
1

Generating Fake GPS

Trajectories

CM3203 – One Semester Individual Project – 40 Credits

George Haddon-Gill

Supervisor: Dr Padraig Corcoran

Moderator: Dr Hiroyuki Kido

2

Acknowledgements
I would like to thank my supervisor, Dr Padraig Corcoran, for his support and guidance throughout

this project. I have thoroughly enjoyed our discussions and have been captivated by his expertise in

this topic. I would also like to thank my family and friends for their assistance in producing this

report and continued support.

Abstract
This project aims to generate a system that can create realistic synthetic GPS trajectories between

two points. By hiding real trajectories amongst synthetic trajectories, the intention is that the real

trajectories cannot be identified. If aﾐ iﾐdi┗idualげs GP“ tヴajeItoヴies are amalgamated with

meaningless trajectories, then their movement patterns cannot be identified, thus user privacy is

preserved. To achieve this, the characteristic of GPS data needs to be analysed and recreated; there

are areas of lower GPS accuracy due to external geographic or man-made factors that impact the

signal. GPS data has varying amounts of noise that can transpose a recorded GPS point to

somewhere other than its true location. By analysing a real sample of a useヴげs data, the fake

trajectories Iaﾐ Hetteヴ iﾏitate the useヴsげ ヴeal tヴajeItoヴies. There is no evidence of another system

taking this approach to location obfuscation. The quality of various solutions to this problem are

assessed and compared using a supervised machine learning classification algorithm. The objective

will be to distinguish real from fake trajectories. If trajectories cannot be distinguished, then the

system is a success.

Key Words and Phrases: GPS Trajectory, Noise, OpenStreetMap, Location Privacy, Map-Match, GPS

Error, SVM, K-anonymity, Location Obfuscation

3

Contents
Acknowledgements ... 2

Abstract ... 2

Table of Figures ... 5

1 - Introduction ... 6

2 – Background ... 7

2.1 - Prerequisites ... 7

2.1.1 - What is a trajectory? .. 7

2.1.2 - Map-Matching ... 7

2.2 - Application .. 8

2.2.1 - Security .. 8

2.2.2 - What else exists? ... 8

2.3 - Features of a Trajectory .. 9

2.3.1 - GPS Sampling ... 9

2.3.2 - Noise .. 10

3 - Approach .. 11

3.1 - Creating the trajectories ... 11

3.1.1 - Creating a path ... 11

3.1.2 - Analysis of other trajectories ... 12

3.1.3 - Determining the true location of the GPS points .. 13

3.1.4 - Adding Noise .. 15

3.1.5 - Earth Geometry.. 18

3.2 - Machine Learning ... 19

3.2.1 - Justification .. 19

3.2.2.- Features Analysed .. 20

4 – Implementation .. 22

4.1 - Prerequisites ... 22

4.1.1 - Libraries .. 22

4.1.2 - Dataset ... 22

4.2 - Analysis of other trajectories .. 23

4.2.1 - Determining where the true GPS locations are ... 23

4.2.2 - Map Matching .. 24

4.3 - Creating the Trajectories .. 25

4.3.1 - Gathering a road network .. 25

4.3.2 - Creating a route ... 27

4.3.3 - Adding Noise .. 27

4

4.3.4 – Finalising the trajectory .. 30

4.4 - Machine Learning ... 30

4.4.1 - Obtaining Features... 30

4.4.2 – Creating the training data ... 31

4.4.3 – Classifying the training data .. 32

4.4.4 – Evaluating the classifier ... 32

5 - Results and Evaluation ... 34

5.1 - Does GPS noise follow a Gaussian Distribution? .. 34

5.2 - Machine learning .. 35

5.2.1 - Measuring Performance .. 35

5.2.2 - Selecting Default Values .. 36

5.2.3 - Comparing Distance Measures .. 37

5.2.4 - Verifying Line Smoothing ... 39

5.2.5 - Verifying Simulated Stopping... 39

6 - Future Work ... 41

6.1 - Better Speed Variation .. 41

6.2 - Choice of Route ... 41

6.3 - Improving Map Matching ... 42

6.4 - Context Driven Noise .. 42

7 - Conclusion .. 42

8 – Reflection .. 43

9 - Appendix .. 44

Bibliography .. 46

5

Table of Figures

Figure 1: The difference in sample rates for two receivers. 9

Figure 2: A flow chart of the system. 11

Figure 3: A graph of a road network. 12

Figure 4: An example of a trajectory being map matched 13

Figure 5: A comparison of various methods to obtain distance between true GPS points. 15

Figure 6: A half-normal distribution compared to a full normal distribution. 16

Figure 7: A Strava GPS trajectory showing stopping error. 16

Figure 8: A Strava GPS trajectory showing stopping error. 17

Figure 9: The Haversine formula 19

Figure 10: A diagram showing how trajectory geometry can be analysed for machine learning. 21

Figure 11: A real and a fake trajectory on the same map. 26

Figure 12: A comparison of simulated stopping with stopping on a real trajectory. 28

Figure 13: A comparison of the unrefined noise model with a real trajectory. 29

Figure 14: An example of how the training data for machine learning is stored in the CSV file. 31

Figure 15: A histogram of GPS positions distance to the road they were on. 34

Figure 16: A template of the confusion matrix seen when classifying data. 35

Figure 17: A table assessing the results of using the default values. 36

Figure 18: A section of the trajectory generated using default values. 37

Figure 19: A table comparing various approaches to calculating the true GPS point distance. 38

Figure 20: A tヴajeItoヴ┞ geﾐeヴated usiﾐg the けestiﾏated liﾐe leﾐgthげ appヴoaIh. 38

Figure 21: A table comparing results of generating trajectories with and without smoothing. 39

Figure 22: A table comparing simulated stopping values, and with no simulated stopping. 39

Figure 23: A seItioﾐ of a tヴajeItoヴ┞ ┘ith the け“topNoiseFaItoヴげ set too high. 40

Figure 24: A section of a trajectory with the stopping probability is set too high. 40

Figure 25: A real trajectory where speed variation can be observed. 41

6

1 - Introduction
This projectげs main aim is to design a system which will generate fake GPS trajectories between two

points. Many location-Hased seヴ┗iIes ふLB“ぶ, suIh as け“tヴa┗aげ oヴ けFiﾐd M┞ Fヴieﾐdsげ, ヴeケuiヴe useヴs to
submit their GPS trajectories which may come from a smartphone or Satellite Navigation (Sat-Nav)

system.

This project has a security application, if a user is concerned about their privacy, they may wish to

obfuscate or hide their true trajectory. This security objective can be achieved by submitting to the

LBS a set of fake trajectories along with the true trajectory. If the LBS or a nefarious individual

cannot differentiate between the true and fake trajectories, they cannot determine which is the

actual true trajectory. The concept of differential privacy is employed whereby in a dataset

containing numerous GPS trajectories, one cannot determine if an iﾐdi┗idualげs real data was

included in the dataset [1]. By deliberately degrading the quality of information available about an

iﾐdi┗idualげs loIatioﾐ aﾐd ﾏo┗eﾏeﾐt haHits the iﾐdi┗idualげs location privacy can be protected [2]. This

can be achieved by surrounding that data with similar but meaningless fake GPS trajectories that are

indistinguishable from the real data.

K-anonymity is the definition of privacy that will attempt to be fulfilled in this project. K-anonymity is

a concept discussed in information privacy fields that states by さIoﾏHiﾐiﾐg sets of data ┘ith siﾏilar

attributes, identifying information about any one of the individuals contributing to that data can be

oHsIuヴedざ [3]. In this project, trajectories where the appearance and analysable features of the data

are so alike the genuine trajectories that the identifying information of an individual can be

obfuscated – leading to K-anonymity.

This aim is to develop a system for generating fake GPS trajectories which cannot be distinguished

from real ones. These fake trajectories will have to be as realistic as possible and there are various

ways this can be achieved. Modelling the GPS data to have accurate noise and imprecisions - as

would be seen in real GPS data due to signal blockage, atmospheric conditions, geometry etc. - will

be essential in creating seemingly genuine data. Features can be extracted from useヴsげ real

trajectories to maximise the authenticity of the fake trajectories.

Not only do the fake trajectories have to be convincingly genuine to the human eye, but the success

of the fake trajectories will also be measured using a machine learning classification algorithm. This

classifier will be given a training data set of trajectories labelled as to whether they are real or fake.

This will then classify a given unlabelled trajectory as real or fake. An attacker could use such a

technique to automate attacks making them fast and effective. Machine learning attacks are

growing in popularity and are allowing attackers to bypass CAPTCHA and create intelligent and

successful password brute-forcing solutions [4]. The closer the machine learning success rate is to

0% will determine how indistinguishable the real and fake trajectories are. In theory, it should be no

more likely to guess which is real or fake than randomly guessing. If trajectories are created that are

completely indiscernible to both the naked eye and a well-trained machine learning algorithm, then

the system can completely conceal genuine trajectories. Therefore, K-anonymity has been achieved

– and the system is a success.

There appear to be limited software examples for creating synthetic trajectories. GPS location

emulators are common, with over 240 results being returned from the Google Play store. These

differ from this project as the┞ do ﾐot ヴetuヴﾐ a ヴoute, just tヴaﾐslate a useヴげs GP“ loIatioﾐ to a ﾐe┘
fixed point on the Earth. There exists a few GP“ けヴoute Iヴeatoヴsげ ┘hiIh allow users to plot a path of

GPS points. Some of which will even snap the path to a road such as さMoIk LoIatioﾐs ふfake GP“
pathぶざ H┞ Dvaoru [5]. Of the limited number of GPS route creators available, I am yet to see one

7

which gathers data from useヴsげ existing real trajectories to create a credible model for the synthetic

data. Moreover, there appear to be no GPS route generators that add noise to the trajectory (as

would be seen in real data).

2 – Background
This section will set out the background of the problem this project aims to solve. It will explain

some key terms that are used throughout as well as explore some use cases where such a system

could be applied. There is a discussion of the security problems that GPS data is susceptible to, and

how the method proposed can alleviate some of these problems. The traits of GPS data will be

discussed to provide insight into how this problem can be solved.

2.1 - Prerequisites

2.1.1 - What is a trajectory?

GPS uses satellites that know the precise time and their position in space to a very high degree of

accuracy. This information is used by a receiver to triangulate your position when you are in the line

of sight of four or more satellites. A GPS trajectory is a set of time-stamped points, each of which

contains data points for latitude, longitude, and altitude [6]. Altitude is not used in this

iﾏpleﾏeﾐtatioﾐ, as ﾏost LB“げ do not support it. GPS trajectories are used to track a moving object.

Due to these points being time-stamped, the GPS trajectory can be used to calculate the speed of

the device too; the speed measurement is typically accurate within ≤ヰ.ヰヰヶ m/sec over any 3-second

interval, with a 95% probability [7].

Trajectories commonly do not follow the exact path that was being taken by the receiver. Reasons

for this include device malfunction, geography, and various other positioning errors. The device that

is recording the GPS trajectory will have an associated sample rate of when these data points are

taken, this can vary greatly from device to device and the lower the sample rate, generally, the less

accurate the GPS trajectory will be. Lower sample rates will have the benefit of using less battery

power, which can be favourable in small personal devices such as mobile phones and fitness

watches.

2.1.2 - Map-Matching

Noise and inaccuracy in the data are rarely a problem when using these GPS trajectories in a Sat-Nav

application for example. There is a lot of literature surrounding the research area of successfully

map-matching or けsﾐappiﾐgげ these GPS points to be on a road that it is highly probable the GPS

receiver was travelling along. This process is, of course, a lot simpler with cars as they are generally

bound to the road network – with pedestrians, this is not the case. Tools suIh as MiIヴosoftげs け“ﾐap-

to-‘oadげ API foIus oﾐ examining this noisy data and then removing the inaccuracies to transform it

into a feasible and accurate path that is a true representation of the route that was actually taken

[8].

This system will also analyse how noisy GPS data compares to the road network to determine the

distribution of GPS error distance from the useヴげs ヴeal path. By using a map matching package, it will

be able to analyse the characteristics of real GPS data. By examining how far the GPS data strays

from the map matched けtヴueげ path, statistical analysis of the data can be carried out and therefore

an accurate model of the GPS error can be gathered. This data can be used to increase the credibility

of the generated trajectories by recreating the same error patterns.

8

2.2 - Application

2.2.1 - Security

There are some strong security concerns regarding iﾐdi┗idualsげ GPS data. The principle of differential

privacy states that if one surrounds the useヴげs data with other similar data then it should be

implausible to extract individual-level information about the user [1]. The ability to obfuscate the

data in this way could have real-world security applications. Whilst encryption is a commonly used

method for securing location data in transit, GPS data on a server is still vulnerable to attack [9].

There have been accounts of athletesげ Strava accounts being used to analyse their exercise patterns

and determine when they are out of the house in order to commit offences such as burglary [10].

The issue that is potentially most dangerous but can be solved using this system is that a ┗iItiﾏげs

home address can be easily identified from where their exercise starts and finishes [10]. A

particularly high-profile example of when using an LBS was potentially a threat to national security

was the case where (US) military bases were identified using soldieヴsげ patrol routes and exercise

circuits around the base [11]. These soldiers did not even have to necessarily post their exercises

publicly for this data to be available. Users of such location-based services should be able to still post

their exercises publicly without their addresses being made available for all to see.

Moreover, some security-conscious users may not trust that their data is being stored privately

despite them having the appげs privacy settings enabled, as was the case with the military bases being

identified (this has since been reported to be remedied by Strava). For these reasons, I feel that this

system could have a positive impact on the security of individuals that are using these services by

adding ambiguity about their precise locations and routines.

A recent example of where publicly available GPS data has compromised a high-profile individual

was ┘heﾐ Eloﾐ Muskげs private jet was tracked using a Twitter bot created by an American student

[12]. This is an example of where publicly available GPS data such as flight path information, which is

automatically broadcast for safety reasons and cannot simply be hidden, can lead to security

infringements. Whilst this data cannot be removed from the public eye it could be obfuscated with

synthetic data to achieve K-anonymity and make it considerably harder to find out iﾐdi┗idualsげ
movement patterns.

2.2.2 - What else exists?

There appear to be limited examples of systems designed to make fake GPS trajectories. There are

numerous software applications and phone apps available to create a spoof GPS location such as the

aﾐdヴoid app けFake GPS Locationげ [13]. Whilst being useful to change your apparent location, I am yet

to see an application that simulates your movements between two places in a similar way to the one

this project proposes. There appear to be no solutions to this problem that use aﾐ iﾐdi┗idualげs ヴeal
GPS data to enhance the credibility of the fake data. Moreover, the existing products do not add

noise to the line - which is an intrinsic feature of GPS data.

The concept of K-anonymity, first proposed by Latanya Sweeney in 1988, states that there must be

さat least k individuals in the dataset who share the set of attributes that might become identifying for

each individual” [14]. That is to say, identifying information about any particular individual in a

dataset is indiscernible from aﾐotheヴ peヴsoﾐげs identifying information; this is often referred to as

けhidiﾐg iﾐ the Iヴo┘dげ [3] - iﾐ esseﾐIe dilutiﾐg aﾐ iﾐdi┗idualげs iﾐdi┗idualit┞. The K-anonymity concept is

precisely what makes this method secure – except instead of k other human participants, k

simulated trajectories are used to dilute an iﾐdi┗idualげs data to the point where individual

9

movement patterns cannot be ascertained. As with differential privacy, K-anonymity falls under the

privacy class of anonymization.

There are various ways to obfuscate GPS data that do not involve creating fake trajectories, but they

often need to satisfy the K-anonymity principle. An example of such a technique is けspatial Iloakiﾐgげ,
a very commonly used technique which involves blurring a useヴげs exact location into a cloaked area

[15]. The major difference between spatial cloaking and this approach is that through this method,

the user can submit an unadulterated true trajectory. Whereas in spatial cloaking, the trajectory

submitted is not the same as the one recorded. This is an advantageous feature of my solution.

Xingrui Wang published a paper on a generative model for GPS trajectories using GAN [16]. Whilst

this was relatively successful, it was highlighted that certain complex real-world features such as the

trajectory さvibrat[ing] at a specific point for a long timeざ due to the user stopping for a period of

time were not represented. It is these complex features that I will attempt to simulate with this

ﾏodel, as ┘ell as aﾐal┞siﾐg ﾐoise IhaヴaIteヴistiIs of speIifiI useヴsげ data that diffeヴeﾐtiate this

approach. This model will attempt to solve the problems iﾐ Waﾐgげs papeヴ by taking a much more

ﾏaﾐual appヴoaIh to aﾐal┞siﾐg the IhaヴaIteヴistiIs of speIifiI useヴsげ data to eﾏulate it ﾏoヴe pヴeIisel┞.

2.3 - Features of a Trajectory

2.3.1 - GPS Sampling

The update or sample rate of a GPS receiver is the number of times in a given time frame that the

receiver uses incoming satellite signals to determine the de┗iIeげs location. The update rate is often

represented with the unit Hz, meaning how many times per second the device calculates, then

updates its location. The sample rate of GPS data varies from device to device, some smaller devices

with limited battery power will have lower update rates to increase battery life. Itげs common to find

a sample rate of 1Hz (updates once every second). Even higher sample rates are becoming

increasingly more available, with a frequency of five or even 10 updates per second being seen in

civilian products [17] – with military applications going even higher. Naturally, the distance between

the samples will increase as the speed of the device increases. The update rate can be calculated by

dividing the speed the device is travelling at by the distance between GPS points.

(a) (b)

Figure 1 [17]: Shows the difference between an update rate of 10Hz (a) and 1Hz (b) for a vehicle

travelling 60kmh. A vehicle driving at 60kmh will travel 16.67m in a second.

10

2.3.2 - Noise

GPS trajectories do not perfectly follow the exact route taken by the receiver. The plotted GPS

position usually will have some error factor of how far away it is from the true location the receiver

was at when recording its position. In this report, there will be two types of GPS position referred to:

the true location of the receiver, which is the exact location the receiver was at when it recorded its

location and secondly, the recorded location which is the calculated point the GPS receiver deems its

location to be. These two types of points will never be exactly the same.

GPS position is designed to be accurate within 4.9m under open sky [7], however, this can increase

when large objects such as buildings, bridges or trees are present (which in urban settings is often).

The amount of noise that is observed in GPS data varies, the reason it is hard to quantify exactly how

much noise will be on a given trajectory is because there are many factors that it depends on.

Despite documentation from the American government describing the GPS as being accurate within

4.9m [7], experimental values are often seen to be higher.

In the paper けWhiIh Oﾐe is CoヴヴeIt, The Map oヴ The GP“ TヴaIeげ [18], the experimental values showed

that when in a flat area 0-5m accuracy was very achievable. However, when there were buildings

present that value increased such that the average distance from the true location was 18.04m with

a high standard deviation of 14.5m. The accuracy of GPS in flatter areas was measured to be

different from the true location by 7.9m on average with a standard deviation of 7.6m; this is more

than the 4.9m expected of GPS by the American government. Whilst this was an example from only

one experiment and on one dataset, this shows that there can be large variations in the accuracy of

GPS data. Different datasets will have their own associated average and standard deviation of error

distribution. I feel the best approach to gather this data for my implementation is to analyse the

iﾐdi┗idualげs own real data to get the best representation and create a more believable GPS model.

There are many factors which affect GPS accuracy, and each affects it in varying amounts. One of the

more common causes of GPS inaccuracy is a phenomenon known as けﾏultipathげ. Multipath is where

the incoming signals from the satellite are reflected off buildings or other large objects. The

multipath will take a longer path to the receiver than the direct unaffected signal, this leads to

erroneous positioning of the device [19]. GPS signal is relatively weak and can be blocked by trees,

bridges, tunnels, and many other man-made and natural objects, all of which can introduce

additional positioning errors.

It has been shown that these GPS errors can be roughly modelled using a Gaussian distribution [20],

however, this was only on one dataset – further experimentation will be needed on the data I will be

analysing to determine if a Gaussian distribution is the best statistical model for the data. If a

Gaussian distribution is a good model for the GPS error, then there will be a zero mean (i.e no error)

and an associated standard deviation.

11

3 - Approach
The approach section will set out the methods that will be used to solve the problem. The initial part

of this section delineates the steps required to generate a GPS trajectory. Once a trajectory has been

created there are various techniques that can be used to increase the credibility of the data, these

methods will be explained, and impediments will be outlined. Finally, a method of attacking the fake

trajectories using machine learning to distinguish them from real will be proposed and elucidated.

Attacking the trajectories will provide a metric that can be used to evaluate the quality of a solution.

Figure 2: A flowchart showing the steps needed to generate trajectories and create a machine

learning classifier.

3.1 - Creating the trajectories

3.1.1 - Creating a path

In Osmnx – a Python library used, road networks can be downloaded, they are stored as weighted

directional graphs comprised of nodes and edges. Nodes are where the road either changes

direction or meets another road and an edge represents a road segment. Nodes in a street network

each have a unique ID that is used to identify them. The weight of the edge corresponds to the

length of the road segment. The graph must be directional as one-way roads should be preserved,

thus, to prevent creating a path that goes the wrong way down a one-way street.

12

Figure 3: A graph of the road network for the town of Bridgnorth, Shropshire. On the left of the

image, a roundabout can be observed – showing how nodes linked by straight edges can create a

road network. The length of the edges represents the weight. Generated using Osmnx.

The first stage in creating the GPS trajectory is being able to map a path out on a street network

between two points. For the purpose of this project, these two points were chosen at random

although the choice of these two points could be used to improve the credibility of the trajectory.

Moreover, the path chose between these two points can be a distinguishing feature between a real

and a fake trajectory.

Choosing a path is a very involved topic on its own, for this project I have chosen the shortest path

on the road network between the two points, as this yields realistic results. Dijkstヴaげs shortest path

algorithm is used to calculate the shortest path between points. The shortest path approach seemed

like a reasonable approximation of a real trajectory; often when humans are attempting to travel

somewhere they will take the shortest path, as Google Maps would provide – for example. It is often

observed when people are running that they take a circular path (such as to get back to their home),

this approach was not taken due to the real GPS dataset I will be comparing against does not use

circular routes. Creating a circular route could be made as a combination of several other けshoヴtest
pathsげ Het┘eeﾐ poiﾐts, providing the start point is the same as the finish point and therefore the

total displacement will be zero. The route is stored as a list of unique node IDs, meaning a path can

be traversed across the street network.

3.1.2 - Analysis of other trajectories

To create believable trajectories, real trajectories must be analysed. By applying a data driven

approach to analysing, and then generating trajectories, more credible trajectories can be created.

To an attacker, trajectories which are not created with a generalised approach but tailored to a

useヴげs movement patterns and unique GPS receiver discrepancies will make it very difficult to

distinguish between real and fake.

There is a lot of data that can be extracted from a trajectory. Due to a trajectory also being time

stamped, each point has a recorded position in spacetime. This allows for data about the oHjeItげs

speed and acceleration to be gathered among the intrinsic spatial data that the latitude and

13

longitude point coordinates provide. The timestamps will be analysed to determine the average time

between consecutive points to calculate the sample rate of the GPS receiver – assuming this data is

normally distributed the standard deviation can also be calculated.

One crucial datum that cannot be immediately inferred from the trajectory – but is essential when

recreating a fake trajectory – is the GPS error in relation to the position of the actual receiver.

Finding this is not a trivial task, it is impossible to know exactly where the receiver was in space

when the location was recorded, as there will always be some amount of positioning error - the only

positioning data available is the one that was recorded. Through the use of map matching, GPS error

can be estimated. By matching the trajectory line to the most likely street the receiver was on and

measuring the distance, then an estimate of positioning error can be obtained.

Figure 4: This is how a GPS trajectory (dark blue) is matched to a road network (turquoise), and then

the distance between the road and the trajectory (green) can be measured.

3.1.3 - Determining the true location of the GPS points

Once the route has been chosen, it is then the task of determining the true location of the GPS

points – the exact location of the GPS receiver along the path when it records and calculates its

location. To find this, the route will need points interpolated along it at various intervals, there are a

few different ways of finding this けsample intervalげ in existing GPS data, all leading to slightly

different results.

The aim is to find the average distance between consecutive GPS points in a trajectory, this can then

be used when creating synthetic trajectories to make them as believable as possible.

14

• The most obvious, and straightforward approach is to simply measure the distance between

consecutive points using Euclidian distance and return the average of these distances.

 For each spatial GPS point [pi]:

嫌�兼喧健結 穴�嫌建�券潔結 = √∑ 岫喧�+怠 − 喧�岻態�−怠�=待 券

• Another method to calculate the average distances between points is by working out the

average speed of the receiver and multiplying it by the average time between the samples.

The speed between consecutive points is calculated by dividing the distance by the time

taken to travel between them – an average of this can then be taken.

 嫌�兼喧健結 穴�嫌建�券潔結 = �懸結堅��結 嫌喧結結穴 ∙ �懸結堅��結 建�兼結

For each GPS point [pi , ti] ふspatial locatioﾐ けpげ aﾐd tiﾏe けtげぶ:
distance(,) = Euclidian distance between two points

�懸結堅��結 嫌喧結結穴 = ∑ 穴�嫌建�券潔結岫喧�−怠, 喧�岻∆建���=待 券

• The last two methods rely on taking the entire length of the line and dividing it by the

cardinality of the set of edges (straight lines between points) this determines the average

distance between the points. The difference between the last two methods is in how the

length of the line is measured.

o The true length of the line can be determined by adding the length of all the edges

together, but this is adding extraneous distance due to the GPS error being included

in the length of the line. If a GPS trajectory has a zig-zag type of shape (due to

errors), this could result in the line being a longer distance than the actual path

taken by the receiver.

 嫌�兼喧健結 穴�嫌建�券潔結 = ∑ 結穴�結嫌|結穴�結嫌|

o In an effort to combat this effect, the line can be map-matched onto a road and then

measured, this is only a heuristic but could potentially yield more accurate results.

15

Figure 5: The comparison between various methods of determining the average distance between

GPS points in a given trajectory. This will vary due to differing receiver speeds and different GPS

update rates. 15 real trajectories were analysed.

3.1.4 - Adding Noise

Once the points have been determined noise must be added as would be seen in real trajectories.

The nature of this noise will be a significant factor in the credibility of the synthetic trajectories. The

approach used is to model the noise using a normal distribution where the mean is an error of 0 (on

the route path exactly). There will also be an associated standard deviation of the noise. A

multivariate normal distribution is needed to model both the x and y directions. The normal

distribution will have positive and negative values - determining which side of the line the error is

on.

The issue with applying the results from the error analysis of the real trajectories is that when

measuring GPS error using map matching then only positive scalar values are obtained; measuring

the distance to the line does not infer which side of the line the error is on. This half-normal

distribution needs to be transformed into a full normal distribution as this is what is used when

adding noise to the GPS trajectory. To obtain the variance of the corresponding full normal

distribution (used to model the positioning error), the variance of the half-normal is multiplied by

(な − 態�).

16

Figure 6 [21]: A half-normal distribution and the corresponding normal distribution as would be

seen in the error measurement.

When examining GPS data, there is another form of noise that is often observed. Recently when

returning from a cycle ride, I got home and inadvertently did not けfiﾐishげ the ride. The app continued

to track my movements as I walked around the house. Despite not leaving the house extreme GPS

error can be observed – even placing me several streets away.

Figure 7: A GPS route from around an hour of walking around the house with the tracker still

enabled. Extreme errors can be seen. Recorded with Strava.

This type of GPS error when the receiver is not moving (or moving very little) is relatively common

and familiar to anyone who uses location-based services. Not including this type of error in (some of)

17

the simulated trajectories would be a clear indicator to any individual attempting to differentiate

real from fake. To achieve this, rather than just adding noise at a sample interval once and moving

on to the next, it should be looped over, and new points should be added. To simulate the extreme

GPS error seen when stationary, the error should be multiplied by a random amount. This type of

positioning error has caused issues with other systems [16] that attempt to generate trajectories –

the system I have created attempts to solve that problem uniquely.

Figure 8: When stopping on a bike ride (and entering a shop so my GPS signal would have been

worsened), extreme error values can be seen, noticeably more than the rest of the journey – even

placing my location on the other side of the river. Recorded with Strava.

Each point will need to have a synthetic timestamp associated with it. To achieve this an initial time

will need to be associated with the first coordinate (algorithm line 3). For simplicity, this time could

be the current system time. The calculated sample interval (average time between consecutive

points) taken from analysing real genuine trajectories can then be added to the previous timestamp

for each GPS point. To maximise the authenticity of these timestamps, there should be subtle

variations in the time between points – a standard deviation of the data can also be included. There

should be minimal variation in the difference between these timestamps though, as these are not

dependent on the speed of the receiver just the sample rate of the device – which should be

constant. The result of this operation is that a list of new spatio-temporal GPS points is created.

Adding Noise Algorithm:

Input:

• coords - A list of tuples containing the coordinates of the sample intervals with tuples in the

format (x,y).

• probability – The probability of stopping at each interval.

• StopNoiseFactor – How much to increase the error by in the halted points.

• MaxStopLength - Maximum number of points to add when at a stop.

• sample – Average time between timestamps.

• timescale – Standard deviation of time between timestamps.

18

Output:

• List of tuples of (x,y, time) coordinates with noise added.

1. begin

2. trajectory = []

3. time ← system.time.now()

4. for i ← 0 to length(coords):

5. if random.random < probability:

6. stationary ←int(random.random * MaxStopLength)

7. for i ← 0 to stationary:

8. ErrorFactor ← random.random() * stopNoiseFactor

9. x ← random.normal(mean=coords[i][0], scale= NoiseScale*Errorfactor)

10. y ← random.normal(mean=coords[i][1], scale = NoiseScale*Errorfactor)

11. time ← time + random.normal(mean=sample, scale = timescale)

12. trajectory.append((x,y,time))

13. end for

14. else:

15. x ← random.normal(mean= coords[i][0], scale= NoiseScale)

16. y ← random.normal(mean= coords[i][1], scale = NoiseScale)

17. time ← time + random.normal(mean=sample, scale = timescale)

18. trajectory.append((x,y,time))

19. end if

20. end for

21. return trajectory

22. end

3.1.5 - Earth Geometry

GPS points are represented as a series of latitude and longitude coordinates (and a timestamp).

Latitude is analogous to the y-axis (North-South) whereas longitude is comparable with the x-axis

(East-West). These coordinates, unlike x and y coordinates on a standard cartesian plane, are on a

spherical surface, and instead, represent angles between the prime meridian (longitude) and the

equator (latitude). These coordinates are measured in degrees, minutes, and seconds.

The issue with the coordinates not being on a flat surface is that standard geometry - Euclidean

distance measure, for example - cannot be used to measure distances between them. The distance

ﾏeasuヴe ヴeケuiヴed is the けgヴeat IiヴIle distanceげ, this is the shortest distance between any two points

on the surface of a sphere where the line joining the two points is constrained to be only on the

surface of the sphere (i.e. not travelling through it) [22].

The great circle distance requires some modification to make it applicable to be used on latitude and

longitude coordinates due to them being measured in degrees. The way that distances are

measured between latitude/longitude coordinates is through the Haversine formula:

19

Figure 9 [23]: The Haversine formula required to calculate distances between two latitude

coordinates (φ1, φ2) and two longitude coordinates (λ1, λ2). r is the radius of the earth.

To exacerbate the problem further, the earth is not perfectly spherical, this is due to the forces

acting on it as it spins. The other approach to deal with the issue of calculating distances between

points on the Earthげs suヴfaIe is to project the coordinates to a different coordinate reference system

(CRS). The Universal Transverse Mercator (UTM) coordinate system can be used to mitigate this

issue. The UTM system divides the earth into sixty north-south zones each 6° wide in longitude [24].

UTM coordinates can provide a linear distance relationship between any two points; unlike

latitude/longitude where a degree of longitude decreases as you move toward the poles.

Furthermore, UTM points are measured in metres, therefore the distance between two points is also

measured in metres – which is very practical for meaningful distance calculations. Projecting the

coordinates to the appropriate UTM zone before carrying out the described operations is the

method that will be implemented in this system.

Once the noise has been added, the coordinates should be converted back into latitude/longitude

format to be output as a finalised trajectory, the coordinates are reprojected to the original CRS.

The CRS of latitude/longitude coordinates uses World Geodetic Dataset 84, this standard uses the

Earthげs centre of mass as the coordinate origin and is believed to be accurate within 2cm [25]. It is

also referred to as the European Petroleum Survey Group Geodetic Parameter Dataset 4326

(EPSG:4326), this is the CRS employed by the Python library けOsmnxげ.

3.2 - Machine Learning

3.2.1 - Justification

A metric is required to test the created trajectories. Being able to quantify the quality of a solution

will be essential when refining the algorithm to generate trajectories. Moreover, an attacker could

potentially – through the use of machine learning – distinguish a specific useヴげs real data from a data

set containing real and fake in a way that could not be achieved by a human. Attacks could be

automated using machine learning meaning fast and efficient attacks could be carried out – this

would be an exceptionally useful tool for an attacker.

A classification machine learning algorithm is used that has been trained on both the real and fake

trajectories from the same location. In a perfect solution the machine learning should be unable to

determine which is real or fake, meaning it is no more likely to distinguish them than if random

guessing was used. A classification algorithm is a supervised machine learning approach that is

trained on labelled data ふiﾐ this Iase けfakeげ aﾐd けﾐot fakeげぶ it Iaﾐ theﾐ pヴediIt ┘hat Ilass ﾐe┘ data
falls into [26]. Supervised machine learning is where labelled training data is needed to train the

classifier on what constitutes a real or a fake trajectory. Unsupervised learning does not need the

data to be labelled to train it, and so could also be used by an attacker; unsupervised learning can be

less accurate [27].

Using a supervised machine learning algorithm is a slightly unrealistic situation for an attacker as it is

unlikely that they would be able to obtain such a large amount of real and fake trajectories to train

20

the classifier with. However, this is possible – such as the case where this algorithm was published or

if there was a data leak. The reasoning behind this decision was that it is appropriate to model the

worst-case scenario, where an attacker has complete white box access the algorithm and a dataset

of real and fake trajectories including labels on whether they are real or fake.

Support vector machine (SVM) classification is the chosen supervised machine learning classifier.

SVM was chosen due to the high accuracy and fast out-of-the-box prediction – especially when

compared to other implementations such as Naïve Bayes and Neural Networks [28]. In Arash

Jahaﾐgiヴiげs papeヴ, けAppl┞iﾐg MaIhiﾐe Leaヴﾐiﾐg TeIhﾐiケues to Tヴaﾐspoヴtatioﾐ Mode ‘eIogﾐitioﾐ Usiﾐg
MoHile Phoﾐe “eﾐsoヴ Dataげ, SVM is the most successful classification method, outperforming

けヴaﾐdoﾏ foヴestげ, けdeIisioﾐ tヴeesげ aﾐd けk-nearest neighbourげ iﾐ ﾏost Iases [29].

My intuition with the machine learning algorithm was to provide it with the trajectory and allow the

classifier to distinguish the real from the fake that way. It was soon apparent this approach would

not work as SVM takes fixed length multidimensional vectors as input (whereas trajectories are

variable in length). To solve this problem, it is necessary to extract a fixed number of features from

the data and then use each datum as a dimension in the vector that will be training the classifier. To

train the classifier, the more features that can be extracted the more accurate the classification will

be.

3.2.2.- Features Analysed

The features used to analyse the data for the machine learning algorithm have been selected from

Xuﾐ Liげs paper けUsiﾐg Coﾏple┝it┞ Measuヴes of Mo┗eﾏeﾐt foヴ AutoﾏatiIall┞ DeteItiﾐg Mo┗eﾏeﾐt
T┞pes of Uﾐkﾐo┘ﾐ GP“ TヴajeItoヴiesげ [30]. The purpose of the paper is to attempt to classify

movement types of various trajectories (e.g. walking, driving, cycling). To achieve this, various

machine learning algorithms are assessed and compared – with SVM once again attaining the

highest accuracy score. If the trajectory is treated as a geometry object, then geometric features of

the けliﾐeげ Iaﾐ He examined and used. The straightness index and turning angle will be extracted by

running a けsliding windowげ over every 3 consecutive points; they can be calculated as follows:

For each spatial GPS point [pi]:

distance(,) = Euclidian distance between two points 鯨建堅���ℎ建券結嫌嫌 �券穴結� = 穴�嫌建�券潔結岫喧�−怠, 喧�岻 + 穴�嫌建�券潔結岫喧�+怠, 喧�岻穴�嫌建�券潔結岫喧�+怠, 喧�−怠岻

 劇憲堅券�券� �券�健結 = cos−怠 穴�嫌建�券潔結岫喧� , 喧�+怠岻態 + 穴�嫌建�券潔結岫喧� , 喧�−怠岻態− 穴�嫌建�券潔結岫喧�+怠, 喧�−怠岻態に ∙ 穴�嫌建�券潔結岫喧� , 喧�−怠岻 ∙ 穴�嫌建�券潔結岫喧� , 喧�+怠岻

21

Figure 10: A diagram of 3 consecutive points from a trajectory as would be in the けslidiﾐg ┘iﾐdo┘げ
that moves across each point triplet in the trajectory.

The straightness index of the line is a measure of the ratio between the total displacement Δd and

the sum of the distances between each point (d1 + d2). The turning angle is the measure of the

angle (θ) between the 3 points. These measures emphasise the necessity to test both the real and

fake trajectories in the same location as these values are heavily influenced by the road network

layout. In the case of trajectories being generated in Manhattan, then the turning angle for each

triplet will likely fall close to either 0° or 90° due to the road grid system. To maintain a fair

comparison the real and fake trajectories will be compared in the same location.

If the temporal element of the GPS point is also considered, then speed and acceleration can be

included in the list of features to be used by the classification algorithm. The speed and acceleration

can be calculated as follows:

For each GPS point [pi , ti] (spatial locatioﾐ けpげ aﾐd tiﾏe けtげぶ:

distance(,) = Euclidian distance between two points

 鯨喧結結穴 = 穴�嫌建�券潔結岫喧�−怠, 喧�岻∆建�

 �潔潔結健結堅�建�剣券 = 鯨喧結結穴岫喧�+怠, 喧�岻 − 鯨喧結結穴岫喧� , 喧�−怠岻∆建� + ∆建�+怠

Statistical analysis of these values will be conducted to populate the vector used in SVM

classification. The mean, standard deviation and skew of the data can be calculated. Data skew is a

22

measure of how unsymmetrical data is around the central mean, skew can be positive, negative or 0

(perfectly symmetrical data). Conducting these statistical calculations on each of the features

analysed gives a total of 12 elements to classify a trajectory.

The training data will be stored using comma separated variable (CSV) files. Each row in the CSV will

represent a different trajectory and each column will be an analysed feature of that trajectory.

Testing data will also need to be saved; this too will be stored as a CSV.

4 – Implementation
This section describes the methods in which the previously described features have been

implemented using the Python programming language. The first section is a description of how

trajectories are analysed to create a model to base the fake trajectories on. The methods used to

create the trajectories are discussed, followed by the implementation of the supervised machine

learning classifier.

4.1 - Prerequisites

4.1.1 - Libraries

There are some Python libraries which were very favourable when creating a solution. One of the

most cruIial liHヴaヴies used is けOsﾏﾐ┝げ, this library forms the foundations of the project. Osmnx

IoﾏHiﾐes けNet┘oヴk┝げ (a python library for networking and graph theory) with OpenStreetMap data.

Osmnx allows for street map data to be downloaded then mapped as a graph in Networkx - where

standard graph theory operations can be carried out [31].

A fundamental part of analysing the GPS trajectories was to calculate the GPS error. By measuring

the distance between the GPS point and the position the GPS receiver should be at in given moment,

the error can be estimated. This cannot be achieved perfectly as there is no feasible way to know

where the GPS receiver actually was when recording its location. The closest way of approximating

this is by using a map-matching library to snap the point to the road that it was most likely the GPS

ヴeIei┗eヴ ┘as oﾐ. けLeu┗eﾐ.MapMatIhiﾐgげ ┘as used to ﾏatIh the tヴajeItoヴ┞ to the ヴoad ﾐet┘oヴk aﾐd
measure the distance, this library uses Hidden Markov Models (HMM) to achieve map matching

[32]. けBMM: Ba┞esiaﾐ Map-MatIhiﾐgげ [33] was attempted to be used initially (as it is built on top of

Osmnx) but it was discovered that this library does not deal with missing data well and so was

unsuitable.

け“Iikit-leaヴﾐげ ┘as the Ihoseﾐ ﾏaIhiﾐe leaヴﾐiﾐg liHヴaヴ┞. “Iikit-learn offered straight forward

classification machine learning using a variety of algorithms. The chosen classification method

should allow for training the model on real and fake trajectories with the intention of being able to

distinguish between them and quantify the success of various solutions.

Various other smaller libraries like NumPy and SciPy were also used for statistical analysis of data.

The use of the LineString and MultiLineString objects from the Shapely library was a very convenient

way of storing the GPS trajectory geometry as it allows for many geometrical operations to be

carried out oﾐ the data suIh as け.leﾐgthげ aﾐd け.Houﾐdsげ ┘hiIh IalIulate the leﾐgth aﾐd the Houﾐdiﾐg
box of a trajectory respectively [34].

4.1.2 - Dataset

So that realistic synthetic trajectories can be created, real trajectories must be analysed. Moreover,

when using a machine learning algorithm to assess the quality of a solution, the classifier is trained

on real data. For this purpose, the Geolife dataset [6] is used, the dataset contains the trajectories of

178 users and contains 17,621 trajectories with a total distance of 1,121,652 kilometres with a total

23

duヴatioﾐ of ヴΒ,ヲヰン houヴs. Most of the tヴajeItoヴies iﾐ the dataset aヴe fヴoﾏ Beijiﾐg so thatげs ┘heヴe the
synthetic trajectories will be generated to ensure a fair comparison is made. The trajectories in this

dataset aヴe stoヴed ┘ith the け.pltげ file e┝teﾐsioﾐ ┘hiIh is a ┗eItoヴ Hased plotteヴ file e┝teﾐsioﾐ [35]. The

Dublin bus dataset was also looked at being used, however, it was discovered that these trajectories

were often from a whole day of driving around which is not a realistic use case that would be seen in

the application of this system.

4.2 - Analysis of other trajectories

To create credible synthetic trajectories that are tailored to each individual user, analysis of a sample

of the useヴsげ tヴajeItoヴies is carried out. The features that will be extracted are the mean sample rate

of the receiver, the standard deviation of the sample rate, the mean speed, and the standard

deviation of GPS error. These are different to the features extracted for the machine learning

classification. Finally, the mean over all the trajectories analysed for each feature will be calculated,

leaving one value for each feature that can be outputted. The features are stored using a Python

dictionary, with the keys being: けsaﾏpleげ, けsaﾏplesdげ, けspeedげ aﾐd けeヴヴoヴsdげ. These features can then

be used as input when creating new trajectories.

If any trajectory features cannot be analysed, then -1 is returned. The addAverage() function allows

the average of a list of values to be taken without the need to store the whole list, this would be

inefficient. Instead, only the current average and number of values that have been averaged so far

need to be stored. This function is implemented as follows:

4.2.1 - Determining where the true GPS locations are

To determine the true location the GPS receiver would be at when calculating its location, the

distance between each point needs to be determined so this can be interpolated along the chosen

route (explained in 4.3.2). To calculate the distance the following equation can be used: ��嫌建�券潔結 = 鯨喧結結穴 ∙ 劇�兼結

To get the time between each point, the sample rate of the receiver is calculated. Whilst this should

be a constant for each trajectory, in practice that is not the case. First of all, whilst the sample rate is

usually around one measurement per second, different GPS receivers will have slight variation in

sample rates and so this should be represented in the simulation. Furthermore, even considering

one GPS receiver, it is usual to expect slight discrepancies in sample rate. Python list comprehension

is used to ヴetuヴﾐ the tiﾏe Het┘eeﾐ poiﾐts. The け.total_seIoﾐdsふぶげ ﾏethod ヴeturns the number of

24

seconds in a given time duration, the duration is calculated by subtracting a poiﾐts けdatetiﾏeげ oHjeIt
(timestamp) a┘a┞ fヴoﾏ the pヴe┗ious poiﾐts けdatetiﾏeげ oHjeIt. Fiﾐall┞, the saﾏple tiﾏe is IheIked
against an outlier value.

To retrieve the speed between each point, the Euclidian distance between consecutive GPS points is

calculated then divided by the time taken to travel that distance. This returns the speed of the

receiver in metres per second (m/s).

The Euclidian distance is calculated H┞ usiﾐg the Osﾏﾐ┝ ﾏethod け.distaﾐIe.euIlidiaﾐ_distaﾐIe_┗eIげ
which takes two pairs of projected (x,y) coordinates as input and returns the distance between them

in metres.

Both the speed and time can then be averaged and used to calculate the inferred distance between

the true GPS receiver locations.

4.2.2 - Map Matching

The Leuven.MapMatching library is used to match trajectories to the road that the receiver was

probabilistically most likely to have been traveling along – not necessarily the closest road. This is a

crucial part of the system in analysing other trajectories, without it there would be no way to

quantify the amount of GPS noise.

The iﾐitial step is to sa┗e the ヴoad ﾐet┘oヴk to aﾐ けIﾐMeﾏMapげ oHjeIt, this is a dataHase st┞le oHject

from the Leuven.MapMatching library. Nodes and edges from the road network are iterated through

aﾐd added to the けIﾐMeﾏMapげ oHjeIt. This stヴuItuヴe allo┘s foヴ edges aﾐd ﾐodes to He iﾐde┝ed usiﾐg
an R-tree for quicker map matching; using R-tree indexing appears to reduce matching time by

approximately 15%. An R-Tree is a dynamic indexing structure, it works by building a tree of values

and where each leaf node points to a data value [36], it is particularly useful for indexing spatial data

such as geographical coordinates.

Once the road network has been stored and indexed in a form that can be use by the map matcher,

the trajectory is matched to the road network. This is achieved using the DistanceMatcher class, this

class has many different parameters and settings that can be adjusted, and each have a significant

impact on the performance of the algorithm.

The max_dist_init parameter is the initial distance that the matcher will search from the first

coordinate – this has one of the most significant effects on the performance of the matcher but if set

too low the map matching will fail. Non-emitting states are this libraries signature feature; they are

states not associated with any distance observation [37]. This means that trajectory data with large

distances between samples can be interpolated to increase the likelihood a successful match is

ﾏade. けoHs_ﾐoiseげ is the estiﾏated staﾐdaヴd de┗iatioﾐ of ﾐoise (in metres) that you expect to see in

the tヴajeItoヴ┞, けoHs_ﾐoise_ﾐeげ is the saﾏe Hut foヴ ﾐoﾐ-eﾏittiﾐg states. けﾏiﾐ_pヴoH_ﾐoヴﾏげ is aﾐ
important parameter to set; it determines the minimum probability of edges to check. For example,

25

an edge with less than 30% chance of being the road the receiver was on will not be checked. Setting

this ┗alue IoヴヴeItl┞ is esseﾐtial foヴ the peヴfoヴﾏaﾐIe of the algoヴithﾏ. けTヴial aﾐd iﾏpヴo┗eﾏeﾐtげ were

the best method for setting these values correctly.

OﾐIe the けﾏatIheヴげ oHjeIt has Heeﾐ Iヴeated, the け.ﾏatIhげ ﾏethod Iaﾐ He used to ﾏap-match a given

list of GPS coordinates.

This can be used to generate a list of nodes representing a route across the road network that was

the actual path the receiver took. The distances between each point and the road can be returned

usiﾐg the け.dist_oHsげ ﾏethod.

The standard deviation of errors is required so that fake GPS noise can be generated from the data

gathered. When generating noise both random positive and negative values are used, denoting

which side of the line to apply noise to. As the distances gathered by map matching are just the

absolute values of GPS noise (positive only), the standard deviation must be converted to be that of

a full normal distribution rather than the half normal distribution that it is currently in (see figure 6).

To transform the standard deviation, the variance of the half normally distributed GPS noise -

けdistaﾐIesげ – is calculated, this is multiplied by (な − 態�), then the square root is taken to obtain the

transformed standard deviation.

け┗aヴiaﾐIeふぶげ is aﾐ Iustoﾏ fuﾐItioﾐ that takes the ﾐoヴﾏall┞ distヴiHuted data as a paヴaﾏeteヴ aﾐd
returns the variance.

4.3 - Creating the Trajectories

4.3.1 - Gathering a road network

To create a path – oヴ a けヴouteげ as it is ﾐaﾏed iﾐ Osﾏﾐ┝ – the system requires two points (start and

finish) to be sampled from the road network. This road network, which is stored as a graph, can be

sourced in various ways. Osmnx provides facilities to graph from place names, latitude/longitude

coordinates, polygons and many more. When creating a graph, the けﾐet┘oヴk_t┞peげ ﾏust He
specified, this determine what type of roads or passages are included in the graph. For example –

settiﾐg the けﾐet┘oヴk_t┞peげ to けIaヴげ ┘ill ﾐot iﾐclude paths that can only be used by pedestrians.

26

Figure 11: A real (blue) and a fake (red) trajectory with けpedestrianげ network_type selected, to match

the transport mode of the real data. As can be seen, the GPS path is able to travel through the park

(as a pedestrian would be able to).

The method used in this system to determine the size and location of the road network graph is by

taking a random sample of real GPS trajectories from the dataset then enclosing them in a bounding

box – this bounding box region is the region of the road network that is downloaded. It is important

to limit the size of the road network downloaded, as it can be extremely computationally demanding

working with a very large road network (such as the road network of an entire city).

The げIヴeate“aﾏpleげ fuﾐItioﾐ takes a foldeヴ Ioﾐtaiﾐiﾐg GP“ tヴajeItoヴies and samples けsaﾏplesizeげ
trajectories from it. This is achieved by creating a list of all the filenames then using random.sample()

from the P┞thoﾐ liHヴaヴ┞ けヴaﾐdoﾏげ. Once a sample of filenames have been gathered then all of the

trajectories are surrounded with a bounding box. From the け“hapelyげ library, the けMultiLineStringげ
class is used to store all of the line geometries then the け.Houﾐdsげ ﾏethod Iaﾐ Iヴeate a Houﾐdiﾐg Ho┝
surrounding the lines. The length of the trajectory is checked to ensure that it is greater than 2 GPS

points – so analysis can be carried out (which requires 3 points).

Bounding box area is checked to ensure that it is smaller than a certain area, if not then a new

sample is picked. If the road network graph is too large, then the route generated in that network

could end up being too large – taking a long time to compute the trajectory.

27

4.3.2 - Creating a route

Once the road network has been established where the route will be created then a path the

receiver took is simulated. Initially the road network graph needs to be projected to the appropriate

UTM. Two points are sampled at random from the graph of the road network using the Osmnx

method けsaﾏple_poiﾐtsげ fヴoﾏ the けutils_geoげ ﾏodule. The sample_points method returns n random

points constrained to a given road network graph.

These two points are matched to their nearest nodes – nodes being the intersection between edges

in the graph – as this allows for a path to be calculated. In graph theory, routing is where a sequence

of nodes creates a path and the length of that path is the sum of the edge weights (distances in this

case) linking said nodes, hence why a path cannot begin half-way along an edge and must be

constrained to start and finish at a node. Finally, Dijkstヴaげs shortest path algorithm is implemented

usiﾐg the けshoヴtest_pathげ ﾏethod fヴoﾏ Osﾏﾐ┝ to determine a route between the points.

4.3.3 - Adding Noise

The true receiver location along the line needs to be determined to add noise to those points. The

Osmnx method けiﾐteヴpolate_poiﾐtsげ ┘hiIh takes a gi┗eﾐ ヴoute aIヴoss a ヴoad ﾐet┘oヴk ふa list of ﾐode
IDs) and distance in metres to denote the spacing between interpolated points. The speed of the

receiver is multiplied by the sample rate which gives the distance between the true receiver location

points. This returns a geﾐeヴatoヴ oHjeIt Ialled けgpsIooヴdsげ which generates pairs of UTM projected

coordinates.

Once the points have been interpolated along the route where the GPS receiver would have

recorded its current position, then noise is applied to the line. The noise added to each point follows

a normal distribution determined by analysis of the useヴsげ real trajectories. Due to the points being

represented with a normal distribution, a mean and standard deviation is needed to define the

shape of the distribution. In Python, a random number can be generated following a normal

distribution usiﾐg けnpRaﾐdoﾏ.ﾐoヴﾏalげ fヴoﾏ the けNuﾏP┞げ liHヴaヴ┞, the paヴaﾏeteヴs けloIげ aﾐd けsIaleげ
represent the mean and standard deviation respectively. The standard deviation is obtained from

analysis of real trajectories. NpRandom is named as such as previously there was conflicts between

the NuﾏP┞ けヴaﾐdoﾏげ Ilass aﾐd the P┞thoﾐ けヴaﾐdoﾏげ Ilass, this ┘as Iausiﾐg eヴヴoヴs. The algorithm to

add noise is as follows:

28

The P┞thoﾐ geﾐeヴatoヴ oHjeIt けgpsIooヴdsげ is iteヴated through generating projected GPS coordinates.

These coordinates are represented as a list of length 2, with longitude and latitude being stored at

position [0] and [1] respectively.

If a random number between 0 and 1 is less than a specified probability, then stopping will be

simulated (such as stopping at traffic lights). To simulate stopping, noise points are added at one

location foヴ a ヴaﾐdoﾏ ﾐuﾏHeヴ of tiﾏes up to the liﾏit of けﾏa┝“topLeﾐgthげ. The new points added

have a mean random error factor of けeヴヴoヴfaItoヴげ applied to them with a standard deviation of 0.5. A

normal distribution is appropriate for this error simulation as most of the noise is focused around a

central poiﾐt ┘ith oIIasioﾐal outlieヴ けspikeげ – this behaviour can be observed in real data (see figure

8). The aﾏouﾐt of positioﾐiﾐg eヴヴoヴ is iﾐIヴeased H┞ ﾏultipl┞iﾐg the けeヴヴoヴfaItoヴげ H┞ the けNoise“Ialeげ
value which is responsible for controlling the amount of GPS error seen in the data.

(a) (b)

Figure 12: An example of the GPS receiver stopping in real data (a) and the simulated stopping in a

synthetic trajectory (b) – ┘ith a けStopNoiseFactorげ of 3 and けMaxStopLengthげ of 400. Scale has been

matched in both images.

A timestamp to accompany each of the coordinate points is also required. To obtain the timestamp

けdatetiﾏe.tiﾏedeltaげ is used to transform a floating point number of seconds into a Python

けdatetimeげ object. A けdatetimeげ object is required so that the times can be cumulatively added on t0 –

29

the datetime of the first timestamp (in this implementation that is the systems clock time recorded

when the program is run); floating point numbers cannot be added to datetime objects. The time

added to the timestamp with each GPS point is also represented with a normal distribution. The

mean of the distribution being the calculated sample rate of the GPS receiver and the standard

de┗iatioﾐ also Heiﾐg deヴi┗ed fヴoﾏ ヴeal GP“ dataげs tiﾏestaﾏps.

A problem of applying noise in this way is that the trajectory produced has a distinct distinguishing

feature that makes it easy to discern whether a trajectory is real or fake. The turning angle between

points is too severe, in other words, the line is too jagged. This is clearly apparent when looking at a

real and a fake trajectories side-by-side.

(a) (b)

Figure 13: A fake trajectory using the unrefined noise method (a) compared to a real trajectory (b).

Scale is identical in both figures.

To resolve this issue, smoothing is required. Signal smoothing is a technique where excessive noise is

removed from data whilst still keeping intrinsic features and patterns. As can be seen in the figure

above, 13(B), even when the real trajectory deviates from the road (i.e. experiences GPS error) sharp

angles are seldom seen; the exception to this is when the receiver stops in one place – this often

leads to extremely acute angles. There are many different algorithms to implement smoothing, in

this solution the けﾏo┗iﾐg a┗eヴageげ approach is used. The moving average is a けslidiﾐg ┘iﾐdo┘げ st┞le
of algorithm, where each point is replaced by the average position if itself and k neighbours.

For each spatial GPS point [pi]: 警剣懸�券� �懸結堅��結 = 喧� + 喧�+怠 + ⋯ + 喧�+�−怠倦

The larger the value of k the less noise will be seen in the data. An appropriate value of k must be

selected. In this implementation 3 values of k (k=2,3,4) are used and can vary for each spatial point.

Due to there being 3 values of k, each has a 1/3 chance of being used for a given point. The

justification for this implementation is that there should some areas that are less smooth than

others, as would be seen in a real trajectory. For example, next to a tall building then more erratic

error patterns can be seen – which can be represented by areas of lower smoothness. The

smoothing algorithm implemented is as follows:

30

4.3.4 – Finalising the trajectory

Finally, all of these elements are combined together to create the list of coordinates that represent

the GPS data. The line geometry is projected back into latitude and longitude coordinates

(EPSG:4326). Timestamps for each GPS points are appended to their respective coordinates such

that a tuple of length 3 is created for each GPS point.

The code segment above shows that through the use of the projection module from Osmnx, the

LineString() geometry object (storing the GPS points) can be projected back to the latitude and

longitude CRS.

4.4 - Machine Learning

Supervised machine learning classification is an invaluable tool that can be used to classify data into

2 or more categories. For this project, support vector machine classification was the chosen machine

learning implementation. This section will describe how various features of a trajectory are

obtained; these are required so that a variable length trajectory can be constrained to a finite size

vector. Supervised machine learning methods require training, classification and then testing; the

implementation of these steps will be explained.

4.4.1 - Obtaining Features

Due to SVM classification requiring a fixed dimension input vector for training, for example – n

numerical features of a trajectory. Four different features are extracted to create an overview of a

trajectory so that a regardless of the length of the trajectory, it can be represented by a fixed

number of features. Each of these four features has three types of statistical analysis conducted on

them to give a total of 12 vector dimensions for classification.

Speed is the first feature to be analysed, the method used to obtain speed is the same as in section

4.2.1. Once the list of speeds between points has been obtained, the acceleration can be calculated

by determining how much the speed changes in a given time. The time must be checked to ensure it

is not zero to prevent division by zero errors, which can happen in certain malformed trajectories.

Once the temporal features (speed and acceleration) have been calculated, the geometry of the line

is analysed. The straightness index and turning angle for point triplets are calculated; it is critical that

the coordinates are in a projected UTM as this geometry does not work on a curved surface.

31

The turning angle calculation utilises the cosine rule to obtain the angle between 3 consecutive

points. The denominator of the fraction (2*b**0.5*c**0.5) cannot equal zero as this would cause a

divide by zero error, this is checked first. Due to the arccosine (math.acos) function having a domain

of: −な ≤ � ≤ な; the value entered into the function is checked to ensure it falls within that domain.

Once these conditions have been satisfied the angle can be calculated.

For each point triplet, the ratio between total displacement and combined line segment length is

calculated (as seen in figure 10). The ┗aヴiaHle けaげ ヴepヴeseﾐts the total displacement whereas the

┗aヴiaHles けHげ aﾐd けIげ aヴe the leﾐgth of eaIh liﾐe segment joining the 3 consecutive points together.

These distaﾐIes aヴe IalIulated usiﾐg P┞thagoヴasげ theorem. OﾐIe agaiﾐ, けaげ ﾏust He IheIked to
ensure a division by zero error cannot occur – this could happen if the receiver was not moving and

so the total displacement is zero.

4.4.2 – Creating the training data

Now that a method of evaluating a given trajectory has been established. The classifier requires a

considerable amount of real and fake trajectories to train it, around 1200 of each category are used.

The training data is stored to a comma separated variable file (CSV), where it will have a label

attached to it, denoting whether it is real or fake.

Figure 14: An example of how the machine learning classification data is stored in the CSV file. With

けFake = ヰげ sho┘iﾐg that this e┝aﾏple tヴajeItoヴ┞ ┘as a ヴeal oﾐe.

To populate the CSV with real trajectories, a file path to a folder containing the trajectories used to

train is input to the fuﾐItioﾐ けﾏlTヴaiﾐIs┗ふぶげ. In addition to the read folder, a file to write the data to

and the coordinate reference system of the road network are required parameters. The coordinate

reference system is required as the trajectories must be projected to UTM so that the geometrical

analysis can be carried out on a cartesian plane.

32

This code sets up the CSV to analyse and log the real trajectories features. The けgloHげ module

retrieves all the filenames in a given folder. けos.path.joiﾐげ creates the full file path of the files in the

folder, to allow for the files to He iteヴated o┗eヴ. The け*.pltげ parameter specifies to only retrieve the

trajectories in the folder (which have a .plt file extension) and nothing else. The けgetTヴajeItoヴ┞Is┗げ is
a custom function that reads the trajectory from the file, with the parameters specifying what

columns the latitude, longitude and timestamp are located at. The final parameter specifies when

the data starts as the trajectories in this dataset have some preliminary information that is not

necessary for this implementation. The fake trajectories are then analysed and appended onto the

bottom of this CSV file, and a full training set has been created. The fake trajectories are marked in

the けFakeげ Ioluﾏﾐ ┘ith a oﾐe to indicate that they are fake.

4.4.3 – Classifying the training data

Creating an SVM classifier in Scikit-learn is very straightforward. B┞ iﾏpoヴtiﾐg the けs┗ﾏげ ﾏodule fヴoﾏ
the けskleaヴﾐげ liHヴaヴ┞ a classifier object can be created with the svm.SVC() method – with SVC being an

acronym of けsupport vector classifierげ. In the classification function, classify(), the training data CSV is

entered where it can be read using the けpandaげ library ﾏethod さヴead_Is┗ふぶざ. The variable x

represents a list of vectors containing just the data and no label to distinguish between real and

fake. The variable y is a list of just the labels (i.e. a list of 1s and 0s) . Classifier.fit() takes both the

data and the labels and is able to train the classifier, which can then be returned and used to predict

whether unlabelled data is real or fake.

4.4.4 – Evaluating the classifier

To determine the success the classifier had in classifying trajectories, an evaluation function is

required. Testing the classifier involves having the machine learning classifier determine if a

trajectory appears to be real or fake and its success in predicting this is measured (explained in

5.2.1). A testing set of data is created using unseen real trajectories and newly generated fake

trajectories; this is done in the same way that the training data is created.

33

The けヴeal oヴ fakeげ labels are removed from the data and so the ┗aヴiaHle け┝げ is aﾐ unlabelled list of

analysed trajectories. classifier.predict() is used to assign a predicted real or fake value to a list of

vectors (analysed trajectories). This returns a list of 0s and 1s that corresponds to each trajectory in

the test dataset – with 0 being real and 1 being fake. Two lists are returned from the function, an

accurate list of 0 or 1 labels for the data and a predicted list of labels; if the trajectories can be

perfectly distinguished with the classifier, then these lists will be identical.

The final step in evaluating the classifier is to create a confusion matrix and calculate the F1 score

(explained in 5.2.1). SciKit-Learn has an inbuilt function that can be used to generate a confusion

matrix. This can then be used to generate the F1 score.

34

5 - Results and Evaluation

In this section various approaches to solve the problem will be discussed and the success of each

method will be assessed. A range of simulator parameters will be compared to determine the

optimum configuration of the system. There are two categories of attack that this system is

attempting to thwart. The first – and least quantifiable – measure is whether the trajectories can be

distinguished as being real or fake visually; the visual distinction is the least explored method due it

being so subjective and dependent on familiarity with GPS trajectories. The second measure is by

training a supervised machine learning classifier on real and fake trajectories then testing whether it

can classify unseen trajectories as real or fake.

5.1 - Does GPS noise follow a Gaussian Distribution?

By plotting a histogram of GPS noise from a sample of trajectories the distribution should be

apparent. Due to map matching measuring the distance to the line with a scalar distance value

(positive measurement only), if the noise is Gaussian, then half a Gaussian distribution should be

observed in this test. A sample of 10 real trajectories will analysed and the distance between each

point and the road the receiver was on will be plotted in a histogram.

Figure 15: A histogram showing the distribution of distance between GPS points and the road.

As can be seen from the histogram, which approximately follows the shape of a half-normal

distribution, normally distributed GPS error is a good model for applying noise to the fake

trajectories. If the histogram is reflected on the x-axis to represent negative noise values also

(determining which side of the line the noise was on) then a bell-shaped curve emerges – showing

that GPS noise does indeed follow a Gaussian distribution.

35

5.2 - Machine learning

5.2.1 - Measuring Performance

To suﾏﾏaヴise the peヴfoヴﾏaﾐIe of the Ilassifieヴげs aHilit┞ to deteヴﾏiﾐe fake trajectories from real

ones a confusion matrix will be used. A confusion matrix is a table that is used to quantify the

performance and effectiveness of a given classifier. The structure of the matrix is to show how often

the classier is able to correctly predict the class of test data and when it gets it wrong then which

class it is mislabelled as more frequently. The test results will fall into one of four categories: true

positive, true negative, false positive, and false negative.

Trajectories classified will fall into one of these categories:

• True Positive (TP) – Fake trajectories are classified as fake.

• True Negative (TN) - Real trajectories are classified as not fake.

• False Positive (FP) – Real trajectories are classified as fake.

• False Negative (FN) – Fake trajectories are classified as not fake.

An important distinction to make is between what constitutes a successful outcome, for this

algorithm to be a success then the trajectories should be unable to be distinguished (Maximise

FP&FN and minimise TP&TN). For an attacker to be successful then TP & TN should be maximised

and FP & FN, should be minimised. This section will be written from the perspective of an attacker

attempting to distinguish trajectories.

Figure 16: The confusion matrix layout for the classifier attempting to distinguish real from fake

trajectories. For an attacker green should be maximised and red should be minimised.

Various scores can be applied to this confusion matrix to reduce it down to one numerical value. This

is important when ranking solutions as in the current format it can be hard to determine if one

solution is considerably better than another just by examining the confusion matrix. Examples of

such scores include accuracy, precision, recall and F1 score [38]. The score I will be using is the F1

score as this uses both precision and recall in calculating it. Precision refers to the proportion of

positive results that were correctly identified and recall refers to the proportion of actual positives

that were identified correctly [39]. The higher the F1 score the better the classifier has performed in

classifying the data. The classifier will be trained on 1,220 real trajectories and 1,220 fake

trajectories. Then a test set of 50 different real trajectories and 50 fake trajectories will be used. Due

36

to such a large training set being required, it can take several hours to generate trajectories and train

the classifier. A new training set is required every time an adjustment is made to the parameters of

the system. Thus, exhaustive testing of the system exclusively with the classifier is unfeasible.

Credible trajectories will be visually ascertained and then verified with the machine learning

classifier.

 �怠 = 劇�劇� + なに 岫�� + �軽岻 = 喧堅結潔�嫌�剣券 ∗ 堅結潔�健健喧堅結潔�嫌�剣券 + 堅結潔�健健
5.2.2 - Selecting Default Values

Selecting ideal simulator values will be achieved using a hybrid approach between visually examining

the trajectories and then verifying choices made by attacking the trajectories with the machine

learning algorithm.

Outside of the parameters that can be attained from analysing real trajectories, there is a number of

simulator parameters that cannot be attained and therefore need to be set by the user. Most users

using this program are not going to know what simulator parameter values should be entered.

Default values are used so that once the real trajectories have been analysed, credible synthetic

trajectories can be generated immediately (without the need to adjust various settings). These

values can then be adjusted if necessary. There is also default values for the parameters that are

determined by analysis of real trajectories - if the user chooses not to use this feature. These default

values are based on the parameters of a successful test trained using 1220 real trajectories. The

default values that were attained by analysis of a sample of these real trajectories and are as

follows:

Method TN FP FN TP F1 score

Using

default

values

(shown

above)

50 0 50 0 0.00

Figure 17: A table showing the confusion matrix and F1 score for trajectories using the default values

(obtained by analysing the sample it was compared against).

It is important to note that, whilst these default values work well against this sample of real

trajectories that is because these trajectories were analysed by the program and that decided the

default values; the default values are tailored to be convincing against only this sample. Analysing a

userげs real trajectories is the advisable approach rather than these default values. By having an F1

score of 0 shows that the classifier could not distinguish real from fake. The real trajectories were

able to be correctly identified 100% of the time but every fake trajectory tested was incorrectly

classified – leading to an overall F1 score of 0.

37

Figure 18: A section of trajectory generated using just the default simulator values. This trajectory

was unable to be discerned as being fake by the machine learning classifier.

5.2.3 - Comparing Distance Measures

As can be seen in figure 5, there are various methods which the distance between points in the fake

trajectories can be determined. One of the most critical parts of this system is determining where

the GP“ ヴeIei┗eヴげs tヴue loIatioﾐ ┘ould ha┗e Heeﾐ ┘heﾐ ヴeIoヴdiﾐg its IalIulated loIatioﾐ. There are

four different approaches to analysing trajectories to determine the distance between these true

points. The 4 different methods will be implemented and their F1 scores will be compared. A sample

of 20 trajectories will be analysed to determine parameters of the simulation. All other simulator

values will be the default values.

Approach

number

Method TN FP FN TP F1 score

1 Average

speed *

Average

time

between

points

50 0 50 0 0.00

2 Euclidian

distance

between

points

50 0 49 1 0.04

3 Estimated

line length/

number of

points

40 10 15 35 0.74

4 True Line

length/

50 0 49 1 0.04

38

number of

points

Figure 19: A table comparing various approaches to calculating the true distance between GPS

receiver recording locations. These approaches are each scored using the F1 score.

With a lower F1 score being worse for an attacker (harder to distinguish between real and fake), the

overall profile of scores is encouraging that the trajectory generating algorithm is working correctly.

The results from this test showed that the most credible trajectories are generated by calculating the

average speed of the receiver and multiplying it by the average time between consecutive points

(approach 1). This was only marginally better than approach 2 and 4, which had one けtrue positiveげ
result each (meaning the machine learning classifier could correctly determine a fake trajectory was

fake one time out of fifty). This shows these three approaches are all good approximations. With

approach one, however, the machine learning algorithm was completely unable to discern real from

fake.

I hypothesise the reason that approach 3 was such a poor approach to create realistic trajectories, as

can be seen with a high F1 score of 0.74, was because the distances between points was far too short

(as can be seen in figure 20). The intention of this approach was to attempt to create a more

accurate representation of the distance between consecutive GPS points by discarding the noise, but

this did not work.

(a)

(b)

Figure 20: The line generated usiﾐg the けEstiﾏated Liﾐe Leﾐgthげ appヴoaIh ふa), compared to a real

trajectory (b) it can be clearly observed the distance between points is far too short. The images are

to the same scale.

39

5.2.4 - Verifying Line Smoothing

The addition of line smoothing was looked at as a way to resolve the issue of the turning angle

between points being too acute. As can be seen in figure 13, visually the trajectories can be

distinguished due to this trait. To verify that smoothing does make the trajectories harder to

distinguish both approaches will be attacked with the machine learning algorithm classifier and the

scores will be recorded. For this test, a sample of 20 real trajectories are analysed to setup the

parameters of the simulation and all other values are the default values.

Method TN FP FN TP F1 score

Smoothing 50 0 50 0 0.00

No smoothing 50 0 47 3 0.11

Figure 21: A table showing a comparison in the classifiers ability to distinguish real from fake when

smoothing is and is not used in the fake trajectory.

It can be seen from the results that the smoothing algorithm does, in fact, make the real and fake

trajectories harder to distinguish than the ones not smoothed. With only 3 true positives, it was not

significantly worse to leave the line unsmoothed; this is a surprising result as visually it is trivial to

discern real from fake when smoothing has not been applied. The trajectories that were smoothed

were completely unable to be distinguished from real trajectories in this test and so this

undoubtedly is a technique that should be used.

5.2.5 - Verifying Simulated Stopping

The addition of simulated stopping is an important feature of the project and essential if believable

trajectories are to be created. Trajectories will be generated with both methods and then each

method will be attacked with the machine learning classifier and the score recorded. In addition to

this, the model will be run with a high け“topNoiseFaItoヴげof 10 to determine if having a large amount

of artificial noise added when stopping can affect the credibility. A high け“topPヴoaHilit┞げ of 0.01 is

also tested to determine if this makes the trajectories easier to distinguish. The default stopping

values are:

• け“topNoiseFaItoヴげ = 3

• け“topPヴoHaHilit┞げ = ヰ.ヰ001

• けMa┝“topLeﾐgth = 200

Method TN FP FN TP F1 score

No stopping 50 0 50 0 0.00

Stopping 50 0 50 0 0.00

Stopping with

high

けStopNoiseFaItoヴげ
(=10)

50 0 44 6 0.21

Stopping with

high

け“topPヴoHaHilit┞げ
(=0.01)

46 4 5 45 0.91

Figure 22: A table comparing the ﾏaIhiﾐe leaヴﾐiﾐg algoヴithﾏげs aHilit┞ to disIeヴﾐ ヴeal tヴajeItoヴies
from fake when stopping was and was not simulated; a high StopNoiseFactor and StopProbability

are also compared.

40

The machine learning algorithm was unable to distinguish between real and fake trajectories with

and without stopping. This is an unexpected result but can be rationalised when considering how

trajectories are analysed to be used in the machine learning classifier. The only two features of the

line that are affected by stopping being simulated on the line are the turning angle of the points and

the straightness of the line. In a long trajectory with many thousands of points, the difference a few

hundred points with lower straightness and turning angle will make on the overall average of the

line is negligible and so is unlikely to make an appreciable difference to the machine learning

classification.

Although, when the けStopNoiseFactorげ is set very high, the angles between points can become

extremely acute (the line frequently crosses over itself) and the straightness score is drastically

affected. This effect is enough to make some of the trajectories distinguishable by the machine

learning algorithm. Whilst the machine learning is unable to distinguish trajectories that have

moderate stopping and no stopping (they both scored perfectly), visually it is of significant

importance as it is a common feature of real trajectories, therefore it will still be included in the

implementation.

(a) (b)

Figure 23 :A comparison of a high stop noise factor of 10 (a) compared to the default value of 3 (b).

The scale of both images is the same.

By having the stop value set too high the stopping is far too frequent along the line. Not only was

this this the worst performing test using the machine learning classifier (45 times out of 50 the

trajectory was identified as fake); visually it is extremely easy to distinguish too. Despite 0.01 being a

very small probability, this is still far too high, as can be seen in the figure below.

Figure 24: An example of a fake trajectory where the stopping probability is set too high (=0.01).

41

6 - Future Work
This section will address some of the problems with this implementation. With knowledge of the

way the algorithm works there are various attacks that can be carried out. This section will outline

those problem and pose possible solutions. This section provides a basis for any further academic

development on this method.

6.1 - Better Speed Variation

In future iterations of this project, there are some problems that would need to be addressed. One

of the biggest issues with this approach is the lack of variation in the true location of the GPS

receiver, the points are interpolated along the route at equal distances; once the noise has been

applied this will at least change by some margin so that it is not completely uniform. In real

trajectories, the speed of the receiver can have a large variation, for example when moving from a

motorway to a residential area the speed will decrease significantly – meaning the GPS points are

much closer together. This system does not simulate these large variations in speed. To change this

would require a complete overhaul of the way the true GPS receiver location at the time of

recording was calculated but would certainly make a positive addition to the system.

Figure 25: A large speed variation in a real trajectory between the individual being on a large road to

entering a residential area. This speed change can be seen by the distance between GPS points

decreasing.

6.2 - Choice of Route

Something that should be changed in future iterations is the choice of route. Currently, the path

between two points is calculated by finding the shortest path between them. The logic behind this

decision is that quite often when traversing between two locations it is most convenient to take the

shortest path. Any potential attacker who was aware of how the algorithm worked could determine

with certainty that if a trajectory between two points did not follow the shortest path, then it would

definitely be real. This could be a major security problem. The machine learning attack is not able to

utilise this fact as a way of distinguishing real from fake because it is only classifying the line itself

42

rather than the route taken. A potential solution to this problem could be by chaining several

trajectories together where the end point of route i is the start point of route i+1.

6.3 - Improving Map Matching

The map matching algorithm used is not particularly strong in this implementation. It can take a very

long time to match a trajectory to a map, making it impractical to analyse vast amounts of real data

to improve accuracy. Moreover, around 20% of trajectory tests fail to produce a map matched line

when analysed, this failure rate should be significantly lower. By having a faster and more accurate

map matching algorithm, the machine learning classifier could be improved also. More accurate

distinction of trajectories could be achieved by an attacker using machine learning if there was more

context around where the trajectory was in relation to the road. Currently, the line could travel

through buildings or across water and the machine learning classifier is provided with no data about

this.

6.4 - Context Driven Noise

In the initial plan, it was stated that features of a map that could cause an increase in noise would be

used to shape the way that the noise model works in that area. These features could include tall

buildings, forests, tunnels etc. This was not achievable in the time frame as the way noise is added

would require an overhaul. By adding this feature, however, it would become incredibly difficult to

determine if a trajectory was fake even when examined meticulously. Currently, a method to attack

this s┞steﾏ ┘ould He to look foヴ tヴaditioﾐal けhotspotsげ oﾐ the ﾏap ┘heヴe GP“ eヴヴoヴ is ┘oヴse aﾐd
determine if the noise does indeed increase.

7 - Conclusion

Overall, this project has been a success. Trajectories have been created that are not only

indistinguishable to the naked eye but also a well-trained machine learning classifier. Of the aims

and objectives initially set out, all were met with the exception of examining features of a map that

can cause noise. This objective was vastly more complicated than I had initially planned and was not

feasible in the time frame. Whilst this feature is certainly worth including in the future work section,

the system was not majorly hampered without it.

It is unlikely that an attacker would have access to such a large training dataset unless the algorithm

was known or there was some other form of data leak. Without this, an unsupervised machine

learning approach would be needed; this would require vast amounts of computational power and a

very large unlabelled training set [27]. Unsupervised machine learning can end up being wildly

inaccurate due to minute discrepancies in the data [27]. By being able to deceive a well-trained

machine learning model the system can be regarded as being successful.

There are, however, several attacks that can be carried out to distinguish real from fake – or at least

determine if certain trajectories are real. If the attacker is familiar with the algorithm, then through

weaknesses like the choice of route, certain trajectories can be confidently assumed to be real. This

requires knowledge of exactly how the algorithm works to generate trajectories, but such breaches

can and do happen [40]. These would need to be addressed in future iterations of this project.

If the map matching algorithm was considerably faster, then more rigorous testing could have been

employed. Whilst the spatial location of a trajectory on a map in terms of the relation between a

trajectory and a road is crucial for the system, this was not able to be tested. Analysing more

features of a trajectory such as the relation to the road network would have yielded more conclusive

results. This would also be advantageous to an attacker who was using machine learning to attack

43

trajectories. Given the time frame, and the quality of the map-matching this was regrettably not

possible.

The definition of privacy stated as the condition for success was K-anonymity. This security solution

can achieve K-anonymity, providing a large enough sample of a useヴげs real trajectories are analysed.

By analysing a large sample of aﾐ iﾐdi┗idualげs real data, a comprehensive picture of the nature of

their movement patterns and GPS receiver idiosyncrasies can be reflected in the synthetic data.

Thus, the K-anonymity objective is fulfilled, and the user can be confident their privacy is protected.

8 – Reflection
Throughout this project, I have learnt a great deal about data privacy and various definitions that

constitute preserving an iﾐdi┗idualげs privacy. There are various methods used to ensure that an

iﾐdi┗idualげs pヴi┗aI┞ is pヴoteIted, with differential privacy and K-anonymity being examined in this

report. The value in maintaining such privacy concepts in all user focused projects was made

explicitly clear to me through the research conducted. User privacy is something I will be taking care

to ensure in all future work by using the methods explored.

The benefits of being rigorous in the research section have been made apparent to me during this

project. By being thorough in finding a range of research papers, not only did this allow me to clearly

set out the premise of the problem that is going to be solved. Through reading various papers in this

topic area, this allowed me to get a firm understanding of the problem aiming to be solved, making

the approach section vastly more straightforward. Moreover, some of the best solutions in this

implementation arose from aiming to solve other pヴojeItげs failiﾐgs – such as stimulating stopping on

the path. Even a seemingly simple problem has lots of hidden complexity and delving into this

complexity was the key to a successful solution.

During the course of this projects development there have been several times where

implementations have not worked as intended. To resolve these issues an arduous process of poring

over tiny details in the program to locate the problem was used – such as not transforming the half

normal distribution density of error distances to a full normal density. Such problems are not

immediately apparent and can be very difficult to locate and solve. My ability to examine fine details

to resolve issues greatly increased as this project progressed.

The use of machine learning to detect visually imperceptible trends in data was an invaluable tool,

and one which I knew very little about before starting this project. By using this tool, the ability to

assess trajectories equally and fairly was essential for gathering accurate results. Using machine

learning allowed for objective results to be gathered, this would not be as easy if human participants

were used to assess various solutions. This is undoubtably a tool that will be used in any future

projects to assess and shape solutions.

Finally, the supervisor working format was a very productive way of creating a large project. The

ability to bounce ideas of someone who knowns the subject area comprehensively allowed the

project to remain on track. Going into a meeting with a partially developed idea and leaving with a

fully evolved idea and a plan on how to go about implementing it, ultimately allowed the project to

be a success.

44

9 - Appendix

Examples of real and fake trajectories compared

Real Fake

45

46

Bibliography

[1] Haヴ┗aヴd Uﾐi┗eヴsit┞, さHaヴ┗aヴd Uﾐi┗eヴsit┞ Pヴi┗aI┞ Tools PヴojeIt,ざ ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://privacytools.seas.harvard.edu/differential-privacy. [Accessed 20 April 2022].

[2] L. K. Matt DuIkhaﾏ, さA Foヴﾏal Model of OHfusIatioﾐ aﾐd Negotiatioﾐ foヴ LoIatioﾐ Pヴi┗aI┞,ざ Ma┞
2005. [Online]. Available:

https://www.researchgate.net/publication/221015892_A_Formal_Model_of_Obfuscation_and_

Negotiation_for_Location_Privacy. [Accessed 20 April 2022].

[3] H. De┗aﾐe, さK-Aﾐoﾐ┞ﾏit┞: E┗eヴ┞thiﾐg You Need to Kﾐo┘ ふヲヰヲヲ Guideぶ,ざ Iﾏﾏuta, ヱヴ Apヴil ヲ021.

[Online]. Available: https://www.immuta.com/articles/k-anonymity-everything-you-need-to-

know-2021-guide/. [Accessed 19 April 2022].

[4] A. DigH┞, さHo┘ MaIhiﾐe Leaヴﾐiﾐg Is Used Iﾐ C┞Heヴ AttaIks,ざ Iﾐfoヴﾏeヴ, Β DeIeﾏHeヴ ヲヰヲヱ.
[Online]. Available: https://informer.io/resources/how-machine-learning-is-used-in-cyber-

attacks. [Accessed 03 May 2022].

[5] D┗aoヴu, さMoIk LoIatioﾐs ふfake GP“ pathぶ,ざ Google Pla┞ “toヴe, Α MaヴIh ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://play.google.com/store/apps/details?id=ru.gavrikov.mocklocations&hl=en_GB&gl=US.

[Accessed 29 April 2022].

[6] D. Y.)heﾐg, さGeolife GP“ tヴajeItoヴies,ざ ヵ DeIeﾏHeヴ ヲヰヱヶ. [Oﾐliﾐe]. A┗ailaHle:
https://www.microsoft.com/en-

us/download/details.aspx?id=52367&from=https%3A%2F%2Fresearch.microsoft.com%2Fen-

us%2Fdownloads%2Fb16d359d-d164-469e-9fd4-daa38f2b2e13%2F. [Accessed 11 February

2022].

[7] U.“ Go┗eヴﾐﾏeﾐt, さGP“ AIIuヴaI┞,ざ ヶ August ヲヰヲヱ. [Oﾐliﾐe]. Available:

https://www.gps.gov/systems/gps/performance/accuracy/. [Accessed 21 February 2022].

[8] MiIヴosoft, さ“ﾐap-to-ヴoad API,ざ [Oﾐliﾐe]. A┗ailaHle: https://┘┘┘.ﾏiIヴosoft.Ioﾏ/eﾐ-

us/maps/snap-to-road. [Accessed 13 February 2022].

[9] J. L. “. K. N. VaiHha┗ Aﾐkush KaIhoヴe, さLOCATION OBFU“CATION FO‘ LOCATION DATA P‘IVACY,ざ
IEEE World Congress on Services, pp. 213-220, 2015.

[1

0]

A. Balliﾐgeヴ, さPoliIe ┘aヴﾐ I┞Ilists aﾐd ヴuﾐﾐeヴs o┗eヴ GP“ app Huヴglaヴ┞ ヴisk,ざ C┞IliﾐgWeekl┞, ヱヱ
November 2019. [Online]. Available: https://www.cyclingweekly.com/news/latest-news/police-

warn-cyclists-runners-gps-app-burglary-risk-442266. [Accessed 13 February 2022].

[1

1]

BBC, さFitﾐess app “tヴa┗a lights up staff at ﾏilitaヴ┞ Hases,ざ BBC, ヲΓ Jaﾐuaヴ┞ ヲヰヱΒ. [Oﾐliﾐe].

Available: https://www.bbc.co.uk/news/technology-42853072. [Accessed 13 February 2022].

[1

2]

N. Vigdoヴ, さA Teeﾐageヴ TヴaIked Eloﾐ Muskげs Jet oﾐ T┘itteヴ. Theﾐ Caﾏe the DiヴeIt Message,ざ
New York Times, 3 February 2022. [Online]. Available:

https://www.nytimes.com/2022/02/03/technology/elon-musk-jet-tracking.html. [Accessed 18

February 2022].

47

[1

3]

Le┝a, さFake GP“ LoIatioﾐ,ざ Aﾐdヴoid, [Oﾐliﾐe]. A┗ailaHle:
https://play.google.com/store/apps/details?id=com.lexa.fakegps&hl=en_GB&gl=US. [Accessed

2022 02 19].

[1

4]

Pヴi┗itaヴ, さK – aﾐoﾐ┞ﾏit┞: Aﾐ IﾐtヴoduItioﾐ,ざ Α Apヴil ヲヰヱΑ. [Oﾐliﾐe]. A┗ailaHle:
https://www.privitar.com/blog/k-anonymity-an-introduction/. [Accessed 2022 April 22].

[1

5]

M. F. M. &. X. L. Chi-Yiﾐ Cho┘, さ“patial Iloakiﾐg foヴ aﾐoﾐ┞ﾏous location-based services in mobile

peer-to-peeヴ eﾐ┗iヴoﾐﾏeﾐts,ざ ヱヴ No┗eﾏHeヴ ヲヰヰΓ. [Oﾐliﾐe]. A┗ailaHle:
https://link.springer.com/article/10.1007/s10707-009-0099-y. [Accessed 22 April 2022].

[1

6]

X. Waﾐg, さLaヴge “Iale GP“ TヴajeItoヴ┞ Geﾐeヴatioﾐ Usiﾐg Map Based oﾐ T┘o “tage GAN,ざ Journal

of Data Science, vol. 1, no. 19, pp. 126-141, 2021.

[1

7]

Fuヴuﾐo, さPositioﾐiﾐg at ヱヰHz update ヴate,ざ [Oﾐliﾐe]. A┗ailaHle:
https://www.furuno.com/en/gnss/technical/tec_rate. [Accessed 20 February 2022].

[1

8]

S. S. S. J. “. Y. “. P. C. AHdelta┘aH Heﾐda┘i, さWhiIh Oﾐe is CoヴヴeIt, The Map oヴ The GP“ TヴaIe,ざ
11 May 2019. [Online]. Available:

https://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=1013&context=cs_facpubs.

[Accessed 21 February 2022].

[1

9]

,. I. M. ,. J. P. Toﾏisla┗ Kos, さEffeIts of Multipath ‘eIeptioﾐ oﾐ GP“ Positioﾐiﾐg PeヴfoヴﾏaﾐIe,ざ ヱヵ
September 2010. [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5606130&tag=1. [Accessed 22

February 2022].

[2

0]

A. M. “. Jeffヴe┞ J. Eaヴl┞, さ“ﾏoothiﾐg aﾐd Iﾐteヴpolatiﾐg Nois┞ GP“ Data ┘ith “ﾏoothiﾐg “pliﾐes,ざ
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, vol. 37, pp. 449-465, 2020.

[2

1]

Nageluﾏ, さHalf-Noヴﾏal DisヴiHutioﾐ,ざ ンヰ Apヴil ヲヰヱΑ. [Oﾐliﾐe]. A┗ailaHle:
https://en.wikipedia.org/wiki/Half-normal_distribution. [Accessed 07 April 2022].

[2

2]

Uﾐi┗eヴsit┞ of CaﾏHヴidge, さThe gヴeat IiヴIle distaﾐIe,ざ Uﾐdeヴgヴouﾐd MatheﾏatiIs, ヲΑ August
2017. [Online]. Available: https://undergroundmathematics.org/trigonometry-compound-

angles/the-great-circle-distance. [Accessed 28 April 2022].

[2

3]

K. Gade, さA Noﾐ-siﾐgulaヴ Hoヴizoﾐtal Positioﾐ ‘epヴeseﾐtatioﾐ,ざ Journal of Navigation, vol. 63, no.

3, pp. 395-417, 2010.

[2

4]

U.“. GeologiIal “uヴ┗e┞, さThe Uﾐi┗eヴsal Tヴaﾐs┗eヴse MeヴIatoヴ ふUTMぶ Gヴid,ざ U.“. Geological Survey,

Reston, VA, 2001.

[2

5]

GI“Geogヴaph┞, さWoヴld GeodetiI “┞steﾏ ふWG“Βヴぶ,ざ Β Juﾐe ヲヰヲヱ. [Oﾐliﾐe]. A┗ailaHle:
https://gisgeography.com/wgs84-world-geodetic-system/. [Accessed 28 April 2022].

[2

6]

Java T Point, さClassifiIatioﾐ Algoヴithﾏ iﾐ MaIhiﾐe Leaヴﾐiﾐg,ざ [Oﾐliﾐe]. A┗ailaHle:
https://www.javatpoint.com/classification-algorithm-in-machine-

learning#:~:text=The%20Classification%20algorithm%20is%20a,number%20of%20classes%20or

48

%20groups.. [Accessed 20 April 2022].

[2

7]

J. Delua, さ“upeヴ┗ised ┗s. Uﾐsupeヴ┗ised Leaヴﾐiﾐg: Whatげs the DiffeヴeﾐIe?,ざ IBM, ヲヱ MaヴIh ヲヰヲヱ.
[Online]. Available: https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-

learning#:~:text=While%20supervised%20learning%20models%20tend,weather%20conditions%

20and%20so%20on.. [Accessed 10 May 2022].

[2

8]

“. M. Bha┗ikkﾏuaヴ, さAd┗aﾐtages of “uppoヴt VeItoヴ MaIhiﾐes ふ“VMぶ,ざ OpeﾐGeﾐus IQ, ヰΓ Juﾐe
2020. [Online]. Available: https://iq.opengenus.org/advantages-of-svm/. [Accessed 08 April

2022].

[2

9]

H. A. R. Aヴash Jahaﾐgiヴi, さAppl┞iﾐg MaIhiﾐe Leaヴﾐiﾐg TeIhﾐiケues to Tヴaﾐspoヴtatioﾐ Mode
‘eIogﾐitioﾐ Usiﾐg MoHile Phoﾐe “eﾐsoヴ Data,ざ IEEE TRANSACTIONS ON INTELLIGENT

TRANSPORTATION SYSTEMS, vol. 16, no. 5, pp. 2406-2417, 2015.

[3

0]

X. Li, さUsiﾐg Coﾏple┝it┞ Measuヴes of Mo┗eﾏeﾐt foヴ AutoﾏatiIall┞ DeteItiﾐg Mo┗eﾏeﾐt T┞pes of
Uﾐkﾐo┘ﾐ GP“ TヴajeItoヴies.,ざ American Journal of Geographic Information System, vol. 3, no. 2,

pp. 63-74, 2014.

[3

1]

G. Boeiﾐg, さO“Mﾐ┝: Ne┘ ﾏethods foヴ aIケuiヴiﾐg, constructing, analyzing, and visualizing complex

stヴeet ﾐet┘oヴks,ざ Computers, Environment and Urban Systems, vol. 65, pp. 126-139, 2017.

[3

2]

M. V. Meeヴt Waﾐﾐes, さHMM ┘ith Noﾐ-Eﾏittiﾐg “tates foヴ Map MatIhiﾐg,ざ ヲヰヱΒ. [Oﾐliﾐe].
Available: https://leuvenmapmatching.readthedocs.io/en/latest/. [Accessed 2 April 2022].

[3

3]

“. Duffield, さHﾏﾏ: Ba┞esiaﾐ Map-ﾏatIhiﾐg,ざ ヱヱ FeHヴuaヴ┞ ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://www.theoj.org/joss-papers/joss.03651/10.21105.joss.03651.pdf. [Accessed 18 February

2022].

[3

4]

“. Gillies, さThe “hapel┞ Useヴ Maﾐual,ざ ヱΒ FeHヴuaヴ┞ ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://shapely.readthedocs.io/en/stable/manual.html. [Accessed 20 April 2022].

[3

5]

FileFoヴﾏat, さWhat is a PLT file?,ざ FileFoヴﾏat, [Oﾐliﾐe]. A┗ailaHle:
https://docs.fileformat.com/cad/plt/#:~:text=a%20PLT%20file%3F-

,What%20is%20a%20PLT%20file%3F,using%20lines%20instead%20of%20dots.. [Accessed 30

April 2022].

[3

6]

A. Guttﾏaﾐ, さ‘-tヴees: a d┞ﾐaﾏiI iﾐde┝ stヴuItuヴe foヴ spatial seaヴIhiﾐg,ざ ACM SIGMOD Record, vol.

14, no. 2, pp. 47-57, 1984.

[3

7]

W. Meeヴt aﾐd M. VeヴHeke, さHMM ┘ith Noﾐ-Eﾏittiﾐg “tates foヴ Map MatIhiﾐg,ざ European

Conference on Data Analysis, 2018.

[3

8]

S. Narkhede, 9 May 2018. [Online]. Available: https://towardsdatascience.com/understanding-

confusion-matrix-a9ad42dcfd62. [Accessed 02 05 2022].

[3

9]

Google, さClassifiIatioﾐ: PヴeIisioﾐ aﾐd ‘eIall,ざ ヱヰ FeHヴuaヴ┞ ヲヰヲヰ. [Oﾐliﾐe]. A┗ailaHle:
https://developers.google.com/machine-learning/crash-course/classification/precision-and-

recall. [Accessed 04 May 2022].

49

[4

0]

H. FヴishHeヴg, さLeaked けTikTok Algo ヱヰヱげ doI e┝poses けsadげ seIヴet to addiIti┗e feeds,ざ Ne┘ Yoヴk
Post, 7 December 2021. [Online]. Available: https://nypost.com/2021/12/07/leaked-tiktok-

document-exposes-sad-secret-to-addictive-feeds/. [Accessed 10 May 2022].

