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ABSTRACT 

 

In the age of technology, malware attacks are occurring every day around the world. 

These attacks involve malicious software that can lock up essential files, spam you 

with ads, or redirect you to malicious websites, which can result in anything from 

data theft to the destruction of entire systems or devices. Cybercriminals use 

different types of malware like trojans, ransomware, spyware, or worms to infect 

individuals or organisations. Machine learning is a credible technology in today’s day 
and age. The concepts of machine learning can be applied to the process of 

malware detection in order to efficiently detect and prevent malware activities. The 

project aims to apply machine learning to predict a computer’s probability of getting 
infected by various families of malware based on different properties of that machine 

using three types of machine learning models: namely, LightGBM, XGBoost, and 

Neural Network. These models are trained on a dataset published by Microsoft of 

Kaggle with over 80 features from the reports from Windows Defender. Before 

implementing the models, data pre-processing, feature engineering and exploratory 

data analysis were carried out. Once successfully implemented, these models then 

find similarities and patterns between the data to perform Classification. Python 

programming language and Jupyter Notebook were used during the entire duration 

of the project.  
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1. Introduction 

In the 21st century, the internet has become a necessity for individuals and 
organisations. There is an exponential growth in cyberattacks, especially during the 
COVID-19 pandemic, cyberattacks have increased by 600% (Helen, 2021). Hackers 
are designing malicious software to install into networks or the victim's machine. This 
malicious software is called malware. It is an intrusive software designed to damage 
and destroy computers and systems. Malware can crack weak passwords, bore into 
systems, and spread through networks.  

Everyday windows users are a target of a huge number of malware designed by 

attackers looking to find vulnerabilities. This is where Malware detection comes into 

place. Malware detection is the process of scanning the computer and files to detect 

malware. It effectively mitigates a possible security breach because it involves 

multiple tools and approaches. There are multiple approaches to detecting malware, 

like sandboxing, where we detect malware by testing a code in an isolated 

environment; heuristic analysis, where a baseline for standard activity is defined for a 

system and any deviations in behaviour are observed. There is also Endpoint 

Detection and Response, EDR, which monitors and logs events from the endpoint, 

this data can be used to analyse the behaviour after the computer is infected by 

malware. Lastly, machine learning malware detection can be used to train systems 

to differentiate between malware and benign files and predict if the computer has 

malware or not. Using machine learning models that learn and improve constantly 

would add a higher level of security in networks and systems as it can keep pace 

with malware development.  

 

1.1. Research Questions  

This project aims to explore the following research questions: 

Research Question 1: Can machine learning algorithms be used to predict if a 

windows machine has malware? 

Research Question 2: Which machine learning binary classification model performs 

best in predicting if a windows machine has malware? 

These questions will be explored by delving into machine learning for malware 

prediction by implementing different Machine Learning classification models and 

evaluating metrics to identify the best technique to solve this problem. To train these 

models, a telemetry dataset containing these properties of windows computers and 

the machine infections will be used. This dataset was generated by combining 

heartbeat and threat reports collected by Microsoft's endpoint protection solution, 

Windows Defender. 

 



1.2. Aims and Scope 

The primary aim of this project is to implement a machine learning model that 

gives the best results in predicting a computer's probability of having malware using 

the properties of a Windows computer.  

This aim will be achieved by investigating and evaluating the performance of 

different classification algorithms to identify the best machine learning model. This 

project's scope expands to examining which Machine learning classification model is 

efficient in terms of time, accuracy, precision, and other metrics. The novel approach 

here is implementing three different algorithms in order to compare tree-based 

models to artificial neural networks. The algorithms discussed in detail further are 

LightGBM, XGBoost and Neural Network. The models were chosen based on the 

literature review and the popularity of different machine learning forums. The 

hyperparameters will be tuned for each of these algorithms to achieve the highest 

possible accuracy. This is discussed in detail in the Implementation (Section 4) and 

results (Section 6) 

 

1.3. Intended Audience 

The intended audience for this project is researchers, students, analysts, or 

individuals interested in understanding more about the domain of the application of 

machine learning algorithms for malware prediction.  

 

1.4. Report Structure 

The rest of this report is divided into multiple sections, as explained below:  

Section 2 throws light on the background research undertaken to understand the 

fundamentals of the problem. In this section, an extensive literature review is 

conducted, exploring the history of cyber security, machine learning and prior 

research that exists within the domain of cyber security in Machine learning. 

Complementing this is a systematic literature review, and an in-depth critical analysis 

of specific literature has also been presented. Section 3 discusses the approach and 

provides an explanation of the steps taken to complete this project, giving a clear 

description of the problem and the machine learning algorithms that have been 

implemented along with the methodology used to solve this problem. Section 4 is 

Implementation; this section takes a deeper look into how machine learning models 

can provide the best solution to the problem and highlights key decisions that were 

taken in the Implementation of the code. Section 5 focuses on testing and depicts 

the results of the implementation stage using a well-devised testing plan that has 

been used to evaluate the project along with other testing techniques. The results 

have been critically analysed and discussed. Section 6 discusses the results and 

evaluation to measure the success of the project by critically analysing and 

evaluating the results of the machine learning models that have been implemented. 

Section 7 contains the conclusion and future work, i.e. an in-depth assessment of 

the research that has been conducted is provided, accompanied by limitations of the 



project and future work that can be considered to improve the research. Section 8 

finally contains a Reflective piece on knowledge gained, challenges faced, and 

improved alternatives learned during the completion of this research.  

  



2. Background 

2.1. History of Cyberattacks  

A cyber-attack is a deliberate assault launched by cybercriminals against 

individuals or information systems (NCSC, 2019), Cybercrime has been increasing 

ever since people have been trying to benefit from vulnerable networks and systems. 

An attack carried out by a skilled individual may be targeted and contain multiple 

levels.  

Cyber-attacks are evolving continuously by becoming more and more sophisticated. 

(Climer, 2018) The first denial of service (DoS) attack in history was in 1988, when 

Robert Morris created a computer worm and slowed the early internet down. This 

worm was not written to damage but to draw attention to security issues like weak 

passwords. However, the code managed to duplicate the worm exponentially and 

caused not only damages worth $10,000,000 but also a partition of the internet for 

several days.  

In the following year, 1989, the first Ransomware attack surfaced. AIDS Trojan was 

created by Joseph Popp to extort people for money. This was dispersed through a 

floppy disk and was easily removable due to poor design – in the sense that it was 

only scrambling the names of the files rather than the contents, which made the files 

usable.  

The next year, 1990, marked a significant point in the history of cyberattacks. The 

Computer Misuse Act was passed in the United Kingdom (Townsend, 2019) – which 

stated that unauthorised attempts made to access computer systems are illegal. This 

act is still in practice with some modern additions and amendments made through 

these years. 

In the current time, malware circulated has exponentially increased with the use of 

exploit kits and automated SQL injections. The next sections discussed the history of 

Malware attacks in further detail. 

 

2.2. Introduction to Malware attacks  

Malware is an amalgamation of the term malicious software. This is an 

application created by an individual or a group with malicious intent. Malware can 

include spyware, ransomware, viruses, and worms. Malware breaches a network 

through a vulnerability, usually with hidden goals like blocking access to key network 

components, installing destructive software, stealthily obtaining information by 

transmitting data from the hard drive, disrupting certain components, and rendering 

the system inoperable (Mary Landesman, 2021). 

In the early years, spreading malware was done manually by human hands; this 

meant carrying floppy disks from one computer to another. As the internet matured, 

the idea of hackers getting malware onto as many computers came into practice. 

This extends back to the 1970s when a self-replicating program called the Creeper 



Worm gained access via the ARPANET and copied itself to remote systems. From 

then until 2000, there were a few primitive malware attacks like Wabbit, another self-

replicating program that reduced system performance. Brain Boot Sector Virus was 

the first virus to affect MS-DOS computers. PC-Write was the first trojan that was 

disguised as a shareware program, and it would erase everything on a computer 

once installed by the user. However, 1988 was the first time someone was convicted 

of authoring malware; Robert Morris created the Morris worm that affected most 

machines on the ARPANET and rendered the network unusable within 24 hours. 

From 2000 (Rankin, 2018), malware attacks grew significantly in speed and number. 

This decade also marked the growth of email worms and malware toolkits. SQL 

injections were also rising and, at a point, became the number one threat to 

individuals and organisations. The infamous ILOVEYOU Worm was an email virus 

that shut down the email servers of over 50 million devices, including huge 

government bodies like the Pentagon and British Parliament: causing global 

damages worth 5.5 billion dollars. There was then the SQL Slammer worm which 

affected 75000 devices in 10 minutes and caused a worldwide slowing down of 

internet traffic via denial-of-service.  

In the next decade, we noticed a rise in state-sponsored malware along with more 

sophisticated and profitable attacks. Malware attacks have become more targeted 

and well-funded for malicious groups that continuously work to develop programs 

that can outsmart anti-malware systems. The beginning of this decade, 2010, 

marked the release of Stuxnet Worm. An entire team of developers designed this 

malware to attack Iran's nuclear program and damage not only the hardware but also 

the software. It has by far been called the most resource-intensive malware to date. 

We also saw one of the first ransomware programs, called Cryptolocker – this 

program utilised a trojan that targeted all computers running Microsoft Windows. As 

of recent, we heard about the WannaCry Ransomware, which was discovered by the 

National Security Agency and brought 150 countries, including Russia, China, the 

United Kingdom, and the United States of America, to their knees. This ransomware 

locked individuals and organisations out of their personal data and kept it so that 

until a payment was made in case the user refused to make a payment, they would 

lose all their data. It was especially difficult for industries like medical, financial and 

telecommunications.  

Currently, we are seeing organisations deploy anti-malware solutions that help users 

avoid most of the damage from malicious software (Microsoft, 2022). Windows 

Defender is Microsoft's endpoint protection solution. Microsoft Defender Antivirus is 

preinstalled into Windows 10, Windows 11, Windows Server 2019, Windows Server 

2022, and Windows Server 2016. This program helps review the security status of a 

device and receive alerts in case of an issue. Microsoft endpoint manager can also 

be used to monitor the Defender Antivirus.  

 



2.3. Introduction to Machine Learning 

American pioneer Arthur Lee Samuel first coined the definition of machine 

learning in 1959. He stated, 'Machine learning is the field of study that enables 

computers to learn without specifically being programmed.' A more formal definition 

was written in 1997 by T. Mitchell, stating, 'A computer program is said to learn from 

experience E with respect to some class of tasks T and performance measure P if its 

performance at tasks in T, as measured by P, improves with experience E.' The 

basis of Machine Learning is to train a model based on an algorithm most suited to 

the task at hand. In this project, the task is Classification. To perform Classification, 

ML supplies an automated, adaptive approach that can extract data provided in the 

form of training sets using a model and then use this information to classify new data 

(Sidath Asiri, 2018). 

 

 

Figure 1 Machine Learning Process 

In recent years, the emergence of Machine Learning algorithms has become an 

essential tool in the field of Cyber Security. With the ability of machine learning to be 

leveraged to improve malware detection, triage events, recognise breaches and alert 

organisations of security issues, the cyber security industry can benefit, and its 

landscape can be altered, benefiting individuals and significant corporations around 

the world.  

 

2.4. Use of ML for malware detection  

Machine learning is an ever-evolving field; I will further discuss how it uses 

algorithms to process large sets of data. In cybersecurity, machine learning is 

helping us develop more sophisticated cybersecurity tools to recognise patterns, 

learn from them and prevent future attacks using threat hunting. There are multiple 

use cases for machine learning enhancing threat detection. For instance, cutting 

down false positives – Machine learning-based security programs do not interrupt 

the flow of traffic on a system as they can make smart decisions and block out 

malicious software without depending on rulesets. Another use case would be noting 

inconsistencies in patterns of transmitted data during threat hunting - The algorithm 

might not recognise the inconsistency as a known threat, but the inconsistency could 



trigger further investigation. Malware prediction modelling is the key use case under 

Artificial Intelligence for Cybersecurity (Holmen, 2022) – supervised ML can train 

machines to detect harmful files, create a model of what the malware looks like and 

then block that malicious software in the future. This use case certainly has some 

drawbacks, like not being able to account for malware variants, however, it can 

constantly learn from newly updated data and revise the model as and when 

required.  

Almost every cybersecurity solution is basically learning from past and current issues 

and using that knowledge to improve future protection (Fidelis Cybersecurity, 2020). 

This is where machine learning comes in, in the sense that we are able to learn and 

operationalise 'patterns' that help us understand what is malicious. Known hashes of 

malicious programs, websites hosting malware, and email addresses used for 

phishing and spamming are all part of the knowledge we need for future protection. 

This knowledge is very large, and identifying, classifying, and operationalising 

millions of such files a day is difficult. However, to solve this issue, we have 

Supervised Machine Learning Algorithms that can create models with rules that 

would be able to classify known malicious programs from non-harmful programs. 

Supervised Machine learning can also be predictive, which would identify malware 

that has not been sampled or known beforehand.  

The use of supervised machine learning for detecting malware files is based on 

different aspects of the files (structure of the file, content in the file, use of different 

characteristics in file formats, behavioural patterns of the file when executed or 

launched in application) has become common in the industry and has conclusively 

demonstrated to be rather successful in detecting future threats. There are 

numerous other applications for Supervised ML, such as identifying if new domain 

names and certificates closely match known malware activity. 

Instead of pattern recognition, we could also have looser rules of recognition, which 

means that an operator can discover a pattern that is not 'consistent' in time, 

therefore, hinting to a potential threat, thereby encouraging the operation to 

investigate a possibly malicious event. To find these patterns that are inconsistent, 

unsupervised machine learning algorithms can be used to create a standard or basis 

of the usual network traffic activity for users. This standard can then be used to 

compare and detect unusual activity that may lead the operator to conduct further 

investigation to understand if it is truly a malicious threat. The use of unsupervised 

machine learning algorithms in the current age requires a threat hunting platform in 

order for an operator to spot anomalies and further hunt and investigate those to 

detect threats. There may, however, be several anomalies that have no support from 

a threat hunting platform. This makes them of no value during threat detection and 

may create a large number of false positives that are of no use to the operators. On 

the other hand, if an anomaly has evidence and data to back up the investigation, it 

can be used to advance threat detection and reduce the impact on an individual or 

an organisation. 



2.5. Literature review 

In this section of a systematic review, web sources such as Google Scholar, 

Kaggle, and GitHub have been used to create a literature review. A total of 63,600 

results were returned when the query ‘Machine Learning for Malware Detection was 

searched in the primary web source Google Scholar. The search was further 

concentrated by additionally specifying machine learning models like ‘LightGBM’, 
‘XGBoost’ and ‘Neural Networks. Another query to find similar pieces of literature 

was 'Machine Learning for Malware Prediction'; this search returned 36,700 results. 

Eventually, nine suitable pieces of literature were identified in Table 1. The table 

features the authors, the title of the study, and the dataset used and recognises the 

Machine Learning models and the outcomes highlighted. 

Table 1 Systematic Literature Review 

Authors Title Dataset ML 
Algorithm 

Outcomes  

Leevy, J.L., 
Hancock, J., 
Zuech, R. et 
al. 

Detecting 
cybersecurit
y attacks 
across 
different 
network 
features and 
learners 
(Leevy et 
al., 2021) 
 

CSE-CIC-
IDS2018 
dataset: 16 
million 
instances 

Decision 
Tree, 
Random 
Forest, 
Naive 
Bayes, 
Logistic 
Regression
, Catboost, 
LightGBM, 
or 
XGBoost 

Feature selection 
technique yields 
performance like, or 
better than, using all 
features. 
Including the 
‘Destination_Port’ 
feature has a 
significant impact on 
performance in terms 
of AUC. 

Al-Omari, 
M., 
Rawashdeh, 
M., 
Qutaishat, 
F. et al. 

An 
Intelligent 
Tree-Based 
Intrusion 
Detection 
Model for 
Cyber 
Security (Al-
Omari et al., 
2021) 
 

UNSW-NB 15 
dataset from 
the Cyber 
Range Lab of 
the Australian 
Center for 
Cyber security 
with 175,341 
records. 

Tree-based 
model 
(Intrusion 
detection 
tree) 

The paper presented 
an intelligent tree-
based intrusion 
model that was able 
to effectively and 
efficiently 
predict/detect 
cyberattacks.  

Rajesh 
Kumar, 
Geetha S 

Malware 
classificatio
n using 
XGBoost-
Gradient 
Boosted 
Decision 
Tree 
(Kumar and 
S, 2020) 

EMBER dataset 
consists of 1.1 
million entries 
with a label for 
malware, 
benign, and 
some parts left 
as unknown 

Classifier 
using 
XGBoost: 
Extreme 
Gradient 
Boosting  

A model was trained 
using low 
computation 
resources in 1315 
seconds with a 
reduction in the 
feature set. The 
hyperparameter 
tuned model gives 
improved 



performance for 
accuracy of 98.5 and 
on par AUC of .9989. 

Evgeny 
Burnaev, 
Dmitry 
Smolyakov 

One-Class 
SVM with 
Privileged 
Information 
and Its 
Application 
to Malware 
Detection 
(Burnaev 
and 
Smolyakov, 
2016) 

Microsoft 
Malware 
Classification 
Challenge 
dataset: 0.5TB, 
consisting of 
disassembly 
and bytecode of 
more than 20K 
malware 
samples 

Combining 
Support 
Vector 
Machines 
and 
learning 
using 
privileged 
information 
and 
training 
SVDD and 
One-Class 
SVM 

Privileged 
information can 
significantly improve 
anomaly detection 
accuracy. 

Qiangjian 
Pan, 
Weiliang 
Tang, Siyue 
Yao 

The 
Application 
of LightGBM 
in Microsoft 
Malware 
Detection 
(Pan, Tang 
and Yao, 
2020) 

Microsoft 
Malware 
Prediction 
dataset on 
Kaggle: 9 
million rows and 
83 attributes 

Logistic 
Regression
, KNN, 
Light 
Gradient 
Boosting 
Machine 

LightGBM is a 
gradient boosting 
framework that uses 
the tree-based 
learning algorithm, 
and it shows the best 
performance among 
the three models 

McLaughlin, 
Niall and 
Martinez del 
Rincon, 
Jesus and 
Kang et al  

Deep 
Android 
Malware 
Detection 
(McLaughlin 
et al., 2017) 

Raw Dalvik 
bytecode of an 
Android 
application 

Deep 
Convolutio
nal Neural 
Network 

The paper presents a 
novel Android 
malware detection 
system using deep 
neural networks and 
achieving 69% 
accuracy using 
cross-validation. 

Taeshik 
Shon, 
Yongdae 
Kim, 
Cheolwon 
Lee and 
Jongsub 
Moon 

A machine 
learning 
framework 
for network 
anomaly 
detection 
using SVM 
and GA 
(Shon et al., 
2005) 

MIT Lincoln Lab 
Dataset 

Genetic 
Algorithm 
and 
Support 
Vector 
Machine 

In this paper, the 
proposed machine 
learning framework 
outperforms network 
intrusion detection 
systems using a 
genetic algorithm 
and support vector 
machines as two 
important 
components of the 
framework. 

M. 
Bensalem, 
S. K. Singh 

On 
Detecting 
and 
Preventing 

Optisystem 
software to 
simulate a 
jamming attack 

Artificial 
Neural 
Networks, 

A machine learning 
framework was 
proposed for 
detecting and 



and A. 
Jukan 

Jamming 
Attacks with 
Machine 
Learning in 
Optical 
Networks 
(Bensalem, 
Singh and 
Jukan, 
2019) 

and generate 
experimental 
datasets 

Support 
Vector 
Machine, 
K-nearest 
Neighbour, 
Decision 
Trees, 
Naïve 
Bayes, and 
Logistic 
Regression 

preventing jamming 
attacks in optical 
networks, where it 
was found that 
Artificial neural 
networks performed 
the best accuracy 
and time complexity 
to detect and localise 
out-of-band power 
jamming attacks.  

Isra’a 
AbdulNabi∗, 
Qussai 
Yaseen 

Spam Email 
Detection 
Using Deep 
Learning 
Techniques 
(AbdulNabi 
and 
Yaseen, 
2021) 

Spambase data 
set from the 
UCI machine 
learning 
repository & 
Spam filter 
dataset from 
Kaggle 

BiLSTM 
model, 
compared 
with KNN 
[n-
neighbours
=3] 

Bert contextual word 
embedding improves 
the capability 
of detecting spam 
emails compared to 
Keras word 
embedding. 

 

From the Systematic Literature review: 

A more specific search was conducted in this literature review using a specific 

search technique. From the systematic literature review seen in Table 1, it can be 

seen that several research papers have identified the use of machine learning 

algorithms applied to predict/detect malware. Instead of using traditional statistical 

analysis methods to predict malware, Pan, et al turn to other methods using machine 

learning and data mining (Pan, et al Tang and Yao, 2020). The paper also proposes 

to report the results of three algorithms, including Logistic Regression, K-Nearest 

Neighbours and LightGBM and compare these results to pinpoint the algorithm best 

suited for predicting the possibility of malware on the Microsoft Malware prediction 

dataset on Kaggle. In work conducted by Pan et al, a thorough explanation is 

provided in the steps taken to clean the dataset along with reasons why the 

dimensionality of the dataset was reduced from 83 to 42 columns using Chi-square 

testing. The selection of the LightGBM model is supported by the work conducted by 

Ke et al as it can be concluded that LightGBM ‘speeds up the training process of 
conventional gradient boosting decision trees by up to over 20 times achieving 

similar accuracy.' Kumar et al use a similar approach to Pan et al by choosing a tree-

based algorithm, however, instead of working with LightGBM, Kumar uses the 

XGBoost algorithm on the EMBER dataset, which consists of 1.1 million entries with 

a label of malware. Kumars comparison between XGBoost and other classification 

models shows that the XGBoost algorithm performed the best, achieving 98.2% after 

hyper tuning specific parameters such as various learning rate values ranging from 

0.01 to 0.2 and a n_estimator value of 600 (Kumar and S, 2020). Other machine 

learning algorithms have also been used in the prediction/detection of malware, 

which is seen by McLaughin et al., who use deep convolutional neural networks for 

malware classification. McLaughin explains the various layers required to build the 



Deep Convolutional Neural Networks model consisting of an opcode embedding 

layer and convolutional layers and reports the model's findings. This paper also 

reports that on the small Raw Dalvik bytecode of an Android application dataset, the 

convolutional neural network achieved an accuracy of 98%, on a larger dataset, an 

accuracy of 80% and on a larger dataset, an accuracy of 87%. Looking closer at the 

results, it can be interpreted that the model performs well on the very large dataset 

achieving a precision of 0.87and a recall of 0.85 (McLaughlin et al., 2017).  

 

2.6. Research Gap  

In recent times it has been reported that UK firms are 'most likely to pay’ (Tidy, 
2022) ransomware hackers epitomising the threat of cyber-attacks and the need for 

machine learning models that can predict/detect malware. With around 82% of 

companies in the UK being likely to pay hackers to retrieve their data and 56% of 

global companies being victims of cybercriminals, the importance of the research 

conducted in the previous section is emphatic. The development of machine learning 

algorithms must be continued to reduce the number of malware cyber-attacks and 

enable companies to provide an extra barrier of security. An evident research gap 

has been identified from the research conducted, which is the prediction of malware 

given several features. The solution being proposed includes the exploration of the 

Microsoft Malware Prediction dataset found on Kaggle, which will be analysed, 

cleaned, and pre-processed before using creating machine learning models to 

predict the probability of malware on a windows machine. 

  



3. Approach  
3.1. Introduction 

This project will predict a Windows machine’s probability of getting infected by 
various families of malware based on the different properties of that machine using 

the Microsoft Malware Prediction Dataset from Kaggle. Malware detection is a binary 

classification. In this project, one refers to the presence of malware and 0 refers to 

the machine being malware-free. To implement these classifiers, I will use ML 

algorithms that will be trained using the dataset that has been generated by 

combining heartbeat and threat reports collected by Microsoft's endpoint protection 

solution, Windows Defender. The most common ML models derived from the 

literature review are tree-based models like Light Gradient Boosting Machine 

(LightGBM), XGBoost, AdaBoost, and CatBoost. Also popularly used classifiers are 

Random Forest (RF), Support Vector Machine (SVM), Naïve Bayes (NB) and Neural 

Networks (NN). From my literature review, the popularity of Tree-based machine 

learning algorithms has grown due to two reasons. The first is the ability of Tree-

based algorithms to handle diverse data without the need of pre-processing raw data 

extensively, and the second is the fast computational Implementation of Tree-based 

algorithms. These two reasons have been highlighted by the work of Kern et al., who 

demonstrate diverse, prospective implementations of Tree-based algorithms along 

with discussions of previously implemented models (Kern, Klausch and Kreuter, 

2019). 

Neural Networks have also proved to be efficient in clustering and classifying data 

when trained on a labelled dataset. Thus, the following section of this report will 

highlight LightGBM, XGBoost and Artificial Neural Networks. 

The flowchart of this approach is seen in Figure 2. 



 

Figure 2 Flow of Implementation 

 

3.2. Ingestion of data 

Data ingestion will be done using Pandas, this process includes moving data 

from the local drive into a Pandas Dataframe structure (phadnispradnya, 2021). The 

source file is a Comma Separated Values (.csv) file and can be ingested using the 

pd.read_csv('train.csv') as our dataset is called train.csv. This process is also 

discussed in detail in the Implementation section 4.1.1. 

 



3.3. Explanatory data analysis  

EDA is one of the first steps in implementing a machine learning algorithm. It is 

an approach for gaining the highest level of insight into the data imported (NIST, 

2019). During EDA, the data will be investigated and summarised for its main 

characteristics. Most of the findings will be represented graphically. It will also find 

anomalies in the data and understand how the dataset will be modified during 

prepossessing.  

 

3.4. Data Pre-processing  

Date pre-processing involves transforming the raw data from the source file into 

an understandable and useful format. Once data analysis is complete, pre-

processing will be done to make the dataset more complete and efficient to improve 

the performance of classification models. This process includes data cleaning, which 

makes sure there is no unnecessary data tampering with the accuracy of the models 

later. 

 

3.5. Classification Models  

3.5.1. LightGBM model 

LightGBM (Bachman, 2018) is a gradient boosting framework that is based on a 

decision tree algorithm. It is an open-source library that can be used for ranking as 

well as Classification. It splits the tree leaf-wise with the best fit, unlike other boosting 

algorithms that split the tree depth-wise. LightGBM gives better accuracy than other 

boosting algorithms because leaf-wise algorithms reduce loss more than level-wise 

algorithms. It is also more efficient in terms of speed.  

 

Figure 3 Leaf wise tree growth in LightGBM 

There are multiple advantages to using LightGBM, like low memory usage – and 

replacing continuous values with discrete bins. It is compatible with big datasets and 

performs well, along with a substantial reduction in training time. Even though leaf-

wise splitting can lead to overfitting due to increased complexity, it can be repaired 

by specifying another 'max-depth' parameter.  



3.5.2. XGBoost model  

XGBoost stands for eXtreme Gradient Boosting. It is an implementation of a 

scalable, distributed gradient boosting decision tree (GBDT) designed for better 

speed and performance (Jason Brownlee, 2016). It accomplishes machine learning 

tasks like regression, Classification, and ranking (NVIDIA, n.d.). It builds upon the 

concept of supervised machine learning, which, as discussed before in this report, 

uses algorithms to find patterns in datasets. This is done by training a model with a 

labelled dataset and then using the same to predict the labels on a new dataset. 

XGBoost, unlike LightGBM, follows a level-wise splitting strategy. This means it 

scans across all gradient values, and with these partial sums at every split, it 

evaluates the quality of the splits in the training set.  

 

Figure 4 Level wise tree growth in XGBoost 

XGBoost also has an extensive list of benefits. This is an open-source development; 

therefore, machine learning enthusiasts all over the world are constantly contributing 

to the project. The machine learning models created have a highly efficient 

combination of prediction performance and execution speed – due to this reason, it 

appears most frequent on Kaggle as a go-to algorithm for winners of competitions.  

 

3.5.3. Artificial Neural Networks 

Neural networks (Nicholson, n.d.) are modelled based on the human brain, they 

help recognise patterns, interpret data through machine perception and help classify 

input data. The data classified can be numerical and contained in vectors. In this 

case, neural networks were chosen because they also extract features that are fed 

into other algorithms. However, the end goal of using his is to help group unlabelled 

data based on the similarities between the input data, which is achieved when neural 

networks have a labelled dataset to train on. Neural Networks consist of artificial 

network functions, commonly known as parameters, similar to other classification 

algorithms. These parameters receive multiple inputs and produce one output each. 

These outputs are passed on as input to the subsequent layers of parameters, and 

this goes on until each layer of the parameters has been considered and the last 

parameters have received an input – these last parameters give the final result of our 

model. 



 

Figure 5 Visual representation of a Neural Network 

Figure 5 shows a simple neural network, the initial input is 'x', and it is passed to the 

first layer of parameters, which are also called neurons. The neurons are 

represented by h1, h2, and h3 – these functions generate output and pass it on to the 

second layer represented by g1 and g2. Once the output is calculated from the ‘g’ 
layer, it is combined to yield the model's final output, 'f'. 

 

3.6. Agile Methodology 

The project adheres to an agile methodology. This methodology consists of six 

key stages which were followed in this project. The problem was defined, and a 

fundamental understanding was built from the research conducted in Cybersecurity 

and Machine Learning. Through the conducted research, a thorough plan and 

direction were given to the project by setting up paths to design and implement the 

project. A plan was formed outlining the project goals that must be met at the end of 

the process. An agile methodology allows these checkpoints to be updated 

depending on any extra features that need to be implemented. The planning stage 

highlighted the technological equipment which will be used for the machine learning 

models and the time frame for the project to be completed. This stage includes 

milestones set specifically for this project.  

The design stage is another vital stage that has been depicted in the diagram above. 

This stage includes defining the approach that will be a foundation for the project and 

help during the Implementation. 

The implementation stage uses the fundamentals gathered from the planning, 

literature review, and design stages to code the proposed models, hyper tune the 

parameters, and then evaluate them. 

The testing stage checks that the Implementation of the system has been performed 

correctly, ensuring all the functionalities work well.  

The results of the tests are then analysed, and a conclusion is drawn as to which 

model performs the best in terms of accuracy, computational power, and time. 

 



4. Implementation 
4.1. Design and Implementation  

4.1.1. Dataset  

The dataset (Kaggle, 2018) used for this study was acquired from Kaggle. 

Microsoft provided an extraordinary new dataset to encourage open-source 

collaboration for predicting malware. This dataset follows its malware challenge in 

2013 (Kaggle, 2013). However, this telemetry dataset generated by combining 

heartbeat and threat reports collected from Microsoft’s endpoint protection solution – 

Windows Defender, contains properties of a machine and infections. This dataset 

was, of course, sampled, keeping in mind various business limitations in terms of 

privacy and during the machine running. It was noted that Malware Detection, in its 

essence, is a time-series problem which means that observations close to each 

other in time are similar compared to observations far away. However, this time 

series problem is made complicated when new machines are introduced, when 

machines are not always online or when machines receive patches and are updated 

with new operating systems. Microsoft also highlighted that the dataset was roughly 

split by time and does not represent its customers because there had to be a large 

number of malware machines sampled to balance the dataset. 

The train.csv dataset was downloaded and used as labelled information to train the 

three models discussed earlier. Each row in the datasets corresponds to a machine 

with the primary key 'MachineIdentifier', which, as the name suggests, is a unique 

machine ID. Another key column is ‘HasDetections’ which is the ground truth – it is a 

binary value for each machine, indicated by 1 or 0 if malware was detected on the 

machine or not respectively.  

The first step was to start the data processing, for which I imported the dataset into a 

Jupyter notebook. The implementation code used to read the train.csv file and 

convert it into a dataframe (df) was using a python library ‘Pandas’.  

Once loaded, it was noted that this data contained 83 columns, also known as 

features and 8921483 rows. Keeping computational time and computational power in 

mind, the dataset was scaled down to 1 million rows and stored as shortSet.csv.  

 

4.1.2. Exploratory Data Analysis 

A sum of 0s and 1s was calculated to check if the dataset was balanced. The 

total number of machines with malware was 499813, and 500187 machines had no 

malware present. As we can see from this information, the training dataset contains 

equal amounts of positive and negative detections, concluding that the dataset is 

balanced. A balanced dataset is vital so that the model is not biassed towards a 

specific value of 'HasDetections' and can classify the data accurately.  



 

Figure 6 Bar Graph for 'HasDetections' 

Each column in this dataset represents a property of the machine, and these are 

divided into three types:  binary, numerical and categorical. To find how many 

columns belong in each category, conditions were added for each of the categories 

to define them.  

Once defined, I used the python 'Plotly' library to create a visualisation in the form of 

a pie chart.  

 

Figure 7 Pie Chart for column category 

This graph confirmed that the dataset contains 55 categorical columns, 20 binary 

columns, and eight numerical columns. From this chart, we know that majority of the 

columns are categorical, and this is important to know because, in order to build a 

machine learning model at a later stage, if we have categorical columns, we will 

have to implement encoding so that the machine learning algorithms can understand 

that it is a categorical variable and use them accordingly.  

Following this, it is essential to calculate how many unique values are present in 

each categorical column, this is called cardinality. For binary columns, the cardinality 

is two, as it represents unique values in any given volume. To find this for categorical 

columns, I plotted a bar graph using plotly. As you can see in Figure 8, the top few 

columns have big bars, and the ones in the bottom are almost negligible – this is 



because the highest value on the x-axis is 60 thousand. The reason for such high 

unique values, or to say cardinality count in the top variables, is that they are some 

sort of identifier. Now, these categorical variables that have high cardinality will be 

encoded. 

 

Figure 8 Categorical Cardinality 

I decided to pick out the first seven categorical columns with the highest cardinality, 

i.e., 'Census_OEMModelIdentifier', 'CityIdentifier', 

'Census_FirmwareVersionIdentifier', 'AvSigVersion', 

'Census_ProcessorModelIdentifier', 'Census_OEMNameIdentifier', and  

'DefaultBrowsersIdentifier' for feature engineering.  



4.1.3. Feature Engineering 

Feature Engineering is an integral step in the usage of machine learning, and it is 

the practice of using domain knowledge of the data to create features that make 

machine learning algorithms work. If feature engineering is done successfully and 

accurately, it helps increase the prediction power of the algorithms by creating 

features from raw data. This is always implemented before defining the model.  

There are multiple categorical columns in almost every dataset where the variables 

are stored as strings (text values), whereas machine learning is based on 

mathematical equations. If we were to keep categorical columns, it might cause 

problems. There are certainly some algorithms that support categorical data, but for 

the purpose of uniformity, I decided to encode the ones with the highest cardinality. 

There are multiple encoding techniques like nominal encoding, where the order of 

the data doesn't matter; ordinal encoding, where the order of the data matters; and 

frequency encoding, where we utilise the frequency of categories as labels in case 

the frequency is related to the target variable it will help the model understand better. 

I decided to use frequency encoding, and in this, if the columns are related to the 

target variable 'HasDetections', it will make the machine learning algorithms more 

efficient.  

Once frequency encoding was complete, the next task was to clean the dataset. In 

order to do this, I first found the amount of null value by percentage in the features. 

There were 23 features with NaN values.  

 

Figure 9 Percentage of NaN values 



 

I dropped the columns consisting of more than 50% of NaN data, i.e 

‘DefaultBrowserIdentifier’, ‘Census_IsFlightingInternal’ and 
‘Census_ThresholdOptin’.  

Even though LightGBM and XGBoost can handle NaN values, while implementing a 

neural network, I learned that training a neural network with missing data can lead to 

the output layer containing Nan values, and the model will end up with the wrong 

Classification.  

 

4.1.4. Data Pre-processing  

In order to remediate this, I filled the NaN values of each column with the 

respective averages of the data by using the pandas command fillna() and mean(). 

Following this, I checked the sum of null values in each feature to ensure that there 

were zero NaN values.  

 

Figure 10 Number of NaN values after fill.na() function 

  

At this stage, there was only one feature that had 34,093 NaN values – 

‘Wdft_IsGamer’. To remediate this, I used the describe() function to understand this 

feature. This feature had a minimum value of 0 and a maximum of 1. Hence min() 

was used to replace all NaN values with 0. 

In conclusion, after the exploratory data analysis, pre-processing, and feature 

engineering, I was able to conclude that the dataset is balanced and clean. For 

implementing the three machine learning models, the dataset consisted of 80 

columns with no NaN values.  

 

4.2. Classifiers 

4.2.1. Introduction  

This project includes the Implementation of four different popular machine 

learning models, which have been discussed prior to the design of the project. The 

models include LightGBM, XGBoost, Artificial Neural Network and Support Vector 

Machine; the two tree-based models have been implemented using their own 



individual libraries. The Artificial Neural Network has been developed using 

Tensorflow, and the Support Vector Machine algorithm has been developed using 

sklearn. The Implementation of these four models aims to evaluate their individual 

performance on the Microsoft Malware prediction dataset post the data pre-

processing and perform a comparison regarding accuracy and computation time.  

This section will discuss the implementation of the three models and an explanation 

of the parameters that have been selected in the development.  

 

4.2.2. Implementation of LightGBM 

LightGBM was first defined in 2017 in a paper titled' LightGBM: A Highly 

Efficient Gradient Boosting Decision Tree' (Guolin Ke et al., 2017). This paper 

introduced two ideas: GOSS – Gradient-based One-Side Sampling and EFB – 

Exclusive Feature Building. GOSS is an amendment to the standard gradient 

boosting method that focuses on the training examples that result in a larger 

gradient. This, in turn, speeds up the learning process and reduces computational 

complexity.  

The LightGBM algorithm based on decision trees is different from other regular 

decision tree algorithms as the algorithm splits the tree leaf-wise rather than other 

decision tree algorithms that are split tree level-wise. In the Implementation of this 

project-specific, parameters have been tuned to increase the accuracy and efficiency 

of the model.  

Some of the parameters that have been identified and tuned are the following: 

‘num_leaves’ has been set to 60. The initial value for this parameter was 31 and 

signifies the complexity of the model by initialising the value to 60, the maximum 

number of nodes per tree has been increased. By increasing the number of leaves, 

this parameter could be beneficial for in terms of an increase in accuracy but could 

also lead to overfitting problems. Similarly, the ‘min_data_in_leaf’ has been set to 60, 

the initial value for this parameter was 20. As the name suggests, this parameter 

refers to the minimal number of data on the leaf, and it is used to prevent over-fitting. 

The optimal value for this parameter is dependent on the value of num_leaves, to 

avoid any over-fitting that might occur due to the increase in the number of maximum 

nodes, the 'min_data_in_leaf' parameter has been increased. The objective function 

has been set to binary as this problem is a binary classification problem identifying 

whether certain machines contain malware or not. Other parameters that have been 

tailored include ‘feature_fraction', which selects a subset of features on each iteration 

before training each tree. The default value for this parameter is set to 1.0; however, 

in this LightGBM model, the parameter is set to 0.8. By setting this parameter to 0.8, 

the LightGBM model will randomly select 80% of the features at the beginning of the 

construction of each tree, leading to a decrease in the total number of splits that are 

required to be evaluated to add each node. Another benefit of tuning this parameter 

is that it can speed up the training and deal with overfitting. The ‘bagging_freq’ and 
‘bagging_fraction’ are also two interlinked parameters that have been tuned to 

benefit the model. The values of these two parameters have been set to 1.0 and 0.8, 



respectively; by tuning these two parameters, the training data is resampled every 

iteration, and samples are drawn from 80% of the training dataset. 

 

Figure 11 Parameters for LightGBM 

 

To maximise the use of the training and testing dataset and the Implementation of 

the LightGBM model, K-Fold Cross Validation has been implemented to assess the 

model's performance. In the Implementation of this procedure, the dataset is shuffled 

randomly and then split into k folds (bins or groups); in the case of the current 

implementation, k has been chosen to be 6. For each unique group, a specific group 

is taken out and initialised as the test dataset, and the remaining groups are the 

training dataset. The model is trained on the training set and evaluated on the test 

dataset. In the next iteration, a different group is chosen to be the test dataset, and 

the remaining groups of data are held to be the training dataset which is then again 

evaluated. This process is repeated for each iteration until each group/bin has 

become the test dataset.  

 

Figure 12 K-Fold Procedure 

 



The early stopping method was also implemented during the training process. Early 

stopping stops the training process if the model performance does not improve for 

several iterations.  

 

4.2.3. Implementation of XGBoost  

The second tree-based algorithm that has been selected for this classification 

problem is the ‘highly effective tree-boosting algorithm’ – XGBoost (Chen and 

Guestrin, 2016). This is an open-source and scalable machine learning system for 

tree boosting. To implement this algorithm, the XGBoost optimised distributed 

gradient boosting library has been used, and the parameters for this algorithm have 

been tuned.  

The XGBClassifier has been initialised with a 'learning_rate' of 0.03, and the 

'n_estimators' value has been initialised to 1300 from its initial value of 100. The 

'n_estimator' value corresponds to the value of the number of trees in the XGBoost 

model that is being implemented. The 'max_depth' of the tree has been tailored to 8 

instead of its default value of 6; this change represents the size of the trees. The 

'min_child_weight' has been increased from 1 to 4 in the training of this model on the 

Malware dataset; by increasing the value of the 'min_child_weight,' the model will 

find it more difficult to create new nodes in a tree and will reduce the complexity of 

the tree leading to the model to less likely overfit. Other parameters that have been 

tuned can be seen in Figure 13 below.  

 

Figure 13 Parameters for XGBoost 

 

4.2.4. Implementation of Neural network  

The third algorithm implemented to solve this classification problem is Artificial 
Neural Networks (ANN). Artificial Neural Networks architectures are inspired by the 
‘sophisticated functionality of human brains.’ ANNs consist of neurons and layers 
and hidden layers, which have grown in popularity in recent times as various 
domains have adopted and implemented this for ‘image processing and language 
processing – this is because it can automatically learn and abstract features’ 
(Tobiyama et al., 2016). This section will go through and explain the construction of 
the Neural Network, indicating the different layers of the architecture. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

To construct the architecture of this neural network Keras and TensorFlow had been 
identified to be two important libraries when creating the Artificial Neural Network 
Layer. First, using the 'sklearn train_test_split,' the pre-processed dataset was split 
into a training and test set in a 70:30 ratio, respectively. Next, a sequential model 
was defined, which allows multiple layers to be stacked over each other, with each 
layer consisting of one input tensor and one output tensor. The first layer initialised in 
the sequential model is the Dense Layer which is deeply connected to the prior layer, 
in this network, the Dense Layer consists of 100 neurons and takes the input 
dimensions of the training dataset.  
 
The Dense layer consists of several neurons where each neuron receives an input 
from the previous layers of neurons. In this case, the dense layer is the first layer of 
the sequential model. The next layer is the Dropout layer used to 'randomly set the 
outgoing edges of hidden units to 0 at each update of the training phase’ (Keras, 
n.d.). Deep neural networks are prone to a fundamental problem of overfitting and 
heavy computational power and expense. To avoid these fundamental problems, the 
Dropout layer has been initialised with a probability of 0.4, indicating that there is a 
40% chance the output neuron will be changed to 0. The batch normalisation layer is 
added to normalise the inputs of the layer by applying transformations that maintain 
the mean output close to 0 and standard deviation close to 1.  
 
The Activation layer is the final unique layer used for this model, which applies the 
activation function chosen and is an essential component of any architecture as this 
layer computes the weighted sum of inputs and bias’s that can be used to assess if 
the neuron can be fired or not (Chigozie et al., 2018). In implementing this neural 
network architecture, the 'ReLU’ activation function has been used along with the 
'sigmoid' activation function. Both visual representations can be seen in Figures 15 
and 16 below. 
 
ReLU: rectified linear activation function is a linear function that will output the input 
directly if it is positive, otherwise, it will output zero. 
 

Figure 14 ANN Code Cell on Jupyter Notebook 



 
Figure 15 ReLU function graph 

Sigmoid: this activation function guarantees that the output of this unit will always be 
between 0 and 1. 

 
Figure 16 Sigmoid function graph 

 
Finally, the model is compiled with a learning rate of 0.0001, a loss function of 
binary_crossentropy and an Adam optimiser.  
  



5. Testing 

This section demonstrates that the project has been developed as intended and 
is able to answer the research question proposed. The tests have been carried out 
using Python v3 on Jupyter Notebook v6.4.5 running on windows 10 OS. 
 
Table 2 Test Case - 1 

Test Id: 

01 

Test Purpose: Loading dataset from the source 

Preconditions: download dataset train.csv from Kaggle, import Pandas 

Step No. Procedure Response Pass/Fail 

1 Input the name of the file in the 

cell, read CSV and convert it 

into dataframe 

When loaded, run the file to 

make sure all 83 columns are 

shown 

Pass 

Comments: Original file train.csv was shortened to shortSet.csv with 1 million rows.  

Related Tests: n/a 

 
 
Table 3 Test Case - 2 

Test Id: 

02 

Test Purpose: Exploratory Data Analysis procedure to understand and 

visualise the dataset 

Preconditions: shortSet.csv is loaded, import Plotly  

Step No. Procedure Response Pass/Fail 

1 Check if the dataset is balanced 

by calculating the sum of 0s and 

1s in the HasDetections column, 

then create a bar graph. 

Machines with malware: 

499813 

Machines without malware: 

500187  

Pass 

 2 Create a pie chart for three types 

of data: binary, categorical and 

numerical.  

categorical columns: 55 binary 

columns: 20 numerical 

columns: 8 

 Pass 

 

  
3 Visualise cardinality by 

checking the number of unique 

values in each column. 

Bar graph with 55 columns 

containing unique values 

Pass 

Comments: Feature engineering for columns with high cardinality to be performed  

Related Tests: n/a 

 



 
Table 4 Test Case - 3 

Test Id: 

03 

Test Purpose: Feature Engineering and cleaning the dataset  

Preconditions: List of features with high cardinality 

Step No. Procedure Response Pass/Fail 

1 Implement frequency encoding 

on seven columns with high 

cardinality  

Encoded with reduced 

cardinality 

Pass 

 2 Find the amount of NaN values 

by percentage in each column 

Twenty-three features with 

NaN values, three features 

with more than 50% NaN 

values. 

 Pass 

 

  
3 Delete the columns with over 

50% NaN values 

Three columns deleted Pass 

Comments: NaN values in the remaining 20 columns will have to be replaced 

Related Tests: 2 

Table 5 Test Case - 4 

Test Id: 

04 

Test Purpose: Data Pre-processing 

Preconditions: 20 columns with less than 50% NaN values 

Step No. Procedure Response Pass/Fail 

1 Taking care of missing data in 

each column with the respective 

mean of the data  

Only 19/20 columns updated Fail  

Comments: For the remaining column, instead of mean, the min was used to replace NaN 

values as it was a binary column 

Related Tests: 3 

 
 
 
 
 



Table 6 Test Case - 5 

Test Id: 

05 

Test Purpose: Coding, Training and Testing LightGBM 

Preconditions: Dataset loaded and pre-processed after running Test#4 

Step No. Procedure Response Pass/Fail 

1 Running all the cells for the 

LightGBM model with hyper 

tuned parameters, including k-

fold, cross-validation, and 

confusion matrix 

All cells executed with no 

errors 

Pass  

Comments: n/a 

Related Tests:  

 
 
Table 7 Test Case - 6 

Test Id: 

06 

Test Purpose: Coding, Training and Testing XGBoost 

Preconditions: Dataset loaded and pre-processed after running Test#4 

Step No. Procedure Response Pass/Fail 

1 Running all the cells for the 

XGBoost model with hyper 

tuned parameters, cross-

validation, and confusion matrix 

All cells executed with no 

errors 

Pass  

Comments: n/a 

Related Tests:  

 

 

 

 

 

 



 

Table 8 Test Case - 7 

Test Id: 

07 

Test Purpose: Coding, Training and Testing Neural Network 

Preconditions: Dataset loaded and pre-processed after running Test#4 

Step No. Procedure Response Pass/Fail 

1 Running all the cells for the 

Neural Net model with hyper 

tuned parameters, cross-

validation, and confusion matrix 

All cells executed with no 

errors 

Pass  

Comments: n/a 

Related Tests:  

 

  



6. Results and Evaluation 

This section includes the evaluation technique used and the results for each 
model.  
 

6.1. Confusion Matrix 

Evaluation is a key part of the machine learning process. A confusion matrix 
table will be used to compare and analyse which classification algorithm in this 
project had the best performance and is most suitable for malware classification. 
This indicates how successful the classification algorithm is by summarising the 
results as four outcomes – TP, TN, FP, and FN (Jayaswal, 2020). 
 
Table 9 Confusion Matrix 

 
 

• TP: True Positive: Refers to when the model correctly classifies a positive 
class as positive. 

 
• TN: True Negative: Refers to when the model correctly classifies a negative 

class as negative. 
 

• FP: False Positive: Refers to when the model incorrectly classifies a negative 
class as positive.  

 
• FN: False Negative: Refers to when the model incorrectly classifies a positive 

class as negative. 
 
 
This indicates that a good performance indicator would be a higher number of TP 
and TN values. The confusion matrix accurately indicates the model’s classification 
results and also helps identify other performance indicators like accuracy, precision, 
recall, and F1 score. These indicators, along with AUC (Area under Curve), help 
measure the classifiers' overall performance. Each performance indicator is 
discussed below.  
 
Accuracy: Accuracy refers to the success ratio of the model and is calculated by the 
formula below. It is the ratio of correctly classified classes to the total Classification 
of classes. 
 



����堅��� = �� + ���� + �� + �� + �� 

 

Precision: Precision refers to the number of correct predictive values that the model 

calculates. It is the ratio of correctly classified predictions to the sum of total classes 

classified as positive. The formula below is used to evaluate precision. �堅���嫌�剣券 = ���� + �� 

 

Recall: Recall refers to the number of false negatives calculated by the model. It is 

the opposite of precision. Recall is calculated by the formula below. It is the ratio of 

correctly classifies classes to the sum of positive outcomes. ������ = ���� + �� 

 

F1 score: F1 score is also called F-measure it is the average overall accuracy, i.e. 

the equilibrium between precision and recall. It takes both false positives and false 

negatives, and it can be calculated using the formal is below.  �な = に ∗ 喧堅���嫌�剣券 ∗ 堅�����喧堅���嫌�剣券 + 堅����� 
 

AUC: AUC refers to the Area under the ROC Curve. ROC refers to the graph 

representing the model's performance at all levels. The ROC curve plots TP rate with 

respect to FP rate and emphasises the classifier's sensitivity. More Area under the 

ROC corresponds to a better classifier. 

 

6.1.1. LightGBM Performance 

Using the above parameters, the LightGBM model was compared to two other 

machine learning models on the pre-processed dataset. Its performance can be 

seen in Figure 18 below. The LightGBM model achieved an accuracy of 66% with a 

precision and recall of 0.66, respectively. The confusion matrix represents the TP, 

TN, FP, and FN defined in the previous subsection 6.1 and showed the percentage 

values of each of the evaluation components. For a large dataset, which is high in 

dimensions, it can be argued that the accuracy achieved is expected, especially after 

hyper tuning the parameters as stated in Section 4.2.2. It is important to reiterate 

some of the key parameters that had been tuned, including the learning rate of 0.1, 

num_leaves which was set to 60 and num_boost_round set to 1000. The LightGBM 

result reports an AUC result as 0.721591, which was stopped using an 

early_stopping_rounds parameter set to 1000. At around 785, the training of the 

LightGBM model was stopped due to the loss on the validation dataset increasing. 



Figure 20 shows the results of the k-fold cross validation implementation results. It is 

shown that the fourth fold provides the model with the highest accuracy of 0.66266 

and an average accuracy of the k-fold cross-validation of 0.65937.  

 

 

 

 

 

 

 

 

 

Figure 18 Classification Report for LightGBM 

 

Figure 19 Early Stopping Function LightGBM 

Figure 17 Confusion Matrix for LightGBM 



 

Figure 20 Results of the k-fold cross-validation 

 

6.1.2. XGBoost Performance  

The next algorithm being evaluated is the XGBoost model, which is another tree-

based algorithm explained above. The XGBoost model performed similarly to the 

LightGBM model achieving 66% accuracy on the pre-processed dataset, which is 

shown by the classification report in Figure 22. The confusion matrix represents the 

TP, TN, FP, and FN values which have been defined in the previous subsection and 

shows the percentage values of each of the evaluation components. The precision, 

recall and f1-score all come out to a score of 0.66, respectively. This score was 

reached by hyper tuning key parameters such as the learning_rate, n_estimators 

and the depth of the tree. The TP value of 32.59% represents the correctly predicted 

machines that have malware, whereas the TN value of 33.26% represents the 

correctly predicted machines that do not have malware. These values are very 

similar to the confusion matrix of the LightGBM model that was shown in Figure 17. 

This shows that the decision trees performed identically, and either could be chosen 

as the best machine learning algorithm for this problem set. However, another 

evaluation factor that can compare both of these models is the computational time 

taken for these models to run, which has been explained and depicted in Section 

6.2. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1.3. Neural Networks Performance  

As explained in Section 3.5.3, an artificial neural network was constructed using 

dense layers, dropout layers and batch normalisation layers with two different 

activation layers in the architecture. The architecture uses the ReLu and the sigmoid 

activation functions to decide if the neurons require activation or not. Figure 23 below 

represents the neural network's learning curves depicting the accuracy and loss of 

the model. The neural network achieved an accuracy score of 52% on the training 

and validation set with a loss on 0.6909 and 0.6902 on the training and validation 

set, respectively. This shows that the neural network has underperformed 

significantly compared to the previous two tree-based algorithms. However, these 

results do make sense as artificial neural networks face problems when using a 

dataset with high dimensionality due to the curse of dimensionality, which is very 

common in machine learning. It can be argued that a dataset with fewer dimensions 

can possibly improve the neural network's performance to an extent where it might 

outperform the performance of decision trees.  

Figure 21 Confusion Matrix for XGBoost 

Figure 22 Classification Report for XGBoost 



 

 

 

6.2. Comparison of models 

After obtaining the individual results for each model, the table below has been 

formulated to visualise the performance of each model. When comparing these 

models, it is evident that the LightGBM and XGBoost models outperform the Artificial 

Neural Network indicating that the performance of the tree-based algorithms is much 

better. The results obtained in this research are similar to the work carried out by 

Pan et al., who also was able to obtain an AUC score of 0.72, similar to the work 

conducted in this research. The main difference in this research is the tuning of 

parameters of both LightGBM and XGBoost, from which the results generated to 

indicate that both the tree-based algorithms were able to achieve the same 

accuracy. However, the computational time taken for LightGBM to be executed is 

much quicker than the time taken for the XGBoost algorithm. This is due to the 

histogram-based splitting, GOSS end exclusive feature bundling, which has also 

been explained by Ke et al. (Guolin Ke et al., 2017). 

Table 10 Comparison Report of Models 

Models Accuracy Precision Recall F1-score Computational 
Time Taken 

LightGBM 66% 0.66 0.66 0.66 226.4s 

XGBoost 66% 0.66 0.66 0.66 3957.1s 

Artificial Neural 
Network 

52% 0.54 0.53 0.53 2183.8s 

 

  

Figure 23 Learning Curves: Accuracy and Loss of the Model 



7. Conclusions and Future Work 
7.1. Observations 

The first observation, keeping the title of the dissertation in mind, is that tree-

based machine learning models perform better than artificial neural networks for 

binary Classification. Both the decision tree algorithms, LightGBM and XGBoost, 

gave an accuracy 10% higher than the artificial neural network for the same dataset. 

From the beginning of this project, it was observed that LightGBM is likely to perform 

better compared to other machine learning algorithms. Multiple sources from the 

literature review and projects on Kaggle demonstrated higher accuracy using this 

machine learning model. 

XGBoost, the second tree-based model, gave the same accuracy as LightGBM; 

however, it took 3957 seconds, approximately 17 times greater than the time taken 

by LightGBM (226.4 seconds). 

It was also observed that Neural Network only gave an accuracy of just over 50%. 

This algorithm did not perform up to expectations. From the background research 

and literature review, neural networks had been widely endorsed for Classification – 

but that was not reflected in this dataset. In retrospect, the dataset features could 

have been reduced to a smaller number, giving a better accuracy due to small 

dimensionality.  

Considering these observations, we can answer the research questions posed at the 

start of this report.  

Research Question 1: Can machine learning algorithms be used to predict if a 

windows machine has malware? 

Answer: Yes, machine learning algorithms, both tree-based and neural networks, 

can be used to predict if a windows machine has a malware 

Research Question 2: Which machine learning binary classification model performs 

best in predicting if a windows machine has malware? 

Answer: LightGBM is the binary classification model that performs best in predicting 

if a windows machine has malware. 

 

7.2. Limitations 

There were certainly a few limitations of this project. The primary being low 

accuracy. It is observed that the models could not give an accuracy of over 70%, 

which is not ideal. This could result from a small number of data samples – as 

mentioned earlier, the dataset had been shortened from 8 million rows to 1 million 

due to computation power requirements. Another limitation was time constraints, as 

seen above, the XGBoost model computational time was over an hour, and hyper 

tuning parameters took plenty of time.  



A step that could have been taken to improve the accuracy would be to certainly 

have more computation power, which is discussed in the next section, and spend 

more time treating the missing value in the data. All but one feature's NaN values 

were filled with the mean of the feature – this step could have been modified into 

individually exploring the features and deciding the best way to replace the NaN 

values. 

 

7.3. Future Work 

As mentioned before, to improve the performance of the models, they would 

need to be fed more training data; this would require more computational power, 

which is why this project could be run on the cloud in the future. For instance, using 

the Amazon Web Services tool Sagemaker. Amazon Sagemaker helps developers 

create, train, and deploy machine learning models in the cloud. It is also known to 

reduce training time exponentially and scale the infrastructure according to 

computational needs (Amazon Web Services, 2019).  

Another feature that could be implemented in the future would be an application with 

a robust User Interface. This feature would enable the user to enter the properties of 

their windows machine, like their city if they are a gamer, where the anti-virus 

products are enabled, their browser identifier, if they have a firewall enabled and so 

on. Once the input is received manually or automatically collected from the device, 

the application runs the machine learning model and provides the user with the 

likelihood of their machine containing malware. This could also be accompanied by a 

few remediation actions depending on the properties. For instance, the user could be 

asked to turn their firewall on or update their anti-virus to further protect their devices 

from malware. 



8. Reflections on Learning 

This project certainly adheres to the concept of lifelong learning. This one-

semester final year project has certainly played a vital role in preparing me for my 

future career. I decided to select this topic as I have always had a keen interest in 

cybersecurity. However, I was keen to learn more about machine learning and how 

this integrates with the field of security. Through the course of completing this 

research, I have learnt plenty of lessons – for instance, writing a report including 

various stages in a process requires time management skills. I was certain I would 

be able to balance this through the help of my supervisor's weekly catchup, however, 

I found myself falling a little behind during Implementation – this was due to 

unanticipated issues like time taken to run the models, trial and error for hyper tuning 

the parameters and so on. This helped me realise that in the future, while planning 

projects, I should take into account extra time for unexpected circumstances. During 

the four years at university, this was by far the longest report that required 

continuous effort and commitment; it had certainly made me confident to take up 

more significant projects and write reports in my professional life. In the technical 

aspect, as I aimed, I was able to learn a lot about the domain of machine learning; I 

now understand the difference between classifiers, parameters and models. I have 

also understood the importance of data analysis and preparation for any project. 

After implementing the three models, the evaluation phase helped me gain insight 

into how to pick the best solution for any given problem and produce a robust 

solution. Overall, I believe undertaking this project has helped me grow as a 

computer scientist and helped me practice decision-making, analysis, time 

management, problem-solving, and research. These skills will help me become a 

valuable member of the cybersecurity community. 
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