
Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

Accelerating DSP functions for GNU Radio by implementing

them on an FPGA-based PCIe/Thunderbolt co-processor

Author: Victor Omoniyi

Student ID: C21032396

Supervisors: Dr. Frank Langbein & Derek Kozel

MSc Computing

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

ABSTRACT:

GNU Radio is a versatile open-source Python / C++ based software development toolkit

used by hobbyists and professionals, which allows the users to interconnect

blocks/cores to form a flexible, fully customisable wireless communication system. LiteX

is a python-ďased toolset ǁhiĐh alloǁs CPU͛s oƌ “oCs ;“Ǉsteŵ-on-a-chip) to be designed

and deployed on a small Field Programmable Gate-Array (FPGA) board. By connecting

GNU Radio with LiteX, operations on the host side can be accelerated allowing for faster

processing times.

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

ACKNOWLEDGEMENTS:

I would like to take this opportunity to thank my supervisors, Frank Leigbein and Derek

Kozel whose expertise and guidance helped shape this project. Without them, I could not

have gotten this far. The friendly users on the GNU Radio and LiteX chats who answered my

queries in a kind and timely fashion. My family who convinced me to take a leap of faith and

to undertake this project and course.

FiŶallǇ, I͛d like to thaŶk Aďas, Ellie, aŶd Jess foƌ ďeiŶg a ĐoŶstaŶt souƌĐe of ŵotiǀatioŶ aŶd
for lending their time and ears when times were tough.

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

Table of Contents

Abstract 2

Acknowledgements 3

Table of Contents 4

List of Abbreviations 5

1 Introduction 6

2 Aims and Objectives 6

3 Background 6

 3.1: FPGA, Digital Circuits & Logic: 7

 3.1.1: ASICs and CPUs: 8

 3.2: Digital Signal Processing: 9

3.3: Kernel Modules 10

3.4: GNU Radio, LiteX and Alternatives: 12

3.5: PCIe & LitePCIe 15

3.6 Operating System 16

4 Problem Description 16

5 Approach & Application 17

6 Testing, Results & Analysis 21

7 Conclusion 23

8 Reflection 23

References 24

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

LIST OF ABBRIEVATIONS:

OOT: Out of Tree module

SDR: Software-Defined Radio

HDR: Hardware-Defined Radio

FPGA: Field Programmable Gate Array

ASIC: Application-specific integrated circuit

CPU: Central Processing Unit

LUTS: Lookup Tables

PLB: Programmable Logic Blocks

CLB: Configurable Logic Blocks

DFF: D Flip-Flop

SoC: System-on-a-chip

PCIe: Peripheral Component Interconnect Express

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

1 - INTRODUCTION:

In modern day, wireless communication networks have become more and more popular

over the years. Advancements in technology since the cellular network have allowed and

called for greater flexibility in hardware. Designing and creating new radios can not only

be time consuming but can also cost a great amount. Software-DefiŶed ‘adio͛s ;“D‘Ϳ
have gained popularity due to the increased amount of flexibility compared to

traditional Hardware-DefiŶed ‘adio͛s (HDR). Furthermore, when coupled with

technology such as Field Programmable Gate Arrays (FPGA), the ability to get fast and

lightweight SDRs to implement radio function is very achievable for amateurs to

professionals.

2 – AIMS & OBJECTIVES:

The aim of this dissertation is to use an FPGA board to connect with GNU Radio and

LiteX. We aim for the board to run useful process that will allow for data transfer to be

accelerated on GNU Radio. For the speeding up of operations, there are two ways to

achieve this. Firstly, by creating and adding blocks that will transport data to and from

the card. Secondly, by adding existing blocks such as low pass filter to run on the board

using LiteX. The host code will use NumPy to handle the data transport. Ideally, the code

will be simplistic and easily customisable. When creating the blocks, it can be as simple

or as complicated as the user wants without the code becoming obfuscated. For writing

these blocks, I will be using either an out of tree (OOT) modules or an embedded block.

OOT ŵodules aƌe siŵplǇ ĐoŵpoŶeŶts that doŶ͛t liǀe ǁithiŶ the GNU ‘adio souƌĐe tƌee.
This will allow me to extend GNU Radio with my own functions and blocks, allowing for

me to maintain the code.

The dissertation will also aim to explain what other SDR alternatives are currently on the

market and the pros and cons of these applications. It will also explain why I have

chosen to use GNU Radio and LiteX instead of these other alternatives.

Furthermore, a secondary aim is to analyse the tools used, what is currently on the

market and in development and to see whether the processes I am using can be better

streamlined and improved in the future with the rise of new software.

3- BACKGROUND:

A software-defined radio (SDR) is a radio communication system where components

that may have traditionally been implemented in a hardware, such as an amplifier or a

filter, are implemented in software on a personal computer or embedded system.1

Functions that were typically carried out solely on hardware can now be performed by

softǁaƌe that ĐoŶtƌols high speed sigŶal pƌoĐesses. Its aiŵ is to get Đode as ͞Đlose to the
aŶteŶŶa as possiďle͟ and turns a hardware problem into a software one.2 This is helpful

due to the lower entry barrier and the ability for hobbyists to test their ideas on

1 Software Defined Radio Architectures, Systems, and Functions (Dillinger, Madani and Alonistioti, 2003)
2 GNU Radio, (Chen and Chen, n.d.)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

software. AŶ adǀaŶtage of usiŶg “D‘ is that Ǉou͛ƌe aďle to aĐhieǀe ǀeƌǇ high leǀels of
performance. However, one disadvantage is that it can be difficult to write software to

support different target platforms and may need to be redone.

3.1- FPGA, Digital Circuits & Logic:

Created by Xilinx in 1985, FPGAs are programmable silicon chips built from a large collection

of programmable logic blocks.

FPGA designs use two basic types of logic: synchronous and combinatorial. Synchronous

logic performs the read and write operations when a clock signal (a signal that oscillates

between a high or low state, acting like a metronome) rises or falls. Combinatorial logic

reads and writes depending on the speed of the signals being sent through gates or wires in

the chip.

Synchronous logic uses flip-flops to hook onto an input value at each clock edge,

guaranteeing that the output value will only change at the start/end of each clock cycle.

Fig 1.1 A general FPGA architecture

Modern FPGAs are no longer composed of simply an array of gates (i.e., LUTS) only. A LUT,

or Lookup Table, is a table that determines what the output would be for any given input.

Like a customised truth table, changing your inputs will change your output values. They are

grouped with flip-flop registers (DFFs) and some carry logic in PLBs or CLBs. CLB͛s ĐoŶtains

LUTS (used for combinatorial logic) and DFFs(used to store information)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

Fig 1.2 AND Gate Lookup Table

3.1.1- ASICs and CPUs:

There are a few reasons why choosing an FPGA is the right choice in comparison to an ASIC

or a CPU for this project. CPUs are perfect for general-purpose computations. It is a

traditional sequential processor for general purpose applications and can do a slew of

things. However, for this project we only need to accelerate DSP functions and not much

else.

Ideally, an ASIC would be used. The custom integrated circuit would be fully optimised for

the end application since it would be application specific. Additionally, due to the custom

design being tailored towards the end application, it could be optimised for a combination

of performance and power consumption.3 However, the drawbacks of using an ASIC for this

project are the long development time and high development cost ruling this option out

entirely.

A good middle ground between performance and power consumption, price, and availability

comes in the form of an FPGA. For this project, I will be using an Acorn CLE-215+, a

cryptocurrency mining accelerator card repurposed as an FPGA for the project.

EŶtƌǇ leǀel FPGA͛s eŵphasise loǁer power consumption, low logic density and low

complexity per chip. 4 At the high end, they can include complex SoC parts that can be

iŶtegƌated ǁith the FPGA͛s aƌĐhiteĐtuƌe. Complex tasks can be solved by software

acceleration software via tools such as parallelisation and adaptation to the end application,

providing a significant speed advantage in comparison to other processors.

3 ͞FPGA vs CPU vs GPU vs Microcontroller: How Do They Fit into the Processing Jigsaw Puzzle?͟ ;Aƌƌoǁ, 2018)
4 ͞FPGA Basics: Architecture, Applications and Uses?͟ ;Aƌƌoǁ, 2018)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

 Fig 1.3 Acorn CLE-215+

3.2- Digital Signal Processing:

Digital signal processing (DSP) is the use of computers or digital signal processors to

perform a variety of signal operations. DSP can be found in a wide variety of places such

as telecommunications, digital image processing. For our project, the signal we use is

signal source in GNU Radio which generates a cosine waveform. Our project does

involve some DSP math which is done on the FPGA

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

3.3 Kernel Modules:

For our FPGA to work as intended, we need to first load an FPGA gateware image is

needed to be built and loaded onto the FPGA board. This is done with the use of

OpenOCD, an Open-On-Chip Debugger which helps to provide ͞debugging, in-system

programming and boundary-scan testing for embedded target devices.͟ 5. Using the

command ͞python3 -m litex_boards.targets.sqrl_acorn --with-pcie --build --load –driver”,
this geŶeƌates all the files Ŷeeded foƌ the dƌiǀeƌ. ͞ This also loads the FPGA gateware

image onto the board. Furthermore, the FPGA bitstream needs to be loaded. An FPGA

bitstream is simply a file that contains the programming information for an FPGA. 6 It can

contain a description of the hardware logic, routing and the initial values for the registers

and the on-chip memory.

In the kernel directory of our server, we need to compile the kernel module using

͞ŵake”. The next step in the process is cryptographically signing the kernel module so

that it can work with Secure Boot/UEFI. Secure boot is a security process designed to

protect a system against malicious code being loaded and executed early in the boot

process. If malicious or invalid binary code is loaded while secure boot is enabled, the

host will be alerted, and the system will refuse to boot the faulty binary code. 7

‘uŶŶiŶg ͞dŵesg | tail” will allow us check the system log and to see if the module was

successfully loaded and any status information that comes with it.

Fig 1.5 Dmesg log

UsiŶg the ͞lspci -tvv” command, we can examine the all the PCI devices connected to our

computer. Our device is successfully connected and working and shows up in the PCI slot

as ͞XiliŶǆ CoƌpoƌatioŶ DeǀiĐe 7ϬϮ4͟.

Fig 1.6 lspci log

For the FPGA to be able to communicate with our computer, we need to load a kernel

module onto the system to allow communication between the Acorn CLE-215+ and the

Đoŵputeƌ. The keƌŶel is a pƌogƌaŵ that ƌuŶs at the Đoƌe of a Đoŵputeƌ͛s opeƌatiŶg
system. It sits ďetǁeeŶ the haƌdǁaƌe aŶd the useƌs͛ appliĐatioŶs. WheŶ the sǇsteŵ

5 OpenOCD Manual (2021)
6 ͞FPGA Bitstream͟ ;XiliŶǆ, 2018)
7 ͞Take Control of Your PC with UEFI Secure Boot͟ (Paul G, 2015)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

loads, the kernel is the first program that is loaded after the bootloader (the program

responsible for booting up a computer). Its job is to be able to communicate with the

applications and hardware (e.g., network cards, the CPU, a printer, an FPGA etc etc). For

this communication, a kernel module is needed. Kernel modules are pieces of compiled

binary code that can be loaded/unloaded into the kernel. This allows for extending the

functionality of the kernel without the need to power cycle the system or recompiling

the entire kernel.

Fig 1.4 Diagram of kernel

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

3.4 - GNU Radio, LiteX and Alternatives:

GNU Radio is a software development framework that allows for the creation of signal

processing blocks to implement software radios.8 Instead of using traditional hardware,

GNU Radio performs the signal processing in software. In the system, GNU Radio has pre-

built blocks which allow for the processing to be carried out. GNU Radio has prebuilt in

blocks such as filters, equalisers, vocoders, and many other blocks which are typically found

in radio systems. These blocks can be connected using the GNU Radio which allows for easy

manipulation of said blocks.

Fig 1.7 GNU Radio Companion

These blocks can be interconnected to create sophisticated software radios. It allows for

easy-to-use reusable blocks and offers a large amount of scalability while providing an

extensive library of standard algorithms.9

GNU Radio allows for the addition of functionality by writing code in Python or C/C++ using

either creating an OOT or using an embedded block. Performance critical code, however,

should be written in C/C++.

However, GNU Radio is not the only SDR framework on the market. MATLAB Simulink is a

SDR that allows you to design and simulate your designs before moving onto actual

hardware. Similar to GNU Radio and other SDR͛s, its primary interface is a graphical block

diagramming tool, allowing you interconnect blocks to create complex designs. Simulink

8 "What is GNU Radio?" - (GNU Radio, 2020)
9 ͞Why would I want to use GNU Radio?͟ - (GNU Radio, 2020)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

would not be entirely appropriate for this dissertation due to it mainly being used for

modelling dynamical systems.

Another example is REDHAWK. REDHAWK is a SDR designed to ͞support the development,

deployment, and management of real-time software radio applications͟ 10 Unlike GNU

Radio, REDHAWK does not have such a large public following with a community to help

troubleshoot issues that may arise. Furthermore, GNU Radio already has a large number of

algorithms built in, saving the developers time

A SDR that builds on top GNU Radio is Amalthea. Aŵalthea is aŶ ͞eǆpeƌiŵeŶtal “D‘
platfoƌŵ͟ aŶd states that the ŵaiŶ ĐoŵpoŶeŶts of the Aŵalthea haƌdǁaƌe aƌe a Lattice

ECP5 FPGA, an AT86RF215 radio transceiver, and a Microchip USB3343 USB2.0 PHY. It is

currently provided as an OOT for GNU Radio and shares similar functionality.

Aŵalthea͛s HǇďƌid “D‘ is a toolkit foƌ ďuildiŶg “D‘ ĐoŶtaiŶiŶg a mixture of software running

on a general-purpose computer and gateware running an FPGA.11 The crossing between

gateware and software domains are handled by a custom-built USB device, LUNA.12

Additionally, Amalthea builds the FPGA gateware image automatically using the blocks and

connects in GNU Radio. It is a small prototype and is not a commercial product and is only

usable with the Amalthea hardware.

Also building on top of GNU Radio is RFNoC (RF Network on Chip). Created by Ettus

Research, RFNoC is similar to GNU Radio and LiteX integration, it allows for an FPGA to be

integrated into the USRP (Universal Software Radio Peripheral) signal processing chain.

However, the downside with this is that it can only be used with Ettus research products.

For RFNoC, the FPGA gateware image has to be built separately but can be used with any of

the Ettus Research radios. For this reason, LiteX was chosen for the fact that it can be used

with any FPGA.

LiteX is an open-source framework that allows for efficient infrastructure to create FPGA

cores(blocks)/SoCs to create fully fledged FPGA based systems. 13 LiteX will work on many

different boards from many different vendors. And for this reason, we will be implementing

LiteX into GNU Radio and extending its functionality mainly focusing on LitePCIe.

10 REDHAWK (2021)
11 "Introduction", (greatscottgadgets/amalthea, 2021)
12 (GitHub - greatscottgadgets/luna: a USB multitool + nMigen framework for monitoring, hacking, and

developing USB devices, 2021)
13 LiteX, (enjoy-digital, 2021)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

Fig 1.8 Basic data flow of RFNoC application

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

3.5 – PCIe & LitePCIe:

PCIe (Peripheral Component Interconnect Express) is a high-speed serial computer

expansion bus standard which was designed to replace older and slower expansion slots

such as PCI and AGP(Accelerated Graphics Port). In serial transmission, data flows in a

specific order, bit by bit. In parallel transmission, multiple data bits are transmitted over

multiple channels at the same time, meaning data can flow faster than using serial

transmission.14

The problem with these older designs is that with the development of new technologies,

they either became too slow or were not compatible with a wide range of products (e.g.,

the AGP was only compatible with graphics cards. Data is transmitted to and from PCIe slots

in what are called lanes. PCIe x1 would indicate that there is one lane of data transmission.

If Ǉou ĐouldŶ͛t speed up the ƌate of data tƌaŶsŵissioŶ iŶ a siŶgulaƌ laŶe, Ǉou Đould iŶĐƌease
data transmission by adding lanes. PCIe x4 would be an increase of factor 4 lanes.

Fig 1.9 PCIe speeds

 The Acorn CLE-215+ has been repurposed as an FPGA. It uses the Artix 7 200T FPGA which

supports PCIe Generation 2 and has up to 4 lanes. The board has been fitted with a NVME

PCIe x16 adapter to allow for greater data transmission speeds.

LitePCIe is a library implemented in LiteX which provides a configurable PCIe core which

will be used for the data transfer from GNU Radio to LiteX. There are 3 important parts

to the library. Firstly, It iŶĐludes the useƌspaĐe C liďƌaƌǇ ͞liďlitepĐie.Đ” which C and C++

user programs can use to communicate through the kernel to the FPGA. Secondly, the

LitePCIe library includes the kernel module that is used to interact with the PCIe core.

And lastly, it contains the FPGA gateware implementing the actual hardware description

of a PCIe core. This is often called an IP core (intellectual property core) when referring

to FPGA designs.

14 Data Transmission - Parallel vs Serial Transmission (Bin Ni, 2021)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

3.6 – Operating System:

Operating systems are essential parts of any computer systems. The operating system

controls the hardware and coordinates its use among the various application programs

for the various users. 15 For this project, we will be using ubuntu Linux as our operating

sǇsteŵ of ĐhoiĐe. We Đhose this foƌ seǀeƌal ƌeasoŶs. FiƌstlǇ, it͛s easǇ to iŶstall aŶd get up
and running. Secondly, GNU Radio is native to Linux so using any other operating system

would make it harder to install than it needs to be. Thirdly, Linux is known for its stability

making it the operating system of choice for our project. We also chose the ubuntu

distribution over say, Arch or Gentoo, due to its user friendless and my past experiences

using it.

4 – Problem Description:

The host computer should be able to create a GNU Radio flowgraph and implement the

͞LiteX Accelerator͟ ďloĐk, ouƌ custom-made accelerator block, and have data transferred to

and from the FPGA in a data loopback so information is read and then written to the FPGA.

In order to get this fully functional, we first need to get the FPGA first working as intended

so we can later integrate it with GNU Radio. This is done by making sure we have a working

FPGA bitstream loaded onto the device.16 This was made more difficult due to the fact I was

working completely remote for the entirety of this project, and it was all done over SSH with

created an extra layer of obscurity, but this was difficulty was quickly mitigated with

learning more about SSH and about the terminal.

Secondly, we needed to get GNU Radio interacting with the FPGA. GNU Radio and LiteX had

to be able to communicate with each other for this project to work. Without this, we cannot

get the FPGA embedded into GNU Radio to speed up the DSP functions in a way that is easy

for the developer. It would have to be done manually which would be timely and

complicated.

Thirdly, we need to create a GNU Radio OOT so that it would accept data transfer. Further

difficulty arose here because this was intended to be done in Python but switched to C++

due to change of scope in the project and because working with C/C++ is a lot easier with

LiteX and GNU Radio than it is in python(also due to the majority of people available to

answer queries use C/C++). Our initial example should be very simplistic just to be able to

show that the functionality works and giving us a foundation to build on top of and create

more complex examples if wanted. For our example, it simply takes in a number of floats,

and returns them back. The resulting flowgraph is a sine wave. At this point of time, I had

done zero programming experience in C++ so getting to grips with the language and learning

it while contributing to the dissertation was difficult at times.

15 Operating Systems Concepts, pg. 4 (Silberschatz, 2021)
16 ͞Bitstƌeaŵ EǆplaiŶed͟ (Shan, 2021)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

5 - Approach & Application:

A considerable amount of time was spent researching GNU Radio, LiteX, the basics of C++

aloŶg ǁith topiĐs suĐh as FPGA͛s aŶd hoǁ theǇ ǁoƌk. This iŶfoƌŵatioŶ ǁas gatheƌed fƌoŵ
the GNU Radio and LiteX wiki, the IRC chat where developers would answer queries, the

internet, and books.

The first part of the approach was to get the FPGA bitstream loaded onto the FPGA. The

approach to solving this problem was to get a working bitstream and build and load it onto

the FPGA. Further difficulties that arose would be solved by getting help from the LiteX chat.

The bitstream used, ͞sƋƌl_aĐoƌŶ_ϮϬϮϭ_Ϭ7_Ϯ9͟, was provided by Florent Kermarrec of Enjoy

Digital, creator of LiteX. UsiŶg the ĐoŵŵaŶd ͞python3 -m litex_boards.targets.sqrl_acorn --

with-pcie --driver --build –load”, this rebuilds and loads the FPGA image. The FPGA bitstream

ǁas loaded oŶto the deǀiĐe ŵaŶuallǇ ďǇ Mƌ. Kozel usiŶg Viǀado͛s Haƌdǁaƌe MaŶageƌ.

After this, our next target was to get GNU Radio interacting with LiteX. This would simply be

done by including necessary header files from LiteX into GNU Radio. All header files came

from the LitePCIe library of LiteX.

Lastly, we would need to create our own block in C++ to allow for data to be read and

written. This ǁould ƌeƋuiƌe eǆteŶdiŶg ͞litepcie_util.c͟ loĐated iŶ the useƌ diƌeĐtoƌǇ of
LitePCIe to allow for data loopback in GNU Radio.

GNU Radio has the ͞gr::ďloĐk” implemented inside of it. It is the abstract base class for all

͚teƌŵiŶal͛ pƌoĐessiŶg ďloĐks. 17 For example, the general_work block is called to perform

the signal processing. It reads the input items and writes the output items. It is where the

majority of the work in our program is done.

In the start function of our file ͞litexgŶu_iŵpl.ĐĐ”, our FPGA device is initialised and opened.

This was done in the gr::block::start() function due to it being used to enable drivers for i/o

devices.

Fig 2.1 Start function

17 GNU Radio Manual and C++ API Reference: GR::BLOCK CLASS REFERENCE (GNU Radio Foundation, 2021)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

Our FPGA is treated as a file and is opened as a file desĐƌiptoƌ, ͞fds.fd” with 2 flags, 0_RDWR

and 0_CLOEXEC. 0_RDWR is set to make sure the FPGA can only be read or written onto and

0_CLOEXEC enables the close on execution flag. We poll the device to make sure it is ready

to perform a task. If the device is greater than 0 (if a device is ready and is able to be used),

it opens, else it pƌiŶts out the eƌƌoƌ ŵessage ͞Could Ŷot iŶit driver”, and subsequently exits.

Similar to the gr::block::start(), there is a gr::block::stop() which disables the drivers. It is in

here where the device is closed. Originally, this was in a function called in the now defunct

͞iŶfo” which would open the FPGA and read the FPGA identification. This function was then

called in the general_work block. However, using the start function improved readability

and allowed for easier refactoring.

Further down in the start function is the FPGA identification. This part of the program loops

and identifies uses ͞litepĐie_readl” to print out the FPGA device and date and time that is

stoƌed iŶ ͞CSR_IDENTIFIER_MEM_BASE”. This is a memory address. The LiteX SoC has an

internal memory that can be read, and sometimes written. This address holds the ID string.

The loop in figure 2.2 reads one character at a time.

The last part of the start function is the dma loopback. We enable dma loopback on the

device to allow data to be sent from the host to the device and back to the host again in a

loop continuously.

Fig 2.2 CSR Identifier Mem Base loop

There are 2 important limits that need to be calculated to avoid overflow. The first is the

sum of the DMA buffer sizes. The second is the number of available items in GNU Radio.

Each DMA buffer can hold 8192 bytes of data. The number of available items in GNU Radio

is calculated by the DMA Buffer total size (DMA count * DMA Buffer size = 2097152 bytes)

divided by the size of input_type in bytes. The sum of the DMA buffer count is 2097152

bytes.

In the general_work block, it contains the write event. This is the code that shows how data

is written onto the device. max_items_write is the DMA_BUFFER_TOTAL_SIZE divided by

the sizeof(input_type). The DMA_BUFFER_TOTAL_SIZE is defined as the DMA Buffer Count

(256) * the DMA_BUFFER_SIZE (8192) making the DMA buffer total size 2097152 bytes. The

sizeof(input_type) returns the size of the input_type in bytes. n_dma_blocks is the number

of DMA blocks. This is calculated by multiplying the number of input items by the

DMA_BUFFER_SIZE and dividing that by the size of the input_type in bytes. n_dma_items is

the number of DMA blocks multiplied by the DMA buffer size divided by the size of the

input_type in bytes. n_write_items are the items that are written to the device. It uses

std::min to calculate the minimum number between the max_items_write and the

n_dma_items).

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

bytes_written uses ͞ǁƌite͟ to ǁƌite to the deǀiĐe. The fiƌst paƌaŵeteƌ is the FPGA deǀiĐe,
͞fds.fd”. The 2nd parameter is a void pointer which poiŶts to the ǀaƌiaďle ͞iŶ” which is

pointer to a pointer of the memory location of the input items. If the bytes_written are not

equal to the n_write_items * size of the input_type (which should give us the maximum

number of bytes available), an error message should be printed out.

Fig 2.3 Write event code

This has been commented out since this functionality is not need in this stage, however, it

has not been removed because the code is still useful. If further development was done

with the reading/writing, this could be uncommented out. The number of consumed items

is the bytes_written divided by the size of the input type. At the end of the general_work

block, the block can report how many items were consumed on each input stream using

consume() or consume_each().

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

Similar to the write event, is the read event. The main mechanics of the code are the same

as that of the write event. Instead, the read event uses POLLIN. Furthermore, for the

ďǇtes_ƌead it uses a ǀoid poiŶteƌ ǁhiĐh poiŶts to the ǀaƌiaďle ͞out” which is pointer to a

pointer of the memory location of the output items.

Fig 2.4 Read event code

Another important part of the code is the statistics. This measures the rate of data transfer

in Gigabytes per second (Gbps). The duration is the time in milliseconds (implementation

located in liblitepcie.c) minus last_time (implementation located in litexgnu_impl.h). The

speed is the difference between the reader software count(reader_sw_count) and the last

reader software count (which is initialised to 0) multiplied by the DMA buffer size *

BITS_PER_BYTE (8 bits in a Byte) divided by the duration * 1e6 (number of ms/s).

Fig 2.5 Statistics code

The ǀaƌiaďles Ŷeeded foƌ this to ƌuŶ aƌe loĐated iŶ the ͞litexgnu_impl.h͟ file. They are

pƌiǀate iŶstaŶĐe ǀaƌiaďles of the ͞litexgnu_impl͟ Đlass. EaĐh liteǆgŶu_iŵplĐĐ object gets its

own private set of these variables.

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

6 - Testing, Results & Analysis:

For testing the transfer speeds, we created a very simple GNU Radio flowgraph. It takes in a

signal source with a singular output, a sample rate of 32k and, a waveform of cosine. It is

ĐoŶŶeĐted to ouƌ ͚LiteX AĐĐeleƌatoƌ͛ ďloĐk ǁhiĐh is theŶ ĐoŶŶeĐted to a thƌottle ďloĐk set to
32k and a probe rate. The throttle block is disabled as the sample rate is set to 32k;

however, the rate of data transfer is more than of 100x of that. If re-enabled, it is there to

make sure the average rate does not exceed a certain samples per second. The throttle

block is connected to a QT GUI Time Sink to visualise this.

Fig 2.6 Demo flowgraph

The probe rate block is connected to measure throughput. This probe_rate block is

ĐoŶŶeĐted to the ͞print͟ iŶput of the disaďled ŵessage deďug ďloĐk. The message debug,

when enabled, prints out the current rate of data transfer and the rate average. When the

flowgraph is run, it should produce a sine wave flowgraph if successful.

 Fig 2.7 Sine wave output

Running the flowgraph gives us the correct output that we expected. When looking at the

console, it prints out the FPGA identification along with the DMA Speed, TX_BUFFERS,

RX_BUFFERS, the difference between the two and, the errors(although, the errors has been

initialised to 0 so this will always be zero). The first iteration gives us 0 for everything. This is

siŵplǇ ďeĐause, it hasŶ͛t loaded pƌopeƌlǇ aŶd should ďe igŶoƌed. IŶ suďseƋueŶt iteƌatioŶs,
we can see we get a DMA speed from around 8.49 – 8.52Gbps. The highest theoretical

throughput is 16Gbps. A speed increase may arise from further optimising the code or by

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

using a better FPGA. Furthermore, recent changes in GNU Radio itself might help to see a

speed boost. Recently, GNU ‘adio iŶtƌoduĐed the ĐoŶĐept of ͞Custoŵ Buffeƌs͟. This alloǁs
DMA transfers to be controlled by GNU Radio runtime rather than the LiteX accelerator

block. However, this feature was not available at the start of the project and may or may

not speed up the data transfer rate. Additionally, increasing the buffering in the LitePCIe

implementation might increase the speed , however both things have not been tested.

As we can see, there is a difference between the TX_BUFFER and the RX_BUFFER. Ideally,

the difference should be 0, however, the current average is around 130.

 Fig 2.8 DMA speed in GNU Radio console log

When running the DMA test, we can see we are achieving identical speeds in comparison to

the data transfer in GNU Radio.

Fig 2.9 DMA speed console log

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

7 – Conclusion:

Based on the results given to us by testing, this dissertation could be regarded as a success.

Although not all major objectives set out in the beginning were met, due to the high-level

base knowledge required for such a dissertation, I hope leniency would be applied. This

dissertation shows that LiteX can be implemented into GNU Radio and can be used for data

transfer in a loopback at quite high speeds. Another additional step would be to explore

ǁhǇ the TX_BUFFE‘ aŶd ‘X_BUFFE‘s aƌeŶ͛t aligŶiŶg aŶd ǁhǇ theƌe is aŶ aǀeƌage diffeƌeŶĐe
of 130 on each iteration. An additional next step would be fleshing out the demo more and

using multiple input channels. If there was time for future work, it would be beneficial, to

see how the use of custom buffers could potentially help with a speed increase. Playing

around with the LitePCIe buffer rate would also be on the next steps. The addition of

multiple channels in GNU radio is also one I would explore next.

Additionally, possibly separating the read and write functions into LitePCIe source and sink

blocks could help with the increase of speed since each block would run its own thread.

Again, this would need to be tested.

8 - Reflection:

This dissertation has by far been the most difficult and complex project I have worked on.

However, it has also been the most interesting and rewarding thing I have been a part of. I

haǀe leaƌŶt thiŶgs that ǁeƌeŶ͛t taught oŶ the ŵasteƌ͛s course and have been able to

contribute to an open-source project that does useful things. It has been hard work, but it

has definitely stretched me.

I have learnt many important things during the span of this project. Time management

being one of the most important. The ability to learn complex topics in a timely manner has

also been very important.

One of the most important skills I have learnt is how to learn from my mistakes. A project

that required me to learn essentially everything from the ground up was always going to

have problems. However, the resilience needed to fail and make mistakes but to continue

pushiŶg aloŶg ǁas soŵethiŶg I doŶ͛t thiŶk I had at the staƌt of this pƌojeĐt.

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCIe/Thunderbolt co-processor

References:

• Dillinger, M., Madani, K. and Alonistioti, N., 2003. Software Defined Radio:

AƌĐhiteĐtuƌes, “Ǉsteŵs aŶd FuŶĐtioŶs. [oŶliŶe] O͛‘eillǇ OŶliŶe LeaƌŶiŶg. Aǀailaďle at:
https://learning.oreilly.com/library/view/software-defined-

radio/9780470851647/11_chapter001.html#ch001-sec001

• Chen, Z. and Chen, K., n.d. GNU Radio. [online] Wu.ece.ufl.edu. Available at:

<http://www.wu.ece.ufl.edu/projects/softwareRadio/>

• Arrow. 2018. FPGA vs CPU vs GPU vs Microcontroller: How Do They Fit into the

Processing Jigsaw Puzzle?. [online] Available at:

<https://www.arrow.com/en/research-and-events/articles/fpga-vs-cpu-vs-gpu-vs-

microcontroller>

• Arrow. 2018. FPGA Basics: Architecture, Applications and Uses [online] Available at:

<https://www.arrow.com/en/research-and-events/articles/fpga-basics-architecture-

applications-and-uses >

• Openocd.org. 2021. [online] Available at:

<https://openocd.org/doc/pdf/openocd.pdf>

• Xilinx.com. 2018. FPGA Bitstream. [online] Available at:

<https://www.xilinx.com/html_docs/xilinx2018_1/SDK_Doc/SDK_concepts/concept_

fpgabitstream.html>

• Paul, G., 2015. Take Control of Your PC with UEFI Secure Boot | Linux Journal.

[online] Linuxjournal.com. Available at:

<https://www.linuxjournal.com/content/take-control-your-pc-uefi-secure-boot>

• Wiki.gnuradio.org. 2020. What is GNU Radio? - GNU Radio. [online] Available at:

<https://wiki.gnuradio.org/index.php/What_is_GNU_Radio%3F>

• Wiki.gnuradio.org. 2020. Why would I want to use GNU Radio? [online] Available at:

<https://wiki.gnuradio.org/index.php/What_is_GNU_Radio%3F>

• Redhawksdr.org. n.d. Home :: REDHAWK. [online] Available at:

<https://redhawksdr.org/>

• GitHub. 2021. amalthea/intro.rst at main · greatscottgadgets/amalthea. [online]

Available at:

<https://github.com/greatscottgadgets/amalthea/blob/main/docs/intro.rst>

• GitHub. 2021. GitHub - greatscottgadgets/luna: a USB multitool + nMigen framework

for monitoring, hacking, and developing USB devices. [online] Available at:

<https://github.com/greatscottgadgets/luna>

• GitHub. 2021. GitHub - enjoy-digital/litex: Build your hardware, easily!. [online]

Available at: <https://github.com/enjoy-digital/litex>

• Ni, Bin., n.d. Data Transmission - Parallel vs Serial Transmission. [online] Quantil.com.

Available at: <https://www.quantil.com/content-delivery-insights/content-

acceleration/data-transmission/>

• Silberschatz, A., 2021. OPERATING SYSTEM CONCEPTS. [S.l.]: JOHN WILEY, p.4.

• Shan, Y., 2021. Bitstream Explained - Yizhou Shan's Home Page. [online] Lastweek.io.

Available at: <http://lastweek.io/fpga/bitstream/>

• Gnuradio.org. n.d. GNU Radio Manual and C++ API Reference: gr::block Class

Reference. [online] Available at:

<https://www.gnuradio.org/doc/doxygen/classgr_1_1block.html>

https://learning.oreilly.com/library/view/software-defined-radio/9780470851647/11_chapter001.html#ch001-sec001
https://learning.oreilly.com/library/view/software-defined-radio/9780470851647/11_chapter001.html#ch001-sec001
https://www.arrow.com/en/research-and-events/articles/fpga-basics-architecture-applications-and-uses
https://www.arrow.com/en/research-and-events/articles/fpga-basics-architecture-applications-and-uses

