

School of Computer Science and Informatics

CM3203 – Individual Report

Comparative Analysis of Tree-Based Machine Learning

Models and Neural Networks for Malware Prediction

Author: Kriti Shewaramani - 1845909

Project Supervision: Yuhua Li

Project Moderator: Sandy Gould

A Final Year Project Submitted for the Degree of BSc. Computer Science with

Security and Forensics with Placement Year

2022

https://pats.cs.cf.ac.uk/!user_info?u=scmsg3

ABSTRACT

In the age of technology, malware attacks are occurring every day around the world.

These attacks involve malicious software that can lock up essential files, spam you

with ads, or redirect you to malicious websites, which can result in anything from

data theft to the destruction of entire systems or devices. Cybercriminals use

different types of malware like trojans, ransomware, spyware, or worms to infect

individuals or organisations. Machine learning is a credible technology in today’s day
and age. The concepts of machine learning can be applied to the process of

malware detection in order to efficiently detect and prevent malware activities. The

project aims to apply machine learning to predict a computer’s probability of getting
infected by various families of malware based on different properties of that machine

using three types of machine learning models: namely, LightGBM, XGBoost, and

Neural Network. These models are trained on a dataset published by Microsoft of

Kaggle with over 80 features from the reports from Windows Defender. Before

implementing the models, data pre-processing, feature engineering and exploratory

data analysis were carried out. Once successfully implemented, these models then

find similarities and patterns between the data to perform Classification. Python

programming language and Jupyter Notebook were used during the entire duration

of the project.

ACKNOWLEDGEMENTS

Firstly, I want to thank my supervisor Dr Yuhua Li, who has been exceptionally

helpful throughout the semester. He has constantly helped me understand and

achieve my short-term and long-term goals in this dissertation. With his support, I

was able to balance my work and also apply to and secure a job in Amazon Web

Services in London.

I would like to thank my family for inspiring me to perform better every day. They

have been a constant source of encouragement in these challenging times, and I

would have been able to successfully complete this project and the last four years

without their support.

I would last want to thank my friends who helped me focus on my work and created

an environment that was a home away from my home. I will forever be grateful for all

the memories I made and those who have been by my side.

Table of Contents

ABSTRACT .. 2

ACKNOWLEDGEMENTS .. 3

Table of Contents ... 4

Index of Figures and Tables ... 6

1. Introduction .. 7

1.1. Research Questions .. 7

1.2. Aims and Scope .. 8

1.3. Intended Audience .. 8

1.4. Report Structure .. 8

2. Background ... 10

2.1. History of Cyberattacks ... 10

2.2. Introduction to Malware attacks ... 10

2.3. Introduction to Machine Learning .. 12

2.4. Use of ML for malware detection ... 12

2.5. Literature review .. 14

2.6. Research Gap ... 17

3. Approach ... 18

3.1. Introduction ... 18

3.2. Ingestion of data .. 19

3.3. Explanatory data analysis ... 20

3.4. Data Pre-processing ... 20

3.5. Classification Models .. 20

3.5.1. LightGBM model ... 20

3.5.2. XGBoost model .. 21

3.5.3. Artificial Neural Networks .. 21

3.6. Agile Methodology ... 22

4. Implementation .. 23

4.1. Design and Implementation .. 23

4.1.1. Dataset ... 23

4.1.2. Exploratory Data Analysis ... 23

4.1.3. Feature Engineering ... 26

4.1.4. Data Pre-processing ... 27

4.2. Classifiers.. 27

4.2.1. Introduction ... 27

4.2.2. Implementation of LightGBM .. 28

4.2.3. Implementation of XGBoost .. 30

4.2.4. Implementation of Neural network .. 30

5. Testing ... 33

6. Results and Evaluation .. 37

6.1. Confusion Matrix ... 37

6.1.1. LightGBM Performance .. 38

6.1.2. XGBoost Performance .. 40

6.1.3. Neural Networks Performance .. 41

6.2. Comparison of models .. 42

7. Conclusions and Future Work ... 43

7.1. Observations ... 43

7.2. Limitations ... 43

7.3. Future Work .. 44

8. Reflections on Learning ... 45

9. References .. 46

Index of Figures and Tables

Figure 1 Machine Learning Process ... 12

Figure 2 Flow of Implementation .. 19

Figure 3 Leaf wise tree growth in LightGBM .. 20

Figure 4 Level wise tree growth in XGBoost .. 21

Figure 5 Visual representation of a Neural Network ... 22

Figure 6 Bar Graph for 'HasDetections' .. 24

Figure 7 Pie Chart for column category .. 24

Figure 8 Categorical Cardinality ... 25

Figure 9 Percentage of NaN values ... 26

Figure 10 Number of NaN values after fill.na() function .. 27

Figure 11 Parameters for LightGBM... 29

Figure 12 K-Fold Procedure ... 29

Figure 13 Parameters for XGBoost .. 30

Figure 14 ANN Code Cell on Jupyter Notebook ... 31

Figure 15 ReLU function graph .. 32

Figure 16 Sigmoid function graph .. 32

Figure 17 Confusion Matrix for LightGBM .. 39

Figure 18 Classification Report for LightGBM .. 39

Figure 19 Early Stopping Function LightGBM .. 39

Figure 20 Results of the k-fold cross-validation .. 40

Figure 21 Confusion Matrix for XGBoost .. 41

Figure 22 Classification Report for XGBoost .. 41

Figure 23 Learning Curves: Accuracy and Loss of the Model 42

Table 1 Systematic Literature Review .. 14

Table 2 Test Case - 1 ... 33

Table 3 Test Case - 2 ... 33

Table 4 Test Case - 3 ... 34

Table 5 Test Case - 4 ... 34

Table 6 Test Case - 5 ... 35

Table 7 Test Case - 6 ... 35

Table 8 Test Case - 7 ... 36

Table 9 Confusion Matrix ... 37

Table 10 Comparison Report of Models ... 42

https://cf-my.sharepoint.com/personal/shewaramanik_cardiff_ac_uk/Documents/0YEAR3/DISSERTATION/1845909%20Final%20report.docx#_Toc103805217
https://cf-my.sharepoint.com/personal/shewaramanik_cardiff_ac_uk/Documents/0YEAR3/DISSERTATION/1845909%20Final%20report.docx#_Toc103805220
https://cf-my.sharepoint.com/personal/shewaramanik_cardiff_ac_uk/Documents/0YEAR3/DISSERTATION/1845909%20Final%20report.docx#_Toc103805221
https://cf-my.sharepoint.com/personal/shewaramanik_cardiff_ac_uk/Documents/0YEAR3/DISSERTATION/1845909%20Final%20report.docx#_Toc103805222
https://cf-my.sharepoint.com/personal/shewaramanik_cardiff_ac_uk/Documents/0YEAR3/DISSERTATION/1845909%20Final%20report.docx#_Toc103805224
https://cf-my.sharepoint.com/personal/shewaramanik_cardiff_ac_uk/Documents/0YEAR3/DISSERTATION/1845909%20Final%20report.docx#_Toc103805225
https://cf-my.sharepoint.com/personal/shewaramanik_cardiff_ac_uk/Documents/0YEAR3/DISSERTATION/1845909%20Final%20report.docx#_Toc103805226

1. Introduction

In the 21st century, the internet has become a necessity for individuals and
organisations. There is an exponential growth in cyberattacks, especially during the
COVID-19 pandemic, cyberattacks have increased by 600% (Helen, 2021). Hackers
are designing malicious software to install into networks or the victim's machine. This
malicious software is called malware. It is an intrusive software designed to damage
and destroy computers and systems. Malware can crack weak passwords, bore into
systems, and spread through networks.

Everyday windows users are a target of a huge number of malware designed by

attackers looking to find vulnerabilities. This is where Malware detection comes into

place. Malware detection is the process of scanning the computer and files to detect

malware. It effectively mitigates a possible security breach because it involves

multiple tools and approaches. There are multiple approaches to detecting malware,

like sandboxing, where we detect malware by testing a code in an isolated

environment; heuristic analysis, where a baseline for standard activity is defined for a

system and any deviations in behaviour are observed. There is also Endpoint

Detection and Response, EDR, which monitors and logs events from the endpoint,

this data can be used to analyse the behaviour after the computer is infected by

malware. Lastly, machine learning malware detection can be used to train systems

to differentiate between malware and benign files and predict if the computer has

malware or not. Using machine learning models that learn and improve constantly

would add a higher level of security in networks and systems as it can keep pace

with malware development.

1.1. Research Questions

This project aims to explore the following research questions:

Research Question 1: Can machine learning algorithms be used to predict if a

windows machine has malware?

Research Question 2: Which machine learning binary classification model performs

best in predicting if a windows machine has malware?

These questions will be explored by delving into machine learning for malware

prediction by implementing different Machine Learning classification models and

evaluating metrics to identify the best technique to solve this problem. To train these

models, a telemetry dataset containing these properties of windows computers and

the machine infections will be used. This dataset was generated by combining

heartbeat and threat reports collected by Microsoft's endpoint protection solution,

Windows Defender.

1.2. Aims and Scope

The primary aim of this project is to implement a machine learning model that

gives the best results in predicting a computer's probability of having malware using

the properties of a Windows computer.

This aim will be achieved by investigating and evaluating the performance of

different classification algorithms to identify the best machine learning model. This

project's scope expands to examining which Machine learning classification model is

efficient in terms of time, accuracy, precision, and other metrics. The novel approach

here is implementing three different algorithms in order to compare tree-based

models to artificial neural networks. The algorithms discussed in detail further are

LightGBM, XGBoost and Neural Network. The models were chosen based on the

literature review and the popularity of different machine learning forums. The

hyperparameters will be tuned for each of these algorithms to achieve the highest

possible accuracy. This is discussed in detail in the Implementation (Section 4) and

results (Section 6)

1.3. Intended Audience

The intended audience for this project is researchers, students, analysts, or

individuals interested in understanding more about the domain of the application of

machine learning algorithms for malware prediction.

1.4. Report Structure

The rest of this report is divided into multiple sections, as explained below:

Section 2 throws light on the background research undertaken to understand the

fundamentals of the problem. In this section, an extensive literature review is

conducted, exploring the history of cyber security, machine learning and prior

research that exists within the domain of cyber security in Machine learning.

Complementing this is a systematic literature review, and an in-depth critical analysis

of specific literature has also been presented. Section 3 discusses the approach and

provides an explanation of the steps taken to complete this project, giving a clear

description of the problem and the machine learning algorithms that have been

implemented along with the methodology used to solve this problem. Section 4 is

Implementation; this section takes a deeper look into how machine learning models

can provide the best solution to the problem and highlights key decisions that were

taken in the Implementation of the code. Section 5 focuses on testing and depicts

the results of the implementation stage using a well-devised testing plan that has

been used to evaluate the project along with other testing techniques. The results

have been critically analysed and discussed. Section 6 discusses the results and

evaluation to measure the success of the project by critically analysing and

evaluating the results of the machine learning models that have been implemented.

Section 7 contains the conclusion and future work, i.e. an in-depth assessment of

the research that has been conducted is provided, accompanied by limitations of the

project and future work that can be considered to improve the research. Section 8

finally contains a Reflective piece on knowledge gained, challenges faced, and

improved alternatives learned during the completion of this research.

2. Background

2.1. History of Cyberattacks

A cyber-attack is a deliberate assault launched by cybercriminals against

individuals or information systems (NCSC, 2019), Cybercrime has been increasing

ever since people have been trying to benefit from vulnerable networks and systems.

An attack carried out by a skilled individual may be targeted and contain multiple

levels.

Cyber-attacks are evolving continuously by becoming more and more sophisticated.

(Climer, 2018) The first denial of service (DoS) attack in history was in 1988, when

Robert Morris created a computer worm and slowed the early internet down. This

worm was not written to damage but to draw attention to security issues like weak

passwords. However, the code managed to duplicate the worm exponentially and

caused not only damages worth $10,000,000 but also a partition of the internet for

several days.

In the following year, 1989, the first Ransomware attack surfaced. AIDS Trojan was

created by Joseph Popp to extort people for money. This was dispersed through a

floppy disk and was easily removable due to poor design – in the sense that it was

only scrambling the names of the files rather than the contents, which made the files

usable.

The next year, 1990, marked a significant point in the history of cyberattacks. The

Computer Misuse Act was passed in the United Kingdom (Townsend, 2019) – which

stated that unauthorised attempts made to access computer systems are illegal. This

act is still in practice with some modern additions and amendments made through

these years.

In the current time, malware circulated has exponentially increased with the use of

exploit kits and automated SQL injections. The next sections discussed the history of

Malware attacks in further detail.

2.2. Introduction to Malware attacks

Malware is an amalgamation of the term malicious software. This is an

application created by an individual or a group with malicious intent. Malware can

include spyware, ransomware, viruses, and worms. Malware breaches a network

through a vulnerability, usually with hidden goals like blocking access to key network

components, installing destructive software, stealthily obtaining information by

transmitting data from the hard drive, disrupting certain components, and rendering

the system inoperable (Mary Landesman, 2021).

In the early years, spreading malware was done manually by human hands; this

meant carrying floppy disks from one computer to another. As the internet matured,

the idea of hackers getting malware onto as many computers came into practice.

This extends back to the 1970s when a self-replicating program called the Creeper

Worm gained access via the ARPANET and copied itself to remote systems. From

then until 2000, there were a few primitive malware attacks like Wabbit, another self-

replicating program that reduced system performance. Brain Boot Sector Virus was

the first virus to affect MS-DOS computers. PC-Write was the first trojan that was

disguised as a shareware program, and it would erase everything on a computer

once installed by the user. However, 1988 was the first time someone was convicted

of authoring malware; Robert Morris created the Morris worm that affected most

machines on the ARPANET and rendered the network unusable within 24 hours.

From 2000 (Rankin, 2018), malware attacks grew significantly in speed and number.

This decade also marked the growth of email worms and malware toolkits. SQL

injections were also rising and, at a point, became the number one threat to

individuals and organisations. The infamous ILOVEYOU Worm was an email virus

that shut down the email servers of over 50 million devices, including huge

government bodies like the Pentagon and British Parliament: causing global

damages worth 5.5 billion dollars. There was then the SQL Slammer worm which

affected 75000 devices in 10 minutes and caused a worldwide slowing down of

internet traffic via denial-of-service.

In the next decade, we noticed a rise in state-sponsored malware along with more

sophisticated and profitable attacks. Malware attacks have become more targeted

and well-funded for malicious groups that continuously work to develop programs

that can outsmart anti-malware systems. The beginning of this decade, 2010,

marked the release of Stuxnet Worm. An entire team of developers designed this

malware to attack Iran's nuclear program and damage not only the hardware but also

the software. It has by far been called the most resource-intensive malware to date.

We also saw one of the first ransomware programs, called Cryptolocker – this

program utilised a trojan that targeted all computers running Microsoft Windows. As

of recent, we heard about the WannaCry Ransomware, which was discovered by the

National Security Agency and brought 150 countries, including Russia, China, the

United Kingdom, and the United States of America, to their knees. This ransomware

locked individuals and organisations out of their personal data and kept it so that

until a payment was made in case the user refused to make a payment, they would

lose all their data. It was especially difficult for industries like medical, financial and

telecommunications.

Currently, we are seeing organisations deploy anti-malware solutions that help users

avoid most of the damage from malicious software (Microsoft, 2022). Windows

Defender is Microsoft's endpoint protection solution. Microsoft Defender Antivirus is

preinstalled into Windows 10, Windows 11, Windows Server 2019, Windows Server

2022, and Windows Server 2016. This program helps review the security status of a

device and receive alerts in case of an issue. Microsoft endpoint manager can also

be used to monitor the Defender Antivirus.

2.3. Introduction to Machine Learning

American pioneer Arthur Lee Samuel first coined the definition of machine

learning in 1959. He stated, 'Machine learning is the field of study that enables

computers to learn without specifically being programmed.' A more formal definition

was written in 1997 by T. Mitchell, stating, 'A computer program is said to learn from

experience E with respect to some class of tasks T and performance measure P if its

performance at tasks in T, as measured by P, improves with experience E.' The

basis of Machine Learning is to train a model based on an algorithm most suited to

the task at hand. In this project, the task is Classification. To perform Classification,

ML supplies an automated, adaptive approach that can extract data provided in the

form of training sets using a model and then use this information to classify new data

(Sidath Asiri, 2018).

Figure 1 Machine Learning Process

In recent years, the emergence of Machine Learning algorithms has become an

essential tool in the field of Cyber Security. With the ability of machine learning to be

leveraged to improve malware detection, triage events, recognise breaches and alert

organisations of security issues, the cyber security industry can benefit, and its

landscape can be altered, benefiting individuals and significant corporations around

the world.

2.4. Use of ML for malware detection

Machine learning is an ever-evolving field; I will further discuss how it uses

algorithms to process large sets of data. In cybersecurity, machine learning is

helping us develop more sophisticated cybersecurity tools to recognise patterns,

learn from them and prevent future attacks using threat hunting. There are multiple

use cases for machine learning enhancing threat detection. For instance, cutting

down false positives – Machine learning-based security programs do not interrupt

the flow of traffic on a system as they can make smart decisions and block out

malicious software without depending on rulesets. Another use case would be noting

inconsistencies in patterns of transmitted data during threat hunting - The algorithm

might not recognise the inconsistency as a known threat, but the inconsistency could

trigger further investigation. Malware prediction modelling is the key use case under

Artificial Intelligence for Cybersecurity (Holmen, 2022) – supervised ML can train

machines to detect harmful files, create a model of what the malware looks like and

then block that malicious software in the future. This use case certainly has some

drawbacks, like not being able to account for malware variants, however, it can

constantly learn from newly updated data and revise the model as and when

required.

Almost every cybersecurity solution is basically learning from past and current issues

and using that knowledge to improve future protection (Fidelis Cybersecurity, 2020).

This is where machine learning comes in, in the sense that we are able to learn and

operationalise 'patterns' that help us understand what is malicious. Known hashes of

malicious programs, websites hosting malware, and email addresses used for

phishing and spamming are all part of the knowledge we need for future protection.

This knowledge is very large, and identifying, classifying, and operationalising

millions of such files a day is difficult. However, to solve this issue, we have

Supervised Machine Learning Algorithms that can create models with rules that

would be able to classify known malicious programs from non-harmful programs.

Supervised Machine learning can also be predictive, which would identify malware

that has not been sampled or known beforehand.

The use of supervised machine learning for detecting malware files is based on

different aspects of the files (structure of the file, content in the file, use of different

characteristics in file formats, behavioural patterns of the file when executed or

launched in application) has become common in the industry and has conclusively

demonstrated to be rather successful in detecting future threats. There are

numerous other applications for Supervised ML, such as identifying if new domain

names and certificates closely match known malware activity.

Instead of pattern recognition, we could also have looser rules of recognition, which

means that an operator can discover a pattern that is not 'consistent' in time,

therefore, hinting to a potential threat, thereby encouraging the operation to

investigate a possibly malicious event. To find these patterns that are inconsistent,

unsupervised machine learning algorithms can be used to create a standard or basis

of the usual network traffic activity for users. This standard can then be used to

compare and detect unusual activity that may lead the operator to conduct further

investigation to understand if it is truly a malicious threat. The use of unsupervised

machine learning algorithms in the current age requires a threat hunting platform in

order for an operator to spot anomalies and further hunt and investigate those to

detect threats. There may, however, be several anomalies that have no support from

a threat hunting platform. This makes them of no value during threat detection and

may create a large number of false positives that are of no use to the operators. On

the other hand, if an anomaly has evidence and data to back up the investigation, it

can be used to advance threat detection and reduce the impact on an individual or

an organisation.

2.5. Literature review

In this section of a systematic review, web sources such as Google Scholar,

Kaggle, and GitHub have been used to create a literature review. A total of 63,600

results were returned when the query ‘Machine Learning for Malware Detection was

searched in the primary web source Google Scholar. The search was further

concentrated by additionally specifying machine learning models like ‘LightGBM’,
‘XGBoost’ and ‘Neural Networks. Another query to find similar pieces of literature

was 'Machine Learning for Malware Prediction'; this search returned 36,700 results.

Eventually, nine suitable pieces of literature were identified in Table 1. The table

features the authors, the title of the study, and the dataset used and recognises the

Machine Learning models and the outcomes highlighted.

Table 1 Systematic Literature Review

Authors Title Dataset ML
Algorithm

Outcomes

Leevy, J.L.,
Hancock, J.,
Zuech, R. et
al.

Detecting
cybersecurit
y attacks
across
different
network
features and
learners
(Leevy et
al., 2021)

CSE-CIC-
IDS2018
dataset: 16
million
instances

Decision
Tree,
Random
Forest,
Naive
Bayes,
Logistic
Regression
, Catboost,
LightGBM,
or
XGBoost

Feature selection
technique yields
performance like, or
better than, using all
features.
Including the
‘Destination_Port’
feature has a
significant impact on
performance in terms
of AUC.

Al-Omari,
M.,
Rawashdeh,
M.,
Qutaishat,
F. et al.

An
Intelligent
Tree-Based
Intrusion
Detection
Model for
Cyber
Security (Al-
Omari et al.,
2021)

UNSW-NB 15
dataset from
the Cyber
Range Lab of
the Australian
Center for
Cyber security
with 175,341
records.

Tree-based
model
(Intrusion
detection
tree)

The paper presented
an intelligent tree-
based intrusion
model that was able
to effectively and
efficiently
predict/detect
cyberattacks.

Rajesh
Kumar,
Geetha S

Malware
classificatio
n using
XGBoost-
Gradient
Boosted
Decision
Tree
(Kumar and
S, 2020)

EMBER dataset
consists of 1.1
million entries
with a label for
malware,
benign, and
some parts left
as unknown

Classifier
using
XGBoost:
Extreme
Gradient
Boosting

A model was trained
using low
computation
resources in 1315
seconds with a
reduction in the
feature set. The
hyperparameter
tuned model gives
improved

performance for
accuracy of 98.5 and
on par AUC of .9989.

Evgeny
Burnaev,
Dmitry
Smolyakov

One-Class
SVM with
Privileged
Information
and Its
Application
to Malware
Detection
(Burnaev
and
Smolyakov,
2016)

Microsoft
Malware
Classification
Challenge
dataset: 0.5TB,
consisting of
disassembly
and bytecode of
more than 20K
malware
samples

Combining
Support
Vector
Machines
and
learning
using
privileged
information
and
training
SVDD and
One-Class
SVM

Privileged
information can
significantly improve
anomaly detection
accuracy.

Qiangjian
Pan,
Weiliang
Tang, Siyue
Yao

The
Application
of LightGBM
in Microsoft
Malware
Detection
(Pan, Tang
and Yao,
2020)

Microsoft
Malware
Prediction
dataset on
Kaggle: 9
million rows and
83 attributes

Logistic
Regression
, KNN,
Light
Gradient
Boosting
Machine

LightGBM is a
gradient boosting
framework that uses
the tree-based
learning algorithm,
and it shows the best
performance among
the three models

McLaughlin,
Niall and
Martinez del
Rincon,
Jesus and
Kang et al

Deep
Android
Malware
Detection
(McLaughlin
et al., 2017)

Raw Dalvik
bytecode of an
Android
application

Deep
Convolutio
nal Neural
Network

The paper presents a
novel Android
malware detection
system using deep
neural networks and
achieving 69%
accuracy using
cross-validation.

Taeshik
Shon,
Yongdae
Kim,
Cheolwon
Lee and
Jongsub
Moon

A machine
learning
framework
for network
anomaly
detection
using SVM
and GA
(Shon et al.,
2005)

MIT Lincoln Lab
Dataset

Genetic
Algorithm
and
Support
Vector
Machine

In this paper, the
proposed machine
learning framework
outperforms network
intrusion detection
systems using a
genetic algorithm
and support vector
machines as two
important
components of the
framework.

M.
Bensalem,
S. K. Singh

On
Detecting
and
Preventing

Optisystem
software to
simulate a
jamming attack

Artificial
Neural
Networks,

A machine learning
framework was
proposed for
detecting and

and A.
Jukan

Jamming
Attacks with
Machine
Learning in
Optical
Networks
(Bensalem,
Singh and
Jukan,
2019)

and generate
experimental
datasets

Support
Vector
Machine,
K-nearest
Neighbour,
Decision
Trees,
Naïve
Bayes, and
Logistic
Regression

preventing jamming
attacks in optical
networks, where it
was found that
Artificial neural
networks performed
the best accuracy
and time complexity
to detect and localise
out-of-band power
jamming attacks.

Isra’a
AbdulNabi∗,
Qussai
Yaseen

Spam Email
Detection
Using Deep
Learning
Techniques
(AbdulNabi
and
Yaseen,
2021)

Spambase data
set from the
UCI machine
learning
repository &
Spam filter
dataset from
Kaggle

BiLSTM
model,
compared
with KNN
[n-
neighbours
=3]

Bert contextual word
embedding improves
the capability
of detecting spam
emails compared to
Keras word
embedding.

From the Systematic Literature review:

A more specific search was conducted in this literature review using a specific

search technique. From the systematic literature review seen in Table 1, it can be

seen that several research papers have identified the use of machine learning

algorithms applied to predict/detect malware. Instead of using traditional statistical

analysis methods to predict malware, Pan, et al turn to other methods using machine

learning and data mining (Pan, et al Tang and Yao, 2020). The paper also proposes

to report the results of three algorithms, including Logistic Regression, K-Nearest

Neighbours and LightGBM and compare these results to pinpoint the algorithm best

suited for predicting the possibility of malware on the Microsoft Malware prediction

dataset on Kaggle. In work conducted by Pan et al, a thorough explanation is

provided in the steps taken to clean the dataset along with reasons why the

dimensionality of the dataset was reduced from 83 to 42 columns using Chi-square

testing. The selection of the LightGBM model is supported by the work conducted by

Ke et al as it can be concluded that LightGBM ‘speeds up the training process of
conventional gradient boosting decision trees by up to over 20 times achieving

similar accuracy.' Kumar et al use a similar approach to Pan et al by choosing a tree-

based algorithm, however, instead of working with LightGBM, Kumar uses the

XGBoost algorithm on the EMBER dataset, which consists of 1.1 million entries with

a label of malware. Kumars comparison between XGBoost and other classification

models shows that the XGBoost algorithm performed the best, achieving 98.2% after

hyper tuning specific parameters such as various learning rate values ranging from

0.01 to 0.2 and a n_estimator value of 600 (Kumar and S, 2020). Other machine

learning algorithms have also been used in the prediction/detection of malware,

which is seen by McLaughin et al., who use deep convolutional neural networks for

malware classification. McLaughin explains the various layers required to build the

Deep Convolutional Neural Networks model consisting of an opcode embedding

layer and convolutional layers and reports the model's findings. This paper also

reports that on the small Raw Dalvik bytecode of an Android application dataset, the

convolutional neural network achieved an accuracy of 98%, on a larger dataset, an

accuracy of 80% and on a larger dataset, an accuracy of 87%. Looking closer at the

results, it can be interpreted that the model performs well on the very large dataset

achieving a precision of 0.87and a recall of 0.85 (McLaughlin et al., 2017).

2.6. Research Gap

In recent times it has been reported that UK firms are 'most likely to pay’ (Tidy,
2022) ransomware hackers epitomising the threat of cyber-attacks and the need for

machine learning models that can predict/detect malware. With around 82% of

companies in the UK being likely to pay hackers to retrieve their data and 56% of

global companies being victims of cybercriminals, the importance of the research

conducted in the previous section is emphatic. The development of machine learning

algorithms must be continued to reduce the number of malware cyber-attacks and

enable companies to provide an extra barrier of security. An evident research gap

has been identified from the research conducted, which is the prediction of malware

given several features. The solution being proposed includes the exploration of the

Microsoft Malware Prediction dataset found on Kaggle, which will be analysed,

cleaned, and pre-processed before using creating machine learning models to

predict the probability of malware on a windows machine.

3. Approach
3.1. Introduction

This project will predict a Windows machine’s probability of getting infected by
various families of malware based on the different properties of that machine using

the Microsoft Malware Prediction Dataset from Kaggle. Malware detection is a binary

classification. In this project, one refers to the presence of malware and 0 refers to

the machine being malware-free. To implement these classifiers, I will use ML

algorithms that will be trained using the dataset that has been generated by

combining heartbeat and threat reports collected by Microsoft's endpoint protection

solution, Windows Defender. The most common ML models derived from the

literature review are tree-based models like Light Gradient Boosting Machine

(LightGBM), XGBoost, AdaBoost, and CatBoost. Also popularly used classifiers are

Random Forest (RF), Support Vector Machine (SVM), Naïve Bayes (NB) and Neural

Networks (NN). From my literature review, the popularity of Tree-based machine

learning algorithms has grown due to two reasons. The first is the ability of Tree-

based algorithms to handle diverse data without the need of pre-processing raw data

extensively, and the second is the fast computational Implementation of Tree-based

algorithms. These two reasons have been highlighted by the work of Kern et al., who

demonstrate diverse, prospective implementations of Tree-based algorithms along

with discussions of previously implemented models (Kern, Klausch and Kreuter,

2019).

Neural Networks have also proved to be efficient in clustering and classifying data

when trained on a labelled dataset. Thus, the following section of this report will

highlight LightGBM, XGBoost and Artificial Neural Networks.

The flowchart of this approach is seen in Figure 2.

Figure 2 Flow of Implementation

3.2. Ingestion of data

Data ingestion will be done using Pandas, this process includes moving data

from the local drive into a Pandas Dataframe structure (phadnispradnya, 2021). The

source file is a Comma Separated Values (.csv) file and can be ingested using the

pd.read_csv('train.csv') as our dataset is called train.csv. This process is also

discussed in detail in the Implementation section 4.1.1.

3.3. Explanatory data analysis

EDA is one of the first steps in implementing a machine learning algorithm. It is

an approach for gaining the highest level of insight into the data imported (NIST,

2019). During EDA, the data will be investigated and summarised for its main

characteristics. Most of the findings will be represented graphically. It will also find

anomalies in the data and understand how the dataset will be modified during

prepossessing.

3.4. Data Pre-processing

Date pre-processing involves transforming the raw data from the source file into

an understandable and useful format. Once data analysis is complete, pre-

processing will be done to make the dataset more complete and efficient to improve

the performance of classification models. This process includes data cleaning, which

makes sure there is no unnecessary data tampering with the accuracy of the models

later.

3.5. Classification Models

3.5.1. LightGBM model

LightGBM (Bachman, 2018) is a gradient boosting framework that is based on a

decision tree algorithm. It is an open-source library that can be used for ranking as

well as Classification. It splits the tree leaf-wise with the best fit, unlike other boosting

algorithms that split the tree depth-wise. LightGBM gives better accuracy than other

boosting algorithms because leaf-wise algorithms reduce loss more than level-wise

algorithms. It is also more efficient in terms of speed.

Figure 3 Leaf wise tree growth in LightGBM

There are multiple advantages to using LightGBM, like low memory usage – and

replacing continuous values with discrete bins. It is compatible with big datasets and

performs well, along with a substantial reduction in training time. Even though leaf-

wise splitting can lead to overfitting due to increased complexity, it can be repaired

by specifying another 'max-depth' parameter.

3.5.2. XGBoost model

XGBoost stands for eXtreme Gradient Boosting. It is an implementation of a

scalable, distributed gradient boosting decision tree (GBDT) designed for better

speed and performance (Jason Brownlee, 2016). It accomplishes machine learning

tasks like regression, Classification, and ranking (NVIDIA, n.d.). It builds upon the

concept of supervised machine learning, which, as discussed before in this report,

uses algorithms to find patterns in datasets. This is done by training a model with a

labelled dataset and then using the same to predict the labels on a new dataset.

XGBoost, unlike LightGBM, follows a level-wise splitting strategy. This means it

scans across all gradient values, and with these partial sums at every split, it

evaluates the quality of the splits in the training set.

Figure 4 Level wise tree growth in XGBoost

XGBoost also has an extensive list of benefits. This is an open-source development;

therefore, machine learning enthusiasts all over the world are constantly contributing

to the project. The machine learning models created have a highly efficient

combination of prediction performance and execution speed – due to this reason, it

appears most frequent on Kaggle as a go-to algorithm for winners of competitions.

3.5.3. Artificial Neural Networks

Neural networks (Nicholson, n.d.) are modelled based on the human brain, they

help recognise patterns, interpret data through machine perception and help classify

input data. The data classified can be numerical and contained in vectors. In this

case, neural networks were chosen because they also extract features that are fed

into other algorithms. However, the end goal of using his is to help group unlabelled

data based on the similarities between the input data, which is achieved when neural

networks have a labelled dataset to train on. Neural Networks consist of artificial

network functions, commonly known as parameters, similar to other classification

algorithms. These parameters receive multiple inputs and produce one output each.

These outputs are passed on as input to the subsequent layers of parameters, and

this goes on until each layer of the parameters has been considered and the last

parameters have received an input – these last parameters give the final result of our

model.

Figure 5 Visual representation of a Neural Network

Figure 5 shows a simple neural network, the initial input is 'x', and it is passed to the

first layer of parameters, which are also called neurons. The neurons are

represented by h1, h2, and h3 – these functions generate output and pass it on to the

second layer represented by g1 and g2. Once the output is calculated from the ‘g’
layer, it is combined to yield the model's final output, 'f'.

3.6. Agile Methodology

The project adheres to an agile methodology. This methodology consists of six

key stages which were followed in this project. The problem was defined, and a

fundamental understanding was built from the research conducted in Cybersecurity

and Machine Learning. Through the conducted research, a thorough plan and

direction were given to the project by setting up paths to design and implement the

project. A plan was formed outlining the project goals that must be met at the end of

the process. An agile methodology allows these checkpoints to be updated

depending on any extra features that need to be implemented. The planning stage

highlighted the technological equipment which will be used for the machine learning

models and the time frame for the project to be completed. This stage includes

milestones set specifically for this project.

The design stage is another vital stage that has been depicted in the diagram above.

This stage includes defining the approach that will be a foundation for the project and

help during the Implementation.

The implementation stage uses the fundamentals gathered from the planning,

literature review, and design stages to code the proposed models, hyper tune the

parameters, and then evaluate them.

The testing stage checks that the Implementation of the system has been performed

correctly, ensuring all the functionalities work well.

The results of the tests are then analysed, and a conclusion is drawn as to which

model performs the best in terms of accuracy, computational power, and time.

4. Implementation
4.1. Design and Implementation

4.1.1. Dataset

The dataset (Kaggle, 2018) used for this study was acquired from Kaggle.

Microsoft provided an extraordinary new dataset to encourage open-source

collaboration for predicting malware. This dataset follows its malware challenge in

2013 (Kaggle, 2013). However, this telemetry dataset generated by combining

heartbeat and threat reports collected from Microsoft’s endpoint protection solution –

Windows Defender, contains properties of a machine and infections. This dataset

was, of course, sampled, keeping in mind various business limitations in terms of

privacy and during the machine running. It was noted that Malware Detection, in its

essence, is a time-series problem which means that observations close to each

other in time are similar compared to observations far away. However, this time

series problem is made complicated when new machines are introduced, when

machines are not always online or when machines receive patches and are updated

with new operating systems. Microsoft also highlighted that the dataset was roughly

split by time and does not represent its customers because there had to be a large

number of malware machines sampled to balance the dataset.

The train.csv dataset was downloaded and used as labelled information to train the

three models discussed earlier. Each row in the datasets corresponds to a machine

with the primary key 'MachineIdentifier', which, as the name suggests, is a unique

machine ID. Another key column is ‘HasDetections’ which is the ground truth – it is a

binary value for each machine, indicated by 1 or 0 if malware was detected on the

machine or not respectively.

The first step was to start the data processing, for which I imported the dataset into a

Jupyter notebook. The implementation code used to read the train.csv file and

convert it into a dataframe (df) was using a python library ‘Pandas’.

Once loaded, it was noted that this data contained 83 columns, also known as

features and 8921483 rows. Keeping computational time and computational power in

mind, the dataset was scaled down to 1 million rows and stored as shortSet.csv.

4.1.2. Exploratory Data Analysis

A sum of 0s and 1s was calculated to check if the dataset was balanced. The

total number of machines with malware was 499813, and 500187 machines had no

malware present. As we can see from this information, the training dataset contains

equal amounts of positive and negative detections, concluding that the dataset is

balanced. A balanced dataset is vital so that the model is not biassed towards a

specific value of 'HasDetections' and can classify the data accurately.

Figure 6 Bar Graph for 'HasDetections'

Each column in this dataset represents a property of the machine, and these are

divided into three types: binary, numerical and categorical. To find how many

columns belong in each category, conditions were added for each of the categories

to define them.

Once defined, I used the python 'Plotly' library to create a visualisation in the form of

a pie chart.

Figure 7 Pie Chart for column category

This graph confirmed that the dataset contains 55 categorical columns, 20 binary

columns, and eight numerical columns. From this chart, we know that majority of the

columns are categorical, and this is important to know because, in order to build a

machine learning model at a later stage, if we have categorical columns, we will

have to implement encoding so that the machine learning algorithms can understand

that it is a categorical variable and use them accordingly.

Following this, it is essential to calculate how many unique values are present in

each categorical column, this is called cardinality. For binary columns, the cardinality

is two, as it represents unique values in any given volume. To find this for categorical

columns, I plotted a bar graph using plotly. As you can see in Figure 8, the top few

columns have big bars, and the ones in the bottom are almost negligible – this is

because the highest value on the x-axis is 60 thousand. The reason for such high

unique values, or to say cardinality count in the top variables, is that they are some

sort of identifier. Now, these categorical variables that have high cardinality will be

encoded.

Figure 8 Categorical Cardinality

I decided to pick out the first seven categorical columns with the highest cardinality,

i.e., 'Census_OEMModelIdentifier', 'CityIdentifier',

'Census_FirmwareVersionIdentifier', 'AvSigVersion',

'Census_ProcessorModelIdentifier', 'Census_OEMNameIdentifier', and

'DefaultBrowsersIdentifier' for feature engineering.

4.1.3. Feature Engineering

Feature Engineering is an integral step in the usage of machine learning, and it is

the practice of using domain knowledge of the data to create features that make

machine learning algorithms work. If feature engineering is done successfully and

accurately, it helps increase the prediction power of the algorithms by creating

features from raw data. This is always implemented before defining the model.

There are multiple categorical columns in almost every dataset where the variables

are stored as strings (text values), whereas machine learning is based on

mathematical equations. If we were to keep categorical columns, it might cause

problems. There are certainly some algorithms that support categorical data, but for

the purpose of uniformity, I decided to encode the ones with the highest cardinality.

There are multiple encoding techniques like nominal encoding, where the order of

the data doesn't matter; ordinal encoding, where the order of the data matters; and

frequency encoding, where we utilise the frequency of categories as labels in case

the frequency is related to the target variable it will help the model understand better.

I decided to use frequency encoding, and in this, if the columns are related to the

target variable 'HasDetections', it will make the machine learning algorithms more

efficient.

Once frequency encoding was complete, the next task was to clean the dataset. In

order to do this, I first found the amount of null value by percentage in the features.

There were 23 features with NaN values.

Figure 9 Percentage of NaN values

I dropped the columns consisting of more than 50% of NaN data, i.e

‘DefaultBrowserIdentifier’, ‘Census_IsFlightingInternal’ and
‘Census_ThresholdOptin’.

Even though LightGBM and XGBoost can handle NaN values, while implementing a

neural network, I learned that training a neural network with missing data can lead to

the output layer containing Nan values, and the model will end up with the wrong

Classification.

4.1.4. Data Pre-processing

In order to remediate this, I filled the NaN values of each column with the

respective averages of the data by using the pandas command fillna() and mean().

Following this, I checked the sum of null values in each feature to ensure that there

were zero NaN values.

Figure 10 Number of NaN values after fill.na() function

At this stage, there was only one feature that had 34,093 NaN values –

‘Wdft_IsGamer’. To remediate this, I used the describe() function to understand this

feature. This feature had a minimum value of 0 and a maximum of 1. Hence min()

was used to replace all NaN values with 0.

In conclusion, after the exploratory data analysis, pre-processing, and feature

engineering, I was able to conclude that the dataset is balanced and clean. For

implementing the three machine learning models, the dataset consisted of 80

columns with no NaN values.

4.2. Classifiers

4.2.1. Introduction

This project includes the Implementation of four different popular machine

learning models, which have been discussed prior to the design of the project. The

models include LightGBM, XGBoost, Artificial Neural Network and Support Vector

Machine; the two tree-based models have been implemented using their own

individual libraries. The Artificial Neural Network has been developed using

Tensorflow, and the Support Vector Machine algorithm has been developed using

sklearn. The Implementation of these four models aims to evaluate their individual

performance on the Microsoft Malware prediction dataset post the data pre-

processing and perform a comparison regarding accuracy and computation time.

This section will discuss the implementation of the three models and an explanation

of the parameters that have been selected in the development.

4.2.2. Implementation of LightGBM

LightGBM was first defined in 2017 in a paper titled' LightGBM: A Highly

Efficient Gradient Boosting Decision Tree' (Guolin Ke et al., 2017). This paper

introduced two ideas: GOSS – Gradient-based One-Side Sampling and EFB –

Exclusive Feature Building. GOSS is an amendment to the standard gradient

boosting method that focuses on the training examples that result in a larger

gradient. This, in turn, speeds up the learning process and reduces computational

complexity.

The LightGBM algorithm based on decision trees is different from other regular

decision tree algorithms as the algorithm splits the tree leaf-wise rather than other

decision tree algorithms that are split tree level-wise. In the Implementation of this

project-specific, parameters have been tuned to increase the accuracy and efficiency

of the model.

Some of the parameters that have been identified and tuned are the following:

‘num_leaves’ has been set to 60. The initial value for this parameter was 31 and

signifies the complexity of the model by initialising the value to 60, the maximum

number of nodes per tree has been increased. By increasing the number of leaves,

this parameter could be beneficial for in terms of an increase in accuracy but could

also lead to overfitting problems. Similarly, the ‘min_data_in_leaf’ has been set to 60,

the initial value for this parameter was 20. As the name suggests, this parameter

refers to the minimal number of data on the leaf, and it is used to prevent over-fitting.

The optimal value for this parameter is dependent on the value of num_leaves, to

avoid any over-fitting that might occur due to the increase in the number of maximum

nodes, the 'min_data_in_leaf' parameter has been increased. The objective function

has been set to binary as this problem is a binary classification problem identifying

whether certain machines contain malware or not. Other parameters that have been

tailored include ‘feature_fraction', which selects a subset of features on each iteration

before training each tree. The default value for this parameter is set to 1.0; however,

in this LightGBM model, the parameter is set to 0.8. By setting this parameter to 0.8,

the LightGBM model will randomly select 80% of the features at the beginning of the

construction of each tree, leading to a decrease in the total number of splits that are

required to be evaluated to add each node. Another benefit of tuning this parameter

is that it can speed up the training and deal with overfitting. The ‘bagging_freq’ and
‘bagging_fraction’ are also two interlinked parameters that have been tuned to

benefit the model. The values of these two parameters have been set to 1.0 and 0.8,

respectively; by tuning these two parameters, the training data is resampled every

iteration, and samples are drawn from 80% of the training dataset.

Figure 11 Parameters for LightGBM

To maximise the use of the training and testing dataset and the Implementation of

the LightGBM model, K-Fold Cross Validation has been implemented to assess the

model's performance. In the Implementation of this procedure, the dataset is shuffled

randomly and then split into k folds (bins or groups); in the case of the current

implementation, k has been chosen to be 6. For each unique group, a specific group

is taken out and initialised as the test dataset, and the remaining groups are the

training dataset. The model is trained on the training set and evaluated on the test

dataset. In the next iteration, a different group is chosen to be the test dataset, and

the remaining groups of data are held to be the training dataset which is then again

evaluated. This process is repeated for each iteration until each group/bin has

become the test dataset.

Figure 12 K-Fold Procedure

The early stopping method was also implemented during the training process. Early

stopping stops the training process if the model performance does not improve for

several iterations.

4.2.3. Implementation of XGBoost

The second tree-based algorithm that has been selected for this classification

problem is the ‘highly effective tree-boosting algorithm’ – XGBoost (Chen and

Guestrin, 2016). This is an open-source and scalable machine learning system for

tree boosting. To implement this algorithm, the XGBoost optimised distributed

gradient boosting library has been used, and the parameters for this algorithm have

been tuned.

The XGBClassifier has been initialised with a 'learning_rate' of 0.03, and the

'n_estimators' value has been initialised to 1300 from its initial value of 100. The

'n_estimator' value corresponds to the value of the number of trees in the XGBoost

model that is being implemented. The 'max_depth' of the tree has been tailored to 8

instead of its default value of 6; this change represents the size of the trees. The

'min_child_weight' has been increased from 1 to 4 in the training of this model on the

Malware dataset; by increasing the value of the 'min_child_weight,' the model will

find it more difficult to create new nodes in a tree and will reduce the complexity of

the tree leading to the model to less likely overfit. Other parameters that have been

tuned can be seen in Figure 13 below.

Figure 13 Parameters for XGBoost

4.2.4. Implementation of Neural network

The third algorithm implemented to solve this classification problem is Artificial
Neural Networks (ANN). Artificial Neural Networks architectures are inspired by the
‘sophisticated functionality of human brains.’ ANNs consist of neurons and layers
and hidden layers, which have grown in popularity in recent times as various
domains have adopted and implemented this for ‘image processing and language
processing – this is because it can automatically learn and abstract features’
(Tobiyama et al., 2016). This section will go through and explain the construction of
the Neural Network, indicating the different layers of the architecture.

To construct the architecture of this neural network Keras and TensorFlow had been
identified to be two important libraries when creating the Artificial Neural Network
Layer. First, using the 'sklearn train_test_split,' the pre-processed dataset was split
into a training and test set in a 70:30 ratio, respectively. Next, a sequential model
was defined, which allows multiple layers to be stacked over each other, with each
layer consisting of one input tensor and one output tensor. The first layer initialised in
the sequential model is the Dense Layer which is deeply connected to the prior layer,
in this network, the Dense Layer consists of 100 neurons and takes the input
dimensions of the training dataset.

The Dense layer consists of several neurons where each neuron receives an input
from the previous layers of neurons. In this case, the dense layer is the first layer of
the sequential model. The next layer is the Dropout layer used to 'randomly set the
outgoing edges of hidden units to 0 at each update of the training phase’ (Keras,
n.d.). Deep neural networks are prone to a fundamental problem of overfitting and
heavy computational power and expense. To avoid these fundamental problems, the
Dropout layer has been initialised with a probability of 0.4, indicating that there is a
40% chance the output neuron will be changed to 0. The batch normalisation layer is
added to normalise the inputs of the layer by applying transformations that maintain
the mean output close to 0 and standard deviation close to 1.

The Activation layer is the final unique layer used for this model, which applies the
activation function chosen and is an essential component of any architecture as this
layer computes the weighted sum of inputs and bias’s that can be used to assess if
the neuron can be fired or not (Chigozie et al., 2018). In implementing this neural
network architecture, the 'ReLU’ activation function has been used along with the
'sigmoid' activation function. Both visual representations can be seen in Figures 15
and 16 below.

ReLU: rectified linear activation function is a linear function that will output the input
directly if it is positive, otherwise, it will output zero.

Figure 14 ANN Code Cell on Jupyter Notebook

Figure 15 ReLU function graph

Sigmoid: this activation function guarantees that the output of this unit will always be
between 0 and 1.

Figure 16 Sigmoid function graph

Finally, the model is compiled with a learning rate of 0.0001, a loss function of
binary_crossentropy and an Adam optimiser.

5. Testing

This section demonstrates that the project has been developed as intended and
is able to answer the research question proposed. The tests have been carried out
using Python v3 on Jupyter Notebook v6.4.5 running on windows 10 OS.

Table 2 Test Case - 1

Test Id:

01

Test Purpose: Loading dataset from the source

Preconditions: download dataset train.csv from Kaggle, import Pandas

Step No. Procedure Response Pass/Fail

1 Input the name of the file in the

cell, read CSV and convert it

into dataframe

When loaded, run the file to

make sure all 83 columns are

shown

Pass

Comments: Original file train.csv was shortened to shortSet.csv with 1 million rows.

Related Tests: n/a

Table 3 Test Case - 2

Test Id:

02

Test Purpose: Exploratory Data Analysis procedure to understand and

visualise the dataset

Preconditions: shortSet.csv is loaded, import Plotly

Step No. Procedure Response Pass/Fail

1 Check if the dataset is balanced

by calculating the sum of 0s and

1s in the HasDetections column,

then create a bar graph.

Machines with malware:

499813

Machines without malware:

500187

Pass

 2 Create a pie chart for three types

of data: binary, categorical and

numerical.

categorical columns: 55 binary

columns: 20 numerical

columns: 8

 Pass

3 Visualise cardinality by

checking the number of unique

values in each column.

Bar graph with 55 columns

containing unique values

Pass

Comments: Feature engineering for columns with high cardinality to be performed

Related Tests: n/a

Table 4 Test Case - 3

Test Id:

03

Test Purpose: Feature Engineering and cleaning the dataset

Preconditions: List of features with high cardinality

Step No. Procedure Response Pass/Fail

1 Implement frequency encoding

on seven columns with high

cardinality

Encoded with reduced

cardinality

Pass

 2 Find the amount of NaN values

by percentage in each column

Twenty-three features with

NaN values, three features

with more than 50% NaN

values.

 Pass

3 Delete the columns with over

50% NaN values

Three columns deleted Pass

Comments: NaN values in the remaining 20 columns will have to be replaced

Related Tests: 2

Table 5 Test Case - 4

Test Id:

04

Test Purpose: Data Pre-processing

Preconditions: 20 columns with less than 50% NaN values

Step No. Procedure Response Pass/Fail

1 Taking care of missing data in

each column with the respective

mean of the data

Only 19/20 columns updated Fail

Comments: For the remaining column, instead of mean, the min was used to replace NaN

values as it was a binary column

Related Tests: 3

Table 6 Test Case - 5

Test Id:

05

Test Purpose: Coding, Training and Testing LightGBM

Preconditions: Dataset loaded and pre-processed after running Test#4

Step No. Procedure Response Pass/Fail

1 Running all the cells for the

LightGBM model with hyper

tuned parameters, including k-

fold, cross-validation, and

confusion matrix

All cells executed with no

errors

Pass

Comments: n/a

Related Tests:

Table 7 Test Case - 6

Test Id:

06

Test Purpose: Coding, Training and Testing XGBoost

Preconditions: Dataset loaded and pre-processed after running Test#4

Step No. Procedure Response Pass/Fail

1 Running all the cells for the

XGBoost model with hyper

tuned parameters, cross-

validation, and confusion matrix

All cells executed with no

errors

Pass

Comments: n/a

Related Tests:

Table 8 Test Case - 7

Test Id:

07

Test Purpose: Coding, Training and Testing Neural Network

Preconditions: Dataset loaded and pre-processed after running Test#4

Step No. Procedure Response Pass/Fail

1 Running all the cells for the

Neural Net model with hyper

tuned parameters, cross-

validation, and confusion matrix

All cells executed with no

errors

Pass

Comments: n/a

Related Tests:

6. Results and Evaluation

This section includes the evaluation technique used and the results for each
model.

6.1. Confusion Matrix

Evaluation is a key part of the machine learning process. A confusion matrix
table will be used to compare and analyse which classification algorithm in this
project had the best performance and is most suitable for malware classification.
This indicates how successful the classification algorithm is by summarising the
results as four outcomes – TP, TN, FP, and FN (Jayaswal, 2020).

Table 9 Confusion Matrix

• TP: True Positive: Refers to when the model correctly classifies a positive
class as positive.

• TN: True Negative: Refers to when the model correctly classifies a negative

class as negative.

• FP: False Positive: Refers to when the model incorrectly classifies a negative
class as positive.

• FN: False Negative: Refers to when the model incorrectly classifies a positive

class as negative.

This indicates that a good performance indicator would be a higher number of TP
and TN values. The confusion matrix accurately indicates the model’s classification
results and also helps identify other performance indicators like accuracy, precision,
recall, and F1 score. These indicators, along with AUC (Area under Curve), help
measure the classifiers' overall performance. Each performance indicator is
discussed below.

Accuracy: Accuracy refers to the success ratio of the model and is calculated by the
formula below. It is the ratio of correctly classified classes to the total Classification
of classes.

����堅��� = �� + ���� + �� + �� + ��

Precision: Precision refers to the number of correct predictive values that the model

calculates. It is the ratio of correctly classified predictions to the sum of total classes

classified as positive. The formula below is used to evaluate precision. �堅���嫌�剣券 = ���� + ��

Recall: Recall refers to the number of false negatives calculated by the model. It is

the opposite of precision. Recall is calculated by the formula below. It is the ratio of

correctly classifies classes to the sum of positive outcomes. ������ = ���� + ��

F1 score: F1 score is also called F-measure it is the average overall accuracy, i.e.

the equilibrium between precision and recall. It takes both false positives and false

negatives, and it can be calculated using the formal is below. �な = に ∗ 喧堅���嫌�剣券 ∗ 堅�����喧堅���嫌�剣券 + 堅�����

AUC: AUC refers to the Area under the ROC Curve. ROC refers to the graph

representing the model's performance at all levels. The ROC curve plots TP rate with

respect to FP rate and emphasises the classifier's sensitivity. More Area under the

ROC corresponds to a better classifier.

6.1.1. LightGBM Performance

Using the above parameters, the LightGBM model was compared to two other

machine learning models on the pre-processed dataset. Its performance can be

seen in Figure 18 below. The LightGBM model achieved an accuracy of 66% with a

precision and recall of 0.66, respectively. The confusion matrix represents the TP,

TN, FP, and FN defined in the previous subsection 6.1 and showed the percentage

values of each of the evaluation components. For a large dataset, which is high in

dimensions, it can be argued that the accuracy achieved is expected, especially after

hyper tuning the parameters as stated in Section 4.2.2. It is important to reiterate

some of the key parameters that had been tuned, including the learning rate of 0.1,

num_leaves which was set to 60 and num_boost_round set to 1000. The LightGBM

result reports an AUC result as 0.721591, which was stopped using an

early_stopping_rounds parameter set to 1000. At around 785, the training of the

LightGBM model was stopped due to the loss on the validation dataset increasing.

Figure 20 shows the results of the k-fold cross validation implementation results. It is

shown that the fourth fold provides the model with the highest accuracy of 0.66266

and an average accuracy of the k-fold cross-validation of 0.65937.

Figure 18 Classification Report for LightGBM

Figure 19 Early Stopping Function LightGBM

Figure 17 Confusion Matrix for LightGBM

Figure 20 Results of the k-fold cross-validation

6.1.2. XGBoost Performance

The next algorithm being evaluated is the XGBoost model, which is another tree-

based algorithm explained above. The XGBoost model performed similarly to the

LightGBM model achieving 66% accuracy on the pre-processed dataset, which is

shown by the classification report in Figure 22. The confusion matrix represents the

TP, TN, FP, and FN values which have been defined in the previous subsection and

shows the percentage values of each of the evaluation components. The precision,

recall and f1-score all come out to a score of 0.66, respectively. This score was

reached by hyper tuning key parameters such as the learning_rate, n_estimators

and the depth of the tree. The TP value of 32.59% represents the correctly predicted

machines that have malware, whereas the TN value of 33.26% represents the

correctly predicted machines that do not have malware. These values are very

similar to the confusion matrix of the LightGBM model that was shown in Figure 17.

This shows that the decision trees performed identically, and either could be chosen

as the best machine learning algorithm for this problem set. However, another

evaluation factor that can compare both of these models is the computational time

taken for these models to run, which has been explained and depicted in Section

6.2.

6.1.3. Neural Networks Performance

As explained in Section 3.5.3, an artificial neural network was constructed using

dense layers, dropout layers and batch normalisation layers with two different

activation layers in the architecture. The architecture uses the ReLu and the sigmoid

activation functions to decide if the neurons require activation or not. Figure 23 below

represents the neural network's learning curves depicting the accuracy and loss of

the model. The neural network achieved an accuracy score of 52% on the training

and validation set with a loss on 0.6909 and 0.6902 on the training and validation

set, respectively. This shows that the neural network has underperformed

significantly compared to the previous two tree-based algorithms. However, these

results do make sense as artificial neural networks face problems when using a

dataset with high dimensionality due to the curse of dimensionality, which is very

common in machine learning. It can be argued that a dataset with fewer dimensions

can possibly improve the neural network's performance to an extent where it might

outperform the performance of decision trees.

Figure 21 Confusion Matrix for XGBoost

Figure 22 Classification Report for XGBoost

6.2. Comparison of models

After obtaining the individual results for each model, the table below has been

formulated to visualise the performance of each model. When comparing these

models, it is evident that the LightGBM and XGBoost models outperform the Artificial

Neural Network indicating that the performance of the tree-based algorithms is much

better. The results obtained in this research are similar to the work carried out by

Pan et al., who also was able to obtain an AUC score of 0.72, similar to the work

conducted in this research. The main difference in this research is the tuning of

parameters of both LightGBM and XGBoost, from which the results generated to

indicate that both the tree-based algorithms were able to achieve the same

accuracy. However, the computational time taken for LightGBM to be executed is

much quicker than the time taken for the XGBoost algorithm. This is due to the

histogram-based splitting, GOSS end exclusive feature bundling, which has also

been explained by Ke et al. (Guolin Ke et al., 2017).

Table 10 Comparison Report of Models

Models Accuracy Precision Recall F1-score Computational
Time Taken

LightGBM 66% 0.66 0.66 0.66 226.4s

XGBoost 66% 0.66 0.66 0.66 3957.1s

Artificial Neural
Network

52% 0.54 0.53 0.53 2183.8s

Figure 23 Learning Curves: Accuracy and Loss of the Model

7. Conclusions and Future Work
7.1. Observations

The first observation, keeping the title of the dissertation in mind, is that tree-

based machine learning models perform better than artificial neural networks for

binary Classification. Both the decision tree algorithms, LightGBM and XGBoost,

gave an accuracy 10% higher than the artificial neural network for the same dataset.

From the beginning of this project, it was observed that LightGBM is likely to perform

better compared to other machine learning algorithms. Multiple sources from the

literature review and projects on Kaggle demonstrated higher accuracy using this

machine learning model.

XGBoost, the second tree-based model, gave the same accuracy as LightGBM;

however, it took 3957 seconds, approximately 17 times greater than the time taken

by LightGBM (226.4 seconds).

It was also observed that Neural Network only gave an accuracy of just over 50%.

This algorithm did not perform up to expectations. From the background research

and literature review, neural networks had been widely endorsed for Classification –

but that was not reflected in this dataset. In retrospect, the dataset features could

have been reduced to a smaller number, giving a better accuracy due to small

dimensionality.

Considering these observations, we can answer the research questions posed at the

start of this report.

Research Question 1: Can machine learning algorithms be used to predict if a

windows machine has malware?

Answer: Yes, machine learning algorithms, both tree-based and neural networks,

can be used to predict if a windows machine has a malware

Research Question 2: Which machine learning binary classification model performs

best in predicting if a windows machine has malware?

Answer: LightGBM is the binary classification model that performs best in predicting

if a windows machine has malware.

7.2. Limitations

There were certainly a few limitations of this project. The primary being low

accuracy. It is observed that the models could not give an accuracy of over 70%,

which is not ideal. This could result from a small number of data samples – as

mentioned earlier, the dataset had been shortened from 8 million rows to 1 million

due to computation power requirements. Another limitation was time constraints, as

seen above, the XGBoost model computational time was over an hour, and hyper

tuning parameters took plenty of time.

A step that could have been taken to improve the accuracy would be to certainly

have more computation power, which is discussed in the next section, and spend

more time treating the missing value in the data. All but one feature's NaN values

were filled with the mean of the feature – this step could have been modified into

individually exploring the features and deciding the best way to replace the NaN

values.

7.3. Future Work

As mentioned before, to improve the performance of the models, they would

need to be fed more training data; this would require more computational power,

which is why this project could be run on the cloud in the future. For instance, using

the Amazon Web Services tool Sagemaker. Amazon Sagemaker helps developers

create, train, and deploy machine learning models in the cloud. It is also known to

reduce training time exponentially and scale the infrastructure according to

computational needs (Amazon Web Services, 2019).

Another feature that could be implemented in the future would be an application with

a robust User Interface. This feature would enable the user to enter the properties of

their windows machine, like their city if they are a gamer, where the anti-virus

products are enabled, their browser identifier, if they have a firewall enabled and so

on. Once the input is received manually or automatically collected from the device,

the application runs the machine learning model and provides the user with the

likelihood of their machine containing malware. This could also be accompanied by a

few remediation actions depending on the properties. For instance, the user could be

asked to turn their firewall on or update their anti-virus to further protect their devices

from malware.

8. Reflections on Learning

This project certainly adheres to the concept of lifelong learning. This one-

semester final year project has certainly played a vital role in preparing me for my

future career. I decided to select this topic as I have always had a keen interest in

cybersecurity. However, I was keen to learn more about machine learning and how

this integrates with the field of security. Through the course of completing this

research, I have learnt plenty of lessons – for instance, writing a report including

various stages in a process requires time management skills. I was certain I would

be able to balance this through the help of my supervisor's weekly catchup, however,

I found myself falling a little behind during Implementation – this was due to

unanticipated issues like time taken to run the models, trial and error for hyper tuning

the parameters and so on. This helped me realise that in the future, while planning

projects, I should take into account extra time for unexpected circumstances. During

the four years at university, this was by far the longest report that required

continuous effort and commitment; it had certainly made me confident to take up

more significant projects and write reports in my professional life. In the technical

aspect, as I aimed, I was able to learn a lot about the domain of machine learning; I

now understand the difference between classifiers, parameters and models. I have

also understood the importance of data analysis and preparation for any project.

After implementing the three models, the evaluation phase helped me gain insight

into how to pick the best solution for any given problem and produce a robust

solution. Overall, I believe undertaking this project has helped me grow as a

computer scientist and helped me practice decision-making, analysis, time

management, problem-solving, and research. These skills will help me become a

valuable member of the cybersecurity community.

9. References

AbdulNabi, I. and Yaseen, Q. (2021). Spam Email Detection Using Deep

Learning Techniques. Procedia Computer Science, 184, pp.853–858.

doi:10.1016/j.procs.2021.03.107.

Al-Omari, M., Rawashdeh, M., Qutaishat, F., Alshira’H, M. and Ababneh, N.
(2021). An Intelligent Tree-Based Intrusion Detection Model for Cyber Security.

Journal of Network and Systems Management, 29(2). doi:10.1007/s10922-021-

09591-y.

Amazon Web Services (2019). Build, Train, and Deploy Machine Learning

Models | Amazon SageMaker. [online] Amazon Web Services, Inc. Available at:

https://aws.amazon.com/sagemaker/.

Bachman, E. (2018). Which algorithm takes the crown: Light GBM vs

XGBOOST? [online] Analytics Vidhya. Available at:

https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-

light-gbm-vs-xgboost/ [Accessed 30 Mar. 2022].

Bensalem, M., Singh, S.K. and Jukan, A. (2019). On Detecting and Preventing

Jamming Attacks with Machine Learning in Optical Networks. www.preprints.org.

[online] doi:10.20944/preprints201901.0311.v2.

Burnaev, E. and Smolyakov, D. (2016). One-Class SVM with Privileged

Information and Its Application to Malware Detection. [online] IEEE Xplore.

doi:10.1109/ICDMW.2016.0046.

Chen, T. and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System.

[online] Available at: https://arxiv.org/pdf/1603.02754.pdf [Accessed 27 Apr. 2022].

Chigozie, E., Nwankpa, W., Ijomah, A., Gachagan, S. and Marshall (2018).

Activation Functions: Comparison of Trends in Practice and Research for Deep

Learning. [online] Available at: https://arxiv.org/pdf/1811.03378.pdf.

Climer, S. (2018). Mindsight. [online] Mindsight. Available at:

https://gomindsight.com/insights/blog/history-of-cyber-attacks-2018/ [Accessed 10

Feb. 2022].

Fidelis Cybersecurity (2020). Using Machine Learning for Threat Detection.

[online] Fidelis Cybersecurity. Available at:

https://fidelissecurity.com/threatgeek/network-security/using-machine-learning-for-

threat-detection/.

Guolin Ke, Qi Meng, Finley, T., Taifeng Wang, Chen, W., Ma, W., Qiwei Ye and

Tie-Yan Liu (2017). LightGBM: A Highly Efficient Gradient Boosting Decision Tree.

Nips.cc, [online] pp.3146–3154. Available at: https://papers.nips.cc/paper/6907-

lightgbm-a-highly-efficient-gradient-boosting-decision-tree [Accessed 8 Nov. 2019].

Helen (2021). 6 Malware Detections/18 Malware Types/20 Malware Removal

Tools. [online] MiniTool. Available at: https://www.minitool.com/backup-tips/malware-

detection.html [Accessed 15 Apr. 2022].

Holmen, U. (2022). AI and machine learning for threat detection. [online] NTT.

Available at: https://services.global.ntt/en-gb/insights/blog/ai-and-machine-learning-

for-threat-

detection#:~:text=Machine%20learning%20empowers%20automatic%20reasoning

[Accessed 3 Mar. 2022].

Jason Brownlee (2016). A Gentle Introduction to XGBoost for Applied Machine

Learning. [online] Machine Learning Mastery. Available at:

https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-

learning/ [Accessed 30 Mar. 2022].

Jayaswal, V. (2020). Performance Metrics: Confusion matrix, Precision, Recall,

and F1 Score. [online] Medium. Available at:

https://towardsdatascience.com/performance-metrics-confusion-matrix-precision-

recall-and-f1-score-a8fe076a2262 [Accessed 6 May 2022].

Kaggle (2013). Microsoft Malware Classification Challenge (BIG 2015). [online]

kaggle.com. Available at: https://www.kaggle.com/c/malware-classification.

Kaggle (2018). Microsoft Malware Prediction. [online] kaggle.com. Available at:

https://www.kaggle.com/competitions/microsoft-malware-prediction/data [Accessed 2

Feb. 2022].

Keras (n.d.). Keras documentation: Dropout layer. [online] keras.io. Available at:

https://keras.io/api/layers/regularization_layers/dropout/.

Kern, C., Klausch, T. and Kreuter, F. (2019). Tree-based Machine Learning

Methods for Survey Research. Survey research methods, [online] 13(1), pp.73–93.

Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425836/ [Accessed 15

May 2022].

Kumar, R. and S, G. (2020). Malware classification using XGboost-Gradient

Boosted Decision Tree. Advances in Science, Technology and Engineering Systems

Journal, 5(5), pp.536–549. doi:10.25046/aj050566.

Leevy, J.L., Hancock, J., Zuech, R. and Khoshgoftaar, T.M. (2021). Detecting

cybersecurity attacks across different network features and learners. Journal of Big

Data, 8(1). doi:10.1186/s40537-021-00426-w.

Mary Landesman (2021). A Brief History of Malware. [online] Lifewire. Available

at: https://www.lifewire.com/brief-history-of-malware-153616 [Accessed 17 Feb.

2022].

McLaughlin, N., Doupé, A., Joon Ahn, G., Martinez del Rincon, J., Kang, B.,

Yerima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E. and Zhao, Z. (2017). Deep

Android Malware Detection. Proceedings of the Seventh ACM on Conference on

Data and Application Security and Privacy - CODASPY ’17. [online]

doi:10.1145/3029806.3029823.

Microsoft (2022). Microsoft Defender for Endpoint. [online] docs.microsoft.com.

Available at: https://docs.microsoft.com/en-us/microsoft-365/security/defender-

endpoint/microsoft-defender-endpoint?view=o365-worldwide.

NCSC (2019). How Cyber Attacks Work. [online] Ncsc.gov.uk. Available at:

https://www.ncsc.gov.uk/information/how-cyber-attacks-work [Accessed 17 Feb.

12AD].

Nicholson, C. (n.d.). A Beginner’s Guide to Neural Networks and Deep Learning.

[online] Pathmind. Available at: https://wiki.pathmind.com/neural-

network#:~:text=Neural%20networks%20help%20us%20cluster [Accessed 16 May

2022].

NIST (2019). 1.1.1. What is EDA? [online] Nist.gov. Available at:

https://www.itl.nist.gov/div898/handbook/eda/section1/eda11.htm.

NVIDIA (n.d.). What is XGBoost? [online] NVIDIA Data Science Glossary.

Available at: https://www.nvidia.com/en-us/glossary/data-science/xgboost/.

Pan, Q., Tang, W. and Yao, S. (2020). The Application of LightGBM in Microsoft

Malware Detection. Journal of Physics: Conference Series, 1684, p.012041.

doi:10.1088/1742-6596/1684/1/012041.

phadnispradnya (2021). Streamlined Data Ingestion with Pandas. [online]

GeeksforGeeks. Available at: https://www.geeksforgeeks.org/streamlined-data-

ingestion-with-

pandas/#:~:text=Data%20Ingestion%20with%20Pandas%2C%20is%20the%20proce

ss%2C%20of [Accessed 12 Apr. 2022].

Rankin, B. (2018). A Brief History of Malware—Its Evolution and Impact. [online]

Lastline. Available at: https://www.lastline.com/blog/history-of-malware-its-evolution-

and-impact/ [Accessed 14 Feb. 2022].

Shon, T., Kim, Y., Lee, C. and Moon, J. (2005). A machine learning framework for

network anomaly detection using SVM and GA. [online] IEEE Xplore.

doi:10.1109/IAW.2005.1495950.

Sidath Asiri (2018). Machine Learning Classifiers. [online] Medium. Available at:

https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623

[Accessed 2 Mar. 2022].

Tidy, J. (2022). Study: UK firms most likely to pay ransomware hackers. BBC

News. [online] 23 Feb. Available at: https://www.bbc.com/news/business-60478725

[Accessed 23 Apr. 2022].

Tobiyama, S., Yamaguchi, Y., Shimada, H., Ikuse, T. and Yagi, T. (2016).

Malware Detection with Deep Neural Network Using Process Behavior. 2016 IEEE

40th Annual Computer Software and Applications Conference (COMPSAC). [online]

doi:10.1109/compsac.2016.151.

Townsend, C. (2019). Cyber Security Summit New York 2019. [online] United

States Cybersecurity Magazine. Available at:

https://www.uscybersecurity.net/history/ [Accessed 14 Feb. 2022].

