
 1

Cardiff University
School of Computer Science and Informatics

CM3203 - Individual Project Report

 Currency Exchange Notifier: Finding the

right time to exchange currency

Supervisor: Dr Parisa Eslambolchilar

Moderator: Dr Sylwia Polberg

Author: Eun-Kyul Ko

12th May 2022

 2

Abstract

The foreign exchange market is very unpredictable; the fluctuations of the currency

exchange rate makes it harder for people to know when to buy or sell currencies. These

currency fluctuations can be caused by political affairs, economics and businesses especially

the current world wide affairs such as COVID and Ukrainian crisis. The larger the amount of

money exchanged, the greater the impact of the fluctuation. However, monitoring currency

charts every day waiting for exchange values to drop is unnecessary and tedious.

In this project I will be presenting a solution that helps people to trade their currency at a

better rate. Currency Exchange Notifier is an Android mobile application that sends out

ŶotifiĐatioŶs ǁheŶ the useƌ͛s desiƌed ĐuƌƌeŶĐǇ is ƌeaĐhed, ŵeaŶiŶg the useƌ does Ŷot haǀe
to constantly monitor their currency of interest. This report documents the whole process of

the project including the background research, approach, design, implementation, testing

and evaluation of Currency Exchange Notifier.

 3

Acknowledgements

I would like to express my appreciation to my supervisor Dr Parisa Eslambolchilar for all her

help and guidance through the project. The feedback she provided and the support she has

shown have given me the confidence to finish the project.

I could not have undertaken this journey without my friends Sabeehah, Malaika and Kiya.

The love and support they gave me throughout this project and the university life as a whole

was invaluable.

 4

Table of Contents

Abstract 2

Acknowledgements 3

Table of Contents 4

1. Introduction 5

2. Background research 6

3. Approach 12

3.1. Methodology 12

3.2. Software choices 12

3.2.1. IDE 12

3.2.2. Currency API 13

4. System Design 14

4.1. Specification 14

4.1.1. Functional requirements 14

4.1.1.1. Must have 14

4.1.1.2. Should have 15

4.1.1.3. Could have 16

4.1.2. Non-functional requirements 17

4.1.2.1. Must have 17

4.1.2.2. Should have 17

4.2. Use Cases 17

4.3. User Interface Design 22

5. Implementation 32

5.1. Database creation 32

5.2. Overview of implementation structure 33

5.3. Code quality 42

6. Results and Evaluation 43

6.1. Test Cases 43

6.2. User Testing 44

7. Future work 45

8. Conclusions 47

9. Reflection on Learning 48

References 49

Appendices 50

 5

1. Introduction

The aim of this project is to create a prototype of a mobile application that sends out

notifications when the currency exchange rate drops below a certain point. This will help the

user to know when the optimal time to trade their currency at the best rate is.

The three main objectives of the project are:

● To gain an understanding of the currency fluctuations and existing solutions in the

market

● To implement prototype with features that help users to exchange currencies at the

right time

● To create a UX design that is suitable for a currency exchange notifying mobile

application

For the first objective I will begin with a series of background research, to gain an in-depth

understanding of how currency fluctuation is affected by different factors. At the same time

I will be carrying out market research to identify and review existing solutions and how they

are integrated with other features of the service.

The second objective is the core part of this project, the implementation of the prototype.

This prototype should allow the user to 1) select the currency they want to get the

notifiĐatioŶ foƌ aŶd ϮͿ eŶteƌ the desiƌed ǀalue of that ĐuƌƌeŶĐǇ ƌelatiǀe to the useƌ͛s default
currency. The detailed specification and requirements of the app will be determined in the

system design part of the project.

Lastly, maintaining a high level of UX design is important. Keeping your system usable is

equally as important as the integration of main functions; even if an app has amazing

features and high quality functions, if it has a bad UX design it will eventually fail to attract

users to the system. To make sure that I have a user friendly interface I will be focusing on

producing self-descriptive and consistent design, with a clear and conventional design of

ďuttoŶs aŶd iĐoŶs. Also the sǇsteŵ ŵust ďe easǇ to use ƌegaƌdless of the useƌ͛s teĐhŶiĐal
skills. In order to make sure I achieve this I will generate a high fidelity mockup prototype

design.

 6

2. Background research

Although I had a clear idea of the application I wanted to develop, it was essential to gain

background knowledge of the existing solutions that are currently on the market. Before

implementing the prototype I found that there are several mobile applications and online

services that provide notifications when currency values drop.

The following section analyses existing solutions of currency exchange notifiers that are on

the market.

 7

Name: XE Type: Mobile application

Summary:

XE is an online foreign exchange tool that allows users to send money abroad within a one

click process. It provides lots of additional features other than the international transfer

features such as a currency chart, live exchange rates, rate alerts, a travel expenses

calculator and daily currency updates.

Features:

● Live exchange rates for global currencies

● Quick quote & send for international transfer

● Money transfer tracking service

● Currency chart with live rates and historical data for past 10 years

● Rate alerts for desired currency rates

Rating:

App Store: 4.1/5 (2.6k ratings)

Google Play: 3.4/5 (106k ratings)

Reviews:

͞A ǀeƌǇ pƌaĐtiĐal app͟

͞The ƌates aƌe faƌ fƌoŵ aĐĐuƌate͟

͞The ĐuƌƌeŶĐǇ that I ĐoŶǀeƌt ŵoƌe ofteŶ has a loŶg Ŷaŵe aŶd so it bugs out and gets

Đoǀeƌed ďǇ Ŷuŵďeƌs, ŵakiŶg it diffiĐult to ƌead͟

͞PeƌfeĐt foƌ doiŶg ƋuiĐk aŶd aĐĐuƌate ĐuƌƌeŶĐǇ ĐalĐulatioŶs͟

͞The Đhaƌts aƌe ŵostlǇ uŶƌespoŶsiǀe ǁheŶ Ǉou Đhoose a diffeƌeŶt date ƌaŶge͟

Evaluation:

The app has a simple and aesthetically pleasing UI design. The refresh cycle at the top of

the screen suggests that the currency rate is updated every 60 seconds.

The main function of the app is the exchange function, making the exchange notification

feature complementary. It was very straightforward and easy to set up the notifications.

However, when the actual notification is sent, it is received twice which is an error as I did

not specify it to do so in the settings. Also the set up expires after one use, therefore if the

user wants to be notified multiple times for the same rate they have to set up multiple

notifications. Lastly, they calculate their own exchange rates which could be beneficial for

customers if the rate is cheaper than the actual currency rates but lots of user reviews

disapprove of it. In a review, one user said they lost approximately £80 because of the

rates they were offering.

Available at:

https://apps.apple.com/app/apple-

store/id315241195?pt=211875&ct=Website%20-%20QR%20Code&mt=8

https://play.google.com/store/apps/details?id=com.xe.currency&referrer=utm_source%3

DWebsite%26utm_medium%3DQR%2520Code%26utm_campaign%3DWebsite%2520%25

2F%2520QR%2520Code

https://apps.apple.com/app/apple-store/id315241195?pt=211875&ct=Website%20-%20QR%20Code&mt=8
https://apps.apple.com/app/apple-store/id315241195?pt=211875&ct=Website%20-%20QR%20Code&mt=8
https://play.google.com/store/apps/details?id=com.xe.currency&referrer=utm_source%3DWebsite%26utm_medium%3DQR%2520Code%26utm_campaign%3DWebsite%2520%252F%2520QR%2520Code
https://play.google.com/store/apps/details?id=com.xe.currency&referrer=utm_source%3DWebsite%26utm_medium%3DQR%2520Code%26utm_campaign%3DWebsite%2520%252F%2520QR%2520Code
https://play.google.com/store/apps/details?id=com.xe.currency&referrer=utm_source%3DWebsite%26utm_medium%3DQR%2520Code%26utm_campaign%3DWebsite%2520%252F%2520QR%2520Code

 8

Name: Wise (formerly Transferwise) Type: Mobile application

Summary:

Wise is a money transfer application that allows users to send money abroad. It almost

works like a banking app, where users can easily make transactions abroad and convert

money to different currencies.

Features:

● Cheaper and faster overseas money transfers

● Send money with any currency

● Rate tracker

● Hold 50+ currencies and can convert between them instantly

● Historical currency data of up to 5 years

● Currency chart with different time scales

Rating:

App Store: 4.7/5 (42k ratings)

Google Play: 4.5/5 (181k ratings)

Reviews:

͞EffiĐieŶĐǇ aŶd eĐoŶoŵǇ iŶ fiŶaŶĐial tƌaŶsfeƌs.͟

͞“hoĐkiŶglǇ ĐoŶǀeŶieŶt aŶd easǇ͟

͞TƌaŶsfeƌǁise is uŶƌeliaďle͟

͞I ŵade a tƌaŶsfeƌ to ŵǇ oǁŶ aĐĐouŶt iŶ “paiŶ ďut the ŵoŶeǇ ǁas held foƌ ĐheĐks foƌ ϭϮ
days with the excuse that it may ďe a saŶĐtioŶed ďaŶk oƌ a fƌauduleŶt tƌaŶsaĐtioŶ.͟

Evaluation:

This application is more like a banking app, it is heavily focused on international money

transfer features. Wise provides the cheapest transfer rate but only support 53 currencies

for conversion - which is a lot less than most currency services offer.

Wise state that they have a currency rate notification feature but I could not find it when

using the app. There is a possibility they do not have it in the app, otherwise it is not

iŵŵediatelǇ Đleaƌ ǁheƌe to fiŶd it. TheǇ haǀe theiƌ ĐuƌƌeŶĐǇ ͚ƌate tƌaĐkeƌ͛ featuƌe oŶ theiƌ
website where they send emails to users for 1) daily updates and 2) desired currency rate

that the user sets. However this feature was not implemented sufficiently as I did not

receive any email notifications.

Available at:

https://apps.apple.com/gb/app/wise/id612261027

https://play.google.com/store/apps/details?id=com.transferwise.android

https://apps.apple.com/gb/app/wise/id612261027
https://play.google.com/store/apps/details?id=com.transferwise.android

 9

Name: OFX Type: Website

Summary:

OFX is an online service for international money transfers. They offer quick and zero fee

transfer, with tracking features. They also have a target rate transfer service with a

ĐoŵpleŵeŶtaƌǇ ͚ŵaƌket ƌate aleƌt͛ featuƌe.

Features:

● Conversion of 50+ currencies to over 190 countries

● Sending money overseas

● Tracking international transfer

● Market rate alerts

Rating:

Trustpilot: 4.2/5 (4.8k ratings)

Reviews:

͞Yet another exchange company looking to park your money for as long as possible.

Scam͟

͞haǀe used this seƌǀiĐe foƌ ŵaŶǇ Ǉeaƌs aŶd fouŶd it ǀeƌǇ good͟

͞Consistently straight-forward and efficient͟

͞Deceptive currency conversion rate͟

͞it Đoŵes ǁith a ƌeallǇ pooƌ ƌate aleƌt oŶliŶe sǇsteŵ aŶd it ǁoŶ't Ŷotified ŵe ǁheŶ ŵǇ
taƌget pƌiĐe ƌeaĐhed, ǁhiĐh ǁas disappoiŶted͟

Evaluation:

OFX haǀe a ͚ŵaƌket ƌate aleƌts͛ fuŶĐtioŶ ǁheƌe theǇ alloǁ useƌs to ďe Ŷotified thƌough
email once their currency pair meets the target rate that the user has set. Unfortunately, I

did not receive any email notifications even though the currency dropped below the

taƌget ƌate ŵultiple tiŵes. “eǀeƌal useƌs also left ƌeǀieǁs ĐoŵŵeŶtiŶg oŶ hoǁ the ͚ŵaƌket
ƌate aleƌts͛ featuƌe did Ŷot ǁoƌk pƌopeƌlǇ, saǇiŶg hoǁ the ƌate ǁas iŶĐoƌƌeĐt oƌ that theǇ
did not receive a notification at all.

Available at:

https://www.ofx.com/en-gb/

https://au.trustpilot.com/reviews/624ee6b0c7628b203ba588ca
https://au.trustpilot.com/reviews/624ee6b0c7628b203ba588ca
https://au.trustpilot.com/reviews/624acae4c7628b203ba1de61
https://au.trustpilot.com/reviews/62316b0531617ac0e4878987
https://www.ofx.com/en-gb/

 10

Name: CurrencyFair Type: Mobile application

Summary:

This is another international transfer app that helps users to send money abroad. They

offer both personal and business use of the transfer and online foreign exchange. The

interesting feature of CurrencyFair is that when there is a user who wishes to get a

funding in one currency, they find a user that has a corresponding need and match them

togetheƌ theƌefoƌe theǇ ĐaŶ liteƌallǇ ͚eǆĐhaŶge͛ the fuŶdiŶg iŶstead of seŶdiŶg the useƌ͛s
money to an account abroad.

Features:

● Overseas money transfer

● Multi currency accounts

● Daily/weekly/custom rate alerts

● Currency chart with different time scales

Rating:

App Store: 4.7/5 (736 ratings)

Google Play: 4.2/5 (719 ratings)

Trustpilot: 4.6/5 (5.6k ratings)

Reviews:

͞so easǇ to use aŶd uŶdeƌstaŶd͟

͞EffiĐieŶt aŶd seĐuƌe sǇsteŵ of ĐoŶǀeƌtiŶg aŶd tƌaŶsfeƌƌiŶg fuŶds͟

͞The ŵoŶeǇ has Ŷot ďeeŶ Đƌedited to ŵǇ aĐĐouŶt aŶd appeaƌs to haǀe goŶe ŵissiŶg͟

͞“tƌiĐt pƌoĐess iŶ settiŶg up so it takes a ǁhile. But oŶĐe iŶ plaĐe the eǆĐhaŶge is easǇ aŶd
good ƌates͟

͞GeŶeƌallǇ good ǁhǇ the ĐoŵpliĐated log iŶ all the tiŵe͟

Evaluation:

The CurrencyFair mobile app focuses on currency exchange and sending money features,

and actually did not include a rate notification feature at all. Instead the currency

exchange rate alert feature was available on their website. They have daily,weekly or

custom rate alert features through email and that work efficiently. I received notifications

every time the desired value I set was reached, even several times a day, until I

unsubscribed from the notification. However, they offer very limited availability for

sending and receiving currencies with a total of 17 sending currencies and 22 receiving

currencies.

Also the app itself malfunctioned often, after 5 minutes of logging in, it informed me that

the session timed out and that I would have to log back in again. The overall reviews of

the service was the most positive out of all the ones I have reviewed.

Available at:

https://play.google.com/store/apps/details?id=com.currencyfair.apps.android.currencyfai

r&hl=en

https://itunes.apple.com/ie/app/the-currencyfair-money-transfer-

https://play.google.com/store/apps/details?id=com.currencyfair.apps.android.currencyfair&hl=en
https://play.google.com/store/apps/details?id=com.currencyfair.apps.android.currencyfair&hl=en
https://itunes.apple.com/ie/app/the-currencyfair-money-transfer-app/id1020622852?mt=8

 11

app/id1020622852?mt=8

https://www.currencyfair.com/ (website)

Overall, there are both web and mobile currency exchange applications that have currency

rate alert features, however some of them do not work at all, or do not offer a wide range

of currencies; even if they were working they are not as accurate as they should be, for

example notification not coming through even though when the rate is achieved. Another

finding was that there is no application that is only dedicated to currency notification

features, it usually comes as a complementary feature to currency exchange apps or

services. The prototype I aim to create will not have any transfer features but instead will be

heavily focused on the currency exchange rate alerting feature with some other

complementary features such as historical chart, relevant news and favouriting currencies.

I also found that there are similar apps and services that contain this feature, for example

American Express also offers a foreign exchange rate alert service. However in order to test

this feature you need to be an American Express customer, and therefore I was unable to

test it. Similarly, with the mobile app Conotoxia - I was unsuccessful in testing the rate alert

service as this required verification.

https://itunes.apple.com/ie/app/the-currencyfair-money-transfer-app/id1020622852?mt=8
https://www.currencyfair.com/

 12

3. Approach

3.1. Methodology

In order to deliver this project successfully, I followed the mixture of two methodologies:

Design thinking and Agile development methodology. Design thinking methodology is a

user-focused research methodology that is widely used in solution based problems in the UX

design industry. Prior to beginning this final year project, I brainstormed my ideas for

deǀelopiŶg a suitaďle solutioŶ iŶ a ŵodule I pƌeǀiouslǇ Đoŵpleted ͚CMϯϭϭϲ DesigŶ ThiŶkiŶg
aŶd PƌototǇpiŶg foƌ Useƌ EǆpeƌieŶĐe͛. I ǁaŶted to displaǇ the skills gaiŶed from this module

by choosing a design thinking methodology. The benefit of this methodology is that it covers

the 5 stages of the design thinking process: empathise, define, ideate, prototype and test

which enabled me to seek different approaches and helped me come up with a potential

solution.

When I began implementing the system, I followed the Agile software development

methodology within the prototyping stage of the design thinking methodology. I broke up

the project into several stages with clear milestones, which can be seen in my initial plan. I

listed my weekly goal on my reminders app and synced to my laptop so I could regularly

check my progress across all my personal devices. I also made sure I kept on track by having

regular meetings with my supervisor to report the progress I had made each week. Due to

my lack of experience in developing a mobile application, I anticipated a lot of complications

to occur, therefore I allowed myself some flexibility by scheduling extra learning time to

develop the application. Furthermore, I focused on implementing the basic functions before

adding additional features or applying an aesthetically pleasing UI design.

3.2. Software choices

3.2.1. IDE

In order to develop a mobile application for the Android platform, I used Android Studio

which is an official integrated development environment for Android operating system.

Although I have no prior experience on building a mobile application myself, there were lots

of tutorials and documentation available for Android Studio which made me feel confident

to learn. The programming languages that Android Studio offers are Kotlin, Java and C++; I

decided to develop my prototype in Java alongside with XML since I was more comfortable

working in Java with the prior experience I gained throughout this degree and XML was

straightforward enough for me to familiarise myself with short amount of time. Although I

 13

do not own any Android devices myself, the Android Emulator, which is a virtual device

included in the Android Studio environment allowed me to run and debug the prototype

while I was developing.

3.2.2. Currency API

Through extensive research, I managed to create a list of different currency APIs available. I

listed them in a spreadsheet to compare each API. In this table I focused on comparing the

formats they support, currency update cycle, number of currencies they are supporting and

whether they distribute their APIs freely or not.

From the information I obtained, all of the listed APIs support JSON format with some of

them also supporting XML. More than half of them have an update cycle of 1 hour, and the

majority of them support more than 160 currencies which is sufficient, considering there are

180 official currencies in the world that are recognised by the UN.

Lastly, the number of API calls that are available was quite different for each API, from 100

requests per month to 100 requests per day. Some of them offer fully featured trials for

certain periods of time but the time scale was not enough.

Ideally my prototǇpe has to oďtaiŶ the ĐuƌƌeŶĐǇ data iŶ ͚ƌeal tiŵe͛ ďeĐause that ǁas the
whole point of the system - sending alerts to users as soon as the currency drops. However

the only API that offers real time updates is Xignite and unfortunately they do not offer

solutions for individual or personal use. Taking all these factors into account I found the

CURRENCY API the most suitable one to implement. It has the most API call allowance for

free plan, supports both XML and JSON formats and there are 170+ currencies available for

this API. As well as the update cycle occurs on an hourly basis which is arguably the closest

to real time. Their documentation offers example requests to follow, it was simple to use

and easy to integrate.

 14

4. System Design

4.1. Specification

4.1.1. Functional requirements

4.1.1.1. Must have

FR1. The system must allow users to sign in/login securely

Acceptance Criteria:

● The user can log in to the system with the username and password they set.

● If the user has no account registered, they will be able to create an account

● The sign in credentials are stored in a database

● The system sends an error message when invalid credentials are entered

FR2. The system must allow users to set their default currency

Acceptance Criteria:

● The user can select a currency from a dropdown list

● Once the currency is selected users can see the conversion for their selected

currency

FR3. The system must allow users to set their target currency

Acceptance Criteria:

● The user can select their target currency (currency they want to see the conversion

of) from a dropdown list

● Once the currency is selected users can see the conversion from their target

currency

FR4. The system must do the conversion of the selected currencies in real time

Acceptance Criteria:

● The API converts currency values in real time

● The user can see the direct conversion of the currency

 15

FR5. The system must let the user to set the notification for the currency pair they want to

receive notifications for

Acceptance Criteria:

● The user is able to set up notification for the currency pair they selected

● The user is able to type in their desired rate of the chosen currency

FR6. The system must let the user change their default and target currencies

Acceptance Criteria:

● The user is able to change their default and target currency from the settings

4.1.1.2. Should have

FR7. The system should have an option for changing the refresh cycle i.e., how often the

data will be pulled from the server

Acceptance Criteria:

● The user is able to select one of the radio buttons for different refresh cycle

● There is at least 3 options

FR8. The system should have a feature that limits the number of notifications per day

Acceptance Criteria:

● The user is able to set the maximum number of times they want to be notified for.

FR9. The system should allow users to favourite certain currencies

Acceptance Criteria:

● The user is able to favourite the currencies they visit frequently

● The user is able to browse the list of their favourite currencies

 16

4.1.1.3. Could have

FR10. The system could display daily updates/notifications of the favourite currencies

Acceptance Criteria:

● The user can get daily rate updates once a day on a selected time

FR11. The system could show a historical currency chart to see the trend of selected

currency pairs

Acceptance Criteria:

● The user can see the historical data of a selected currency

FR12. The system could have a news feature that displays the information about a currency

Acceptance Criteria:

● When the user clicks the currency they can see the relevant news, which can be

general information about the currency, or world wide affairs that is going on in the

world currently which may affect the price of the currency

FR13. The system could allow the user to receive notifications via email

Acceptance Criteria:

● In the currency notification set up page, there is an option where the user can also

receive the notification by email

FR14. The system could have multilingual features

Acceptance Criteria:

● The user can change the language of the app

 17

4.1.2. Non-functional requirements

4.1.2.1. Must have

1. The system must be intuitive and easy to use for the user

Acceptance Criteria:

● The system must be user-friendly, the user should be able to navigate the

system easily without background knowledge

● The system must have conventional and consistent design throughout

2. The app must be compatible with most Android devices

Acceptance Criteria:

● The app must be runnable in most of Android devices that has Android

version 10 or above

4.1.2.2. Should have

3. The app should have a professional and aesthetic design

Acceptance Criteria:

● The app has an aesthetically pleasing UI design

4.2. Use Cases

IŶ this seĐtioŶ I ǁill disĐuss the use Đases of the sǇsteŵ, ǁhiĐh aƌe ďased oŶ the ͚ŵust haǀe͛
fuŶĐtioŶal ƌeƋuiƌeŵeŶts aŶd soŵe of the ͚should haǀe͛ ƌeƋuiƌeŵeŶts. The use Đase diagƌaŵ
below illustrates a graphical outline showing the interaction between the actor User and the

key functional requirements.

 18

Use Case No: 1 Use Case Name: Sign up/log in to the

system

Type: Must have

Description: The user can create an account by registering to the system. If the

user already has an account registered, they will be able to log in.

Pre-conditions: N/A

Basic Flow: 1. On the sign up page, the user enters their username and

password and retype password.

a. Useƌ seleĐts the ͚ƌegisteƌ͛ ďuttoŶ

 19

2. User clicks the login button

a. User enters their username and password

3. User is directed to the default currency page

Alternative Flow: If the user enters the wrong credentials access will be denied.

Related Use Case: All use cases require the user to be logged in.

Use Case No.: 2 Use Case Name: Set default currency Type: Must have

Description: User can select their default currency from a dropdown list

Pre-conditions: The user has logged into the system with their username and

password

Basic Flow: 1. User clicks the arrow on dropdown list

2. User scrolls through the list of currencies

3. User selects their default currency

4. User clicks the submit button

Alternative Flow: N/A

Related Use Case: UC1 (User must be logged in), UC3 (User sets their target currency)

Use Case No.: 3 Use Case Name: Set target currency Type: Must have

Description: User can select their target currency from a dropdown list

Pre-conditions: The user has logged into the system and selected their default

currency

Basic Flow: 1. User clicks the arrow on dropdown list

2. User scrolls through the list of currencies

3. User selects their target currency

4. User clicks the submit button

Alternative Flow: N/A

Related Use Case: UC1 (User must be logged in), UC2 (User must have set their default

currency)

 20

Use Case No.: 4 Use Case Name: See the real time

conversion of selected currencies

Type: Must have

Description: The user can see the direct conversion of the currencies they selected

Pre-conditions: The user has logged into the system and selected their default and

target currency

Basic Flow: 1. User enters the amount they want to convert

2. Useƌ ĐliĐks the ͚ĐoŶǀeƌt͛ ďuttoŶ

Alternative Flow: N/A

Related Use Case: UC1 (User must be logged in), UC2 (User must have set their default

currency), UC3 (User must have set their target currency)

Use Case No.: 5 Use Case Name: Set up notification for

the desired rate

Type: Must have

Description: The user can set up notification for the desired rate of the currency

pair they chose

Pre-conditions: The user has logged into the system and selected their default and

target currency

Basic Flow: 1. User clicks the notification icon

2. User enters the value for the desired rate

3. Useƌ ĐliĐks ͚suďŵit͛ ďuttoŶ

Alternative Flow: N/A

Related Use Case: UC1 (User must be logged in), UC2 (User must have set their default

currency), UC3 (User must have set their target currency)

Use Case No.: 6 Use Case Name: Change the default

and target currency

Type: Must have

Description: The user can change their default and target currency from the

settings

Pre-conditions: The user has logged into the system and selected their default and

target currency

Basic Flow: 1. User clicks settings

2. Useƌ ĐliĐks ͚ĐhaŶge default aŶd taƌget ĐuƌƌeŶĐǇ͛

 21

a. Useƌ seleĐts ͚ĐhaŶge default ĐuƌƌeŶĐǇ͛
b. User clicks the arrow on dropdown list

c. User scrolls through the list of currencies

d. User selects their target currency

e. User clicks the submit button

3. Useƌ seleĐts ͚ĐhaŶge default ĐuƌƌeŶĐǇ͛
a. User clicks the arrow on dropdown list

b. User scrolls through the list of currencies

c. User selects their target currency

d. User clicks the submit button

Alternative Flow: User changes their mind and exits the page without changing the

currencies

Related Use Case: UC1 (User must be logged in), UC2 (User must have set their default

currency), UC3 (User must have set their target currency)

Use Case No.: 7 Use Case Name: Change refresh cycle Type: Should have

Description: The user can change how often the app will refresh

Pre-conditions: The user has logged into the system

Basic Flow: 1. User clicks the settings

2. Useƌ ĐliĐks ͚geŶeƌal͛
3. Useƌ ĐliĐks ͚ƌefƌesh ĐǇĐle͛
4. User selects one of the radio buttons for different refresh

cycle

Alternative Flow: User exits the page without changing anything

Related Use Case: UC1 (User must be logged in)

Use Case No.: 8 Use Case Name: Limit the number of

notifications

Type: Should have

Description: The user can limit the number of notification they receive in a day

Pre-conditions: The user has logged into the system

Basic Flow: 1. User clicks settings

2. Useƌ ĐliĐks ͚ŶotifiĐatioŶ͛

 22

3. Useƌ seleĐts the tiĐk ďoǆ foƌ ͚liŵit the Ŷuŵďeƌ of dailǇ
ŶotifiĐatioŶs͛

4. User enters the value

Alternative Flow: User exits the page without changing anything

Related Use Case: UC1 (User must be logged in)

4.3. User Interface Design

In order to make a mobile application that is user friendly, I created an initial mock up of the

interfaces using a design tool called Figma. These mock-ups demonstrated how the key

functions will be integrated and how each activity is related to each other. They also allowed

me to receive user feedback on the design and provided me with a clear guideline on what I

should be implementing to keep the system user focused. In this section I will detail my

design justifications and how the initial mock-ups were improved based on the user

feedback I received.

See Appendix A for the interaction design of the mock up.

Feature: Log in

Description: This is the initial page that the user sees when they open the application. It

displays the logo of the system and the login form where users enter their username and

password. The input boxes have a grey background colour to contrast against the

background and are labelled with placeholders to inform the user of what to enter into each

input field. Once the user inputs their login credentials they can proceed to the next stage

ďǇ ĐliĐkiŶg the ďlue ͚“uďŵit͛ ďuttoŶ. I tƌied Ŷot to use ŵoƌe thaŶ ϯ Đolouƌs aŶd all of theŵ
were neutral so it is not too distracting. If the user does not have an account with the

sǇsteŵ alƌeadǇ, theǇ ĐaŶ ĐliĐk the ͚‘egisteƌ͛ ďuttoŶ ǁhiĐh ǁill ƌediƌeĐt theŵ to the sigŶ up
page. In the sign up page, the user can create a new account by entering a username,

password and retype the password for confirmation. The colour scheme remains the same,

and there is a back button on the top so the user can go back to the initial login page.

 23

Use Case(s): UC1

Screenshots:

Figure 1: Design of the log in page Figure 2: Design of the sign up page

 24

Feature: Set default/target currency

Description: This is the page where the user sets their default and target currency. The user

can browse through a list of currencies and choose their default and target currency. You

can see the initial design on the left and the improved design on the middle and right. Some

users commented that they find it hard to scroll through the whole list of currencies, and

ŵultiple ͚“eleĐt͛ ďuttoŶs ŵake the page look Đlutteƌed. “o iŶstead I ĐhaŶged the list of
currencies to the dropdown list and it will display the list of currencies in alphabetical order

when it comes to the actual implementation. Also regarding the flags, some currencies are

used in more than one country so it is hard to decide which flag to display therefore I

decided it may be better to not include them. I also added a caption informing the user that

they can change the default currency at a later time via the settings. In the improved design,

I tried to keep a simple design with minimum information as possible so the user can focus

on the one feature they need to. The colour scheme remains the same throughout for

consistency.

Use case(s): UC2, UC3

Screenshots:

Figure 3: Initial design of the
currency selecting page

Figure 4: Design of the default
currency setting page

Figure 5: Design of the target
currency setting page

 25

Feature: Currency conversion

Description: This page allows the user to convert their target currency to their default

currency in real time. The left screenshot shows where the user enters the value to see the

conversion. I included the example on the right hand side, so in this case it shows the

conversion between Pound Sterling (GBP) and US Dollar (USD). This page could further be

improved by changing the colour of the bell icon because it is not very distinctive. However I

could not change the colour of the icon in Figma due to the need of a premium account, but

the colour of this icon will be changed during implementation.

Use case(s): UC4

Screenshots:

Figure 6: Design of the currency conversion
page

Figure 7: Design of the currency conversion
page with an example

 26

Feature: Set up the notification

Description: This is the main function of the application. On this page the user can enter

their desired exchange rate and set up the notification. I highlighted the currencies and

values in bold blue. To this page, I added number keypads so the user can enter their

desiƌed ǀalue easilǇ. Although it is Ŷot iŶĐluded iŶ the use Đase, I iŶtegƌated oŶe of ŵǇ ͚Đould
haǀe͛ fuŶĐtioŶal ƌeƋuiƌeŵeŶts, ǁhiĐh alloǁs the useƌ to receive email notifications when

the currency is dropped. On the bottom there is a navigation bar in which the user can

navigate through different features of the system.

Use case(s): UC5

Screenshots:

Figure 8: Design of the notification set up page

 27

Feature: Settings

Description: This is the settings page. The user can reach this page by clicking the settings

icon in the navigation bar. There are different setting options including general, display,

notification, languages, etc. you could say how the notification bar at the bottom allows the

user to leave the page and talk about the design of this page a bit more

Use case(s): UC6, UC7, UC8

Screenshots:

Figure 9: Design of the settings page

 28

Feature: General settings

Description: This is the page where the user can control their refresh cycle and change their

default and target currency. Since this page is a subordinate page, the navigation bar is

unnecessary as the user can go back to the previous page by clicking the back button on the

top left corner.

Use case(s): UC6, UC7

Screenshots:

Figure 10: Design of the general settings page

 29

Feature: Refresh cycle

Description: On this page the user can change the refresh cycle of the system. The default

setting is 1 hour, this is because normally most currency conversion apps offer hourly

updates and I do not want the user to receive a series of notifications in a short period of

time unless they have chosen to do so. I added a little explanation below the title so the

user knows what the refresh cycle is.

Use case(s): UC7

Screenshots:

Figure 11: Example of the refresh cycle

 30

Feature: Change default and target currencies

Description: On this page the user can change their default and target currencies. These

pages have the same structure as the set default/target currency pages, so the user is

familiar with the design. If the user changes their mind and wishes to go back to the

previous settings page they can simply click the back button.

Use case(s): UC6

Screenshots:

Figure 12: Changing default currency page Figure 13: Changing the target currency page

 31

Feature: Notification settings

Description: On this page the user can limit the number of notifications they receive per

daǇ. If the eǆĐhaŶge ƌate ƌeaĐhes the useƌ͛s desiƌed ƌate ŵultiple tiŵes iŶ oŶe daǇ, the useƌ
may not want to receive notifications every time the rate is hit. Therefore this feature

enables the user to control the number of notifications they receive by setting up the

maximum number of the notification per day. The user can tick the tick box then enter their

desired number of notifications using the keypad, and when they want to disable this

feature they can simply untick the box.

Use case(s): UC8

Screenshots:

Figure 14: Design of the notification settings page

 32

5. Implementation

As mentioned in my initial report, my prototype was developed in Java and XML using

Android Studio. Since I have no prior experience on developing a mobile app or using

AŶdƌoid “tudio I folloǁed tutoƌials oŶ YouTuďe aŶd AŶdƌoid “tudio͛s offiĐial doĐuŵeŶtatioŶ.
In this section, I will give an overview of the development process of the prototype of

Currency Exchange Notifier and how the main functionality was developed.

5.1. Database creation

To store and organise my data I used SQLite database, which is a database engine that is

compatible with Android Studio mobile applications. In the dataďase the useƌ͛s logiŶ
credentials are stored. I created the login database in a Java class file called DB Helper. The

following screenshot displays how this was achieved. If no user credentials exist, it

autoŵatiĐallǇ eǆeĐutes the taďle Đalled ͚useƌs͛. Then it populates the table with the data the

user inputs. When the user tries to login, it checks the input in the table to see if the

username is existing or the password matches with that username.

Figure 15: Snippet of code showing database creation

 33

Useƌs͛ ĐƌedeŶtials ĐaŶ ďe ďƌoǁsed thƌough the DB Bƌoǁseƌ.

Figure 16: Snippet of the database

5.2. Overview of implementation structure

The screenshot below (Figure 17) shows the overall structure of the directories and files.

Within the main directory you can find folders java and res; the Java includes all the classes

responsible for each activity. These activities are in relation to each other allowing the user

to browse different activities back and forth. Each activity has a corresponding xml file,

which is responsible for the interface design of the system. Lastly, the AndroidManifest.xml

file is the file that contains the project source set. This file holds essential information about

the project and delivers this information to Android devices, Google Play Store and Android

developing tools such as Android Studio.

 34

Figure 17: Snippet of the list of directories

 35

The excerpt of code below is responsible for the sign up functionality of my application.

Originally in my design mock up I set the login function to be the initial page, but upon

implementation I decided to change it to the signup page. This is because the users will not

have yet created an account when they install the application for the first time, and once

they are logged in the app ǁill ƌeŵeŵďeƌ the useƌ͛s logiŶ ĐƌedeŶtials so theǇ do Ŷot haǀe to
log back in every time they enter the system. Also the app does not require any personal

details suĐh as the useƌ͛s Ŷaŵe, ŶatioŶalitǇ oƌ phoŶe Ŷuŵďeƌ to sigŶ up as it ǁas
unnecessary foƌ the appliĐatioŶ aŶd I did Ŷot ǁaŶt to ĐolleĐt useƌs͛ peƌsoŶal data. The
figures 18 and 19 show the code for my sign up and log in page. They follow the same

structure, both operate with if statements to check if the input information matches with

the data stored in the database, then it goes through a series of if statements to see if the

user input is valid.

Figure 18: Snippet of the sign up function

 36

Figure 19: Snippet of the log in function

The figures 20 and 21 are examples of the XML code for the sign up page. TextView is a text

that shows up on the screen, EditText is a text field that allows the user to enter the value

and the button widget is an element that allows the user to perform an action.

Figure 20: Snippet of the sign up design – TextView and EditText Figure 21: Snippet of the sign up design -
button

 37

Figures 22 and 23 shows the implemented prototype of sign up and log in page. The log in

button on Figure 22 directs the user to the log in page. A back button is not present on the

designs because that function is included in the Android emulator. In Figure 23 you can see

how the username and password is displayed, and an example of a toast message that

appears if the user enters invalid credentials is shown on the bottom of the screen.

The screenshot below shows the Java code for setting a default currency activity. In this

method I implemented a spinner and populated it with more than 170 currencies. The same

function structure is applied for setting the target currency activity because it is essentially

doing the same execution.

Figure 22: Screenshot of the sign up page Figure 23: Screenshot of the log in page

 38

Figure 24: Snippet of the default currency activity

This is an example code of a spinner in xml.

Figure 25: Snippet of the spinner

In Figures 26 and 27 you can see how the spinner is displayed. I followed the convention

͚ĐuƌƌeŶĐǇ Đode: ĐuƌƌeŶĐǇ Ŷaŵe͛ as this ǁas hoǁ theǇ ǁeƌe displaǇed iŶ the CuƌƌeŶĐǇ API. I
also sorted the currency codes in alphabetical order, as I mentioned earlier in the design

section in page 24. The user can scroll through the list of currencies.

 39

Figure 28 shows a conversion activity where the API retrieves the data to convert the

currency in real time currency exchange rates. String URL makes the API request to the

server with the default and target currency code that the user puts in. Figure 29 shows you

the example JSON response from the server.

Figure 26: Screenshot of the default
currency page

Figure 27: Screenshot of the target
currency page

 40

Figure 28: Snippet of code in the conversion activity

Figure 29: Example JSON response from the server

You can see how this feature is integrated in the figure below. It takes in the user input and

converts it to the real time currency exchange rate.

 41

Figure 30: Screenshot of the currency conversion page

Figure 31: Screenshot of the JSON response

Although I failed to show the converted value for the amount that the user put in, I

confirmed that the data was successfully retrieved from the server as shown in the figures

ďeloǁ. Hoǁeǀeƌ I stƌuggled to pull out the ͚ƌate_foƌ_aŵouŶt͛ ǀalue fƌoŵ the ďloĐk of J“ON
code. This is as far as the implementation has reached. The detailed explanation of the

remaining work can be found in the future work section.

 42

5.3. Code quality

To produce a system that is efficient and accessible, I created a code in a simple way and

refactor it to make it better for a more scalable program. One example for this is

iŵpleŵeŶtiŶg a siŶgletoŶ desigŶ patteƌŶ ǁhiĐh I leaƌŶt iŶ ͚CMϮϯϬϳ OďjeĐt OƌieŶtatioŶ,
Algoƌithŵs aŶd Data “tƌuĐtuƌes͛ ŵodule iŶ ϮŶd Ǉeaƌ. “iŶgletoŶ Đlass eŶsuƌes that oŶlǇ oŶe
object gets created at a time, allowing the program to access the object directly without

instantiating the whole object of the class.

I also maintained a consistent style of code writing, kept most of the code self-explanatory

and documented the lines where it needs further explanation.

 43

6. Results and Evaluation

6.1. Test Cases

The following table shows test results for the prototype of Currency Exchange Notifier.

For full test cases, see Appendix B.

Test ID Related requirement Pass/Fail

1 FR1 Pass

2 FR1 Pass

3 FR2 Pass

4 FR3 Pass

5 FR4 Partial pass

6 FR5 Fail

7 FR6 Fail

8 FR7 Fail

9 FR8 Fail

10 FR9 Fail

11 FR10 Fail

12 FR11 Fail

13 FR12 Fail

14 FR13 Fail

15 FR14 Fail

The first three test cases regarding sign up, setting default and target currencies have

passed. These are the functions I implemented successfully, all of them meet the initial

requirements and the acceptance criteria. Test case 4 was a partial pass because one of the

acceptance criteria was not met.

 44

The rest of the test cases have failed, this is due to time constraints which meant the related

features were not implemented in time.

6.2. User Testing

The User testing consists of 2 parts - quantitative and qualitative user evaluation methods. I

recruited 5 Cardiff University Computer Science students to test my prototype.

The qualitative research was performed whilst the test user was carrying out given tasks

under my supervision. None of the participants made mistakes when performing the tasks,

and it took them on average of 1m 3s to create an account and convert the currencies. All of

the participants clearly understood the sign in page, and quickly noticed how the spinners

and text fields work. Participants commented that the system is straightforward to use, and

the desigŶ ǁas ŶiĐe aŶd Đleaƌ, ͚ŵakiŶg it pƌettǇ oďǀious ǁhat Ǉou haǀe to do͛. OŶe
participant said that scrolling through the spinner was inefficient; this feature could be

improved by changing the spinner to a search bar. This improvement can also address the

following issue that was spotted - some participants struggled to find some currencies

because the spinner is sorted in alphabetical order of the currency code, if they do not know

the currency code of the given currency it is time consuming to go through each currency.

The last feedďaĐk I ƌeĐeiǀed ǁas that the defiŶitioŶ of ͚default͛ aŶd ͚taƌget͛ ĐuƌƌeŶĐǇ ǁas
confusing. This could be improved if the definitions of default and target currency were

specified.

After the testing, the participants were given a questionnaire to complete. The

questionnaire featured all questions that allowed me to calculate the SUS (System Usability

Score) for the prototype. It consists of 10 questions with a Likert scale from strongly agree

to strongly disagree. The average SUS for my prototype was calculated to be 83.75,

considering the fact that the average SUS in the industry is 68 (Sauro, 2016), this proves that

my prototype is highly usable. One thing to point out is that because the test users were all

Computer Science students who are familiar with the structures of the conventions of

applications like this, it might have affected the SUS value being high.

 45

7. Future work

Although my implementation has not reached as far as I wished, integrating a few things

could make the prototype minimum viable product.

1. Making the converted currency value to appear

This can be done by extracting the corresponding value from the JSON response. I tried to

complete this by creating a separate class called currencyModel which saves data fields as

an array list. However my approach was not very successful, there could be another way of

achieving this. Once the converted value of the currency comes through functional

requirement 4 will be implemented.

2. The main function for the notification feature

As this function was the motivation behind this app development, it should be prioritised in

the further implementation once the implementation of the above function is achieved. As

shown in Figures 6 and 7 in the design section of this report I would create a notification bell

icon on the currency conversion page which acts as a button to direct the user to the

notification set up page. This page will be a separate activity in Java class which will have the

layout of Figure 8 shown in the design section, which will allow the user to input their

desired value of currency exchange rate for the currency pair they selected. Then the user

input is taken to compare the real time currency value. Once the rate is hit, a push

notification will come through the emulator so that the user will be able to know

immediately. By doing this the acceptance criteria for the functional requirement No.5 will

be accomplished and the main notification functionality for Currency Exchange Notifier will

be achieved.

3. Navigation bar on the bottom

One thing that could easily be done is the implementation of the navigation bar on the

bottom of the displayed screen. This will help the users navigate through different activities

of the system, also fulfilling one of the acceptance criteria of non-functional requirement

No.1 - the system must be easy to navigate. I found various tutorials for executing this

function but due to time limitations and the difficulties I faced trying to implement the

functional requirements, I was unable to develop this function. .

4. Changing default and target currencies

A fuŶĐtioŶ that is ƌespoŶsiďle foƌ ĐhaŶgiŶg the useƌ͛s default aŶd taƌget ĐuƌƌeŶĐies should ďe
implemented in a similar way that they were set up in the first place. This can easily be

completed within a separate class within the settings.

 46

Once the above functions are executed the prototype will become a minimum viable

product. The pƌototǇpe ĐaŶ fuƌtheƌŵoƌe ďe iŵpƌoǀed ďǇ iŵpleŵeŶtiŶg seǀeƌal ͚should
haǀe͛ aŶd ͚Đould haǀe͛ fuŶĐtioŶal ƌeƋuiƌeŵeŶts. Foƌ eǆaŵple, ͚F‘ϴ: the sǇsteŵ should haǀe
a featuƌe that liŵits the Ŷuŵďeƌ of ŶotifiĐatioŶs peƌ daǇ͛ Đould ďe implemented by setting a

maximum value based on the user input and then ignoring calls that come through after,

oŶĐe the liŵit is ƌeaĐhed. ͚F‘ϵ: the sǇsteŵ should alloǁ the useƌs to faǀouƌite ĐeƌtaiŶ
ĐuƌƌeŶĐies͛ - this can either be done by 1) making a list where the user can add and remove

currencies from or by 2) creating a dedicated currency page for each currency so that the

useƌ ĐaŶ ͚staƌ͛ the ĐuƌƌeŶĐǇ. The seĐoŶd optioŶ ǁill ďe slightlǇ haƌdeƌ to iŵpleŵeŶt ďut iŶ
this ǁaǇ ͚F‘ϭϮ: Ŷeǁs aŶd iŶfoƌŵatioŶ featuƌe͛ ĐaŶ also ďe easilǇ accomplished, since it has a

dedicated currency information page it will be easier to display information specific to that

ĐuƌƌeŶĐǇ. OŶe of the ͚Đould haǀe͛ ƌeƋuiƌeŵeŶts iŶ ǁhiĐh the sǇsteŵ Đould shoǁ a histoƌiĐal
currency chart would be helpful for the user to see the general trend of the given currency

pair. This could also be implemented as the Currency API offers historical currency data

available from the server and Android Studio supports Graphview library. Last but not least,

FR14 which specifies that the system could be supported in different languages would be

extremely useful if implemented because the target audience for this application writes this

better.

 47

8. Conclusions

To determine whether the project went successful I revised the aims and objectives I set at

the beginning of this project. There were three main objectives which were 1) to gain an

understanding of the currency fluctuations and existing solutions 2) to implement features

that help users to exchange currencies at the right time and 3) to create a suitable UX

design.

The first objective was reached through the background research section of the project.

From the point I submitted my project proposal last semester, I observed the currency

fluctuations by regularly monitoring the currencies that are considered to be main

currencies (US Dollar, Pound sterling, Euros) and the currency that is personally relevant to

me (South Korean Won). I gained an in depth understanding of the general trend of these

currencies such as how political affairs can impact currencies and how the fluctuation of one

currency causes the fluctuation of the other currencies. I also analysed and reviewed the

existing solutions in the market, which helped me figure out the problems and limitations

and produce solutions of how to address them.

The second objective however, was not as successful as I intended. My lack of experience in

development in Android Studios and time restrictions made it rather difficult for me to

deliǀeƌ a fullǇ fuŶĐtioŶiŶg pƌototǇpe iŶ the giǀeŶ tiŵe. AĐĐoƌdiŶg to ͚the taďle that
deteƌŵiŶes iŶ ǁhiĐh ĐategoƌǇ Ǉouƌ app falls iŶ͛ ;JaiŶ, ϮϬϭϴͿ, ŵǇ app is Đlassed as a laƌge
version app with the features I intended to implement including push notifications and

ŵultiliŶgual pƌopeƌties. OŶ aǀeƌage, a ͚ďig sized app͛ ĐaŶ take up to ϮϬ-22 weeks solely to

develop and test (Jain, 2018), which was almost double the time I had for this project. Due

to the time constraints this aim failed to be achieved as I produced a partially functioning

prototype.

The final objective of the project was creating a suitable UX design and this was achieved

through the mock-up designs I produced in Figma. I focused on generating a high-fidelity

design with intuitive UX design by improving my design several times based on the user

feedback. This objective could have been further accomplished by applying these designs to

the actual prototype.

 48

9. Reflection on Learning

From the planning to the delivery of the product, the entire project has provided me insight

in many ways. First of all, this project allowed me to gain experience inAndroid app

development, which was a huge learning curve. I also learnt how to code in XML, and also

improved my Java coding skills. I never used to be entirely confident about my coding skills

but through this project I realised that coding is not just always hard, once an error is

resolved it comes with a high degree of satisfaction. Also, the project required me to

present various skills beyond academic abilities, such as planning, organising, time

management and problem solving.

Although I planned and prepared for the expected difficulties due to my lack of experience,

in mobile app development there were more obstacles in my learning than I had

anticipated. My first experience with Android Studio taught me that the next time I ever get

an opportunity to develop a prototype with a completely new IDE I will undertake a series of

detailed tutorials in advance so I can be prepared for any unforeseen problems, and make

sure I have more than enough time to deliver the product. The biggest issue with my project

was time management, if I organised my time better I would have been able to complete my

project to a higher standard.

As an international student I often find it difficult finding the right time to exchange currency due to

the impact of the exchange rate fluctuation. Therefore the idea of Currency Exchange Notifier was

purely based on my own problem, which made me more passionate about the project. Although I

may have failed to deliver a fully functioning prototype I believe that I successfully presented the

skills and techniques I gained through the 3 years of learning from my Computer Science degree.

Considering I never coded before starting this course it is a huge improvement that I produced a

partially functioning prototype of a mobile application by myself. This invaluable learning

experience will be a solid foundation for any future work I do.

 49

References

AllCodingTutorials. 2020. Login and Register Form using SQLite Database in Android Studio |

login registration android studio. Available at: https://youtu.be/8obgNNlj3Eo [Accessed: 7

March 2022]

Android Developers. 2020. Android Developer Guide. Available at:

https://developer.android.com/docs [Accessed 15 February 2020].

Coding in Flow. 2017. Text Spinner - Android Studio Tutorial. Available at:

https://youtu.be/on_OrrX7Nw4 [Accessed: 29 March 2022]

CodingWithMitch. 2017. Android Beginner Tutorial #2 - TextViews [Displaying information

on the screen]. Available at: https://youtu.be/VkCeWHa4EH0 [Accessed: 12 April 2022].

Conotoxia.com. 2020. How many currencies are there in the world? Famous and those not so

well known. Available at: https://conotoxia.com/news/blog/worth-knowing/how-many-

currencies-are-there-in-the-world-famous-and-those-not-so-well-known [Accessed: 1 March

2022].

CurrencyFair. 2015. CurrencyFair Money Transfer [iOS app]. Version 6.3.0. CurrencyFair.

[Accessed: 24 February 2022].

freeCodeCamp.org. 2020. Java Android App using REST API - Network Data in Android

Course. Available at: https://youtu.be/xPi-z3nOcn8 [Accessed: 7 April 2022].

Easy Tuto. 2021. Simple Login App in Android Studio | 2022. Available at:

https://youtu.be/sOJRJtM_iu0 [Accessed: 1 March 2022]

Jain, P. 2018. How Long does It take to Build an App. Available at:

https://www.startupgrind.com/blog/how-long-does-it-take-to-build-an-app/ [Accessed: 11

May 2022].

Sauro, J. 2016. Measuring Usability With The System Usability Scale (SUS). Available at:

https://www.userfocus.co.uk/articles/measuring-usability-with-the-SUS.html [Accessed: 11

May 2022].

Wise. 2014. Wise [iOS app]. Version 7.46.2. Wise Payments Ltd. [Accessed: 24 February

2022].

XE. 2009. Xe Currency & Money Transfers [iOS app]. Version 7.8.1. XE.com Inc. [Accessed: 24

February 2022].

https://www.youtube.com/channel/UCpKe3elpg7QuSkOimJA82kg
https://youtu.be/8obgNNlj3Eo
https://developer.android.com/docs
https://www.youtube.com/channel/UC_Fh8kvtkVPkeihBs42jGcA
https://youtu.be/on_OrrX7Nw4
https://www.youtube.com/channel/UCoNZZLhPuuRteu02rh7bzsw
https://youtu.be/VkCeWHa4EH0
https://conotoxia.com/news/blog/worth-knowing/how-many-currencies-are-there-in-the-world-famous-and-those-not-so-well-known
https://conotoxia.com/news/blog/worth-knowing/how-many-currencies-are-there-in-the-world-famous-and-those-not-so-well-known
https://www.youtube.com/channel/UC8butISFwT-Wl7EV0hUK0BQ
https://youtu.be/xPi-z3nOcn8
https://www.youtube.com/channel/UCWwkUVHo7ryXLWGuwXY_uDA
https://youtu.be/sOJRJtM_iu0
https://www.startupgrind.com/blog/how-long-does-it-take-to-build-an-app/
https://www.userfocus.co.uk/articles/measuring-usability-with-the-SUS.html

 50

Appendices

Appendix A: Interaction design of the mock up

 51

Appendix B: Test cases

Test Case ID: TC1 Related Requirements: FR1

Test Description: Verify that the user can sign in to the system securely

Prerequisites: User is not registered to the system

Test Procedure: 1. Open application

2. User enters the test data to the required fields

3. “eleĐt ͚ƌegisteƌ͛ ďuttoŶ

Test Data: 1. User details:

Username: testuser1

Password: 12345

Retype password: 12345

2. User details:

Username: testuser2

Password: 12345

Password: 1234

Expected Results: 1. The accounts will be created and stored in the database. The

toast ŵessage ͚‘egisteƌed “uĐĐessfullǇ͛ ǁill ďe displaǇed aŶd
the default currency page will be displayed.

2. The toast ŵessage ͚Passǁoƌds Ŷot ŵatĐhiŶg͛ ǁill ďe
displayed.

Actual Results: 1. As expected.

2. As expected.

Comments: N/A

Test Status: PASS

Test Case ID: TC2 Related Requirements: FR1

Test Description: Verify that the user can log in to the system

Prerequisites: User credentials are registered to the system

User is not logged in

 52

Test Procedure: 1. Open application

2. Useƌ ĐliĐks ͚AlƌeadǇ haǀe aŶ aĐĐouŶt? Log iŶ͛ ďuttoŶ

3. User enters the test data to the required fields

4. Select log in button

Test Data: 1. User details:

Username: testuser1

Password: 12345

2. User details:

Username: testuser1

Password: 1234

Expected Results: 1. The toast ŵessage ͚“igŶ iŶ suĐĐessful͛ ǁill ďe displaǇed aŶd
the user is directed to the default currency page.

2. The toast ŵessage ͚IŶǀalid ĐƌedeŶtials͛ ǁill ďe displaǇed.

Actual Results: 1. As expected.

2. As expected.

Comments: N/A

Test Status: PASS

Test Case ID: TC3 Related Requirements: FR2

Test Description: Verify that the user can set default currency

Prerequisites: User is logged into the system

Test Procedure: 1. User clicks the spinner

2. User selects a currency

3. User clicks submit button

Test Data: GBP as a default currency

Expected Results: Toast ŵessage ͚GBP: PouŶd “teƌliŶg͛ ǁill ďe displaǇed ǁheŶ
currency is selected. Then the user will be directed to the target

currency page when they click the submit button.

Actual Results: As expected.

 53

Comments: N/A

Test Status: PASS

Test Case ID: TC4 Related Requirements: FR3

Test Description: Verify that the user can set target currency

Prerequisites: User is logged into the system

Test Procedure: 1. User clicks the spinner

2. User selects a currency

3. User clicks submit button

Test Data: EUR as a target currency

Expected Results: Toast ŵessage ͚EU‘: Euƌo͛ ǁill ďe displaǇed ǁheŶ ĐuƌƌeŶĐǇ is
selected. Then the user will be directed to the currency conversion

page when they click the submit button.

Actual Results: As expected.

Comments: N/A

Test Status: PASS

Test Case ID: TC5 Related Requirements: FR4

Test Description: Verify that the currency is converted in real time

Prerequisites: User is logged into the system

User has selected the default and target currencies

Test Procedure: 1. User enters the amount

2. User clicks convert button

Test Data: 100 as an amount

 54

Expected Results: The converted value will be displayed

Actual Results: The value is not displayed. Instead the whole JSON response

appears.

Comments: The JSON response does show the converted value which proves

that the API request was successful, however it is not displayed as it

should be.

Test Status: PARTIAL PASS

Test Case ID: TC6 Related Requirements: FR5

Test Description: Verify that the user can set the notification for the selected currency

pair

Prerequisites: User is logged into the system

User has selected the default and target currencies

User is in the currency conversion page

Test Procedure: 1. User clicks the notification icon

2. User enters the desired value

3. User clicks submit

Test Data: N/A

Expected Results: Notification will come through once the currency value reaches the

goal value

Actual Results: N/A

Comments: This function was not implemented in time

Test Status: FAIL

Test Case ID: TC7 Related Requirements: FR6

Test Description: Verify that the user can change their default currency

 55

Prerequisites: User is logged into the system

User has selected the default and target currencies

Test Procedure: 1. User clicks settings icon on the navigation bar

2. Useƌ ĐliĐks ͚geŶeƌal͛
3. Useƌ ĐliĐks ͚ĐhaŶge default ĐuƌƌeŶĐǇ͛
4. User clicks the spinner

5. User selects a currency

6. User clicks submit button

Test Data: N/A

Expected Results: The useƌ͛s default ĐuƌƌeŶĐǇ ǁill ďe ĐhaŶged aŶd the useƌ ǁill ďe
redirected to the general settings page

Actual Results: N/A

Comments: This function was not implemented in time

Test Status: FAIL

Test Case ID: TC8 Related Requirements: FR7

Test Description: Verify that the user can change the refresh cycle

Prerequisites: User is logged into the system

Test Procedure: 1. User clicks settings icon on the navigation bar

2. Useƌ ĐliĐks ͚geŶeƌal͛
3. Useƌ ĐliĐks ͚ƌefƌesh ĐǇĐle͛
4. User changes refresh cycle

Test Data: N/A

Expected Results: Refresh cycle will be changed

Actual Results: N/A

Comments: This function was not implemented in time

 56

Test Status: FAIL

Test Case ID: TC9 Related Requirements: FR8

Test Description: Verify that the user can restrict the number of notifications per day

Prerequisites: User is logged into the system

Test Procedure: 1. User clicks settings icon on the navigation bar

2. User ĐliĐks ͚ŶotifiĐatioŶs͛
3. Useƌ ĐheĐks the tiĐk ďoǆ foƌ ͚liŵit the Ŷuŵďeƌ of dailǇ

ŶotifiĐatioŶs͛ field

4. User enters a value

Test Data: N/A

Expected Results: The number of notifications the user receive will be restricted

Actual Results: N/A

Comments: This function was not implemented in time

Test Status: FAIL

Test Case ID: TC10 Related Requirements: FR9

Test Description: Verify that the user can favourite currencies

Prerequisites: User is logged into the system

Test Procedure: 1. User clicks the star icon on the navigation bar

2. User clicks the plus icon

3. User selects a currency

Test Data: N/A

 57

Expected Results: The selected currency will be added to the favourite currency list

Actual Results: N/A

Comments: This function was not implemented in time

Test Status: FAIL

Test Case ID: TC11 Related Requirements: FR10

Test Description: Verify that the daily rate alerts come through

Prerequisites: User is logged into the system

User has at least one currency in their favourite currency list

Test Procedure: 1. User clicks the setting icon on the navigation bar

2. Useƌ ĐliĐks ͚ŶotifiĐatioŶs͛
3. Useƌ ĐheĐks the tiĐk ďoǆ ͚‘eĐeiǀe dailǇ updates of
4. Ǉouƌ faǀouƌite ĐuƌƌeŶĐies͛

Test Data: N/A

Expected Results: Daily updates will come through

Actual Results: N/A

Comments: This function was not implemented in time

Test Status: FAIL

Test Case ID: TC12 Related Requirements: FR11

Test Description: Verify that the user can see the historical chart

Prerequisites: User is logged into the system

User has selected the default and target currencies

Test Procedure: 1. User clicks the chart icon on the navigation bar

 58

2. User selects a time scale

Test Data: N/A

Expected Results: Historical chart will be available to view

Actual Results: N/A

Comments: This function was not implemented in time

Test Status: FAIL

Test Case ID: TC13 Related Requirements: FR12

Test Description: Verify that there is a news feature integrated

Prerequisites: User is logged into the system

User has at least one currency in their favourite currency list

Test Procedure: 1. User clicks the star icon on the navigation bar

2. User clicks a currency

3. User clicks news

Test Data: N/A

Expected Results: News that is relevant to the currency will be displayed

Actual Results: N/A

Comments: This function was not implemented in time

Test Status: FAIL

Test Case ID: TC14 Related Requirements: FR13

 59

Test Description: Verify that the user can receive the notification by email

Prerequisites: User is logged into the system

User has set a notification for their currency pair

Test Procedure: 1. User clicks the notification button

2. Useƌ ĐheĐks the tiĐk ďoǆ ͚I ǁould also like to ƌeĐeiǀe eŵail
ŶotifiĐatioŶs͛

Test Data: N/A

Expected Results: The email notification will come through when the desired rate is

reached

Actual Results: N/A

Comments: This function was not implemented in time

Test Status: FAIL

Test Case ID: TC15 Related Requirements: FR14

Test Description: Verify that the system has multilingual features

Prerequisites: User is logged into the system

Test Procedure: 1. User clicks the settings icon on the navigation bar

2. Useƌ ĐliĐks ͚laŶguages͛
3. User selects a language

Test Data: N/A

Expected Results: The app will be displayed in the selected language

Actual Results: N/A

Comments: This function was not implemented in time

Test Status: FAIL

