
Cardiff University
School of Computer Science and Informatics

MSc. Computing

Designing And Implementing a Plant
Watering Assistant Using Raspberry Pi

MSc. Dissertation

Date: 05/11/2021

Author: Michael Chapman

Student Number: C1763954

Supervisor: Nervo Verdezoto Dias

Moderator: Parisa Eslambolchilar

1

Contents

1. Abstract ... 4

2. Introduction .. 5

3. Aims and Objectives .. 6

4. Related Work / Background ... 8

4.1. Project Inspiration ... 8

4.2. Online Projects/Tutorials ... 8

4.2.1. Moisture Sensor Systems ... 8

4.2.2. Plant Watering Systems ... 9

4.3. Previous Reports ... 9

4.3.1. Timer Based Plant Watering Systems .. 10

4.3.2. Sensor Based Plant Watering Systems .. 10

4.3.3. Plant Watering Systems with Visualisations ... 11

4.4. User Needs of a Plant Watering system ... 12

4.4.1. Summary of Previous Reports/Projects and Highlighted User Needs .. 12

4.4.2. Online User Survey .. 13

5. Requirements Analysis and System Design .. 13

5.1. Gathering Requirements ... 14

5.1.1. Survey Results ... 14

5.2. List of all Requirements ... 19

5.3. System Design .. 20

5.3.1. Use Case Diagrams ... 20

5.3.2. UML Class Diagram ... 21

5.3.3. Activity Diagram .. 23

5.4. System Architecture .. 24

6. Plant Watering Assistant; Prototype Concept Design .. 25

6.1. System Schematic .. 25

2

6.2. Prototype Components ... 26

6.2.1. Raspberry Pi (RPi) .. 26

6.2.2. Soil Moisture Sensor (ElProCus, 2019) .. 29

6.2.3. MCP3008 .. 31

6.2.4. Water Pump .. 33

6.2.5. Ambient Display .. 34

6.2.6. Data Collection ... 34

7. Development Stages ... 35

7.1. Monitor and record soil moisture levels of a plant over time 35

7.2. Water the Plant through manual operation .. 37

7.3. Develop a graphical interface to host manual pump operation 38

7.4. Host automatic soil monitoring via GUI ... 39

7.5. Generate visualisations of the system over time ... 39

7.6. Host visualisations via GUI ... 40

7.7. Water the plant when soil moisture level is too low 42

7.8. Send a SMS text when soil moisture level is too low 43

7.9. Record the time of watering the soil .. 44

8. Testing ... 45

9. User Testing / Evaluation ... 51

9.1. User Testing Results ... 52

9.1.1. Most Common Use of the Prototype ... 52

9.1.2. Improvements of the Prototype ... 52

9.1.3. Additions to the Prototype ... 53

9.1.4. Other comments ... 53

10. Discussion / Reflection .. 53

10.1. Survey Data ... 54

10.2. User Testing Data .. 55

3

10.3. Addition to the Field of Plant Watering Assistants.................................... 56

10.4. Personal Development ... 56

11. References ... 57

12. Appendix .. 64

4

1. Abstract

In this project, a system has been built that is capable of monitoring and watering a

plant based on their soil moisture level. This system is smart enough to send SMS

messages that relate to the plant status and can water the plant for the user. This

system comprises of a soil moisture sensor, a water pump powered via a relay, and

an ADC controlled by a Raspberry Pi to monitor and water a plant. The display features

a visualisation shown in a Tkinter window of the soil moisture level over time and

controls for the automatic watering and text SMS messaging.

The requirements for this system were identified via an online survey. This survey

provided public opinions and attitudes towards plant ownership and watering

practices. It also obtained quantitative data of the importance of potential features for

a plant watering assistant and how this might interact with the user.

The prototype developed was then evaluated via an online user study in which

participants would be walked through the basic operations and visuals of the

prototype. The participants were then asked to give feedback on what they have been

shown and suggest possible improvements or additions they would like to see to the

system.

5

2. Introduction

Smart systems are becoming more and more a part of our lives every day with people

choosing to buy smart systems that take over some of the more mundane tasks in life.

From organising our shopping to controlling the lights and heating in our homes, these

systems are becoming more advanced, cheap, and making our lives easier. Along

with these commercially available smart systems, comes the development of home-

made smart devices which often utilise microcomputers such as the Raspberry Pi and

Arduino; these home-made smart systems range from home assistants that rival Alexa

and Google Home to managing and playing from several streaming services, reducing

the reliance on more expensive smart TVs.

Using these microcomputers, the potential to automate your home can be greatly

increased. This is given that user has the technological know-how to set up these

systems or adequate support to do so.

One area of automated smart systems that appeals most to me is in the automatic

watering and monitoring of plants. As an avid plant owner, myself, I have found that I

often struggle with the regular watering of my plants. This is most in fact due to my

forgetful nature. As this is a regular occurrence, I started to think that there must be

some modern solution to this issue.

By creating a system that can water plants based on the soil moisture levels, the need

for human intervention in plant maintenance would be greatly decreased. This means

that people can grow any type of plant and not have the burden of watering on their

mind, leaving them free to pursue other interests or activities. On the market today,

there are current examples of smart gardening systems, however these come at a

cost and dedication to a brand. Through development of an open-source, low-cost

system such as a raspberry pi connected to some external components, the market

can be opened to the public to collaborate on smart systems that rival those found

online with a fraction of the cost. These systems are likely to not be quite as easy to

set up for the user, but after following online tutorials, could provide the same service

as commercial brands without having to break the bank.

This dissertation is going to investigate in more detail previously developed plant

watering systems and what the potential user of these systems might want. It will then

describe the development of a plant watering system and state how it is an

6

improvement of previously mentioned systems. Finally, there will be a critical

evaluation of the developed prototype, including data from a user study, rating the

systems effectiveness and features.

Based upon insight from an online survey, a system was built using a Raspberry Pi,

water pump, and soil moisture sensor. This system can water a plant based on their

soil moisture level, show the user in real time the watering habits, and notify the user

when the plant needs watering. This was developed primarily for indoor plants due to

the exposed electronics for prototype development but could later be expanded upon

to be waterproofed so that it would be suitable for outdoor use.

This system will also be able to water the plant for the user if they wish, and show the

user the times of watering and the soil moisture level over time. The visualisation of

this data will serve to provide insight into the plant’s watering needs which could help

to build a routine of watering or keep a status report of the plant’s needs. The system

will be built using one water pump and moisture sensor but developed with the mindset

of expanding to fulfil the needs of multiple plants in the future. This was decided as

many plant owners own multiple plants.

3. Aims and Objectives

The objective of this project is to develop a system capable of measuring, recording,

and displaying soil moisture levels. The system must be able to water the plant and

send notifications to the user when the soil moisture level is below a specified

threshold.

The method of best achieving these aims is to be reviewed via an online survey before

the development of the project. This survey will provide insight of public opinions,

attitudes and perceptions of plant ownership, watering practices, and plant watering

systems.

By gathering data relating to plant ownership, an understanding of the target audience

can be formed. This same audience will then be asked questions relating to their plant

watering practices, this is so that the necessity of the system as a replacement of

human plant watering can be evaluated.

7

A ranking question of the importance of potential features of a plant watering system

will then be asked to identify the key requirements for the system and preferred

methods of interaction/interfacing with the system.

This system will use a Raspberry Pi, a soil moisture sensor, and a water pump

powered via a relay to achieve the physical objectives. The method of notification is to

be determined via online survey responses, in which a wired method of communication

(an ambient display) and wireless methods (text SMS or email) will be ranked in

preference.

Primary Objectives:

- Evaluate user opinions, attitudes, and perceptions of plant ownership, watering

practices, and a plant watering assistant and its features.

- Create a RPi-based system that can measure and record soil moisture level via

a sensor and water the soil via a pump.

- Develop a method of automatically recording the soil moisture level and

watering the soil when the moisture level falls below a specified threshold value.

- Display the soil moisture and watering time data collected in visualisations for

the user.

- Notify the user when the system is not automatically watering the soil and the

soil moisture level falls below a specified threshold value.

- Allow the user to change the soil moisture threshold value for automatic

watering and notification.

- Critically evaluate the prototype developed via an online user study.

To thoroughly evaluate the effectiveness and useability of the developed prototype,

an online user study should be conducted. This study would ask participants to provide

feedback on the current design, structure, display, and running of the program. This

would then be followed by questions about the potential future, what the user might

like to see added or believe could be improved across any area of the system. Finally,

they would be asked if they would be likely to use the system themselves.

8

4. Related Work / Background

4.1. Project Inspiration

Raspberry Pi is a microcomputer of many capabilities. With the support of online

tutorials and documentation, the computer can be used to develop systems either with

physical components, or small, low-power programs that can perform a function such

as observing digital currency prices over time. (Raspberry Pi Foundation, n.d.)

(Pereira, 2019)

The capability of creating any system provided the technical knowhow, and seeing my

plants go waterless for days or weeks at a time drove me to investigate the current

systems that can fulfil this requirement. From this research, I found that there is a wide

range of projects that can be recreated to autonomously water plants, whether that is

via a timer or soil moisture sensor.

4.2. Online Projects/Tutorials

Due to the open-source nature of the RPi and the community that surrounds it, there

are many projects that aim to aid in plant watering in some form. This form of aid

ranges from a visual indicator near the plant, to systems with a sensor or timer and

water pump. These can commonly be found on forums for uploading tutorials for

recreation of these systems through open-source sharing of code and the

configuration (such as Arduino ProjectHub, Raspberry Pi Projects, Instructables.com

and Hacker.io).

4.2.1. Moisture Sensor Systems

Plant watering is a routine, and one that can be hard to get in to. For this reason,

people have previously developed systems to perform this watering task as a

replacement for human effort. This can be found in online examples that tend to use

either a Raspberry Pi or Arduino to operate a soil moisture sensor. (The Pi Hut, 2017)

(Vehlow, 2021) (Hossain, 2021) (Muller, 2019)

The choice between using an Arduino and a Raspberry Pi comes down to the user

preference. One main advantage of the Arduino is its ability to interpret analogue

signals, something the Raspberry Pi cannot do. In order to overcome this, an ADC

could be attached to the Raspberry Pi; an ADC converts signals from digital form to

analog.

9

All of these systems, whilst offering some form of feedback for the plant’s health, rely

on the user watering the plant. This does not fully satisfy the requirement of regularly

watering the plant. Notifications or feedback from the plant could easily be ignored by

the user if they are not able to water the plant in that moment. To satisfy this

requirement, a system should be able to replace the user in watering the plant.

4.2.2. Plant Watering Systems

In order to fulfil the necessity of replacing human interaction, systems have also been

developed that can autonomously water plants. These systems often rely on a soil

moisture sensor to determine when a plant needs water, and then act accordingly.

(Bill, 2017) (Archer, 2017) (Foxbot, 2014) (Graham, 2019) (Amri, 2020) (Eagan, 2017)

These systems often will record a soil moisture level using either Arduino or Raspberry

Pi. The examples range in functionality from being entirely behind the scenes (no

visual display or input), to having a display that allows the user to view some

information about the plant’s status.

To evaluate if a plant needs watering, some systems only use a digital response (0 for

“wet” and 1 for “dry”). Whilst this is the bare necessity of determining if a plant needs

water, it provides no indication as to the actual moisture level of the plant. Without this

indication, the user might have unknowingly set the moisture level too high or low for

the plant, so it is constantly in an undesirable state.

One of the main drawbacks of using most these systems is the lack of feedback for

the user. Because the system works autonomously, the user has no control and in

some cases indication of the plant’s status. This prevents the user from being able to

view watering habits and the soil’s state over time. The addition of a visualisation such

as the soil moisture level over time will then also enable the user to get into a habit of

watering their plants if they prefer to water the plants themselves. The simple addition

of being able to change the threshold for the automatic watering on a scale would

allow for better care of plants as different plants have different moisture needs.

4.3. Previous Reports

Many reports can be found online of previously created systems that can water plants.

These vary in capabilities from being timer based to sensor based, and from providing

no feedback to the user to providing a visualisation of the plant. Many of these systems

10

also use the Arduino microcomputers over the Raspberry Pi due to the ability to directly

interpret analog signals.

4.3.1. Timer Based Plant Watering Systems

As plants routinely need water, it is often that users will water their plants to a schedule

(for example, every Tuesday, Thursday, Saturday). For this reason, it can be

interpreted that a plant watering system could operate from a timer-based schedule.

This means that the plant will be watered at X, Y, Z times, regardless of the current

plant or soil condition. (Devira Ayu Martini, et al., 2020)

Systems that perform in this manner are shown to efficiently water plants, which is

visible in the soil moisture level. The downside to this approach, is that it does not

account for the change in weather. If it is a rainy day or cold season, the plant may not

need as much water as a hot dry day. This means that there is a potential for the

system to over or under water the plants that it monitors.

To best determine when a plant needs watering, there needs to be some quantitative

data taken from the plant environment. Without this data, there is no determining the

condition of the plant beyond visibly looking at it. This means that in the eventuality of

the user not being able to come home and water their plant, they do not know the

current condition of their plant or its needs.

4.3.2. Sensor Based Plant Watering Systems

Most of the systems found in journal articles and reports determine plant watering

needs by the soil moisture level. This is done via a soil moisture sensor. The reading

taken from the soil moisture sensor is interpreted by a microcomputer, and then the

plant is watered if the moisture level is below a specified threshold. (Swapnil, et al.,

2018) (Parwinder, et al., 2017) (Đuzić & Đumić, 2017) (Gupta, et al., 2016) (Ohja, et

al., 2016) (C M, et al., 2017) (Shrinidhi & Krishnamurthy, 2017) (Mayuree, et al., 2019)

This method of maintaining a plant is much more water efficient as the plant only

receives water when it needs it. This means that the system is much smarter as it

interprets a direct reading from the plant environment to determine it’s needs. Using

this method, the user would be able to leave their home, or forget to water their plant,

and have it taken care of according to the weather and actual needs of the plant.

11

Often in these systems, there is some feedback to the user, whether that is via email,

a LCD display, or text message. This highlights the need of communicating some

information to the user, however this is not done in a very thorough way.

By only showing the user the last moisture level recording, the user has no idea of the

history of this. This means that without the system the user would have no idea how

to care for their plant or understand the magnitude of the soil moisture reading.

To obtain data such as this, a visualisation of the moisture level over time, or watering

times needs to be progressively displayed so that the user may gain an understanding

of the plant’s needs.

4.3.3. Plant Watering Systems with Visualisations

The use of a visualisation of the soil moisture level over time provides the user with a

useable insight into the progress and history of their plant. This opens the possibility

of using a system to determine watering times without watering the plant for you or

showing you how the plants needs are changing over time. Some systems have been

developed that do just this, they show a plant soil moisture reading over time and

automatically water a plant. (Hong, et al., 2019) (Kumar, et al., 2019) (Wongthai, et

al., 2018)

In these reports, the soil moisture recorded from the plant was sent to an off-site

(physical or cloud) storage. This was then used for generation of a visualisation of soil

moisture level over time. This provides the insight for the user into the plant needs

over time. Using this data, the user might be able to maintain the plant themselves as

they can build a picture of watering times.

These reports also talk of the control option of turning automatic watering on or off.

This allows the user to maintain the plant on their own with the visual aid of the system

to show when the plant needs water.

These examples are very well-developed solutions to plant watering; they contain a

lot of devices that will be used in my project in a similar manner. The uploading of data

to a remote server means that the user does not have to be around the plants to

observer their current state, which also allows for much more freedom of accessing

the information and control options.

12

Whilst these systems enable the user to monitor plants and autonomously water them,

the systems depend on an internet connection to access and control the system. This

means that in the eventuality that the user does not have a strong internet connection,

they will not be able to control or view the system status. Therefore, the systems are

not appropriate in areas of poor internet connection. They also use a remote server.

These can be costly, so prevents the system from being suitable for users who cannot

afford the cost of a web or cloud server.

To overcome these issues, I will develop a system that is able to perform all the

functions of these systems above, in addition to storing data locally. This is so that the

user will always have access to the information. There is also a reduction in the cost

of the system as there will be no need for purchasing of physical or cloud data storage.

4.4. User Needs of a Plant Watering system

4.4.1. Summary of Previous Reports/Projects and Highlighted User Needs

From the previous work done in this field, there is a user need / desire for plant

watering systems. The base of this need is to be able to routinely water the plant.

The main highlighted needs are for the user to be able to monitor the soil moisture

level and have a system autonomously water a plant.

The ability to monitor the soil moisture level is often hidden from the user except for

the latest reading possibly being displayed. This does not reflect the plant’s needs very

well as there is no indication of the high and low levels you can expect from the soil.

Without this information, a user might see a measurement of 30% moisture in the soil

and assume that it needs watering, when in fact the plant might not need watering until

it falls to 20%. This is something that has been fulfilled in at least one report, but lacks

information such as the times of readings and desired soil moisture %.

This system will be more affordable than those that rely on back-end data storage,

such as the system created in X.Hong et al., as it comprises of less physical

components and will store all data locally. This increases the potential likelihood to

sell the system as well as it’s usability as there is no requirement of a constant stable

internet connection or cost of a data server. It will also be an expansion of functions

upon the work M.Mayuree et al. as the system will be able to show the user the soil

moisture level and watering times over time which will provide insight in to the watering

13

needs of the plant. This insight then would aid the user in following a habitual pattern

of watering the plant if they do not wish for the system to automatically do this.

4.4.2. Online User Survey

To obtain data relating to true user needs, desires, and motivations, an online survey

was conducted in which participants were asked about plant ownership, watering

practices and plant watering systems.

This survey was granted ethical approval by the School of Computer Science &

Informatics Research Ethics Committee at Cardiff University (See Appendix 1-4).

This survey was split into 3 sections. The first section was asking for participant

consent to their data being used anonymously as part of the research for this

dissertation.

The second section asked questions about plant ownership and watering practices.

These questions obtained a demographic for the user base of the project. It highlighted

how many people willing to conduct the survey were plant owners and the reasons

why their plant is not watered enough, if applicable. Section 2 also asked about how

often the user waters their plants. This demonstrates how much use the system would

expect to have if it is to replace a human watering a plant. By obtaining a potential

user base and amount of use of the system, statistics for the target audience and

practicality of the plant watering assistant can be formed (as seen in section 5.2).

Following this, section 3 went on to ask about a plant watering system’s requirements

and appeal. Firstly, a question of if they user would be interested in a plant watering

system was asked. This gathered a clear demographic for potential users/buyers. Next

came a question ranking (1 to 5) some potential features of a plant watering system.

This ranking obtained quantitative data of what features are the most

important/desired by the user so that requirements can be gathered. This was followed

by a question about the preferred medium of notifications from the system. One option

was to be chosen from a radio field as the preferred method. This was done so that

the best notification method could be added to the requirements of the system.

5. Requirements Analysis and System Design

To evaluate the importance of each of these user needs, the online survey results

were reviewed to identify the requirements of a plant watering system. This review will

14

determine which of the potential criteria for a plant watering system are necessary for

fulfilling the users’ needs/desires.

5.1. Gathering Requirements

To develop a system that is both user friendly and relevant to the target audience, an

online survey was conducted to obtain anonymous public opinions of plant ownership,

watering practices, and a plant watering system.

5.1.1. Survey Results

An online survey was conducted over 2 weeks using Microsoft Forms stored on my

university account. There were 22 responses and 21 out of 22 (95%) of respondents

owned at least one plant.

Figure 1 The question above serves to obtain information relating to the amount of use

a plant watering system would have in home environments. It shows that most people

water their plants several times a week or less. This does not account for the actual

plant’s needs.

10

5

3

1

2

0

2

4

6

8

10

12

< 3 times a week < 3 times a month < 1 time a month < 3 times a year When needed

If you own a plant, how often do you water it?

15

Figure 2 This graph shows that of those who responded to this question, 8/21 (38%)

of participants may find a plant watering assistant useful to keep on top of the plant's

watering needs.

Figure 3 There is a clear indication of a market for a plant watering assistant as 8/22

(36%) respondents have shown a clear interest in owning plants if they had such a

system.

11

8

1 1

0

2

4

6

8

10

12

My plants are always

watered

I forget to water my plant It does not need watering Drought

If you own a plant and it does not get watered enough why

is this?

8

6 6

2

0

1

2

3

4

5

6

7

8

9

Yes No Maybe I don't know

Would you be more inclined to own a plant if it required

less time and maintenance (e.g. regular watering)?

16

Figure 4 This question shows a more specific interest in the plant watering assistant

as 10/22 (45%) of respondents are interested in the device.

How important, from 1 (Not at all important) to 5

(Most important), are each of the features listed

below for a system to help you maintain healthy

plants?

 To be

able to

monitor

soil

moisture

levels

To be

able to

view

plant

watering

patterns

/ needs

To be

able to

be

notified

when a

plant

needs

watering

To be

able to

view

the

weather

for that

day

1 Not at

all

1 1 0 4

2 Not

very

important

1 0 1 5

3 Neutral 4 4 0 8

10

3

8

1

0

2

4

6

8

10

12

Yes No Maybe I don't know

Would you be interested in a system that is able to help you

water plants?

17

4 Quite

important

12 14 10 4

5 Most

important

4 3 11 1

Total

Score /

110

83 84 97 59

Figure 5 This ranking question helped serve to gathering requirements for the watering

assistant as the key features highlighted as quite or most important were used to

determine the aims and objectives of the project. Those ranked as less important were

not included in the objectives due to the lack of interest.

This hierarchy is assigned through accumulative score (1 to 5 x number of responses)

for each requirement.

Figure 6 This question serves to gather which contact medium is the most desired.

The results highlight the need for an ambient display with visualisations and text

messaging relating to the plants and system environment. Email communication was

not integrated due to the low number of responses.

11

2

9

0

2

4

6

8

10

12

Text SMS Email Ambient display (e.g., a small

screen around the

plants/environment)

If you had an automatic plant watering system, what would

be your preferred method of contact for notifications from

the system?

18

8 out of 21 participants stated that they do not water their plant because they forget.

This indicates that over 1 in 3 (38%) of plant owners would benefit from a plant

watering system as a solution to this issue.

Furthering this large target audience, 10 out of 22 (45%) participants said they would

be interested in a system that is able to help water plants. 11 out of 22 (50%) of these

also said that one of the most important features of a system to help maintain healthy

plants is to be able to be notified when a plant needs watering. This is a large

demographic whom this project would be of interest to.

5.1.1.1. Survey Results / Summary

From the survey results, the following conclusions can be drawn:

- There is a clear interest in a plant watering system for everyday use

- The system should be expected to water a plant or prompt the user to water the

plant several times a week

- The main reason plants are not being watered by their owners is due to

forgetfulness

- The most important requirements for a plant watering assistant are:

o to be able to monitor soil moisture levels

o display information about plant watering

o to be able to notify the user when the plant needs watering.

- The main user interfaces for the system should be an ambient display and text

SMS.

The survey proved successful in gathering requirements for a plant watering assistant.

Due to the large number of responses expressing interest in a plant watering system,

there is a clear want / need for such a device in people’s homes.

The responses highlighted the requirements of the system watering or prompting the

user to water their plant several times a week, as well as that the main reason plants

might not be watered is because the owner forgot. Furthermore, the requirements

ranking shows that the most important requirements are to be able to:

1. Notify the user when the plant needs watering

2. Display information about plant watering (soil moisture and time watered over

time)

19

3. Monitor soil moisture levels

This notification should be either via the ambient display, text SMS or both. This was

decided based on the high number of responses for both text and ambient display

notifications.

From these requirements, there is the extension to the system of needing to be able

to control their uses. The user needs to be able to determine which processes they

want the system to run and how that best suit both them and the plant. They therefore

must be able to:

1. Change the threshold for automatic watering and text SMS notification

2. Turn the automatic watering on/off

3. Turn the SMS message notifications on/off

4. Change the number the SMS messages are send to

As the weather indicator for the current day scored below 60% (59/110) it was not

added as a requirement of the system.

5.2. List of all Requirements

For a fully functional system all the following requirements must be met:

1. Create a dataset of soil moisture level over time

2. Add new moisture readings to the dataset

3. Create a dataset of watering times

4. Add new watering times to the dataset

5. Display soil moisture level over time

6. Display the last watering time

7. Automatically water the plant when the moisture level is too low

8. Manually water the plant

9. Turn the automatic watering on/off

10. Send an SMS message when the moisture level is too low

11. Change the number the SMS message is sent to

12. Turn the SMS messaging on/off

13. Change the level at which the automatic watering and/or SMS message is sent

20

5.3. System Design

From the online survey data, the most important use cases/requirements can be

identified. To fulfil these requirements, the user must be able to conduct the following

use cases:

5.3.1. Use Case Diagrams

Figure 7 Use Case Diagram highlighting the user’s interactions with the system and

database functions. Created on www.lucid.app

These uses cases allow the user to be able to monitor the plant moisture level over

time, receive notifications when the plant needs watering, and set the system to

automatically water the plant. These are essential for the maintenance of healthy

plants and should include control options such as setting the automatic watering

http://www.lucid.app/

21

threshold and changing the SMS notification number. Without these controls, the

system and user might not be best fulfilling the plant’s needs and do not allow the user

the option to use the system as they wish. For example, some users might only want

to view the moisture level over time and receive SMS messages. This would allow the

user the satisfaction of watering the plant themselves without the mental burden this

usually entails. This means that use cases involving control over the system are

essential for the user.

The database automatically is involved in the use cases as it is the storage medium.

Without the involvement of a database, the user would not be able to view the moisture

level or watering times over a time scale.

5.3.2. UML Class Diagram

Figure 8 UML Class Diagram showing all the objects, classes, and functions. (Created

on www.Draw.Io)

The above UML Class Diagram demonstrates the physical and computational objects

of the program. All the classes inherit information from the ones above them.

The soil moisture sensor sends information to the ADC which is received by the

Raspberry Pi and is used in the CSV File class. This class oversees the data storage

and retrieval for all data then used in the program. From this CSV File class, the

http://www.draw.io/

22

information is also used to view the moisture graph of soil moisture level over time.

This is then hosted in the background class, which is the main loop of the program so

inherits all from the classes above.

The classes on the right of the diagram (Water Threshold, Phone Number) are all

linked to user input. These classes operate via the buttons and GUI based on user

interaction. The one object without user input is the physical object, the water pump.

This is pre-defined and cannot be changed as there is only one water pump and the

connection for this is specified in the schematic.

23

5.3.3. Activity Diagram

Figure 9 Activity diagram showing the back-end processing and how user interactions

operate in the system. (Created on www.Draw.Io)

http://www.draw.io/

24

From the flow diagram above, the most important elements to note are that:

• The GUI (found in the middle of the diagram) can perform the functions

underneath regardless of the state of the current system.

• The setup only runs upon the first loop of the program and runs before the

launching of the GUI.

• The background function is queued to run once every hour

• The moisture watch function is queues to run once every hour

5.4. System Architecture

Figure 10 Contextual Diagram illustrating the connections between the components in

the system.

The contextual diagram above demonstrates the centrality of the Raspberry Pi to the

prototype, as it is connected to every component in the system. The ADC and soil

moisture sensor do not need to be connected to the mains power due to their lower

voltage requirements (3.3V-5V). The water pump however needs more power than the

RPi GPIO pins can provide. This means that it must be connected via a higher power

source, the mains power. To control the water pump, its power circuit is connected to

a relay. (Components101, 2021) The Raspberry Pi send a signal to this relay to open

or close the circuit, turning the water pump on or off. Each component shown above

will be explained in much more detail later in this report.

25

6. Plant Watering Assistant; Prototype Concept Design

6.1. System Schematic

The above schematic is for the complete system as it is currently functioning. On the

left is the RPi with pins connected to the different outputs of the MCP3008 and a relay.

Figure 11 Schematic Diagram illustrating the wire connections between components

in the system. Pictured with one water pump and one soil moisture sensor. The

breadboard is a connection medium used to ease the supply of power to be shared by

multiple components. (Created on www.smartdraw.com)

http://www.smartdraw.com/

26

The MCP3008 is then connected to the soil moisture sensor and water level sensor

which provide the analog output to be converted by the ADC. These sensors and the

ADC are all powered via the breadboard connectivity to the RPi 3.3V output pin.

The relay is connected to the water pump as previously mentioned and does not have

any analog output as it is a simple on/off operation. Data is then obtained from the

time at which the RPi turns this pump on and off.

The components chosen are capable of functioning with the addition of 4 extra water

pumps and 6 extra soil moisture sensors. This means that the system could maintain

up to 7 plants and water in up to 5 different times. This would have the application of

working for an indoor garden comprising of multiple different soil beds and plants. If

this system was expanded to this capacity, separate pumps would not be the ideal

solution. A more idyllic adaptation of the system would be to control valves all fed by

one water pump. This allows for the targeting of specific plants, whilst saving power

usage of using multiple water pumps. This theoretical system would also have a much

greater water usage so would need either a wider water tank so the same water level

sensor may be used or use a valve to control water flowing from a self-replenishing

source such as a water butt. The code would then also have to be adapted to arrange

the display to allow for multiple visualisations in the same space.

6.2. Prototype Components

6.2.1. Raspberry Pi (RPi)

A RPi is a small computer that runs off a Linux-based operating system and can do

anything a normal computer can. It originated from the desire to bring cheaper

computers to children/students as a method of teaching computing. By creating a more

affordable computer, people are able to find computerised solutions to problems and

educate themselves in the world of computer science. As stated on the official

Raspberry Pi website, “We make computing and digital making accessible to all

through providing low-cost, high-performance single-board computers and free

software.”.

6.2.1.1. Use of a RPi in this project

The RPi that I have used in this project is a Raspberry Pi 4 Model B. An illustration of

this can be seen below with the significant parts used in this project labelled.

27

the keyboard and mouse ports

are 2x USB 2.0 and 2x 3.0

ports. The micro-SD card is the

most common method of

storage for the RPi; usually it

contains the operating system

(Raspbian), so is the boot drive

for the computer.

The power adapter is 5v and

can be supplied by either a plug

or battery of this voltage.

It is capable of either wired

connection to the internet via the Network port or can connect wirelessly via an

integrated 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE chip.

There are also 2 micro-HDMI ports, meaning the RPi can connect to 2 monitors that

support HDMI.

The pins at the top of the image (labelled electronic components) can control small,

physical electronic components via the RPi. This array of pins is called the header and

is comprised of 40 pins that can connect to electrical components using jumper wires.

This project relies heavily on these pins to connect and power different sensors and

motors that observe the soil moisture and control the water pump for the plants.

Figure 12 Example Diagram of a Raspberry Pi 4B

with labelled ports. (Raspberry Pi Foundation, n.d.)

28

These pins have 4 main types: Power (3.3v or 5v), Ground, GPIO and ID EEPROM.

The first 3 specified types are the most important in this project as all components

must be positively powered, grounded, and have a means to transmit or receive data.

The GPIO pins send and receive digital signals. These signals can be used to turn

components such as motors on or off or receive data such as if a switch has been

pressed. The GPIO pins are limited in that they can only directly interpret and send

signals in the forms of 0 (high) or 1 (low). Whilst this has great use in turning a motor

on or off as it only has 2 states, it has the limitation of needing to be connected to other

components to be able to receive values outside of this binary range (such as checking

the humidity or temperature on a scale).

Figure 13 Expanded Description of the Header on a RPi with pins labelled.

Figure 14 A colour-coded representation showing the type of each pin on the RPi

header.

29

All components that are connected and not powered via the GPIO pins (for example

a temperature sensor) must be powered via a 3.3v or 5v pin. The voltage used is

usually determined by the voltage capacity of the component and is a common

operating voltage for small electrical devices where use of 240v mains would normally

overload and break the components. Any component that sends data via a GPIO pin

must also have a constant power supply to obtain a reading that can be sent to the

RPi. Often these readings come from differences in voltage across the component.

Every component therefore must be connected to a ground pin. This completes the

circuit and is necessary for the function of any electrical component.

The ID EEPROM pins are used for connection to other boot devices such as an SSD

and will not be used in this project.

6.2.2. Soil Moisture Sensor (ElProCus, 2019)

The soil moisture sensor is a small pair of electrodes and comparator that can be

connected and powered by the RPi. This sensor reads the voltage flowing between

the two electrodes to obtain a reading of conductivity. It must be connected to a power

supply (3.3v pin), ground pin, and GPIO pin. When the sensor is powered a green LED

on the comparator board turns on to indicate that it is ready to be immersed in a

conductive medium (soil in this case).

The two pins at the top of the comparator board (as pictured above) connect to the

electrodes. These pins are labelled “-“ and “+” and connect to the corresponding

terminals on the electrode. This allows for a voltage reading to be taken across the

Figure 15 Comparator board used to adjust the sensitivity of the soil moisture sensor

and obtain digital and analog values from the difference in voltage supplied. Image

taken from (Nettigo, n.d.)

30

electrodes when they are immersed in a conductive medium. (Last Minute Engineers,

2019)

There are two LEDs on the board, DO-LED and PWR-LED. The PWR- LED turns on

when the sensor is powered, and the DO- LED turns on when the sensor is fully

powered and the electrodes are immersed in a conductive medium (water, soil, etc.).

The bottom four pins are labelled AO, DO, GND and VCC, which stands for analog

output, digital output, ground, and voltage at the common collector, respectively. The

positive terminal of the power supply (the RPi) must be connected to VCC pin, and the

negative terminal connected to GND pin. The AO pin should be connected to an

analog input and DO pin should be connected to a digital input; neither the DO nor AO

pins need be connected for the sensor to operate, however no reading can be taken

without them.

There is also a potentiometer on the comparator board. A potentiometer controls the

sensitivity of the comparator board (the resistance at which a digital signal is sent from)

and could be used to determine the wetness of soil. As this relies on the user adjusting

the potentiometer to their preferred level with no readable data to base it off, it will not

be changed or relied upon in this project.

The comparator board operates by comparing the voltage going in to and out from the

electrodes. The difference between these voltages is then measured and output via

the DO pin as a 1 or 0, or AO pin as a signal on a wave.

This difference in voltages is directly proportional to the resistance of the soil. The

higher the resistance of the soil, the less water and salts (conductive mediums) are

present between the electrodes. (United States Department of Agriculture - Natural

Resources Conservation Service, 2011)

By measuring the difference in voltages over time, the data will show a decreasing

concentration of absorbed water in the soil. This measurement can act as an indicator

for when the soil / plant needs more water as the decreasing voltage is directly

proportional to the decreasing water concentration in the soil. This allows for accurate

data regarding soil moisture to be taken at any time and this can be sent to the RPi.

The data obtained by the soil moisture sensor can be sent in either a digital form

directly to the RPi in the form of 1 if the soil is dry or 0 if the soil moisture is above the

31

threshold level, or an analog form which involves using an Analog to Digital Converter

(ADC) as the RPi cannot interpret analog signals.

Figure 16 The Soil Moisture Sensor used, including the comparator board which

provides digital or analog data and adjusts sensor sensitivity. (AZ-Delivery, 2021)

This soil moisture sensor was initially tested using an example tutorial found online.

This tutorial detailed the circuit diagram and example code to test the functionality of

the sensor. (Heng, 2019)

The testing of the moisture sensor was initially done without the use of an ADC as the

component could be competently tested in a range of conditions with only digital

feedback (1 for dry / absent of a flow of current or 0 for wet / immerged in a conductive

medium between the electrodes).

A drawback to using this sensor was discovered over the course of testing as after

twenty-four hours of submersion in soil, the sensor showed signs of wear due to

electrolysis between the two electrodes. This questioned the longevity of the system,

as even when the sensor was not actively sending data to the RPi, the electrodes were

still being powered and corroding over time, reducing the accuracy of readings. For

this reasoning, future applications of this project should be adapted to use a capacitive

soil moisture sensor which does not rely on the use of electrodes, thus, negating the

issue of the sensor corroding over time.

6.2.3. MCP3008

A RPi is unable to receive and interpret analog data. For this reason, an ADC must be

used. The ADC takes in analog outputs from sensors and converts them to a digital

signal which is then sent through a GPIO pin on the RPi; this allows for the collection

32

of a range of values which can be used to build a visualisation that helps to better

understand the system.

Figure 16 MCP3008 Chip. (The Pi Hut,

n.d.)

In this project a 10-bit resolution ADC was used. 10-bit means that the ADC sends a

signal of 10 binary digits in length.

A binary signal is comprised of an array of digits of value 0 or 1. The value of these

digits increases by 2x as you go from right to left.

Example 10-bit binary number to decimal number conversion:

Binary

value

1 0 0 0 1 0 0 0 0 1

2x value 29 28 27 26 25 24 23 22 21 20

Decimal

value

512 256 128 64 32 16 8 4 2 1

Binary Value = 1000100001

Decimal Value = 512 + 32 + 1 = 545

This means that the 10-bit ADC can send a maximum value of 1023 (1111111111 in

binary) and minimum value of 0 to the RPi. The ADC used was MCP3008 which can

accept up to 8 different analog inputs to convert to a digital data form, one at a time.

Use of the MCP3008 allows for the expansion of the system to monitor 8 different

analog sensors.

Figure 17 MCP3008 Chip with pins
labelled. (M.Sklar, 2012)

33

6.2.4. Water Pump

No plant watering system would be able to do just that without irrigation. A water pump

was connected to a 4-channel relay and power output. This relay then receives signals

from the RPi to turn on or off via the GPIO sending a signal of High (on) or Low (off).

(Johnson, 2019) The pump was also connected to an external power source due to

the power requirement of 5V, which cannot be constantly supplied by the RPi header

due to its use in other components.

This could also be adapted to feed from a battery that is constantly being powered by

a Raspberry Pi. This works as the power storage serves as a backup when the RPi is

unable to supply 5V and slowly tops the battery storage back up over the time between

pump uses.

As shown in the picture above, the water pump used has exposed cables. To be able

to use the pump with a relay, a USB cable had its female jumper cables removed so

that the exposed wires could be attached as required. This entailed soldering the

positive (red) cable to the positive (red/brown) cable of the water pump and connecting

Figure 19 USB cable with female jumper cables (red is positive, black is negative,

green is data positive, white is data negative). (The Pi Hut, n.d.)

Figure 18 Immersible water pump; shown with exposed power cables (red/brown is

positive, blue is negative). (The Pi Hut, n.d.)

34

the negative (black) cable to the ground part of the relay. The water pump’s negative

(blue) cable was then connected to the “normally open” part of the relay. This means

that the circuit is “open” (there is no flow of current) until a signal is sent via the RPi to

“close” the circuit.

The water pump was tested in a similar manner to the soil moisture sensor, using

online tutorials as examples for the configuration and code to test the functionality.

This used the GPIOZero module on the RPi to control the pump operation.

6.2.5. Ambient Display

To view how the system is performing and see plant watering patterns, a display was

connected to the RPi which showed an updating visualisation of the soil moisture level

over time, and times the plant was watered. The display also has features of turning

the automatic watering on and off as well as notifications through SMS text messaging.

The visualisations of soil moisture over time enable the user to understand the amount

of use of the system and possibly get into a routine of watering the plant themselves

if they do not wish to use a water tank and pump to water their plants.

Tkinter was the chosen module to produce the graphical user interface (GUI) due to

its wide range of online support and ease of supporting the running of functions in the

background of the GUI. (CorporateBridgeGroup, 2021) This meant that the system

would be able to monitor the soil moisture level and act accordingly without the user

being aware or having to perform any tasks themselves.

6.2.6. Data Collection

A python program was created that stored gathered data in a csv file every time the

plant was watered, and every time the soil moisture level was checked, also recording

the time of these operations. This was then analysed and added to a visualisation on

the ambient display.

To prevent redundant information, at the launch of the program, it will check which

ADC channels are connected to soil moisture sensors. This is determined by the value

read from these channels. If it believes a soil moisture sensor is connected, only then

will it create a csv file for the data collection of this channel.

35

7. Development Stages

To stick to a design methodology and keep the operation of functions independent,

the following development stages were taken:

• Monitor and record soil moisture levels of a plant over time

• Water the plant through manual operation

• Develop a graphical user interface (GUI) to host manual pump operation

• Hosting automatic soil monitoring via GUI

• Generate visualisations based upon soil moisture level over time and

watering times over the course of operation

• Host visualisations via GUI

• Water the plant when soil moisture level falls below a specified

percentage

• Send a message to the user when soil moisture level falls below a

specified percentage when automatic watering is not active

• Record the time of automatic watering over time

Initial testing of the system was done modularly, with each component of the system

being tested independently. This was done to ensure that the components were

connected correctly, functioning as expected, and were independent of each other.

Treating each component as separate in the code also allows for easier expansion of

the system to support multiple sensors. This is because the same functions can be

independently drawn upon to serve several sensors.

7.1. Monitor and record soil moisture levels of a plant over time

The soil moisture sensor was tested initially without the use of the ADC. This meant

that the sensor’s digital output (DO on the comparator module) was directly connected

to a GPIO pin on the Raspberry Pi.

From this connection, a python script was able to tell if the sensor was outputting a

High (0) or Low (1) value. This was done using the GPIOZero module which allows

the RPi to check if a component connected to the specified pin is on or off. (Nuttall,

2015) The program would then output the value of the input device which was either

a 0 when the sensor was sending a digital signal (there is a flow of current between

36

the electrodes), or 1 when the sensor was not sending a signal. In addition to this, the

comparator module indicator light turns on when a voltage is being measured.

The above program would query a value from the soil moisture sensor via the GPIO

pin it was connected to (4 in the above example) and then would print the value.

When the value returned from the soil moisture sensor was 1, this meant that there

was no digital output, i.e., the plant was not watered based on the potentiometer

sensitivity. If the plant soil moisture level was above the threshold, a value of 0 was

returned along with the statement “Moisture threshold reached”.

Whist this method provides a reading of soil moisture level that can be tuned to the

level of a well-watered plant via adjusting the potentiometer, using a digital output only

produces values 0 or 1. This does not provide much of a scale / measurement of

moisture level on which to evaluate the plant’s requirements. For this reason, the soil

moisture sensor was connected to an ADC which is capable of producing a value of

10-bit resolution (0 to 1023). The values produced by this ADC makes the data much

more precise and informative. Using a range of 0 to 1023, a graph would be able to

show how wet or dry the soil is, something that cannot be done with values of just 1

or 0.

To interpret the values from the ADC, the Python module SpiDev was used. (spidev,

2020) (Hawkins, 2013) Because the RPi can only interpret values of 1 or 0, several

GPIO pins are connected to the ADC. These ADC channels then in turn send a signal

of 1 or 0 to the RPi GPIO pins equivalent to the soil moisture sensor reading, starting

from the highest binary value of 512, and working its way down to the binary digit value

of 1. This works by taking the smallest binary value and then pushing the bits along,

off the edge of the binary number to obtain a value that can be interpreted by the RPi.

(Dhaker, 2018) (Hughes, 2017) This means that the soil moisture sensor analog output

can be interpreted by the Raspberry Pi to form a larger scale of measurements.

37

Example Binary Value: 0011010010

ADC Bit Sent to

RPi

Binary Value Decimal Value Decimal Cumulative

Total

1 0 512 0

2 0 256 0

3 1 128 128

4 1 64 192

5 0 32 192

6 1 16 208

7 0 8 208

8 0 4 208

9 1 2 210

10 0 1 210

The measurement from the ADC channel was first checked against an anomaly

excluder as the unoccupied channels often reported measurements larger than 0. The

value of 2% was chosen as this anomaly excluder as it had not been seen in any test

run that the unoccupied channels exceeded this threshold value. The validated data

taken using an SPI transaction was then stored in a .csv file using the csv and os

module for Python.

Any reading over the anomaly excluder was then stored in a newly created table under

the name of the ADC channel the value originated from if a table did not already exist.

This data was recorded with the unique date-time value acting as a primary key.

The data was stored in a .csv file to allow for easier manipulation and visualisation

creation via MatPlotLib, numpy, and Pandas later in development. This visualisation

would help to provide insight into the rate of decrease in absorbed water, which is

strongly linked to the frequency the plant needs watering.

7.2. Water the Plant through manual operation

The water pump required more initial setting up for it to be controllable via the RPi.

This is because it has a higher voltage than the other components of 5V-12V. This

meant that it had to be connected to the power via a relay and RPi USB-port. This was

then switched on/off via a GPIO pin on the RPi controlling the relay status. This

connection allowed for easy control of the pump via the setting of a GPIO pin output

38

to “Low” to turn the pump on, and then after a delay, setting the GPIO pin output back

to “High” to turn the pump off. This relied on the RPi.GPIO module which enables this

control over GPIO pins on the RPi header. To overcome the possible height difference

between the water tube and the plant, the pump was set to turn on for 2 seconds

before being turned back off.

Upon exiting the program, the RPi recommend to “clean-up” the GPIO pin settings.

(Eames, 2013) This is a function of the GPIOZero module and is made to prevent

damage to both connected devices and the RPi itself. Without cleaning up the pins,

there is the potential for a pin to be left on “Low” which would send a voltage to any

connected device. This could also potentially damage the RPi as a sent voltage might

short-circuit and fry the RPi computer.

The time of manual watering was also recorded in a .csv file for later use in a

visualisation so that the user may see when the plant was last watered and how often

it is being watered.

7.3. Develop a graphical interface to host manual pump operation

Python has a wide range of Graphical User Interfaces (GUIs) that are supported and

are capable of running operations in the background. Tkinter is one of these GUIs and

was chosen for use in this project due to the wide range of online support and its ability

to easily run background functions in the interface without interfering with, or being

affected by, the user input.

Tkinter allows for the development of a GUI that can be as complex as you are willing

to put the time in. It can support a grid layout and host a range of other Python

modules. For this stage of development, a simple window was created which housed

a button. (Python Examples, n.d.) (TutorialsPoint, n.d.) (Python Tutorial, 2020) This

button would run a function that operated the water pump as described in the previous

development stage.

This function had the GPIO pin that controls the water pump to be pre-defined in the

python program to run from the button. As there is only one water pump in the

prototype, there was no need for parsing of arguments to the function in charge of

pump operation meaning that this solution was adequate.

39

7.4. Host automatic soil monitoring via GUI

This Tkinter GUI was then expanded to run the soil moisture sensor functions from

section 7.1 automatically upon start-up of the program.

This worked by queueing the function that recorded the soil moisture level after the

GUI had initialised. This function operated the same as is described in section 7.1. For

continuous readings to be recorded, the function from section 7.1 was changed to

queue itself after a 2 second delay (this is a shorter delay than the final prototype so

that testing could be done in a reasonable time frame).

In the final prototype, the queue time for the looping of this function would be a much

later timeframe (e.g., every hour). This is because the soil moisture level is very

unlikely to change within 2 seconds, so creation of a line graph of this dataset over a

large time period (an hour or longer) would look messy and harder to read than a

dataset of wider spread recording times.

This stage of development enables the user to be able to turn the pump on manually

at the press of the button whilst the program automatically recorded the soil moisture

sensor reading in the background.

7.5. Generate visualisations of the system over time

Matplotlib is a very powerful module that can be installed and used with Python to

develop visualisations. When combined with other Python modules Pandas and

Numpy, Matplotlib can be used as a simple tool to generate an easy to read and

understand visualisation. (Tiwari, 2021) For this reason, these modules are often used

together in data analysis using Python and were chosen for the data analysis in this

project. The chosen visualisation for this plot was a line graph as it would shows a

clear trend of soil moisture level change over time.

To begin with, a real dataset (a .csv file) of soil moisture level over 10 minutes recorded

with 5 second intervals was loaded using the Pandas module and relevant data

columns selected. (Gabriel, 2018) These columns were then plotted in a Matplotlib line

graph hosted in a Tkinter window. (Alarik, 2016) This clearly showed dataset and

helped understand what modifications had to be done to the data for an easily

readable visualisation to be generated.

40

Figure 20 Example plot with overlapping x-axis values of the time recorded.

As you can see in the figure above, the bottom axis needed to be modified to prevent

the overlapping of time recordings. To do this, the number of recorded times on the

graph was shortened to every 10th recording. This removed a lot of overlapping

recordings. Secondly, the times were displayed tilted to avoid overlap, and shortened

to only show the latest day/month and hour of recording.

This overlap was reduced by shortening the actual values and the number of values

displayed on the visualisation. The first and last reading in the dataset is always

displayed with a full month / day hour: minute format. After this, the next readings were

shortened to just hour: minute format until the first instance of a new date, at which

point the month / day was displayed. This makes it clearer to the user the time of

readings and prevents an overabundance of information. The text was also put on a

slight tilt to prevent the likelihood of overlapping as the first and last readings are

always shown.

7.6. Host visualisations via GUI

The visualisation created was hosted in Tkinter using a FigureCanvas. This allows for

the displaying of Matplotlib graphs in a Tkinter window. To view the visualisation, the

user must press a button. (Sharma, 2021) This viewing method was chosen after many

tests in to “animating” a graph in Tkinter with underwhelming results due to outdated

online support and lack of experience in Tkinter.

41

Having a button load the visualisation does decrease the load on the user’s system as

information is not being loaded and reloaded every time a new reading is taken.

Instead of this, the data is only loaded each time the user presses the button.

A later fix was found for this issue. This included the changing of all elements in the

Tkinter program to compile with “.grid()” instead of “.pack()”. The difference between

these 2 methods is that pack creates fixed objects that cannot be easily changed,

whilst grid allows for the overlaying of elements, meaning that creating a new graph

on top of the previous would solve the previously discovered issue. This means that

the visualisation was moved to the main window of the program and the “Open Soil

Moisture Graph” button was removed, with it’s function being run as part of the

background operations. Due to the lack of inheritance of this method, it did not have

any impact on the rest of the program, except for causing a reorganisation of the main

window so that it would be best incorporated.

Figure 21 Example plot of soil moisture over time with formatted x-axis.

42

7.7. Water the plant when soil moisture level is too low

When the moisture level is too low, the system needs to be able to water the plant. To

achieve this, an automatic watering function was created which utilises the manual

pump function and the last reading of the .csv file. Upon turning automatic watering

on, the system will load the last reading taken by the system from the .csv file. If this

value is below a specified value (30 by default), then the system will run the function

to manually water the plant. If the reading is above 30 then the system will do nothing.

After this, the function to check the last read value is queued to run after the same

amount of time as the moisture sensor readings are taken, this ensures that a new

value will be read every time the system checks if the soil need water, reducing

redundancy.

A button labelled “Set Soil Moisture Threshold” was created to allow the user the option

of changing the moisture threshold value. When this button was pressed, a new

window was created which displayed the current soil moisture threshold and a text box

with the prompt: “Enter a value” for the user to enter a new threshold value. This value

was then set as the new soil moisture threshold.

43

Figure 22 Example Tkinter window with the change soil moisture threshold option and

change interface open.

7.8. Send a SMS text when soil moisture level is too low

Python does not have any integrated text messaging modules pre-installed. However,

one popular solution to this is Twilio. Twilio offers the ability to send and receive both

texts and calls for a relatively low cost. (Wagner, 2017) To do this, the python module

for Twilio connects to the internet and accesses your account, in a similar fashion to

other modules such as SQL. From your account on Twilio’s server, the text message

is sent via a pre-purchased phone number to the number of your choosing.

To best utilise this feature, conditions had to be specified in the program for when to

send a message to the user. The message should be sent only when the user turns

on SMS messaging, and only when the moisture level falls below the threshold value.

To achieve this validation, a function was created which loads the last recorded soil

moisture reading and checks this against the watering / messaging threshold %. If the

moisture value was found to be below the threshold, the system would then check if

44

the user has turned on automatic watering or SMS messaging. It would then respond

accordingly (water the plant, send an SMS message or both).

Because users have their own phone numbers, a button stating “Change SMS

number” was also added to the homepage. This button opens a new window

containing the current number of the SMS recipient (an empty string by default) and

asks the user to enter the new number to send the SMS messages to.

Figure 23 Tkinter window with the SMS text feature and change SMS number interface

open.

7.9. Record the time of watering the soil

The time of last watering is important for understanding of the impact this has on the

soil moisture level. The watering times could be displayed in one of three identified

methods: 1) The watering times be represented as a straight line through the y-axis

on the soil moisture graph at the corresponding time. 2) The watering time be given

its own “timeline” visualisation consisting of one x-axis with labelled times of watering.

3) The last watering time be displayed below the visualisation. After evaluation of the

significance of each watering time, the third method was chosen. This method still

provides the user with insight into the watering needs of the plant, but when there is a

45

progressive line graph of the soil moisture over time the need for viewing all times the

plant was watered is less relevant.

Figure 24 Tkinter window with all features and the time last watered displayed.

8. Testing

After successful testing of each component, the system was designed to use each

component to water a plant for twenty-four hours and record the data of the times

readings and watering was performed in a notepad file. This produced an example

data set and provided insight into the amount of use the system would encounter over

a short time-period which gave an indication of the water usage.

Test

no.

Test Description Expected Result Actual Result Pass /

Fail

1 The soil moisture

sensor “PWR-LED”

turns on when the

comparator is

connected to RPi pins

1 (3v3 power), 3

(GPIO 1) and 6

The “PWR-LED” on the

comparator will turn on

when the pins are

connected and the RPi

connected to a power

supply and the

electrodes to the

The “PWR-LED” turns on

when the cables are

connected as listed in the

description.

Pass

46

(Ground) as well as

the electrodes.

comparator, creating a

complete circuit.

2 The system will

output if the soil

moisture sensor state

is HIGH or LOW.

The digital input device’s

value is queried, and the

python program will

return the state.

Upon running the python

code, the output returned is

HIGH if the sensor is

immersed in a conductive

medium and LOW if the

sensor is not immersed.

Pass

3 An analog value (0 to

1023) will be obtained

from an ADC channel

when connected

correctly to the RPi

and a sensor and an

SPI transaction is

performed.

When the MCP3008 is

connected and the

python program run, the

program will output a

value for the queried

ADC channel of value

between 0 and 1023.

The python program outputs

a value of 1023 when run and

the sensor connected to the

ADC channel is not

immersed. A value of 463 is

output when the sensor is

immersed in soil.

Pass

4 A python program will

create a .csv file

named after the ADC

channel queried,

containing the

channel number, the

time of reading, and

the channel’s value.

When the program is

run, 8 .csv files named

channel0.csv to

channel7.csv will be

created containing the

data specified.

Upon running the program 8

.csv files (channel0.csv to

channel7.csv) are created

containing the channel

number, the value recorded

and the time of recording.

Pass

5 A python program will

only create a .csv file

if the reading value is

above 2% (< 2) of the

maximum read value

(< 20.46 / 1023) when

the ADC channels

are queried.

When the program is

run, only channels

recording a value above

20.46 (2% of the

maximum value) will be

stored in newly created

.csv files.

When the program is run,

some recorded channels of

values below 2% are not

stored, and some channels

below 2% are. There is no

pattern to which are recorded

when reading below this

value or why.

Fail

6 Repeat of test 5 with

a delay (1 second)

between the

recording times of

ADC channels

As expected from test 5,

with a 1 second delay

between table creation

times.

When the program is run, .csv

files are only created for

channels that read above 2%

of the maximum ADC value.

Pass

7 The program from

test 6 will now also

record the values of

When run, the program

will create tables for

“active” channels (those

Upon running the program,

.csv files are created for

channels that read above 2%

Pass

47

channels that

recorded above 2%

every 5 seconds.

that read above 2% of

max value) and will

record values for these

channels every 5

seconds.

of the maximum value and are

also recorded every 5

seconds.

8 The program will turn

the water pump on for

2 seconds and then

off again, if

connected correctly.

The program will run and

will turn the water pump

on via GPIO pin 6 and

then after 2 seconds will

turn the water pump off

via the same pin.

The program is run, and the

water pump turns on and then

turns off after 2 seconds.

Pass

9 The program will

display an empty

GUI.

When the program is

run, a GUI will appear on

the screen of specified

size and will run until

exited.

The program is run, opening

an empty GUI which runs an

empty loop until closed.

Pass

10 The program will

display a GUI with a

button of no function.

When the program is

run, a GUI will appear

containing a button

which when pressed

does nothing.

The program is run, opening a

GUI which contains a button

which when pressed does not

have any visual effect.

Pass

11 The program will

display a button with

text “manual water”

inside a GUI. The

button will turn on the

water pump for 2

seconds.

When the program is

run, a GUI will pop up

containing a button.

When this button is

pressed the water pump

will turn on for 2

seconds.

The program is run, the GUI

pops up containing a button.

pressing this button, turns on

the water pump for 2 seconds.

Pass

12 The program will run

the setup function in

the background.

When the program is

run, a GUI will appear

containing a button. It will

also create .csv files for

ADC channels that

record < 2% of the

maximum value and will

add recordings to these

.csv files every 5

seconds (As described in

test 7). This will run until

exited.

Upon running the program,

the GUI appears the same as

in test 11. .csv files are

created for ADC channels

that record above 2% of max

value and a new value is

recorded in this .csv file every

5 seconds. Results are as

described in both test 7 and

11. This process runs until the

GUI is exited.

Pass

48

13 A visualisation (line

graph) will be

generated from the

previous recordings

of the soil moisture

sensor over 10

minutes.

When the program is

run, a line graph will

display on the screen

containing the readings

of soil moisture % and

time of recording.

A line graph is generated with

the soil moisture % and time

correctly shown. There is

overlapping of all the values

on the x-axis and the y-scale

is narrowed to closely fit only

the recorded moisture levels.

Pass /

Needs

Work

14 The visualisation

from test 13 will

display without

overlapping of x-axis

values and will have a

title and axis labels.

When run, the line graph

will have x-axis values

rotated by 20 degrees to

avoid overlapping.

The x-axis values are still

overlapping due to their large

size.

Fail

15 The line graph from

test 14 will display

with shortened x-axis

values where

applicable to avoid

overlapping.

When run, the line graph

will only show the first

instance of the month

and day of recording in

the format MM/DD HH:

MM. after this, all-other

recordings on the same

day will be shortened to

HH: MM. These will not

overlap and will be

aligned to the right.

The x-axis values are

shortened with only the first

instance of the day being

shown. Values are not

overlapping and are aligned

to the right.

Pass

16 The line graph from

test 15 will be housed

in a Tkinter window.

When run, the line graph

will be contained in a

Tkinter FigureCanvas.

The line graph generates in

the Tkinter window, and after

first loop another graph is

created below the first.

Fail

17 The line graph from

test 16 will not repeat

creation.

When run, one line graph

will be created in the

Tkinter window, and the

code will not run again

after the first loop of the

window.

The line graph generates in

the window as before. No new

line graphs emerge after

looping of the Tkinter window.

Pass

18 The line graph will

update each time a

new soil moisture

recording is taken.

When run, the line graph

will generate and will

reload every time a new

soil moisture recording is

taken. The graph will

The line graph does not close.

A new updated line graph is

generated; however, this is

below the first unchanging

line graph.

Fail

49

essentially close and

reload.

19 The Tkinter window

will house a button

that when pressed,

opens an up-to-date

line graph in a new

window.

When the button is

pushed, a new window

opens containing the line

graph of soil moisture %

over time as well as an

exit button that closes

the window.

The button opens a new

window with a line graph of

the soil moisture % over time.

When closed and reopened,

an updated line graph

containing all read values is

created.

Pass

20 The Tkinter window

will house a button

that operates

automatic watering.

When the automatic

watering button is

pressed, the system will

check the last read soil

moisture level. If the

level is below a specified

%, the pump will turn on

and water the soil.

When automatic watering is

operational, the system

correctly pulls the last read

soil moisture % value. If this

value is below 30, the water

pump turns on for 2 seconds.

Pass

21 The Tkinter window

will house a button

that opens a window

to change the

automatic watering

threshold %.

When the “Set Soil

Moisture Threshold”

button is pressed, a new

window will open

displaying the current

threshold value and ask

the user to enter a new

threshold value.

When pressed, a new window

opens, showing the current

automatic watering threshold

(default value of 30) and

states to enter a new

threshold value. Upon

pressing the button again, the

current automatic watering

threshold value is updated to

what the user previously

input.

Pass

22 The Tkinter window

will be laid out in a

grid format.

When the program is

loaded, the Tkinter

window will load with the

elements in a grid

format.

Upon launching the program,

the elements all appear in a

specified grid format

consistent with the

assignment in the code.

Pass

23 The Tkinter window

will display a

visualisation in the

main window that will

reload every time the

main program loops.

After initialisation, the

main program window

will display a

visualisation of the soil

moisture level over time

of channel 0 on the ADC.

The program launches and

after having taken 2 readings,

displays a visualisation of the

soil moisture over time of the

soil moisture sensor

connected to pin 0.

Pass

50

24 When the “Change

Soil Moisture

Threshold” button is

pressed and a value

submitted, the value

will update in the

same window.

Upon submitting a value

in the “change soil

moisture threshold”

window, the value

displayed for the current

threshold will update in

the same window.

When submitted, the

threshold value updates to

that which is entered by the

user in the same window they

entered the value.

Pass

25 When the “Change

SMS number” button

is pressed and a

number submitted,

the number will

update in the same

window.

Upon submitting a new

phone number for SMS

notification, the current

assigned phone number

in the current window will

update to the submitted

value.

When submitted, the phone

number value changes in the

current window to that of

which the user has entered.

Pass

26 When the red “Turn

Automatic Watering

ON” button is

pressed, the text will

change and will be

green in colour.

Upon pressing the “Turn

Automatic Watering ON”

button, the button will

change colour and state

“Turn Automatic

Watering OFF” instead.

When pressed, the button

changes in colour and text

content to that specified.

Pass

27 When the red “Turn

SMS Texting ON”

button is pressed, the

text will change and

will be green in

colour.

Upon pressing the “Turn

SMS Texting ON” button,

the button will change

colour and state “Turn

SMS Texting OFF”

instead.

When pressed, the button

changes in colour and text

content to that specified.

Pass

28 When the manual

water function is run,

the time will be stored

in a csv file called

“waterpump.csv”

Upon pressing the

manual water button, or

the automatic watering

performing this method,

a csv file called

“waterpump.csv” will be

created and will contain

the times the plant was

watered.

When the button is pressed,

the waterpump.csv file is

created with a header and the

time the plant was last

watered.

Pass

29 When manual water

has been run, a label

containing the time

the plant was last

watered will appear

After the water pump has

run, the last entry in the

“waterpump.csv” file will

be displayed below the

visualisation.

After the water pump running,

the label appears below the

visualisation stating “Last

Watered YYYY/MM/DD

HH/MM” in the correct

Pass

51

below the soil

moisture

visualisation.

year/month/day hour/minute

format and content.

9. User Testing / Evaluation

To critically evaluate the prototype developed, a user test was conducted. This was

conducted in sessions over 2 days in which a participant was shown and described all

aspects of the prototype via a presentation. The participant was asked at each stage

of the presentation if they had any feedback or questions about the content.

This user evaluation was granted ethical approval by the School of Computer Science

& Informatics Research Ethics Committee at Cardiff University (See Appendix 5-10).

The average participant was 23 years old. The user evaluation was conducted via

Zoom and took on average 15 minutes.

In each section of the session (physical appearance, set-up, ambient display and

controls, and system operation) the participant was shown a PowerPoint slide (see

Appendix 5 for slide and questions) and asked questions about the content. This

served to provide the participant an understanding of the system and how it works.

Figure 25 An example slide from the user evaluation. The image depicted is a

recreation of the prototype layout, demonstrating the connections between

components in the system and communication method.

52

After having discussed all individual areas of the prototype, the participant was then

asked their opinions on the system, its uses, and what they liked about the system (for

example, “what did you like about the system?”). They were also asked what

improvements or additions they would like to see to the system. This was asked to

gather a picture of the potential future of the prototype and what could be done to

increase both the aesthetics and usability of the system.

The results from this were then thematically analysed.

9.1. User Testing Results

During the evaluation, most participants did not have questions about the system and

its features. This suggests that the system developed is relatively easy to understand

and use.

9.1.1. Most Common Use of the Prototype

One of the most commented use cases for the system (mentioned by 4/5 participants)

is the ability to use it for everyday automation of watering the plant. This was liked for

“relieving the mental burden” of remembering to water the plant and “solving the issue

of forgetting to water the plant”.

The other most commented (by 4/5 participants) is the use of the system when the

user travels or is away from home for an extended period of time. This would entail

the setting up of the system to automatically water the user’s plant(s) whilst they are

away/unable to do so. This was a solution as it “prevents the need for someone to

come over and manually water the plants” for the user and is “convenient”.

9.1.2. Improvements of the Prototype

Due to the slightly fragile nature of the prototype, the improvement given by most

participants (4/5 participants) was to make the system more “compact”/”smaller” and

“contained”. The suggestions were to house the system in a container with a smaller

display screen and only have the essential parts of the system (plug ins for soil

moisture sensor and water pump) accessible to the user. This would increase the

“transportability” and number of home environments the system could be used in, as

there would be no need for a large display or the delicate placement of components

of the system.

Other lesser mentioned improvements (2-3 / 5 participants) that would increase the

prototype appeal / usability were to add:

53

1. The ability to rename the plant visualised

2. A control button to change the frequency of reading the soil moisture level

3. The day of the week to the soil moisture level recorded times

4. Themes or the option to change the colours of the background, buttons, and

visualisation

9.1.3. Additions to the Prototype

The addition suggested by most users (4/5 participants) was to link the system to an

app or website. This would allow for remote access and control of the system which is

currently not integrated. App or website access would also allow the user to observer

the condition of the system whilst they are away from home so that they can “check

their plant is okay” and “water the plant from the office”. This could also then be

combined with the suggested addition (3/5 participants) of a water tank level sensor

so that the user has an indication of how long the system will be able to continue

watering their plant whilst they are away before human interaction (refilling the water

tank) is needed.

9.1.4. Other comments

Outside of the improvements, additions and use cases, the participants also were

asked what they like most about the prototype. Many participants (4/5) liked the

simplicity of the system. They commented such things as “it’s not too complex, you

can tell what all the features do and how to use them”, “it looks easy to set up and

use (provided its more contained) and fulfils the issue of forgetting to water your

plants”, and “It’s simple because I can easily change the controls to suit myself, such

as turning on the text messages so I can still enjoy watering my plant myself and see

how it’s doing”.

10. Discussion / Reflection

Through this project, a system has been developed that is capable of automatically

watering plants and displaying the soil moisture level and watering times over the

course of operation. This was done using a RPi and various electrical components.

This is similar to the previously mentioned reports that relied on an Arduino to complete

this task. The similar features reflect the most key requirements of a plant watering

system. To compare the prototype developed with previously seen examples it is best

to look at the features present or absent in both.

54

What makes this project stand out as an addition to the field versus other reports is a

difference and combination of features. For example, the storage of the data on a RPi

lowers the cost of the system over other systems that rely on remote storage and has

not been seen in previous reports. The visualisation is not seen in a system with the

same amount of functionality (SMS messaging, automatic watering and changing of

the moisture threshold).

The use of a RPi appears more unconventional due to its limitation of needing an ADC

and SPI transaction for analog signal interpretation, however this system has shown

that it can be done and produces an efficient product that can support multiple sensors

and water pumps.

The visualisation itself does not allow the user to move around the axis in any form.

This means that the visualisation gradually gets bigger, thus harder to read as

readings will become closer together until they are impossible to read all together. This

prevents the system from being useful to the user over a very long term without the

user restarting the program to reset the visualisation.

Due to the nature of the prototype, it is easy for jumper cables to become loose /

unplugged when in transit. This means that the user would have to check and

potentially rebuild parts of the prototype whenever they wish to move it. This could be

avoided in the future via the creation of a housing and soldering of all wires; this would

then enable the user to move the system without the risk of breaking it.

Despite all these issues, the system still performs its tasks in an effective manner and

can be used in the real-life applications it was created to achieve.

10.1. Survey Data

The requirements for the system were gathered via an online survey. This was useful

as it provided an outside source of opinion and perceptions of what the system should

be able to do. These requirements were drawn up and met by the developed program.

Whilst the survey provided a lot of data about demographics of potential users and

their opinions, it could have better served the purposes of the project via more direct

and concise depictions of the features. For example, the survey asked to rank the

importance of being notified when the plant needs watering but lacked to ask about

55

the interest in the automatic watering. This was an oversight of the survey and as such

did not best reflect all the requirements for the system.

A lot of the participants (21/22) were plant owners. Whilst this was useful, it also

suggests that the survey did not appeal to those who did not own plants. This means

that the data gathered is limited to only being applicable to those who already own

plants.

From the survey, a lot of quantitative data was taken. This was very useful for the

identification and had much more of an impact on the design and features of the

system than I was initially expecting. The data reflected a lot of the initially expected

requirements of the project and helped to limit the scope of the MVP. The turn out of

participants for the online survey was much larger (22) than expected (expected

number of participants was 10). This increased the validity of the data as a larger

dataset is valid to a larger group.

10.2. User Testing Data

After development of the prototype, user testing was conducted to evaluate its

effectiveness at fulfilling potential user’s needs. The data gathered highlighted the

following improvements that should be researched and developed:

- The ability to access the data and controls of the system wirelessly via app or

website.

- The improvement of the aesthetics, also increasing the durability and reducing

the size of the prototype.

- Addition of accessibility features, such as manual button support for visually

impaired users.

Upon development of these features, the project would be more appealing to potential

users.

The user testing proved effective in providing feedback not originally considered for

the prototype. Participants were all interested in the system and potentially using it

themselves, however, would have liked to see the improvements made to the system.

The general opinion was that participants in the user study were impressed with the

system developed and liked the design of the display and the systems features.

56

10.3. Addition to the Field of Plant Watering Assistants

This system is unique as it combines the aspects of many previous reports and

tutorials with the development of a visualisation with all data hosted locally on the

same device. This means that this system is much more transportable for the level of

feedback given to the user than others of its kind.

The system can perform all the functions that a user would expect/require of an

automatic plant monitoring and watering system, with control and feedback features

catered for the desired user experience. This system comes at a low cost and could

be adapted to function on a smaller device such as a Raspberry Pi Zero WH in the

future.

The Raspberry Pi Zero WH is of much smaller size and so would be more compatible

with battery or solar power and storage due to the lower power requirement. The

system would also need to power the water pump via this power storage, however due

to the lower use of the pump vs the sensor and computer, this could easily be

supported with the right battery output.

10.4. Personal Development

This project has been a chance for me to explore various areas of software

development I previously have not (e.g., using Tkinter). Personally, I have found this

project very challenging to develop. Starting with a base of something you know (in

this case the Python language and a little about RPi and Matplotlib) and branching

out, whilst seems safe, can easily lead to a deep level in unknown territory. This

territory for me was primarily using Tkinter. Tkinter has the capability to make

thoroughly developed and appealing applications, however the documentation online

can often be outdated or lacking in explanation for lower knowledge level developers.

This, especially paired with Matplotlib created a lot of issues that I had to overcome.

The solution to one particular issue (displaying a progressive visualisation) only came

towards the end of the project with the discovery of the grid packing feature on Tkinter.

Whilst this method is seen a lot online, its advantages in certain applications are not

easy to view, meaning that if I had known it’s abilities sooner, I would have used grid

packing sooner. This key advantage is that grid packing allows for easier reassignment

of space for changing variables (such as a constantly updating visualisation) versus

using pack.

57

This project has been a huge insight for me into the range of projects that can be

created using a Raspberry Pi and Python modules. Completion of this project has

identified the need to further develop my skills in the modules and electronics of this

project if I am to use them in the future. There are many areas to improve upon the

plant watering assistant, and this system has become a hobby to maintain and develop

which will continue in the future.

Whilst the system has many features, there are areas that could be improved upon.

For example, the visualisation of soil moisture level over time simply overlays on top

of the previously generated visualisation. This means that there is an ever-increasing

memory use by the program which prevents it from being useable over a long term.

The display, whilst functional, is not very intuitive or appealing. A more developed style

or range of styles might make it more sellable and attractive to prospective users.

11. References

Alarik, 2016. Python: Embed pandas plot in Tkinter GUI. [Online]

Available at: https://stackoverflow.com/questions/34904791/python-embed-pandas-

plot-in-tkinter-gui

[Accessed 17 October 2021].

Amri, F., 2020. DIY Plant Moisture Sensor with Automatic Watering System. [Online]

Available at: https://www.instructables.com/DIY-Plant-Moisture-Sensor-With-

Automatic-Watering-/

[Accessed 29 September 2021].

Archer, W., 2017. Pi Zero W Soil Moisture Sensor and Slack. [Online]

Available at: https://www.raspberrycoulis.co.uk/diy-hacks/pi-zero-w-soil-moisture-

sensor-and-slack/

[Accessed 30 July 2021].

AZ-Delivery, 2021. AZDelivery Soil Moisture Sensor. [Online]

Available at: https://www.az-delivery.uk/products/feuchtigkeitssensor-modul

[Accessed 10 August 2021].

Bill, B., 2017. Arduino Plant Watering System. [Online]

Available at: https://www.instructables.com/Arduino-Plant-Watering-System/

[Accessed 27 July 2021].

58

C M, D., Bose, K. & S, V., 2017. Automatic Plant Irrigation System using Arduino.

International Conference on Circuits and Systems, pp. 384-387.

Components101, 2021. 5V Four-Channel Relay Module. [Online]

Available at: https://components101.com/switches/5v-four-channel-relay-module-

pinout-features-applications-working-datasheet

[Accessed 21 August 2021].

CorporateBridgeGroup, 2021. Tkinter Mainloop. [Online]

Available at: https://www.educba.com/tkinter-mainloop/

[Accessed 19 October 2021].

Devira Ayu Martini, N. P., Tamami, N. & Alasiry, A. H., 2020. Design and Development

of Automatic Plant Robots with Scheduling System. International Electronics

Symposium, Issue 2020, pp. 302-307.

Dhaker, P., 2018. Introduction to SPI Interface. [Online]

Available at: https://www.analog.com/en/analog-dialogue/articles/introduction-to-spi-

interface.html

[Accessed 14 August 2021].

Đuzić, N. & Đumić, D., 2017. Automatic Plant Watering System via Soil Moisture

Sensoring by means of Suitable Electronics and its Applications for Anthropological

and Medical Purposes. Collegium Antropologicum, 41(2), pp. 169-172.

Eagan, B., 2017. Raspberry Pi Automated Plant Watering with Website. [Online]

Available at: https://www.hackster.io/ben-eagan/raspberry-pi-automated-plant-

watering-with-website-8af2dc

[Accessed 30 July 2021].

Eames, A., 2013. RPi.GPIO basics 3 - How to Exit GPIO programs cleanly, avoid

warnings and protect your Pi. [Online]

Available at: http://raspi.tv/2013/rpi-gpio-basics-3-how-to-exit-gpio-programs-cleanly-

avoid-warnings-and-protect-your-pi

[Accessed 23 August 2021].

ElProCus, 2019. Soil Moisture Sensor Working and Applications. [Online]

Available at: https://www.elprocus.com/soil-moisture-sensor-working-and-

59

applications/

[Accessed 26 August 2021].

Foxbot, J., 2014. Raspberry Pi Irrigation Controller. [Online]

Available at: https://www.instructables.com/Raspberry-Pi-Irrigation-Controller/

[Accessed 7 August 2021].

Gabriel, S., 2018. Find the last row from a CSV input Python. [Online]

Available at: https://stackoverflow.com/questions/53483389/find-the-last-row-from-a-

csv-input-python

[Accessed 20 September 2021].

Graham, R., 2019. The Pot Turning Houseplants Into Pets. [Online]

Available at: https://www.euronews.com/green/2019/07/19/the-pot-turning-

houseplants-into-pets

[Accessed 25 August 2021].

Gupta, A., Kumawat, S. & Garg, S., 2016. Automatic Plant Watering System. Imperial

Journal of Interdisciplinary Research, 2(4), pp. 1123-1127.

Hawkins, M., 2013. Analogue Sensors On The Raspberry Pi Using An MCP3008.

[Online]

Available at: https://www.raspberrypi-spy.co.uk/2013/10/analogue-sensors-on-the-

raspberry-pi-using-an-mcp3008/

[Accessed 25 August 2021].

Heng, C., 2019. How to read soil moisture level with Raspberry Pi and a YL-69/FC-28

moisture sensor. [Online]

Available at: https://www.techcoil.com/blog/how-to-read-soil-moisture-level-with-

raspberry-pi-and-a-yl-69-fc-28-moisture-sensor/

[Accessed 16 August 2021].

Hong, X., Luo, X. & Liu, C., 2019. Remote Intelligent Watering System Based on

Internet of Things. Association for Computing Machinery, Issue RCAE 2019, pp. 60-

64.

Hossain, A., 2021. EmoPot - A Plant Pot That Can Show a Plan't Emotions. [Online]

Available at: https://create.arduino.cc/projecthub/abid_hossain/emopot-a-plant-pot-

60

that-can-show-a-plant-s-emotions-254ea4

[Accessed 14 September 2021].

Hossain, A., 2021. EmoPot - A Plant Pot That Can Show a Plan't Emotions. [Online]

Available at: https://create.arduino.cc/projecthub/abid_hossain/emopot-a-plant-pot-

that-can-show-a-plant-s-emotions-254ea4

[Accessed 14 September 2021].

Hughes, M., 2017. Back to Basics: SPI (Serial Peripheral Interface). [Online]

Available at: https://www.allaboutcircuits.com/technical-articles/spi-serial-peripheral-

interface/

[Accessed 2 September 2021].

Johnson, J., 2019. What Are Normally Closed Relays?. [Online]

Available at: https://amperite.com/blog/normally-closed-relays/

[Accessed 29 August 2021].

Kumar, J., Gupta, N., Kumari, A. & Kumari, S., 2019. Automatic Plant Watering and

Monitoring System using NodeMCU. International Conference on Cloud Computing,

Data Science & Engineering, Volume 2019, pp. 545-550.

Last Minute Engineers, 2019. How Soil Moisture Sensor Works and Interface it with

Arduino. [Online]

Available at: https://lastminuteengineers.com/soil-moisture-sensor-arduino-tutorial/

[Accessed 27 August 2021].

M.Sklar, 2012. Connecting the Cobbler to a MCP3008. [Online]

Available at: https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-

volume-with-the-raspberry-pi/connecting-the-cobbler-to-a-mcp3008

[Accessed 26 August 2021].

Mayuree, M., Aishwarya, P. & Bagubali, A., 2019. Automatic plant watering system.

International Conference on Vision Towards Emerging Trends in Communication and

Networking, Issue IEEE, pp. 1-3.

Muller, V., 2019. Lua, the smart planter with feelings!. [Online]

Available at: https://vivien-muller.fr/lua

[Accessed 3 September 2021].

61

Nettigo, n.d. Soil moisture sensor with comparator module. [Online]

Available at: https://nettigo.eu/products/soil-moisture-sensor-with-comparator-module

[Accessed 7 September 2021].

Nuttall, B., 2015. API - Input Devices. [Online]

Available at: https://gpiozero.readthedocs.io/en/stable/api_input.html

[Accessed 19 September 2021].

Ohja, M., Mohite, S., Kathole, S. & Tarware, D., 2016. Microcontoller Bases Automatic

Plant Watering System. International Journal of Computer Science and Engineering,

5(3), pp. 25-36.

Parwinder, B. S., Ramman, J. K. & Harpreet, C. K., 2017. Modelling and Designing of

Automatic Plant Watering System Using Arduino. International Journal of Scientific

Research in Science and Technology, 3(7), pp. 676-680.

Pereira, J., 2019. Bitcoin Tracker Using a Raspberry Pi. [Online]

Available at: https://www.instructables.com/Bitcoin-Tracker-Using-a-Raspberry-Pi/

[Accessed 3 November 2021].

Python Examples, n.d. How to set Tkinter Window Size?. [Online]

Available at: https://pythonexamples.org/python-tkinter-set-window-size/

[Accessed 10 October 2021].

Python Tutorial, 2020. Tkinter Button. [Online]

Available at: https://www.pythontutorial.net/tkinter/tkinter-button/

[Accessed 10 October 2021].

Raspberry Pi Foundation, n.d. Build a Robot Buggy. [Online]

Available at: https://projects.raspberrypi.org/en/projects/build-a-buggy

[Accessed 3 November 2021].

Raspberry Pi Foundation, n.d. GPIO Pins. [Online]

Available at: https://projects.raspberrypi.org/en/projects/physical-computing/1

[Accessed 30 August 2021].

Sharma, P., 2021. Creating a popup message box with an Entry field in Tkinter.

[Online]

Available at: https://www.tutorialspoint.com/creating-a-popup-message-box-with-an-

62

entry-field-in-tkinter

[Accessed 18 October 2021].

Shrinidhi, R. & Krishnamurthy, V., 2017. OO Design for an IoT based Automatic Plant

Watering System. International Conference on Computer, Communication and Signal

Processing, pp. 1-5.

spidev, 2020. Python Spidev. [Online]

Available at: https://pypi.org/project/spidev/

[Accessed 15 August 2021].

Swapnil, B., Saru, D. & Madhurima, H., 2018. Automatic Plant Watering System using

IoT. Second International Conference on Green Computing and Internet of Things,

Issue 2018, pp. 659-663.

The Pi Hut, 2017. Raspberry Pi Plant Pot Moisture Sensor with Email Notification

Tutorial. [Online]

Available at: https://thepihut.com/blogs/raspberry-pi-tutorials/raspberry-pi-plant-pot-

moisture-sensor-with-email-notification-tutorial

[Accessed 28 September 2021].

The Pi Hut, n.d. Immersible Water Pump & Tube. [Online]

Available at: https://thepihut.com/products/immersible-pump-watertube

[Accessed 15 August 2021].

The Pi Hut, n.d. MCP3008 - 8-Channel 10-Bit ADC With SPI Interface. [Online]

Available at: https://thepihut.com/products/adafruit-mcp3008-8-channel-10-bit-adc-

with-spi-interface

[Accessed 30 July 2021].

The Pi Hut, n.d. USB Type A Plug Breakout Cable with Premium Female Jumpers

(30cm long). [Online]

Available at: https://thepihut.com/products/usb-type-a-plug-breakout-cable-with-

premium-female-jumpers

[Accessed 29 August 2021].

Tiwari, N., 2021. How To Perform Data Visualization with Pandas. [Online]

Available at: https://www.analyticsvidhya.com/blog/2021/07/how-to-perform-data-

63

visualization-with-pandas/

[Accessed 29 September 2021].

TutorialsPoint, n.d. Python - Tkinter Button. [Online]

Available at: https://www.tutorialspoint.com/python/python_gui_programming.htm

[Accessed 10 October 2021].

United States Department of Agriculture - Natural Resources Conservation Service,

2011. Soil Electrical Conductivity. [Online]

Available at:

https://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=nrcs142p2_0

53136&ext=pdf

[Accessed 11 September 2021].

Vehlow, D., 2021. Simple Arduino Pot Plant Soil Moisture Sensor. [Online]

Available at: https://www.instructables.com/Simple-Arduino-Pot-Plant-Soil-Moisture-

Sensor/

[Accessed 26 August 2021].

Wagner, M., 2017. Sending Texts with the Raspberry Pi. [Online]

Available at: https://www.hackster.io/matthew-wagner/sending-texts-with-the-

raspberry-pi-faaab3

[Accessed 29 October 2021].

Wongthai, W., Chanmee, S. & Lohawet, S., 2018. An Enchancement of an Automatic

Plant Watering System. International Computer Science and Engineering Conference,

Volume 2018, pp. 1-4.

64

12. Appendix

1. Online Survey Ethics Application Form

65

66

2. Online Survey Questions

67

68

3. Online Survey Participant Information Sheet

4. Online Survey Social Media Recruitment Post

69

5. Research Project Proposal

70

71

6. User Study Ethics Application

72

73

7. User Study Participant Information Sheet

74

8. User Study Consent Form

9. User Study Recruitment Email

75

10. User Study Social Media Recruitment Post

