Initial Plan Generating Fake GPS Trajectories

Author: George Haddon-Gill Supervisor: Padraig Corcoran

Project Description

The project I will be creating will generate fake GPS trajectories between two points that can be travelled between by a pedestrian. It will be coded in Python. Many location-based services (LBS), such as 'Strava' or 'Find My Friends', require users to submit their GPS trajectory which may come from a smartphone or Sat Nav system.

This project has a security application, if a user is concerned about their privacy, they may wish to obfuscate or hide their true trajectory. This security objective can be achieved by submitting to the LBS a set of fake trajectories along with the true trajectory. If the LBS or a nefarious individual cannot differentiate between the true and fake trajectories, they cannot determine which is the actual true trajectory.

The aim of this project is to develop a system for generating fake GPS trajectories which cannot be distinguished from real GPS trajectories. These fake trajectories will have to be as realistic as possible and there are various ways this can be achieved. Modelling the GPS data to have accurate noise and imprecisions - as you would see in real GPS data due to signal blockage, atmospheric conditions, and geometry etc. - will be essential for making seemingly genuine trajectories.

The success of the fake trajectories will be measured using a machine learning algorithm that will be given a training data set of trajectories labelled as whether they are real or fake. This will then classify a given unlabelled trajectory as real or fake. The closer the machine learning success rate is to 50% will determine how indistinguishable the real and fake trajectories are. Ideally, it should be no more likely to guess which is real or fake than randomly guessing.

Aims & Objectives

- Generate a path that links two points via the street network.
- Create a GPS trajectory along the path.
 - Determine how frequently the points which make up the trajectory need to occur along this path to be realistic.
- Obtain a real GPS dataset.
- Add noise to the GPS trajectory points that simulates inaccuracy in GPS data.
 - Determine which noise models are most successful in creating realistic trajectories.
- Create a way of measuring the success of a solution. A machine learning algorithm that has been trained with a large amount of real and fake data.
- Examine features of the map that could cause an impact on the GPS noise e.g. Tall buildings, forests, mountains, tunnels, etc.

Work Plan

In addition to the objectives being completed each week, there will also be a weekly meeting with my supervisor on Tuesdays. This work plan will be dynamic as the amount of time taken to complete objectives is currently unknown and so will be estimated.

Dato	Maak	Objectives
Date	Week	Objectives Works The main chiestive for this week is greating the initial
		Work: The main objective for this week is creating the initial plan, to achieve this more knowledge about the topic will need
		to be acquired. It will be dedicated to gathering as much
		reading material about the topic as possible but not yet
		, , ,
		examining the details too closely.
		Expected Outcome: Have a finished initial plan. Have a large
31/01/2022	1	albeit unrefined reading list.
		Work: Whilst research will be carried out concurrently in every
		stage of the project, this week will be the most research-
		intensive week. I aim to find out as much as possible about the
		topic and determine different directions I can take it in. I aim
		to find as many traits of real GPS data that I can add to the
		simulated GPS data to maximise its credibility. I will also
		research what python libraries I could use in the project.
		Expected Outcome: Have the introduction, background, and
		most of the approach section of the report completed. Have
		some relevant python libraries downloaded and have a better
		understanding of how they work. Be in a position where the
07/02/2022	2	system can begin being coded.
		Work: Implementation will begin this week. I intend to create
		a program which will generate a path that links two points via
		the road network, most likely this will be the shortest path.
		This path should be turned into a sequence of points that
		make up a trajectory.
		F I G. I a a a a a a a a a a a a a a a a a a
		Expected Outcome: Have a program that can link two
14/02/2022	2	geographical points via the street network. Plot points along
14/02/2022	3	this path that will comprise a fake GPS trajectory.
		Work: This week I will collect a dataset of real GPS data, that I
		can analyse the features of. Once a dataset has been found I will generate the fake trajectories in the same geographical
		location so that the comparison is fair. I will add some noise to
		the data – this will need to be perfected over time.
		the data - this will need to be perfected over time.
		Expected Outcome: Have access to an appropriate dataset of
		GPS data. Have a program that is able to generate GPS
		trajectories with a function that can apply noise to that data
		(i.e. move points by a set amount), this noise function will
		have parameters that can be adjusted to vary the amount of
21/02/2022	4	noise etc.
, - ,	l .	

	1	
		Work: Some time will be set aside this week to get the report
		up to date with what has been created so far. Machine
		learning libraries will be researched, and time will be spent
		learning how to use the chosen machine learning library.
		Expected Outcome: The implementation section of the report
		will be filled out to this stage in the program's development. I
		will have a machine learning library downloaded that I have
28/02/2022	5	learnt how to make a basic classification system in.
		Work: The machine learning algorithm will be applied to my
		implementation, and it will be trained with a real GPS dataset
		and the current basic noise model version of the fake GPS
		trajectories.
		,
		Expected Outcome: A working machine learning model that
		can distinguish between real and the current basic fake
		trajectories. An evaluation of how well it can differentiate
07/03/2022	6	between real and fake trajectories.
,,	-	Work: Data will be collected from the machine learning
		algorithm for use later on when comparing which techniques
		generate the most realistic fake trajectories. A comparison
		between the most basic noise model and no noise model will
		be carried out and the results documented.
		be carried out and the results documented.
		Expected Outcome. The machine learning algorithm will be
		Expected Outcome: The machine learning algorithm will be
		fully working. A comparison of different noise parameters and
14/02/2022	_	no noise model at all will be carried out and documented in
14/03/2022	7	the report under the evaluation section.
		Work: Research and compare various types of noise to apply to
		the data. Change parameters to try and home in on the most
		optimal solution using the machine learning algorithm to
		assess the success.
		Expected Outcome: Have a way to choose and model different
		types of noise in the program. Have an idea of the best noise
21/03/2022	8	model for the data and some optimal parameters.
		Work: Formally document the data gathered in the previous
		week. Find a way to determine if there are "hot spots" on the
		map where the GPS signal would be worse such as tall
		buildings or tunnels – and how much worse it would be.
		Expected Outcome: Using data analysis techniques such as
		graphs and tables, I will show which is the preferred noise
		model. Have a way to find points of interest on a map where
28/03/2022	9	signal quality will be worse.
		Work: Using this data make changes to the noise model of the
		data to factor in that signal strength is not linearly distributed
		over the whole map and certain areas will be worse than
		others for inaccuracy.
04/04/2022	10	
	1	•

CM3203 – Individual Project (40 credits)

		Expected Outcome: Have a feature that can be turned on or
		off that incorporates these areas of worse signal into the noise
		model. Compare this graphically when using different noise
		models with this feature turned on or off and add this to the
		report.
11/04/2022	Easter	Easter will be reserved as contingency time for if setbacks
18/04/2022	Easter	occur. It will be used to get caught up to where the work
25/04/2022	Easter	should be according to the time plan at this point.
02/05/2022	11	Work: These final two weeks will be for perfecting and
		finalising the report and the statistical analysis of the data. I
		will reach conclusions on the success of my project and how
		different additions to the simulations had improved or
		worsened the reliability of the results.
		Expected Outcome: Conclusion, results and evaluation section
		of the report will all be finished. Future work and reflections
09/05/2022	12	will be added. Report finished.