
 

 

 

Automation of Vessel Segmentation for 

HEVs in Lymphatic 3D Image Analysis 

___________________________________________________________________________  

By  

Finlay Roy: 1629688  

MSc Computing 

School of Computer Science and Informatics, Cardiff University 

Supervisor : Dr. Stefano Zappala  

Date : 5th November 2021 

  

  

  



 

ii   

Acknowledgements  

I would like to thank my supervisor Dr. Stefano Zappala for providing excellent guidance and 

feedback throughout this project.  

I would also like to thank Dr. Stefan Milutinovic for his help in outlining the problem to be 

solved as well as providing the images of the lymph nodes and their corresponding 

segmentation masks. 

 

 

 

Abstract  

This project surveys the existing literature surrounding vessel segmentation techniques and 

adapts multiple existing machine and deep learning frameworks to predict vessel 

segmentation masks. The predictions were performed upon a set of 3-dimensional High 

Endothelial Vessel (HEVs) networks within Lymph Node (LN) systems. The project aims to 

improve a current manual segmentation process pipeline by decreasing the time spent on 

producing segmentations while maintaining the high standard already achieved by the 

current pipeline. The current process involves a multi-step trial-and-error based approach 

that is very time-consuming. By improving the speed at which segmentation is performed, 

more time can be spent analysing data for Cancer Research and other scientific fields. The 

best quality predictions came from an implementation of the 3-D Unet framework that 

achieved a 0.717 Dice coefficient when compared with a pre-labelled segmentation mask of 

an LN image. This framework built upon the concepts of down-sampling and augmentation 

of image data as pre-processing techniques and showed their importance as steps for 

training segmentation models. 
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Introduction and Objectives  

Research completed within Cardiff University, in partnership with the Medical Research 

Council, by Dr. Stefan Milutinovic investigated the role of High Endothelial Venules 

(HEVs) in cancer immunity (Milutinovic 2020). HEVs are a form of blood vessel typically 

found in lymph nodes (LN) and recent studies have found that they promote antitumour 

immunity through generation of けcancerous tissue-destroying lymphocytesげ (Ager and 

May 2015). To analyse HEVs impact on cancer immunity, light sheet fluorescence 

microscopy (LSFM) was used to obtain detailed 3-dimensional images of blood vessel 

networks within LNs.  

 The use of LSFM in this research (Milutinovic 2020) involved the fluorescent 

staining of blood vessels and HEVs within LNs using specific dyes (fluorophores) that 

attach to the sample. The sample LNs are illuminated in the microscope and the 

fluorophores absorb the illuminating light causing the blood vessels to emit a lower 

energy light than the light source. The emitted light is collected by the LSFM and a series 

of filters separate the illumination light from the sample light (Rice 2021). Image data 

from the LSFM is collected and used to produce a 3-D reconstruction of the sample, an 

example from Dr. Milutinovicげs research can be seen in figure 1. 

 

Figure 1 - 3-D reconstruction of a network of HEVs in a Lymph Node 
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  Open-source command line computational けVessel Toolsげ were used to generate 

topological and numerical descriptors of the vessel networks inside the LNs, such as vessel 

diameter and length. These tools were developed by Dr. Gib Bogle (Kelch et al. 2015) and 

are accessible for public use (https://github.com/gibbogle/vessel-tools). A vital step in the 

collection of descriptors from the image data is the segmentation of the blood vessel 

networks. Segmentation can be described as an image processing technique involving the 

division of an image into regions which correspond to different objects within that image 

(BioSS 2021). In this paper, segmentation will refer to the separation of blood vessel from 

background LN tissue.  

 

 

Figure 2 - (Left) 2-D section  through a lymph node showing blood vessels (red) against faint lymph node background tissue. 

(Right) Segmentation of the same partial vessel network showing only the blood vessels (white). 

The けVessel Toolsげ contain a series of tools developed to achieve accurate 

segmentation of vessels while using the staining process described before. The current 

pipeline involves an 8-bit けtagged image file formatげ (TIFF) file being initially smoothed by 

one tool, then combined with the initial file in a thresholding algorithmic tool to produce a 

binary segmentation of the vessel network. However, an inconsistent staining of vessels can 

often be observed during the image analysis which leaves gaps in vessel walls and thus 

incomplete segmentations. A final filling tool utilises a basic 3-D algorithm to identify voxels 

within a vessel wall and is then applied to fill these gaps within the vessel walls.  

The process of using these three tools (smoothing, thresholding, and filling) involves 

the user opening three separate instances of the command line and manually inputting 

user-chosen parameters for use iﾐ the toolsげ algorithms. The smoothing tool requires the 

https://github.com/gibbogle/vessel-tools
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input of the radius of the mean smoothing filter. The thresholding tool requires the input of 

two parameters T and delta that affect the threshold level for what is considered a けlitげ ┗o┝el 

(value set to the 8-bit maximum 255) in a vessel wall depending upon a local average 

intensity. A low threshold value helps to account for faint areas within vessel walls. The 

filling tool requires the input of two parameters that ﾏeasure the けiﾐsideﾐessげ of a ┗o┝el, a 

specified radius around the voxel in question where the number of lit voxels is counted and 

a threshold value. If the number of lit voxels counted within the specified radius exceeds the 

threshold value, the voxel is considered within the vessel wall and is lit (Kelch et al. 2015).  

The need for collection of large amounts of research data when working with 

medical research cannot be understated, and herein lies the main motivation for this 

project. The quality of the segmentations obtained in the previously described pipeline is 

judged solely upon the qualitative analysis of the user. This leads to a trial-and-error based 

approach in the selection of manually entered tool parameters. With each new LN, comes a 

multitude of attempts and failures to produce a satisfactory segmentation for analysis. The 

sheer amount of time used in segmentation with these tools, combined with the amount of 

time to become proficient with their use, creates a bottleneck on the amount of data that 

can be used for, and time that can be used in, analysis for important cancer research.  

The primary aim of this project is to improve the speed of vessel segmentation by 

automating the process through machine and deep learning techniques, whilst maintaining 

the high-quality segmentation produced by the け┗essel toolsげ. The following objectives shall 

be strived for to meet this aim: 

1. Identify a quantitative measure for use in comparing segmentations to maintain 

high-quality segmentations. 

2. Improve the speed of the segmentation process. 

3. Ensure the user input for the system/tool is limited. 

4. Produce a solution that is easily relatable to the current tools and data in use, to 

enable ease of transfer from old tools to new. 

5. Identify suitable existing models and frameworks from related literature to be 

adapted to this dataset. 
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Background and Literature Review 

A review of current standard segmentation methods had been completed (Zhao et al. 2019) 

and gave a useful initial research area and overview of possible segmentation techniques to 

be adapted in this project. The paper reviewed segmentation methods of two categories, 

rule-based and machine learning based methods. Rule-based methods utilise designed rules 

and methods for classification of vessels and machine learning based methods use learned 

rules from training and testing datasets. The findings of the paper stated that machine 

learning-based methods were usually more computationally expensive than rule-based 

methods because of the large data sets. However, the results of the vessel segmentation 

from machine learning would be much more accurate. This paper provided introduction to 

many topics of further research such as K-Nearest Neighbours (kNNs), Random Forest and 

Convolutional Neural Networks (CNNs) etc. and their use in segmentation. The drawbacks of 

the results Heiﾐg the┞ doﾐげt go iﾐto too ﾏuIh depth oﾐ aﾐ┞ figures or statistics of any of the 

reports being reviewed. An issue of trusting the conclusions arises from this and further 

research would be required to make decisions on applicable topics. 

  A study focused on LSFM techniques to observe mouse brain vascular networks (Hu 

et al. 2017). The analysis of the images would involve the use of a hessian matrix and a feed 

forward neural network to deal with correlations between pixel values and utilize C-means 

clustering to segment vessel images. The results of this paper introduced the use of dice 

coefficients in evaluating vessel segmentation. The feed forward neural network was 

trained by a sample of 2.26 million pixels to deal with values in the Hessian matrix. This, 

combined with 85% dice coefficient results, shows the importance of a large sample in 

greatly improving the robustness of models. An area of concern here would be transferring 

methodology here from brain vascular systems and hoping to achieve similar results in 

lymphatic systems. 

 Similar to the C-means clustering in segmentation, other pixel classification 

approaches are seen to be used broadly throughout the literature. A comparative study on 

retinal vessel segmentation methods reviewed the performance of kNNs combined with 

Gaussian filtered features in segmentation (Niemeijer et al. 2004). The research team 

developed publicly available dataset called the DRIVE dataset consisting of testing and 

training retinal images and their corresponding segmentation masks (https://drive.grand-

https://drive.grand-challenge.org/
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challenge.org/) that can be seen in figure 3. The results from this study show that the kNN 

method outperformed the other automatic methods in this study but a second observer 

manually annotating an image still produces better results. However, it is stated that 

manual segmentation can take upwards of two hours for completion. This highlights a need 

for improved speed of segmentation to avoid fatigue and segmentation precision loss. 

Although this study provides a useful data source with the DRIVE database, it may be 

difficult to train models on datasets significantly different to the data in this project and 

achieve good segmentation results.  

 

Figure 3 - Example retinal image (Left) and corresponding segmentation mask (Right) from DRIVE database 

  Several other papers approach the problem of retinal vessel segmentation by 

utilising the DRIVE database. Hassanpour (Hassanpour 2014) combined Gaussian edge 

detection features with random forest prediction trees for classification and achieved 

similar results to Niemeijer as described before. One study found the results of 

segmentation to be even greater when applying an Artificial Neural Network with gabor 

filters for feature extraction (Pal et al. 2012). These three studies performed on the DRIVE 

database all compare results using a maximum average accuracy metric, with the gabor 

filters method achieving the highest average accuracy metric on this Dataset of 96.16%. An 

issue may arise when comparing these results as both the filtering methods and 

classification methods differ across each study. 

  A study would apply a multi-scale CNN to integrate a network called DeepVessel (Fu 

et al. 2016). The experiments undertaken would show that the system would produce 

https://drive.grand-challenge.org/
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excellent retinal vessel segmentation results. This article introduces some public domain 

datasets for retinal vessel images called STARE and CHASE_DB1 as well as the DRIVE 

database for training of models. Although a high level of accuracy is shown across the 

analysis on each of the datasets, it is mentioned that only the DRIVE database contains a 

training set, so parameters would only be fine-tuned on this database set. The parameters 

would then be used for segmentation of each of the database sets. As the DRIVE set only 

contains a small sample of 40 images of different vessel networks, this could be an issue 

when applying this to other models especially when considering deep learning models that 

require large inputs of data. 

  An article focused on a convolutional neural network (CNN), a hessian vesselness 

filter and intensity-thresholding to search nearby pixels and extract lymphatic shapes (Lai et 

al. 2020). The results obtained were concluded to contain minimal artifacts from this 

technique, while introducing a new application of a neural network framework called U-Net 

to be evaluated by dice coefficient. An important factor to note with these results is that the 

approach of gaining the image analysis is quite different. Optical coherence tomography 

(OCT) used which is a very different approach to LSFM in question, this could greatly skew 

any expected as OCT is considered non-invasive and does not involve the same staining 

process.  

  Another study looked to utilise the U-Net architecture for segmentation (Tetteh et 

al. 2020), however, this study looked to approach the segmentation of 3D volumes using 

deep learning. Their architecture replaced convolutional steps in the U-Net framework with 

their own designed crosshair filters that aimed to reduce computational load. To attempt to 

solve the problem of limited data availability they produced a synthetic dataset of 3-D 

vessel network structures using a method described (Schneider et al. 2012, 2014). This 

dataset consists of 136 3-D synthetic vessel structure image files and their corresponding 3D 

segmentation masks for use in training and testing. An example can be seen in figure 4. 

When training models using this dataset, it would be important to observe the differences 

to the data from the lymph nodes as the synthetic dataset is quite noisy and invariable it 

may produce different results to the extremely variable vessel staining process of imaging.  
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Figure 4 - Synthetic Dataset Example. (Left) 2-D slice through 3-D vessel network. (Right) 3-D vessel network representation. 

 

  It is clear from research that there is lots of outstanding methodology in this topic on 

the automation of vessel segmentation using both machine and deep learning networks. 

There is a clear indication to the use of puHliI dataset liHraries suIh as けD‘IVEげ, けSTA‘Eげ aﾐd 

けCHASE_DB1げ, ho┘e┗er, these datasets Ioﾐtaiﾐ limited information for 2-D retinal imagery. 

This may produce issues when adapting methodologies concerning 3-D lymph vessel 

networks due to the limited data size and difference in imaging techniques. Appropriate 

methods of handling limited dataset problems are to be explored to ensure any trained 

model are effective. The dice coefficient seen here multiple times would act as a useful tool 

in deciphering the accuracy of any prototype methodology. A deep neural network is widely 

considered to have the potential for computational heavy actions, and this would need to 

be limited in the prototype to ensure ease of use in the laboratory. The method of training 

of a U-Net based CNN provided promising results with large datasets and would be an area 

of adaption in the project There appeared to be gaps in the literature on cases specifically 

involving the use of LSFM on lymphatic vessel networks and so care would need to be taken 

when adapting methodology specified for other biological networks. 
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Problem Statement 

The initial sections of this paper outline the background and motivation of this project. In 

summary, the project hopes to solve the problem of achieving accurate and fast 

segmentations on large 3-D vessel networks when working with a limited dataset for 

training of artificial intelligence (AI) models. The current pipeline for the LN vessel networks 

provides high quality segmentation through a time-consuming trial-and-error based 

approach involving the manual input of user-chosen parameters. A solution developed for 

this problem looked to address the time-consuming nature of the process while maintaining 

the high quality of segmentation. The solution would need to pay close attention to specific 

difficulties faced by this problem. This includes the handling of differences between 

datasets for training and the target LN data, while ensuring parameters trained on models 

can be used for effective segmentation prediction. Limited dataset sizes will also pose a 

difficulty as training effective data-dependant AI models requires large datasets for training. 

Increasing the speed at which the segmentation process is completed will increase the 

throughput of the vessel network analysis pipeline allowing more data and more time to be 

spent on investigating the effects of HEVs on cancer treatment.  

  

Approach 

Datasets in Use 

The training of AI models for vessel segmentation requires appropriate datasets that 

contain a raw input image of the vessel network and the corresponding segmentation 

binary mask. Dr Milutinovic provided images from his research of two separate types of LN 

(Milutinovic 2020). These are referred to as the Inguinal LN set and the Popliteal LN set. The 

sets include both the raw 3-D images of the LNs and the segmentation masks that were 

manually segmented using the tools developed by Dr Gib Bogle (Kelch et al. 2015). These 

sets of data were used as the gold standard for complete segmentations and thus were 

used for both training of models and evaluating predictions. Training models and predicting 

on the same type of data is widely practised and can be seen throughout the literature and 

will be used to ensure quality of segmentation predictions. An example of this dataset is 

seen in figure 2. 
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  When working with Deep learning approaches it is important to have large amounts 

of data for training. There are several publicly available datasets that include images and 

segmentation masks for training and this project saw the use of the 3-D synthetic dataset as 

described (Tetteh et al. 2020). An example of this dataset can be seen in figure 4. Other 

datasets that were taken into consideration included the DRIVE database, as seen in figure 

3, containing 2D retinal images and their corresponding segmentation masks. The decision 

to use the synthetic dataset was made due to two factors. Firstly, due to the sizes of the two 

sets, the DRIVE database only contains 40 584x565 pixel images and segmentation masks 

equating to around 13 million pixels for training. Whereas the synthetic dataset contains 

136 600x304x325 pixel images equating to around 8x109 pixels, therefore, a much greater 

amount of data for training of models. Secondly, due to the synthetic dataset being 3-D it is 

more like the target Popliteal and Inguinal datasets and therefore would make the training 

more applicable.  

 

Machine Learning Approaches 

In machine learning approaches to segmentation, it was observed from the research that 

appropriate feature extraction was an important factor in achieving effective segmentation. 

Suitable candidates for feature extraction included Gabor (Pal et al. 2012) and Gaussian 

(Hassanpour 2014) based filters. This project made use of Gabor filters for feature 

extraction due to the better results in segmentation seen across these research pieces, with 

the Gabor method achieving average accuracy of 0.9616 compared with the 0.9396 with the 

Gaussian method.  

  Previous studies had been done involving supervised pixel classification models using 

varying complexity techniques. For prediction of segmentation masks a kNN (Niemeijer 

2004) classifier based model and Random Forest (Hassanpour 2014) based classifier model 

are to be compared. The decision to use these was based upon the issue of working with a 

limited dataset. These methods in their respective studies showed promising results even 

when only training with the small DRIVE dataset. By choosing methods that have a track 

record in achieving high quality segmentation from small datasets, more accurate results 

can be adapted in the small target Popliteal and Inguinal datasets. 
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Deep Learning Approach 

The project looked to adapt elements of the work performed in the development of 

けDeepVesselNetげ (Tetteh et al. 2020) as this study also had a focus on vessel segmentation of 

3-D volumes. This study along with others researched (Lai 2020) used adapted methods of a 

CNN called U-Net and achieved excellent segmentation results. This project investigated the 

use of the standard architecture 3-D U-Net model to perform vessel segmentation. To meet 

the large data needs of CNNs comparisons between methods to deal with limited datasets 

were made.  

  Taking inspiration from a study surveying techniques of improving deep learning 

networks (Shorten et al. 2019), this project incorporated image augmentation techniques 

upon the Inguinal and Popliteal datasets to increase the amount of useful data for training 

the U-Net model. The synthetic dataset was also used as a けpretrainingげ dataset for a 

separate U-Net model, then the Popliteal and Inguinal datasets used to further train this 

model. To save time with the training of models, down-sampling of the training images was 

utilised and to ensure the effects of down-sampling did not decrease the quality of the 

segmentations, a control U-Net model was produced from training on the raw Popliteal and 

Inguinal datasets only with no down-sampling.   

 

Evaluation 

The trained models as described before were then used to make predictions of 

segmentation masks. The model would be passed a 3-D image from either the Popliteal or 

Inguinal dataset and would pass out a corresponding prediction of the segmentation mask. 

One image from the Popliteal (POP5) and one image from the Inguinal (ING3) were reserved 

for testing only and not included in the training sets. The decision on POP5げs exclusion from 

the training set was due to it being much fainter than others in the datasets with lower pixel 

values in the vessel walls. Therefore, it could be used as a good comparison to see if models 

were able to predict a wider range of possible cases. ING3 on the other hand, is more like 

the rest of the dataset and so could be used as a control.  

  The evaluation of predictions would be measured in two ways. To ensure high 

quality segmentation, the prediction mask was compared with the ground truth 

segmentation mask provided in the Popliteal and Inguinal datasets. The comparison 

between the two masks was performed by calculating the DICE coefficient between the 
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overall of the segmentations and at times between individual slides of the masks. The Dice 

coefficient was chosen due to its presence in multiple studies; therefore, comparisons could 

be easily made to other works in the literature. The time for predictions was also measured 

to ensure the aim of achieving faster segmentations was met, however, the time for training 

models was not measured as it would not be expected for the user to have to train any 

model.  

 

Application of Chosen Approaches  

All code in this study was written in Python as it has multiple extremely useful libraries 

when dealing with both image processing and AI training and predicting. The Google 

Colaboratory development environment was used with access to a けColab Proげ account due 

to the provision of powerful computational resources including 26GB RAM and 16GB Video 

Memory which are vital in training and prediction with AI models. The FIJI environment 

from ImageJ was used for any image viewing or preparation. The items listed below include 

the scripts generated to achieve successful segmentation following the different methods 

outlined in the previous section. The details for these scripts can be seen in the appendix. 

1. Feature_Extract_Gabor.py 

2. Feature_Extract_Unet.py 

3. Train_Model_Classifiers.py 

4. Train_3D_Unet.py 

5. Classifier_Predict.py 

6. Unet_Predict.py 

 

Data Preparation 

To meet the objective of producing a solution relatable to the current manual tools in the 

pipeline, all images were of the TIFF file format and 8-bit grayscale. This matches the input 

format of the tools by Dr Gib Bogle (Kelch et al. 2015). For the Popliteal and Inguinal 

datasets this involved a simple tool in the FIJI environment that took an input 16-bit file and 

converted it to an 8-bit file. The synthetic dataset needed to first be converted from the NII 

file format to TIFF and then from a 16-bit RBG image into an 8-bit grayscale image.  
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Machine Learning Methods 

The first stage of the machine learning methods used in this project was feature extraction. 

Both the kNN and Random Forest classifiers require labelled data as they are considered 

supervised learning algorithms. As outlined in the previous section, Gabor filters were used 

to generate feature banks for individual pixels. OpenCV was used extensively when 

generating Gabor filters as it contains useful methods for generating Gabor kernels. Images 

were also read in using OpenCV as this ensured filtering could be properly applied from the 

Gabor filters.  

An iterative function was produced that read through each TIFF file in a target 

directory and its respective segmentation mask. The 3-D TIFF volumes were accessed in a 

slice-by-slice manner and for each pixel in the 2-D slice, a series of data points were 

generated and stored in a Pandas Dataframe. Pandas is a useful data analysis library and the 

use of Dataframe functionality was due to the ease of specifying data to be trained when 

handling pixels with multiple features. For each pixel in the image, the original pixel value 

was entered into the Dataframe, the same pixel location data from the segmentation mask 

was also added to the Dataframe determining whether this pixel would be considered in the 

vessel wall structure or not. A series of 8 Gabor filter values were also generated for each 

pixel by varying the input parameters for the OpenCV Gabor filter method. Images were 

resized using tools within the OpenCV library to ensure faster training of models. 

The number of Gabor features to be generated was decided upon due to two 

separate factors. The first being due to time constraints as each iteration through the 

function would involve generating multiple features per pixel and slow down the feature 

extraction when using larger numbers of Gabor features. Also, when using a larger number 

of feature banks with lower values for Gabor input parameters, such as theta =0, it was 

observed that most Gabor feature values would equal 0. However, for higher values of input 

parameters, such as theta = ¼*pi, more variable values for the Gabor features were 

observed. By choosing a limited number of appropriate input parameters that produce 

variable feature values, the hope was to reduce the number of Gabor features generated 

without affecting their role in the training of the classifier models as it is the variance in the 

feature values for each pixel that the model is being trained to predict. 

An example of a Dataframe containing training data can be seen in Figure 5 and the 

script for generating the set in Figure 6. 
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Figure 5 - Pixel Feature bank for model training 

 

Figure 6 - Method to generate training data for machine learning models including Gabor filtering 
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To train the models and make predictions t he machine learning library scikit-learn 

was used as it contains preloaded functions for defining both the kNN and Random Forest 

classifiers, as well as a useful method of splitting data into test and train sets called 

けtrain_test_splitげ. The use of this data splitting method makes the validation steps easier to 

perform. The Dataframe containing the Gabor features and pixel values were split into 

dependant and independent variables for classification. The dependant variable referring to 

the binary segmentation mask pixel value, which would be either 0 if it was considered 

background or 255 if it was considered in the vessel wall structure. The independent 

variables were the original pixel value in the unsegmented image and its corresponding 

Gabor filter values. These values were then fit to the model in the same way for either 

classifier. An example from the kNN model training is seen in Figure 7. 

 

Figure 7 - kNN training function utilising sklearn 

  The model was then saved and could be loaded at any point through the Pickle 

library to make predictions of segmentation masks. To make a prediction on one of the 

images from the Popliteal or Inguinal sets, an adapted version of the けfeature_extractげ 

method in figure 6 was used that generated only the independent pixel value and Gabor 

feature variables for the image to be segmented. A prediction using these variables was 

made on a 2D slice by slice basis with each predicted mask then being appended to a list to 

contain the full 3D segmentation volume prediction. The prediction method used can be 

seen in Figure 8. 

 

Figure 8 - Model prediction for kNN or Random Forest 
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Deep Learning Methods 

The 3-D Unet models produced were adapted from work done in the けDeepVesselNetげ study 

(Tetteh et al. 2020). For each volume in the training set, extraction of non-overlapping 

64x64x64 sub-volumes was completed. These sub-volumes were then passed into the 

models for training. This was achieved using the Patchify library. For the Patchify library to 

function correctly the volume being splitげs height, width and depth values would need to be 

exactly divisible by 64. A padding algorithm was designed that would take an input image, 

calculate the nearest multiple of 64 above the individual dimensions. It would then calculate 

the difference (n) between the nearest multiple and the dimension and then pad the 

training image along that dimension with pixels of value 0 n times. For example, an input 

volume of shape 300x940x550 would be padded to a shape of 320x960x576. The adapted 

method can be seen in Figure 9. 

 

Figure 9 - Image Padding Algorithm 

  The 3-D Unet model was compiled using the segmentation models library and is built 

upon the Ronneberger development of the UNet architecture (Ronneberger et al. 2015). In 

summary this model consists of two parts. The contracting path which follows a typical 

convolutional architecture of 3x3x3 convolutions with ReLU activation and 2x2x2 max 
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pooling operations. Also, there is an expanding path which utilises upsampling and 

concatenation layers. A summary of the model can be seen in the appendix containing 

supplementary material (Appendix 1). 

   Image data was read and resized through the skimage library. This library contains 

methods for resizing that can easily handle resizing of binary data. When resizing the 

segmentation mask, it was crucial that the correct interpolation type was used to preserve 

the original values. The けorder=0げ parameter in the resizing, as seen in Figure 10, meant that 

the interpolation type was set to nearest neighbour and original values were not changed. 

The images for training when using the Popliteal and Inguinal sets were resized to 256x256 

as this meant there were still around 20 million pixels per file for an image of 300 slide 

depth. The synthetic dataset images were resized to 64x64 as this meant there were still 2.5 

million pixels per file for an image of 600 slides. 

 

 

Figure 10 - Data preperation method for UNet model 

 

An important step in producing an effective deep learning models is through pre-

processing of data (Shorten et al. 2019). To ensure accurate prediction it was crucial that 

the model training data be prepared correctly. The 3-D Unet model developed required 

labelled data from the segmentation masks used in training. The けLabelEncoderげ included 

within the sklearn pre-processing library was used to ensure segmentation classification 

could be understood by the Unet model. The method developed to encode the 

segmentation data is seen in Figure 11. 
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Figure 11 - Label Encoder method 

Another measure to ensure accurate segmentation data would be to increase the 

size of the training set by performing data augmentation (Shorten et al. 2019). A number of 

augmentation techniques were used to generate more data from the Popliteal and Inguinal 

datasets. These include rotation of the image; horizontally and vertically flipping the image; 

vertically and horizontally translating the image. A series of methods as seen in Figure 12 

were designed to handle the augmentation of image data. These implementations were 

achieved using the numpy library, scipy library and random library. The use of seed in the 

random library meant that equal augmentations could be made to the target image data 

and its corresponding segmentation mask. 

 

Figure 12 - Augmentation methods 
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A series of different Unet models were trained in this project for comparison of results.  

1. A control Unet model that was trained on the raw Popliteal and Inguinal datasets, 

this was neither down-sampled nor augmented. 

2. A Unet model trained on the Popliteal and Inguinal datasets that had been down-

sampled to contain 256x256 slices. 

3. A Unet model trained on the Popliteal and Inguinal datasets that had been down-

sampled to contain 256x256 slices and trained with 2x augmented further Popliteal 

and Inguinal datasets.  

4. A Unet model pretrained on the down-sampled synthetic dataset containing 64x64 

slices, and further trained with down-sampled and 2x augmented Popliteal and 

Inguinal datasets. 

5. A Unet model utilising the pretrained ImagNet vgg16 (Shorten et al. 2019) weights 

with further training of Popliteal and Inguinal down-sampled and 2x augmented 

datasets 

In the segmentation models library, there were metrics included for validation when 

training. To aid with deciding how long to train models, the Intersection Of Union (IOU) was 

tracked during training. The IOU is considered as a statistic for comparing the similarity of 

sample sets. As can be seen in Figure 13, after a certain number of epochs of training the 

validation IOU score can be seen to plateau. This plateauing effect will be observed for each 

of the models discussed previously to determine the length of their training. When fitting a 

model, a call-back function from the Keras library called けEarlyStoppingげ was implemented to 

stop training when this plateau of IOU score was seen. 

 

Figure 13 - Training and validation IOU for 3D Unet preliminary training 
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  For predictions to be made on the test volumes, the process described before 

including padding of the image and splitting into 64x64x64 sub-volumes would be applied 

before prediction. This is due to the Unet model only accepting input of the same shape as 

the training dataset. 

 

Evaluation 

For both the machine learning models and deep learning models described a method to 

calculate the dice coefficient between a prediction segmentation and the ground truth 

segmentation mask was implemented from stackoverflow. The method takes two input 

image arrays and a value determining the truth value to be tested for. This was used in both 

whole volume comparisons as well as for slice-by-slice comparisons. 

 

 

Figure 14 -  Dice Coefficient calculation method 

Results and Analysis 

This section focuses on the comparison of the trained models produced in this project. An 

input image was fed into a model for prediction after the relevant feature extraction 

methods outlined in the previous section. The model produced a predicted segmentation 

mask for the image, and this was compared against the ground truth manual segmentation 

provided by Dr Milutinovic. These comparisons will be evaluated against the aims and 

objectives of this project using the Dice coefficient for image comparison and the time taken 

to perform a prediction over the given 3-D volume. 

  The use of the kNN model for prediction was discarded from the project. This was 

due to the predictions being produced not meeting the main aim of this project. The 

predictions would take upwards of 30+ minutes per slice when testing on the Popliteal LN 

image 5 (POP5). With an image depth of around 300 slices, this amounts to a time much 

greater than required in the current manual pipeline. 
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  The Random Forest model produced more promising results with a volumetric 

prediction for POP5 taking only as long as 15 minutes. This would meet the objective of 

creating a fast segmentation model. However, the accuracy of the prediction when 

compared with the POP5 segmentation mask only scores a 0.248 Dice coefficient. Figure 15 

shows the individual elements of the prediction. 

 

 

Figure 15 - 2-D slices throgh (Left) original LSFM image, (Middle) ground truth segmentation and (Right) Prediction of 

segmentation mask. Random Forest Model. 

 

The first deep learning model results to be shown are from the 3-D Unet control 

group. The training dataset consisted of 64x64x64 sub-volumes of the entire Popliteal and 

Inguinal 3-D volumes. The accuracy of the prediction when compared with the POP5 

segmentation mask scores a 0.483 Dice coefficient. Figure 16 shows the individual elements 

of the prediction. The time needed to complete the predictions using this 3-D Unet 

methodology is significantly lower, at only 2 minutes 44 seconds for POP5. Figure 17 shows 

the prediction method utilising the tqdm library to measure the time taken for the 3-D 

volume prediction to be made. 

 

 

Figure 16 - 2-D slices throgh (Left) original LSFM image, (Middle) ground truth segmentation and (Right) Prediction of 

segmentation mask. 3-D Unet control. 
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Figure 17 - 3-D Unet prediction method showing total time for 3-D volume prediction 

 

  The second deep learning model results to be shown are from 3-D Unet down-

sampled dataset. This training dataset consisted of the Popliteal and Inguinal 3-D volumes 

with their width and height dimensions resized to 256x256 while keeping the same depth of 

slices. The accuracy of the prediction when compared with the POP5 segmentation mask 

scores a 0.682 Dice coefficient. Figure 18 shows the individual elements of the prediction. 

When comparing these results with the 3-D Unet control group, it can be observed that 

even though down-sampling is used, a much higher quality segmentation is produced. Due 

to the preparation of this dataset in the label generator algorithm (Figure 11) taking only 8 

minutes per image, compared with 40 minutes per image for the control group, the decision 

to use only down-sampled data for training of other models was made. 

 

 

Figure 18 - 2-D slices throgh (Left) original LSFM image, (Middle) ground truth segmentation and (Right) Prediction of 

segmentation mask. 3-D Unet downsampled. 
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  The third deep learning model results to be shown are from the 3-D Unet down-

sampled dataset with 2x augmentation of Popliteal and Inguinal datasets. The augmentation 

follows the functions outlined in figure 12 where a sample is flipped horizontally and 

vertically, then a random seed generates a rotation degree and horizontal and vertical 

translation to produce a more varied set of data. The accuracy of the prediction when 

compared with the POP5 segmentation mask scores a 0.717 Dice coefficient. Figure 19 

shows the individual elements of the prediction. This shows the positive effects of 

augmentation on producing more reliable prediction as this score is even higher than the 

just down-sampled model. 

 

Figure 19 - 2-D slices throgh (Left) original LSFM image, (Middle) ground truth segmentation and (Right) Prediction of 

segmentation mask. 3-D Unet Downsampled and Augmented. 

  The fourth deep learning results to be shown are from the 3-D Unet model 

pretrained on the down-sampled synthetic dataset containing 64x64 slices, and further 

trained with down-sampled and 2x augmented Popliteal and Inguinal datasets. The accuracy 

of the prediction when compared with the POP5 segmentation mask scored a 0.294 Dice 

coefficient. Figure 20 shows the individual elements of the prediction. This score is much 

lower than the results reported in the けDeepVesselNetげ study in which a Unet finetuned 

model achieved a dice score of 0.844. However, this is most likely due to the amount of 

training the models have received as in this study where there were 1200 epochs of training 

compared to the average of around 100-200 for each of this projectげs adapted models 

(Tetteh et al.2020). This highlights the need for suitable iterations of training on a dataset. 

 

Figure 20 - 2-D slices throgh (Left) original LSFM image, (Middle) ground truth segmentation and (Right) Prediction of 

segmentation mask. 3-D Unet synthetic pretraining. 
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The final deep learning results are from the 3-D Unet model that makes use of the 

publicly available ImageNet weights discovered in the research (Shorten et al. 2019) 

combined with further training using the Popliteal and Inguinal down-sampled and 2x 

augmented datasets. The accuracy of the prediction when compared with the POP5 

segmentation mask scored a 0.662 Dice coefficient. Figure 21 shows the individual elements 

of the prediction. Table 1 contains the results for all the modelsげ predictions and their 

corresponding Figure number. 

 

 

Figure 21 - 2-D slices throgh (Left) original LSFM image, (Middle) ground truth segmentation and (Right) Prediction of 

segmentation mask. 3-D Unet Imagenet pretraining. 

 

Table 1 - Overview of performance of adapted models 

Model Description Figure Dice Coefficient 

3D Unet Control 16 0.483 

3D Unet Down-sampled 18 0.682 

3D Unet Down-sampled + 

Augmented 

19 0.717 

3D Unet Synthetic pretrain 20 0.294 

3D Unet imagenet pretrain 21 0.662 

Random Forest 15 0.248 

 

 

Limitations 

One of the main limitations to the segmentation quality was due to the staining method 

used in the medical research. Figure 22 shows a slice through a prediction made on Popliteal 

4 (POP4) which is an image part of the training set. The dice coefficient for this individual 

slice prediction is 0.896. Figure 23 shows a slice through the same prediction on POP4 at a 
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slice that contains some LN tissue that has been stained accidentally. The dice coefficient for 

this slice is only 0.399. As the model is based solely on the intensity of pixels within the 

image, it is unable to distinguish the difference between when a blood vessel is stained and 

when tissue is stained. This makes the overall prediction of a volume worse, even when 

there are excellent predictions in areas.  

 

 

Figure 22 – Segmentation Prediction on POP4 

 

Figure 23 - Segmentation Prediction on POP4 showing tissue staining 

 

  Another main limitation to the results produced in this dissertation project was 

related to the researcherげs prior knowledge of the fields in both artificial intelligence and 

image processing. This meant that a large sum of time in this project was dedicated to 

learning and familiarising with the basic concepts and libraries of these topics. With a 

greater amount of time on the project, perhaps better models and segmentations would 

have been achieved. 

 

 

 



 

28  

Conclusion  

Meeting of objectives 

The first objective was to Identify a quantitative measure for use in comparison to help 

maintain the high-quality segmentations achieved in the current けVessel Toolsげ pipeline. The 

use of the Dice coefficient identified in the literature was used in comparisons between 

predicted segmentation masks and the ground truth segmentations produced from the 

current tools. In the results however, the highest Dice coefficient score when predicting on 

an unseen image (POP5) was only 0.717 and more work would need to be done to improve 

the effectiveness of the models. 

  The second objective was to improve the speed of the segmentation by making a 

single step process. As seen in the results, the predictions from both deep learning and 

machine learning based approaches provided a fast segmentation. 15 minutes with the 

Random Forest Classifier and 3 minutes with the deep learning models. When compared 

with the current pipeline that involves a multi-step trial and error based approach that may 

take hours per image, this objective is seen as met. 

  The third objective was to ensure the user input for the tool is limited. Further work 

would need to be done to achieve this as currently the models require feature extraction 

and data preparation in separate steps. However, this could easily be compiled into a single 

input image pipeline with more time available. 

  The fourth objective was to produce a solution that is easily relatable to the current 

tools and data in use, to enable ease of transfer from the current tools to the new. All image 

data handled, and predictions produced in this project were of TIFF 8-bit grayscale file 

format and so could be transferred and used with the current tools. However, as the 

predictions made in this project were performed in the Google Colab development 

environment, an issue may arise with the same predictions being performed on in-lab 

workstations that may have much lower computer specifications such as dedicated GPU 

memory. Lower specifications may lead to predictions taking much longer or perhaps may 

not even run. 

  Several suitable existing frameworks were identified and tested upon in the results 

section and so the fifth objective of identifying these from related literature is met. 
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Methodology 

As the project progressed it became apparent the project scope was too large. The project 

looked to compare several different model techniques to try and find an effective solution. 

However, this led to the research being spread too thin. Lots of time had to be used 

researching the implementation of multiple different methods and so the training time for 

models suffered. The project could have instead focused upon one solution, such as 3-D 

Unet, and attempted to optimise the modelling here. With more training and approaches 

focused on honing a single model, more accurate segmentations could have been achieved. 

  From the results seen in this project, down-sampling of images is a useful tool in 

saving time when training models while also being able to produce high quality 

segmentations. If I was able to repeat the project, I would use down-sampling in model 

training from the beginning rather than wasting a lot of time preparing the training of data 

from whole images. 

 The methodology used in deciding the number of epochs to train the deep learning 

models involved utilising a Keras call-back called けEarlyStopperげ. The number of epochs 

models would be fit on depended on when there was a plateau in the increase of validation 

IOU. This led to different models receiving a different number of epochs of training. In 

future when comparing different models in this way, a control number of epochs would be 

used to ensure this ┘asﾐげt affecting the quality of the segmentations. 

 

Further work  

The choice of testing all models against POP5 was made due to it having a lower overall 

intensity of staining and hence pixel values in the vessel walls. This allowed for testing 

against the extremes of possible test cases and showed a worst-case scenario Dice score for 

the model. Figure 24 shows a prediction made on ING3 by the 3-D Unet down-sampled and 

augmented model. ING3 was also chosen for testing due to its similarity in intensity of 

staining to the rest of the training images. This prediction received a Dice score of 0.891 

which is much higher than the 0.717 achieved with POP5. This highlights the importance of 

accounting for differences in pixel intensity within training images. Although augmentation 

of data produced great results as a pre-processing step. Further work with other pre-

processing techniques, such as normalisation or standardisation (Bhandara 2020), that 
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would look at handling the variation in pixel intensities between different images could be 

performed. 

 

 

Figure 24 - Prediction on ING3. 3-D Unet Down-sampled + Augmented model. 

 

To meet objective number four several approaches in further work could be 

adapted. More time on the project would allow for more optimisation of a model that 

would produce satisfactory vessel segmentations. If the trained model was unable to do this 

however, the combination of the けVessel Toolsげ used for manual segmentation could be 

utilised. Research could be done into the effects of using such tools as filler on the 

prediction masks. This approach would still satisfy speeding up the overall process as the 

automated model prediction could replace the manual thresholding and smoothing tools. 

This work would also require investigation into the use of the prediction models outside of 

the Google Colab environment. 

 

Contributions to existing material 

The results from this project contribute evidence to the literature supporting the 

effectiveness of both down-sampling and augmenting as pre-processing steps for vessel 

segmentation AI models. This is shown by the best prediction results in this project from the 

models adapted using these techniques. The research for this project also identified gaps in 

the literature relating to 3-D segmentation of lymphatic vessel networks. The methodology 

adapted combined Unet with datasets provided by Dr Milutinovic to add to this lacking area 

of literature. 
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Reflection 

Over the course of this project, I learned many lessons relating to the fields of AI and image 

processing as well as learning many lessons about myself and my goals. One of the lessons I 

learned to do with these topics is the amount of time necessary to complete tasks. The pre-

processing of data through augmentation, label encoding and feature extraction etc. took 

up most of the time in this project. The amounts of training necessary for models to be able 

to accurately predict also became apparent through this project achieving good results with 

limited data. This showed to me that even though it is the prediction that is under 

evaluation, in AI the preparation of data for training is the most vital step. 

 In the research completed into the literature surrounding this project it became 

clear that although there was lots of research on vessel segmentation, most of the research 

was performed on a very limited number of small datasets such as the DRIVE database. The 

results from this project showed the importance of having data for training that is relevant 

to the problem being solved. When training data is not representative of the testing data, 

such as in Figure 20, worse predictions are made. This showed to me the importance of 

publicly available data and open-source libraries in AI research to develop useful models 

and beyond. 

 This research topic required proficient understanding of Python and its libraries. One 

of my strengths identified during this process was my ability to understand the ways in 

which Python works and so I was able to utilise several previously unseen external libraries 

to achieve good results. I also began this project with practically no understanding of AI and 

image processing. I was able to utilise another strength of mine of being able to learn new 

topics quickly to adapt and produce a variety of different machine learning models. 

 In deciding upon the methodology for my research, some good and bad decisions 

were made. One of the good decisions I made was in deciding to test on the POP5 image 

data. I made this decision due to the image quality being much fainter than others in the 

testing dataset. This proved to be a good decision as it showcased the necessity of training 

on fully representative datasets and revealed areas of further study. I learnt from this that 

there is always more that can be done in the optimisation of AI models and will hope to 

bring this forward to further work. A bad decision I made was deciding on the scope of the 

project in the early stages. By deciding to attempt to implement and compare multiple 
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methodologies, I believe my segmentation results suffered due to this and so this hindered 

my project achieving its aims. In the future, I would hope to set my research sights on more 

focused tasks in the beginning and then expand to other comparisons if time would allow. 

 As I began this MSc Computing course last year, I thought one of the only 

disappointing aspects of this course was that it did not contain any modules dedicated to 

teaching AI and its concepts. This was an area I had always been interested to see if I 

enjoyed it. This project topic gave me the opportunity to explore AI in a field of research as 

important as Biomedicine and Cancer Research. Working through all the processes involved 

with producing models and predictions showed to me how much I would enjoy working in a 

field such as this, especially when achieving that amazing feeling of producing working 

predictions. 
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Appendices 

Appendix 1: Supplementary Materials. 

File Name Description 

feature_extract_gabor.py Extracts gabor features and pixel values for 

training of Random Forest and kNN. 

feature_extract_unet.py Pre-Processing of data for Unet models 

train_model_classifiers.py Training module for kNN and Random Forest 

models 

train_unet.py Training module for Unet models 

classifier_predict.py Prediction module for kNN and Random Forest 

models 

unet_predict.py Prediction module for Unet models 

Model_summary.txt 3-D Unet model framework summary including 

number of trained parameters etc. 
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