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Abstract

Currently there is a need to reduce energy consumption for future sustain-
ability of this planet, one way we can target this is by reducing the energy
using within buildings. We will devise some Machine Learning models to
forecast the meter-readings within these buildings, where we will take some
large dataset, process it, develop our models and then use these to make
some conclusions. We will try to optimise the models through pre-processing
and hyperparameter tuning stages. At the end we will determine what model
is able to most accurately model building energy usage, and the limitations
from this study.
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1 Introduction

In the present time, there is a need to reduce energy consumption for the
future sustainability of this planet. With the growing population and eco-
nomic development, the demand for energy is always increasing. And with
the development of countries there is a greater need for energy in multiple
aspects such as agriculture, transport, industry and manufacturing. With
this growth of energy usage, there is a need to meet future sustainability
goals. Current product of energy is heavily related to non-renewable sources
like fossil fuels, where these contributed to 84% of energy production in 2019.
The burning of these fossil fuels leads to the production of greenhouse gases
such as Carbon Dioxide, these have lead to the entrapment of heat within
the Earths atmosphere. This exacerbates the issues of global warming and
is leading to many issues. We have been observing melting glaciers and po-
lar ice-caps, rising temperatures affecting wildlife and their habitats (also
leading to different migration patterns) changing ecosystems, temperature
change and further extreme weather. Buildings and construction contribute
significantly towards global warming, where these contribute 39% of carbon
emissions globally. It is known that ineffective management within buildings
may lead to increased costs and severe environmental impacts as above. If we
are able to more effectively use existing and advanced controls, we’d be able
to reduce energy consumption by 30%, solving some of these complications
discussed.

There is large growing amounts of data available, collected from various sen-
sors. Machine learning can make use of large data and make use of predictions
to improve efficiencies within buildings. This can also be used to forecast en-
ergy consumption, detect and prevent faults (which could’ve lead to costs
in downtime), seasonality and pre-cooling/pre-healing models. We will be
investigating on how Machine Learning techniques can be used to effectively
forecast and model energy consumption within buildings. Currently there
are issues in comparing predictions methods, due to the use of smaller data-
sets to optimise specialised buildings. We will be following the ASHRAE
Great Energy Predictor III competition, where I will be able to use a large
data-set and see what techniques I find important and effective compared to
the other participants.
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2 Aims and Goals of the Project

We aim to develop models using Machine Learning that will be able to accu-
rately predict energy consumption within buildings. Our goal is to be able
to use historic usage rates, weather and building data to accurately forecast
future energy rates. Following this we will evaluate these models to see what
extent and accuracy they are able to perform at. The trends and patterns
observed from the obtained models should allow us decide, which of these
models and methods are more suited towards this problem. Overall our goal
is to see what methods and techniques are effectively towards modelling en-
ergy consumption within buildings.

This project aims to contribute towards study of Machine Learning tech-
niques that can be used to effectively study energy consumption in buildings
on a larger scale. We have identified two groups that can benefit from our
study. With the nature of the models, we will be able to forecast future
energy data and this can be used to more efficiently manage buildings. With
this more efficient management building owners can benefit from reduced
costs. This also relates back to the environmental issues discussed previ-
ously. More efficient energy management can allow for lower overall usage,
reducing negative impacts such as global warming.

Like stated before towards our project we will be developing a range of mod-
els and testing their effectiveness towards this problem. However due to time
constraints, it is impossible to test all possible models. With this, it was de-
cided that we’d look at the most promising models and algorithms towards
this problem. The way we have selected our models have be discussed further
in the ”SOMETHING” section.

The overall aims of our study are summarised below:

• Using Supervised Regression Machine Learning algorithms to predict
energy consumption within buildings.

• Gauging the level of accuracy of these predictions and decide on the
effectiveness of a model (This will be discussed more later).

• Looking at the data-set and how it’s quality will affect the ability for
the model to learn.
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3 Background

This section covers some important concepts related to Machine Learning,
that will be used heavily throughout the development on my models. I
will first cover some Machine Learning algorithms, we will then continue to
discuss the metrics that will be used to evaluate the trained models.

3.1 Problem Classification

Machine Learning is a sub-field of Artificial Intelligence, focusing on the
science and programming of computers so they can learn from data. Arthur
Samuel a pioneer in this field has stated Machine Learning as ”the field
of study that gives computers the ability to learn without explicitly being
programmed”. With the fast growing of large data-sets and increasingly
complex problems, trying to solve these problems by manually defining a set
of rules can be impossible i.e image recognition of humans. Machine Learning
algorithms allow us to make use of large data to develop models, which are
able to make important data-driven predictions. Also the popularity and use
of Machine Learning is only growing due to the abundance of data, and now
cheap computation. We have been able to see the use of Machine Learning
in a multitude of sectors, such as the Energy Industry, our study can be
classified within this industry. Machine Learning Systems can classified into
different types, depending on the type of supervision during training. These
classifications are shown in the sections below:

Supervised Learning

When learning with Supervised learning the algorithms are given an training
data-set with the desired solutions, which are also known as the labels (In our
case this would be meter readings). The algorithms will analyze the labelled
training data to produce an inferred function. This function then can be
used to map for new examples and hopefully be able to generalise to new
instances. Unseen data can be used to evaluate the accuracy of these models
(known as the test data-set, during these evaluations we would take care to
reduce results from loss functions, to achieve improved model. Supervised
Machine Learning algorithms can be split into further into two main types
of problem:
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Regression Problem

With Regression we are typically looking to find some continuous value i.e.
salary or building prices. These algorithms will try find correlations between
independent and some outcome/dependant variable. With this we can use
the models can to forecast outcomes on new and unseen data. This type of
problem is an particular interest to us, as our study falls into this category,
as energy meter readings are counted as continuous values.

Classification Problem

Classification problems try to find a class label for any given instance from
input data, such as how emails can be classified as spam or not spam. The
models will try to find how to best map input data instances to these class
labels. Our problem does does not fall into this category, therefore this will
not be explored further as this point of time.

3.2 Machine Learning Algorithms

Knowing that we’re studying an supervised regression problem, we can now
look into the relevant algorithms that will be considered during our imple-
mentation. In these sections we will only give an overview of the algorithms
themselves, the logic behind their usage has been discussed in the Approach
chapter.

3.2.1 Linear Regression

We can start by looking at more traditional examples of linear regression in
the slope-intercept form, the equation for this is shown below.

y = θ0 + θ1x (1)

Here x would represent the input variables, and y would be the predictions
we’ve made. The θ0 shows the bias, in the case that x is 0, this would be
the value of y. Finally, θ1 represents the weight for the independent variable.
The above only deals with finding an linear relationship for one independent
variable x, however we will be dealing with multiple features and with this
we will look into multivariate regression.
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Generally linear models will make predictions by computing a weight sum of
all input features, including the bias term as defined previously. This can be
shown with this formula:

ŷ = θ0 + θ1x1 + ...+ θnxn (2)

Like before ŷ is the predicted value, n represents the number of features,
where each xn would be a feature value. θn would represent the weight term or
regression coefficient - showing how much we expect the predictions to change
with respect to x. To optimise the models above we would need some method
to find the most optimal θ0 and θj values, giving us the better predictions
possible, to do this we would need some kind of performance measure. An
measure that can be used is the RMSE which involves calculating average of
the square of the difference between the predictions and actual values. This
and other evaluation methods have been discussed in further detail in the
”SOMETHING” section. We will now look at some more important concepts
with the usage of linear regression methods.

Gradient Descent

Gradient descents main idea is to adjust parameters iteratively to minimise
some cost function (This could be our MSE or RMSE). The gradient is the
slope of a curve, where for multivariate functions, it is the vector of deriva-
tives in each main direction along variable axes [REF]. This algorithm will
look towards finding the gradient of the error function, and will go in the
direction of the descending gradient. In more detail, can use random initial-
ization and fill θj with random values, it will then work towards decreasing
the cost function, until we reach a point of convergence at a minimum. To im-
plement this we will be calculating the partial derivative (finding the change
in cost function, if θj is changed by a small amount). Cost functions such as
MSE will work particularly well with gradient descent, since it is a convex
function. Below is three important gradient descent applicators:

Batch Gradient Descent - When calculating the partial derivatives, it will
calculate these in a single batch and update, rather that doing it individually
(In essence doing it over the entire training data-set). This method scales
well with the number of data-set features, however can be significantly slower
with a larger data.
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Stochastic Gradient Descent - Unlike batch gradient descent, this will calcu-
late gradients at every step. Where for every instance of the train data-set,
it will compute the gradient based on that one instance. This is a lot faster
compared to the above, but due to its random nature, the gradient values
can jump around. This also means there is an good chance to escape from
a local optima. However, when we reach an minimum, due to the random
nature it will struggle to settle, so final parameters might not be optimal
(This could be solved by gradually reducing the learning rate).

Mini-Batch Gradient Descent - This combines both of the previous tech-
niques, where the gradients are calculated on mini-batches, which are smaller
sets of instances. This algorithm is less erratic and faster (due to hardware
optimization for matrix operations) in comparison to SDG, however we may
lose the benefit of being able to escape from an local optima.

Regularization

There are further methods that can be used to minimise the MSE on the
training data. One way we can do this is by reducing the degree of free-
dom it has, we can do this on a linear model by constraining the weights of
the model. Some of the ways we can apply these constraints are shown below:

Ridge Regression (L2 Regularization) - This is added onto the cost function,
where it is modified to minimize the squared absolute sum of the coefficients.

Lasso Regression (L1 Regularization) - This also adds an regularized term to
the cost function, where we are modifying to reduce the absolute sum of the
coefficients.
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3.2.2 Decision Tree’s

Decision tree’s can be both used to solve classification and regression prob-
lems. It uses a tree like structure with internal nodes to represent features
in the data-set, the image below shows an example of this.

INSERT IMAGE HERE

We can see two types of nodes, Decision and Leaf. Decision nodes are where
any decision is made, where leaf nodes contain the outcomes for these deci-
sions. It is also noticeable that a leaf node, will not have further branches.
In an generic prediction process we will start at the root node, compare with
our data instance and move to a lower node using a branch. It will do this
until we reach some leaf node, which will be our output prediction.

Decision tree’s are developed with the CART algorithm. The algorithm
recursively splits the data-set into two subsets, using a single feature k and
some threshold tk, and it will search for the pair of these values that return
an lower MSE (cost function) value. It will do this recursively until we reach
some maximum set depth, or the MSE cannot be reduced further.
Decision tree’s are beneficial in the way it makes very little assumptions to-
wards the training data, however this could lead to the model overfitting.
This means the model would not adapt well to new and unseen data, with
this we’d need to use some regularization methods. This could be tuning
parameters of the algorithm, such as giving a maximum tree depth.

3.2.3 Gradient Boosting Decision Tree Algorithm

Boosting algorithms refers to the process of using ensemble methods. The
goal is to train predictors sequentially, to solve any residual errors in the
previous predictor. We ensemble weaker models, with each trying to reduce
the error in the previous tree, overall creating a more accurate and better
performing model. This is done by fitting new predictors to the residual
errors of the previous stage/model, where the residual error can be identified
with some cost function (like MSE). With this higher level of accuracy, we
would also need to conscientious of overfitting, so like before we would need
to apply a range of regularization methods, to prevent this.
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3.2.4 Neural Networks

Artificial Neural Networks

Neural networks are algorithms that are modelled after biological human
brain and the neurons contained within them. One of the more simplest ar-
chitectures is known as the Perceptron, based on an artificial neutron called
the TLU (Threshold Logic Unit). Inputs to this are numbers, with weights
associated to each input, which for the sum is calculated. Some step function
is applied to this sum and this result is outputted.

This perceptrons can be combined to create an MLP (Multi-later Percep-
tion), made up of an input layer, a number of hidden layers (layers of TLU’s)
and an output layer (Final layer of TLU). We can think of each node or
neuron as its own linear regression, having its own weight, bias/threshold
and output. This method uses backpropagation ( involving gradient decent)
training. Firstly data is sent in mini-batches (where each batch is know as
an epoch) to the input layer, this is the sent to the hidden layers, where the
output is calculated for the neurons before sending the result to the next
layer. The algorithm will do this till we reach the output layer (This is the
same as making predictions). At each of these predictions, we measure the
error and go backwards to see how much each connection contributes towards
the error. Finally we adjust the connections weights, to reduce the overall
error.

Recurrent Neural Network

An RNN is specialised to work with sequential or time-series data. This
relates to our own problem, where we will predict energy meter readings,
which can be classified as time-series data. Neurons in an RNN are different
in the fact, they have an ’memory’ that can help store outputs and be able
to use them as inputs for the next sequence[]. In an Deep RNN each layer
will have their independent weights and biases. Schematically this can be
thought as using using a for loop to iterate over time-steps of a sequence,
while maintaining some internal state with the information of seen time-
steps. This time-step information is kept within the RNN hidden state. All
this allows us to long-term dependencies, which other algorithms might be
be able to pickup.
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3.3 Software and Libraries

Here we will look at software and libraries that are related to our study and
will be used during our implementation.

• Pandas - Python software library dealing with data manipulation and
analysis.

• NumPy - Python software library dealing with support for large,
multi-dimensional array and matrices. It contains a large number of
mathematical functions, that can be used.

• SkLearn - Python based software library dealing containing multi-
tudes of machine learning techniques such as classification, regression,
clustering and dimensionality reduction.

• Keras - Keras is a deep learning API written in python. It allows
for simple, flexible and powerful implementation of Neural Networks.
Keras is built upon Tensorflow.

• Tensorflow - Open-source software for machine learning and artificial
intelligence, focus on training of deep neural networks.

• Matplotlib - Python library allowing for static, animated and inter-
active visualisations of data[REF].

• Seaborn - Another visualisation library in Python, this is based on
matplotlib.

• Google Colab - Google Colab is an online platform, where it hosts
Jupyter notebook service. It allows for the writing of python through
the browser, and is suited for machine learning and data analysis work.
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4 Related Work

We will look at some of the work that other contestants have done towards
this study, and I will look at their procedure and solutions.

Authors Methodology Returned Score

Isamu Yamashita and Matt
Motoki

Procedure includes remov-
ing anomalies (long streaks
of constant values, large
spikes, additional from vi-
sual inspection), they will
impute missing temperature
values, and take the log of
the meter-readings. They
took two approach’s, one
brute force (selecting most
features) and conservative
approach (carefully selected
features). They used Light-
GBM, CatBoost and MLP
models, where they used en-
semble in post-processing to
reduce overfitting.

1.231

Oleg Knaub, Roham Rao,
Anton Isakin, Yangguang
Zang

Did manual processing, by
looking at all the build-
ings individually and taking
out outliers when possible.
Did not focus much on fea-
ture engineering (less than
30 features). Used mod-
els such as XGB, LightGBM
and CatBoost. Used post-
processing with weighted
mean(depending on meter
type). Also found the clean-
ing process important. Fo-
cused on using the data
from leaks.

1.232
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Xavier Capdepon

Used CNN, XGBoost,
LightGBM (CPU) and
CatBoost (GPU). Recog-
nized building-id as most
important feature. Used
ensemble techniques for
post-processing.

1.234

I will also look at this paper[REF], and discuss some of the findings from the
competition overall. It seems like one of the key methods towards having an
high accuracy model depends on how the pre-processing and post-processing
was completed. Most of the top solutions have taken more care into their
pre-processing, even manually looking at each building to find outliers. Top
scores also look at ensembling frameworks, where they’ve used methods to
apply weightings. This paper also talks about how such a large dataset is
beneficial towards this study, as these allow us to examine how these models
could generalise well to buildings around the world. This meets the goals
of our study, since we are trying to create a ML model that will be able to
accurately forecast energy usage within buildings.
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5 Approach and Design

In this section we will be going through the how we approach our problem,
and the design that will be taken to implement our models. Throughout these
I will explain, why I think these methods were the most suitable towards my
study. I will start by looking at the overall Machine Learning Pipeline for
my problem.

5.1 Machine Learning Pipeline

Like stated previously, we are studying the usage of different models to pre-
dict energy meter readings for buildings. These models will then be evaluated
to see which are the best performing and most accurate. This work will also
be compared to work others have completed on the same data, as shown in
the Future Work section. The pipeline below describes how we’ll be devel-
oping these models. Below we go through each of the components and give
further detail on what those specific stages will entail.

17



5.2 The Dataset

To investigate the energy usage within buildings, we have used the data-set
provided by ASHRAE in the Great Energy Predictor III competition. This
large data-set is extremely beneficial, as it targets a large number of different
types of buildings. This would stop this analysis from becoming too spe-
cialised for a singular type of building. With this we can know which type
of algorithm will would generally better when it comes to predicting energy
usage for buildings accurately. It will be beneficial to be able to compare our
results, with those of other contestants, giving us a further idea of how good
our developed models are. Below is the break-down of the dataset, where a
small description has been given for each feature.

Building Metadata

This dataset includes data on all buildings the meter readings were taken
from, summarized in this table below:

Feature Name Description

Site ID
Foreign key for weather
data file

Building ID
Foreign Key for training
dataset

Primary Use
Indicator for the primary
category of activities for the
building.

Square Feet
Gross floor area for the
building

Year Built
The year, the building was
opened

Floor Count
Number of floors the build-
ing has
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Weather Dataset

This dataset includes data on the weather at the time of the meter reading,
summarized in this table below:

Feature Name Description

Site ID
Foreign key for weather
data file

Air Temperature
Measured in Degrees Cel-
sius

Cloud Coverage
Portion of sky coverded in
clouds, measured in Oktas

Dew Temperature
Measured in Degrees Cel-
sius

Precipitation depth/1hr Measured in Millimeters

Sea Level Pressure
Measured in mil-
libar/hectopascals

Wind Direction Compass Direction (0-360)

Wind Speed
Measured in meters per sec-
ond

Train Dataset

This is the training dataset that we will be using, which contains the impor-
tant meter reading labels. This is summarized in this table below:

Building ID
Foreign key for Building
Metadata table

Meter

The meter ID code, indi-
cating which type of meter
it is (0:electricity, 1:chilled
water, 2:steam, 3:hotwater)

Timestamp
The time and date a meter
reading measurement was
taken

Meter Reading
The energy consumption in
kWh, where this is our tar-
get variable (our labels)
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5.3 Pre-processing of the datasets

We can see from the above breakdown that the dataset is spread over multiple
tables, and in this form it is currently not as useful for training our models,
and will be in various formats. It is also important that any significant out-
liers, missing values and any other are removed, to remove any incorrect bias
in our training process. Throughout this stage, I will use several processing
techniques to ensure that data is in a more viable and consistent format.
Here we analyse the techniques that we will use, and why these have been
the ideal choice towards this processing.

Merging of the dataset

We can currently see that the current format of the data is not suitable for
when we will train our models. From the break-downs it is easy to see that
all the tables are connected through foreign keys, which we will be able to
use these to merge the three datasets, into a singular larger one. Currently
one record of information only has information on the timestamp, meter type
and the reading. When we combine these, a single record will also contain
the building and weather information, for that meter reading.

Train-Test Split

When training our model we will be splitting into two parts, training and
test datasets. The training dataset will be used to train our models, where
we will measure the accuracy with some loss function i.e. MSE. However we
risk overfitting to this dataset, this is when model will learn well towards
a function for the training data, however would not generalise well towards
newer information. To prevent this issue we use the test dataset, we can see
how the model will adapt to new and unseen data, so we can see if our model
is either overfitting or how it will work from an actual production standpoint.
Since our dataset is so large, we have chosen to use a 80% train and 20% test
split.
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Dealing with Missing Data

When collecting data, it is common for errors to occur, leading to missing
entries in the dataset. Dealing with these missing values is important, as it
could lead to significant errors when developing our models. To deal with
these values, we have an handful of approaches. Firstly we could remove
any instance or record where there is an missing value. We will not be using
this approach, since it could cause other important information to be lost for
our model. Secondly, we can use imputation, where we will filling missing
entries with some kind of number. We will be using the median of that
feature column to fill missing values, the median would allow us to avoid
issues when the data is skewed (with skewed data, mean can perform badly).
However if we ever reach the case of large amounts of missing information
(above 40%), this entire feature will be removed. Having too much missing
data would be hard to impute, and could just bring in more bias towards our
model, which is not ideal.

Dealing with Categorical Data

Since most machine learning algorithms cannot deal with categorical data
(such as linear regression), we will need some method to covert it into nu-
merical value. We can see that we have categorical data of Primary use in
the Building Metadata table, we will need to deal with this. We can firstly
look at the Integer encoding method, where we give integer value for each
label. This is not sufficient in our case, since the data we have is nominal.
and doesn’t have any numerical value. With this we have chosen One-Hot
encoding, where a new binary variable/feature is added for each categorical
label. This method can bring issues with multicollinearity, where these cat-
egories could introduce dependency between independent features. Another
issue includes if there is a large number of categorical labels present, it can
significantly increase the complexity of the problem, we will not incur this
issue, as we have an limited number of categorical labels (Discussed in Im-

plementation section). We still go through with One-hot encoding since it
allows for the encoding of nominal data. Where in the case of issue we can
drop dummy variables, to ensure these dependencies are not made.
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Feature Scaling

Scaling is an important consideration to make for the prepossessing of our
dataset. Looking at the dataset break-down it we can see that there is a
multitude of numerical values, which have different units. In some cases the
difference between the large and smaller values may be significant, leading
to longer and less accurate training, we could have this due to the difference
between large and small meter readings (Show in Implementation section).
We can use scaling to ensure values are closer together, and hopefully lead to
better accuracy. We have decided to use Standard Scaling to do this, where
it scales by firstly subtracting the mean (so it is zero) and will get an variance
equal to 1. Even-though it will not scale to values between 0-1, this scaling
will be less affected by outliers. Since its less affected by outliers, we have
chosen to use this approach.

5.4 Selection of Machine Learning Models

This problem involves the usage of supervised regression based algorithms
to accurately forest energy meter readings for buildings. However due to
restricted time for this study, I will be selecting only a few, but promising
machine learning algorithms. We will go through how each of the models
work on an overview level, then proceed to discuss, why we these could be
ideal approach.

5.4.1 Linear Regression

We will be using the Linear Regression model provided my SkLearn in
Python. This model works by trying to minimize the residual sum of squares
between observed targets in the dataset, and the targets predicted by the
linear approximation[REF]. This is following procedure of ”Ordinary Least
Squares”, where we are trying to minimise the distance between each data-
point and the line of best fit (Minimizing the sum of square residual errors).
Linear Regression is a beneficial when we are looking to forecast some value,
this will be useful, since we are forecasting future meter readings. This will
also allow to see whether our dataset has a linear relationship, indicated by
the accuracy this model performs at.
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5.4.2 LightGBM

LightGBM is based on Gradient Boosting algorithms, where this algorithm
will try to grow decision trees vertically (leaf-wise split). This algorithm was
chosen due to the wide range of benefits that it would be able to bring for
our training process. LightGBM uses histogram-based algorithm commonly
used GBDT algorithms. However this histogram based methods have their
own limitations, and LightGBM solves these with GOSS and EFB. GOSS
(Gradient-based One Side Sampling) involves the exclusion of some low-
gradient data instances, where EFB (Exclusive Feature Bundling) bundles
mutually exclusive features, reducing the number of overall features. Both
of these will have increase the memory usage and speed of the algorithm.
Overall this algorithm is faster, because this histogram-based algorithm will
place continuous values in discrete bins, reducing memory usage and increas-
ing training speed. This is extremely beneficial in our case, where we have an
significantly large dataset. This algorithm can also achieve higher accuracy,
due to focus on life-wise exploration. During my implementation I will need
to be wary of overfitting, due to the leaf-wise nature (could be avoided by
setting the max depth hyperparameter.

5.4.3 Long Short-term Memory - LSTM

RNN have some issues, which includes the Vanishing/Exploding Gradient
problem, this comes from how RNN’s uses Backpropagation through time’
to adjust weights in the network. With each step of BPTT, it will calcu-
late the partial derivative at each weight in the network, these can act as
a chain rule, where in the end we find a sum of these derivatives to find
some error. It will use this information to adjust weights within the RNN
network, however with longer-term dependencies, the long multiplication of
derivatives leads vanishing values, which means the weights of the network
are not updated correctly, leading to inaccuracies in the models. Also in the
case of initialization of large values, the gradient values can get too large,
leading to erroneous values, known as the exploding gradient. LSTM will
solve these issues, as its design to deal with dependencies in data. LSTM
cells in the hidden layers contain four gates, which will limit information
passed through the cell and ensuring only needed information will be passed
on. We can chose to overall use LSTM because it allows for the forecasting
of time-series data, where it deals with issues in typical RNN, as above.

23



5.5 Hyperparamer Tuning

Hyperparameter tuning is an important part towards the development of
the models. Hyperparameter’s are values that can help control the learning
process of the algorithms, this could help lead to more optimal accuracy.
Select ideal values can help avoid the model from over or under-fitting. The
below tables show the hyperparameters that have been investigated for this
problem, and the reasons behind the targeting of them.

Linear Regression Hyperparameters

SkLearn’s algorithm for Linear Regression has a limited number of hyperpa-
rameters, hence not having many to explore in the table below.

Hyperparameter Functionality + Reasoning

n jobs
Number of jobs to use for computation.
Since we have a large problem , this
could lead to a speedup in training

LightGBM Hyperparameters

LightGBM has an extremely large number of hyperparameters we can work
with, however due to time and computational constraints, it is not possible
to test all combinations. With this we have selected the hyperparameters
that could be the most significantly during training.

Hyperparameter Functionality + Reasoning

n estimators

The number of boosted tree’s to fit.
Controlling the number of tree’s can
help get an more accurate model. Care
should be taken, as too large values can
lead to overfitting and longer training
times.

24



learning rate

Controls the size of the step taking
when moving with the gradient of the
cost function[]. A higher learning rate,
can be faster, but have an lower ac-
curacy. Taking a lower learning rate
would allow for slower learning, but can
help combat overfitting and have the
transitions be smoother.

reg alpha

This is L1 regularization, where it will
make smaller values go towards zero.
This can help reduce the number of fea-
tures, and reduce overfitting.

reg lambda

This is L2 regularization, where it will
restrict larger outlier values. This can
also help overfitting, it is important
that this value isn’t too large, or it
could lead to under-fitting instead.

num leaf

Sets the maximum number of leaves,
for the weaker models (DT models).
Setting a greater number of leaves,
would allow for a higher accuracy, how-
ever would need to be careful, as there
is an risk of overfitting.

feature fraction

Does column sampling, where it would
select some subset of features on each
iteration. This can help speed up train-
ing, and help to deal with overfitting.

max depth

Restricts the maximum depth of each
tree. Selecting an optimal value would
allow for optimal training times, and
could help avoid overfitting. Too large
values could lead to long learning times,
and overfitting. This parameter has
to be carefully considered with the
num leaf.
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LSTM Hyperparameters

The tables below show the hyperparameters that have been chosen to tune
the LSTM models. This model had a different approach taken for tuning,
where a Bayesian tuning algorithm was used (This will be further shown in
the implementation section).

Hyperparameter Functionality + Reasoning

input neurons

A greater number of neurons, could
lead to an increase in accuracy and
complexity of the model, however we
would need to be careful in not allow-
ing the model to over-fit.

number of hidden layers

We could test to find a number of hid-
den layers that would increase the accu-
racy of the model. However too many
layers could lead to overfitting, and this
would not be ideal.

dropout number

Tuning this parameter would allow for
the managing of regularization of our
models. Where certain (probabilisti-
cally chosen) LSTM units will be ex-
cluded, from activation and weight up-
dates[REF]. This can increase the mod-
els performance, while also reducing
chances of overfitting.

Approach to Hyperparameter Tuning

There are two main approaches that have been taken when hyperparameter
tuning. Both of these methods are discussed below:

GridSearch

We create a search space or grid of hyperparameters we want to test, then we
do an evaluation on every point of that grid. Lists of selected parameters can
be fed into the algorithm, exhaustively testing combinations and returning
the most ideal combination of these. GridSearch also allows for in-built Cross
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validation, this is where the dataset is split into further smaller train-test
splits. The image below shows a representation of how this works:

In each iteration it will train the data, and validate it against the k-th fold
test data-set. This method will allow for the entire dataset to be consid-
ered for validation, and in the end we use the average of the accuracy, as
the performance metric for our model. This approach has been chosen as
it would allow for evaluation of hyperparameter metrics, where the models
with better accuracy (lower MSE) are better. It would also be beneficial, as
we would be able to see whether our model over-fits.

Bayesian Optimisation

Bayesian optimisation works similarly to GridSearch, where we are testing
a range of parameters on a model. However with this approach, it will use
information on the previous model, to select more promising parameters for
the next model iteration. Models such as the LSTM will take significant
time to run, it will be infeasible for me to run GridSearch on it, due to time
constraints. Bayesian will allow the reaching of optimal hyperparameters for
high accuracy, in a lower amount of time.

5.6 Evaluation Metrics

To evaluate our models we will need some form of performance measure.
Since we are using regression based models and our problem has the goal of
being able to forecast future meter readings, we will want to minimise the
error on these predictions. The error is measured using the following metrics:
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Root Mean Squared Error - RMSE

The RMSE is the square root of the variance of the residuals, where the
residuals are the difference between observed and actual values. This can be
calculated with the following formula:

√

∑T

t=1(ŷt − yt)2

T
(3)

The top part of the fraction represents the sum of the difference between
the actual and predicted values squared, where T is the sample size. I have
chose this method, since like MSE, the squaring effect will lead to magnified
large errors. This punishment make it easy to see, where there is a significant
different between our predictions and actual values. Since we also take the
square root, values will not be in squared units, allowing for easier reporting
and readability. This is why I’ve chosen this metric over MSE.

R-Squared Error

This is a measure of how close the data is to the ”line of best fit”. In essence
it will allow us to see the variability been the independent and dependant
variables, where its measure between 0-1. Higher the value, can indicate
a great fit on the data. We would use the adjusted R2 value, since we
are dealing multiple features, otherwise the algorithm would just keep on
adding to this value, even-though some of those variables might not have any
significance. I’ve chosen this metric because of the difference in information
it gives compared to RMSE, where this metric cannot tell me whether the
model is good or not. A lower RMSE would indicated for a better model,
however higher R2 could indicated overfitting, and even in low-value cases,
the model still might be fine. This will overall let us see the correlative nature
between our features and dependant variable (our meter readings).
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6 Implementation

6.1 Environment and Setup

This project has been developed in Google Colab, a cloud-based environ-
ment allowing access to GPU’s and further RAM. Due to the computation
restrictions of my own PC, there was a need for a higher performing Jupyter
notebook, that wouldn’t crash on just loading the large dataset. The extra
memory and computing power allowed for easy processing, while the nature
of being able to connect to the cloud, allowed for all data to be stored on the
google cloud. An zip including the notebook used for this project has been
included, the notebook is named ”FinalWork”, to use this code, upload all
files in the zip (as-is) to google drive, so the notebook, will be able to assess
all files successfully. The dataset can be found in this link, and will need
to be uploaded individually: https://www.kaggle.com/competitions/ashrae-
energy-prediction/data

6.2 Exploratory Data Analysis

It was important to analyse the dataset that I had to find any anomalies and
adjust them, to achieve the highest possible accuracy and minimise RMSE
as much as possible. I will in this section only be showing some of the more
important conclusions, that I have been able to make, and how that has
affected my overall prepossessing steps.

The first step I had to apply was the function above, this is not analysis,
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but was needed to prepare for analysis. Due to the large nature of my
dataset, it is important that I reduce the memory usage of it, as much as
possible. Otherwise it has lead to the notebook’s crashing, from using too
much memory in a singular session. This is a function that I found that
adjusted data types, to reduce the memory usage significantly. It found
found that the reduction of the memory usage of these dataset was by at
least 60%.

The two above images show the merging of the datasets. This is where we
can simply merge them based on the foreign keys that were provided. Firstly
the building metadata was merged into the training dataset, following that
the weather data was merged into the combination of those. The resulting
dataset can be seen in the lower of those two images.

The above image shows an histogram for each of the features. It allows
us to make some important conclusions from this. Firstly we can see that
the only features that have normal distributions are the air-temperature and
sea-level-pressure. We can see that the dew-temperature is slightly skewed to
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the right, whereas the floor-count, wind-speed and square-feet are all heavily
skewed to the left, this will be dealt with in the coming processing. Here
we are able to identify a large issue with out labels, in the fact that they
are heavily skewed and will need normalisation. In the histogram, we can
only see a singular column, indication there is a large different between the
smallest and largest values, we will need to standardize these readings, so
smaller values are also considered in training.

We can now look at the distribution of missing values. It is easy to see that
some of the features have an extremely large number of missing values, hence
some of these features will be excluded from training. Features years-built,
floor-count and cloud-coverage, have above 40% of their values missing, with
this I feel like imputing could lead to bias, and therefore I will simply exclude
these features.

I decided to also investigate the number of meters by their type, and the
average readings for them. I was surprised to find that even-though the
highest number of meters was electric, the meter-readings for steam-meters
was so high compared to the other meter types. It was easy to see that there
was some kind of issue in these values, and decided to do further investigation.
The first graph on the next page, shows the average meter-readings over a
year.
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I found this graph very interesting, as it doesn’t show an nice distribution
like I had expected. I found it odd how the readings suddenly spike around
March, then just drop again in July. There also that one peak in November,
with this we needed to investigate further the remove errors from the dataset,
hopefully improving this distribution, and increasing the accuracy of our
predictions.
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The three above graphs, shows the investigations that had been complete.
It was decided that we would organise meter-readings by their sites, it was
found that sites 6 and 14 had the most erroneous looking values. In the first
image, you can see how there is a sudden spike in readings around 2016-09,
where around the rest of the year there are practically 0 readings. Breaking
this down further we looked at the type of building this error came from
(being entertainment/public assembly) and found that the exact building
with an issue was 778. I followed similar procedures for site-13 which shows
trends mimicking the average meter-readings over an year, with finding that
the building 1099 also has issues. Removing these values gives the following
transformed distribution:
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We can see how the above investigation allowed for erroneous values to be
removed, and overall improving the distribution of my meter-readings. The
goals behind doing thing, was to try increase the accuracy of my models.
Another large error source found was for site 0, where we can find that
there were no meter-readings until either March or May for most meters on
this site. This could’ve been some kind of issue with collection, handing or
processing of data, and will need to be dealt with. With this we decided to
remove all readings until the 20th of May. Some of the graphs showing these
0 readings are below:
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Summary of EDA

Here is a list summary of what I have learnt about the dataset and needs to
be changed.

1. Meter-reading labels are heavily skewed and will need to be scaled
appropriately.

2. The Years Built, Floor Count and Cloud Coverage features have more
than 40% missing values, and hence will be removed.

3. Buildings 778 and 1099 was causing the the overall distribution of
meter-readings over an year to be heavily skewed. Removing these
values has significantly improved the representation of the data, and
should hopefully increase accuracy in training.

4. Site-0 has some kind of error in data collect up till May, these values
will be excluded from our training dataset.

5. Site-0 has some readings in the wrong units, these units should be
converted for training[REF].

6.3 Training of the Models

Preparation of the training dataset

We first will need to apply all the processing steps that we have discussed
throughout the early analysis, We will also need to correctly complete the
train-test splits. The below images show this. The above image shows me

creasing a train-test split for the dataset using the train test split function
from SkLearn, We have used an random state of 42 to ensure consistency
between runs of my code and to make this study replicable.
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The below image shows the pipeline used to pre-process the dataset. We
have applied all the processing steps as discussed in my Summary of EDA

section. We can see the breakdown of the timestamp data into multiple other
features, we chose to do this because, it can help detect smaller seasonal
trends, in this time data. You may have also noticed how we’ve taken a
sample of the overall dataset, it was found that found that the dataset is too
large for training and google colab’s memory restricts will be exceeded. With
this we can chose to take an even sample of the data. The below image just

shows an basic pipeline used to fill missing values, encode categorical data
and use standard scaling on the features. In the below image you can also see
we have taken the logarithm of the meter-readings, since the meter-readings
were greatly skewed, doing this would give a more symmetrical distribution,
which might like the models such as linear regression fit better.
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Initial RMSE Scores

We firstly decided to implement both the LightGBM and Linear Regression
models. Below shows an simple implementation, where cross val score func-
tion has been used to calculate the RMSE. This function works similar to
cross-validation, where it will indicate if the model is overfitting. The Light-

GBM model has been tuned using GridSearch, where exhaustive selections
of parameters have been chosen. After each of these searches, the data of
these searches have been saved, where we are able reload and see the best
performing model. Below shows an example of one of the GridSearch pa-
rameter tables used, and the results of the best model. The decision to save
these models was again important, these GridSearches take extremely long
to complete, and it would insufficient to rerun these every-time.
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Implementation and tuning of Neural Network

To implement LSTM, it was found that the data cannot be entered in the
same format. I will first need to transform the data into a 3D format. During
development this was a difficultly, as it was hard to understand, what exact
format I should use to optimally develop the LSTM model.

With this, the outline for the LSTM model was implemented, this is shown
below. Keras Tuner has been used to implement Bayesian Optimisations

onto the LSTM model. The number of neurons, layers, dropout number and
activation methods are being tested upon. The model overall will have an
input layer, either 1 to 4 hidden layers, a dropout layer (for regularization)
and finally the output layer. The model is also optimized with Adam, where
it requires little memory and is computationally efficient, this is also good
for problems with large data[REF] (which is what we have). This tuning
was chosen since each test iteration takes so long, exhaustive searches like
GridSearch will be infeasible in this case, Bayesian will try to find more
optimal test parameters, based on the results of the previous, this can save
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a lot of time. The Keras tuner has also been beneficial in the fact that,
tuning progress is automatically saved, so in the case of an crash or error,
we can easily reload the tuning process and carry it on. When the tuning is
complete, we can easily obtain the best model from the tuner, this has also
been saved for future easy reuse.

Issues During Implementation

During implementation there were several issues that occurred, these are dis-
cussed below:

Large Nature of the Dataset

Initially we started by working in local Jupyter Notebook, however it was
soon found that this was infeasible. Due to the large nature of the dataset,
it wasn’t even possible to load the full training dataset, due to my devices
limitations. This caused us find other technologies such as google colab, how-
ever we found that this still has it’s own limitations, where we are limited
to 12GB of RAM and an run-time of around 12 hours. Exhaustive searches
such as Gridsearch and Bayesian Optimisation take an extremely long time
to run, and sometimes it would either reach the maximum RAM capacity
or the notebook would timeout, this caused us to have to run code multiple
times, adjusting so that it wouldn’t crash. This was frustrating, as it made
it taker longer to get results, that it normally should’ve.

Getting data into correct format for LSTM

To use the LSTM architecture, the data would need to be reformatted into a
3D shape. Even-though this was understandable conceptually, it was harder
to implement than expected. There are many ways this formatting can hap-
pen, and getting into the format of samples, timestep and features was con-
fusing. The particular confusion came under how to format the samples
and timesteps, due to my lack of knowledge, these steps took longer than
expected.
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7 Results and Evaluation

In this section we will discuss the resulting accuracies from these models,
and look at how well these models have been able to adapt. We will first go
over the original aims of this study, the goal is to create an optimal machine
learning model that is able to accurately forecast meter-readings in buildings.
With this goal in mind, three different ML models have been developed, we’ll
first look and evaluate each of the models individually, then we will compare
and see which models perform the best.

Linear Regression Model

The results from this model are summarised in the table below:

Metric Unprocessed Result Pre-processed Result
RMSE 1.9394 1.9111
R2 0.1797 0.1718

After processing we ended up with an RMSE of around 1.911, this is quite
large and won’t be accurate enough to be able to forecast data in the real
world. The RMSE suggests there is an large different between predicted and
actual values, which could suggest there isn’t a strong linear relationship in
this dataset. The small R2 value also indicates this, where it shows that there
isn’t a strong relationship between the independent features and our labels.
This can indicated that Linear Regression was not the best approach towards
this problem. I can also see that my pre-processing hasn’t significantly af-
fected the RMSE in any way, this could indicate that my pre-processing has
been insufficient towards improving this model.
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LightGBM Model

The results from this model are summarised in the table below:

Result Type RMSE R2

Unprocessed 1.2760 0.6448
Pre-processed 1.1669 0.6912
Pre-processed and Tuned 0.7215 0.8819

Firstly it is easy to see that the pre-processing steps was more successful here
compared to Linear Regression. You can see how the RMSE has decreased
by a moderate amount, the RMSE is also at a reasonable value being at
1.167, before tuning. This indicates that the error between predictions and
actual values is smaller in comparison to the previous model. The RMSE
significantly decreases after tuning, where its at a value of 0.7215, this is a
significantly more accurate model. You can also see that the R2 value is quite
high, this can indicate a strong connection between independent features and
our labels. This overall shows that LightGBM has been a superior model
over Linear Regression, while it is able to maintain speed and an high level
of accuracy.

LSTM Model

Due to error in my model creation, I have only been able to get RMSE met-
rics for my LSTM. Also due to the way I design this model, it was tuned
automatically using the Keras tuner, when I only had the access to the best
model. This means I will not be able to consider the unprocessed/untuned
model for this. The results for this model are shown below:

Loss for test model: 1.487947940826416
Loss for train model: 1.4819903373718262
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We can see the our LSTM model better than Linear Regression, however not
as ideal compared to LightGBM after tuning. This has been a limitation in
this study, where due to time constraints, I have not been able to tune the
model enough, to be able to give it a fair comparison to the other models.
Comparing the train and test losses, I can immediately see that there is very
small difference between the two values. This could indicate although it may
not be the most ideal model, it has been the model that has not over-fitted
significantly.

Looking at overfitting

We will further look at the LSTM and LightGBM models. Over-fitting is
when the model will overly learn onto the training data-set and therefore
won’t be able to adapt to new data well. I decided to look at how much my
models are overfitting, when I was tuning them with cross-validation. For
my LightGBM model I simply plotted the validation score vs training score
loss, whereas for the LSTM I have used a tool known as Tensorboard (Which
will plot this for me), which will allow me to analyse the difference between
the training and validation scores. Images for both of these are shown below:

You can see from the image above that my LightGBM model is overfitting,
however this is to be expected. This is something that can be targeted in
future study, and will be discussed in the coming sections.
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You can see how the Tensorboard allows for the analysis of Keras tuner and
all of its data. From this interface I can see that other than the first iteration,
the overfitting has been minimal. This indicates that the results of this model
could be further improved, with more tuning.

Summary

Overall I can see from all of the analysis above, LightGBM turned out to be
the best model for forecasting meter-readings in this study. All the evaluation
metrics for LightGBM were lower, indicting a higher level of accuracy. This
also follows to the related work I had seen previously, where solutions had
also used combinations of Boosting algorithms. It was found that in this
study, the pre-processing didn’t have as large of an effect as expected (unlike
hyperparameter tuning), this was surprising, many of the other participants
considered this stage most important. It can also be considered that these
models could’ve been further improved, if I had considered post-processing
stages. It seems like the top solutions put an emphasis on post-processing
and ensembling, and this could also improved my models even more.
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8 Conclusions

The original aim of this project was to investigate different Machine Learning
technique that will be able to accurately forecast meter-readings for building
and weather data. I have been able to learn a multitude of techniques, which
I have been able to apply and make some approach to solving this problem.
I was able to successfully learn and implement Machine Learning Models
and was able to use them to forecast meter-readings. I then evaluated the
accuracy of said models, to find LightGBM as the most accurate of those that
I studied. I was able to use techniques in hyperparamer tuning to try and
get the most ideal model, which was seen with LightGBM. I have now learnt
how complex it can become, where trying to get these models to be able to
adapt to new instances of data, and the time and work needed to complete
this. It was also able to see how my current models are still insufficient, and
are suffering from over-fitting, which means my models might not be useful
for predictions on unseen data.
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9 Future Work

The above made it clear, even-though I was able to find the best model in
this study, it can be improved to further accuracy. Due to time constraints
we were only able to test a small number of models, this could mean there
would be a model, which will perform better on this problem. This time
constraints also restrict the analysis and pre-processing we could complete,
with time, we would instead look at each building individually for outliers,
like some of the contestants. With this, we could try and implement further
models, using ensembling as suggested in some of those related works. Also
due to computational constraints, we were not able to use the whole dataset
in training, this means that the model could’ve been more accurate, had
we have that computational power. In future study we could investigate
different approaches that can be taken when working with such large data.
With further time, we also could’ve tuned the models further, leading to
even higher accuracies. Finally it is important to consider over-fitting at
every stage of the study, if continuing or when solving another problem,
we will take ore care in researching and implementations methods that will
reduce this overfitting.
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10 Reflection

This project overall has learnt me learn a multitude of skills technical and
outside of that. When starting this project, I had no significant experience
in Machine Learning. It found it fascinating learning from how I can go from
obtaining the dataset, researching appropriate techniques, to implementing
these techniques/models. I was also surprised to find how computationally
expensive these tasks are, and it made me think significantly about how I
could overcome these issues and now how important it is to optimise the
tasks that I am completing.

I have also learned how to effectively have meeting with my Supervisor, where
every week I would go into meetings with questions (If any issues had oc-
curred that week) and used the advice from those sessions to further improve
me work. Through-out the project I was also able to stay organised using
the time template on my Initial plan. However I found how much I had
underestimated this project, and how long some of those tasks would take.
I have taken this information into account, and will not underestimate the
depth, that is needed for some of these tasks.

One of the biggest struggled I had during this project was understanding
how exactly some of these Machine Algorithms worked, like Recurrent Neural
Networks, the math behind these are very complex, as are the concepts. I’ve
learnt how to pick out important information that will aid in my project and
implementation, while being able to now have the overview understanding of
these concepts.
Overall I have greatly enjoying this introduction to Machine Learning and
the applications/techniques that I’ve gained. I look forward to being able to
apply and learn skills in future machine learning projects.
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