
1

FunTime – a web portal assisting the teenage population to find the

right extra-curricular activities

Sara Disney

C2101407

MSc Computing and IT Management

Supervisor: Daniela Tsaneva

School of Computer Science and Informatics

Cardiff University

08/09/2021

2

Acknowledgments

I would like to firstly thank my dissertation supervisor, Daniela Tsaneva, for her continuous

support and direction within this project. Particularly the first month of the project

discussing the logic with me and providing plentiful resources to help my independent

study.

I would also like to thank my family who have been down the phone to speak to throughout

the ┞eaヴ. DeIidiﾐg to uﾐdeヴgo a ﾏasteヴげs degヴee aﾐd ケuittiﾐg a fulltiﾏe joH to puヴsue it ┘as

a big decision which was made a lot easier with the support they offered.

3

Contents

Abstract ... 5

Introduction .. 5

Aims and Objectives .. 7

Background research .. 8

Problem ... 8

Web Portal .. 9

Recommendation engines .. 9

Collaborative filtering ... 9

Content-based filtering ... 10

Other recommendation options ... 10

Examples of recommender systems ... 11

Extracurricular activities ... 11

Well-known recommender systems ... 12

Overview ... 14

Approach ... 15

Requirements and design ... 15

User Survey ... 15

Personas .. 22

Requirements .. 24

UML Use Case Diagram ... 24

Non-Functional Requirements .. 24

Use Cases and State Transition Networks .. 25

Prototypes / Wireframes .. 34

System architecture .. 38

Algorithm design ... 39

Cosine similarity .. 39

Euclidean distance .. 40

Database design .. 40

Data sources .. 43

Decision on variables used .. 43

Implementation .. 44

UML Activity Diagram ... 45

Algorithm .. 47

System development .. 49

Flask Framework ... 49

4

Database ... 50

Forms .. 50

User requirements .. 51

Inputting logic to Flask .. 52

Map integration .. 55

Social Media Sharing ... 57

Frontend styling .. 57

Results ... 58

Testing ... 58

Analysis ... 67

Conclusion ... 68

Future work ... 70

Reflections .. 71

References .. 74

Appendix ... 76

5

Abstract

Psychological studies have repeatedly demonstrated the benefits that extracurricular

activities offer the teenage population. However, there are currently a variety of problems

that exist within this topic, which this project aims to resolve. Many teenagers may need

support deciding on extracurricular activities through not enough choice. Equally, in some

areas, with such a variety of extracurricular activities that exist, there can be an

overwhelming sense of not knowing what to do.

FunTime is a web portal with the aim to help teenagers discover the extra-curricular

activities that are most suited to them, including options from sports, arts, and skill-based

activities. Users of the portal will be provided with suggestions of suitable organisations in

their local area and the relevant information that accompanies this.

The recommender is built using a hybrid approach of a basic database query search,

followed by principles of content-based filtering: specifically Euclidean distance. This

enables the useヴsげ needs and wants to be fulfilled and provide accurate and insightful

recommendations that users may not have considered before.

Introduction

Growing up, after quitting the one extracurricular activity I did at 13, I had so much spare

time but did not know what to do with it. I did not know what clubs existed near me, let

alone any that would take newcomers. Only beginning university, I joined new clubs and

societies, wishing I had much earlier. I am now a strong advocate for being active and

understand the challenges that finding clubs or organisations have. My anecdotal story was

the beginning of the motivation to choose this project, further research into the topic

demonstrated there is a real importance for teenagers to partake in extracurricular

activities.

Currently, there is no readily available database that consists of all activities alongside a

short description to understand what it is. In addition, there is no database with details of

these activities, or where a person may take part in them. Some websites have tried to put

together a few organisations that exist in their area, equally if a person went onto Facebook

6

groups, they might find organisations promoting themselves, but there is no fully

comprehensive site or database where a user is able to discover what exists.

Since there is nothing that states what extracurricular activities exists, there definitely is not

a tool that suggests the best activities to people. That is what this project aims to resolve.

Firstly, it requires building a database that consists of a range of activities that could grow

over time as more activities and organisations are inputted. Then using the data, provide

users with the best options for them.

To solve this problem, data science methods and tools are going to be used. The reader will

not require a deep understanding of data science, but the project will go on to discuss

different recommendation systems and similarity measures prevalent in the field of data

science.

The project considers how to build a system that will suggest appropriate extracurricular

activities to teenagers. To do so, it aims to understand the target audience alongside

parents as a secondary actor to use the system. I build a prototype to demonstrate at a

small scale how this problem can be solved to the local area of Cardiff, Wales using a sample

of extracurricular activities and associated organisations that exist.

The project begins by outlining the aims and objectives, then discusses background material.

The background material examines the need for this project surrounding extracurricular

activities, recommendation engines, well-known examples of websites using

recommendation systems and examples of the closest tool to extracurricular activity

suggestions: quizzes. After discussing this material, I discuss the approach and design. This

includes use cases, wireframes, algorithm design and database design. The implementation

discusses making the design into a reality, the challenges that became present from this and

how I worked to resolve them. The final section tests the implementation according to the

aims, objectives, and use cases from the beginning of the project. This is before evaluating

the overall project and reflecting on the lessons learned. I also discuss how this project can

be developed further in the future.

7

Aims and Objectives

The overarching aim of this project is to produce a prototype web portal that returns

appropriate suggestions to teenagers regarding extracurricular activities that are best suited

to them. This is creating a recommendation prototype for a sector that has been untouched

by both academia and businesses.

Within this, there are several mini objectives that the project aims to address.

1. An exploration of appropriate methods to produce recommendations is required.

This will be the logical backend that supports the portal.

2. Understand user requirements in the design phase. This will shape the portal for

both the frontend and backend.

3. A varied activity database is required. This is to be designed to be inclusive to all

members of society who may use the portal if it continued past prototype stage.

4. The algorithm created should cover aspects that define what features form an

activity, and what users look for in activities. This is to ensure the portal produces

valid suggestions.

a. Related to points 2 and 3, a range of feature options suited to different user

circumstances should be available for users to choose from.

5. Build a basic user interface. This should be fully functional and provide the user with

information in a clear manner.

6. A limited number of results should be produced. This is to balance giving users

options but not presenting them with the phenomenon of overchoice. Overchoice

could lead to difficulty in making a choice of partaking in a particular activity which

would make the suggestion redundant.

8

Background research

To understand the problem area further and appropriate solutions, I undertook background

research. To begin with, I aimed to identify the need for assistive technology regarding

teenagers and extra-curricular activities. Then proceeded to research into recommendation

engines plus evaluating examples of recommender systems that are widely used.

Problem

Academic research has repeatedly demonstrated the importance of extra-curricular

activities particularly within the older children age bracket. Extracurricular activities offer a

range of benefits for teenagers identified as: increased confidence supporting social

interaction, aspirations to go onto higher education, more soft skills, and a sense of

wellbeing and belonging (Donnelly et al. 2019). Donnelly et al. (2019) go on to explore how

mental health and wellbeing is supported through these activities offering an important

space to relax and have fun. Psychological studies have shown that disruptive behaviours

and substance use is negatively correlated with participating in extracurricular activities

(Driessens 2015). Similarly, Fredricks and Eccles (2006) found that teenagers who were

involved in school extracurricular activities were less likely to drop out of their school or

become arrested as young adults. And Mahoney (2000) identifies that confidence and trust

in others is created during a time of life where intimacy and faith are challenged. Clearly

there is a strong impoヴtaﾐIe foヴ e┝tヴaIuヴヴiIulaヴ aIti┗ities ┘ithiﾐ teeﾐageヴsげ li┗es; ha┗iﾐg a

web portal that could support this may produce benefits being the step towards influencing

teenagers to join and maintain continued attendance.

Understanding the importance of extracurricular activities has identified the context to this

project, however, the need of a system which can assist teenagers to find the right one

ヴeケuiヴes fuヴtheヴ e┝ploヴatioﾐ. Kupisk ふヲヰヱ7ぶ Ilaiﾏs that さfiﾐdiﾐg e┝tヴaIuヴヴiIulaヴ aIti┗ities that

are a good fit foヴ ┞ouヴ teeﾐ Iaﾐ take tiﾏeざ. “he Ioﾐtiﾐues to state that teeﾐs soﾏetiﾏes

require help to envision what they could do and what exists. Terzian et al. (2009) explored

the ヴeasoﾐs Hehiﾐd teeﾐageヴsげ laIk of iﾐ┗ol┗eﾏeﾐt iﾐ out-of-school programs and identified

lack of awareness about what exists as a key reason. Many participants in their study did not

know about the activities local to them, however, expressed interest in wanted to

participate in something. Therefore, there is a gap for a product to assist teenagers to find

what exists and inspire them into trying such activities.

9

Donnelly et al. (2019) from the social mobility commission defines extracurricular activities

in a broad sense to encompass a full picture of t┞pes, this iﾐIludes: さspoヴtiﾐg (e.g., football,

boxing, cricket), musical (e.g., learning an instrument, membership of an orchestra), artistic

(e.g., drama, dance, drawing), and social (e.g., youth groups, scouts/girl guides) activitiesざ

(p. 6).

Web Portal

A web portal is a website that is designed to enable users to get information, bringing

information together from various sources (Hasabe et al. 2015).

Recommendation engines

Assistive technology has the underlying engine of recommendation systems. Recommender

systems are a more personalised approach rather than a simple search engine. Ricci et al.

(2011) differentiate between personalised and non-personalised recommendation systems:

something like a top ten popularity list counts as the latter and is typically not addressed by

researchers for recommender systems. The idea is personalised systems さpヴioヴitise iteﾏs

likel┞ to He of iﾐteヴest to the useヴざ ふBuヴke et al. 2011, p. 1). Different types of recommender

systems are available to use, identified in Burkeげs ふヲヰヰヲぶ papeヴ. The two most common

recommender engines will be explored here in detail with mention of other options.

Collaborative filtering

One of the most well-known recommender engines is collaborative filtering, here

recommendations are based off information provided from other users (Burke 2007). In

practice, this could be user recommendations being based upon what other users enjoy and

rate highly. The idea here is that if users like or want items that are like each other then

there is strong chance that they will have the same utility for future items and so

subsequent recommendations will be based off their Iouﾐteヴpaヴtsげ other likes (Schafer et al.

2017). To exemplify this, if user X and user Y both watch and rate positively the same movie,

user X will then be recommended with other movies that user Y has watched and vice versa.

Collaborative filtering can be split into user-based and item-based sections. User-user

method is a memory based collaborative approach that identifies users who are similar to

one another through use of the nearest ﾐeighHouヴsげ algorithm, then items are suggested

that are popular with these users of similar characteristics. The recommendation engine

10

relies on information such as likes and dislikes to compute a similarity index between users

then proceed to recommend appropriate items. In comparison item-based collaborative

filtering looks for similar items rather than similar users. The theory is that users will like

items similar to what they previously have liked.

However, there are problems associated with collaborative filtering. These include new

items requiring an additional knowledge source since they will not have any reactions from

current users (Schafer et al. 2007). A hybrid approach may be useful to incorporate this

さIold-staヴtざ pヴoHleﾏ. Equally, Schafer et al. (2007) note how malicious users could bias the

system ┘ith さs┞Hilざ pヴofiles – this would mean the algorithm is working from data, which is

not valid, thus creating poor recommendations.

Content-based filtering

Another famous recommendation engine is content-based filtering. Recommendations from

this approach is generated from the features associated with particular items and the

ratings a user has given them. It is user-specific based upon the content of items, and the

interests of the users are discovered based on their history on the site. What makes this

different to item-based collaborative filtering is that it looks for similar items to what the

user has looked for before, rather than taking into consideration ratings and preferences.

Thus content-based recommendation system provides recommendations to a user based on

description or features and identifies similarity according to these attributes. There are

different approaches to measure similarity distance including Cosine similarity, Euclidean

distance, and Manhattan distance (Subramanian 2020).

A similarity measure is comparing how alike two data objects are where there is a distance

with dimensions that represent features of the objects (Polamuri 2015). The smaller the

distance, the greater degree of similarity. Similarity is usually measured in the range of 0 to

1 where 1 means X=Y, and 0 means X ≠ Y (Polamuri 2015). Similarity measures are

calculated fヴoﾏ a ┗eItoヴ that Ioヴヴespoﾐds to aﾐ iteﾏげs featuヴes, aﾐd a ┗eItoヴ that translates

to the useヴげs pヴefeヴヴed featuヴes.

Other recommendation options

Although collaborative and content-based are the most common recommendation

techniques, Burke (2007) also notes upon demographic and knowledge-based techniques.

11

Demographic provides recommendations based on a demographic profile of a user, and

knowledge-Hased pヴoduIes suggestioﾐs Hased oﾐ iﾐfeヴeﾐIes oﾐ useヴげs ﾐeeds and

preferences.

More complex recommender systems introduce the concept of hybrid recommendations

which combine at minimum two of the recommendation techniques noted. Hybrid

recommendations can be implemented in seven different ways: weighted, switching, mixed,

feature combination, feature augmentation, cascade, and meta-level (Burke 2007).

Discussion surrounding algorithm decisions are noted upon in the algorithm design section

to understand which is most suited to the requirements.

Examples of recommender systems

Extracurricular activities

Searching for a recommender for extracurricular activities has proven challenging –

suggesting that there is currently no such system that exists. Using search criteria such as:

さヴeIoﾏﾏeﾐd ﾏe aﾐ e┝tヴaIuヴヴiIulaヴ aIti┗it┞ざ, さヴeIoﾏﾏeﾐd aIti┗it┞ざ, さ┘hat aIti┗ity should I

doざ. The Ilosest siﾏilaヴit┞ foヴ a ヴeIoﾏﾏeﾐdeヴ fittiﾐg ┘ith this topiI ┘ould He soﾏe oﾐliﾐe

quizzes. Although a quiz is not the same as what this project will be producing, it will be

useful to analyse to understand how they are suggesting activities to people. Alongside

analysing such quizzes, analysis of alternative recommender systems will also be useful for

background knowledge to this project.

Buzzfeedげs さWhat AIti┗it┞ “hould You Tヴ┞ Based oﾐ

This Quiz?ざ usiﾐg a ヴaﾐge of ケuestioﾐs ┘ith ﾏid-

sized images attached. These questions include

picking an outfit, an animal, a drink, a tv show, and

other simple questions. The end of the quiz

produces a title of the activity, a small description

with large image underneath. There is also the

ability to share this result with friends on Facebook,

Twitter, as a link or to pin to your personal

Buzzfeed profile as a sort of tagging system.

12

The British Heart Foundation offers a similar resource of a

quiz to suggest which fitness activity suits you. It provides

seven questions asking the user to choose location of their

activity (quiet studio, busy studio, outdoors, home),

┘illiﾐgﾐess to pa┞, aiﾏs, etI. The ヴesult of a peヴsoﾐげs

answers is produced with a large image, title, description

of what the activity is and the ability to share your result

on to social media.

The last quiz-based system I wish to review is from

allthetests.com who ask a series of questions based on your

personality and then produce options of what activity you

should join.

One problem with this quiz is that the answers provided to the

questions were limiting meaning that a user had to find a best

fit to one of their answers rather than something that was

closely aligned with themselves.

Well-known recommender systems

Recommender systems have been applied largely in the

ecommerce sector alongside streaming websites. The

household names who use recommender systems include

Netflix, Amazon, Tinder and YouTube (Severt 2018).

13

Streaming services:

Netflix –

Type of recommender system used and why:

Netflix is famous for its recommendation

engine. Netflix offers a basic ranking

ヴeIoﾏﾏeﾐdatioﾐ s┞steﾏ ┘heヴe it pヴoﾏotes the さTop ヱヰ iﾐ the UK Toda┞ざ. This is theiヴ

simplest tool based off user data. Netflix also uses a hybrid approach to show users movies

which they might not have chosen originally. It looks at the content, but not just genres

within that. Using the millions of data points from users across the world, it understands

who watches what, when and how many times. When a user clicks on a title, Netflix show a

percentage match. Netfli┝げs appヴoaIh is ┗eヴ┞ sophistiIated, thヴough ┘oヴkiﾐg ┘ith e┝pliIit

data where users state that they like something in conjunction with implicit data where a

user is watching the same genre repetitively as an example.

UI Desigﾐ: Netfli┝ offeヴs a さTop PiIks foヴ [ﾐaﾏe]ざ seItioﾐ iﾐ theiヴ platfoヴﾏ, ┘hilst also

promoting the movies they expect a particular user to like throughout. The items are

presented well visually with a cover image that displays what the film or series is. When a

title is opened, a short description and details of the title is provided with the option for

users to thumbs up or down the movie, consequently supporting the recommender engine.

E-commerce:

Amazon -

Amazon offers a range of products

such as prime video, kindle store and

the original e-commerce items

service. Using the kindle store as an

example here for recommending

books, the recommendation system

pヴo┗ides optioﾐs Hased upoﾐ ┘hat a useヴげs pヴe┗ious purchases were. This is likely a hybrid

recommendation engine mixing collaborative filtering with content filtering.

14

Aﾏazoﾐげs kiﾐdle stoヴe uses a siﾏilaヴ desigﾐ to Netfli┝ ┘heヴeH┞ eaIh iteﾏ is displa┞ed as aﾐ

in-line image and clicking on it to reveal further information.

Overview

Currently there is no tool available that recommends extracurricular activities based upon

aﾐ iﾐdi┗idualげs pヴefeヴeﾐIes. The ケuizzes that aヴe a┗ailaHle aヴe liﾏited iﾐ Hoth Ioﾐteﾐt aﾐd

logic with none of them offering what this project aims to provide. On the note of the

recommendation systems, the most commonly used ones have a high number of current

users which enables complex engines to be used through hybridity.

15

Approach

To complete this project within the timeframe, the agile methodology was adopted. This

methodology was adopted with use of Kanban via the Trello app. The benefits of Kanban

were immediately noticed ┘ith its けpull appヴoaIhげ: ┘heﾐ a task is fiﾐished, a ﾐe┘ item is

immediately pulled to begin working on (Ahmad et al. 2016). Other benefits of using Kanban

included better visibility of work, and the ability to return on ideas.

Agile was a natural decision choice in comparison to waterfall development. With agile,

tasks could be broken up and tested throughout. Furthermore, with extracurricular activities

being a topic that has not been explored in this way: decisions on what should be included

in the database, what inputs were necessary, and what logic to use were all potential

threats to a waterfall, step-by-step approach. Therefore, through having the flexibility that

agile offers enabled changes to take place throughout the project instead of bottlenecks or

realising errors at the end.

Requirements and design

User Survey

One element in the design phase that I viewed critical was understanding useヴsげ thoughts.

As in any product management role, the importance is to gain insight into what users want

rather than projecting what I think a user wants. Therefore, I conducted a short online

survey aimed at parents and legal guardians of teenagers to understand their reality and

build my prototype around their feedback. Due to the time it took to gain ethical approval

for this user survey I conducted this much later in the project than I anticipated in my initial

plan. However, the benefits of agile meant that I could work on the implementation, and

after conducting the user survey, return to the implementation and make any edits that I

deemed appropriate. The aim of the questions was to focus on what features of activities

are considered important when decision-making, what information people want about

activities, and then a focus on the system design.

Please find the user survey questions in the appendix.

“oﾏe ﾐotes oﾐ this suヴ┗e┞げs ﾏethodolog┞ Hefoヴe addヴessiﾐg the ヴesults. This suヴ┗e┞ ┘as

conducted online and was put into a Facebook group of a relatively affluent area. This may

lead to the results not being representative of the overall population. However, for this

16

study, this does not cause much of an issue as the aim is to simply get ideas from a small

sample of the population to understand their point of view. Any responses from members

of the target population builds a clearer picture to create and edit a system from, rather

than working wholly from my own ideas.

Question 1 and 2:

The first two questions were to ensure participants had read the participation information

sheet, consented to the research and are in the target population identified. These were to

ensure ethical approval was met but also an attempt to produce valid responses. All users

aﾐs┘eヴed that けYesげ to Hoth ケuestioﾐs – which were mandatory to continue.

Question 3:

The aim of this question was to find out the proportion of teenagers who currently take part

in an extracurricular activity for a regular period of time. Over 70% of participants claimed

that their teen either has done or currently partakes in an extracurricular activity that they

have been part of for a minimum duration of one year. Although this is a high proportion of

respondents, this question raises three points – the first, is the activity that the teen does

the most suited to them? Perhaps a different activity would be better aligned with what

they like. The second, would they be interested in taking part in another activity? Just

because they do one activity, does not mean they would not have time for another. And

thirdly, ヴegaヴdiﾐg the ヴespoﾐdeﾐts ┘ho aﾐs┘eヴed けNoげ should not be dismissed as there are

some teenagers who have not found the right activity for them. This demonstrates that

17

there is a need for this system, and connotes extracurricular activities are an important part

of ﾏaﾐ┞ teeﾐageヴsげ li┗es.

Question 4:

This question aimed to understand who the primary user of the web portal would be. This

would impact how the site would be presented. This resulted in concluding that teenagers

would become the primary user of the site, and parents would become the secondary user.

No parent stated they would choose an activity for their teenager, but some did state they

would have a part to play in the decision-making process – so these may want to use the

portal.

Question 5:

18

Question fi┗eげs puヴpose ┘as to uﾐdeヴstaﾐd the featuヴes of recommender system and to

break them down according to importance. As expected, location was the mode response

followed by when it is, how much it is and the type of activity it is. These results have

supported the decisions made in the logic of the algorithm and have put more weight on the

deIisioﾐ to Hヴeak the algoヴithﾏ do┘ﾐ iﾐto さmust havesざ aﾐd さ┘aﾐtsざ (which will be

addressed in more depth further in this paper).

Question 6:

This question was to focus on the location/distance aspect in greater detail to understand if

it was as important as I hypothesised. Although there are some outliers who do not view

distance to impact extracurricular activity choice, for many this is important with over 70%

either agreeing or strongly agreeing to the statement. This has supported the decision to

put a strong focus on location of activities on the portal.

Question 7:

19

The information that is stored in the database for each activity and then displayed on the

activity webpage was also useful knowledge to gain from users. If I could find out what they

wanted to know about extracurricular activities, then I could gather the appropriate

information into the database, so the portal is functional for users. Again, location came out

highly important with every participant wanting to know the location of an activity before

joining. Closely following was the cost, time, and contact details. Interestingly, the people

who are already in the club was not considered important, so I did not add this as a column

in the activity table in my database.

Question 8:

20

The results of question 8 were the most unexpected. Although a large proportion of

respondents said that their teen either do or did take part in an extracurricular activity for at

least a year in question 3, a surprising percentage stated that there are not enough options

for extracurricular activities. This suggests that fiﾐdiﾐg the さヴightざ aIti┗it┞ is a challenge, and

some support is desirable to find activities that their teenager would enjoy.

Question 9:

I wanted to discover some insights into the use of the system, particularly the UI and extra

features that users may like, additional to the basic logic of the activity suggestion part.

Images and graphics were the modal answer, shortly followed by an interactive map.

Although I had a use case for users to be able to locate activities, this response has led me

21

to include an interactive map integration to display activity locations. Chat function and the

ability to favourite was not very popular so I have decided to not spend time creating the

logic for these functions since it would not add much to the user experience and meant

more time can be applied to more desirable functionality.

Question 10:

The final question of the user survey addressed device use. Due to this survey concluding

after the initial implementation, I had not created the web portal mobile-first, however, this

result demonstrated the necessity of making a system that is responsive to mobile devices.

22

Personas

Harry Parke

Primary user

Occupation: School pupil

Age: 14

さI ┘aﾐt to tヴ┞ soﾏethiﾐg ﾐe┘ afteヴ sIhool ┘ith ﾏ┞ ﾏates.ざ

Harry is a school pupil who is bored of watching tv afterschool but does not know what to

do instead. He wants to find something to do that he can suggest to his friends or where he

could make new friends when doing the activity.

He wants to find something to do that is sports-related and wants to be suggested with

appropriate activities suited to his age. He will use the platform initially on a one-off basis to

find an activity to do but would become a more regular user if there was a social element

included or if there were updates from the club he joins.

Being a teenager, he will use the platform on a range of devices including his mobile phone,

his laptop and web browser on his Xbox gaming console.

Goals:

- Be recommended activities that are related to his interest in sports.

- Find contact details for clubs he is interested in joining.

- See his recommended activities to look at later.

Karen Hill

Primary user

Occupation: Bookkeeper and parent

Age: 46

さI ┘aﾐt to fiﾐd aIti┗ities ﾏ┞ teeﾐage kids ┘ill He iﾐteヴested

iﾐ.ざ

23

Karen is a working mother with two teenage kids. Her partner and her both work and do not

get home until 6pm so want to find activities that their kids can do straight after school.

Kaヴeﾐ ┘aﾐts to fiﾐd aIti┗ities that heヴ Ihildヴeﾐ ┘ill eﾐjo┞ aﾐd stiIk to, Hut also thiﾐks itげs

important to develop their social skills and keep active.

Karen does not want to feel out of touch with her children so wants appropriate

recommendations based off what her children seem to be interested in currently alongside

her own thoughts.

She will mainly use the web portal on her desktop, however, may use her mobile phone

sometimes too. Her use will be irregular, however, if a developed social feature or updates

from the extra-curricular activities were provided her use would become more regular.

Goals:

- Receive extracurricular activities recommendations that her teenagers may be

interested in.

- Be recommended with fun and safe extracurricular activities for her children.

- Contact providers of the extracurricular activities to find out more information.

24

Requirements

For this project to be successful, a range of requirements are necessary for the user to

experience a functional and effective portal. Although there is some debate regarding

where registration and logging in should be use cases, they have been included here

because it is part of the initial development, therefore have been counted as functional

requirements.

UML Use Case Diagram

Non-Functional Requirements

- The web portal should be secure, with user data secure and protected against

malicious attacks.

o User passwords should be hashed in the database, rather than stored as

plaintext

25

o Escape values to rule out cross site scripting (XSS)

o Be protected against database injection attacks with input validation

- The web portal should have suitable functions to meet user needs to be suggested

with extracurricular activities

o The system should be functionally correct with results being the closest

ﾏatIh to a useヴsげ pヴefeヴeﾐIes

o The system should be functionally appropriate through presenting the user

with only the necessary steps to get suggestions.

- The performance of the application should be between 90-100% within Lighthouse

standards

o The capacity of the database maximum limit should meet requirements with

ability to expand with increased data.

o Processing times should be quick, with page load times less than 3 seconds.

- The portal should be user-friendly to both parents and teenagers who will be varied

in their computer literacy.

o Create an aesthetically pleasing interface by maintaining a house style on

each page with set colours, navigation, and fonts.

o Navigation should be obvious and accessible, with the ability to return to the

homepage in one click.

o Users are presented with error messages to protect them against making

errors

o Users to be provided with appropriate informative text to understand how to

use the system.

Use Cases and State Transition Networks

Use Case No: 1

Use Case Name: Register an account Rating: Must Have

Purpose: For users to register their details onto the web portal to create a new account

Main Actor: Teenagers Secondary Actor: Parents

Pre-conditions: N/A

Trigger: Users click on the register button

26

Description

Main flow:

1. Users enter the registration page

2. Users input their details into the boxes

3. Users click the register button

Alternative flows:

1. User inputs invalid information

2. User clicks the register button

3. User is returned to registration page with feedback

Exceptions:

1. User is already registered

Extensions: N/A

Related Use Cases: Login to account

Post-conditions: Users details are saved in database, and they will be redirected to the

login page.

27

Use Case No: 2

Use Case Name: Login to account Rating: Must Have

Purpose: For users to login using their details they have registered with

Main Actor: Teenagers Secondary Actor: Parents

Pre-conditions: Users have registered their details

Trigger: Users click on the login button

Description

1. Users enter the login page

2. Users input their details into the boxes

3. Users click the login button

Alternative flows:

1. User inputs invalid details into the boxes

2. Users click login button

3. User is returned to login page with feedback

Extensions: N/A

Related Use Cases: Register an account

Post-conditions: Users are redirected to the homepage.

28

Use Case No: 3

Use Case Name: Input requirements Rating: Must Have

Purpose: For users input their activity requirements and desirables

Main Actor: Teenagers Secondary Actor: Parents

Pre-conditions: Users have logged in

Trigger: Useヴs IliIk eitheヴ the けstaヴt ┞ouヴ seaヴIh Huttoﾐげ oヴ the けiﾐputげ optioﾐ fヴoﾏ the

navigation.

Description

Main flow:

1. Users enter the input requirements page

2. Users answer all the questions

3. Users click to complete the task

Alternative flows:

1. Users do not answer all the questions

2. Users click to complete the task

3. Users are returned to input page with feedback

Exceptions:

1. No results are found in database within the parameters specified

Extensions: Users can either scroll down the page or click the next button to be taken to

the next step without scrolling.

Related Use Cases: View recommendations

Post-conditions: Users are redirected to a results page

29

Use Case No: 4

Use Case Name: View recommendations Rating: Must Have

Purpose: For users to view their recommended activities

Main Actor: Teenagers Secondary Actor: Parents

Pre-conditions: Users have logged in

Trigger: Users have completed their requirements input

Description

Main flow:

1. User is redirected to the recommendation page

2. Users are provided details about their top recommended activities

Extensions: Users can re-do their requirements if they wish

Related Use Cases: Input requirements

Post-conditions: Users results are stored in the database.

30

Use Case No: 5

Use Case Name: View all

recommendations

Rating: Should Have

Purpose: For users to review all their recommended activities in one location

Main Actor: Teenagers Secondary Actor: Parents

Pre-conditions: Users have completed their requirements

Trigger: Users have got a minimum of one result

Description

Main flow:

1. User clicks link to see all recommendations

2. All recommendations are presented on one page

Extensions: Page will be blank if the user has not completed the input requirements form

at least once.

Related Use Cases: View recommendations

Post-conditions: N/A

Use Case No: 6

Use Case Name: Edit requirements Rating: Should Have

Purpose: For users to change their requirements

Main Actor: Teenagers Secondary Actor: Parents

Pre-conditions: Users have already inputted some requirements

Trigger: Users decide they want to change their answers

31

Description

Main flow:

1. Users can go back on their input page

2. Users can edit their answers

3. Users are revealed with an updated result

Extensions: N/A

Related Use Cases: Input requirements

Post-conditions: The latest result will be displayed. Old and new results will be stored in

all recommendations page.

Use Case No: 7

Use Case Name: View activity details Rating: Must Have

Purpose: For users to view detailed information about a particular activity organisation

that they are recommended

Main Actor: Teenagers Secondary Actor: Parents

Pre-conditions: User has got at least one recommended activity

Trigger: User clicks on button to view activity details

Description

1. User is on either recommendation results or all results page

2. User clicks on button to view activity details

3. User is taken to a detailed page

Extensions: N/A

Related Use Cases: View recommendations, view all recommendations

Post-conditions:

32

Use Case No: 8

Use Case Name: Locate activities Rating: Should Have

Purpose: For users to visualise where their recommended activities are

Main Actor: Teenagers Secondary Actor: Parents

Pre-conditions: Users have completed their requirements

Trigger: Users are on a results page

Description

1. Users are on a results page

2. Users can see the postcode of the activity

Extensions: Users to see these locations on an integrated map

Related Use Cases: View recommendations

Post-conditions: Users can enter individual activity page where full address will be stated

33

Use Case No: 9

Use Case Name: Share recommendations Rating: Could Have

Purpose: For users to be able to send their recommendations to other people, so that,

they can make use of the recommendation

Main Actor: Teenagers Secondary Actor: Parents, Social Media

Contact

Pre-conditions: User has got at least one recommended activity

Trigger: User clicks on button to view activity details

Description

1. User is on individual activity post page

2. User clicks on share button

3. User has options to share on Facebook, Twitter, or email

Extensions:

Related Use Cases: View recommendations

Post-conditions: User is returned to results page once completed, user has some sort of

feedback that share has worked.

34

Prototypes / Wireframes

For the user interface, I used the ┘eH appliIatioﾐ けBalsamiqげ to design basic wireframes of

each page. Initially, these designs were only for desktop devices, however, following the

results of the user survey (question 10)– with the benefit of working in agile – I returned to

the designs to create mobile equivalents. The wireframes consist of a けlandingげ page, けhomeげ

page, けloginげ page, けregistrationげ page, けuser inputげ page, けresultsげ page, けindividual activityげ

page, and けall resultsげ page.

1. Landing Page

This is the page that users will be directed to when they first enter the website. This is to

create a difference for users to make it very clear when they are logged in versus when

they are not. I also wanted a clear direction to register and login, so that, users

understand they need to login to use the tools that the portal offers.

35

2. Home Page

This is the main home for all users once they are logged in. It provides some information

about the portal. Although it does not have much utility, it is a page necessary for users

to return to as a base.

3. Registration Page

This is a basic form page where the user will create their account.

4. Login Page

This uses a similar design to the registration page. Although I asked for a username in

the registration page, I will only ask for the users email and password to login.

36

5. Input page

Here the users will be filling in details that are required to make the recommendation

system work. This is their user preferences. This works by being one long page because,

when using CSS, a Flask Form over multiple pages is extremely challenging without

saving the session. The user will be asked a series of questions and can either scroll or

click the next button between each answer. There are images that represent the

question or answers. Some answers will be input boxes, whilst some will be radio

buttons.

37

6. Results page

The results page will show an interactive map that has markers for each of the activity

organisation locations that have been recommended as a result of the users most recent

input. The activity name, organisation name and a link to view more details will be listed

on the right column, whilst the map will be on the left. This information will be

dynamically displayed according to the user results, and the number of results will

change according to what the algorithm and database produce.

7. Individual activity page

The single activity page will present the most information about a particular activity that

was recommended to the user. It will be in depth aﾐd Iaﾐ He aIIessed H┞ the けVie┘

aIti┗it┞ detailsげ liﾐk oﾐ Hoth the ヴesults aﾐd all ヴesults pages. Iﾐstead of a ﾏap, aﾐ iﾏage

of the activity will be on the left side of the page along with the buttons to share to

different social media platforms.

38

8. All results page

The けall resultsげ page is an extension of the results page, however, shows the user every

result that they have ever gathered from the portal. Similar to the results page it will

show a map with pointers to all of the recommendation results produced for that user.

System architecture

The diagram below demonstrates the system architecture of the web portal. This consists of

a basic HTML, CSS and JavaScript frontend, and the server-side consisting of a Flask

framework which holds the file system including Python logic, HTML templates and CSS

static pages. The server side also consists of a MySQL database which is called from the flask

framework.

39

Algorithm design

A key deciding factor in the algorithm design was the cold-start problem that exists within

collaborative filtering and wanting to create a poヴtal that does ﾐot ヴeケuiヴe otheヴ useヴsげ data.

These two factors were pivotal in deciding to use a content-based filtering system. Once the

decision had been made on this, exploration on the best similarity measure was necessary.

Cosine similarity

After reviewing background material on different recommendation engine models, one that

struck out was cosine similarity. This was the initial idea for the recommendation system to

be based on. Cosine similarity works on the premise that if a user likes one thing, it will

recommend other items that have similar features. A basic model that was practiced used

descriptions of each extracurricular activity. A user would input an activity that they

currently like and it would result in a similar activity that they should try. This is an example

of content-based filtering as it explores what the user has done before rather than the user

rating a selection of different activities. Although this is useful for many recommendation

systems, for example: books, movies, and retail, there were obvious problems with this

algorithm being the backend logic of this project. To expand, questions arose such as: what

if someone does not like any activity in the first place? What if someone is interested in

40

something completely new as they are just being shoe-horned into an activity that is just

like one they already do? And the idea of this project is to ヴeIoﾏﾏeﾐd the さヴightざ

extracurricular activity for them. Just because a user currently likes one activity, does not

ﾏeaﾐ it is the さヴightざ oﾐe, Hut this algoヴithﾏ is ヴestヴiIti┗e to ┘hat a useヴ alヴead┞ kﾐo┘s.

Therefore, this algorithm design was scrapped for a more appropriate option.

Euclidean distance

Researching Euclidean distance, often it is associated to collaborative filtering, however, my

project is using this similarity measure for a content-based approach. The Euclidean distance

is the straight-line distance between two points, where a point is a vector. The actual

distances are not too much of interest, but the nearest neighbour to a particular point is

more relevant (Shimodaira 2015). The premise behind this algorithm is to create a user

vector and then compare the similarity through seeing which are the nearest neighbours to

the activity vectors. The ability to create vectors based upon different features for each

activity and a vector for the user based upon features of each activity proved a viable and

successful option. Rather than retrieving results that are similar to what a user likes

currently, the user is able to state their preferences based upon features and the result

closest match (nearest neighbour) is recommended. This eﾐaHles the さヴightざ aIti┗it┞ to He

recommended, allowing new activities perhaps they were unaware of to be presented to

the user rather than being restrictive to the user iﾐ a soヴt of さfilteヴ HuHHleざ (Pariser 2011).

Database design

For this project, I decided to use an SQL database as part of the backend architecture. There

are many benefits to using a database over a CSV file, and with the requirements set in this

project a SQL database proved the most suitable option. Along with being easy to integrate

with my Flask application, it enabled an aesthetically pleasing UI rather than displaying a

pandas data frame that would have been the result of the alternative approach.

Four main tables exist. These are User, Activity, User_requirements and User_results.

1. User

The User table is a basic table to store information about the user primarily used for

registering and logging in. Users require to be authenticated to enter the portal and see

recommendations.

41

class User(UserMixin,db.Model):

 id=db.Column(db.Integer,primary_key=True)

 firstname=db.Column(db.String(35),unique=False, nullable=False)

 lastname=db.Column(db.String(35),unique=False, nullable=False)

 username=db.Column(db.String(15),unique=True, nullable=False)

 email=db.Column(db.String(120),unique=True,nullable=False)

 password_hash=db.Column(db.String(128))

 password=db.Column(db.String(60),nullable=False)

2. Activity

The activity table is used to store all the data for each activity organisation that exists.

For each activity a row exists for different variables that it offers. For example, if an

organisation offers services for multiple ages, a new row exists for each age variable.

class Activity(db.Model):

 id=db.Column(db.Integer, primary_key=True)

 name=db.Column(db.String(40), nullable=False)

 description=db.Column(db.Text, nullable=False)

 org_name=db.Column(db.Text, nullable=False)

 Type=db.Column(db.String(15), nullable=False)

 time=db.Column(db.String(20), nullable=False)

 age=db.Column(db.Integer, nullable=False)

 sex=db.Column(db.String(6), nullable=False)

 InOrOut=db.Column(db.String(10), nullable=False)

 social=db.Column(db.String(15), nullable=False)

 postcode=db.Column(db.String(8), nullable=False)

 longitude=db.Column(db.String(10))

 latitude=db.Column(db.String(10))

 budget=db.Column(db.String(15), nullable=False)

 address=db.Column(db.Text, nullable=False)

 city=db.Column(db.String(40))

 contact_name=db.Column(db.Text)

 contact_details=db.Column(db.Text)

 URL=db.Column(db.Text)

 image=db.Column(db.String(40))

3. User requirements

The user requirements table is inserted information from the authenticated user as a

result of their submitted form. In order to retrieve all information such as longitude and

latitude, the user inputs their postcode and I use geopy in python to create a variable for

longitude and latitude which is included in the variable for the database session.

42

Furthermore, so that I know who the requirements are about, the User id is another

column. Although this could have been done relationally, I found it easier to add as a

┗aヴiaHle usiﾐg the けIuヴヴeﾐt_useヴげ variable in Flask.

class User_requirements(db.Model):

 id=db.Column(db.Integer, primary_key=True)

 postcode=db.Column(db.String(8), nullable=False)

 sex=db.Column(db.String(6), nullable=False)

 InOrOut=db.Column(db.String(10), nullable=False)

 age=db.Column(db.Integer, nullable=False)

 budget=db.Column(db.String(15), nullable=False)

 distance=db.Column(db.Integer, nullable=False)

 Type=db.Column(db.String(15), nullable=False)

 time=db.Column(db.String(20), nullable=False)

 social=db.Column(db.String(15), nullable=False)

 longitude=db.Column(db.Float)

 latitude=db.Column(db.Float)

 user_id=db.Column(db.Integer)

4. User results

Once the algorithm has compared information from the activity table to the user

requirements, the activities which have been identified as the closest match are

inputted into the user results table. This has the same schema as the activity table as it is

a simple replication but with a few additional columns. The additional columns include a

けnew_idげ, けuser_idげ and けnumber_of_ヴeIoヴdsげ. The けnew_idげ was a late addition as a result

of a bug meaning that once an activity was inserted into the table it could not be

inserted again due to its primary key status. Therefore, I created a けnew_idげ which

increments appropriately allowed for the same record to enter the table as many times

as it is produced as a result. The けuser_idげ column links the result to the user who did it,

and the けnumber_of _recordsげ column means that I can translate the number of results

from a user input into the number of activities that get displayed on the webpage.

class user_results(db.Model):

 new_id =db.Column(db.Integer, primary_key = True)

 id=db.Column(db.Integer)

 name=db.Column(db.String(40), nullable=False)

 description=db.Column(db.Text, nullable=False)

 org_name=db.Column(db.Text, nullable=False)

 Type=db.Column(db.String(15), nullable=False)

 time=db.Column(db.String(20), nullable=False)

43

 age=db.Column(db.Integer, nullable=False)

 sex=db.Column(db.String(6), nullable=False)

 InOrOut=db.Column(db.String(10), nullable=False)

 social=db.Column(db.String(15), nullable=False)

 postcode=db.Column(db.String(8), nullable=False)

 longitude=db.Column(db.String(10))

 latitude=db.Column(db.String(10))

 budget=db.Column(db.String(15), nullable=False)

 address=db.Column(db.Text, nullable=False)

 city=db.Column(db.String(40))

 contact_name=db.Column(db.Text)

 contact_details=db.Column(db.Text)

 URL=db.Column(db.Text)

 image=db.Column(db.String(40))

 user_id=db.Column(db.Integer)

 number_of_records = db.Column(db.Integer)

Data sources

One challenge that this project faced was the lack of data source to build a recommendation

engine from. Many other topics that have been used in recommender systems have files

that can be downloaded and used for the benefit of their work, such as movie

recommendation engines. However, there was no such database to extract from. Therefore,

a lot of time was spent to build a database that included the information necessary to

produce a working prototype.

Beginning with a list of potential activities was the first step, then using Oxford dictionary

definitions to add an activity description, and then finding the organisations that do the

activity with information surrounding it took extensive time. To keep this in the remit of the

project, only a selection of activities was collected and a minimum of one – maximum of

four organisations were attached to each activity. If this project was to be continued, the

ability for organisations to input their details into the portal could be added to expand the

database.

Decision on variables used

As no database was present for this project to base ideas from, one task was to decide how

to describe all activities. Initially I tried to work out what variable titles would be

appropriate. Then, within these variables decided what the options within them would be.

This decision was a result of the user survey, background research and my own thoughts. I

44

did not want to overwhelm the user with too many questions or options, but equally

needed a solid set of requirements so that their best matches would be resulted from the

algorithm, to meet the overall project aim.

I settled on:

class RequirementsForm(FlaskForm):

 postcode = StringField('postcode', validators=[DataRequired()])

 distance = IntegerField('travel', validators=[DataRequired(), NumberRange(min=1, max=20

)])

 age = IntegerField('age', validators=[DataRequired(), NumberRange(min=13, max=18)])

 sex = RadioField('sex', choices=[("Male"), ('Female')], validators=[DataRequired()])

 budget = RadioField('budget', choices=[("Low", 'Cheap'), ('Mid', 'Average'), ('High', 'Not an

issue')], validators=[DataRequired()])

 Type = RadioField('type', choices=[("Sport"), ('Arts / Culture'), ('Skills')], validators=[DataRe

quired()])

 time = RadioField('When', choices=[("Afterschool"), ("Weekend")], validators=[DataRequir

ed()])

 social = RadioField('group or independent', choices=[("Group"), ('Independent')], validator

s=[DataRequired()])

 InOrOut = RadioField('indoors or outdoors', choices=[("Indoors"), ("Outdoors")], validators

=[DataRequired()])

 submit = SubmitField('Complete')

Implementation

To create this prototype, as already noted, I used an agile working method which allowed

changes and edits throughout. The agile approach was done in groupings to make the

implementation clear: I began with practising the algorithm, then flask framework, smaller

use cases, implementing the algorithm, integrating an interactive map, and then styling with

CSS.

Below is an activity diagram to demonstrate the process of the application logic.

45

UML Activity Diagram

46

47

Algorithm

I began by focusing on the algorithm that would produce suggestions. I practiced this in

Jupyter Notebook because I find that a useful tool to write and rewrite successful code. As

mentioned already, the algorithm design was between two similarity measures which was

narrowed down to use Euclidean distance.

An integral part of the code was the pre-processing, as Euclidean distance requires data to

be real values, encoding was necessary. There are many options to encode data, however, a

simple solution was scikit-leaヴﾐ けLaHelEﾐIodeヴげ that eﾐaHles the tヴaﾐsfoヴﾏatioﾐ of ﾐoﾐ-

numerical labels to numerical labels. Once the data was encoded, I needed a method to put

all of the variables from the encoded data together, so that each activity had its own vector.

The solution to this was zipping the variables. To exemplify this: if the encoded data was as

follows:

Activities = [Badminton, Art, Hockey, Swimming]

Type = [1, 2, 1, 1]

Time = [1, 1, 2, 2]

InOrOut = [1, 1, 2, 1]

This would be zipped together as a list in a variable:

features = list(zip(Type, Time, InOrOut))

To produce:

[(1, 1, 1), (2, 1, 1), (1, 2, 2), (1, 2, 1)]

Once the data was encoded, it was a matter of finding the Euclidean distance from what a

userげs data ┘ould He. I Hegaﾐ H┞ Iヴeatiﾐg useヴ duﾏﾏ┞ data ┘ith pヴe-set values simply to get

the Euclidean distance to work. Euclidean distance can be calculated using from

けsIip┞.spatial iﾏpoヴt distaﾐIeげ aﾐd usiﾐg the distaﾐIe.euIlideaﾐ Iode. Continuing with the

above example, this worked like this:

from scipy.spatial import distance

user = (1, 2, 2)

48

ecd_list = []

for x in features:

 ecd = distance.euclidean(x, user)

 ecd_list.append(ecd)

This produces a list of distances from the user variable to the vectors within the features list,

with the smallest number being the closest distance.

In this example, the results are:

[1.4142135623730951, 1.7320508075688772, 0.0, 1.0]

The next step of the practice logic was to retrieve the smallest number from the list and

identify which activity that corresponded to. In this example, the smallest number was 0.0

and was in index position 2 meaning that the activity closest to the user requirements was

Hockey.

After practising on basic variables, I incorporated pandas into the logic to read a CSV with a

greater volume of dummy data to ensure the logic worked, which it did.

After creating a basic model that the recommender system would be based off, I moved

over to begin on the start of the algorithm which focused on a simple search query. The idea

of this was that some things people need to have, and I could not attach those attributes in

an equivalent way to the recommender logic. For example, the location of activities is

critical whereas if it is indoors or outdoors is simply a preference. Therefore, I narrowed the

database down by the logic of a search – if the data matches the user requirements, the

dataframe will include that row, otherwise it will not.

The most difficult step was the distance measure for locations. I found a function online

(Stackoverflow 2011) called haversine which calculates the circle distance between two

points on earth using longitude and latitude. Then with a list to iterate over in a for loop,

checked if the distance between the user longitude and latitudes to the longitude and

latitudes in the list were within the radius specified. Making this a new column into the

dataframe, this enabled a new search to be conducted where we know which activities are

in the user radius, and which are not.

49

Once the location distance was created, it was simply deciding on which variables should be

included in the search and which should be included in the recommender. It was decided

that age, sex, distance, and budget were all necessary in the search section.

System development

Flask Framework

After settling with the basic template that the algorithm would follow to produce suitable

recommendations, I moved over to work on the Flask framework. I set up the framework

creating a routes file, an API file named __init__, static file, a layout HTML page, and a home

HTML page to get going. Once the basic framework was set up anything else could go on top

easily.

Home Page

Landing page

50

Database

A good starting point was setting up the initial two user stories whereby people are able to

register and login to an account, these were easy wins as the code is not difficult. This went

iﾐto the けﾏodelsげ p┞thoﾐ file aﾐd I eﾐsuヴed that useヴげs pass┘oヴd was hashed to deal with the

non-functional security requirement. These tables were then created in SQL using python on

the terminal けfヴoﾏ poヴtal iﾏpoヴt dHげ, けdH.Iヴeate_allふぶげ.

Simultaneously to setting up the Flask framework, I went about finding the data to be input

into the framework. This laborious task took a couple of weeks persistent work to find all of

the activities and decide upon the variables it would be measured by. I kept the records in a

CSV file that could be edited freely.

Once the variables were set upon, I could create the database integration with Flask. Using

the p┞thoﾐ file けﾏodelsげ, the activity table for the database was created. This table went

under a few iterations whilst defining what requirements users would choose from to base

their suggestions off.

Forms

Parallel to the models created, appropriate forms were required that would enable user

input. With the user model, an appropriate register and login form was created ensuring

that all of the variables in the model was accounted for.

Register page

51

Login page

User requirements

After setting up a good proportion of the backend logic, the next step was to work out how

user requirements would be gathered, since up to this point only dummy data was used. I

used a form just as the user would to create an account, and then created a user

requirements table in models. The user would be asked to choose an answer from each

question. I created either written answers through using StringField or IntegerField and used

RadioField to create options with predefined answers. Once I had a method and

implementation concluded to get the user requirements from the frontend, the next step

was inputting all of the practice logic into the flask framework and piece it all together.

52

Input requirements page

Input requirement page continued

Inputting logic to Flask

This process ran into several problems which I had to find solutions for. These problems

were:

1. How to retrieve the data from the SQL database to use pandas logic.

2. How to make user requirements encode the same as the activity encoded data.

3. How to show only the current users results.

4. How to show only the current users results associated to their most recent search

53

5. How to display results on a HTML page in a more user-friendly way than a dataframe

which pandas offers.

1. To address the first problem, I found an easy solution that created a variable named

けeﾐgiﾐeげ which linked to the SQL account using sqlalchemy, and then using pandas

selected the appropriate table from the database. I did this with both the activity table

and user requirements table. This created a pandas dataframe for each of the tables to

follow the logic that I had already made in Jupyter Notebook.

sql_data = pd.read_sql("SELECT * FROM activity", engine)

2. For the second point, I realised that the user requirements row needed to be considered

as another row in the activity table. This meant that the data would encode the same

way as the rest of the data. This was done by turning the user requirements dataframe

to lists and getting the last item from the list and putting it in a variable. Then appending

that to the end of the list created of the equivalent variable from the activity dataframe

ふﾐaﾏed け┘ithiﾐ_paヴaﾏeteヴsげ). Once this was part of the list, it could be encoded as part

of the same list. E.g.,

Type = within_parameters['Type'].to_list()

user_type = user_req['Type'].to_list()[-1]

Type.append(user_type)

type_enc = le.fit_transform(Type)

3. To show only the current users results, I used a tool that is offered in the Flask

framework to identify けIuヴヴeﾐt_useヴげ. In the dataframe, before pushing it up into a table

iﾐ “QL ﾐaﾏed けuseヴ_ヴesultsげ, I Iヴeated a ﾐe┘ Iolumn where all of the results from the

algoヴithﾏ that ┘as just pヴoIessed ┘ould ha┗e the useヴげs id ﾐe┝t to it.

user = current_user.id

user_id = []

for eachitem in first_tuple_elements:

user_id.append(user)

54

results['user_id'] = user_id

Therefore, when displaying the results, the SQL table that stored all of the results was

ケueヴied H┞ the けIuヴヴeﾐt_useヴ.idげ

user_id = current_user.id

results = user_results.query.filter(user_results.user_id == user_id)

However, this only solved the problem to query by a user, meaning that if a user had

completed multiple requirements forms every result they have ever received would be

displayed. Therefore, this made sound logic for the けall resultsげ page, but not to display

the results of their most recent search.

4. This led to the fourth issue, I could find all of the users results, but not the results of

their most recent search. To overcome this issue, using a similar idea to the third point, I

created another new column in the dataframe before pushing into SQL. Since the

number of results could be different each time, I found this number using the following

code:

number_of_records = (len(first_tuple_elements))

(Where けfirst_tuple_elementsげ is the id of every activity with the smallest distance to the

user requirements.)

This number is the appended to each line of the items that are going in the results in a

similar way to how the user id was.

records_no = []

for eachitem in first_tuple_elements:

 records_no.append(number_of_records)

results['number_of_records'] = records_no

Then to display the results, a more refined query was enabled that would find the

current users most recent recommendation results.

activities = user_result_sql['number_of_records'].to_list()

number = activities[len(activities)-1]

55

number = int(number)

results = user_results.query.order_by(desc(user_results.new_id)).filter(user_results.user_id

== user_id).limit(number)

5. The fifth issue identified was once the results were gathered, how this would actually

render on the HTML templates. The variables were parsed in the render_template()

parentheses.

return render_template('results.html', title='Results', results=results, center=center, numbe

r=number)

Then on the HTML page, I used a for loop to display each of the results information.

{% for result in results %}

 <div class="results_box">

 <h3>{{ result.name }}</h3>

 <p>{{ result.org_name }}</p>

 <p> Visit activity pag

e</p>

 </div>

Once this logic was implemented, the base of the web portal was complete. The algorithm

works and users are able to input what they need and want and are resulted in suitable

extracurricular recommendations.

Map integration

Following the user survey that shaped the last iteration of the use cases, an interactive map

was identified to be a desirable addition to the web portal. I researched Google maps and

Mapbox as possibilities and decided to integrate the Mapbox API into my project. This

decision was based off of the stylish UI of Mapbox plus the easy-to-follow documentation

that Mapbox offers. Mapbox provides a base map which can be customised. I added

56

navigation control in the top right of the map and set the centre of the map to the centre of

Cardiff (this was because the data used in this prototype revolves around Cardiff, however,

Iould He edited aIIoヴdiﾐg to the useヴげs postIode oヴ aﾐ┞ otheヴ loﾐgitudiﾐal / latitudinal

location). Then I used a for loop within the JavaScript of the Mapbox code to set markers to

each of the result locations, with the organisation name and postcode included in the popup

associated to the marker. The Mapbox integration is on the けall resultsげ and けresultsげ html

pages.

Results page

57

All results page

Social Media Sharing

To complete the use cases, I required a method to share on social media. Flask has its own

social media API with a range of sites. I decided to use this and choose the icons for

Facebook, Twitter, and Google plus. Because the results pages are queried using the logged

in current user id, these pages could not be shared as it would not work for other people

who are either not logged in or have a different user id. Therefore, it made sense to put the

sharing icons only on the single activity page as this is not refined by any user id logic.

Equally this page does not require a user to be logged in to view, meaning that users can

share the page to anyone to access.

Frontend styling

Once most of the use cases had been covered from a logic and rendering perspective,

nearing the end of the implementation I turned to styling the frontend using CSS. Following

the wireframes created, I styled each page for the desktop view first. Then as a result of the

user survey I returned to these pages to focus on styling for mobile responsiveness. The

styling did not deviate much from the wireframes. I used some bootstrap integration to help

style the forms in a greater UI than how Flask renders the input. I also used Google fonts to

Ihaﾐge foﾐt of the title けFuﾐTiﾏeげ, Hut otheヴ thaﾐ this the ヴest of the styling was done by

myself in CSS.

58

Results

Testing

To test the prototype, I decided to complete unit testing of different isolated code. I focused

on the main requirements identified in the design phase of the project.

Registration:

Test 1

Description Test that a user is able to register an

account

Expected results A user enters the registration page, inputs

their details, and is redirected to the login

page with a notification of a successful

registration.

Actual results A user enters the registration page, inputs

their details, and is redirected to the login

page with a notification of a successful

registration.

Pass / Fail PASS

Test 2

Description Test that a user needs the same password

to verify the account

Expected results User clicks the register button, and an error

message appears.

Actual results User clicks the register button, and an error

message appears.

Pass / Fail PASS

Test 3

Description User requires unique username and email

Expected results User clicks the register button, and an error

message appears.

59

Actual results User clicks the register button, and an error

message appears.

Pass / Fail PASS

Login:

Test 1

Description Test that a user is able to login to their

account

Expected results A user enters the login page, inputs their

details, and is successfully logged in with a

notification of the login success.

Actual results A user enters the login page, inputs their

details, and is successfully logged in with a

notification of the login success.

Pass / Fail PASS

Test 2

Description Test that a user must be registered to login

Expected results User clicks the login button and is provided

with an error message.

Actual results User clicks the login button and is provided

with an error message.

Pass / Fail PASS

Test 3

Description Test that a user can logout of their account

Expected results User clicks on the logout button and is

logged out of their account and redirected

to the landing page.

Actual results User clicks on the logout button and is

logged out of their account and redirected

to the landing page.

60

Pass / Fail PASS

Input requirements:

Test 1

Description Test that a user is able to input their

requirements.

Expected results A user enters the input page, puts in valid

data into every question, clicks submit and

is redirected to a results page.

Actual results A user enters the input page, puts in valid

data into every question, clicks submit and

is redirected to a results page.

Pass / Fail PASS

Test 2

Description Test that a user must be in a valid radius of

an activity in the database.

Expected results User inputs a postcode and radius that does

not match any items in the database, clicks

the submit button, and is resulted in an

error message with prompt to expand

search.

Actual results User inputs a postcode and radius that does

not match any items in the database, clicks

the submit button, and is resulted in an

error message with prompt to expand

search.

Pass / Fail PASS

Test 3

Description Test that a user must answer all questions

to get a recommendation

61

Expected results User does not answer all questions, clicks

the submit button, and is directed to the

first question which they have not

answered.

Actual results User does not answer all questions, clicks

the submit button, and is directed to the

first question which they have not

answered.

Pass / Fail PASS

Test 4

Description Test that a user must input data in the

けﾏust ha┗esげ seItioﾐ that ﾏatIhes at least

one item in the database.

Expected results User inputs data that does not match any

items in the database, user is not

redirected to results, and it presented with

a message to provide feedback why it

failed.

Actual results User is not redirected to the results;

however, no message is flashed to provide

feedback to explain why the search failed.

Pass / Fail FAIL

View recommendations:

Test 1

Description Test that a user gets results appropriate to

their search.

Expected results A user has input valid requirements and is

displayed a minimum of one

recommendation.

62

Actual results A user has input valid requirements and is

displayed a minimum of one

recommendation.

Pass / Fail PASS

Test 2

Description Test that the map pointer matches

recommendations

Expected results User clicks on the map pointer which is at

the longitude and latitude of the activity;

activity organisation name and postcode is

displayed.

Actual results User clicks on the map pointer which is at

the longitude and latitude of the activity;

activity organisation name and postcode is

displayed.

Pass / Fail PASS

View all recommendations:

Test 1

Description Test that a user can see every

recommendation they have ever had.

Expected results A useヴ eﾐteヴs the けall ヴesultsげ page aﾐd a list

of all of their previous recommendations is

visible.

Actual results A useヴ eﾐteヴs the けall ヴesultsげ page aﾐd a list

of all of their previous recommendations is

visible.

Pass / Fail PASS

Test 2

Description Test that the map pointer matches all

recommendations

63

Expected results User clicks on the map pointer which is at

the longitude and latitude of any activity;

activity organisation name and postcode is

displayed.

Actual results User clicks on the map pointer which is at

the longitude and latitude of any activity;

activity organisation name and postcode is

displayed.

Pass / Fail PASS

Edit requirements:

Test 1

Description Test that a user can return to their

requirements page and put in new data.

Expected results A user has got a recommendation, clicks

the try again button and is returned to the

input requirements page.

Actual results A user has got a recommendation, clicks

the try again button and is returned to the

input requirements page.

Pass / Fail PASS

View activity details:

Test 1

Description Test that a user can see details about a

specific activity on its own page

Expected results A user clicks to view activity details; they

are taken to a new page which has detailed

information about the activity.

64

Actual results A user clicks to view activity details; they

are taken to a new page which has detailed

information about the activity.

Pass / Fail PASS

Share recommendations:

Test 1

Description Test that a user can share their

recommendations.

Expected results A user clicks on a share link and are

redirected to the social media site with the

specific page included as a link.

Actual results A user clicks on a share link and are

redirected to the social media site with the

specific page included as a link.

Pass / Fail PASS

Non-Functional requirements:

Security:

The web portal should be secure, with user

data secure and protected against

malicious attacks.

OVERALL RESULT: PASS

User passwords should be hashed in the

database, rather than stored as plaintext.

PASS

Escape values to rule out cross site scripting

(XSS)

PASS

Be protected against database injection

attacks with input validation.

PASS

Functional Suitability:

65

The web portal should have suitable

functions to meet user needs to be

suggested with extracurricular activities.

OVERALL RESULT: PASS

The system should be functionally correct

with results being the closest match to a

useヴsげ pヴeferences.

PASS

The system should be functionally

appropriate through presenting the user

with only the necessary steps to get

suggestions.

PASS

Performance efficiency:

The performance of the application should

be between 90=100% within Lighthouse

standards*

OVERALL RESULT: PASS

The capacity of the database maximum

limit should meet requirements with ability

to expand with increased data.

PASS

Processing times should be quick, with page

load times less than 3 seconds.

PASS

Usability:

The portal should be user-friendly to both

parents and teenagers who will be varied in

their computer literacy.

OVERALL RESULT: PASS

Create an aesthetically pleasing interface

by maintaining a house style on each page

with set colours, navigation, and fonts.

PASS

Navigation should be obvious and

accessible, with the ability to return to the

homepage in one click.

PASS

66

Users are presented with error messages to

protect them against making errors

PASS

Users to be provided with appropriate

informative text to understand how to use

the system.

PASS

Interface testing:

Mobile responsiveness:

To test the UI (visual appearance) of each page when it is in a mobile view.

Landing page PASS

Home page PASS

Registration page FAIL

Login page PASS

Input requirements page PASS

Results page PASS

All results page PASS

Individual activity page FAIL

*One key indicator of the non-functional requirements was to ensure that the Lighthouse

scores for certain metrics were above 90%, in the green. To go into further depth on this

point, I tested the landing page against a Lighthouse report. I had to remove accessibility

from the report due to an error resulting. The error came from the button text being white

and not contrasting from the white background of the overall page. Therefore, I removed

that metric from the report as it did not display any scores. However, testing against

performance, best practices and search engine optimisation produced high results – all over

90%. This test was done on my local environment; however, the result should not differ on

the deployed site.

67

Overall, the implementation was a success with the overall result of functional and non-

functional requirements being a pass. All of the けﾏust ha┗eげ use Iase ヴeケuiヴeﾏeﾐts ┘eヴe

successfully completed in a timely manner which enabled time to be spent on the けshouldげ

and けcould haveげ requirements.

Analysis

This project has created a suitable solution to suggest appropriate extracurricular activities

to teenagers. The robustness of the solution can be witnessed through the varied conditions

it ﾏa┞ He used. Thヴough Iヴeatiﾐg aﾐ oppoヴtuﾐit┞ of IhoiIe ┘ith aﾐ けiﾐput ヴeケuiヴeﾏeﾐtsげ

page, the solution behaves reasonably to find the closest match to what a user wants – it

may not be the exact match but will be the best fit.

One challenge that this project has overcome in its use of algorithm is the cold-start

problem. When I researched the different options, I was faced with this problem being

mentioned repetitively in collaborative filtering. This project, however, uses the Euclidean

distance tool (which is often used in collaborative filtering techniques) to find similarity

based off of user preferences and applies to the content of each activity. This manages to

overcome the cold start problem, creating a successful solution where I am able to gather

the ﾐeIessaヴ┞ data fヴoﾏ the useヴ Ileaヴl┞. A useヴげs pヴefeヴeﾐIes do ﾐot ヴel┞ oﾐ a laヴge

proportion of data to already exist, it is solely based on their own preferences. And once

many users have input their data, other methods of recommendation systems could be

developed into the application.

The original specification of this project was to create a system that suggested

extracurricular activities to teenagers. My initial understanding of the project was not to

include organisations but simply suggest the actual activities – after discussions with my

68

supervisor this was clarified to be a working prototype where location was a key aspect

specific to actual organisations that run the activity. The original specification did not

consider the scope of the system, therefore after discussions with my supervisor we decided

that building a prototype based in the Cardiff area would be successful within the timeframe

and would not waste time building an overly extensive database.

The solution is innovative due to both its application and unusual two-step logic. Often

recommender systems are used for ecommerce and streaming services. These are areas

where there is much data already present of either the item being sold or the user buying.

However, this project considers a different type of use case application to the logic that has

already been built up in this field.

The two-step logic was derived from Burke et al.げs (2007) work discussing Hybrid

recommender systems, particularly the meta-level type whereby one recommendation

technique is applied, which is then the input used by the next technique. In this case, rather

than using two types of recommendation systems such as collaborative followed by

content-based, I have used a basic search followed by content-based filtering. The reason

behind this was because in the use case of extracurricular activities, some features people

require – for example, it would not be beneficial to recommend an activity that matches

soﾏeoﾐeげs requirements perfectly who lives in Cardiff, when the activity is based in Bath.

Similarly, it would not be a working recommender system if a 13-year-old was

recommended an activity that was for 15–17-year-olds only.

Although the solution may be useful initially, the product built does not have any features

that will prompt users to return. Once a user has found all of their closest matches

according to different requirements, the product does not offer anything else. Nonetheless,

the product was not designed for such a use case since the main aim was to create a system

which suggests suitable extracurricular activities.

Conclusion

To summarise, this project has proven successful in completing the desired aims and

objectives stated at the beginning. Users are able to receive appropriate suggestions that

are best suited to their interests.

69

Alongside the success of the recommendation system, another achievement has been

creating a more well-rounded experience for the user with a registration, login,

personalisation, and interactive map features. Being my second ever web application

created, I was happy to secure my foundation knowledge with features such as registration

and logging in, whilst developing my skillset using APIs.

Cuヴヴeﾐt ヴeIoﾏﾏeﾐdeヴ s┞steﾏs depeﾐd oﾐ a useヴげs iﾐfoヴﾏatioﾐ ヴegaヴdiﾐg ┘hat the┞ alヴead┞

like in an item-to-item approach, however, this approach would not be successful for this

use case. I did not want the algorithm to be influenced by what the user may think they like

e.g., they may think they like Netball, having never tried Tennis. Because these items are so

different, it is likely that user would never get recommended Tennis if we found out they

like Netball. So, I went about an alternative route to break down activities according to their

features. These features build a vector that describes an activity, and users are asked about

their preferences regarding these features instead of at an activity level.

The logic built in this project produces activities that are at the closest distance from the

similarity measure which could result in a number from 1 to any number upwards. The

reason behind this was because wanting to find the best match is the primary goal, but

because the vector information is not weighted to any item, many activities may be the

result of one user input. This is positive because it gives users choice but not an

overwhelming amount. Problems with this, however, arise when only one recommendation

is produced. If only one recommendation is produced users are not given much choice. But

the flip side of this is that users are able to enter in new requirements by completing the

form again, so they are not stuck with just one forever. Another issue with this may be the

consistency, a future edit could be that the code works to display the top five

recommendations only, or top ten if that activity dataset was fuller. This could be put in

order of similarity, creating a more consistent user experience across the board.

The practical application of the system is widespread; this system could be introduced to

schools as paヴt of theiヴ けLife skillsげ Ilasses oヴ as aﾐ aIti┗it┞ to do iﾐ ﾏoヴﾐiﾐg tutoヴ gヴoup

sessions. Extracurricular activities have been proven time and time again to have tangible

benefits in adolescent development ranging from physical exercise to building fundamental

social skills. If a system like this was rolled out to the target population, the difficulty of

having to research activities is taken away and a simple form is all they need to complete.

70

Future work

This work is a basic prototype to demonstrate how the logic of recommender systems can

be applied into circumstances that have not been explored yet. Due to this nature of

unexplored territory both academically and in a business context, there was the cold-start

issue for both the activity data within the database and the user data which an algorithm

could be based upon. Therefore, there is much future work that could be done to sit on top

of this project.

Although there are plenty of opportunities to develop this application, I aim to note upon a

few ideas here.

1. Develop the database by expanding to the rest of the UK. As noted, this prototype

has a limited number of Cardiff based organisation so this has great room for

additional work to expand the locations and activities included.

2. Allow users to pick multiple options from each section rather than being limited to

one answer from each question.

3. The method that user requirements are gathered could be done more

conversationally. By introducing a chat bot, user requirements could be discovered

through an inquisitive question and answer method. This would help improve

validity of the algorithm to ensure meaning is understood, whilst also improving the

overall user experience.

4. The logic in the algorithm could be developed to produce a fully hybrid solution.

Once there are many users on the system, there may be enough data to explore the

opportunity to build a collaborative filtering system alongside the current content-

based system.

5. Make another user persona from an activity organisation leader, this person would

login as an activity organisation rather than a parent or teenager and could post

from their perspective. This would help to retain users on the site and build more of

a social element to the system.

71

Reflections

To reflect on my research, learning, and development in this time, I will address items that

were a success along with exploring shortcomings, with possible opportunities to improve in

the future.

The main success for this project is the skills learnt and developed throughout this project.

To begin the project, I had not studied data science nor had any experience with the Pandas

module. Equally I had not learnt to code before October last year, so to develop these skills

has been a huge success for me personally, but also to complete the project to this

standard. Understanding the value of particular concepts such as content and collaborative

filtering was extremely useful to begin this project – plus background research into machine

learning concepts. These underpinned my approach and meant I did not feel overwhelmed

or as if I was going into a project completely blind. Spending the time researching these

items meant that I could learn and apply skills in this area to the project. The effect of

learning these concepts led to a successful implementation that meets the project aims and

objectives. If I was to do this project again, I would spend even greater time on background

research as I cannot stress the importance of gaining a full understanding before starting

the project. Although I took a good amount of time to research, throughout the algorithm

design phase, I did find myself having to return to do more research.

Another successful aspect of this project was the project management tools I used to ensure

a timely build and submission. For the overall project I used a Gantt chart to keep track of

high-level tasks according to the weeks available to conduct the project. This was a

beneficial decision because I felt calm throughout the project being able to meet milestones

and know that I was working to the submission deadline at a steady pace. Within the

implementation I used Trello Kanban board to keep track of the issues I needed to complete

in order to complete the functional and non-functional requirements identified in the design

phase. I found that working on the recommender logic and being able to iterate over it

throughout the project a good decision since this was the main item of the project, and also

led to bugs being caught and resolved before completion. Working in an agile methodology

was positive because as van Solingen (2020, p. 1.4) states けagilit┞ suits situatioﾐs iﾐ ┘hiIh

there is a lot of uncertaintyげ; this project had much uncertainty about the direction of the

algorithm logic and also due to a delay in ethical approval, had to return to sections as a

72

result of the user survey. This is the first personal project that I have completed under the

agile methodology; after using it I have experienced the benefits it offers to pick up tasks

and return to make edits fluidly. In the future, these ways of working will be continued in

further projects.

The last success I wish to note upon here is the contribution that this project has to the field

of knowledge regarding recommendation systems. Pinela (2017) identifies that one clear

challenge of a content-based recommendation system is its tendency to over-specialise. In

other words, the system will recommend items similar to what has already been consumed

or liked by the user, bringing back the ﾐotioﾐ of the さfilteヴ HuHHleざ ﾏeﾐtioﾐed during the

design phase. This algorithm design overcomes this problem in two ways. Firstly, a user can

repeat their input of requirements multiple times and so the user can play about with

different options rather than being siloed into one option forever. Secondly, through using

features of activities, rather than a user stating what activities they either already like or

think they like, a useヴ ﾏa┞ ﾐot He ヴeIoﾏﾏeﾐded ┘ith theiヴ さpeヴfeItざ ヴeIoﾏﾏeﾐdatioﾐ. B┞

this I mean, they may be recommended with aﾐ aIti┗it┞ that does ﾐot fit all of theiヴ さ┘aﾐtsざ

and can explore suggestioﾐs that the┞ ﾏa┞ ha┗e ﾐot Ioﾐsideヴed if a さpeヴfeItざ ﾏatIh had

occurred.

Although I felt there were successes within this project, I have identified clear room for

improvement and ideas if I were to do the project again.

One key aspect I feel would have been better if I was to do this project again would be to

develop it mobile-first. Because mobile design was an afterthought, I came across problems

in making some of the pages responsive. For example, the registration page did not work as

I wanted it to, and the form order also skewed.

I think that the logic of the recommender system would have been developed more

smoothly if I had completed the activity diagram wholly at first, rather than going straight

into the code. If I had created the activity diagram to understand all of the steps I needed to

do before touching code, I think the development would have run much smoother. Instead,

I began coding much too early, then would hit problems and try to work out what I needed

to do next.

73

Finally, although this project was my second-ever web application that I have developed, if I

were to complete this again, I would try to produce a better front-end with a framework

such as React. The reason I did not do this here was because of time constraints and wanted

to focus on completing the project with a working backend that would produce

recommendations to users. However, with the project being aimed at teenagers I think this

would be a great addition to the overall system.

Overall, this project has been successful to create a working prototype of a system that

produces suitable extracurricular suggestions for teenagers. This project shows the ability of

manipulating the logic of recommendation systems that is so commonly used for movies,

books, and ecommerce and apply it to a whole new area. I am highly satisfied with the

outcome of the project – it has heightened my personal growth in both managing a project

and learning new concepts and skills. These skills will carry through with me into my

technical career and give me the confidence that I am competent in the technical field.

74

References

Allthetests.com. 2021. What Activity Should You Join. Available at:

https://www.allthetests.com/personality-tests/hobbies/quiz30/1370304656/what-activity-

should-you-join

Amazon. 2021. Available at: https://www.amazon.co.uk

British Heart Foundation. 2021. Which Fitness Activity Suits You? Available at:

https://www.bhf.org.uk/informationsupport/heart-matters-magazine/activity/which-

fitness-activity-suits-you

Burke, R. 2002. Hybrid Recommender Systems: Survey and Experiments. User Model User-

Adap Inter 12, pp. 331-370. https://doi.org/10.1023/A:1021240730564

Burke, R., et al. 2007. Hybrid Web Recommender Systems. The Adaptive Web, LNCS 4321,

pp. 377-408.

Burke, R., et al. 2011. Recommender Systems: An Overview.

Buzzfeed. 2021. What Activity Should You Try Based on This Quiz? Available at:

https://www.buzzfeed.com/elzbeth_a/answer-some-questions-and-well-give-you-

something-dz05mfs4g9

Donnelly, M. et al. 2019. An Unequal Playing Field: Extra-Curricular Activities, Soft Skills and

Social Mobility. Social Mobility Commission.

Driessens, C. M. 2015. Extracurricular activity participation moderates impact of family and

sIhool faItoヴs oﾐ adolsIeﾐtsげ disヴupti┗e Heha┗iouヴal pヴoHleﾏs. BMC PuHliI Health, ヱ5ふヱヱヱヰぶ.

DOI: 10.1186/s12889-015-2464-0

Fredricks, J., and Eccles, J. 2006. Extracurricular Involvement and Adolescent Adjustment:

Impact of Duration, Number of Activities, and Breadth of Participation. Applied

Developmental Science, 10(3), pp. 132-146.

Hasabe, D., et al. 2015. Web Portal for Providing Various Services. International Journal of

Innovative Research in Advanced Engineering, 3(2).

https://www.allthetests.com/personality-tests/hobbies/quiz30/1370304656/what-activity-should-you-join
https://www.allthetests.com/personality-tests/hobbies/quiz30/1370304656/what-activity-should-you-join
https://www.amazon.co.uk/
https://www.bhf.org.uk/informationsupport/heart-matters-magazine/activity/which-fitness-activity-suits-you
https://www.bhf.org.uk/informationsupport/heart-matters-magazine/activity/which-fitness-activity-suits-you
https://doi.org/10.1023/A:1021240730564
https://www.buzzfeed.com/elzbeth_a/answer-some-questions-and-well-give-you-something-dz05mfs4g9
https://www.buzzfeed.com/elzbeth_a/answer-some-questions-and-well-give-you-something-dz05mfs4g9

75

Kupisk, D. 2017. Acing Afterschool: Making extracurricular activities work for your teen.

Available at: https://parenthetical.wisc.edu/2017/01/23/acing-afterschool-making-

extracurricular-activities-work-for-your-teen/ Accessed: 20th July 2021.

Mahoney, J. 2000. School Extracurricular Activity Participation as a Moderator in the

Development of Antisocial Patterns. Child Development, 71(2), p. 502.

Netflix. 2021. Available at: https://www.netflix.com

Pariser, E. 2011. The Filter Bubble: What the Internet Is Hiding From you. London:

Viking/Penguin Press.

Pinela, C. 2017. Content-Based Recommender Systems. Available at:

https://medium.com/@cfpinela/content-based-recommender-systems-a68c2aee2235

Polamuri, S. 2015. Five most popular similarity measures implementation in Python.

Available at: https://dataaspirant.com/five-most-popular-similarity-measures-

implementation-in-python/

Ricci, F., et al. 2011. Recommender Systems Handbook. 1. DOI 10.1007/978-0-387-85820-

3_1

Schafer, J. B., et al. 2007 Collaborative Filtering Recommender Systems. In: Brusilovsky, P.,

Kobsa, A., Neidl, W. (eds) The Adaptive Web. Lecture Notes in Computer Science, 4321.

https://doi.org/10.1007/978-3-540-72079-9_9

Shimodaira, H. 2015. Similarity and recommender systems. Learning and Data Note 2.

Informatics 2B.

Stackoverflow. 2011. Haversine Formula in Python. Available at:

https://stackoverflow.com/questions/4913349/haversine-formula-in-python-bearing-and-

distance-between-two-gps-points

Subramanian, D. 2020. Building a Content-Based Book Recommendation Engine. Available

at: https://towardsdatascience.com/building-a-content-based-book-recommendation-

engine-9fd4d57a4da

Terzian, M. et al. 2009. Why teens are not involved in out-of-school time programs: the

youth perspective.

https://parenthetical.wisc.edu/2017/01/23/acing-afterschool-making-extracurricular-activities-work-for-your-teen/
https://parenthetical.wisc.edu/2017/01/23/acing-afterschool-making-extracurricular-activities-work-for-your-teen/
https://www.netflix.com/
https://medium.com/@cfpinela/content-based-recommender-systems-a68c2aee2235
https://dataaspirant.com/five-most-popular-similarity-measures-implementation-in-python/
https://dataaspirant.com/five-most-popular-similarity-measures-implementation-in-python/
https://doi.org/10.1007/978-3-540-72079-9_9
https://towardsdatascience.com/building-a-content-based-book-recommendation-engine-9fd4d57a4da
https://towardsdatascience.com/building-a-content-based-book-recommendation-engine-9fd4d57a4da

76

Van Soligen, R. 2020. Agile. Dpunkt.

Images included on the website are provided by Unsplash. Unsplash is a source of free

images to be used by anyone. Available at: https://unsplash.com/

Appendix

Hosted website: http://funtime-funtime.apps.cs.cf.ac.uk/

N.B. This website is hosted on OpenShift and so requires a working VPN connection with

OpenShift or to be connected to eduroam internet.

http://funtime-funtime.apps.cs.cf.ac.uk/

77

78

79

80

81

82

83

84

