Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

CARDIFF

UNIVERSITY

PRIFYSGOL

(AFRDYD

Accelerating DSP functions for GNU Radio by implementing
them on an FPGA-based PCle/Thunderbolt co-processor

Author: Victor Omoniyi
Student ID: C21032396
Supervisors: Dr. Frank Langbein & Derek Kozel
MSc Computing

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

ABSTRACT:

GNU Radio is a versatile open-source Python / C++ based software development toolkit
used by hobbyists and professionals, which allows the users to interconnect
blocks/cores to form a flexible, fully customisable wireless communication system. LiteX
is a python-based toolset which allows CPU’s or SoCs (System-on-a-chip) to be designed
and deployed on a small Field Programmable Gate-Array (FPGA) board. By connecting
GNU Radio with LiteX, operations on the host side can be accelerated allowing for faster
processing times.

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

ACKNOWLEDGEMENTS:

I would like to take this opportunity to thank my supervisors, Frank Leigbein and Derek
Kozel whose expertise and guidance helped shape this project. Without them, | could not
have gotten this far. The friendly users on the GNU Radio and LiteX chats who answered my

queries in a kind and timely fashion. My family who convinced me to take a leap of faith and
to undertake this project and course.

Finally, I'd like to thank Abas, Ellie, and Jess for being a constant source of motivation and
for lending their time and ears when times were tough.

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

Table of Contents

Abstract

Acknowledgements

Table of Contents

List of Abbreviations

1 Introduction

2 Aims and Objectives

3 Background
3.1: FPGA, Digital Circuits & Logic:

3.1.1: ASICs and CPUs:

3.2: Digital Signal Processing:
3.3: Kernel Modules
3.4: GNU Radio, LiteX and Alternatives:
3.5: PCle & LitePCle
3.6 Operating System

4 Problem Description

5 Approach & Application

6 Testing, Results & Analysis

7 Conclusion

8 Reflection

References

O 00N O

10
12
15
16

16
17

21

23

23

24

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

LIST OF ABBRIEVATIONS:

OOT: Out of Tree module

SDR: Software-Defined Radio

HDR: Hardware-Defined Radio

FPGA: Field Programmable Gate Array
ASIC: Application-specific integrated circuit
CPU: Central Processing Unit

LUTS: Lookup Tables

PLB: Programmable Logic Blocks

CLB: Configurable Logic Blocks

DFF: D Flip-Flop

SoC: System-on-a-chip

PCle: Peripheral Component Interconnect Express

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

1 - INTRODUCTION:

In modern day, wireless communication networks have become more and more popular
over the years. Advancements in technology since the cellular network have allowed and
called for greater flexibility in hardware. Designing and creating new radios can not only
be time consuming but can also cost a great amount. Software-Defined Radio’s (SDR)
have gained popularity due to the increased amount of flexibility compared to
traditional Hardware-Defined Radio’s (HDR). Furthermore, when coupled with
technology such as Field Programmable Gate Arrays (FPGA), the ability to get fast and
lightweight SDRs to implement radio function is very achievable for amateurs to
professionals.

2 - AIMS & OBJECTIVES:

The aim of this dissertation is to use an FPGA board to connect with GNU Radio and
LiteX. We aim for the board to run useful process that will allow for data transfer to be
accelerated on GNU Radio. For the speeding up of operations, there are two ways to
achieve this. Firstly, by creating and adding blocks that will transport data to and from
the card. Secondly, by adding existing blocks such as low pass filter to run on the board
using LiteX. The host code will use NumPy to handle the data transport. Ideally, the code
will be simplistic and easily customisable. When creating the blocks, it can be as simple
or as complicated as the user wants without the code becoming obfuscated. For writing
these blocks, | will be using either an out of tree (OOT) modules or an embedded block.
OOT modules are simply components that don’t live within the GNU Radio source tree.
This will allow me to extend GNU Radio with my own functions and blocks, allowing for
me to maintain the code.

The dissertation will also aim to explain what other SDR alternatives are currently on the
market and the pros and cons of these applications. It will also explain why | have
chosen to use GNU Radio and LiteX instead of these other alternatives.

Furthermore, a secondary aim is to analyse the tools used, what is currently on the
market and in development and to see whether the processes | am using can be better
streamlined and improved in the future with the rise of new software.

3- BACKGROUND:

A software-defined radio (SDR) is a radio communication system where components
that may have traditionally been implemented in a hardware, such as an amplifier or a
filter, are implemented in software on a personal computer or embedded system.!
Functions that were typically carried out solely on hardware can now be performed by
software that controls high speed signal processes. Its aim is to get code as “close to the
antenna as possible” and turns a hardware problem into a software one.? This is helpful
due to the lower entry barrier and the ability for hobbyists to test their ideas on

1 Software Defined Radio Architectures, Systems, and Functions (Dillinger, Madani and Alonistioti, 2003)
2 GNU Radio, (Chen and Chen, n.d.)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

software. An advantage of using SDR is that you’re able to achieve very high levels of
performance. However, one disadvantage is that it can be difficult to write software to
support different target platforms and may need to be redone.

3.1- FPGA, Digital Circuits & Logic:
Created by Xilinx in 1985, FPGAs are programmable silicon chips built from a large collection
of programmable logic blocks.

FPGA designs use two basic types of logic: synchronous and combinatorial. Synchronous
logic performs the read and write operations when a clock signal (a signal that oscillates
between a high or low state, acting like a metronome) rises or falls. Combinatorial logic
reads and writes depending on the speed of the signals being sent through gates or wires in
the chip.

Synchronous logic uses flip-flops to hook onto an input value at each clock edge,
guaranteeing that the output value will only change at the start/end of each clock cycle.

CLB Pl CLB Pl CLB
CLB Pl
Programmable
Configurable Al Pl Pl Pl Pl Interconnect
Logic Block
CLB PI CLB PI CLB
Pl Pl Pl Pl Pl
CLB Pl CLB PI CLB

Fig 1.1 A general FPGA architecture

Modern FPGAs are no longer composed of simply an array of gates (i.e., LUTS) only. A LUT,
or Lookup Table, is a table that determines what the output would be for any given input.
Like a customised truth table, changing your inputs will change your output values. They are
grouped with flip-flop registers (DFFs) and some carry logic in PLBs or CLBs. CLB’s contains
LUTS (used for combinatorial logic) and DFFs(used to store information)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

Input A Input B | Output C
0 0 0
0 1 0
1 0 0
1 1 1

Fig 1.2 AND Gate Lookup Table

3.1.1- ASICs and CPUs:

There are a few reasons why choosing an FPGA is the right choice in comparison to an ASIC
or a CPU for this project. CPUs are perfect for general-purpose computations. It is a
traditional sequential processor for general purpose applications and can do a slew of
things. However, for this project we only need to accelerate DSP functions and not much
else.

Ideally, an ASIC would be used. The custom integrated circuit would be fully optimised for
the end application since it would be application specific. Additionally, due to the custom
design being tailored towards the end application, it could be optimised for a combination
of performance and power consumption.® However, the drawbacks of using an ASIC for this
project are the long development time and high development cost ruling this option out
entirely.

A good middle ground between performance and power consumption, price, and availability
comes in the form of an FPGA. For this project, | will be using an Acorn CLE-215+, a
cryptocurrency mining accelerator card repurposed as an FPGA for the project.

Entry level FPGA’s emphasise lower power consumption, low logic density and low
complexity per chip. # At the high end, they can include complex SoC parts that can be
integrated with the FPGA’s architecture. Complex tasks can be solved by software
acceleration software via tools such as parallelisation and adaptation to the end application,
providing a significant speed advantage in comparison to other processors.

3 “FPGA vs CPU vs GPU vs Microcontroller: How Do They Fit into the Processing Jigsaw Puzzle?” (Arrow, 2018)
4 “FPGA Basics: Architecture, Applications and Uses?” (Arrow, 2018)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

Fig 1.3 Acorn CLE-215+

3.2- Digital Signal Processing:

Digital signal processing (DSP) is the use of computers or digital signal processors to
perform a variety of signal operations. DSP can be found in a wide variety of places such
as telecommunications, digital image processing. For our project, the signal we use is
signal source in GNU Radio which generates a cosine waveform. Our project does
involve some DSP math which is done on the FPGA

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

3.3 Kernel Modules:

For our FPGA to work as intended, we need to first load an FPGA gateware image is
needed to be built and loaded onto the FPGA board. This is done with the use of
OpenOCD, an Open-On-Chip Debugger which helps to provide “debugging, in-system
programming and boundary-scan testing for embedded target devices.” °. Using the
command “python3 -m litex_boards.targets.sqrl_acorn --with-pcie --build --load —driver”,
this generates all the files needed for the driver. “ This also loads the FPGA gateware
image onto the board. Furthermore, the FPGA bitstream needs to be loaded. An FPGA
bitstream is simply a file that contains the programming information for an FPGA. © It can
contain a description of the hardware logic, routing and the initial values for the registers
and the on-chip memory.

In the kernel directory of our server, we need to compile the kernel module using
“make”. The next step in the process is cryptographically signing the kernel module so
that it can work with Secure Boot/UEFI. Secure boot is a security process designed to
protect a system against malicious code being loaded and executed early in the boot
process. If malicious or invalid binary code is loaded while secure boot is enabled, the
host will be alerted, and the system will refuse to boot the faulty binary code. ’

Running “dmesg [tail” will allow us check the system log and to see if the module was
successfully loaded and any status information that comes with it.

8 S dmesg | tail
.151941] litepcie : enabling device (00600 -> 0002)
.152122] litepcie :01:00.0: Version LiteX SoC on Acorn CLE-101/215(+) 2021-10-26 14:39:13

.152152] litepcie Hh .0: 1 MSI IRQs allocated.
.152167] litepcie : B
.152205] litepcie

Fig 1.5 Dmesg log
Using the “Ispci -tvw” command, we can examine the all the PCI devices connected to our

computer. Our device is successfully connected and working and shows up in the PCl slot
as “Xilinx Corporation Device 7024”.

$ lspci -twv

[00E0:00]-+-00.0 Intel Corporation 4th Gen Core Processor DRAM Controller
+-01.0-[01]----80.0 Xilinx Corporation Device 7024

Fig 1.6 Ispci log

For the FPGA to be able to communicate with our computer, we need to load a kernel
module onto the system to allow communication between the Acorn CLE-215+ and the
computer. The kernel is a program that runs at the core of a computer’s operating
system. It sits between the hardware and the users’ applications. When the system

5 OpenOCD Manual (2021)
6 “FPGA Bitstream” (Xilinx, 2018)
7 “Take Control of Your PC with UEFI Secure Boot” (Paul G, 2015)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

loads, the kernel is the first program that is loaded after the bootloader (the program
responsible for booting up a computer). Its job is to be able to communicate with the
applications and hardware (e.g., network cards, the CPU, a printer, an FPGA etc etc). For
this communication, a kernel module is needed. Kernel modules are pieces of compiled
binary code that can be loaded/unloaded into the kernel. This allows for extending the
functionality of the kernel without the need to power cycle the system or recompiling
the entire kernel.

\/ \/ \/
CPU Memory| |Devices

Fig 1.4 Diagram of kernel

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

3.4 - GNU Radio, LiteX and Alternatives:
GNU Radio is a software development framework that allows for the creation of signal
processing blocks to implement software radios.® Instead of using traditional hardware,
GNU Radio performs the signal processing in software. In the system, GNU Radio has pre-
built blocks which allow for the processing to be carried out. GNU Radio has prebuilt in
blocks such as filters, equalisers, vocoders, and many other blocks which are typically found
in radio systems. These blocks can be connected using the GNU Radio which allows for easy
manipulation of said blocks.

Fle Edt View Run Tools Help

o - -

digital_freq_lock

X [

pam_sync

options
Copyrights 2020 C._ering Lib
‘Output Language: Pythaon
‘Generate Options: OT GUI

vartabie

1a: samp rate | | 16 const

Valie: 128k

vanabie

Walue: <cansteiiation OPSK>

variable
1

4

Variable
e reilo
Value: 350m

Import
Import: i

Random Source
Mmmam: 0
M
Mum Samples: 104
Repeat: 1es

WVirtual Seurce

Stream ID: ingut_signai_probe

QT GUI Tab Widget
jurm Tabs: 2
Labiel : Synched Signal
Labei 1: Recerved Signal

Chunks to Symbols
Symisol Table: 14, 1.41421)
jon: 1

FLL Band-Edge
Samples Per Symbok: 4
Filter Rolloft Factar: 350m

Loep Bandwigth: 0

Polyphase Arbitrary Resampler
Resampiing Rate: &

Taps: fwres. oo _raised ¢
Mumbser of Filters: 32

Stop-band Attenuation: 100

Channel Model
Molse Voltage: 10m

e e ot
samote mate 20— Epaton

Black Tag Propagation: o

Prototype Firer Sire: 44 [l

ar Sink
Number of Points; 1024
Autoscale: No
Costas Loop [}
Loop Bandwidth: 0
[order:s o]
A

QT GUI Constellation Sink

Virtual Source Wmiber of Points: 1021k

Stream ID: inpus_signal_probe

‘Stream ID: inpust_signal_probe

QT GUI Range QT GUI Range
1 frea b 1 rec_offset
Labek: FLL Bandwicth Labe: frequency Dffset
Detaut Value: 0 Detault Vakue: 0 i S
Soae m0m s sears s00m BT
Stop: 101 Stap: 50 step: 500m R
Step: 1m Stap: 100 Steps 1m . i
== = e | Bandwith (Hz: 125
Loading: */homesmarcusiCELPrakikummiMatabi) 1-SYNC/pam_syne.grc
»>>Done
from math i
Loading: “/home/marcus/CELPraktkum/ntpMatiabit 1-SYNC-MUSTERIQPSK_rx MUSTER gre” il
»>»Done

Loading: "/home/marcusiCELPraktikum/n
333 Done

tp/Matlabi} 1-SYNC-MUSTERIQPSK_tx MUSTERgre”

digital.qpsk_constellation()
def lbw 2*pn00
freq bw Jen Proger

Fig 1.7 GNU Radio Companion

> Core

» audio
» Boolean Operators
» Byte Operators

» Channelizers

» Channel Models

» Coding

» Control Port

» Debug Tools

b Deprecated

» Digial Television

» Equalizers

» Error Coding

» File Operators

» Filters

¥ Fourier Analysis

¥ GUIWidgets

+ Impairment Models
Instrumentation

Level Controllers
b Math Operators

ent Tools

+ Modulators
+ Networking Tools
» OFDM

b Packet Operators
b PeakDetectors

¥ Resamplers

» Stream Operators

¥ {nomodule specified)

These blocks can be interconnected to create sophisticated software radios. It allows for
easy-to-use reusable blocks and offers a large amount of scalability while providing an

extensive library of standard algorithms.®

GNU Radio allows for the addition of functionality by writing code in Python or C/C++ using
either creating an OOT or using an embedded block. Performance critical code, however,
should be written in C/C++.

However, GNU Radio is not the only SDR framework on the market. MATLAB Simulink is a
SDR that allows you to design and simulate your designs before moving onto actual
hardware. Similar to GNU Radio and other SDR’s, its primary interface is a graphical block
diagramming tool, allowing you interconnect blocks to create complex designs. Simulink

8 "What is GNU Radio?" - (GNU Radio, 2020)

% “Why would | want to use GNU Radio?” - (GNU Radio, 2020)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

would not be entirely appropriate for this dissertation due to it mainly being used for
modelling dynamical systems.

Another example is REDHAWK. REDHAWK is a SDR designed to “support the development,
deployment, and management of real-time software radio applications” % Unlike GNU
Radio, REDHAWK does not have such a large public following with a community to help
troubleshoot issues that may arise. Furthermore, GNU Radio already has a large number of
algorithms built in, saving the developers time

A SDR that builds on top GNU Radio is Amalthea. Amalthea is an “experimental SDR
platform” and states that the main components of the Amalthea hardware are a Lattice
ECP5 FPGA, an AT86RF215 radio transceiver, and a Microchip USB3343 USB2.0 PHY. It is
currently provided as an OOT for GNU Radio and shares similar functionality.

Amalthea’s Hybrid SDR is a toolkit for building SDR containing a mixture of software running
on a general-purpose computer and gateware running an FPGA.! The crossing between
gateware and software domains are handled by a custom-built USB device, LUNA.*2
Additionally, Amalthea builds the FPGA gateware image automatically using the blocks and
connects in GNU Radio. It is a small prototype and is not a commercial product and is only
usable with the Amalthea hardware.

Also building on top of GNU Radio is RFNoC (RF Network on Chip). Created by Ettus
Research, RFNoC is similar to GNU Radio and LiteX integration, it allows for an FPGA to be
integrated into the USRP (Universal Software Radio Peripheral) signal processing chain.
However, the downside with this is that it can only be used with Ettus research products.
For RFNoC, the FPGA gateware image has to be built separately but can be used with any of
the Ettus Research radios. For this reason, LiteX was chosen for the fact that it can be used
with any FPGA.

LiteX is an open-source framework that allows for efficient infrastructure to create FPGA
cores(blocks)/SoCs to create fully fledged FPGA based systems. 13 LiteX will work on many
different boards from many different vendors. And for this reason, we will be implementing
LiteX into GNU Radio and extending its functionality mainly focusing on LitePCle.

10 REDHAWK (2021)

1 "Introduction", (greatscottgadgets/amalthea, 2021)

12 (GitHub - greatscottgadgets/luna: a USB multitool + nMigen framework for monitoring, hacking, and
developing USB devices, 2021)

13 LiteX, (enjoy-digital, 2021)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCle/Thunderbolt co-processor

User Application — GNU Radio

Mode: Fx RFNoC: Loglo
= |] - FFT size: 1:12:" e -
Center Frequency: 1 982G i T Vee Length: 1024k x:0
Sampiing Rate: 1M - Vec Length: 1024k

A

QT GUI Mector Sink
Vector Skze: 1.024k
X-Axis Start Value: 0
X-Axis Step Valee: 1
X-Axis Labek 5 Axis
Y-Axis Labek: y.Axis
N-Anis Units:

¥-Axis Units:

Rief Level: 0

— USRP Hardware Driver

Ingress Egress Interface

vt

| [1 [| Crossbar |
vt vt vt
I * I Computation

Radio Core

3

HOST PC

________________________ ‘L_

USRP FPGA

Fig 1.8 Basic data flow of RFNoC application

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

3.5 -PCle & LitePCle:

PCle (Peripheral Component Interconnect Express) is a high-speed serial computer
expansion bus standard which was designed to replace older and slower expansion slots
such as PCl and AGP(Accelerated Graphics Port). In serial transmission, data flows in a
specific order, bit by bit. In parallel transmission, multiple data bits are transmitted over
multiple channels at the same time, meaning data can flow faster than using serial
transmission.4

The problem with these older designs is that with the development of new technologies,
they either became too slow or were not compatible with a wide range of products (e.g.,
the AGP was only compatible with graphics cards. Data is transmitted to and from PCle slots
in what are called lanes. PCle x1 would indicate that there is one lane of data transmission.
If you couldn’t speed up the rate of data transmission in a singular lane, you could increase
data transmission by adding lanes. PCle x4 would be an increase of factor 4 lanes.

x1 x4 x8 x16
PCIe 1.0 250MB/s 1GB/s 2GB/s 4GB/s
PCIe 2.0 500MB/s 2GB/s 4GB/s 8GB/s
PCIe 3.0 985MB/s 3.94GB/s 7.88GB/s 15.8GB/s
PCIe 4.0 1.97GB/s 7.88GB/s 15.8GB/s 31.5GB/s

PCIe 5.0* 3.94GB/s 15.8GB/s 31.5GB/s 63.0GB/s

Fig 1.9 PCle speeds

The Acorn CLE-215+ has been repurposed as an FPGA. It uses the Artix 7 200T FPGA which
supports PCle Generation 2 and has up to 4 lanes. The board has been fitted with a NVME
PCle x16 adapter to allow for greater data transmission speeds.

LitePCle is a library implemented in LiteX which provides a configurable PCle core which
will be used for the data transfer from GNU Radio to LiteX. There are 3 important parts
to the library. Firstly, It includes the userspace C library “liblitepcie.c” which C and C++
user programs can use to communicate through the kernel to the FPGA. Secondly, the
LitePCle library includes the kernel module that is used to interact with the PCle core.
And lastly, it contains the FPGA gateware implementing the actual hardware description
of a PCle core. This is often called an IP core (intellectual property core) when referring
to FPGA designs.

14 Data Transmission - Parallel vs Serial Transmission (Bin Ni, 2021)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

3.6 — Operating System:

Operating systems are essential parts of any computer systems. The operating system
controls the hardware and coordinates its use among the various application programs
for the various users. *° For this project, we will be using ubuntu Linux as our operating
system of choice. We chose this for several reasons. Firstly, it’s easy to install and get up
and running. Secondly, GNU Radio is native to Linux so using any other operating system
would make it harder to install than it needs to be. Thirdly, Linux is known for its stability
making it the operating system of choice for our project. We also chose the ubuntu
distribution over say, Arch or Gentoo, due to its user friendless and my past experiences
using it.

4 — Problem Description:

The host computer should be able to create a GNU Radio flowgraph and implement the
“LiteX Accelerator” block, our custom-made accelerator block, and have data transferred to
and from the FPGA in a data loopback so information is read and then written to the FPGA.

In order to get this fully functional, we first need to get the FPGA first working as intended
so we can later integrate it with GNU Radio. This is done by making sure we have a working
FPGA bitstream loaded onto the device.!® This was made more difficult due to the fact | was
working completely remote for the entirety of this project, and it was all done over SSH with
created an extra layer of obscurity, but this was difficulty was quickly mitigated with
learning more about SSH and about the terminal.

Secondly, we needed to get GNU Radio interacting with the FPGA. GNU Radio and LiteX had
to be able to communicate with each other for this project to work. Without this, we cannot
get the FPGA embedded into GNU Radio to speed up the DSP functions in a way that is easy
for the developer. It would have to be done manually which would be timely and
complicated.

Thirdly, we need to create a GNU Radio OOT so that it would accept data transfer. Further
difficulty arose here because this was intended to be done in Python but switched to C++
due to change of scope in the project and because working with C/C++ is a lot easier with
LiteX and GNU Radio than it is in python(also due to the majority of people available to
answer queries use C/C++). Our initial example should be very simplistic just to be able to
show that the functionality works and giving us a foundation to build on top of and create
more complex examples if wanted. For our example, it simply takes in a number of floats,
and returns them back. The resulting flowgraph is a sine wave. At this point of time, | had
done zero programming experience in C++ so getting to grips with the language and learning
it while contributing to the dissertation was difficult at times.

15 Operating Systems Concepts, pg. 4 (Silberschatz, 2021)
16 “Bjtstream Explained” (Shan, 2021)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

5 - Approach & Application:

A considerable amount of time was spent researching GNU Radio, LiteX, the basics of C++
along with topics such as FPGA’s and how they work. This information was gathered from
the GNU Radio and LiteX wiki, the IRC chat where developers would answer queries, the
internet, and books.

The first part of the approach was to get the FPGA bitstream loaded onto the FPGA. The
approach to solving this problem was to get a working bitstream and build and load it onto
the FPGA. Further difficulties that arose would be solved by getting help from the LiteX chat.
The bitstream used, “sqrl_acorn_2021_07_29”, was provided by Florent Kermarrec of Enjoy
Digital, creator of LiteX. Using the command “python3 -m litex_boards.targets.sqrl_acorn --
with-pcie --driver --build —load”, this rebuilds and loads the FPGA image. The FPGA bitstream
was loaded onto the device manually by Mr. Kozel using Vivado’s Hardware Manager.

After this, our next target was to get GNU Radio interacting with LiteX. This would simply be
done by including necessary header files from LiteX into GNU Radio. All header files came
from the LitePCle library of LiteX.

Lastly, we would need to create our own block in C++ to allow for data to be read and
written. This would require extending “litepcie_util.c” located in the user directory of
LitePCle to allow for data loopback in GNU Radio.

GNU Radio has the “gr::block” implemented inside of it. It is the abstract base class for all
‘terminal’ processing blocks. ¥’ For example, the general_work block is called to perform
the signal processing. It reads the input items and writes the output items. It is where the
majority of the work in our program is done.

In the start function of our file “litexgnu_impl.cc”, our FPGA device is initialised and opened.
This was done in the gr::block::start() function due to it being used to enable drivers for i/o
devices.

bool litexgnu_impl::start()
{

static char litepcie_device[1024];

static int litepcie_device_num = @; //Channel number
snprintf(
litepcie_device, sizeof(litepcie_device), "/dev/litepcie%d", litepcie_device_num);

fds.fd = open(litepcie_device, O_RDWR | O_CLOEXEC);
fds.events = POLLIN | POLLOUT;
if (fds.fd < @) {
fprintf(stderr, "Could not init driver\n");
exit(1);

Fig 2.1 Start function

17 GNU Radio Manual and C++ API Reference: GR::BLOCK CLASS REFERENCE (GNU Radio Foundation, 2021)

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

Our FPGA is treated as a file and is opened as a file descriptor, “fds.fd” with 2 flags, 0_RDWR
and O_CLOEXEC. 0_RDWR is set to make sure the FPGA can only be read or written onto and
0_CLOEXEC enables the close on execution flag. We poll the device to make sure it is ready
to perform a task. If the device is greater than O (if a device is ready and is able to be used),
it opens, else it prints out the error message “Could not init driver”, and subsequently exits.
Similar to the gr::block::start(), there is a gr::block::stop() which disables the drivers. It is in
here where the device is closed. Originally, this was in a function called in the now defunct
“info” which would open the FPGA and read the FPGA identification. This function was then
called in the general_work block. However, using the start function improved readability
and allowed for easier refactoring.

Further down in the start function is the FPGA identification. This part of the program loops
and identifies uses “litepcie_readl” to print out the FPGA device and date and time that is
stored in “CSR_IDENTIFIER_MEM_BASE”. This is a memory address. The LiteX SoC has an
internal memory that can be read, and sometimes written. This address holds the ID string.
The loop in figure 2.2 reads one character at a time.

The last part of the start function is the dma loopback. We enable dma loopback on the
device to allow data to be sent from the host to the device and back to the host againin a
loop continuously.

unsigned char fpga_identification[256];

for (int 1 = 0; i < 256; i++)
fpga_identification[i] = litepcie_readl(fds.fd, CSR_IDENTIFIER_MEM_BASE + 4 % i);
printf("FPGA identification: %s\n", fpga_identification);

Fig 2.2 CSR Identifier Mem Base loop

There are 2 important limits that need to be calculated to avoid overflow. The first is the
sum of the DMA buffer sizes. The second is the number of available items in GNU Radio.
Each DMA buffer can hold 8192 bytes of data. The number of available items in GNU Radio
is calculated by the DMA Buffer total size (DMA count * DMA Buffer size = 2097152 bytes)
divided by the size of input_type in bytes. The sum of the DMA buffer count is 2097152
bytes.

In the general_work block, it contains the write event. This is the code that shows how data
is written onto the device. max_items_write is the DMA_BUFFER_TOTAL_SIZE divided by
the sizeof(input_type). The DMA_BUFFER_TOTAL_SIZE is defined as the DMA Buffer Count
(256) * the DMA_BUFFER_SIZE (8192) making the DMA buffer total size 2097152 bytes. The
sizeof(input_type) returns the size of the input_type in bytes. n_dma_blocks is the number
of DMA blocks. This is calculated by multiplying the number of input items by the
DMA_BUFFER_SIZE and dividing that by the size of the input_type in bytes. n_dma_items is
the number of DMA blocks multiplied by the DMA buffer size divided by the size of the
input_type in bytes. n_write_items are the items that are written to the device. It uses
std::min to calculate the minimum number between the max_items_write and the
n_dma_items).

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCle/Thunderbolt co-processor

bytes_written uses “write” to write to the device. The first parameter is the FPGA device,

“fds.fd”.

The 2" parameter is a void pointer which points to the variable “in” which is

pointer to a pointer of the memory location of the input items. If the bytes_written are not

equal to

the n_write_items * size of the input_type (which should give us the maximum

number of bytes available), an error message should be printed out.

/* write event x/

if (fds
int
int
int
int

.revents & POLLOUT) {

max_items_write = DMA_BUFFER_TOTAL_SIZE / sizeof(input_type);
n_dma_blocks = (ninput_items[@] * sizeof(input_type)) / DMA_BUFFER_SIZE;
n_dma_items = n_dma_blocks * DMA_BUFFER_SIZE / sizeof(input_type);
n_write_items = std::min(max_items_write, n_dma_items);

bytes_written = write(fds.fd, (void*)in[@], n_write_items * sizeof(input_type));

// if (bytes_written != n_write_items * sizeof(input_type)) {

//

std::cout << "Error: Max bytes already written" << '\n';

/7 } — This does not need to be printed everytime but still good to keep in
consumed_items = bytes_written / sizeof(input_type);

// std::cout << "Bytes written: " << bytes_written << '\n';

Fig 2.3 Write event code

This has been commented out since this functionality is not need in this stage, however, it
has not been removed because the code is still useful. If further development was done

with the

reading/writing, this could be uncommented out. The number of consumed items

is the bytes_written divided by the size of the input type. At the end of the general_work
block, the block can report how many items were consumed on each input stream using
consume() or consume_each().

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

Similar to the write event, is the read event. The main mechanics of the code are the same
as that of the write event. Instead, the read event uses POLLIN. Furthermore, for the
bytes_read it uses a void pointer which points to the variable “out” which is pointer to a
pointer of the memory location of the output items.

/* read event x/

if (fds.revents & POLLIN) {
int max_items_read = DMA_BUFFER_TOTAL_SIZE / sizeof(output_type);
int n_read_items = std::min(max_items_read, noutput_items);

// std::cout << "Reading items: << n_read_items << '\n';

bytes_read = read(fds.fd, (voidx)out[@], n_read_items x sizeof(output_type));

// if (bytes_read !'= n_read_items x sizeof(output_type)) {

// std::cout << "Error: Max bytes already read" << '\n'j;

// } - Again, this does not need to be printed everytime but still good to keep in
created_items = bytes_read / sizeof(output_type);

<< created_items << '\n';

// std::cout << "Items read:

Fig 2.4 Read event code

Another important part of the code is the statistics. This measures the rate of data transfer
in Gigabytes per second (Gbps). The duration is the time in milliseconds (implementation
located in liblitepcie.c) minus last_time (implementation located in litexgnu_impl.h). The
speed is the difference between the reader software count(reader_sw_count) and the last
reader software count (which is initialised to 0) multiplied by the DMA buffer size *
BITS_PER_BYTE (8 bits in a Byte) divided by the duration * 1e6 (number of ms/s).

/* statistics ¥/
duration = get time ms() - last_time;
if (duration > 200) {

double speed = (double)(reader sw count - reader sw count last) *
DMA_BUFFER_SIZE * BITS PER BYTE / ((double)duration * 1e6);
if (work_iteration % 10 == @)

printf(*\e[1mDMA SPEED(Gbps) TX BUFFERS RX BUFFERS DIFF ERRORS\e[Om\n"};
work iteration++;
printf("%14.21f %10" PRIu64 " %1@" PRIu64 " %6" PRIu64 " %7u\n",
speed,
reader_sw_count,
writer sw count,
reader_sw count - writer sw_count,
errors);
errors = 0;
last_time = get time ms();
reader_sw_count last = reader sw_count;

Fig 2.5 Statistics code

The variables needed for this to run are located in the “litexgnu_impl.h" file. They are
private instance variables of the “litexgnu_impl” class. Each litexgnu_implcc object gets its
own private set of these variables.

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

6 - Testing, Results & Analysis:

For testing the transfer speeds, we created a very simple GNU Radio flowgraph. It takes in a
signal source with a singular output, a sample rate of 32k and, a waveform of cosine. Itis
connected to our ‘LiteX Accelerator’ block which is then connected to a throttle block set to
32k and a probe rate. The throttle block is disabled as the sample rate is set to 32k;
however, the rate of data transfer is more than of 100x of that. If re-enabled, it is there to
make sure the average rate does not exceed a certain samples per second. The throttle
block is connected to a QT GUI Time Sink to visualise this.

Probe Rate print
Min Update Time (ms): 500 |rate

Mess Det
Update Alpha: 150m store]

PDU Vectors: On

print pdu

Signal Source
Sample Rate: 32k
lemd| wWaveform: Cosine
Frequency: 1k
[freq| Amplitude: 2
Offset: 0
Initial Phase (Radians): 0

LiteX Accelerator

QT GUI Time Sink
Number of Points: 1.024k
Sample Rate: 32k
Autoscale: No

Fig 2.6 Demo flowgraph

The probe rate block is connected to measure throughput. This probe_rate block is
connected to the “print” input of the disabled message debug block. The message debug,
when enabled, prints out the current rate of data transfer and the rate average. When the
flowgraph is run, it should produce a sine wave flowgraph if successful.

Statistics Example (on server-fpga) - o &
33 M Signal 1
23
3 E
3 17
ol 3
= 0
o E
E 13
< g
2—
33
L e L L
0 5 10 L5 20 25 30
Time (ms)

Fig 2.7 Sine wave output

Running the flowgraph gives us the correct output that we expected. When looking at the
console, it prints out the FPGA identification along with the DMA Speed, TX_BUFFERS,
RX_BUFFERS, the difference between the two and, the errors(although, the errors has been
initialised to 0 so this will always be zero). The first iteration gives us 0 for everything. This is
simply because, it hasn’t loaded properly and should be ignored. In subsequent iterations,
we can see we get a DMA speed from around 8.49 — 8.52Gbps. The highest theoretical
throughput is 16Gbps. A speed increase may arise from further optimising the code or by

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

using a better FPGA. Furthermore, recent changes in GNU Radio itself might help to see a
speed boost. Recently, GNU Radio introduced the concept of “Custom Buffers”. This allows
DMA transfers to be controlled by GNU Radio runtime rather than the LiteX accelerator
block. However, this feature was not available at the start of the project and may or may
not speed up the data transfer rate. Additionally, increasing the buffering in the LitePCle
implementation might increase the speed , however both things have not been tested.

As we can see, there is a difference between the TX_BUFFER and the RX_BUFFER. Ideally,
the difference should be 0, however, the current average is around 130.

FPGA identification: LiteX SoC on Acorn CLE-101/215(+) 2021-10-26 14:39:13

[1mDMA_SPEED{Gbp5]ITK_BUFFERS RX BUFFERS DIFF ERRORS[Dm
0.00 0 o 0 0
8.52 26144 26013 131 0
8.49 52193 52063 130 O
8.50 78248 78114 134 0
8.49 104299 104165 134
8.49 130351 130221 130
B.49 156396 156261 135
8.49 182440 182312 128
8.50 208502 208367 13L
8.49 234550 234413 137

[1mDMA_SPEED{Gbp5]ITK_BUFFERS RX BUFFERS DIFF ERRORS[Dm
B.49 260603 260467 136 0
8.49 286657 286529 12 0

cooooo

Fig 2.8 DMA speed in GNU Radio console log

When running the DMA test, we can see we are achieving identical speeds in comparison to
the data transfer in GNU Radio.

A S ./litepcie_util dma_test
DMA_SPEED(Gbps) TX_BUFFERS RX_BUFFERS DIFF ERRORS
B.49 26049 25921 128 63488

.49 52097 51969 128

.48 78113 77985 128

.49 104161 104033 128

.49 130209 130081 128

.49 156257 156129 128

.50 182337 182209 128

.49 208385 208257 128

.50 234465 234337 128

.49 260513 260385 128

DMA_SPEED(Gbps) TX_BUFFERS RX_BUFFERS DIFF

.50 286593 286465 128

.49 312641 312513 128
.50 338721 338593 128
.49 364769 364641 128
.50 390849 390721 128

[R R B RV R I R T R i e e

Fig 2.9 DMA speed console log

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based
PCle/Thunderbolt co-processor

7 — Conclusion:

Based on the results given to us by testing, this dissertation could be regarded as a success.
Although not all major objectives set out in the beginning were met, due to the high-level
base knowledge required for such a dissertation, | hope leniency would be applied. This
dissertation shows that LiteX can be implemented into GNU Radio and can be used for data
transfer in a loopback at quite high speeds. Another additional step would be to explore
why the TX_BUFFER and RX_BUFFERs aren’t aligning and why there is an average difference
of 130 on each iteration. An additional next step would be fleshing out the demo more and
using multiple input channels. If there was time for future work, it would be beneficial, to
see how the use of custom buffers could potentially help with a speed increase. Playing
around with the LitePCle buffer rate would also be on the next steps. The addition of
multiple channels in GNU radio is also one | would explore next.

Additionally, possibly separating the read and write functions into LitePCle source and sink
blocks could help with the increase of speed since each block would run its own thread.
Again, this would need to be tested.

8 - Reflection:

This dissertation has by far been the most difficult and complex project | have worked on.
However, it has also been the most interesting and rewarding thing | have been a part of. |
have learnt things that weren’t taught on the master’s course and have been able to
contribute to an open-source project that does useful things. It has been hard work, but it
has definitely stretched me.

| have learnt many important things during the span of this project. Time management
being one of the most important. The ability to learn complex topics in a timely manner has
also been very important.

One of the most important skills | have learnt is how to learn from my mistakes. A project
that required me to learn essentially everything from the ground up was always going to
have problems. However, the resilience needed to fail and make mistakes but to continue
pushing along was something | don’t think | had at the start of this project.

Accelerating DSP functions for GNU Radio by implementing them on an FPGA-based

PCle/Thunderbolt co-processor

References:

Dillinger, M., Madani, K. and Alonistioti, N., 2003. Software Defined Radio:
Architectures, Systems and Functions. [online] O’Reilly Online Learning. Available at:
https://learning.oreilly.com/library/view/software-defined-
radio/9780470851647/11 chapter001.html#ch001-sec001

Chen, Z. and Chen, K., n.d. GNU Radio. [online] Wu.ece.ufl.edu. Available at:
<http://www.wu.ece.ufl.edu/projects/softwareRadio/>

Arrow. 2018. FPGA vs CPU vs GPU vs Microcontroller: How Do They Fit into the
Processing Jigsaw Puzzle?. [online] Available at:
<https://www.arrow.com/en/research-and-events/articles/fpga-vs-cpu-vs-gpu-vs-
microcontroller>

Arrow. 2018. FPGA Basics: Architecture, Applications and Uses [online] Available at:
<https://www.arrow.com/en/research-and-events/articles/fpga-basics-architecture-
applications-and-uses >

Openocd.org. 2021. [online] Available at:
<https://openocd.org/doc/pdf/openocd.pdf>

Xilinx.com. 2018. FPGA Bitstream. [online] Available at:
<https://www.xilinx.com/html_docs/xilinx2018_1/SDK_Doc/SDK_concepts/concept_
fpgabitstream.html|>

Paul, G., 2015. Take Control of Your PC with UEFI Secure Boot | Linux Journal.
[online] Linuxjournal.com. Available at:
<https://www.linuxjournal.com/content/take-control-your-pc-uefi-secure-boot>
Wiki.gnuradio.org. 2020. What is GNU Radio? - GNU Radio. [online] Available at:
<https://wiki.gnuradio.org/index.php/What_is_ GNU_Radio%3F>

Wiki.gnuradio.org. 2020. Why would | want to use GNU Radio? [online] Available at:
<https://wiki.gnuradio.org/index.php/What_is_GNU_Radio%3F>

Redhawksdr.org. n.d. Home :: REDHAWK. [online] Available at:
<https://redhawksdr.org/>

GitHub. 2021. amalthea/intro.rst at main - greatscottgadgets/amalthea. [online]
Available at:
<https://github.com/greatscottgadgets/amalthea/blob/main/docs/intro.rst>
GitHub. 2021. GitHub - greatscottgadgets/luna: a USB multitool + nMigen framework
for monitoring, hacking, and developing USB devices. [online] Available at:
<https://github.com/greatscottgadgets/luna>

GitHub. 2021. GitHub - enjoy-digital/litex: Build your hardware, easily!. [online]
Available at: <https://github.com/enjoy-digital/litex>

Ni, Bin., n.d. Data Transmission - Parallel vs Serial Transmission. [online] Quantil.com.
Available at: <https://www.quantil.com/content-delivery-insights/content-
acceleration/data-transmission/>

Silberschatz, A., 2021. OPERATING SYSTEM CONCEPTS. [S.l.]: JOHN WILEY, p.4.

Shan, Y., 2021. Bitstream Explained - Yizhou Shan's Home Page. [online] Lastweek.io.
Available at: <http://lastweek.io/fpga/bitstream/>

Gnuradio.org. n.d. GNU Radio Manual and C++ API Reference: gr::block Class
Reference. [online] Available at:
<https://www.gnuradio.org/doc/doxygen/classgr_1_1block.html>

https://learning.oreilly.com/library/view/software-defined-radio/9780470851647/11_chapter001.html#ch001-sec001
https://learning.oreilly.com/library/view/software-defined-radio/9780470851647/11_chapter001.html#ch001-sec001
https://www.arrow.com/en/research-and-events/articles/fpga-basics-architecture-applications-and-uses
https://www.arrow.com/en/research-and-events/articles/fpga-basics-architecture-applications-and-uses

