of these

models are then fed to the SSA class which contains the solution to the problem.

Once we have these, we can solve them and output the results.

This section used the odeint method from scipy integrate to compute the results in order to

decrease the lines of code, ease of understanding and for lower time computations.
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RESULTS AND EVALUATION

Epidemic modelling
These below show the epidemic modelling results, the SIR, SEIR and SEIRS.

The three graphs are pretty common to one another, the most common things to observe

are the trends.

The susceptibles are the highest when it comes to the beginning of the graph, but they

slowly go down as infected start to increase showing movement from one compartment to

another. And overtime, the recovered start to increase and overtake the infected and the

susceptibles.

The same is the case for SEIR and the SIR models, both of these have the same trends with

the only difference is the addition of the exposed compartment.

Fig 1γ: SIR Model
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Fig 14: SEIR model

The output for the SEIRS model is a bit different as we now have a connection from the

recovered back to the susceptibles. With this we can see over a long period of time, the

susceptibles seem to be on the rise again. And the recovered going down, this is a much

more realistic model of the current pandemic as we can see ups and downs in different

compartments over time due to reasons like a new variant, vaccination policies or even

lockdown measures.
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Fig 15: SEIRS model

Optimal control theory

Below are the results of the different lockdown measures that can be implemented to see

the various outcomes.

Fig 16: Strict lockdown measures
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With Fig 18: Strict lockdown measures,  we can see the as the pandemic starts a lockdown

has been implemented, that too a very strict one, with such a lockdown being in place, we

can see the optimal exposed and infected seem to be a constant value and eventually the

pandemic dies out. The length of the pandemic might be more than without the lockdown

but we save more lives and less people can get infected.

Fig 17: No lockdown measures

On the other hand with no lockdown measures in hand as shown above, Fig 19. We can see

it has no impact on the optimal solution curves, they simply remain negligible. The

pandemic dies out due to herd immunity with a lot of casualties and with a lot more people

getting infected due to this.

Fig 18: Moderate lockdown measures
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Finally with moderate lockdown measures, we can see the lockdown is imposed when the

pandemic starts and when the situation seems under control. The lockdown measures are

taken away, this can be seen with a small increase in the optimal curves. And when it looks

like things can get out of hands soon, the lockdown measures are then again put into place.

This type of lockdown measures are usually seen on a realistic scale rather than the first or

the second situations.

Evaluating these results, we can successfully predict what the pandemic can prove to be if

we implement a certain lockdown measure, there can be further changes to the parameters

of the code in order to see more different results in the lockdown measures.

Monte Carlo simulations

Below shows the results of the monte carlo simulations, this when compared to Fig 15,

shows similar or same trends proving both the methods gave the same results. This in turn

checks for the correctness of all the models that we have created are correct and results

seem trustworthy.

The orange part in the graph below shows the various reactions that have been simulated

and the black lines show the mean of all the reactions.

Fig 19: Monte carlo simulations
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CONCLUSION AND FUTURE WORK

7.1 Conclusion

Stopping an emerging disease like the COVID-19 in its earliest stages is vital to stop a

pandemic. Mathematical modelling as done in this research, or similar provide a solution to

quantify or minimise risks and assess the effectiveness of public health policies before the

next event occurs.

To conclude the project, it was an overall success with a few incompletions as justified in the

evaluation and elaborated in future work below. Rephrasing the problem statement as

identified in the Introduction, the aim was to “Build a successful SIR(and its variants) model,

and simulation to help the healthcare workers in making better decisions”. Summarising

from results and the evaluations, I have built three models, the SIR, SEIR and the SEIRS,

along with simulations and optimised them to find impacts of a lockdown on the system.

And finally checked with its robustness using the Monte Carlo simulations.

7.2 Future work

Now that the project has come to an end, as concluded it was a success. Although it has a

few limitations, or additions that could make the project a complete well rounded piece of

research. Now with any project, there can be a number of things that can be done better or

we can make any application more convenient and add in more features.

There are two important things that I would like to focus on when it comes to the context of

smart healthcare systems and how computer science can help in the medicine industry:

(These are expected to be implemented considering I had 3-6 more months for the project)

First, as discussed in the Section : Methodology selected, we can see there can be a number

of other control policies that could be implemented with the models. Alongside lockdown

policies, below are a few other policies that could be optimised in the project:

1. Vaccination policies. For eg: In the UK, the rate of vaccine delivery was dependent on

the rate of supply of the vaccine rather than the workforce capacity(Dept. of Health

and Social care). The department also said, “An extended interval between vaccine

doses together with initial prioritisation of the first vaccine dose would increase the

flow of vaccine supply in the short term. This will allow for more first doses to be

delivered to more people earlier.”.

2. Effects of new Medicines. This is done by adding in new parameters to the models

which mainly reduce the number of deaths as new medicines tend to be more

efficient in healing patients.

3. Effects of a new Variant on the Model. This turns out to be a bit more complicated as

now we have a tree in the SIR model with two infected (I1 and I2), and two recovered

(R1 and R2) compartments.
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And secondly, the use of AI and Machine learning algorithms. Time series forecasting

algorithms using the Scikit-learn library in Python could be used to reduce the negative

impacts of the pandemic and accelerate the recovery phase. These algorithms could be used

to see how the model would behave in the future with different trends.

Given I am a MSc Computing student, this might seem too far fetched for me. But with the

additional time and right resources, I believe the above two are achievable. This would allow

for a better and more realistic model to operate and thus give much more accurate results to

help curb the pandemic.
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REFLECTION ON LEARNING

This being the final stage of the MSc Dissertation, and of my masters degree, I believe

reflecting upon is critically important in any work I do. This is true in any form of work from

studies, work, sports or any other activity. To bear in mind the concept of ‘What have I

learned?’, or ‘What can I take away from this?’.

Firstly, I think the most important and biggest learning curves with the entirety of this

research were motivation, research and self-discipline. These three factors link with one

another and are needed to complete a successful project. From a reflection point of view,

there were stages in the project when it was hard for me to uphold my motivation and

discipline. This happened mainly at the start of the project given how the topic was

completely new to me and thus took me longer to get into a clear mindset, paralysing me to

identify the right plan of action. But with the progression of my research, I got more

comfortable with Modelling, control theory and other stochastic simulation strategies. The

struggle for motivation and discipline also seemed hard to get with the ongoing COVID-19

pandemic, staying away from home, this was particularly hard given the uncertainty and

taking my focus away from other important priorities. And working in such a routine, I have

learnt that with such situations: help is always out there and it is very important to be

consistent with a solid routine surrounding studies or work. Next time I work on a project, I

would make sure that I have a more prominent work space, make myself a time plan for the

week and allow for relaxing on the weekends. In all honesty, there also has been some

positive effect of the pandemic, it allowed me to see the reason why researches like these

are critical.

Another area that I believe connects to my first reflection is the fact that modelling and

controlling is quite new to me. Being an electrical engineer, I have some experience in

modelling electrical systems but none when it comes to compartmental modelling. So I had

some knowledge on what the principle of modelling is based on but none about the

problem I had to solve. To bridge this gap, I was extremely lucky to have support; in my case,

to have a technical advisor, Dr Frank C Langbein, to give me technical feedback and

guidance. To share an example, I was struggling to understand one of the models initially

and I brought it up in one of the meetings and all he asked me to do was change a

parameter, and that was it. He later explained how it fundamentally affected the entire

model.

Furthermore, with the ongoing pandemic, the only way to communicate was via online

video conferencing services. And thus came my adaptation to work and share my research

online and receive subsequent feedback. This proves how well I have handled it, ensuring

there were weekly meetings with my technical advisor, these were held on zoom. The results

were shared via screen share as it served to be the most efficient of tools for the purpose.
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Coming to a more technical aspect, I have had technical knowledge with Python, and

knowledge about modelling with the help of MATLAB. But no prior knowledge of modelling

with the help of Python. I would not say this was too hard to do considering my technical

background, but it was certainly something new and exciting to work with. There were

frameworks and principles which I did not understand at first, but after a few hours with

them. And with a bit of practice, I was pretty confident.

Finally, coming to a more research based learning approach, documenting and writing are

two key skill sets that I picked up with my project. Being an international student, and having

not done a lot of research work before this. I could see myself slacking in these two areas

which are critical to any paper or research. So I started to read research papers and

concepts, mostly related to my topic, to understand how research is presented. Only in two

weeks did I realise my mistake, I did not make myself small goals but just dived deep into

papers, without any prior knowledge, and felt completely overwhelmed and lost as I could

not connect the dots. I then started again, with a roadmap in hand with things to be done by

the end of the month. I understood the problem in hand much more clearly, and thus I could

plan everything else with ease. By the end of the report, I was pretty confident in presenting

my work in a professional way, with a crystal clear understanding of what goes where on a

paper.

Every single situation has its ups and downs, but at the end of the day it is all about how we

approach it. This project has taught me that it is always better to plan things beforehand, it

is okay if there are some amendments to the plan here and there. But what matters is the

preparedness and the discipline towards the task. Overall, I can say I completed my MSc

dissertation with success, and like I did in the past will always learn from my mistakes in

order to grow and achieve heights.
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