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Abstract 

Statistically, the largest proportion of pedestrian road accidents and fatalities occur when crossing 

the road, especially within cities. We propose an edge network model that aims to improve 

pedestrian safety by demonstrating how IoT camera sensors can utilise object detection software to 

alert oncoming drivers when pedestrians are crossing the road while the traffic light is green. We͛ll 
investigate the performance limitations of the software as well as finding the optimum setup for the 

IoT device when considering positioning and pedestrian count. We͛ll also utilise cloud computing 

services to communicate this data with endpoint users such as the department for transport who 

could perform further analysis.   
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2. Aims and Objectives 

 

Before we dive into the project, we should establish some aims and objectives that we want to 

come away from having completed. Firstly, we want to demonstrate an automated process that 

will alert oncoming drivers when pedestrians are crossing at a green traffic light. Once the 

process is launched, it should require no further input from us until we want the demonstration 

to stop. Secondly, we want to investigate the performance limitations of the computer vision-

based object detection software as insight into the ideal design of an optimised real-world setup 

when using a computer vision IoT device relative to moving pedestrians. We then want to 

demonstrate how useful information from this model can be extracted and sent to the cloud for 

analysis by possible endpoint users. Lastly, we want to provide possible solutions to the 

limitations found in the investigation as well as other future work that could build on this 

project. 
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3. Introduction 

 

WheŶ ǁe ĐoŶsideƌ pedestƌiaŶ safetǇ, ǁe͛ƌe thiŶkiŶg aďout the ĐoŶditioŶ iŶ ǁhiĐh soŵeoŶe 
travels on foot (or by mobility aid), within the vicinity of a road, and their immediate threat to 

injury or fatality.  

 

In 2019, pedestrians accounted for a staggering 27% of all road deaths: a 3% increase from the 

previous year while the rate of fatalities has stayed fairly constant between 2009 – 2019 as 

illustrated in appendix A (Department for Transport, 2019, p. 9-12). Due to higher populations 

͞the majority of pedestrians killed or seriously injured (KSI͛s) occur on urban roads͟ where 

pedestrians and moving vehicles are more likely to come into contact. The department for 

transport has stated that walking ͞has a higher risk than driving, probably because of the lack of 

pedestrian-based technologies͟ (Department for Transport, 2015, p. 1-3). Although the fatality 

rate has stayed relatively constant between 2009 and 2019, the rate of those seriously injured 

has seen a gradual decrease as illustrated in appendix B. It͛s oŶlǇ iŶ ƌeĐeŶt Ǉeaƌs that this ƌate 
has started to plateau which might suggest that the current measures we have in place for 

pedestrian-road safety is reaching its minimum KSI rate which cannot be reduced further 

without the introduction of new processes for improving pedestrian safety. Demonstrating a 

model that focuses on the safety of pedestrians with respect to oncoming traffic is an important 

research objective that has the potential to tackle this statistic, acting as a new approach to 

improve both pedestrian and road safety. 

 

͞Unsurprisingly, pedestrians are more likely to be killed or seriously injured while crossing the 

road͟ (Department for Transport, 2015, p. 6).  Whetheƌ it͛s duƌiŶg peak Đoŵŵute-to-work times, 

a late Saturday night back from the pub or a busy Sunday of shoppers, pedestrians will inevitably 

cross the road when traffic lights are green. Pedestrians caught in this scenario are most 

commonly in accidents due to factors such as ͞failing to look properly, … careless reckless or 

being in a hurry͟ and, for ages 16-19, being ͞impaired by alcohol͟ (Department for Transport, 

2015, p. 10). Due to the fact pedestrians that specifically cross the road pose the greatest threats 

to safety, this model only considers a road crossing. Because ͚the ƌisk foƌ pedestƌiaŶ K“I 
Đasualties is ϮϮ tiŵes higheƌ thaŶ foƌ Đaƌ oĐĐupaŶts͛ (Department for Transport, 2015, p. 3), we 

want to use the ŵodel to help ƌeduĐe this faĐtoƌ to the poiŶt ǁheƌe it͛s ĐoŶsideƌed safeƌ foƌ 
pedestrians to travel on foot/by mobility aid than to use vehicles, particularly in urban areas. 

With the increased efforts to eŶĐouƌage the puďliĐ to ͚go gƌeeŶ͛ ďǇ ǁalkiŶg oƌ usiŶg puďliĐ 
transport, this a timely project.  

 

An IoT (Internet of Things) device is a piece of hardware that can read and communicate data 

within a network of other devices, most commonly via the internet. When we talk about an IoT 

deǀiĐe, ǁe͛ƌe Ŷot ƌefeƌƌiŶg to staŶdaƌd ĐoŵputiŶg deǀiĐes suĐh as desktops, laptops, oƌ 
smartphones, but rather devices that non-traditionally use the internet and form part of a 

communicative network such as a smart watch or sensor camera. In this project, we will explore, 

demonstrate, and discuss the use of IoT devices to reduce the threat towards pedestrian safety.  

 

The report is structured as follows. In section 4 we explore some existing work that seeks to 

improve road safety which this project will follow on from or work in collaboration with. We͛ll 
also look at the relevant technologies that could be used to carry out this project. In section 5, 

ǁe͛ll justifǇ the tools used to ĐaƌƌǇ out the deŵoŶstƌatioŶ ǁhile desĐƌiďiŶg the pƌoĐess of 
achieving a fully functioning edge network that can improve pedestrian safety and how useful 
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information can be extracted from it and analysed in the cloud. In section 6 ǁe͛ll disĐuss the 
output result with different dependent variables such as pedestrian quantity, road layout and 

how these results could be used for further analytics by various endpoint users connected to the 

edge network. Having concluded this work in section 7, we͛ll then go onto discuss future work in 

section 8 that builds on this model in a real-world setting as well as additional features that 

could further improve safety. In section 9 ǁe͛ll self-reflect on this project and how the MSc 

course has provided me with the tools and skills to carry this project and prepare for future 

work.  
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4. Background Material 

4.1 - Distinguishing and Quantifying Pedestrian Safety 

PedestƌiaŶ safetǇ should ďe ideŶtified as sepaƌate to Đƌiŵe safetǇ. We͛ƌe aiŵiŶg to pƌeǀeŶt 
casualties and fatalities due to road traffic accidents as opposed to intentional harm caused by 

criminal activity. An example method of preventing crime safety would be a CCTV camera that 

aids identifying and potentially preventing a criminal act from taking place. The following 

existing work focuses on models designed to aid pedestrian safety.  

 

Pedestrian safety can be quantified based on the indiǀidual͛s deĐisioŶ ŵakiŶg. ͞The pedestrian 

chooses a path that maximises its utility in terms of two criteria: overall length and risk of a road 

crash incident͟. When considering a model where traffic lights are green and a pedestrian has 

decided to cross the road, this decision making has effectively been made and can no longer be 

considered a variable but a constant (Corcoran, 2018, p. 5).  

 

4.2 - Road Crossing and Pedestrian Model Designs 

 

The following information on road crossings will help us when it comes to designing the road 

crossing model simulation. The minimum width for a pedestrian road crossing is 2.4 metres, 

however, if the crossing is considered popular (most urban crossings), the minimum should be 4 

metres. A busy crossing is one where the flow of pedestrians is over 600 per hour, in which case 

a wider crossing should be put in place. For a pelican crossing, ͞which uses far-side pedestrian 

signal heads and a flashing amber/flashing green crossing period͟, it has a maximum width of 10 

metres. Beyond this distance, an island must be introduced to split the road into two crossings: 

one for each traffic direction. When considering visibility, pedestrians must be able to see 

oncoming traffic with no obstruction from objects such as parked cars or trees. Furthermore, 

instances such as wheelchair users and children should also be considered when ensuring full 

visibility for drivers (Department of Transport, 1995, p. 1-3). 

When considering the design of our pedestrian models, the average height for a male in the UK 

is 1.78m and 1.64m for a female (WorldData.info, No date).  

 

4.3 - Understanding Pedestrian Safety Risks 

 

The threat towards pedestrian safety can be further broken down into two categories: fatality 

risk and accident risk, the former causing death, the latter resulting in injury. With the 

pedestƌiaŶs͛ deĐisioŶ-making factor kept constant (to cross while the traffic light is still green), 

there are certain variables that can increase the risk of fatality. Darkness of the road can 

iŶĐƌease this ƌisk espeĐiallǇ ǁheŶ theƌe͛s Ŷo stƌeet lightiŶg as ǁell as the ƌoad ďeiŶg ďi-
directional as opposed to one-way. The speed limit of the road is also a key contributing factor 

where studies show that increasing the limit by 10km/h increase the probability of death by 37% 

(Olszewski, 2015, p. 89).  

 

4.4 - Understanding a Complete IoT Network 

 

There are various technologies involved in IoT. These technologies are placed at different tiers: 

Sensors, Microcontrollers, and Internet Connectivity/Service platforms (Kumar, 2019). The 

sensors that communicate with the microcontroller (which runs the specific software) is 

connected to an IoT platform, ͞which integrates data from the different devices and applies 
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analytics to share the most valuable information with applications built to address specific 

needs͟ (Clark, 2016). This explains how these 3 components must work together to not only 

detect in real time for immediate threat to safety but use the relevant information extracted 

from this action for analysis to future improve safety. 

An IoT designed for transportation purposes is built on a 5-layer architecture in which we can 

apply our three-tier technology as illustrated in appendix C. Firstly, a perception layer made up 

of sensors, with the relevant software installed on the microcontroller, collects information, for 

example speed, positioning, or quantity of a particular object. The co-ordination layer provides 

the means of securely communicating this information to the rest of the network. In real-world 

applications this could be via Bluetooth, Wi-Fi or 4G. The ͞ďƌaiŶ…ƌespoŶsiďle foƌ stoƌiŶg, 
processing, and analysing the information͟ is found at the artificial intelligence layer and most 

commonly in the form of a cloud computing platform, responsible for big data analysis. The 

application layer is based on what we assign this network to do. This could be something that 

improves tƌaffiĐ safetǇ oƌ peƌhaps aŶalǇsis to iŵpƌoǀe tƌaffiĐ. LastlǇ, the ďusiŶess laǇeƌ͛s ͞major 

ƌespoŶsiďilitǇ…is to foƌesight stƌategies foƌ the deǀelopŵeŶt of ďusiŶess ŵodels ďased oŶ the 
application usage data and statistical analysis of the data͟ (Kaiwartya, 2016, p. 5360-5361). In a 

transportation sense, this could be, for example, analysing the number of central London traffic 

users against unpaid congestion charges to investigate what proportion of users forget to pay 

their congestion charge.  

4.5 - Improving Safety with IoT 

 

Human beings are almost exclusively the focus when considering safety within any environment. 

In manufacturing industries, a vast majority of accident-related injuries and fatalities are due to 

human error when incorrectly following control procedures, also known as Lockout tagout 

(LOTO) procedures, when handling electrics and machinery. In this case study, the introduction 

of IoT based LOTO devices on machinery is aiŵed to iŵpƌoǀe a ǁoƌkeƌ͛s oďedieŶĐe to 
procedures by alerting a supervisor or manager if their action is incorrect and hence a threat to 

their safety. An application of IoT such as this proves the importance of minimal latency when 

communicating with a supervisor or manager. ͞The SMS must reach within standard/defined 

time and actuation must happen within standard/defined time͟ to minimise the threat to a 

useƌ͛s safetǇ ;Kuŵaƌ, 2019).  

 

4.6 - Improving Transport Safety with IoT 

Using IoT devices to improve safety in transportation has the potential to reduce KSI rate. AWS 

are a leading company in improving the overall performance of transportation networks. One of 

these performance-aims is to improve safety by ͞delivering real-time decision support͟. It takes a 

large amount of various data processing to ensure that someone travels as safe as quick and 

efficient as possible. Another aim looks to absorb this ͞data from multiple mobile end-points͟. 

This is an idea that using millions of IoT sensors can be made accessible for real-time support. To 

reduce traffic-related fatalities, AWS suggest capturing not only crash incidents but ͞high risk 

behaviours͟ such as near misses and red-light violations. This captured data is processed through 

AWS analytic and Machine Learning services to better understand how roads could be improved 

or what measures, such as road signs, should be in place (AWS, 2020). 
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4.7 - Improving Pedestrian Safety with IoT 

 

AŶ eŵeƌgiŶg teĐhŶologǇ fƌoŵ ƌeĐeŶt Ǉeaƌs is the iŶteƌŶet of ǀehiĐles ;IoV͛sͿ ǁhiĐh is a blanket 

term that covers various communication between vehicle and other devices including ͞vehicle-

to-vehicle, vehicle-to-roadside, vehicle to infrastructure of cellular networks, vehicle-to-person 

devices and vehicle-to-sensors͟ ;Kaiwartya, 2016, p. 5359).  

 

Pedestrian IoV detection technologies are surfacing in newer models of vehicles. For Volvo, their 

cars display a ͞collisioŶ ǁaƌŶiŶg… ǁheŶ theƌe is a ƌisk of ĐollidiŶg ǁith a pedestƌiaŶ, ĐǇĐlist oƌ 
vehicle͟. A drawback to this technology, which poses thought for future work, is that the IoV 

device requires a full-bodied view of the pedestrian combined with stationary or ͞normal human 

pattern of movement͟. This drawback may result in the inability to detect pedestrians that use 

mobility aid or bicycles. Another detection drawback is that the pedestrian must be at least 

80cm. A result of this drawback could obstruct the detection of small children (Volvo, 2020). 

 

In Melbourne, camera sensors are being introduced to detect cyclists and pedestrians in real 

time at road crossings. The aim is to adjust the length of crossing times in direct correlation with 

the number of pedestrians waiting on the pavement to cross. The model focuses on the number 

of pedestrians as its independent variable. The idea is to benefit drivers and pedestrians: the 

former to reduce unnecessary delays to drivers when minimal or no pedestrians are crossing and 

the latteƌ to giǀe a safeƌ aŵouŶt of tiŵe to Đƌoss ǁheŶ it͛s ďusǇ ;BiĐǇĐle Netǁoƌk, ϮϬϮϭͿ.  

4.8 - Detecting Objects with Computer Vision in Transportation 

Traditionally, object detection software applies its ͞model to an image at multiple locations and 

scales. High scoring regions of the image are considered detections͟ (Redmon, 2016). In 

transportation, a pipeline methodology is used for describing computer vision installation and 

application as described in appendix D. Firstly, for ͞Image and Video Capture͟ we must consider 

͞field of ǀieǁ…, ƌuggedŶess aŶd Đost͟. This is followed by ͞Data Pre-Processing͟ where the 

camera is correctly positioned, and its plane of sight covers the entire surface area of the road 

crossing. This also considers factors such as ͞ďƌightŶess…aŶd ŵotioŶ staďilisatioŶ͟. ͞Feature 

Extraction͟ identifies the relevant pixels within the real-tiŵe iŵage that͛s Đaptuƌed ďǇ the 
camera. Foƌ this ŵodel, ǁe͛ƌe iŶteƌested iŶ the piǆels that correspond to the pedestrians. Our 

software must be able to detect heads, arms, and bodies etc. The ͞inference engine͟ is the point 

at which the sensor ͞takes as input the feature descriptors and emits a hypothesis or decision͟. 

This is the detection certainty that the software displays on each bounding box having detected 

an object. ͞Data Presentation and Feedback͟ for our software will be outputting the percentage 

likelihood that the local feature extracted is a pedestrian (using a minimum certainty to allow a 

positive ID). This publication goes on to explain the application of computer vision for counting 

pedestrians. A potential challenge posed by them is the fact that ͞people tend to walk and wait 

in platoons͟ (Loce, 2017, p. 8-10).  

A study made in Rwanda used computer vision to track pedestrians crossing foot-trail bridges. In 

this use case, computer vision is used to observe people while tracking their movements, 

iŶĐludiŶg the diƌeĐtioŶ of tƌaǀel ďased oŶ tƌaĐks. WheŶ ŵoŶitoƌiŶg people iŶ ƌeal tiŵe it͛s 
important to get approval from an ethics or data community to install a camera in public. They 

used an ͞open source Darknet implementation of the YOLO (You Only Look Once) object 

detection deep neural network that is pretrained to, among other things, detect people at frame 

rate͟. When comparing the detection performance between image stills and videos, they found 
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that ͞the motion-activated video-clip files provided greater support for the computer vision 

algorithm compared to the stills͟ (Thomas, 2020).  

 

YOLO, a real-time object detection tool of revolutionary speed and accuracy, ͞divides the image 

into regions and predicts bounding boxes and probabilities for each region͟. The benefits of 

using YOLO is that it improves on classifier-based (͞predicting the class of given data points͟) by 

making a prediction using ͞single network evaluation͟ to apply bounding boxes to the object in 

real-time thus feeding an output as the software sees it (Redmon, 2016).  

 

A problem that currently stands with deep learning object detection methods are ͞the effects of 

small pedestrian ratios and considerable differences in the aspect ratios of input images͟. 

Performance decreases exponentially as the distance between pedestrians and camera increases 

(Wei-Yen, 2021, p. 934).  

4.9 - Edge and Cloud Computing 

Previously, when we discussed the 5-layer architecture of a Transportation IoT network, the 

third-tier technology is a centralised IoT platform in which data generated by each device is sent 

for analysis. Cloud platforms offer scalable, ͞high-computational capacity with moderate 

response time͟ making it suitable for this network of data to communicate with (Munoz, 2018, 

p. 1420).  

A particular study uses cloud computing services to create a ͞real-time ECG monitoring system͟ 

IoT deǀiĐe. Data that͛s ƌead ďǇ the ECG is sent and stored in an AWS S3 Bucket for analysis. 

͚Message ͚Queuing Telemetry Transport (MQTT)͛ pƌotoĐol aŶd ͚Hyper Text Transfer Protocol 

(HTTP)͛ pƌoǀide the gateǁaǇ ďetǁeeŶ deǀiĐe aŶd Đloud platfoƌŵ (Manju, 2021).  

A fundamental analytics tool within AWS is Amazon Athena: ͚aŶ iŶteƌaĐtiǀe query service that 

makes it easy to analyse data in S3 using standard SQL. Athena is serverless so there is no 

iŶfƌastƌuĐtuƌe to ŵaŶage, aŶd Ǉou paǇ oŶlǇ foƌ the Ƌueƌies Ǉou ƌuŶ͛ (AWS, 2021). 

The study by Munoz et al. that we mentioned before, challenges IoT devices using the cloud 

considering an exponential increase of IoT devices is predicted to be deployed in the upcoming 

years. ͞One core cloud infrastructure is not a long-term scalable solution͟. A more suitable 

method of distributing the analytics to reduce the workload on the cloud is by sharing some of 

this analysis on the edge. In transportation, it is ͞ŵissioŶ ĐƌitiĐal IoT applications, with very 

stringent delay requirements, may require performing IoT analytics in the edge in order to 

perform real-time actions͟ (Munoz, 2018).  
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5. Methodology 

 

IŶ this seĐtioŶ, ǁe͛ll desĐƌiďe the ŵethod Đaƌƌied out to ďuild, deŵoŶstƌate aŶd eǆpeƌiŵeŶt ǁith 
our pedestrian crossing model. In section 4.1, we outline the design of this model using the 5-

laǇeƌ aƌĐhiteĐtuƌe disĐussed iŶ seĐtioŶ ϯ. IŶ ϰ.Ϯ ǁe͛ll disĐuss the physical setup of our model, 

including the design of our pedestrian model. From there, we explain the setup of the object 

detection software in 4.3. The traffic light simulation component is explained in 4.4 as well as 

the overall edge network that responds to it. We then explain how we obtain results in 4.5 while 

moving this important data to the cloud in sub-section 4.6. 

 

5.1 - Approach 

 

In this section, we propose a model that aims to reduce the threat of pedestrian safety by 

alerting oncoming traffic that pedestrians are crossing the road when traffic lights are green. The 

flowchart in figure 1 explains the IoT network process that occur dependent on the traffic light 

colour. 

 

 
Figure 1: A flowchart that describes the IoT network process  

 

The basis of our design is inspired by the technology components described in [12] as well as the 

5-layer architecture explained in [11]. Given that this project is a demonstration, we will use 

tools suitable for a project of this magnitude with further discussion on how it translates and 

scales up to make it suitable for real-world application. Ouƌ ͚peƌĐeptioŶ laǇeƌ͛ is an IoT device 

that uses a laptop webcam and ͚YOLOƌ͛ softǁaƌe: a vision-based object detection system that 

uses machine learning to identify certain objects. The appropriateness of using this version of 

object detection is the fact that it can run in real-time and is extremely fast compared to 

previous models. It also has the benefit of off-the-shelf use for users not familiar with writing 

computing vision, machine learning scripts. As this model, mission-critically, must have minimal 

latency (and considering research made from [15]) this IoT device will communicate with the 

traffic light and digital road sign within an edge network ;paƌt oŶe of the ͚aƌtifiĐial iŶtelligeŶĐe͛ 
[11] layer). This edge network makes our ͚communication layer͛ [11] relatively straight forward, but 

ǁhat͛s ŵoƌe, is that it keeps in theme with [15] by only sending streamlined, relevant data 

across to our cloud platform: Amazon S3 which is connected with Amazon Athena (part two of 
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the ͚aƌtifiĐial iŶtelligeŶĐe͛ [11] layer) to reduce data traffic and possible delays. Our final layer: the 

͚ďusiŶess laǇeƌ͛, will be based on our discussion of potential, analytical use cases for cloud 

endpoint users such as the department for transport in ways in which they can improve road 

layout and traffic. We can summarise the sequence like so: 

 

 
 

Figure 2: A UML Sequence model of the IoT network process 

 

To test the ŵodel͛s ƌeliaďilitǇ, ǁe will investigate the effect of variables like pedestrian numbers, 

physical features of the pedestrians and various positioning of the IoT device along different 

axes. These processes are described in the following sub sections 

 

5.2 - Traffic Light Crossing Model Construction 

 

The IoT device is a 2015 MacBook Pro laptop that uses a 720p FaceTime HD camera. Using 

photographed faces attached to card cut-outs (approximately 20 cm in height and scaled to 

represent the average male height), we͛ƌe able to setup stills of pedestrians crossing the road bi-

directionally. The direction of travel is illustrated by faces or back of heads. In this model we use 

a range of crossing lengths that͛s sĐaled, approximately, to the size of our pedestrian cut outs. 

We͛ll theŶ deploǇ ouƌ pedestƌiaŶs in various numbers while changing the width of roads. These 

different volumes of pedestrian clusters will allow us to test the performance of the computer 

vision to see if denser volumes affect its ability to identify every pedestrian. Our number of 

pedestrians in each scenario will range from a minimum of 1 pedestrian, to represent ͞Ƌuieteƌ͟ 
periods, to 15 for ͞ďusǇ͟ peƌiods. A photograph of this set up is presented in figure 3.   
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Figure 3: A snapshot of the road crossing model for applying computer vision 

 

5.3 - Setting up the YOLOr 

 

As this ŵodel doesŶ͛t ƌeƋuiƌe modifications to the code to train new objects (humans are 

already trained), we can install an off-the-shelf version of YOLOr. As ǁe͛ƌe ƌuŶŶiŶg the object 

detection software from the CPU, we need to ensure that PyCharm and Anaconda are installed 

as prerequisites. We͛ƌe then able to initiate a conda environment in which the YOLOr software 

will run as well as pip installing any dependencies that we doŶ͛t ĐuƌƌeŶtlǇ haǀe.  

To test the object detection is working correctly, we input the following command within our 

environment to detect objects from a specified image, in this example, a horse: 

 

python detect.py --source inference/images/horses.jpg --cfg 

cfg/yolor_p6.cfg --weights yolor_p6.pt --conf 0.25 --img-size 1280 -

-device cpu --save-txt 

 

Figure 4: The command for executing the YOLOr software [1] 

 

Once the software has executed the command, an output image with detection boxes is saved. 

appendix E confirms the object detection is functioning correctly. To run the software on a 

webcam in real time, we change the ǀalue foƌ ͚--souƌĐe͛ to ͚Ϭ͛. Now when we run the command 

a new window will display the output with object detection applied (appendix F) and a 

description of what object (and quantity) has been detected in that frame (appendix G).  
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5.4 - Completing our Edge Network 

 

With YOLOr installed, we use Python to create a complete edge network that allows this 

software to interact with a traffic light simulation and subsequent digital road sign.  

 

The basis of the traffic light simulator uses real-time to achieve automated signal change which 

we allocate to variable called ͚current_light͛. The first 30 seconds of a minute sets this variable 

to ͚G‘EEN͛, between 30-45 it͛s ĐhaŶged to ͚AMBE‘͛ aŶd the fiŶal ϭϱ seĐoŶds changed to ͚‘ED͛.  
 

We begin by executing the command from figure 4 ;souƌĐe set to ͚Ϭ͛Ϳ. WheŶ this ƌuŶs, a 

suďseƋueŶt ͚pedestƌiaŶ.tǆt͛ file is opened. A while loop is used to run the object detection 

software for 12.2 seĐoŶds ďefoƌe it͛s killed. It͛s fouŶd through trial and error that for this 

laptop͛s CPU, it takes 12.2 seconds for the process to initiate, detect and record one line of data. 

If we configured it to allow more than one output per loop, when it comes to extracting this 

information to the cloud, our system will think more pedestrians are present than what is true.  

 

While the process is running and recording output data on the CLI, it also saves the information 

to another .txt file uŶdeƌ the output diƌeĐtoƌǇ. It͛s fƌoŵ this output.txt file that we read from to 

send the correct signals to the digital road sign. If the line records a 0, which represents a 

person, ǁe ǁill pƌiŶt ͚PE‘“ON DETECTED͛ aŶd set a ͚peƌsoŶ_seeŶ͛ ǀaƌiaďle to ϭ. This is mainly for 

our benefit to ensure the script is running correctly when comparing this output to the road sign. 

Now, if the ͚person_seen͛ variable is eƋual to oŶe aŶd the ͚ĐuƌƌeŶt_light͛ ǀaƌiaďle is eƋual to 
͚G‘EEN͛, the digital ƌoad sigŶ ǁill eŵit ͚“LOW DOWN, PEDE“T‘IAN“ C‘O““ING͛. WheŶ this isŶ͛t 
the case, ǁe pƌiŶt ͚“IGNAL OFF͛ to kŶoǁ that the sigŶ isŶ͛t displaǇing anything.    

 

During this event, we have another for loop that reads the output.txt file to count how many 

pedestrians have been detected in this instance. This information is then written to the 

pedestrian.txt file format. It͛s iŵpoƌtaŶt that the ĐoŶteŶts of the output.tǆt file is truncated 

duƌiŶg eaĐh ͚G‘EEN͛ sigŶal iŶstaŶĐe. 
 

5.5 - Obtaining Results 

 

When demonstrating the pedestrian detection model, we want to challenge some of the 

drawbacks found from previous research as well as a series of possible factors that could affect 

the Đoŵputeƌ ǀisioŶ softǁaƌe͛s peƌfoƌŵaŶĐe to investigate its limits. We will explain these 

results for each scenario in a set of sub sections. 

 

We begin by placing the IoT device to one end of a rectangular table (with grey sheeting to 

match road colour) that will imitate the road layout or plane of view. The background will 

remain constant. We͛ll atteŵpt to keep lightiŶg as ĐoŶstant as possible although results may be 

taken from various points of the day.  
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As aŶ iŶitial test of YOLOƌ͛s peƌfoƌŵaŶĐe ;ďefoƌe iŶtƌoduĐiŶg the suď seĐtioŶ sĐeŶaƌiosͿ, ǁe take 

careful consideration into the appearance of our pedestrian figures to see whether any factors 

would reduce detection capability. These factors are (image captured in appendix H.1-J.3): 

 

➢ Varied pedestrian size  

➢ Some pedestrians wearing a hat 

➢ The back of the head (short male hair, long female hair) 

➢ Varied hair lengths 

 

We run the object detection software five times on each physical variable and obtain an average 

certainty as recorded. We ensure that the distance from the camera is kept constant. 

 

Following this, we arrange a setup with low numbers of pedestrians to represent our first 

scenario. Three and four sets of pedestrians will be placed within the plane as well as a scenario 

that looks at the effect of an anomalous object against desired targets. We͛ll theŶ iŶĐƌease this 
population count to medium and high numbers of pedestrians: eight, nine and ten for the 

medium population scenario, thirteen and fifteen for the high population. It͛s iŵpoƌtaŶt that ǁe 
aim to scale each model as accurately as possible. By measuring the length of the pedestrian 

figures, and setting those lengths to average heights, we can scale out minimum and maximum 

road crossing distances according to research found in section 3.2. We can also adjust the IoT 

deǀiĐe͛s eleǀation to improve its performance through improved pedestrian certainty.  

 

 Our next scenario looks at finding the optimum angle at which our device could be positioned to 

maximise certainty in real life. We want to explore the maximum limitations so by positioning 

two pedestrians close together to imitate obstructed views will help find this. Once this angle 

has been found within a certainty of roughly 5 degrees, we move onto the next scenario that 

investigates the effect of certainty with distance of the device from the target. 

 

Having explored performance, we let our IoT device run against a group of pedestrians to seek 

confirmation that: 

 

1) The traffic light simulation correctly changes according to real time 

2) The IoT device and digital road sign correctly communicate with one another in the instance 

that pedestƌiaŶs aƌe deteĐted ĐƌossiŶg the ƌoad ǁheŶ lights aƌe ͚G‘EEN͛ 
3) The ĐoƌƌeĐt iŶfoƌŵatioŶ ;the ĐiƌĐuŵstaŶĐe iŶ poiŶt tǁoͿ is saǀed to ͚pedestƌiaŶ.tǆt͛ 
4) Ouƌ ͚J“ON_ĐoŶǀeƌteƌ͛ sĐƌipt ĐoƌƌeĐtlǇ ĐoŶǀeƌts the ͚pedestƌiaŶ.tǆt͛ file to JSON format 

 

5.6 - Moving Data from Edge Network to the Cloud 

 

We want to initiate a network connection between our IoT and cloud platform for delivering the 

pedestrian data for reading online, downloading, or running SQL queries against. Therefore, we 

need to convert our pedestrian.txt file into JSON format to make it readable for SQL querying. 

appendix J is a snapshot of our script created to convert .txt to JSON. Note this JSON document 

must be slightly altered to the correct, simplified format that works for Amazon Athena. The 

script splits each line and assigns each column of values to the fields described which are 

contained within a set of brace brackets. No comma should be at the end of the curly brackets. 

We must also ensure that each field value is set as the correct data type. 
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Now we have the correct format of our data, ready for sending to the cloud. We want to 

demonstrate a conceptual process in which various endpoint users can access this information. 

We therefore need three resources from Amazon Web Services (AWS): 

 

1) Amazon S3  

2) Identity Access Management (IAM) 

3) Amazon Athena 

Logging into the AWS console as a root user, we begin by creating an S3 bucket. We configure 

the uŶiƋue ďuĐket Ŷaŵe: ͚pedestƌiaŶ-crossing-sϯ͛ aŶd assigŶ it to the eu-west-2 region as all our 

endpoint users would be based in the UK. For this scenario, we will disable server-side 

encryption of objects (our files) for the purpose of this demonstration. With this bucket created, 

we upload the .txt and .json file to the bucket.  

We Ŷoǁ ǁaŶt to Đƌeate a ŵoĐk eŶdpoiŶt useƌ, iŶ this Đase, the UK goǀeƌŶŵeŶt͛s depaƌtŵent for 

transport. Under the IAM resource, we first have to setup Multi-factor Authentication (MFA) as 

the root user to improve security. We then add a new user and configure their access type, in 

this case, password for accessing the console. A User Group is created which allows us to apply 

peƌŵissioŶs that eaĐh useƌ ǁithiŶ the gƌoup ǁill iŶheƌit. IŶ this Đase, ǁe͛ǀe peƌŵitted ouƌ 
͚DepaƌtŵeŶt_foƌ_TƌaŶspoƌt͛ useƌ to ĐhaŶge theiƌ IAM Useƌ Passǁoƌd aŶd haǀe ‘ead OŶlǇ aĐĐess 
to Amazon S3 as illustrated in appendix K. We also have the option to make the bucket public if, 

in real-world, it was decided that the data be made to the public. 

With “ϯ aŶd IAM iŶ plaĐe, ǁe͛ƌe ƌeadǇ to poiŶt AŵazoŶ AtheŶa iŶ the diƌeĐtioŶ of the .JSON file 

as our data source. We create a table and list the field names to those matching within our 

͚J“ON-ĐoŶǀeƌteƌ͛ sĐƌipt. We also have the option to save query output results to either our 

͚pedestƌiaŶ-crossing-sϯ͛ ďuĐket oƌ a diffeƌeŶt ďuĐket. Foƌ this deŵoŶstƌatioŶ ǁe͛ll use a sepaƌate 
bucket as we want our endpoint users to only see the queries made by them and not others. 

Now we can use the Athena dashboard to run SQL queries against our table with results saved to 

S3. This completes our cloud demonstration. 
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6. Results and Analysis 

When reviewing the aims and objectives in section 2, the sets of results that we set out to find 

were, firstly, to demonstrate an automated process that will alert oncoming drivers when 

pedestrians are crossing at a green traffic light. Secondly, to find performance limitations of the 

computer vision based YOLOr software. Thirdly, demonstrate how useful information within this 

model can be extracted and sent to the cloud for further analysis. Lastly, to identify any other 

limitations, for instance in the hardware, to support possible solutions for future work. 

We discovered one setback with our IoT device in which the camera lens was not particularly 

wide angled which, unavoidably, limited our width to which pedestrians could be placed if we 

wanted to keep the model scaled to size. This limit was found to be 4 pedestrians. We also found 

that the IoT device should be raised to approximately twice the height of the pedestrians to give 

the device optimum potential to detect all pedestrians in each scenario (illustrated in appendix 

L) 

6.1 - Simulating a range of Pedestrian Crossing Scenarios 

 

Figure 5 displays the results of average certainties when detecting pedestrians with various 

physical attributes. 

Variable Factor Average Certainty of Person 

Varied Pedestrian Size (Larger) (0.82+0.83+0.80+0.82+0.79)/5 = 0.81 

Varied Pedestrian Size (Smaller) (0.85 + 0.73 + 0.87 + 0.74 + 0.80)/5 = 0.80 

Pedestrian Wearing a Hat (0.75 + 0.83 + 0.76 + 0.81 + 0.84)/5 = 0.80 

Back of the Head (Male, Short Hair) (0.78+0.82+0.75+0.67+0.84)/5 = 0.77 

Back of the Head (Female, Long Hair) (0.71+0.69+0.72+0.62+0.67)/5 = 0.68 

 

Figure 5: Table of certainties for physical pedestrian variables 

All variables provided Ŷo ĐhaŶge to the YOLOƌ͛s aďilitǇ to deteĐt the iŶdiǀidual ǁhiĐh pƌoǀided us 
with confidence to proceed. However, the average certainty for each variable type did vary. The 

larger and smaller pedestrian models as well as the pedestrian wearing a hat had the highest 

value with only 0.01 difference between them. The male back of the head had a slightly lower 

average of 0.77 however the female back of the head had a considerably lower score of 0.68. 

An immediate drawback from our model was the frame rate. The IoT device would typically 

capture a frame, on average, every 3 seconds. This was due to the performance of the computer 

vision software when running on ouƌ laptop͛s paƌtiĐulaƌ CPU. Ideally, the software would be 

running on a Graphics Processing Unit (GPU) to increase the frame rate. However, the ability to 

capture motionless pedestrians with bounding boxes in real-time by a degree of high certainty (< 

0.8) remained unaffected which suffices for this demonstration.  
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6.1.1 - Low Pedestrian Count 

 

Camera position = eye level (9.5 inches) 

 

Figure 6 demonstrates our typical setup with a low number of pedestrians crossing. To ensure 

the model was correctly scaled in keeping with the distances mentioned in section 4.2, the road 

width must be greater than 11.8 inches. For this scenario, we didn͛t ǁaŶt to eǆĐeed the leŶgth of 
19.67 inches (minimum width for a popular crossing). The pedestrians were then scattered 

evenly within these two constraints. We scanned 3 (two camera facing and one walking) and 4 

pedestrians (two camera facing and two walking away) for this model as it resulted in minimal 

overlap when positioning the camera adjacent to the crossing direction. We also arranged an 

anomalous object behind three pedestrians.  

 

 

Figure 6: Model setup of 3 Pedestrians 

 

 Pedestrian Detection Certainty 

Reading  Pedestrian 1 Pedestrian 2 Pedestrian 3 Average 

1st 0.85 0.89 0.60 0.78 

2nd 0.59 0.69 0.70 0.66 

3rd 0.83 0.72 0.59 0.71 

4th 0.75 0.86 0.78 0.80 

5th 0.82 0.84 0.50 0.72 

    0.73 

Figure 7: Table of certainties for 3 pedestrians 

For the results in figure 7, there were occasional dips in certainties throughout the 5 

readings for each pedestrian, however, the average certainty remains at a reliably high score 

and always detects the correct number of pedestrians. Comparing these results to the 

pedestrians͛ positioning in figure 6, we noticed that pedestrian 3 has noticeably lower 

certainties when no obvious reason would explain it doing so.  



22 

 

 

Figure 8: Model setup for 4 pedestrians 

 Pedestrian Detection Certainty   

Reading  Pedestrian 1 Pedestrian 2 Pedestrian 3 Pedestrian 4 Average 

1st 0.66 0.63 0.83 0.82 0.74 

2nd 0.60 0.62 0.67 0.80 0.67 

3rd 0.42 0.47 0.75 0.76 0.60 

4th 0.51 0.63 0.73 0.84 0.68 

5th 0.41 0.66 0.80 0.89 0.69 

     0.68 

 

Figure 9: Table of certainties for 4 pedestrians 

In figure 9, results show that the average certainty decreased by approximately 7%. 

Noticeably this time, the certainties of each pedestrian would increase going from left to 

right. This could be due to the uneven distribution of indoor artificial light.  

 

Figure 10: Model setup for 3 pedestrians with anomaly 

 

 

 



23 

 

Reading  Pedestrian 1 Pedestrian 2 Pedestrian 3 Average 

1st 0.59 0.67 0.51 0.59 

2nd 0.59 0.61 0.48 0.56 

3rd 0.54 0.66 0.41 0.54 

4th 0.81 0.81 0.46 0.69 

5th 0.68 0.81 0.50 0.66 

    0.61 

 

Figure 11: Table of certainties for 3 pedestrians with anomaly 

The detection certainty for the anomalous object remained consistently high (between 0.85 and 

0.88) for each reading whereas certainties for each pedestrian had dipped further compared to 

the results in figure 9 and 10. There was no evidence for a change in contrast when introducing 

this object indicating that the addition of a different object type could affect the certainties of 

other objects in the plane but that would require further investigation. 

Our IoT output detected the correct number of pedestrians in each scenario. The average 

certainty for detected pedestrians was 0.73, 0.68 and 0.61 respectively. The graph in appendix M 

illustrates how the average certainty decreases by an average of 0.12 as the number of 

pedestrians are increased or when introducing an anomalous object.  

6.1.2 - Medium Pedestrian Count 

Camera Position = 16 inches 

In keeping with the ŵodel͛s sĐalaďilitǇ, the minimum distance from the Đaŵeƌa͛s positioŶ ǁas 
19.67 inches which classifies this scenario as a popular road crossing. We scanned 8 pedestrians 

(4 camera facing and 4 walking away), 9 pedestrians (5 camera facing and 4 walking away) and 

10 pedestrians (5 camera facing and 4 walking away) in various arrangements as illustrated in 

figures below. Noǁ that the Ŷuŵďeƌ of pedestƌiaŶs has iŶĐƌeased, ǁe͛d eǆpeĐt to see a gƌeateƌ 
diversity in certainties given the results. This subsection looks at how large these differences are. 

 

 

Figure 12: Model setup for 8 pedestrians 
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 Pedestrian Detection Certainty  

Reading  1 2 3 4 5 6 7 8 Average 

1st 0.70 0.35 0.75 0.67 0.67 0.75 0.62 0.86 0.67 

2nd 0.70 0.28 0.59 0.63 0.60 0.77 0.56 0.86 0.62 

3rd 0.69 0.34 0.70 0.58 0.76 0.76 0.48 0.88 0.65 

4th 0.63 0.29 0.75 0.70 0.79 0.81 0.68 0.89 0.69 

5th 0.68 0.41 0.34 0.63 0.63 0.75 0.65 0.86 0.62 

         0.65 

Figure 13: Table of certainties for 8 pedestrians 

Pedestrian 2 had the lowest range of certainties for each reading. This could be a combination of 

this pedestrian being at the lower end of sizes as well as the partial obstruction by pedestrian 1 

and 3. Pedestrian 8 had consistently the highest certainty. We would have expected pedestrian 6 

to be highest given his position, but the faĐt that he͛s ǁalkiŶg aǁaǇ Đould Đost the softǁaƌe͛s 
ability to detect as high as it could than if he was facing forward as we learnt from our initial 

͚pedestƌiaŶ ǀaƌiaďles͛ testiŶg. 

 

Figure 14: Model setup for 9 pedestrians 

 Pedestrian Detection Certainty  

Reading  1 2 3 4 5 6 7 8 9 Average 

1st 0.80 0.40 0.78 0.68 0.75 0.89 0.70 0.84 0.39 0.69 

2nd 0.81 0.41 0.82 0.68 0.63 0.90 0.66 0.83 0.45 0.69 

3rd 0.73 0.40 0.80 0.70 0.61 0.90 0.64 0.83 0.33 0.66 

4th 0.77 0.30 0.64 0.66 0.70 0.88 0.67 0.78 0.41 0.65 

5th 0.78 0.51 0.61 0.77 0.58 0.84 0.66 0.84 0.39 0.66 

          0.67 

Figure 15: Table of certainties for 9 pedestrians 
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Figure 16: Model setup for 10 pedestrians 

 

 Pedestrian Detection Certainty  
Reading  1 2 3 4 5 6 7 8 9 10 Average 

1st 0.85 0.84 0.42 0.73 0.46 0.49 0.83 0.90 0.73 0.57 0.68 

2nd 0.86 0.85 0.38 0.69 0.47 0.41 0.85 0.91 0.76 0.72 0.69 

3rd 0.84 0.84 0.44 0.59 0.48 0.37 0.87 0.87 0.82 0.57 0.67 

4th 0.86 0.85 0.43 0.75 0.48 0.33 0.76 0.91 0.74 0.60 0.67 

5th 0.84 0.88 0.44 0.74 0.62 0.39 0.83 0.89 0.62 0.66 0.69 

           0.68 

Figure 17: Table of certainties for 10 pedestrians 

For the results in figure 17, pedestrians positioned to the rear of the crossing had the lowest 

range of certainties. Pedestrian 3 and 6, both in similar positions however one facing, the other 

walking away, had a very similar range of certainties. This could suggest that beyond a certain 

distance, the forward/back facing attribute is governed by the distance rather than appearance 

but would require further investigation. 

The correct number of pedestrians were detected in each scenario with occasional drop out 

within one frame. The average pedestrian detection certainty for a medium pedestrian count 

remained reliably consistent with a fluctuation of just 0.03 

6.1.3 - High Pedestrian Count 

Camera level = 20 inches 

We discovered that the camera͛s height was too low for this scenario. The video output, 

appendix N, illustrates how the bounding boxes were too bunched so that we were unable to 

read the certainties. The CLI output was also unable to detect all 13 or 15 pedestrians at this 

height due to obstruction, so the camera was raised to 20 inches to resolve this. 
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Figure 18: Model setup for 13 pedestrians 

 

 

 Pedestrian Detection Certainty  
Reading 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Average 

1st 0.85 0.64 0.44 0.56 0.46 0.72 0.41 0.56 0.60 0.67 0.76 0.61 0.41 0.52 0.58 0.59 

2nd 0.86 0.65 0.41 0.52 0.60 0.80 0.44 0.53 0.62 0.68 0.77 0.55 0.51 0.51 0.52 0.60 

3rd 0.86 0.68 0.48 0.58 0.69 0.74 0.42 0.54 0.61 0.68 0.73 0.53 0.38 0.54 0.52 0.60 

4th 0.86 0.67 0.51 0.55 0.60 0.73 0.43 0.59 0.68 0.81 0.60 0.37 0.61 0.41 0.54 0.60 

5th 0.85 0.67 0.35 0.55 0.68 0.76 0.50 0.54 0.59 0.83 0.62 0.38 0.62 0.76 0.57 0.62 

                0.60 

Figure 19: Table of certainties for 13 pedestrians 
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Figure 20: Model setup for 15 pedestrians 

 Pedestrian Detection Certainty 

Reading 1 2 3 4 5 6 7 8 9 10 11 12 13 Average 

1st 0.86 0.49 0.67 0.51 0.34 0.57 0.73 0.85 0.63 0.60 0.73 0.42 0.61 0.62 

2nd 0.88 0.55 0.70 0.59 0.39 0.52 0.74 0.85 0.61 0.62 0.63 0.49 0.45 0.62 

3rd 0.85 0.58 0.67 0.45 0.32 0.54 0.72 0.70 0.59 0.71 0.59 0.44 0.49 0.59 

4th 0.89 0.44 0.60 0.55 0.28 0.51 0.73 0.85 0.63 0.60 0.73 0.42 0.61 0.60 

5th 0.87 0.43 0.75 0.57 0.31 0.52 0.72 0.79 0.64 0.51 0.64 0.48 0.50 0.59 

              0.60 

Figure 21: Table of certainties for 15 pedestrians 

 

For the high-count scenario, the range of certainties very similar to the medium count scenario, 

however the fluctuation of average certainties was reduced to 0.  

 

Looking back at the results for each pedestrian count scenario, as the pedestrian count 

increases, the average detection certainty of pedestrians decreases. The fluctuation also 

decreases. This evidence shows that although the object detection software becomes less 

certain on whether the object is in fact a pedestrian, it͛s ĐoŵpeŶsated ďǇ greater reliability that 

it has given the score it should be. Even though we see a reduced average, we think the IoT 

device using this software is a reliable method for real world application as it has proved it can 

detect a wide number of pedestrians consistently with occasional loss in detection on 

pedestrians that never exceed one frame.  

 

6.1.4 - Changing the Camera Positioning around Z-axis circumference plane 

 

If two pedestrians walk directly in line with one another, we want to find the angle at which the 

computer vision IoT device can no longer distinguish ďetǁeeŶ theŵ. We͛ll assuŵe a ƌealistiĐ 
distance between them (scaled down to 4 inchesͿ. We͛ll also position the camera height at eye 

level to investigate the true maximum limit of performance in this given scenario. Now we re-

position the camera along a 13 inch + laptop length radius (total of 22 inches) to the front 

pedestrian along the z axis plane.  

 

As illustrated in appendix O, when the IoT is positioned perpendicular to the front pedestrian, it 

is unable to detect the rear pedestrian. Figure 21 displays a graph of pedestrian detection 

certainties of the rear pedestrian when the IoT device is positioned between various angles. 
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Figure 22: Graph of certainties when varying the angle of IoT device around circumference of 

Z- axis plane 

The optimum angle at which we achieved the optimum certainty was ~ 45-degree angle. When 

comparing the resulting certainty reading to that of previous scenarios, it was at the lowest 

range of averages. The minimum angle that the IoT device camera must be positioned to 

distinguish between both pedestrians is within the range of 14-16 degrees. The maximum angle 

was found to be ~65 degrees.  

6.1.5 - Changing the Camera Positioning along z-axis 

 

With a similar setup to our z-axis plane scenario, we want to investigate the effects of varying 

IoT device distances from the target for detection. We͛ll still use ouƌ pedestƌiaŶ ŵodel foƌ this 
setup. We positioned the IoT device at the optimum angle of ~45-50 degrees, which was 

discovered from the previous scenario. The device was placed at varying distances both smaller 

and greater than 22 inches.  
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Figure 23: Graph of certainties when varying the distance of IoT device to target pedestrian 

 

The graph shows that the closer the IoT device is brought to the two closely positioned targets, 

the higher the certainty becomes.  

 

6.1.7 - Analysis of IoT device positioning results 

We can produce a scaled design of the optimum real-world setup for this model. If we consider 

the average number of pedestrians as the independent variable, we can use the results based on 

IoT device positioning to produce a design. 

 

 

 

 Figure 24: Model design that illustrates positioning measurements of the IoT device 

Figure 24 illustrates the possible setup of our IoT device within a real-world scenario. When we 

up-scale our measurements from inches to real-world scale, we find that the suitable height for 

an IoT device at a low count pedestrian crossing is 1.9 meters. For a medium and high-count 

crossing, the suitable height is 3.2 and 4 meters respectively. Further investigation may look at 

suitable heights for extreme pedestrian counts such as 30 or more. The camera is positioned at a 

45o angle from the typical direction of travel. Not all pedestrians will walk directly along this axis, 

but this angle remains the most appropriate. Distance to the crossing has not been specified due 

its dependency on the surface area of the crossing that the IoT device must cover within its 

plane of sight.  

 

6.1.6 - Alerting oncoming traffic while pedestrians cross on a green light 

 

When executing our ͚deteĐt.pǇ͛ sĐƌipt, the terminal produces a simulation of a traffic light 

system. The terminal successfully displays 4 outputs for each iterative start-to-stop loop of our 

detection software, these are: 
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1) The number of persons detected (including any anomalous objects that have been trained 

for detection) 

2) Whether a person has or has not been detected  

3) The traffic light status 

4) The resulting display from the digital road sign 

When placing no pedestrians within the plane of sight, the following output was displayed which 

confirms that our IoT device can distinguish the difference between people and no people while 

not falsely alerting oncoming traffic.  

 

Figure 2ϱ: TerŵiŶal output at iŶstaŶĐe where Ŷo people are deteĐted, aŶd lights are ͚G‘EEN͛ 

Figure 25 displays an instance where objects other than people were detected. Although these 

were detected while the traffic light displayed ͚G‘EEN͛, our IoT device sent no communication to 

falsely alert oncoming drivers which we can is evident by the ͚“IGNAL OFF͛ output.  

We then executed the run.py script with pedestrians to demonstrate our real-world process. As 

displayed in figure 26, when our traffic light simulation displayed ͚‘ED͛ or ͚AMBE‘͛, pedestrians 

are detected but no signal is sent to the digital sign. 

 

Figure 2ϲ: TerŵiŶal output at iŶstaŶĐes where people are deteĐted ďut lights are ͚AMBE‘͛ aŶd 
͚‘ED͛ respectively. No signal sent 

Continuing with this execution, as the colour display changed to ͚G‘EEN͛, as well as detecting 

pedestrians in the plane, a signal is now sent to the digital road sign alerting oncoming drivers to 

͚“LOW DOWN, PEDE“T‘IAN“ C‘O““ING͛ as illustƌated iŶ figuƌe Ϯ7. 

 

Figure 2ϳ: TerŵiŶal output at iŶstaŶĐe where people are deteĐted, aŶd lights are ͚G‘EEN͛, 
signal sent 

We alloǁed the pƌoĐess to ƌuŶ thƌough fƌoŵ ͚G‘EEN͛ to ͚‘ED͛ three times while taking away and 

adding the number of pedestrians within the plane of sight ensuring the correct number were 

being detected.  
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Figure 2ϴ: ͚pedestriaŶ.tǆt͛ output file listiŶg iŶstances of pedestrians detected when lights are 

͚G‘EEN͛ 

Figure 28 displays the contents of the pedestrian.txt file that was created for saving records of 

pedestƌiaŶ deteĐtioŶ ǁheŶ lights aƌe ͚G‘EEN͛. We ĐoŶfiƌŵed that the sĐƌipt did Ŷot saǀe 
irrelevant data, i.e., pedestƌiaŶs deteĐted at ͚‘ED͛ oƌ ͚AMBE‘͛ lights as ǁell as 0 pedestrians 

deteĐted ǁheŶ lights aƌe ͚G‘EEN͛. Our script successfully counts the correct number of objects 

in each instance and translates this to a readable output. The file also includes information with 

regards to the time, date, and location of road crossing. 

To note, we experienced a minor problem with light contrasting. When the IoT device begins 

recording at each interval (from the window in the background). Any rush of light obscures the 

deǀiĐe͛s aďilitǇ to deteĐt all oďjeĐts at the forefront of its plane of sight. We therefore directed 

the camera at aŶ aŶgle that͛s more towards the road layout to reduce this contrast. 

 

6.1.7 - Brief overall note of results and comparison with real person 

 

A notable set back found when recording the ĐeƌtaiŶtǇ ƌesults ǁas the softǁaƌe͛s tendency to 

not detect pedestrians that are positioned within the plane of sight. Various factors that could 

cause this were: 

 

1) The pedestrian designs 

2) The camera resolution 

3) Contrast  

4) Anomalous objects  

Although detected with sufficient confidence, some results were unexpectedly lower, again, 

possibly due to the factors mentioned. Therefore, at this point we felt it was important to test 

the software against real people. As this investigation was undertaken during the COVID-19 

pandemic, we resorted to testing an image still.  
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Figure 29: A crowd of live music goers detected using the YOLOr software [1] 

The figure above is an image of a crowd at a music gig. We applied the software to the image 

which outputs bounding boxes to each detected person. Members in the foreground typically 

have higher detection certainties (~ 0.73) to those positioned midway (~ 0.62) and those 

towards the back (~0.44) or considerably obstructed (~ 0.32). The man displayed in the bottom 

right corner of the image has not been detected indicating that his positioning is too close but 

not because he is out of focus, as people out of focus by a greater degree are detected. When 

comparing these certainties to our setup for both various numbers of pedestrians and distance-

to-target, it would suggest that our results follow a similar trend, however images of real-life 

people compared to our model show proportionally higher certainties. The fact that smaller, 

more out of focus, or more obstructed people were detected in this image suggests that better 

image resolution improves detection rate. 

 

6.1.8 - Transferring data to the cloud  

Appendix P displays the output of our .JSON file when we applied the ͚J“ON ĐoŶǀeƌteƌ͛ sĐƌipt to 

ouƌ ͚pedestƌiaŶ.tǆt͛ file. We had to slightly rearrange the output so that only one row of data 

was displayed per line. A future study could look at how we can automate this within the script. 

This simplified expression of our data sits in our S3 bucket. We then use Amazon Athena to 

direct ouƌ ͚pedestƌiaŶ_ĐƌossiŶg͛ database to extract this data to a table titled ͚pedestƌiaŶ͛ as 

captured in appendix Q. A terminal within the Athena dashboard allows us to perform SQL 

queries.  
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Figure 30: A typical SQL query on our pedestrian table in Amazon Athena 

Figure 30 displays a typical query that an endpoint user may perform to find, for instance, the 

date, time, and locations when the number of pedestrians exceeded 2. The result of this query is 

illustrated in figure 31. 

 

Figure 31: The table generated from the SQL query in figure 30 

As well as improving safety, from a climate perspective, this data could be used to help towns 

aŶd Đities go ͞gƌeeŶeƌ͟. The data Đould ďe used to fiŶd the regions that have consistently high 

pedestrian walkers for adding vehicle congestion charges to encourage these drivers to travel by 

pavement instead of road.  

The root user of this AWS account can also keep track of bills incurred from running queries per 

TB of data as well as costs for storing the objects in S3.  
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7. Conclusion 

This dissertation describes how we were able to achieve the objectives set in section 2. We 

achieved the goal of demonstrating a means of improving pedestrian safety at road crossings. 

This project achieves the objectives set out at the beginning of the investigation by providing a 

comprehensive testing of an emerging technology within a model that can help improve the 

safety of pedestrians. Using an IoT device and automated processing when executing a python 

script within an edge network, we demonstrated how oncoming traffic, via digital road signs, can 

be alerted that pedestrians are crossing the road when traffic lights are green. We were able to 

demonstrate how this process does not require any human input once the initial command is 

executed. 

This project also seeks out and demonstrates effects and limitations on the deǀiĐe͛s 
performance when varying the IoT͛s position, as well as varying the population and positioning 

of the targets. The setup worked well when finding an average detection certainty for each 

pedestrian count. Results confirmed the deǀiĐe͛s ƌeliaďilitǇ iŶ deteĐtiŶg ǀaƌious Ŷuŵďeƌs due to 
minor fluctuation in averages. However, limitations begin to show when pedestrians become 

partially obstructed from one another and certainty decreases. We were able to find the 

optimum angle and height of the IoT device, relative to pedestrians, as well as investigating the 

effects on detecting objects when varying the distance from the target. Clear trends were found 

when alteƌiŶg the IoT͛s positioŶ aloŶg these diffeƌeŶt aǆes. ‘esults shoǁed that an angle 

between 45 and 50 degrees provides the best detection performance. Also, the closer the device 

is to the target, the better the performance, however the minimum distance is relative to the 

Ŷuŵďeƌ of pedestƌiaŶs that ŵust fit the IoT͛s field of sight. This could be overcome by using a 

multi camera system that works in parallel so that a real-world setup has the advantage of 

maximising detection certainty without having to compromise on unnecessarily moving the 

cameras away from the targets. Additionally, as the pedestrian count increased, our results 

showed that increasing the height of the IoT device improves performance by reducing the 

effect of obstruction.  

Our next objective was achieved by creating another python script within the edge network, that 

can extract information about pedestrians that cross the road on a green traffic light. From there 

we were able to upload the information to AWS on an Amazon S3 bucket as well as demonstrate 

how endpoint users are granted access using IAM and perform analysis using Amazon Athena.  

Our results also showed that, although the performance trends correlate to that of a real-life 

image of people, the certainties were impacted. A possible solution for this (for investigation in a 

future project) is to use a camera with better resolution and frame rate as well as arranging the 

model in a real pedestrian crossing setup. This project was also limited to capturing stills in real-

time. Future work might look at the effects on detection certainties when pedestrians are in 

motion. We also carried out the demonstration indoors. Future work could look at the effect of 

running the object detection software at various daylight/night-time hours to help further 

investigate the reliability of the IoT device. 

Collectively, these results provide evidence for the key components of a model as well as its 

details on performance optimisation which has the potential to improve pedestrian safety. As 

we begin to introduce deadlines on cutting carbon emissions, theƌe͛s a ŵuĐh higheƌ ĐaŵpaigŶ 
for travellers to walk on foot/disability aid where suitable making this project a timely solution 

to help protect the public.  
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The process described in this project is universally scalable. If introduced for real world 

application, this setup can be scaled from one or a group of crossings all the way up to a 

countrywide network of devices, all working within their edge network but sending useful 

information to one receiving point in the cloud. As demonstrated within AWS, access can be 

granted to both individual users and/or the public for analysis. This analysis can further improve 

safety by highlighting road crossings that have high pedestrian numbers crossing at certain times 

which may trigger the need to introduce more crossings or improve road layouts.  

To make this model suitable for real-world application, there needs to be improvement on the 

IoT deǀiĐe͛s Đaŵeƌa so it ĐaŶ capture video in higher resolution. This will increase its range of 

distances in which it can detect pedestrians with higher certainty. As this setup would be 

outdoors, the device must work for all weathers. The process itself must pass regulations with 

authorities, such as GDPR, to eŶsuƌe theƌe͛s Ŷo data ďƌeaĐh when sending information to the 

cloud. There must be some degree of awareness made to the public that this system is in place, 

perhaps, introducing the digital sign type to driving theory tests. The data may require 

encryption when transferring from the edge network to the cloud to protect the information 

against unpermitted users. This can be done within AWS when setting up the S3 bucket 

(receiving point). The data is then automatically de-crypted when accessed by permitted users. 

Alternatively, to limit this threat to data theft, the data could be simplified by simply sending a 0 

or 1 if a person is detected. This method, however, has the disadvantage of not specifying the 

number of pedestrians for SQL queries in the cloud. Future work could investigate the softǁaƌe͛s 
performance limitations when varying the brightness which relates to different times of the day, 

both day and night. Different weather conditions such as heavy rainfall could also be introduced 

as a variable to test against the IoT deǀiĐe͛s aďilitǇ to deteĐt pedestƌiaŶs.  
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8. Future Work 

 

8.1 - Pavement Pedestrian Detection 

 

Whereas this project proposes and demonstrates how pedestrian safety can be improved when 

travelling across a road crossing, it does not consider the safety of pedestrians at roadside. A 

possible study could look at how we improve the safety of pedestrians standing at either side of 

the crossing by modifying the model in this project. The YOLOr software uses machine learning 

to detect objects. In section 4, we learnt that it divides an image into sections to predict 

bounding boxes on objects. We could find a method of training the software to distinguish and 

detect the difference between pedestrians standing roadside to those using the road crossing as 

illustrated in figure 31. 

 

 
 

 Figure 32: An image of a road crossing in Cardiff divided into three sections  

The image would be divided into three segments for training. For the two segments highlighted in 

red, we would train our machine learning model to detect pedestrians that are standing still or have 

minimal movement within a certain degree. The segment in the middle would be trained to detect 

pedestrians that are on the move and have intention to cross the street.  

But hoǁ ǁould this iŵpƌoǀe the safetǇ of pedestƌiaŶs that aƌeŶ͛t iŶ the direct obstruction to 

oncoming traffic? If this is during peak work commute hours for instance, the number of pedestrians 

waiting to cross may exceed area allocated for them to do so. This could risk an overflow which 

would either encourage pedestrians to cross at a green traffic light or be unintentionally pushed into 

the road. Our edge network system would identify when this scenario occurs and subsequently 

change the traffic lights to red aŶd/oƌ aleƌt dƌiǀeƌs that theƌe͛s a high Ŷuŵďeƌ of pedestƌiaŶs at 
roadside. The middle segment would act accordingly to the demonstration provided in this project.  

 

8.2 - Detecting Anomalies in the Road 

 

We briefly touched on introducing an anomalous object when finding the effect it has on the 

IoT͛s aďilitǇ to deteĐt pedestrians. A future investigation could look at training the YOLOr 

software to detect anomalies within the pedestrian object. 
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Figure 33: AŶ eǆaŵple of traiŶed software deteĐtiŶg the elderlǇ ladǇ͛s fall related accident  

 

Figure 32 illustrates a scenario where an elderly woman has fallen over. In this project, our 

model would detect the pedestrian but ǁould Ŷot distiŶguish ǁhetheƌ theǇ͛ƌe ŵoǀiŶg oƌ Ŷot. 
The model in this future investigation could train the YOLOr software to distinguish between 

moving and motionless or barely moving pedestrians in the road. The subsequent response 

could be to alert drivers or change the traffic lights to red. The investigation described in this sub 

section follows on very well from section 8.1. It goes one step further to detect moving and non-

moving pedestrians in all three segments.  

 

This method of training for anomalies also has the potential to improve the safety of oncoming 

drivers. Any anomalous objects such as car debris, roadkill or objects dropped by pedestrians 

could put drivers at risk from accidents involving aversion or tyre punctures. This future 

investigation could train the software to detect these types of objects as well as fallen or 

motionless pedestrians. The edge network can then alert these drivers to slow down. 

 

8.3 - Signal Communication with Smart Cars 

 

Within our edge network, the IoT device communicates with a digital road sign to alert 

oncoming traffic that pedestrians are crossing. A future project might focus on finding other 

communicative methods that could bypass a digital road sign and be sent directly to the vehicle 

via the user interface screen. Not only could information on object types detected be alerted 

directly to the driver but other information such as: 

 

• The chances that traffic is congested due to the number of pedestrian commuters using 

road crossings 

• Information on pedestrians late at night that could be under the influence of alcohol 

crossing roads within their driving route 

• ͞GƌeeŶeƌ͟ aƌeas that dƌiǀeƌs should aǀoid dƌiǀiŶg ǁithiŶ as it͛s highlǇ populated with on-

foot travellers  

The communication in this scenario isŶ͛t ƌestƌiĐted to a car and one IoT device within the edge 

network. An entire network of devices could feed information to the driver providing useful 

information  
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8.4 - A Complete Cloud Architecture 

 

In this project, we used Identity Access Management to grant endpoint users permissions to 

read and analyse data uploaded to Amazon S3 while stored in a database on Amazon Athena. 

These are just three of the fundamental resources that make cloud computing a beneficial use 

for this model. Future work made by researchers or industry professionals might look at how we 

can include cloud architectures to make even better use of the information received from this 

model. In subsection 8.3 we discussed how this data could be communicated directly to drivers 

via their in-built user interface screens. We could use AWS to distribute information within a 

pedestƌiaŶ͛s ĐuƌƌeŶt loĐatioŶ ƌegioŶ to theiƌ sŵaƌtphoŶe ǁith updates oŶ ͞paǀeŵeŶt-tƌaffiĐ͟ to 

help avoid busy crowds of people: a particularly good use during a pandemic.   

 

8.5 - Vision of a Smart City  

 

The work discussed in sub section 8.4 precedes this section well having looked at improving the 

safety of both pedestrians and drivers. A smart city uses a collection of connected IoT devices to 

monitor and extract data using a range of different sensors. So how else can we use IoT devices 

within a smart city to improve the safety and wellbeing of people?  

 

 8.5.1 – Construction 

 

Construction is a major part of any city with constant improvements and renovations made 

to buildings. IoT devices could be introduced to improve the safety of workers by identifying 

events in real time that could prevent serious injuries or even death. An IoT device that uses 

machine learning object detection could be trained to identify safety risks and breaches on 

site. For example, a hazardous tool left on the floor or piece of equipment precariously 

positioned is detected by the device, subsequently sending an alert to the site manager who 

can act accordingly to avoid accident, injury, and death. 

 

8.5.2 – Medicine 

 

IoT is already very commonly used in medicine, most prominently for monitoring patients 

remotely. An example use case is for cardiologists to identify heart arrythmia. An IoT implant 

is surgically inserted into the patient and over time it will monitor and send information on 

heart rhythm to the doctor for analysis that theǇ ǁouldŶ͛t otheƌǁise ďe aďle to do iŶ an in-

person appointment with the patient. Future work could look further at innovative ways in 

which IoT devices can be used to remotely monitor a patient with respect to other organs. 
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9. Self Reflection 

Having taken Dƌ Padƌaig CoƌĐoƌaŶ͛s ŵodule: ͚Distƌiďuted aŶd Cloud CoŵputiŶg͛ aŶd having a 

keen interest in cloud computing and edge networks, I wanted to use this opportunity to work 

with him on a possible follow-on project from a previous publication. This publication looked at 

͚modelling pedestrian safety with respect to road traffic crashes by estimating the safety of 

paths͛ (Corcoran, 2018), making this a suitable extension to his research by looking at pedestrian 

safety from a different angle by focusing on road crossings. I͛ǀe thoƌoughlǇ eŶjoǇed iŶǀestigatiŶg 
and reporting this project because it finds a solution to help improve of pedestrian safety.  

When starting this project, I wanted to ensure that its goals passed each criterion specified in 

the SMART objectives model. This stands for: Specific, Measurable, Achievable, Realistic and 

Time frame. We ǁeƌeŶ͛t tƌǇiŶg to iŵpƌoǀe pedestƌiaŶ safetǇ ďǇ ĐoǀeƌiŶg all ƌegioŶs of the ƌoad. 

Instead, we chose to focus on a specific road feature in which pedestrians often put themselves 

in danger when using incorrectly. Our primary task, to construct a process that would alert 

oncoming drivers when pedestrians are crossing on a green light, ǁasŶ͛t a ƋuaŶtitate oďjeĐtiǀe. 

But by investigating the performance limitations of the object detection software, we could set 

ourselves a measurable objective. To make this project achievable, I wanted to build on the 

skillset that I had developed through the learning side of this course. For example, using Python 

to automate the communicational process between IoT device and digital road sign, and 

computational thinking to abstract irrelevant output information within the .txt file. I think these 

examples cross over partially with the criteria that the project is realistic. When using the YOLOr 

software, it was very much off the shelf as the ability to train the software to detect new objects 

or traits within objects is not currently within my skillset and easily learnt within the time given 

to complete the project. I also didŶ͛t haǀe the resources to train a deep learning model as this 

would require a graphics processing unit (GPU). A GPU can take days if not weeks to train a deep 

learning model which would add further issues with time. In terms of the time frame criteria, an 

important skill I practiced in this project was time management. With the scope of the task, I 

found it useful to allocate deadline goals and keep to them to the best of my ability. Having 

started a new job that overlapped with this course, I had to remain, somewhat, strict between 

time each allocated to the job and the project, but this did prove a difficult task. 

Throughout the project, I had weekly meetings with Padraig to discuss progress and planning for 

upcoming stages. It was useful to have these discussions to brainstorm ideas on what variables 

and methods sufficiently test the performance of the computer vision-based object detection 

softǁaƌe as ǁell as the possiďle futuƌe pƌojeĐts that Đould pƌeĐede this ǁoƌk, soŵe of ǁhiĐh I͛d 
be very keen to be involved with. One method that I used to advance the project was using 

iterative processing. I first worked towards achieving a minimum viable process that successfully 

achieves the goals of this objective. I then looked back at how this process could be improved. 

Foƌ eǆaŵple, the output of the ͚pedestƌiaŶ.tǆt͛ file. As ǁell as the useful pedestƌiaŶ iŶfoƌŵatioŶ, 
I had some background terminal output generated by the software that would have no use for 

uploading to the cloud or to be analysed by end users. With that removed, I now had the 

number of pedestrians detected at a date and time. I wanted to think about what else also could 

be useful for analysis or to keep better record of which IoT device within the network this 

oĐĐuƌƌed. That͛s ǁheƌe I deĐided to also include location as another output. The discussions with 

Padraig were iterative in the sense that we built on ideas during each meeting, and it 

encouraged me to think outside the box, especially when writing the future work section. For 

the future section, I wanted to find topics for research on additional IoT use cases such as 

improving driver safety.  
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I decided to write this dissertation at the same time as creating and carrying out the model 

demonstration as each element provided new inspirational ideas for the other component. I 

would describe the writing and demonstration components as a collaborative process. The table 

of contents acted as the plan when writing this dissertation which was helpful given the size of 

the piece of writing. It would allow me to add notes and ideas conjured throughout the project. I 

also made good use of the comments to remind myself of things that should be added. I wrote 

the aims and objectives just before I started carrying out the demonstration. It provided me with 

a clear idea as to what outcomes we should be achieving having completed the practical side.  

I believe this project lays good fundamental groundwork for using computer vision-based object 

detection and machine learning to provide a solution that improves pedestrian safety. I hope it 

can encourage peers to continue working on this solution for it to be, one day, applied to the 

real world.  
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