“Music makes you run faster...?”

CARDIFF

UNIVERSITY

PRIFYSGOL

(AERDY

% ﬂ RACETRACKS

Author Student No: C1827663
Author Name: Tyler Cole Jenkins
Module Code: CM2303
Module Title: One Semester Individual Project
Module Leader: Dr. Frank Langbein
Supervisor: Martin Chorley

Moderator: Carl Jones

Word Count: 23538

Word Count excluding Title Page, ToC, ToF, Appendices and References: 21032

Abstract

Running is one of the most accessible sports in the world. With more and more people becoming
interested in the sport, there are also more people looking for ways to improve their performance.
Many runners like to listen to music whilst they run, and many believe that certain songs can help
them to push that little bit further and motivate them during their activities.

With a recent rise in smartphone applications that allow users to track their runs, it is now easier
than ever to track your running performance over a period of time and visualise areas where you
could improve. In addition to this, the number of people using a music streaming service which allow
them to stream music anywhere and anytime is at an all-time high. These two services together
provide the basis for this project. This project aimed to investigate ways in which we could help
runners understand if music does have an impact on their runs. By creating a web-application which
allows users to connect their accounts from a popular activity tracking service known as Strava, and
a popular music streaming service known as Last.FM, this project will act as a tool for allowing users
to visualise the effects that music has on their runs and thereby ultimately help them to decide if
“Music makes you run faster.”.

Acknowledgments

| would like to thank my supervisor, Martin Chorley, for meeting with me consistently throughout
this project to monitor the project’s progress and for providing valuable suggestions throughout
development.

Table of Contents

Y o1 1 1o A OO OO OPTUPPTOPROPRRURRRPRO 2
Yol o1V 1=To Fd o T=Y o SRR 2
TaDIE OF CONTENESeetieiieeiee ettt e s bt sb e sae e sate s saee st e e b e e beeabeebeennees 3
LI Lo 1Tl o L =T =T RSP 5
N 101 oo [¥ ot i [o] KOS T TP TP O TP URTTROP 8
1.1 INEFOAUCTION ittt sttt st s e b s ebeesbeesbeesbeeenees 8
1.2 INItTA] ASSUMPEIONS ...eiiiiiiie e ettt e et e e e e etee e e sette e e e sateeessbeeeesantaeeesastaeaesesnstenanns 8
13 Project AiIMs and ODJECLIVEScciiiiiiiiiiiie e s e e s s e e s ssaraeeesnes 8
14 INEENAEA AUAIENCE ...ttt et et e e bt e e s e s e e eneeeeenneeeas 10
1.5 [oY [=Totd Y o]] o Lo o NP 10
1.6 L o (=T Y o0 o = SRSt 11
1.7 SUMMATY Of OULCOMIESeviieiiiiieecciiee ettt e ettt e e e ctte e e ee e ete e e e seateeeesntaeessbaeeesenbaseesastesaesassnns 11

D - - Tl =4 o 18 Vo IR RS 12
2.1 LYo LY o o =Y ot 0o o = g F PPNt 12
2.2 Identified Problem and Stakeholderscooiiiiiiiiiieee e 13
2.3 F XYool =Y (=T I I aT=To] S URPRR 14
2.4 [AT g Y= Yo] (VLT o [P 15
25 Methods and TOOIS USEdcccuuiiiiiiiiiiieieiee ettt s st e b e e sateesbee e 16
2.6 Further and Implicit ASSUMPLIONS......coiciiiiiiiiie e e e e saree s 18
2.7 Concluding Research QUESTIONS...........ccccuiiieiiiieeecciiee et et e e e et e e e aee e e e bee e e e nbee e e eneeas 18
2.7.1 AU ettt bbbt bt bt h et a et et e st e et e bt e be e be e bt e be e beenbeenaean 18
2.7.2 RESEAICN QUESTION(S): ceeuvrreeiereieeeiriee et eeeetre e e eetre e e es bt e eeetreeeeeabreeesessresessrreeessseeeenn 18

S T o 1-Yol | 1 Tor= Y [o T a I TaTo DT =E 7= I PP 19
3.1 BUSINESS REQUITEIMENTS ..ciiiiiiiiiieeee ettt e sttt e e e s e s s e s sabtre e e e e s s ssaabbeeeeeesessssssneaaeesssnssssnns 19
3.2 USEE INTEITACE ..ttt st st st e et e et e e be e 19
3.21 Connect Strava and Last.FIM ACCOUNES SCrEENSccceeeriieiiiieiiiieneeeee e 20
3.2.2 [(o] g gLl o= T= 1= IO PPPPPPRORORPRPRPRPRt 22
3.2.3 ANAIYSE ACLIVITY PABE .uvvieiiiiie ettt ettt e et e e s ettr e e e sbae e e e ebaee e sentaeeeennes 24

3.2 Dynamic Behaviour and Data FIOWSccocuiiieiiiiieiiiiee ettt eeee e e e e saree e 28
3.3 N =T g I AN el T =Tt o O P 34
O 10 Y] (=T ¢ 1= g = 1 o o ISP 36
4.1 External AP LIMITationscccueeiieiieieeeeeeeeie ettt s 36
4.2 Asynchronous FUNCtioNs and PromMiSEScuueeeicuiiiiiiiiiee ettt eeree e eeivae e e sevaee e 37
43 Strava AUthentiCationcoocveiiiiie e e 38
4.4 Last.FIM User Data RetrieVal.........c.eoiiieiiiiieiie ettt 40

4.5 PN I AT U1y 1Y/ = T Lo LS 41

4.6 Analysing Activities and Segment Efforts.........coccveiiiciii e 43
4.7 MaPPINEG STraVa Data..ccccii ettt ettt e e e e st e e e e s e ssnbreeeeeeeeneesnnas 45
4.8 SONE GENIE DaAla e 47
4.9 SUEEESTING SIMIIAr SONES.....viiiiiiii et e e e e e e bte e e sebaeeesentaeeesneees 50
4.10 Dealing with DateTime ODJECLS ..ocvviiiiciiiiecciiee ettt e e eerea e e e e araee e 52
411 LiVe WEDROSEING. ... ettt e s s e e e ae e e e bt re e e e raee s 53
A < Tol U4 | Y OO T PP PPPPPPTPPIRE 55
5. ReSUItS and EVAlUGION ..c...ei ittt st et b e s ree e 56
5.1 First round of testing — 25/02/2022.........ueeeceeeeie e eetee et ecteeeetee e eereeeetee e rae e ereeeebeeeeaneens 56
5.2 Second round of testing — 14/04/2022.......coccueeeceeeieeeeee et eetee et etae et eeeteeeeaae s 59
53 Feedback from Demonstrating to an Internal Groupccceecuveeeiiiieeeecciee e, 62
5.4 EValuation Of TESHING..cccuiiiiiie e e e s e e e e e 62
5.5 Evaluation of System Against Project AimMsccocciieiiiiiiieiiiie st 63
5.6 Evaluation of Methodology and TOOISccccuuiieiciiieeccee e e e 65
6. FULUIE WOTK ettt st st st sttt e et e b e e beenbeenneas 66
7. CONCIUSIONS ittt ettt ettt ettt ettt e e s at e e s abe e s beeesab e e sateesabeeebbeesabeesabee s sabeessseesabaesaneeennseenns 69
8. Reflection 0N LEAINING c.cuuviii ittt et e st e e st e e e e ee e s sabee e e ennsabeeeeenees 71
Table Of ADDIrEVIAtIONSccuiiii ettt st st s s st 73
AN o 01T o Lol =R USP 74
Additional Wireframe deSIZNS:ooueiiiieeee et e et e et e e e e ar e e e e bee e e e neaeaas 74
Round 1 of Testing SCrEENSNOLS: .. .ciiiciiei ittt e e e e e e s e ta e e s s reee e enaraeeeas 77
Round 2 of teStiNg SCrE@NSNOLS: ...eiiiiiiie et e e e e s bae e e eraraee s 83
REFEIEINCES ...ttt ettt e bt e s bt e s bt e s bt e e bt e e bt e sateeate e eabe et e e beenbeesbeesbeesaeesaeenaee 89

Table of Figures

Figure 1: Example of a run activity on Strava separated into Segmentscccccveeevciieeeecieeeccciieee s 14
Figure 2: Default React-Bootstrap Carousel COMPONENTccccviieiiiiiieiecieee et e eeraee e 16
Figure 3: Customised React-Bootstrap Carousel Component used on RaceTracks.......cccccccveerriveeennans 17
Figure 4: Default React-Minimal-Pie-Chart COMPONENt.........cccocvvieiiiiieeiciieee et eeveee e 17
Figure 5: Customized React-Minimal-Pie-Chart COMPONENt........cceevviieeiiiiiee it esveee e 17
Figure 6: Home page view during early stages of developmentccccvvviieiiiiiieiiiciie e 20
Figure 7: Wireframe showing Connect Last.FIM aCCOUNT SCrEENccuveeevciieeeeciieee ettt eree e 20
Figure 8: Wireframe showing Connect Strava ACCOUNT SCrEENccivviieiiiiiieeeecieeecriree e seieee s eveveee e 20
Figure 9: Screenshot showing final Connect Strava ACCOUNt SCrEEN.......ccccuvvieeiiieeeeiiieeeeciree e 21
Figure 10: Screenshot showing final Connect Last.FIM ACCOUNt SCreenccoccuveeeecieeeecciieeeeeiieee s 21
Figure 11: Wireframe - Desktop view 0f NOME PABE.....ccivviiiiiiiiiiiiciiee et 22
Figure 12: Wireframe - Mobile view 0f hOmMe Page.......cooociiiiiiciiie e 22
Figure 13: Final Solution - Desktop HOME PAge......ccccuiiiiiiiiieicieee ettt e et e s snree e 23
Figure 14: Final Solution - Mobile HOME PAgE.......cciiciiiiiiiiiie ettt e st e s saeee e 23
Figure 15: Wireframe - Mobile view of Analyse Activity Page........cccccoveeieiiiieicciee e 24
Figure 16: Wireframe - Desktop view of Analyse ActiVity Page.......ccccceeiiiiieiincieee e 24
Figure 17: Screenshot showing desktop view of Analyse Activity Pageccccceecveeeeciiieeecieee e 25
Figure 18: Screenshot showing second section of mobile view of Analyse Activity Page.................... 26
Figure 19: Screenshot showing first section of mobile view of Analyse Activity Page.......cccccceeuveennns 26
Figure 20: Screenshot showing final section of mobile view of Analyse Activity Pagec...cccccuueee.ns 27
Figure 21: UML Diagram showing Strava OAuth Data FIOWccovvviiiiiiiiiiiiiiiec e 29
Figure 22: UML Diagram showing stravalUserData ObjJectccceeeeeiieeieciiee et 30
Figure 23: UML Diagram showing data flow for connecting a Last.FM accountcccecevvveeecieeeenns 31
Figure 24: UML Diagram showing created lastFmUserData object........ccccccveviviiiiiniciee e 32

Figure 25: UML Activity Diagram showing high level overview of user interaction with the system ..33
Figure 26: Code Snippet showing asynchronous function that fetches a user's recent songs in

LaStFMFUNCLIONS.|S Fil@.uuiiiiiiiie i e st e e seata e e e s e sbteeessntaeeenans 37
Figure 27: Code Snippet showing asynchronous mapping function for getting songs for multiple
ACTIVITIES ettt ettt ettt e et e st e e st e e e et e e e et e s e b eete e e e b et e e e b e e e e e nbeeeeenraeesenreas 38
Figure 28: Code Snippet showing Strava Authentication Function in StravaFunctions.js file 39
Figure 29: Code Snippet showing function to get the returned Strava Auth code from the URL in
SErAVAFUNCEIONS.JS fIl@ i e e st e e et e e s s abae e e s baee e e arees 39
Figure 30: Code Snippet showing get Strava Auth Token Function in StravaFunctions.js file.............. 40
Figure 31: Code Snippet showing function for getting a user’s Last.FM account datac.cccuveennnes 40
Figure 32: Code Snippet showing handleFetchActivitiesByDate methodcccceeevciieeiiciieiiccieee s 41
Figure 33: Code Snippet showing handleFetchSegment method..........ccccccveeeiiiiiiccciieecccee e, 41
Figure 34: Code Snippet showing handleFetchSongsBetweenDateRange methodcccccccuneeens 42
Figure 35: Code Snippet showing function for getting a User’s Fastest Segment Effort..................... 43
Figure 36: Code Snippet showing function for getting a User's highest average heart rate segment.44
Figure 37: Screenshot showing example map for a highest average heartrate segment.................... 45
Figure 38: Example encoded segment polyline returned by Strava.......cccoocccviieeeiiiiicciiieee e 45
Figure 39: Code Snippet showing method for decoding Strava Polyline data into an array of
foloTolde [E T Ec R I I R = V2 |\, =T o BN PSP 46
Figure 40: Example screenshot of decoded polyline coordinatesccceecuveeeeciieececciieeeecieee e 46
Figure 41: Code Snippet showing function for making a call to TheAudioDb to get genre data for each
SONE IN @ LISt OF SONES ..ottt et e e et e e e et e e e e tb e e e e e bbee e e abaee s e enraeeeensseeeeensens 48

file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986173
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986174
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986175
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986178
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986179
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986180
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986182
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986183
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986185
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986186
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986192
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986193
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986193
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986195
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986206
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986206
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986208
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986208

Figure 42: Example data structure which should be supplied to the React-Minimal-Pie-Chart

1600 00T 0 Y0 1= | N 48
Figure 43: Code Snippet showing function taking a list of Song Genres and structuring it for the pie

Lol - T SO O TSPt 49
Figure 44: Screenshot showing example of a rendered pie chart Key........coccevveciveeiecieeeiniieee e 50
Figure 45: Code Snippet showing rendering of pie chart KEY........cccocvuveeieciiieicciee e 50
Figure 46: Code Snippet showing function for getting similar songs from Last.FMccccceveieeennnns 51
Figure 47: Highest average heart rate segment showing similar suggested songs.........cccccceevvcveeennnns 52
Figure 48: Code Snippet showing conversion of Last.FM date to the local system time zone 53
Figure 49: Screenshot showing the Azure Pipeline commands for creating a production build of the

=] o] o] [or- 1 4 o] o NPu U PSR 54
Figure 50: Screenshot showing the Azure Release Pipeline commandscccceeeiciieeecciieecccieee s 54
Figure 51: Testing table showing first round of testing on 25/02/2022.........cccoeevevveveeveeseesresnenns 58
Figure 52: Testing table showing first round of testing on 15/04/2022.........cccoeeeveeeeveeecireeeceeeereeenne 61
Figure 53: UML diagram showing proposed high-level dataflow for each log in after implementation
o) BT o 1oV A (o T T TRV =T o o PSPPI 67
Figure 54: Wireframe showing mobile view of Connect Strava Account SCreencccceeeeveeeeecvveeenne. 74
Figure 55: Wireframe showing mobile view of Connect Last.FM Account Screen........cccccccveevrcuveeenns 74
Figure 56: Wireframe showing desktop design for Activity Search Results Screencccceeeeeveeennns 75
Figure 57: Wireframe showing mobile view for Activity Search Results Screencccocevvveeecieeennns 76
Figure 58: Redirect to Strava l0g iN PAE ...ccuueiiiciiee ittt et e e st e s st e e s s bae e e ssbeeeesnes 77
Figure 59: Redirect to Strava authorisation PAgEccceeeeciiie it eree e 77
Figure 60: Redirected to connect Last.FM screen after successful Strava authorization..................... 77
Figure 61: Home page as of first round of testing showing data from connected Strava and Last.FM
E[ololo U] o) R3O PP P U PPPP O UPPPPPPPPON 78
Figure 62: Entering incorrect data into connect last.fm box returns a 404 message.........ccceevreveeennns 78
Figure 63: Analyse “Run” activity screen as of first round of testingccoceeeecviieieciiee e 79
Figure 64: Shows drop down changed to Lowest average heartrate as of first round of testing 79
Figure 65: Shows invalid date search as of first round of user testing.......cccccceecvveiiviiiiiicciiei e 80
Figure 66: Shows successful activity date range search as of first round of user testing.................... 80
Figure 67: Shows analyse several activities page as of first round of testing........cccoevvevvviiiiiiicieennns 81
Figure 68: Shows successful segment filter change on analysing multiple activities as of first round of
LS I N o 81
Figure 69: Shows activity filter changed to “Workout” as of first round of testingcccceevvcieeenns 82
Figure 70: Shows attempt to analyse a non-running activity as of first round of testing 82
Figure 71: Shows another user’s account connected as Last.FM account as of first round of testing 82
Figure 72: Redirect to Strava l0g iN PAg ...cuuiiiiciiie ettt e e et e e s rate e e s e sate e e senbaeeesnes 83
Figure 73: Authorize RaceTracks access t0 Strava SCreENccccveeeeciieeeeciieee et e et e et e e eetaee e 83
Figure 74: Screenshot showing connect Last.FIM acCoOUNT SCrEENuvevevvveeeeiiieeeeciree et e e 84
Figure 75: Screenshot showing home page as of second round of self-testingcccceeeeiveeiicinennnns 84
Figure 76: Screenshot showing connect Last.FM account screen with invalid username entered...... 84
Figure 77: Screenshot showing Analyse Activity page after second round of self-testing.................. 85
Figure 78: Screenshot showing the map updating to show the selected segments location 85
Figure 79: Screenshot showing invalid date search after second round of self testingcce...... 86
Figure 80: Screenshot showing activity date search results after second round of self-testing.......... 86
Figure 81: Screenshot showing "Workout" activities as of second round of self-testing 87

Figure 82: Screenshot showing analyse workout activity page as of second round of self-testing87
Figure 83: Screenshot showing analyse workout activities page as of second round of self-testing...88

6

file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986211
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986212
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986213
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986220
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986220

Figure 84: Screenshot showing error from testing on analyse workouts page during second round of

] =T o = PSR 88
Figure 85: Screenshot showing another user’s Last.FM account connected following second round of
88

=] =Ty o = SRR

1. Introduction

1.1 Introduction

This project is based on the idea that music has an impact on people’s performance when they are
exercising. It is an interesting concept to think that different kinds of music can have both positive
and negative effects on somebody’s performance, but how exactly does a song affect someone
whilst they are exercising? Do certain songs increase their average heart rate or their average
running speed? Or how about different genres of music? Is a certain genre of music the best for
listening to during exercise? In order to help users better understand what music they perform best
to; this project aims to create a web-application (web-app) that will allow a user to compare their
tracked exercise history with their music listening history. This web-application has been named
“RaceTracks” and will be referred to by this name throughout this report. RaceTracks aims to help
users determine whether or not “Music makes you run faster”.

1.2 Initial Assumptions

There are a number of assumptions which were made at the start of the project. Firstly, it was
assumed that most runners are likely to utilise a mobile application (app) to track their runs, for
example, Strava, Fitbit or Apple Fitness. It was also assumed that whilst doing so, these users also
employ the use of a music streaming service to listen to music, such as Last.FM, Spotify or Apple
Music. The final assumption made was that most of the end-users for this solution will make use of
some form of smart watch or fitness tracker during their exercises which will measure their heart
rate during the course of their activities.

1.3 Project Aims and Objectives

During the initial planning phase for this project, several aims were outlined to determine the goals
of the project, and these were split into primary and secondary aims. The primary aims of the
project were outlined to be the aims which were most important to achieve in order to create a
minimum viable product (MVP and were expected to be achievable within the time frame of the
project. The secondary aims were outlined as further functionality which would further improve the
solution, although the feasibility of being able to deliver the features and achieve these aims within
the time frame of the project was unclear. The list of aims were as follows:

Primary Aims:

1. To create a web-application which will display a user’s running activity history as well as
their music listening history for each activity.
a. Recent activities should be displayed to the user with an option to search for
activities by date.

2. To implement functionality which allows comparisons between a user’s single running
activity and the music they were listening to during the time-period of that activity.
a. This should include information such as which song they were listening to when
their heart rate / pace was at its highest.

3. Toimplement functionality which compares all of a users’ running activities and all of the
music listening history for those activities, across a given time frame by the user.

a. This should include also include information such as what genre of music the user
typically performs best at when listening to.

4. To design and implement a suitable and user-friendly user interface.
a. It should be intuitive to use with a mobile-first approach taken for development.

Secondary Aims:

1. To update the application logic to allow for different kinds of activities to be included as
opposed to just running. For example, cycling, weightlifting, boxing etc.

2. To extend the level of detail which is offered by the insights of the music and activity
comparison, for example calculating the optimum beats per minute (bpm) of the music the
user should listen to when they exercise.

3. To add functionality for song suggestions based on how the user performs whilst listening to
certain genres of music.

4. Toimplement a log-in system which would mean that users would not have to connect their
Strava and Last.FM accounts each time they want to use the application.

After beginning development and progressing through the early stages of the project, it was realised
that there were several other features which hadn’t been outlined in the original set of aims but
would provide a great opportunity to improve the implementation. One of the new aims which was
set during the development process was:

e To deploy the web-application on a live-hosting service, to make it accessible online to any
user.

This aim is a strong measurement of the success of the project. By being able to host a fully
functional application on a live server, this would be a strong demonstration that the development
of the solution was successful. The final aim which was set during development for this project was:

e To investigate the incorporation of mapping tools, to display to a user where they have run
during their recorded activities.

This aim was set following the design phase for the initial user interfaces. It was noticed that the
page designs felt as though they were missing something and could possibly feel quite uninteresting
to a user. Adding a map to the designs aimed to engage the user and provide them with more real-
world context as to what section of a run the song data is referring to. It also allowed me to set
myself a technical challenge, as | have minimal experience in working with web-development
mapping tools, and | was interested to see what | could do with my implementation.

Alongside these aims, there were also some personal objectives which outlined outcomes that |
wanted to achieve and things that | wanted to learn as | went through the process of developing my
solution. These were as follows:

Objectives

e To investigate, understand and work with external developer API’s available from several
companies and see the extent of what data can be obtained from each one.

e To investigate, understand, and implement authentication workflows using authentication
procedures used by external API’s.

e To work with available resources to better understand and learn some best practices for
front-end JavaScript development.

1.4 Intended Audience

The intended audience for this project are runners who actively track their activities already through
a mobile application and listen to music through a music streaming service whilst doing so. The
audience of the solution however is not limited to those who are already tracking their activities, it is
open to anybody who would like to gain a better understanding of how music can affect their
performance, and once they have begun collecting data on their workouts, they will also be able to
use the solution. The existing user base for activity tracking and music streaming services is huge.
One of the largest activity tracking services in the world is Strava, which as of 2021 reportedly had
over 76 million users (1). Similarly, looking at one of the world’s leading music streaming services,
Spotify, who as of when this report was written, currently have over 406 million users, 180 of which
are subscribed to their premium paid service (2). Anybody who regularly uses both of these services
at the same time will be included in the intended audience. Whether a user would like to gain more
of an insight into how music affects their performance or whether they would just like to get a recap
of what songs they listened to on a specific run, the RaceTracks application would suit their needs.
With music being an important aspect of many people’s runs, | think that the opportunity to have an
application which can correlate data between the two services could be beneficial to all runners
looking to improve their performance, whether they be at a casual or at a high-level.

1.5 Project Approach

The approach to this project was set out in the initial plan. A rough timeline was created in the form
of a Gantt chart which outlined the tasks that would need completing, the order in which they
should be completed and roughly how long they should take. This way of working initially sounds
very much like the waterfall methodology way of working, where every stage of work must be done
in order and the next phase of the project is not started until the current one has been completed.
However, the approach on this project was much more in tune with the agile methodology, where |
developed work in 1-week sprints that allowed me to prioritise tasks each week and work on
developing the features which were brought into each sprint. The priority of certain tasks rose or
declined as things changed during development (3). Depending on the success of a sprint in a week,
if all of the tasks had been completed early, | was able to bring in new tasks which would have been
set for the following week. This allowed for a high degree of freedom and flexibility during the
development process and granted me the ability to adjust the projects scope where necessary.
Because of this way of working, | was also able to implement some of the extra features which | had
hoped to, whilst scaling down on other features | initially thought might have been quite important
to the solution but ultimately were not.

10

1.6 Project Scope

The initial scope of this project was to create a web-based application which would allow a user to
connect to their account with an activity tracking service and a music streaming service to receive an
analysis of how the music they listen to affects their running performance. The scope that was
defined in the initial plan was certainly feasible within the time frame of the project, and | was able
to implement almost all of the features that | had aimed to, as well as add a few new ones which
were not specified in the original plan. However, one of the secondary aims was to investigate the
implementation of a log in system for my application, and although it was possible to delegate some
time to looking at implementing this, the feature unfortunately had to be de-scoped from the
project. The technical requirements and time investment for implementing this functionality were
just not feasible within the time left after the first phases of development. The addition of this
feature would also have meant that | would have had to through gain ethical approval for the
project since | would have been storing users’ data, and again unfortunately, | did not have the time
remaining to do so. It is unsurprising however that this feature had to be de-scoped, as it was clear
from the beginning that this would be a big undertaking for the project. The exemption of the login
system did not have any impact on the functionality of the system, and it presented itself as more of
a “nice-to-have”. Disregarding this feature, the scope of the project was realised as being suitable
and manageable for my skillset with the time given to develop it.

1.7 Summary of Outcomes

The main outcome from this project, given the aims that have been listed above and the scope of
the project, is to create a live hosted web-application which is accessible online, that provides
runners with a tool to connect to both their activity tracking and music streaming services in order to
gain a better understanding of how music affects their performance. In regard to my own personal
outcomes, | aimed to gain more experience in JavaScript web-development, external API’s
(Application Programming Interfaces), mapping frameworks, version control and live web-hosting
applications.

11

2. Background

This section of the report aims to provide an explanation of some necessary background topics
which are needed to fully understand the later content of this report.

2.1 Wider Project Context

As previously mentioned, the use of activity tracking applications is becoming more and more
common. They are used across a wide variety of sports such as running and cycling, to help the
athlete better gauge their performance during their activities, and visual their progress over time.
These apps support the measuring of a user’s pace and activity time through smart phone
applications. Smartphones are becoming increasingly more accurate on measuring this data, and use
metrics such as a person’s height, stride, the accelerometer, and GPS location data to calculate an
accurate as possible reading (4). Although smart phones are becoming more and more reliable for
measuring this data, the activity tracking service is best used in combination with some form of
smart watch or fitness band which supports the tracking of the user’s heart rate, calories burned and
other biometric data. If a user is not using one of these devices whilst tracking their workouts, then
the data which can be obtained is somewhat limited and only includes metrics such as their pace,
step count and activity time.

The activity tracking service which has been chosen to implement into the RaceTracks solution is
Strava. Strava is one of the largest activity tracking services in the world and provides users with
detailed breakdowns of their activities. One of the main reasons for choosing to implement a
solution with Strava, is that all of the data collected from a user can be accessed through a well-
documented public-facing AP, as long as the user has authorized an application to access their data.
In addition to this, it was not feasible to implement a hexagonal architecture (5) into the solution
which allow a user to connect to several different activity tracking services given the time frame of
this project, and so therefore it was an important decision on which service was going to be chosen.
Ultimately, Strava was chosen for a very important reason, Strava allows users to connect their
accounts from several different third-party activity tracking services and import all their activities to
Strava seamlessly, this includes services such as Fitbit, Apple Fitness, Nike+, Garmin, Samsung Health
and many more (6). This helps to mitigate the issue of RaceTracks not being able to connect a
number of different services. Any user who tracks their activities on a service which is not Strava,
would simply need to create themselves a Strava account and connect their account for the service
which they use regularly. Following this, all of their activity data will be automatically synced with
Strava and would then be made accessible to RaceTracks. By using Strava as almost a hub for the
activity tracking services, we also eliminate the issue of completely isolating an entire user base from
other applications and allow RaceTracks to become a much more inclusive application.

Music streaming services are also widely used by people who exercise, with most people being
subscribed to a paid service such as Spotify, Apple Music or Tidal. Before beginning development, |
did some research around these services in order to see how accessible a user’s data would be. After
reading through their APl documentations, it appeared that none of these services would be suitable
for the approach | was taking. A key feature of the RaceTracks application is that it needed to allow a
user to view any of their activities recorded on any given date and the music they listened to during
that activity. Because of this, we need a complete record of a user’s entire music listening history.
This posed a severe issue with the previously mentioned services into RaceTracks.

12

For example, although Spotify offers a public-facing API, Spotify does not keep a permanent record
of a user’s listening history which is directly available through their API, we can only get a list of a
user’s most recently listened to tracks, this was also true for Apple Music. This meant that by using
one of these services, it would not be possible to implement the solution as intended. This is where
a website called Last.FM becomes very useful. Last.FM is also a music streaming service, but unlike
the other services previously mentioned, it keeps a complete record of a user’s listening history. In
addition to this, users can connect their accounts from other services including Spotify, Apple Music
and Tidal, and Last.FM will keep a record of any songs listened to on those services too (7). Last.FM
also provides a well-documented public-facing API which will allows access to a user’s listening
history.

By using Last.FM there is also the benefit we saw with using Strava as a hub for external applications,
in that it is helping to mitigate the issue of isolating an entire group of users. For example, if Spotify
had been chosen, then any users who listen to music through apple music or another service would
be unable to use the application.

2.2 |dentified Problem and Stakeholders

The problem which has been identified is investigating the possibility of building a web-based
application that will allow users to connect an activity tracking service (Strava) and a music
streaming service (Last.FM) to gain an understanding of what music positively and negatively affects
their performance whilst exercise.

The relevant stakeholders which have been identified are:

e People who exercise regularly whilst tracking their workouts and listening to music through
a supported platform.

e The chosen activity tracking platform: Strava.

e The chosen music streaming service: Last.FM.

e An external data source which was used for retrieving extra music data: TheAudioDb.

e Myself as the project developer.

e My project supervisor.

The first mentioned stakeholder and the projects main target audience are people who exercise
regularly, tracking their activities whilst streaming music. The end users are one of the most vital
stakeholders as they are the people who will ultimately use the solution (8). Their interest in the
project is a deciding factor between the project’s success or failure. The project should meet their
expectations and provide them with the features and the functionality that they expect.

Another stakeholder of the project is the activity tracking service which was chosen to base the
implementation around; Strava. Strava has a stake in the project as without the data provided by
the, the solution fails to function. The solution works on the basis that the data received from Strava
contains specific fields and is structured in a very specific way, there is a responsibility which lies
with Strava to ensure their data is stored and provided correctly. If the structure of their data or the
way in which their APl functions were to change, then it is highly likely that the solution will fail to
work. In addition to this, Strava have a stake in the project as they may be interested in novel uses of
their data as well as the potential outcome of the project. For example, if the project were to be
majorly successful, could it become something that Strava as a business would like to explore
themselves.

13

Furthermore, the music streaming service which has been chosen to implement the solution around;
Last.FM, are another key stakeholder to the project. They provide an API similar to Strava, with data
which is crucial for the RaceTracks application to function. If the structure or contents of the data
provided by Last.FM’s API, or the way in which their APl handles requests were to change, then the
application would fail to function. They also may have a vested interest in the project’s outcome and
seeing different possible uses of their data.

A further stakeholder is one more source which is used to obtain music data, a web data base called
TheAudioDb. Their service requires a paid monthly membership to be able to use their APl and there
are several different tiers at different price points which allow you to make a certain number of API
calls each day. As an organization, they would have an interest in the overall success of the project;
as if the scope of the RaceTracks application were to increase and there were to be multiple daily
users, the tier of the current paid membership would need to be increased, ultimately increasing
their revenue from this project.

The final two stakeholders that have been identified for this project are both myself as the
developer, and the project supervisor. Both of us have a vested interest in the project and would like
to see it succeed to its full potential.

2.3 Associated Theory

It is important to understand how we can infer from the activity data provided by Strava and the
music data provided by Last. FM, how music is having an impact on a user’s performance. There can
be different types of activities recorded on Strava, however the focus for this implementation was
on running activities. For every recorded run, Strava provides several pieces of useful data which we
can use to measure a user’s performance across the duration of their run. This includes data such as
their max heartrate, average heartrate, distance covered and time elapsed. In addition to this, Strava
breaks down each run into several separate sections which it calls “Segments”.

Name Time Distance Pace Elev Diff HR

Cemetery to Lake 6:08 1.04km 5:527km 8m 17Tbpm
Juboraj Hill Sprint 1:30 0.33km A:26/km 10m 172bpm
Duck Jumper 45s 0.13km 5:28/km Tm 169bpm
Jog Squad - East side 5:07 0.83km 6:06/km 8m 179bpm
It's bloody fiooded! (Park to the footbridge) 2:03 0.36km 5:37/km 5m 182bpm
Sgt. Gardner's mini hill drill 29s 0.08km 5:47/km 2m 18Tbpm
Do, or do not. There is no tryl 19s 0.09km 3:327/km 2m 181bpm

Figure 1: Example of a run activity on Strava separated into segments

These segments are different sections of a run, it could be that the road from your house to the park
is one segment, and then half a lap of the park is the next segment. For each of these segments
Strava provides a start time, an end time, the distance covered, the max heartrate achieved during
the segment and the average heart rate across the entirety of the segment. Using the distance and
time taken to complete each segment, we can then calculate the user’s speed for each segment for a

14

run as “speed = distance / time”. With this we can then identify the segment where a user was
running at their fastest.

Using the start and end time for the segment, we are then able to get the songs the user listened to
during that segment and provide them with this list, as well as suggest similar songs they could try
listening to. Using this method of analysing segments, we are also able to provide the user with the
songs they listened to when they performed at their lowest on their run.

Expanding on this, one of the project aims was to allow a user to analyse their performance across
several activities. By selecting a date range and looking at all of the runs within that time-period, we
can get the segments for each run, calculate the pace for each of them and then find which segment
was the users best and worst then perform the same action of getting the songs for each segment
and displaying them to the user. This was the most suitable method | found for evaluating a user’s
performance during a run.

2.4 Existing Solutions

The closest existing product which aims to provide a similar solution to the problem proposed by this
project is a smart phone application called Perform (9). Perform allows users to connect their Strava
account alongside their Spotify or Apple Music account to provide their service. Perform aims to
help users improve their workouts by using artificial intelligence to create a playlist of songs in real-
time as you run. The application looks to be a well built and very professional service, which has a
whole range of features which the RaceTracks solution would be unable to offer under the current
aims and scope. Although this service can be labelled as similar to RaceTracks, there are several
features which have been implemented into RaceTracks which Perform do not offer as part of their
service. Firstly, Perform only provides support for running activities. RaceTracks introduces support
for visualizing a user’s listening history over different kinds of exercises such as High Intensity
Interval Training and weightlifting. Although the support for these types of activities may be minimal
currently, the option is still there for users who do not exercise only by running and can be built
upon in the future. Secondly, RaceTracks offers users the ability to compare a selected number of
activities across a specific date range and view which songs the user performed best to during those
activities. This is something which Perform, to my knowledge, does not currently offer. Lastly,
Perform limits its users to those who subscribe to only Spotify or Apple Music, and only keeps a
record of their listening history from the moment they create a Perform account and link their music
streaming service. RaceTracks allows users to connect a Last.FM account which allows for the
integration of a number of different music streaming services. This makes RaceTracks much more
open to different user groups, and those who already have a Last.FM account will already have all of
their music listening data stored.

One other solution which is similar to RaceTracks is a service called RockMyRun (10). Like RaceTracks
and Perform, RockMyRun’s goal is to aid users in better understanding what kind of music can make
them run faster. RockMyRun acts as its own activity tracking and music streaming service and
creates playlists of optimized running music for users to listen to whilst they run. It provides heart
rate tempo matching and allows the user to manually set the BPM of the songs being played to
match their stride pattern. As RockMyRun is a stand-alone service, this negates the need for users
needing to have a specific external activity tracking or music streaming service. Although this may be
a benefit for some users, this also has its deficiencies. For example, users will not be able to
retrospectively analyse any of their runs which they have already recorded on other platforms such
as Strava. This may also be off-putting for some users, as they will need to exclusively switch over to

15

RockMyRun and will not be able to compare any of their new runs with their old runs on other
services. RaceTracks aims to improve upon this deficiency and integrates directly with Strava and so
there is no need for a user to switch services and start tracking their runs from fresh, they can simply
connect their pre-existing account.

In conclusion, to my knowledge, there is no pre-existing web-application which allows a user to
connect directly with Strava and Last.FM to provide an analysis of how a user’s performance during
exercise is impacted by the music they are listening to in the way that my solution does so. There are
similar solutions which have a similar goal which have been discussed above (Perform and
RockMyRun), however they act as their own activity tracking and or music streaming service, and do
not support the option for users to connect their pre-existing accounts from other services.

2.5 Methods and Tools Used

Regarding the development tools used and those that will be referred to in the upcoming sections of
this report, the entirety of the RaceTracks web-application was written in JavaScript. More
specifically, JavaScript alongside React, version 17.0.2 (11). React is a free and open-source, front-
end JavaScript library which is incredibly useful for building user interfaces and single page
applications (12). | used a tool called “Create React App” (13) which creates a basic front-end
pipeline build and also sets up certain other JavaScript packages such as Babel (14) and Webpack
(15) which are needed for developing web-applications with React. Babel is a JavaScript compiler
and Webpack is used for bundling assets and the compiled JavaScript files together to create a
production-ready build of the web-application, which can then be deployed on a webserver.
“Create-react-app” also sets up Node.js (16), which is a JavaScript package manager, that lists the
dependencies of the packages which are used in the web-app and ensures they are all installed to
their correct versions.

One of the aims for this project was to develop a web-application which would be accessible on both
desktop and mobile platforms. To do so, a mobile-first development approach was taken, and
several tools were utilised to ensure the web-app had a responsive design that would dynamically fit
the screen size of the device it was being used on. In order to facilitate this, | used the Bootstrap CSS
styling package to promote quicker development and help me structure the elements on the site
(17). Alongside this | utilised a more specific package called “React-Bootstrap” (18), which as the
name suggests, is provided by bootstrap to be used specifically in React applications. It provides
several pre-created, complex Ul components which can be embedded onto a react application and
then customised. Some of the components that were utilised were the loading spinner which
provided a spinning animation in place of data which hasn’t loaded yet and the carousel component
to display various data to the user on my web-apps home screen. Shown below in Figure 2 is an
example of the default carousel component included in React-Bootstrap. Figure 3 shows a
customized version to display a user’s recently listened to songs on the RaceTracks home page.

First slide label

Nulla vitae elit libero, a pharetra augue mollis interdum.

Figure 2: Default React-Bootstrap Carousel Component

16

Recent Songs
Coldplay

Adventure of a Lifetime >

Figure 3: Customised React-Bootstrap Carousel Component used on RaceTracks

Other JavaScript libraries which were used during development were Leaflet (19) and React-Leaflet
(20). Leaflet is the leading open-source JavaScript library for developing mobile-friendly and
interactive maps. React-Leaflet is an extension which adds a few components to make these
mapping tools much easier and suitable to work with in React. | also utilised the Luxon.JS (21)
package which is a library for dealing with dates and times in JavaScript. This allowed for the
conversion of dates from a UTC format as provided by Strava and Last.FM, to a more human
readable format. A final JavaScript package that was used was called “React-Minimal-Pie-Chart” (22),
a simple React component which comes bundled in a Node.js package, that allows the creation of
easily customizable pie charts.

Figure 4: Default React-Minimal-Pie-Chart Component

Hip-Hop: 1

||
Rock: 1 -
Pop: 2 -
Figure 5: Customized React-Minimal-Pie-Chart Component

One of the most important tools during development was Microsoft Azure DevOps (23). Azure
DevOps provides unlimited free Git hosted repositories which allowed me to employ correct version
control and therefore | was able to set up the project with a main branch and a development branch.
This allowed me to work on different branches of code and experiment with different solutions,
before committing any changes to the main code repository. | used Microsoft Visual Studio Code as
my Integrated Development Environment (IDE) which connects directly to my Azure development
account to pull, push, and commit code changes. | also used Microsoft Azure for hosting a live
version of the completed RaceTracks web-application. This was done using their build and release
pipelines.

17

2.6 Further and Implicit Assumptions

As the project developed, there were some further assumptions that were made. It was assumed
that most users would want to retrospectively view their activities from any previous date and not
just recent ones, which was an important factor when choosing between Last.FM and Spotify, as
Last.FM provided a complete historical data set. The assumption was also made that users would be
looking for a strong level of detail on their performances and not just a brief overview or reflection
of an activity, which was made during the design process.

2.7 Concluding Research Questions

2.7.1 Aim:

The aim of this project is to develop a responsive web-application that allows users to connect their
accounts from an activity tracking service and a music streaming service, in order for them to
compare their exercise data against their music listening data to see how music impacts their
performance during exercise.

2.7.2 Research Question(s):

“In order to demonstrate the achievement of the stated aim, this project will provide support for
connecting a single activity tracking service and a single music streaming service, use an algorithm to
process the data provided from both services such as the users’ pace and heart rate, and therefore
help the user conclude which songs made them run faster.”

18

3. Specification and Design

This section of the report aims to provide an explanation of the business model supported by the
solution, the design of the user interfaces and the structure of the system architecture.

3.1 Business Requirements

As part of the specification and design process, the business requirements of the solution needed to
be outlined. Business requirements can be defined as being used to describe the characteristics of a
proposed system from the viewpoint of the end-user (24). With this in mind, and using the project
aims as a basis, these are the following requirements which have been outlined in order for the
system to meet the user’s needs:

e A user can view their recently tracked activities.

e A user can search for activities within a given date range.

e A user can view the songs listened to during those activities.

e A user receives information about those songs, (BPM, genre).

e A user can compare their activity and listening history for a single activity.

e A user can compare their activity and listening history for a group of activities.

e A user can see an analysis of their activity, and view segments where they performed at
their highest and lowest.

e A user can easily navigate the interface.

Each requirement has been refined from the high-level project aims and attempts to provide a direct
reference point as to what the end-system should be able to do.

3.2 User Interface

One of the primary aims for this project was to design and implement a user-friendly interface which
was suitable for both desktop and mobile views. Before beginning development on this project, | did
not have much experience in designing user interfaces and so | decided to begin by conducting some
research into best practices of designing suitable interfaces and how to strive towards a good user
experience. After some research, | found some ideals around developing web-apps with mobile
interfaces in mind, these included points such as keeping content and interface elements to a
minimum to ensure only relevant data is displayed to the user and minimizing user input so that the
user can easily navigate the application (25).

Before creating a design for the user interface, | began development work on retrieving data from
the Strava and Last.FM APIs to see what data was available to work with. After early stages of
development and setting up the data flows for the API’s, the solution had this simple user interface
(Ul) as shown in Figure 6.

19

Recent Activities

Afternoon Run
2022-02-04713:30:07Z

Recent Songs

Physical

Figure 6: Home page view during early stages of development

This initial page became the inspiration for how the final solution would look and some of the

functionality that would be present.

3.2.1 Connect Strava and Last.FM Accounts Screens

Once the data from Strava and Last.FM was available in the application | began designing the various
pages which would make up the RaceTracks site. The first designs made were for the first pages the
user would visit when they access the application. These were the screens for connecting their
Strava and their Last.FM accounts. | wanted to keep these simple, as there didn’t need to be
anything displayed to the user besides some information telling them to connect their accounts and
some buttons. My initial designs can be seen below in Figure 7 and Figure 8:

Welcome to RaceTracks!

Start by connecting your Strava
Account Below:

STRAVA

Next connect your Last.FM Account:

lost.fm

Figure 8: Wireframe showing Connect Strava Account screen

Figure 7: Wireframe showing Connect Last.FM account screen

20

These designs were kept simple for the user. With a button to redirect the user from the Strava
page, and a text box on the Last.FM page for the user to enter in their username to connect. This is
also where the colour scheme for RaceTracks was decided, | chose to use a blue colour after reading
about how users can perceive websites with different colours. A blue colour is often associated with
optimism and reliability, making users feel more confidence in a system, whilst also making it appear
more professional (26).The final designs for these screens did not change much in the final
implementation. The only difference being that there were a few icon images added to give the page
some more substance and allow the user to infer what the application would offer more from
imagery. The final designs can be seen below in Figure 9 and Figure 10.

ﬂ RACETRACKS

Welcome to RaceTracks

Analyse your performance across exercises based on the music you listen to!

NE

Start by connecting your strava account below:

STRAVA

Connect to Strava

Figure 9: Screenshot showing final Connect Strava Account Screen

ﬂ RACETRACKS Strava: Tyler Jenkins

Welcome to RaceTracks

Analyse your performance across exercises based on the music you listen to!

NEE

Next, connect your last.fm account below:

lost.fm

\

Figure 10: Screenshot showing final Connect Last.FM Account Screen

21

3.2.2 Home Page

The next page that wireframes were created for was the home page. These designs were inspired
heavily from the initial prototyping solution shown in Figure 6. There were wireframes created for
both the desktop and mobile view of the page, both of which can be seen below in Figure 12 and
Figure 11.

RaceTracks RaceTracks

Recent Activities Recent Activities

Afternoon Run Afternoon Run Search for activities by date:
< 16t March 2022 1442 > < 16th March 2022 14:42 > |

|
Search for activities by date:
Recent Songs

l ‘ Song Image
(1 < >

Song name—artist

Recent Songs

Song
Image

Song name—artist >

\ Z

Figure 12: Wireframe - Mobile view of

Figure 11: Wireframe - Desktop view of home page
home page

The aim with these designs was to keep the view simplistic and provide the user with relevant data,
without overwhelming them with too much unnecessary information. The three sections on the
page provide the user with three different options, they can either scroll their recent activities and
choose one to analyse, search for an activity on a specific date to analyse or they can view their
recently listened to songs.

The outcome of the final solution can be seen below in Figure 13 and Figure 14. The design of the
home page stayed very true to the original wireframes, with new additions such as displaying the
users connected account usernames along the navigation bar with log out buttons, and | also chose
to introduce a logo alongside the website name. The different views for mobile and desktop were
made possible through the use of CSS media breakpoints which allow for declaring what styles an
element should have on screens with a certain number of pixels.

22

Strava: Tyler Jenkins Log out LastFm: TylerJenki Log out

Recent Activities

Lunch Run Search for activities by date:

27 Feb 2022 12:37 dd/mmyyyy [}

dd,
S —

Recent Songs

Ed Sheeran

Shape of You >

Figure 13: Final Solution - Desktop Home Page

Strava:

L L
ﬂ RAERAGS e 09 Lastfm og

Jenkins out TylerJenkins22 out

Recent Activities

Lunch Run
27 Feb 2022 12:37

Search for activities by date:
dd/mm/yyyy [m]

dd/mm/yyyy m]

Recent Songs

Ed Sheeran

1 . Shape of You >

Figure 14: Final Solution - Mobile Home Page

23

3.2.3 Analyse Activity Page

Another very important design which was created for the solution was the “Analyse Activity” page.
This is an important page which displays the breakdown analysis of a user’s performance to them.
Before designing these wireframes, | had the idea of using Strava’s segments to analyse a user’s
performance and therefore the Ul for the “Analyse Activity” page was designed surrounding this
idea. Figure 15 and Figure 16 below show the wireframes for both the desktop and mobile version of
this page.

RaceTracks
Afternoon Run—16th March 2022

(-

RaceTracks

Afternoon Run—16th March 2022

Fastest Segment:

Max heart Rate: Average heart rate:
Fastest Segment: Speed:
Max heart rate: Average heart rate:
Speed: During this segment you listened to these songs:
During this segment you listened to these s Artist—Song Name

songs:

song.

~= | Artist—Song Name

sang

~= | Artist—Song Name

= | Artist—Song Name You listened to these Genres:
Key
Key
You listened to these Songs:
You listened to these songs: = | Artist—Song Name
= | Artist—Song Name -

—= | Artist—Song Name

- | Artist—Song Name = | Artist—Song Name

A\ /) p—
== | Artist—Song Name

ZL | Artist—Song Name

X | Artist—Song Name

Figure 15: Wireframe - Mobile view of Analyse Figure 16: Wireframe - Desktop view of Analyse Activity Page
Activity Page

The aim with these designs was to provide the user with information on their activity and the music
they have listened to. | tried to keep the theme of the home page by keeping the page split into 3
different sections, starting from the top of the page with the chosen segment data, moving to the
pie chart displaying what genres the user listened to during that activity and then lastly the list of the
songs the user listened to. Shown below in Figure 17, Figure 18, Figure 19 and Figure 20 are the
completed solutions for the desktop and mobile view for the Analyse Activity page.

24

Roath Park 5K - 21 Feb 2022

Highest average heartrate v

Select Segment:

Your Highest average heartrate segment was: Up Fairoak Road -

21/02/2022

Max heart rate: 188 Average heart rate: 177.7
Segment Start: 14:53:50 Segment Finish: 14:57:43
Elapsed Time: 03:53 Average speed:10.5%km/h
During this segment you listened to:
. Ed Sheeran - Shape of You 21 Feb 2022, 14:54

21/02/2022, 14:54

These Genres:

Pop: 1 .

Please note: Some songs may not have available genre data

Similar suggested songs:

Ed Sheeran - Castle On the Hill

B8 shawn Mendes - There's Nothing Holdin' Me Back

During this activity you listened to these genres:

P Amre

\Streer

-
Alenshan foss

Alensbank Aoag

Strava: Tyler Jenkins

- w0y
~
ey
t ot
+
LANG A
ot e
tor e

L Roath Rleasure

_Gorgens ¢

CathaySp = ': "

Cemetery.

ool shewe)
¥
&

J Lesflet | © OpenSireetilap contributors.

Pop: 2
Electronic: 2

Hip-Hop: 1

Indie Pop: 1

Please note: Some songs may not have available genre data

During this activity you listened to these songs:

Ed Sheeran - Shape of You

21 Feb 2022, 14:54

21/02/2022, 14:54

Clean Bandit - Rockabye (feat. Sean Paul & Anne-Marie)

21 Feb 2022, 14:50

21/02/2022, 14:50

Michael Jackson - Black or White

21 Feb 2022, 14:46

21/02/2022, 14:46

Kanye West - All of the Lights

21 Feb 2022, 14:40

21/02/2022, 14:40

Clean Bandit - Symphony (feat. Zara Larsson)

21 Feb 2022, 14:35

21/02/2022, 14:35

Dua Lipa - Levitating (feat. DaBaby)

21 Feb 2022, 14:31

21/02/2022, 14:31

Figure 17: Screenshot showing desktop view of Analyse Activity page

Strava: Tyler

Jenlkins

- Roath Park 5K - 21 Feb 2022

Select Segment Highest average heartrate =

Your Highest average heartrate
segment was: Up Fairoak Road -
21/02/2022

hizx heart rate: 138 Average heart rate:
17T

Segment Start Segment Finizh:

14:53:50 14:57:43

Elapsed Time: 03:53 Averags
speed: 10.58km/h

During this segment you listened to:

. “d Sheersn - Shape of 21 Feb 2022
You 14:54

21,/02/2022,
14:54

These Genres:

Pop: 1 .

Fleazs note: Zome somgs may not have
avzilable genre dats

Similar suggested songs:

Figure 19: Screenshot showing first section of mobile view of

Analyse Activity Page

£d Sheeran - Castle Cn the Hill

. Shawn Mendes - There s

MNothing Holdin' Me Back

My g 1t ¥
im
b

YL

5 |
o B POy

Mo/ Blensarr™
Cordeny L

During this activity you listened to these
genres:

Plzase note: Some songs may not have
available genre dsta

Figure 18: Screenshot showing second section of mobile
view of Analyse Activity Page

26

Dwring this activity you listened to these

50ngs:

.i Ed Sheeran - Shape of
¥ | Tou

Clean Bandit - Rockabye
[feat. Sean Paul & Anne-

Marie)

Michael Jacksom - Black

v AT i
or wWnite

Kanye Weast - All of the
Lights

Cua Lipa - Levitating

Figure 20: Screenshot showing final section of mobile view of Analyse Activity Page

As can be seen in the figures above, the final designs stayed mostly true to the original wireframes.
The standout difference of course being that there is now a map showing the chosen segment on
the page. Upon implementing the other features on the page, the page felt as though something
was missing. Being an application, which dealt heavily with location data, a map view seemed like a
necessary and welcomed addition to the project. The other addition being a pie chart upon the
segment showing the genre of songs listened to during that chosen segment.

There are more wireframes which were created for the final solution, all of which can be seen in the

appendix of this report.

f]

rd

—
P o
T3]
]

I

—
oo
by
oh

]

—
[o=
I
(=]

[

—
o=
L
iun

Clean Bandit - Symphony
[feat. Zara Larssom)

=)
Fa

Feb 2022,

14:54

f20z2,

14:54

2]
ra

—
P o
T3]
]

2]
ra

]
ra

—
oo
by
oh

]
ra

=]
ra

—
[o=
I
(=]

=]
ra

=]
ra

—
o=
L
iun

=]
ra

[}
(=]
o
ra

-
™
L

ra
(=]
o
ra

-
™
L

3.2 Dynamic Behaviour and Data Flows

There are several important data flows which take place in the system. The first data flow which
takes place is the Strava user authorization flow. For a user to connect their Strava account to
RaceTracks, they must be redirected to the Strava website, log in and then authorize RaceTracks to
access their data. Strava uses OAuth2 authentication for their API (27). OAuth2 allows external
applications to request authorization to a user’s data to allow users to grant access to their data on a
per-application basis. Shown below in Figure 21 is the exact data flow which takes place to obtain
access to a user’s Strava data in RaceTracks.

28

h A

User clicks "Connect
to Strava” button

h

Redirect user to
Strava OAuth page
for my application

|

Userlogs into
Strava

|

User clicks authorize
or cancel

h 4

User is redirected
back to my
application

MNo
Did user authorize
Fccess o

heir account data?,

Obiain Strava
authorization code from
URL

h

A pplication makes request

to exchange authorization

code for Strava access
token

Access tokan is stored in
application state

Uze Arcess token to
make API Calls

v
[End)

Figure 21: UML Diagram showing Strava OAuth Data Flow

After this OAuth data flow has successfully completed, RaceTracks has access to a user’s Strava data
and is then able to make API calls to their account data using their unique access token. With the
user’s data that is returned from the Strava API, an object called “stravaUserData” is created which
stores all the users account information. Figure 22 below shows the created stravaUserData object.
There are a number of fields included by Strava which RaceTracks does not make use of currently,
but they are also added to the object by default and could potentially be used in any future work.

stravalserData

+ badge_type_id: integer
+ bio: string

+ City: string

+ country: string

+ created_at: string

+ firstname: siring

+ follower: string

+ friend: string

+id: integer

+ lastname: string

+ premium: boolean

+ profile: string

+ resource_state: integer
+ sex; string

+ summit: boolean

+ username: string

+weight: integer

Figure 22: UML Diagram showing stravaUserData Object

In addition to the Strava authentication flow, there is a data flow which is needed to get the users
Last.FM account data. This process is only allowed to occur once a user has successfully connected a
Strava account. It is important that the dataflow for obtaining a users’Last.FM account runs after the
Strava authentication has been successful. This is because authorizing a users’ Strava account
requires a redirect to another website, whereas obtaining their Last.FM data does not. If we were to
obtain the users’ Last.FM data before their Strava data, upon the Strava redirect, their account data
would be lost by RaceTracks. This is because the account data is currently stored as a variable and is
not cached or stored in a cookie.

Shown below in Figure 23 is a UML diagram of the Last.FM data flow for connecting a user’s account
to the system.

30

h 4

User enters Last.FM
username into text
box

h 4

User clicks "Connect
to LastFM"

h 4
Application makes
GET request to
Last.FM to get user
info

Was valid user data

returned?

fas

Obiain Strava
suthonization code from
URL

Set Userld in application
state

Redirect to application
home page

¥
End

Figure 23: UML Diagram showing data flow for connecting a Last.FM account

31

Following the response from this data flow, a “lastFmUserData” object is created with the data
returned from this process. Figure 24 shows a UML diagram of this object.

lastFmUserData

+ age: string

+ bootstrap: string

+ image: aray

+ name: string

+ playcount: string

+ playcount: string

+ playlists: string

+ realname: string

+ registered: object
+ subscriber: string
+ type: string

+ url: string

Figure 24: UML Diagram showing created lastFmUserData object

The final important behaviour and flow of data within the system is how the user can interact with
the system. Figure 25 below shows a very high-level overview of the interactions a user can make
with the system, and how the data flows through to each section.

h 4

Strava and Last. FM
Authentication
workflow

Has the user
connected 3 Strava and
Last. FM account?

\Jzar glicks "Anzlyse 3l |

activities in date range"

User searches for
activities in a date range

" -

Direct User to Home Page

o | UzEr z2lacts "Analyse” on
a recent activity

re the activities "Run

activities?

v

Diract user to "Analyse
‘Workout Activities” page

v

Diirzct user to "Analyse
Run Activities” page

Y

User changes segment to
view &g "Highest average
heartrate”

Clisplay new segment data

User clicks "back” button [

= the selected activity

= "Run" activity?

Dirzct user to "Analyse
Workout Activity" page

Dirzct user to "Analyse
Run Activity” page

|

User changes segment to
view e.g "Highest average
heartrate”

Display new segment data

®» ser clicks "oack” button [

Figure 25: UML Activity Diagram showing high level overview of user interaction with the system

33

3.3 System Architecture

As the project was developed using solely JavaScript and React, it was very important to outline a
suitable system architecture. The structure of the code base and the partitioning of the modules are
set up in a way to encourage easily understandable, maintainable, and scalable code.

The top level of the project repository contains several files and folders, these include:

e (Folder): Public
o Contains web configuration files and website favicon.
e (Folder): Src
o Source code folder; contains image assets, JavaScript files and CSS files.
o (File): .env
o Atop-level file used for declaring environment wide variables such as APl keys, URLs,
and client ID’s.
e (File): package.json
o Atop-level file used for declaring all the package dependencies required for building
and running the solution.

Of the files and folders outlined above, the “Src” folder is the one which contains the written code
which produced the solution. This folder is organised as follows:

e (Folder): Assets
o Contains image assets used.
(Folder): Components
o Important folder containing all the JavaScript files and their corresponding CSS files.
e (Folder): Utils:
o Contains two files:
= StravaFunctions.js
= LastFmFunctions.js
o These files contain reusable functions for calling the different endpoints for each of
the used API’s.
e (File): App.js
o The main component file containing routing logic which decides which components
to show to the user.
e (File) App.css
o The CSS file for the App.js file.
o (File): Index.js
o The top-level file of the web-application which is rendered by default by the
website.

Of the files and folders outlined above, the “Components” folder is of the most interest. As
previously stated, this is the main folder containing all of the JavaScript source code for the
RaceTracks site. This folder is broken down into separate folders for each unique component. Each
unique folder contains a JavaScript file for the component and a relating CSS file which styles it. This
helps keep code separated and easily manageable. The high-level structure of the “Components”
folder looks as follows:

34

Components:

(Folder): Activities
o Contains folders for displaying recent activity components and search activity
components.
(Folder): AnalyseActivities
o Contains several folders for different components used for analysing activities.
(Folder): ConnectAccounts
o Contains the logic for setting up and rendering the connection components for users
Strava and Last.FM accounts.
(Folder): ConnectLastFm
o Contains the JavaScript component file used to allow a user to connect a Last.FM
account and its CSS file.
(Folder): ConnectStrava
o Contains the JavaScript component file used to allow a user to connect a Strava
account and its CSS file.
(Folder): Home
o Contains the JavaScript and CSS files for rendering the Home page component.
(Folder): NavBar
o Contains the JavaScript and CSS files for rendering the NavBar component.
(Folder): SegmentEfforts
o Contains JavaScript and CSS files for rendering segment effort components.
(Folder): Songs
o Contains several folders for different components used in displaying song data. This
includes “Songlist”, “GenrePieChart” and “RecentSongs”.
(Folder): StravaMap
o Includes JavaScript and CSS files for rendering the map displaying segment data.

This file structure allows the files to be easily found and easily managed.

35

4. Implementation

This section of the report aims to give a more detailed insight into the implementation of the
solution. We will look at some of the important functions within the code which are especially
critical to the operation of the system, as well as discuss some of the difficulties faced during the
development process due to various factors such as complexity or lack of documentation.

4.1 External API Limitations

The external APIs from Strava and Last.FM both employ rate limits; this means that there is a limit to
the number of requests that any application can make to the services each day. For Strava, this rate
limit is set at 100 requests every 15 minutes, with an allowance up to 1000 requests every day (28).
For Last.FM there is no particular set limit, however under their terms of service which must be
agreed to in order to use the API, it states that applications should not put the API under excessive
strain, and they employ a “Daily Reasonable Usage Cap” of 100MB, and any applications abusing
their APl will have their APl access terminated (29). The Last.FM API also only permits 1 request per
second. For the scope and scale of this project, there is no worry that the limits of the APIs will
become an issue. However, if the application were to have a large user base in the future, then
licensing to upgrade the applications Strava API call limit would need to be obtained.

Although these limits are not an issue for the live production build of the application, | did encounter
some issues with them when developing. Whilst implementing new features and testing how
different solutions would work, | was routinely making API calls by refreshing the page an excessive
number of times. There were several occasions where | unintentionally made 100 requests to the
Strava API within a 15-minute window, which led to my application being blocked from making
requests until the next 15-minute window. This was not too detrimental to development as | would
only have to wait a few minutes before | could continue. The bigger issue came when |
unintentionally reached the daily limit of 1000 API calls. This happened on a few occasions when |
was trying to implement new features and would accidentally create an endless loop which caused
API calls to be made repeatedly. This would cause me to reach the 1000 call limit within seconds and
led to the RaceTracks application being locked out of the Strava API for the rest of the day. This did
cause some setbacks as | was then unable to continue with development on those days, since the
application relied on the data from Strava to function. In hindsight, if | were to work on a similar
project again, | would use a tool such as JSON server (30) to overcome situations like this. JSON
server allows you to set up an offline, “Fake” API, with endpoints and seeded data which an
application running in development mode on localhost can make requests to. Using this tool, |
could’ve set up a dummy version of the Strava APl with my own data to make requests to, allowing
me to bypass the issue of call limits during development.

There were also limitations to the Last.FM APl in terms of the amount of data they provide for songs.
Song data returned from Last.FM is lacking things such as genre data and beats per minute (BPM) for
a given song. To try and overcome this issue, RaceTracks makes use of, and external API called
TheAudioDb which acts as a community run database for song data. The data returned from
TheAudioDb includes genre data for most songs, however it does have limitations itself, as some
songs which may have only just released or are not well-known, may not exist within the database.

36

4.2 Asynchronous Functions and Promises

One of the biggest challenges faced during development was dealing with making APl requests to
various external API’s. For the system to function and load correctly, it must have complete sets of
the user’s data from both Strava and Last.FM. During the runtime of the solution, when the user is
interacting in different ways with the system such as choosing to analyse a specific activity or a range
of activities, then new data must be called from 3 separate API’s: Strava, Last.FM and TheAudioDb.
These API calls need to happen in a very specific order otherwise the system will error. Upon
analysing an activity, firstly the Strava API needs to be called to get the data for that activity. Once
the data has been returned for this activity, then the call to Last.FM can be made with the date and
time-period of the activity to get the songs listened to during that time stamp. Once that call has
completed and the data from Last.FM has been returned, we can make the call to TheAudioDb to
get the genre data for the songs listened to. It is crucial to the operation of the system that these
functions happen in that order, otherwise the system will fail and try to make calls with data it does
not have or display data that does not yet exist.

At its base, JavaScript is a synchronous and single-threaded language (31), this means that functions
are run line by line one after another, which can cause some issues when we are trying to retrieve
data from an APl which is not returned instantly. The “Fetch” APl method in JavaScript is used to
access resources across a network using HTTP requests, which acts as an asynchronous method. This
means that when this line of code is run, the rest of the code that follows it will continue to be
executed whilst this process completes in the background (32). This can cause some problems when
trying to run two asynchronous methods one after another when the second one relies on the data
that would be achieved from the first, because it will be missing. To overcome this issue, the use of
JavaScript promises is required. A promise is a temporary representation of a completion of a
request. They can be in one of three states; fulfilled, pending, or rejected. Using promises, we can
make asynchronous code work in a synchronous way. Figure 26 below shows an example code
snippet of an asynchronous function making use of these promises.

handleFetchRecentSongs(username, setSongs) {
it fetch|(
username

de a
setSongs(data.recenttracks.track);

}

Figure 26: Code Snippet showing asynchronous function that fetches a user's recent songs in LastFmFunctions.js file

The “await” statements tell the code to wait for a fulfilled promise response before continuing. So,
in this example, which is getting a user’s recent songs, we “await” the fetch method’s response from
Last.FM, then once the response has been fulfilled, we extract this as JSON to the “data” variable,
and then we can successfully set the songs. This method of using async functions and await
statements are commonly used throughout this solution and will be spoken about again in further
sections.

37

In addition to these basic asynchronous functions, | also had to utilise asynchronous mapping
functions. These functions can quite quickly become a lot more complex. The underlying idea of this
is that we need to make lots of asynchronous calls to an API, but we want the code to wait until all
of these requests have been completed successfully before continuing, rather than just waiting for
one call to finish like we see above in Figure 26. Shown below in Figure 27 is an example of one of
the methods within the system which makes use of these asynchronous mapping promises.

“onst getSongs = async (selectedActivities) => ({
st songsResponseArray = awai

selectedActivities.map(async (activity, i) => {
~ from = DateTime.fromISO(activity.start date).toSeconds();
" to =
DateTime.fromISO(activity.start date).toSeconds() +
activity.elapsed time;

. fetchedSongs = await fetchData(lastFmUserData.name, from, to);

L=

return fetchedSongs;

)s

return concatArray;

Figure 27: Code Snippet showing asynchronous mapping function for getting songs for multiple activities

This method is used when analysing a group of activities over a date range. It takes a list of activities
as a parameter, and for each of these activities we need to find the list of songs that were listened
to. As finding the songs for each activity needs to be done in separate APl requests, we employ the
asynchronous mapping method as shown above. The “await Promise.all” declaration says for the
code to wait for all of the asynchronous calls within the promise to be fulfilled before continuing
(33). This ensures that all of the calls will be completed, and the code will not try to continue without
the data it needs.

4.3 Strava Authentication

The high-level data flow of how the Strava Authentication method works was previously discussed in
section 3.2 and shown in Figure 21. Here we will discuss in finer detail the code which handles this
process. Following the user being redirected to Strava and them logging in and providing RaceTracks
with access to their profile, they are redirected back to the RaceTracks home page where the
following functions shown in the figures below, run on page load:

38

stravaAuthentication(setAccessToken, setStravalserData) {

authCode = getAuthCode();

authToken = await getAuthToken({authCode);

etAccessToken(authToken.access_token);
 catch (e) {
console.log(e);

Figure 28: Code Snippet showing Strava Authentication Function in StravaFunctions.js file

Figure 28 shows a very important function in the solution. It is the function that handles the data for
the user’s Strava account authentication. This function needs to be asynchronous as it contains fetch
requests to another resource over HTTPS and so we make use of the “await” statements for the
code to run in a seemingly synchronous way. The “stravaAuthentication” function calls two other
functions within itself, one being the “getAuthCode” function which can be seen below in Figure 29
and the other being the “getAuthToken” function which can be seen below in Figure 30.

Once the user is redirected back to the application from Strava, the auth code we need is placed into
the URL. Shown below in Figure 29 is a simple function which takes the current URL and extracts the
auth code from it so that we can make use of it.

export getAuthCode() {

return window.location.search.split("&")[1].slice(5);

Figure 29: Code Snippet showing function to get the returned Strava Auth code from the URL in StravaFunctions.js file

The last function called within the “stravaAuthentication” function is the “getAuthToken” function
which can be seen below in Figure 30. This function is also asynchronous as it makes a POST request
to the Strava APl with the users auth code to obtain a valid authorization token which can be used to
then make further API calls. The endpoint is called with the RaceTracks Strava client id, client secret
and the auth code which we obtained previously from the redirect URL.

39

=t getAuthToken
const requestOptions = {
method: "POST",

headers: { "Content-Typ

body: JSON.stringify({

tch {error) {
console.log(error);

Figure 30: Code Snippet showing get Strava Auth Token Function in StravaFunctions.js file

Once this method has successfully run, then the users userld and access token is available to
RaceTracks, and it can then make further API requests to retrieve user data using the userld and the
access token.

4.4 Last.FM User Data Retrieval

In contrast to acquiring the users Strava data, acquiring their Last.FM data is much more straight
forward. Last.FM’s user data is public facing and does not require user authentication in order to
access it. Because of this there are no required redirects from the application, and all that we need
from the user is their Last.FM username. Once the user inputs their username into the given text box
and clicks the “Connect to Last.FM” button, the following function shown below in Figure 31 is run.

handleFetchLastFmuserData(username, setlLastFmUserData) {

Ser=>3qusername

.then((response) response.json())
.then((data) setLastFmUserData(data.user));

Figure 31: Code Snippet showing function for getting a user’s Last.FM account data

40

This is a simple asynchronous function which makes an APl GET request to Last.FM for the users
account information. We can also then use this username to make all of the other API requests to
Last.FM.

4.5 APl Request Methods

Within the system architecture there are two files stored within the “utils” folder. These two folders
are the “LastfmFunctions,js” file and the “StravaFunctions.js” file. Both of these folders contain the
methods for making the requests to both of the respective services APIs. Storing the methods here
in this file separately allows them to be imported into other JavaScript files within the code base and
reused in different ways. All of the fetch requests used, receive a JSON response which is then
serialized before being manipulated and set as a variable within the system. Within the
“StravaFunctions.js” file, some of the methods include “handleFetchActivities” which fetches a
specified number of the users most recent activities. There is also a function for getting a users
activities between a specified date range called “handleFetchActivitiesByDate”, which can be seen
below in Figure 32.

handleFetchActivitiesByDate(

accessToken,

setSearchedActivities,
aftter,
before
{
fetch((
)

)

.then((response) response.json())
.then((data) setSearchedActivities(data));

Figure 32: Code Snippet showing handleFetchActivitiesByDate method

Another important method in the “StravaFunctions.js” file is the “handleFetchSegment” method
which can be seen below in Figure 33. This is used for requesting more data on a specific segment of
a run. This is necessary to retrieve the polyline data to be displayed on a map on the analyse activity
page.

handleFetchSegment(accessToken, segmentId) {
nait fetch(
ments/${segmentld} facc

Figure 33: Code Snippet showing handleFetchSegment method

41

As well as the methods for requesting data from the Strava API, there are similar functions which
request data from the Last.FM API. The most important method here is the
“handleFetchSongsBetweenDateRange” method, which as the name suggests, fetches all of the
songs that the user listened to during a specified date range and can be seen below in Figure 34.

export async func 1 handleFetchSongsBetweenDateRange(username, from, to) {
const response = await fetch(
“https Ws.audioscrobbler.co
&api_ 5 {

e

t data = await response.json();
co songs = [];
if (data.recenttracks.track) {

if (data.recenttracks.track.length === 8) {
return songs;

¥

if (data.recenttracks.track.length > 8) {
data.recenttracks.track.map((song, i) => {

if (!song["@attr"]) {

songs.push(song);

if (ldata.recenttracks.track["@attr"]) [{

songs.push(data.recenttracks.track);

return songs;

¥

Figure 34: Code Snippet showing handleFetchSongsBetweenDateRange method

This is one of the most complex methods for fetching data within the system. This is because
Last.FM has a quirk where if a user is currently listening to a song when the request is being made, it
will always return that song regardless of what date range was selected. For example, if we were to
request all of the songs listened to between the 1° ° March 2022 and the 5% °"March 2022 on the

30t °fMarch, and we currently have a song playing, then we will get the list of songs
between the 15t and 5%, as well as the current song playing. We need to account for this,
and so extra logic is needed to find this song in the list and remove it before returning the
list of songs.

There are a number more methods for requesting data from both Strava and Last.FM. All of
which can be found as previously stated, within the codebase in the “StravaFunctions.js”
and “LastFmFunctions.js” files in the utils folder.

42

4.6 Analysing Activities and Segment Efforts

One of the most important functions of the system is the Strava segment analysis functionality. This
is where the users runs are analysed in segments to find the parts of their run where their heart rate
was the highest or lowest, and where their pace is the highest or lowest. There are 4 functions in
total, one for each of these options to calculate the specified segment from a list of given segments.
Each of the functions takes in a list of segments as a parameter and runs the specific algorithm to
find the segment that matches the chosen criteria. The algorithms for making the necessary
calculations went through many iterations throughout the projects lifecycle before finally settling on
the final methods. Figure 35 below shows a code snippet of the method used for calculating the
fastest segment effort from the given list.

getFastestSegmentEffort (segmentEfforts)
segmentSpeedsArray = await Promise.all(
segmentEfforts.map((segment, 1) 1
speed = segment.distance / segment.elapsed time;
return { segment, speed };

fastestSegmentEffort = mentSpeedsArray.reduce(
prev,
current

I
L

return prev.speed > current.speed ? prev : current;

return fastestSegmentEffort.segment;

Figure 35: Code Snippet showing function for getting a User’s Fastest Segment Effort

The above function outlines the basis of the 4 different functions. Each of the functions is
asynchronous and makes use of the mapping promises as discussed previously in section 4.2. With
this function, we find the users running speed for each of the segments, and then return the
segment with the highest speed value. There is a similar function for finding the users slowest
segment, the only difference being that instead of returning the segment with the highest speed
value, we return the segment with the lowest speed value.

There are also two functions which find the users highest and lowest average heartrate. Figure 36
below shows the code snippet for getting the segment with the highest average heartrate.

43

getHighestAverageHeartRateSegmenteffort = (segmentEfforts)

filteredArray = segmentbEfforts.filter((e) {
return e.max_heartrate;

s

highestAverageHeartRateSegmentEffort = filteredArray.reduce(
prev,
current
) {
return prev.average heartrate > current.average heartrate
? prev
current;
1

return highestAverageHeartRateSegmentEffort;

Figure 36: Code Snippet showing function for getting a User's highest average heart rate segment

This function is incredibly similar to the one for finding the users fastest pace. The difference being
that we do not need to calculate the users heart rate, we only need to remove any segments from
the list which do not have any heartrate data associated with them, this is to catch any errors where
the user might not have worn a smart watch or activity tracker on their run. Following this we can
find the segment with the highest average heart rate and return it. There is a similar function for
finding the lowest average heart rate segment, the difference being that we return the lowest
average heartrate segment instead. These functions work whether the user is analysing one single
activity, or several activities collectively across a date range.

As mentioned in the project aims, there were plans for integrating support for analysing other types
of workouts such as HIIT workouts, weightlifting, boxing etc. Upon investigating the addition of this
functionality however, | discovered that there were limitations in the data provided by Strava for
these kinds of activities. Whereas running activities are broken down into segments with start and
end times and relevant heartrate data, other activities such as boxing or HIIT workouts are not.
Strava does not split these workouts into segments, and so they cannot be analysed in a similar way
to the running activities. The only data we are provided with is the start and end times and the users
average heart rate across the entire activity. After some investigation it was concluded that
unfortunately there was no suitable way to analyse these activities individually in a way that would
provide any useful information to the user. The most that the application can provide on a single one
of these activities is just the list of songs that the user listened to during that workout, and the
genres of the songs.

Although there was this limitation with the data, | was still able to implement some form of analysis
for other types of workouts. As a compromise, | implemented the functionality for analysing a
number of different workouts of the same type across a specified date range collectively. This would
instead allow the user to find the specific workout across a number of workouts where their average
heartrate was the highest or lowest, see what songs they listened to during that workout, and then
receive recommendations for similar songs based on that workout.

44

4.7 Mapping Strava Data

The decision to introduce a map into the solution came midway during development. When
analysing “Run” activities, the user is now presented with a map which shows them the map for the
segment which they currently have selected, for example, if the user has selected to view their
segment with their lowest average heart rate, then the map will show them the route of that
segment. An example of this can be seen below in Error! Reference source not found..

Highest average heartrate ¥

Select Segment:

Your Highest average heartrate segment was: Up Fairoak Road -
31/03/2022

Max heart rate: 173 Average heart rate: 173

Segment Start: 13:05:20 Segment Finish: 13:09:08

Elapsed Time: 03:48 Average speed:10.82km/h
During this segment you listened to:

Bl he Weeknd - I Feel it Coming 31 Mar 2022, 13:05

These Genres:

R&S: 1 [|

Please note: Some songs may not have available genre data

Similar suggested songs:
@ The Weeknd - Starboy

The Weeknd - Can't Feel My Face

8
3

Marypor

A48

7
58
91

Roath Rleast
Gardens

Cathays
Cemetery

Figure 37: Screenshot showing example map for a highest average heartrate segment

Implementing this feature into the application became quite a challenge, and the solution to the
problem is particularly interesting. As previously mentioned, the mapping library which was used
was Leaflet.js, alongside the React-Leaflet package. To be able to display location data on the map, it
is necessary to obtain the encoded polyline data from Strava for the segment that needs to be
shown, decode this polyline data and then set the result as a line on the map. An example of the
encoded polyline which Strava returns can be seen below in Figure 38.

vmap:

id: "s1@89@3579"
_ziyHr}iRF@\\DEPEXVHEVRFAZP ™ @ BCHDF@LERIEEENIBDETHNDIF 2FCIBLEBGTFDAR *haUDAFDPIREDI J@@DCREDEIDBIF 2NEAH"

polyline: ™
resource_state: 3

(SR . PRVRFISRFIRS | [VIS

Figure 38: Example encoded segment polyline returned by Strava

Leaflet | © OpenStreetiMap confributors

Unfortunately, we cannot use the encoded polyline directly to display data on the map, it first needs

to be decoded. In order to do this | researched into various different possible solutions, and finally
settled on using an available JavaScript package called “Mapbox” (34), which provides a number of

45

tools for manipulating map data. The method that we need in particular is the “decode” method
which can be used on the encoded polyline data to convert it into usable data.

' 1ine™);

ment .map.polyline));

if (map) {

map.flyTo(segment.start latlng);

ment]);

Figure 39: Code Snippet showing method for decoding Strava Polyline data into an array of coordinates in StravaMap.js

Figure 39 above shows the method for decoding the polyline data using “Mapbox” in the
StravaMap.js file. Upon a new segment being selected, the encoded polyline is run through the
“polyline.decode” method, which returns an array of coordinates.

w [Array(44)] @

.5e64,
.5@62,

\5B617,
.5868E,

-3.17418]
-3.17423]
-3,1743]
-3,17432]
-3.17444]
-3.17446]
-3.17456]
-3.17455]
-3.17464]
-3,17464]

&

L

il
il

4,

[R e s]

5
5
5
.5
5
5
5

i

v
|

[

L17462]
L17465]
.17465]

L17463]

P

WL W

.17458]
.17455]
L17463]

LY By W Ry W) - o o Y
[I R e R e e Y Y R Y Y
P G I B R R]

P b [fa

]

o

Figure 40: Example screenshot of decoded polyline coordinates

This array of coordinates is what is then plotted on the map component to display the segment line.
To make this feature more usable for the user | also implemented a “map.flyTo()” function, which
moves the map to the location of the new segment once it has been loaded onto the map so that
the user can see it straight away and does not need to manually search for it.

46

4.8 Song Genre Data

A particularly interesting and unexpected issue which was encountered during the development
process was the implementation of song genres. One of the primary aims for this project was to
display information to the users about the songs that they have listened to, including their genres.
This was one of the later features implemented into the project, and due to an oversight on the data
available from the Last.FM API, caused a momentary roadblock in development. The encountered
issue was that data for any song returned by the Last.FM APl does not include a genre field. This
meant that as of that moment, the application had no way of defining songs into certain genres and
therefore no way of displaying this data to the user.

To overcome this issue, | researched into different ways in which | could obtain song data and at
first, | turned my attention to the Spotify API. Although | had already decided not to use Spotify as
part of the implementation, as an API provider, Spotify is one of the world’s leading data providers
with an extensive amount of data on each song, including the needed genre data. The idea was to
continue to have a user connect a Last.FM account and use this for getting their listening history,
and then take that list of Last.FM songs and make a call to the Spotify API to get extra data on each
song. Unfortunately, | encountered another issue here where the Spotify APl requires an
authenticated user to make any API calls. This meant that in order to obtain genre data for their
songs, | would have had to require the user to also connect a valid Spotify account. This would have
defeated my purpose for choosing Last.FM as the service used, as only Spotify account holders
would then have access to this feature, and it would exclude users of other services as well as adding
unnecessary level of complexity for the user by requiring them to log in and use 3 different external
services.

Continuing research into other solutions, | found a website called TheAudioDb. TheAudioDb is a
community run database of audio artwork and metadata with a JSON API (35). The API is well
documented and provides the exact functionality that was needed for the application. The only
caveat to this service is that it is no longer free and currently costs £3 a month to receive access to
an APl key. Ultimately it was decided that TheAudioDb would work as the better method in this
instance, and so after obtaining an API key, | began implementing the solution.

Working with TheAudioDb API proved to be tricky, as | needed to obtain genre data for each song,
and as there is no endpoint for taking a list of songs and just returning this data, | had to make an
individual API call for each song in the list. This led to the implementation of a somewhat more
complex and interesting method for solving this problem. As we have already discussed, making a
fetch request is an asynchronous function. However, because we are going to be making a lot of
these requests, it is vital that we ensure these calls are handled properly using an asynchronous
mapping method. Figure 41 below shows a code snippet of the function created for handling this.

47

= (songs) => {

r songInformation = await getAudioDb(song);
if (songInformation) {
if (songInformation.strGenre) {
return songInformation.strGenre;

1
i]

return "noGenre";
|
J
T

return

Figure 41: Code Snippet showing function for making a call to TheAudioDb to get genre data for each song in a list of songs

Once the above function has run successfully, we should have a set of data for each of the songs
which includes the genre data. We then need to process this data order to provide the information
to the user in a useful way. The way that we display the genre data to the user is through pie charts.
The pie charts provide a visual representation of what genres they listened to and make the data
easily readable for the user. To create the pie chart component | used a JavaScript package called
“React-minimal-pie-chart” (22), as previously mentioned, which enables quick creation of pie charts
on a web page. The pie chart component needs to be provided with an array of objects, each with a
“title”; the name of the genre, a “value”; the number of songs with this genre, and a “colour”; the
colour of the pie chart segment for the specified genre. In order to use the genre data, | had
obtained from TheAudioDb | first had to process the data into a specific format so that | could supply
it to the pie chart. Figure 42 below shows an example of how the data given as a parameter to the
pie chart should be structured.

pieChartData[
{title: "titlel",
value: “"valuel™,
color:"colorl"},

{title: "title2",
value: "value2™,

color:"color2"}

Figure 42: Example data structure which should be supplied to the React-Minimal-Pie-Chart Component

To format the data in this way, a function was created called “getPieData” that takes a list of all of
the song genres and returns the data structured in this way. This function can be seen below in
Figure 43.

48

1 getPieData(songGenres) {

if (songGenres.length > @) {
- pccurences = [];

.from(new Set(songGenres));
function (e) {

=t genre of filteredArray) {
enrefccurence = @;
i =8; i < songGenres.length; i++) {

if (songGenres[i] === genre) {

genrelccurence = genrelccurence + 1;
1
b

1
I

occurences . push(genrelccurence) ;

1
|

let pieData = [];
filteredArray.forEach(e, i) =
pieData.push({
title: filteredArray[i],
value: occurences[i],

color: i < char urs.length ? chartColours[i] : getRandomColor(),

setData({pieData);

Figure 43: Code Snippet showing function taking a list of Song Genres and structuring it for the pie chart

There are 3 main sections to this function. As the provided “songGenres” list can contain multiple of
the same genre, the first step is to create a new list of genres which only contains one occurrence of
each. In this step we also remove the “noGenre” flags which were added to the array for songs
where genre data did not exist. The next step in the function is to count how many times each genre
appears, meaning how many songs the user listened to in each genre. These values are then stored
in the “occurrences” array. The final step is to build the dataset for the pie chart, looping through
each unique genre, setting the title as the name of the genre, the value as its number of occurrences
and then its colour. This complete array is then set as the data variable used by the pie chart.

Styling the pie chart component in a suitable way for the page was more time consuming than | had
first anticipated. The documentation available for how the pie chart works and how to style the
different segments was very comprehensive, however the details on how it should be sized on the
page were lacking. In addition to this, | did not want to display the values of the chart segments on
the chart itself, but instead | wanted a separate key alongside the pie chart, and | was unable to find
any documentation on how to do this easily. My solution to this was to use the pieData array of
objects | had created, and then loop through it to render a label and a div block with the background

49

colour set to the matching colour for each of the items in the array. The code for generating this key
and an example of the resulting key can be seen below in Figure 44 and Figure 45.

className="co
classMame

className 4 co
data.length > @ &%&

className=" 1-1g-10 House: 1 -
section.title}: {section.value
Pop: 2
className="col-2 col-1g-2" P
style={{ Hi ,
-) p-Hop: 1
backgroundColor: section.color, -
height: "2 Deep House: 1
1
J
Indie: 1 IIIIIII

Figure 45: Code Snippet showing rendering of pie chart key Figure 44: Screenshot showing example of a rendered pie chart key

4.9 Suggesting Similar Songs

As outlined in the project aims, one of the features that was discussed was some functionality to
suggest similar songs to the user based on the ones that they performed best to during their
workouts. This functionality had many implications which needed to be addressed before it could be
implemented. It was decided that the suggested songs would be based upon the music listened to
during the users’ best segments for the analysed run, for example their segment with the highest
heart rate or fastest pace. My original idea was to take the songs the user had listened to in these
segments, find information about them such as their genre or tempo, and find songs similar with
these properties. This proved to be much more difficult than | had first anticipated due to the issue |
had where there was no genre or tempo data for songs provided by Last.FM. Although | worked
around the genre data issue with TheAudioDb, TheAudioDb does not provide tempo data either.
This meant that | would have had to find another external data source which could provide this data
to the application, however this could have put a serious strain on the loading with another layer of
API calls which would need to be made and also would increase the risk of the application failing
should one of the data source providers being unavailable.

After some further reading, | discovered that the Last.FM API actually has a method available called
“track.getSimilar”. This allows us to make a request to the API with a song name and its artist and
receive similar songs as a response. It is not clear in the documentation exactly how the songs
returned are classed as “similar”, however after some testing. In most cases it appears to choose
similar songs from the same artist, but this is not always the case. | opted to utilise this method as a
solution to the problem in order to implement the functionality in some way albeit | was unable to
match the songs by specific beats per minute.

Although Last.FM offers this method, as of the date this project was developed, there is an issue
with their “track.getSimilar” method. For all of the song images which are displayed on RaceTracks,

50

the images are being loaded directly from Last.FM. The image URLS are included as part of the song
objects returned by the API, and these are then used to display the images on site. Unfortunately the
“track.getSimilar” method does not correctly return the URLs for song images, and instead returns
invalid URLs. This means that using this method alone would result in all of the songs being displayed
with null images. In order to work around this bug, RaceTracks gets the list of similar songs from
Last.FM and then makes another set of APl requests to get information on each of those songs,
which includes the correct image URL.s. This became one of the more complex features within the
system and required careful planning on how to properly handle the API requests using async
methods and promises. The “getSimilarSongsForTracks” method which | created can be seen below
in Figure 46.

getsimilarSongsForTracks = (songs)
similarsongsArray = await Promise.all(
songs .map {song, 1}

cimilarsongsResponse = await handleFetch5imilarSongs(
SONg.name,
song.artist["#text™]
IH

if (similarSongsResponse. == "Track not found"} {
songData = awal mise.all(

cimilarSongsResponse . map((similarsong, i) {
songldResponse = await handleFetchTrackInfoByMameAndArtist(
similarSong.name,
similarSong.artist.name
b

if (songldRespon

return "Track

return songldResponse;
LY
)i

filteredsongDataArray = songData.filter(

return e !== "T

13
return filteredSongDatafArray;

rack not found";

concatArray =
return concatArray;

b

Figure 46: Code Snippet showing function for getting similar songs from Last.FM

Although it is not exactly how | would have liked to implement the feature, due to time constraints
and limitations with the Last.FM API, it was a suitable work around and meant that the feature
would not be entirely missing from the completed solution. The similar suggested songs feature can
be seen below in Figure 47.

Your Highest average heartrate segment was: Up Fairoak Road -

31/03/2022

Max heart rate: 173 Average heart rate: 173
Segment Start: 13:05:20 Segment Finish: 13:09:08
Elapsed Time: 03:48 Average speed:10.82km/h

During this segment you listened to:

The Weeknd - | Feel It Coming 31 Mar 2022, 12:05

These Genres:

R&B: 1 ||

Please note: Some songs may not have available genre data

Similar suggested songs:

E The Weeknd - Starboy

a The Weeknd - Can't Feel My Face

Figure 47: Highest average heart rate segment showing similar suggested songs

4.10 Dealing with DateTime Objects

Appropriate and correct handling of dates and times are a critical part of the application. Both
activities and songs have DateTime data associated with them, which we use to display the correct
songs listened to during specific workouts. As previously discussed, a JavaScript package called
Luxon (21), is used within the system that allows the manipulation of dates and times. Both Strava
and Last.FM provide their dates in a UTC / Epoch date format in seconds, which should allow for
consistency across the application and easier date matching between activities and songs. There
were little to no issues in dealing with DateTimes throughout development, until towards the end of
the project where | noticed that the times that songs were listened to on some of the activities did
not match up with the time the activity actually took place and that they were 1 hour off. This was
due to the daylight-saving change on the 27" °f March 2022, where the United Kingdom time zone
moved from 1:00am to 2:00am. Strava accounts for this change on an account specific basis, and as
my account which | was using for testing purposes was based in the UK, the UTC times provided by
the APl were correct following this time change. Last.FM however, does not account for daylight
savings. Therefore, all of the song data which | was receiving and using to display when the songs
were listened to, was an hour behind the correct time. To counter this issue, | used a feature within
Luxon to take the UTS time provided and convert it to the time zone of the user’s system. Assuming
the user’s system is correctly set to their time zone, this should mitigate this issue. A future

52

improvement would be to find a way to get the time zone that Strava is using for the user’s data and
use this to convert the Last.FM datetimes. A code example of a Last.FM DateTime being converted
can be seen below in Figure 48. We take the date provided in UTC and convert it to the systems time
zone and then format it appropriately. In Luxon, “ff” formats a date time in the format of: “31 Mar
2022, 13:10” (36).

e_fromSeconds(parselnt(song.date.uts)

Figure 48: Code Snippet showing conversion of Last.FM date to the local system time zone

4.11 Live Webhosting

As previously discussed, something which become an aim of the project during the development
process was the have the application hosted on the web so that a live version of it is available to
access. Several different solutions for free and simple ways of hosting React applications were
investigated. Initially | looked at using GitHub Pages as a solution (37), which allows the hosting of
live sites using production code directly from a GitHub repository. | encountered issues with this
service however since it could not handle the URL routing on single page applications in the way |
needed. Due to my application redirecting to Strava for authorization and then being redirected back
with a new URL, GitHub pages would error since it did not recognise the new redirected URL as a
valid one.

Following this issue and as | was hosting my code repository in Microsoft Azure DevOps, | decided to
investigate the available options for hosting the RaceTracks with Azure. Azure provided the support
for handling the single page routing which my application needed, although to make this possible, |
needed to add a “.web-config” file, which can be found in the “public” folder of the project source
code. Azure uses the rules outlined in this config file to ignore the URL routing on the application and
always redirect to the correct page.

Using Azure’s tools, | created a new “App Service”, which is the HTTP-based service used for hosting
web applications. | then began creating a production pipeline which when triggered, runs pre-set
commands on the code base in order to create a production ready build of the source code which
can be hosted on the created app service. Figure 49 below shows the azure GUI with the commands
run by the pipeline. The pipeline runs “npm install” which is a Node.js command to install all of the
required JavaScript packages, and then “npm run build” which is also a Node.js command, to create
a production ready build of the codebase.

53

Pipeline
Build pipeline

Name *
== Get sources
o4 Final Year Project % main Final Year Project-Cl

3 Agent pool Pool information | Manage =
Agent job 1 B gentpool @ | I g
= funonegert Azure Pipelines v O
m npm install e

npm Agent Specification

i windows-latest v

m npm run build

npm

)) Parameters O

f Publish Artifact: drop
mmmm Publish build artifacts

This pipeline doesn't have any pipeline parameters. Create them to share
the most important settings between tasks and change them in one place.

Learn more =

Figure 49: Screenshot showing the Azure Pipeline commands for creating a production build of the application

Once the pipeline has run, then a new “Release” is created. This release deploys the production-
ready code onto the previously mentioned App-service where it is then available to access at:
https://racetracksreactapp.azurewebsites.net/. The release pipeline can be seen below in Figure 50.

Azure App Service deploy ® [View YAML i Remove

i *
Run on agent Task version 4. v

= t
£ Runon agent

Deploy Azure App Service: RaceTracks

Display name *
Azure App Senvice deploy

Deploy Azure App Service: RaceTracks

Connection type* @
Azure Resource Manager
Azure subscription * @ | Manage 2

Azure subscription 1 - RaceTracks

Scoped to resource group ‘RaceTracks'

App Service type * @
Web App on Windows
App Service name * @

RaceTracksReactApp

Figure 50: Screenshot showing the Azure Release Pipeline commands

54

https://racetracksreactapp.azurewebsites.net/

4.12 Security

An important thing to consider when building and deploying a new web application is the Security
measures put in place. There are various aspects of the system that promote a secure
implementation. Firstly, the system implements the secure HTTPS protocol. HTTPS is an extension of
the HTTP protocol which is used for secure communication over a computer network and is widely
used on the internet. The HTTPS protocol is encrypted using Transport Layer Security (38). Because
RaceTracks is using solely HTTPS to make requests to the external API’s, the traffic between the two
servers is encrypted to prevent eavesdropping and the exposure of any private data.

As previously discussed, the application also implements OAuth2 authorization when making
requests to the Strava API. As this has been implemented correctly and uses HTTPS for making the
requests, the user’s data is protected from eavesdropping and man-in-the-middle attacks.
Furthermore, all the data obtained from users Last.FM accounts is all public-facing data, and anyone
could obtain this data should they wish to, so there is no risk of exposing anything personal or
private here.

Lastly, as the application is being hosted on Microsoft’s Azure servers, there are several security
features which are provided as part of the service. The Azure servers provide an Internal Load
Balancer (ILB), which provides the web application with a firewall to offer enterprise-level protection
from security threats such as DDoS attacks, URI filtering and SQL injection (39).

55

5. Results and Evaluation

5.1 First round of testing — 25/02/2022

After completing development work on the features that met that primary aims for this project and
satisfied the criteria laid out for a minimum viable product, the first round of testing on the system
was carried out. As a test-driven development approach was taken, many of the bugs and issues
which could have been picked up in the round of testing, may have already been fixed or resolved.
With this testing session the aim was to check and verify that all the key features and functionality
were working as intended.

The data for this round of testing was collected by myself using an Apple Watch series 6, running the
latest version of the Strava app as of this date, whilst listening to music through my Spotify account
that was connected to my Last.FM account through my iPhone X. | carried out the testing of the
web-app on my most recent codebase running as a live website hosted on Microsoft Azure. This
allowed me to also test for any issues which may not be present during local development. The
results for this round of testing can be seen in the table below:

56

Test Action Expected Result | Achieved Result Test Comments Evidence
Number Result
1 Click connect to Redirect to As expected Pass Appendix:
Strava button Strava Login Figure 58
page
2 Log in to Strava Redirects to As expected Pass Appendix:
Authorize app Figure 59
page
3 Click Authorize on | Redirects to my | As expected Pass Connect Strava Appendix:
Strava account web-app with screen shows Figure 60
connect to momentarily after
last.fm screen redirecting back to
showing my web app
4 Enter LastFm Home page As expected Pass Username was Appendix:
username and should load with “TylerJenkins22” Figure 61
click connect to loaded recent
last.fm strava activities
and recent
LastFm songs
5 Enter a non- App should not | As expected Pass App tries to make Appendix:
existing LastFm direct to home the GET request but | Figure 62
username and page and should receives a 404
click connect to stay on connect message, app does
last.fm to last.fm not crash
screen
6 Click analyse on a | Analyse activity | As Expected Pass Appendix:
recent activity page loads with Figure 63
correct data in
songs list,
segments, and
genre pie chart
7 Change Loads selected As expected Pass Appendix:
dropdown for segment Figure 64
segment filter to
each option
8 Click back button | Returns to As expected Pass N/A
on analyse home page
activity page
9 Enter invalid date | No results As expected Pass A message to say Appendix:
ranges and click should be please select valid Figure 65
search for returned dates or disable
activities by date search button for
invalid search dates
could be in place.
Also, should add
“Start date” and
“End date” labels
10 Enter valid date Results between | As expected Pass If date range is too Appendix:
ranges and click date ranges big, only most Figure 66

57

search for should be recent 30 activities
activities by date | displayed will be returned

11 Click analyse all Analyse As expected Pass Appendix:
activities activities page Figure 67
between these loads with data
dates button from all

activities in that
selected range

12 Change Loads selected As expected Pass Appendix:
dropdown for segment and Figure 68
segment filter to | should be
each option correct across

all selected
activities

13 Click back button | Returnsto As expected Pass N/A
on analyse home page
activities page

14 After successful Should show As expected Pass These activities Appendix:
activity date “Workout” currently cannot be | Figure 69
range search, activities analysed like “Run”
change activity activities
filter to
“Workout”

15 Clicking analyse Should load As expected Pass Support for other Appendix:
on an activity analyse page activities should be | Figure 70
which is not with any music added as a future
“Run” data but inform feature

the user that
this activity
cannot be
analysed

16 Entering another | App will load As expected Pass Username Appendix:
users username with authorized used:”John” Figure 71

on “Connect to
Last.FM” screen

strava account
activities but
another users
songs

This is not a bug, as
Last.FM profile data
is public. However,
there is no log out
option currently so
if someone enters
their username
wrong they must
refresh the app.

Figure 51: Testing table showing first round of testing on 25/02/2022

58

Following the results of the first round of testing, | noted that there were a few small things which
could benefit from being changed, such as displaying certain messages to the user or implementing a
log out feature so that the user wasn’t stuck if they had connected an incorrect Last.FM account. |
was confident enough with my system that | would be able to move forward in the development
process and begin implementing the new proposed features that | had outlined in my secondary
aims. This included features such as song suggestions, more detailed insights in data comparison and
the possibility of investigating a log in system for the application.

5.2 Second round of testing — 14/04/2022

Upon reaching the end of development, | began a final round of testing on the system | had
developed. This followed the previous round of testing, and | had also been testing throughout
development. With this testing session | aimed to check and verify that all the key features and
functionality were working as intended.

The data for this round of testing was collected similarly to the first round. It was collected by myself
using an Apple Watch series 6, running the latest version of the Strava app as of this date, whilst
listening to music through my Spotify account that was connected to my Last.FM account through
my iPhone X. The testing was done against the latest codebase running as a live website hosted on
Microsoft Azure.

Test Action Expected Result | Achieved Result Test Comments Evidence
Number Result
1 Click connect to Redirect to As expected Pass Appendix:
Strava button Strava Login Figure 72
page
2 Log in to Strava Redirects to As expected Pass Appendix:
Authorize app Figure 73
page
3 Click Authorize on | Redirects to my | As expected Pass Connect Strava Appendix:
Strava account web-app with screen shows Figure 74
connect to momentarily after
last.fm screen redirecting back to
showing my web app
4 Enter LastFm Home page As expected Pass Username was Appendix:
username and should load with “TylerJenkins22” Figure 75
click connect to loaded recent
last.fm strava activities
and recent
LastFm songs
5 Enter a non- App should not | As expected Pass App tries to make Appendix:
existing LastFm direct to home the GET request but | Figure 76
username and page and should receives a 404
click connect to stay on connect message, app does
last.fm to last.fm not crash
screen
6 Click analyse on a | Analyse activity | As Expected Pass Appendix:
recent activity page loads with Figure 77

59

correct data in
songs list,
segments, map
and genre pie
chart.

7 Change Loads selected As expected Pass Appendix:
dropdown for segment and Figure 78
segment filter to | updates map
each option with new

segment
location

8 Click back button | Returns to As expected Pass N/A
on analyse home page
activity page

9 Enter invalid date | No results As expected Pass Still no message to Appendix:
ranges and click should be notify the user of an | Figure 79
search for returned incorrect search.
activities by date

Could also have
disabled search
button when
incorrect dates
selected.

10 Enter valid date Results between | As expected Pass If date range is too Appendix:
ranges and click date ranges big, only most Figure 80
search for should be recent 30 activities
activities by date | displayed will be returned

11 Click analyse all Analyse As expected Pass Appendix:
activities activities page Figure 77
between these loads with data
dates button from all

activities in that
selected range

12 Change Loads selected As expected Pass Appendix:
dropdown for segment and Figure 78
segment filter to | should be
each option correct across

all selected
activities

13 Click back button | Returnsto As expected Pass N/A
on analyse home page
activities page

14 After successful Should show As expected Pass These activities Appendix:
activity date “Workout” currently cannot be | Figure 81
range search, activities analysed like “Run”
change activity activities
filter to
“Workout”

15 Clicking analyse Should load As expected Pass It was not possible Appendix:
on an activity analyse activity to analyse a single Figure 82

page

workout activity as

60

which is not
IlRun”

discussed, these
activities can only
be analysed as a

group

16 Clicking analyse Should load As expected Appendix:
all activities in analyse Figure 83
date range for activities page
“Workout”
activities

17 Changing filter on | Should display Application Fail Seems to be an Appendix:
analyse workout workout activity | crashed and issue with displaying | Figure 84
page should matching the displayed a blank the similar songs.

selected filter page

18 Entering another | App will load As expected Pass Username Appendix:
users username with authorized used:”John” Figure 85
on “Connect to Strava account
Last.FM” screen activities but This is not a bug, as

another users Last.FM profile data

songs is public. There is
now a “Log Out”
button, which was
picked up in the first
round of testing

19 Click “Log Out” of | App should Application Pass with | Although technically | N/A
Strava account return to redirects to the concern | the Last.FM account
button connect Strava connect Strava is retained, upon

account screen | account and connecting a new

and retain users | retains Last.FM Strava account, the

Strava account account Last.FM account is

info lost during the
redirect to Strava.
This is a minor issue
and could possibly
be resolved using
browser caching
and cookies.

20 Click “Log Out” of | App should As expected Pass N/A
Last.FM account return to

button

connect Last.FM
account screen
and retain users
Strava account
info

Figure 52: Testing table showing first round of testing on 15/04/2022

The second round of self-testing aimed to build upon the first round. | re-tested all of the features
which had been previously tested, as well as any new ones which had been implemented. Some of
the suggestions from the first round of testing were implemented to improve the user experience

such as the log out functionality. The majority of tests passed with results as expected, however

there were a few outlying cases. In test case 17 of the second round of testing, it was expected that

61

changing the filter of which best activity to view, that the page would update to show the matching
activity. However, changing the filter resulted in the page crashing with errors being thrown in the
console. This test highlighted a core issue with the system. After some investigation it appeared that
the bug had been introduced when the functionality for suggesting similar songs was implemented,
following this testing session, | was able to re-visit the code base and implement a fix for this issue so
that this page works as expected and now passes the test case.

One other test which highlighted a concern within the system was test case 19. This test technically
passed as expected, however there were issues which followed. Upon clicking the “Log Out” button
for the users Strava account, the Last.FM account details were not lost, and the user is returned to
the connect Strava account screen. However, the issue appears when the user then clicks the
“connect account” button to be redirected to Strava to re-connect their account. As the application
does not store Last.FM account details within the browser cache or cookies as of right now, the
users Last.FM account details are then lost, and they will then have to reconnect their Last.FM
account. This does not cause any errors or issues within the application itself, however it is more of a
consistency issue, and inconvenient for the user to have to redo. In future work | might like to
investigate the implementation of cookies and caching in order to mitigate this issue, or through the
implementation of the proposed log in system for the application this could also be resolved.

5.3 Feedback from Demonstrating to an Internal Group

After obtaining permission, | was able to join a small group of other students who were all working
on similar projects and demonstrate to them the final RaceTracks solution. After only a short demo, |
was able to receive some feedback from them. The overall consensus was very positive, and people
were impressed with the work that had been done. The main areas of the application which people
found most notable were the ability to search for activities between a date range including all types
of workouts and not just runs, the map feature showing the user where their best segments were,
the genre pie charts and the suggestions for similar songs based on the ones that the user had
listened to. | was happy with the overall feedback, and in addition to this there were also some
critiques which | have taken on board. The main concern was that the analyse activity screen has the
potential to be somewhat overwhelming to new users with lots of information being presented. This
is a completely valid point, and something which | would to be addressed in future iterations of
work.

5.4 Evaluation of Testing

After completing multiple testing sessions on the final version of the system and demonstrating the
project to a small select group of people | have come to several conclusions. Due to employing a
test-driven development approach | was able to mitigate a scenario where most of the test cases
would result in failure during the testing sessions. Looking at the results from each testing session, |
am confident in the system that | have produced and although there are some small features which
could benefit from being tweaked, | am pleased with the overall performance and the way the
system holds up. In order to gain further confidence in the system, | would like to have performed
some real external user testing sessions, to see how the system performs with other users’ data and
how the other users would interact with the system. It is quite likely that this form of testing would
highlight bugs and features which could be improved in order to better the user experience, which |
may not have noted during my testing. This would also help to eliminate any bias | might have had
from testing my own system. In addition to user testing, the integration of automatic unit testing

62

would have greatly improved my confidence in the system and would have highlighted any scenarios
where introducing new features would have an unintended effect on another area of the system and
introduced bugs. If | were to implement these two methods of testing, then the documentation for
declaring the system stable and well developed would be much stronger and would strengthen my
confidence in the system.

5.5 Evaluation of System Against Project Aims
As part of the system evaluation, | have used the original aims specified in section 1.3 of this
document as a reference point to determine the success of the project.

Looking at the projects first primary aim; “To create a web-application which will display a user’s
running activity history as well as their music listening history for each activity.”, | have concluded
that this aim was achieved successfully. The system allows users to connect their Strava and Last.FM
accounts and are able to view their recent activities as well as search for activities within a specified
date range. These activities are then displayed alongside the songs which the user listened to during
that activity.

The second of the primary aims; “To implement functionality which allows comparisons between a
user’s single running activity and the music they were listening to during the time-period of that
activity.”, was also achieved successfully. The application certainly does provide the user with the
information that was intended, they are given a breakdown of their runs and are able to view what
songs they were listening to at various segments, including where their heart rate was at its highest
or lowest, or where their pace was at its highest or lowest.

The third primary aim of the project; “3To implement functionality which compares all of a users’
running activities and all of the music listening history for those activities, across a given time
frame by the user.” was also successfully achieved. As previously mentioned, the application allows
a user to search for activities within a specified date range, these activities can then be analysed as a
collective and the user can view their best segments along with the songs, they listened to during
them.

The final primary aim of the project; “To design and implement a suitable and user-friendly user
interface.” is difficult to measure in regard to its success. The user interface was developed with a
mobile-first approach, and is usable on devices of all form factors, including mobile phones, tablets,
and desktops. The designs were kept simple, and the aim was not to overwhelm the user with too
much information. Although personally | am happy with the design and believe that this aim was
successfully achieved to an extent, | would need to carry out specific user testing sessions in order to
record how other people interact with the system and note their views on the suitability and
usability of the user interface. From a session | was involved in with demonstrating the system, the
feedback was mostly positive with people liking the overall design of the system. The only comments
on things which could be changed were some of the animations on the home screen where the
recent songs and activities carousels slide automatically after a few seconds, or that there could
potentially become an overwhelming amount of data given to the user on the analyse activity
screen.

In addition to evaluating the system against the primary aims, the system can also be evaluated
against the secondary aims. The first of the secondary aims; “To update the application logic to
allow for different kinds of activities to be included as opposed to just running. For example,
cycling, weightlifting, boxing etc.” can be classified as successful to an extent. As we discussed, the

63

application does allow the user to view all of their activity types in addition to runs. However, it is
much more difficult to analyse these types of activities as they are not broken down into segments.
Because of this, the other types of activities can only be analysed in groups, and not as individual
activities. Because there is some functionality for analysing these kinds of activities, | would classify
this aim as achieved successfully, although | would have liked to see each of these activities being
able to be analysed individually like with the runs.

The second secondary aim was “To extend the level of detail which is offered by the insights of the
music and activity comparison, for example calculating the optimum beats per minute (bpm) of the
music the user should listen to when they exercise.” which unfortunately was not achieved during
this project. Due to the limitations of the Last.FM APl and it not providing any data on BPM for
songs, | was unable to acquire this data. | explored other solutions, Spotify being the best option,
however implementing the Spotify APl introduced new hurdles such as the user needing to have a
Spotify account, which as we discussed previously, isolated the user base. Because of this, |
unfortunately had to forgo the implementation of this feature for the purpose of this project.

The third secondary aim was “To add functionality for song suggestions based on how the user
performs whilst listening to certain genres of music.”. This aim was successfully achieved with the
similar suggested songs feature which was discussed in section 4 of this document. The application
uses Last.FM to get similar songs to songs which the user listened to during their best segments
when analysing an activity.

The final secondary aim was “To implement a log-in system which would mean that users would
not have to connect their Strava and Last.FM accounts each time they want to use the
application.”. This aim was not achieved during this project. | expected that the implementation of a
log in system would be an incredibly large undertaking, and my preconceptions proved to be correct.
After implementing the other features previously discussed, | began some initial research into how |
could develop a log in system for the application. | quickly realised that this feature would need to
be completely de-scoped, as it would be completely infeasible for me to implement this feature as |
would need to rebuild a large amount of the system, which would have been too large a task to
undertake within the timeframe | had left of the project. Because of this the feature had to be de-
scoped. Although the feature was de-scoped, there is very minimal impact on the user because of
this. The log-in system would not have provided the user with any additional functionality, and
would have only prevented them from having to reconnect their Strava and Last.FM accounts each
time they wanted to use it.

The last mentionable points are the two aims which | set during the project’s lifecycle. These two
aims were:

e “To deploy the web-application on a live-hosting service, to make it accessible online to
any user.”

e “To investigate the incorporation of mapping tools, to display to a user where they have
run during their recorded activities.”

Both of these aims were successfully met, as previously discussed, the application is available online
on Microsoft’s Azure servers and can be accessed by anybody. Mapping of the Strava segments was
also implemented on the analyse activity pages using Leaflet.JS.

In conclusion, | would classify the project myself as a success. The majority of the aims that were set
have been successfully met, and those that were not, were only de-scoped due to limiting factors

64

such as time constraints or available data. All of the core functionality was successfully
implemented, and | was able to include some extra features such as the map.

5.6 Evaluation of Methodology and Tools

Based on the outcome of the several rounds of testing and the evaluation of the system against the
project aims, it is clear that the approach and methodology adapted over the course of this project
were suitable and appropriately chosen. Adopting the agile methodology as previously discussed
allowed the project to be flexible and adapt to any changes which needed to be made to designs,
functionality and what tools were being used. If a waterfall methodology had been chosen, | believe
that the project would have suffered as a result. By losing the flexibility to add new features during
the development process, some of the most defining parts of the system would have been missing
from the final product such as the map components.

In terms of the tools and technology used during development, it is my belief that all of the tools
which were used were a suitable and correct choice for the project. Using JavaScript alongside the
React framework proved to be a good choice as it promoted code reusability, reduced code
redundancy, and allowed me to implement some features with a fair degree of complexity. There
were however some limitations with using React when dealing with passing data around the system.
React is commonly used with another JavaScript framework called Redux (40). Redux is a state
management tool (41), that creates a centralized data store to ensure consistent data across the
application. The project could have benefited from realising the potential with this tool sooner, as it
would have greatly improved the way data is handled within the system and it would have made
several of the main processes more efficient. In addition to this it would clean up a lot of the code
throughout the system, and heavily reduced the complexity of accessing different data sets within
different sections of the system.

Choosing to use Microsoft Azure DevOps for version control was also the perfect tool for the project,
as it provided easy integration with Visual Studio Code, and an easy to work with and understand
user interface for navigating the different branches and commits. The last tool which | used was
called “Postman”. Postman is an tool which allows you to make API requests from a GUl and
visualise the data that is being returned (42).

65

6. Future Work

Although | feel that this project was successful in many ways and achieved most of the aims outlined
by the project, there are still a number of ways in which the solution could be improved and built
upon in the future. | feel that RaceTracks in its current state is more of a prototype that
demonstrates the feasibility of a scalable, and worthwhile system. From my own research,
development, and evaluation, | believe that there is a real use for an application like this, which has
the potential to appeal to a sizeable user base.

The first improvement and something which | wish | had been able to implement during
development, is unit testing. Unit testing is a software development process in which small sections
of the system are run through automated tests to ensure correct and properly functioning code (43).
Jest is a framework which offers unit testing for JavaScript applications and works with React
projects (44). This would be the perfect solution for implementing unit testing on the RaceTracks
application which has been already built, and would allow the codebase to be maintainable,
scalable, and also ensure that new code doesn’t introduce as many new bugs. Furthermore, as part
of Azure DevOps’ production pipeline, these new unit tests can be set to automatically run before
any new code is allowed to merge into the main code branch. This will also aid in preventing the
accidental introduction of new bugs.

Once completing work on the addition of unit testing, the application would then be in a more
suitable state for the addition of new features. One of the projects secondary aims was to offer a
higher level of detail about the music the user listened to during their workouts. Although | was able
to provide the user with the music genres, | was not able to display metrics such as beats per minute
(bpm), and in turn use this data to find other songs with a matching bpm. This was mainly due to the
limitations that we discussed with the APIs, sand o in future iterations of the project, | would like to
investigate other available API’s in more detail such as the Spotify API. | believe that a great deal of
insightful data can be gained from using the Spotify API, and although it was decided that this
project would not use it in order to not isolate the user base, it could be possible that in order to
improve the analysis’ level of detail, it will have to be utilised in some form. The implementation of a
new music data source however would require an overhaul of several parts of the system. A lot of
the components and functions rely on the data structure provided by Last.FM’s APl and it is highly
unlikely that the data structure from Spotify would match this exactly. Because of this, measures for
dealing with a new data structure would need to be put in place. My initial idea would be to create a
generic “RaceTracksSong” object, with fields that can be populated from either Spotify’s or Last.FM'’s
respective song objects, and then overhaul the rest of the system to utilise this new
“RaceTracksSong” object. This would allow for the implementation of a more hexagonal architecture
(5) which aims at creating loosely coupled application components that can be easily connected to
external software environments.

A further aim of the project was to investigate the addition of a log in system for RaceTracks. Whilst |
would have ultimately liked to have implemented a login system, after some investigation this
proved to be a very development heavy, complex, and time-consuming feature which the project
scope just didn’t account for. If this system were to be built upon and made for commercial use,
then a log in system would be a vital addition. By allowing users to create a RaceTracks account, they
will only then need to connect their external activity tracking and music listening account details to a
single account one time. This will negate the need for the user to connect these accounts every
single time they wish to use the application. If this feature were to be implemented, there would
need to be several new additions to the system architecture to allow for it. The first being a back-
end database and the second being an API. The database would need to store all of the users

66

account details and potentially other data such as their Strava activity and Last.FM music data. When
storing this data, it is crucial that appropriate security measures such as password hashing are put in
place. This database would likely be implemented using Microsoft’s ASP.NET framework (45), which
would allow for creating a fast and scalable database alongside an APl which would be needed for
accessing the stored data. The APl would need multiple endpoints for reading, writing, and deleting
data stored within the database, and the React application will then need to be updated to be able
to call these various endpoints. The overall dataflow of the system will also need overhauling to
account for the data being stored within the RaceTracks database and using this as an access point
rather than Last.FM or Strava. One of the main benefits to storing the data within our own database
is that it will heavily reduce the number of API calls made to each of the external API’'s and would
therefore reduce the risk of the application reaching the rate limits for one of the APIs. In addition to
this, storing the data ourselves would reduce the reliance on so many other services and would
mitigate the risk of the application failing if one of the external API’s was unavailable for any reason.
Figure 53 below shows a potential dataflow for the overhauled system which would run each time
the user logs in.

User Logs in using Get data for each new Get music data for each
RaceTracks account activity and store in »| new activity and store in
RaceTracks database RaceTracks database
Yes
User connects a Mo Has user connected 2
Strava Account Strava Account? ¥

Display home page to user

HNo
User connects 2 o as User connected 3 ¢
Last.FM Account Last FM Account? Call RaceTracks APl to
et uzers stored activities

and music data

Y

Check for any new Strava
activities

Figure 53: UML diagram showing proposed high-level dataflow for each log in after implementation of a new log in system

67

If the log in system were to be introduced as detailed above, the system would also benefit from the
introduction of the Redux JavaScript package. As previously discussed, this was something that |
would have liked to include had | only realised it’s potential sooner. If the system were to scale to
become any larger than it is in its current state, then the addition of the Redux package for state
management would be vital. Some of the final changes | would also like to add in future work are
adding new ways of analysing segments and some page styling changes. Although | am happy with
the styling work done on the project in its current state, | would like to further improve on this and
implement a sleeker and more modern looking design. This could include an overhaul of the colour
palette chosen, as well as updated structure of the web pages to reduce potentially overwhelming
the user with too much information.

68

7. Conclusions

The initial aim of this project was to create a responsive web-application that would allow users to
connect their activity tracking and music streaming service accounts together in order to gain an
understanding of how the music that they listen to can affect their performance. As already
evaluated, there were several primary aims which were outlined at the beginning of this project;
these were:

1. To create a web-application which will display a user’s running activity history as well as
their music listening history for each activity.

2. To implement functionality which allows the comparisons between a single user’s running
activity and the music they were listening to during the time-period of that activity.

3. Toimplement functionality which compares running activities and music listening history
across a given time frame by the user.

4. To design and implement a suitable and user-friendly user interface.

It can be deemed as conclusive that the solution provides the functionality to achieve these aims
and does so to an agreeable standard. As a supplement to these primary aims, there were several
secondary aims which were also outlined for this project, these were:

1. To update the application logic to allow for different kinds of activities to be included as
opposed to just running. For example, cycling, weightlifting, boxing etc.

2. To extend the level of detail which is offered by the insights of the music and activity
comparison, for example calculating the optimum beats per minute (bpm) of the music the
user should listen to when they exercise.

3. To add functionality for song suggestions based on how the user performs whilst listening to
certain genres of music.

4. To implement a log-in system which would mean users would not have to connect their
Strava and Last.FM accounts each time they want to use the application.

5. To deploy the web-application on a live-hosting service, to make it accessible online to any
user.

6. To investigate the incorporation of mapping tools, to display to a user where they have run
during their recorded activities.

Unfortunately, not all of the secondary aims can be noted as achieved. Whilst secondary aims 1, 3,5
and 6 can be noted as successfully achieved, sadly, secondary aims 2 and 4 were not successfully
achieved. This was as discussed previously in detail, due to limitations with the external data sources
used, time constraints and the levels of complexity which would come with implementing the
features, primarily the log in system.

It is my belief that the project was managed well throughout its entirety. The research, specification
and design phases were well documented, and therefore allowed me to make the most out of the
time delegated to the implementation. | believe that some of the most notable pieces of work on
this project include the location mapping functionality, the work with several external APIs in order
to mitigate the issues with genre data due to the lack of its availability from Last.FM and the overall
design of the system being suitable for both mobile and desktop views. As a final notable piece of
work, having the solution available as a live website is something which | am particularly proud of, as
initially this was not something that | had envisioned being able to achieve.

Although there was a great deal of success over the course of this project, there was certainly areas
which could have been improved. Had | been able to achieve the final 2 secondary aims, they would

69

have greatly improved the final solution. In addition to this, upon reflection | should have
investigated the addition of Redux and Unit tests more with this project. Using both of these tools
would have instilled me with more confidence in the final system and would have allowed for a
much more dependable and scalable product.

To conclude, a successful development process has led to the creation of a system with a solid
foundation for future development. The solution is a prime example of a proof of concept, and |
believe there is great potential for a product like it. With the current functionality, and despite the
issues posed by data limitations, the solution delivers the user with a tool that allows them to
analyse their activities and see how the music they listened to during them had an impact on their
performance. They can see segments of their run where they ran their fastest or the slowest, or
where their heart rate was at its highest or its lowest. As intended, this project has led to the
creation of a solution which allows users to analyse their activities and determine whether or not,
“Music makes you run faster”.

70

8. Reflection on Learning

At the start of this project, | outlined some objectives which | aimed to work towards over the
duration of the project. These objectives were mainly based on developing my knowledge with new
technical concepts which | had not worked with before and so reflecting on them is an opportunity
for me to gauge how much | have been able to learn across this project.

My first objective was “To investigate, understand and work with external developer API’s
available from several companies and see the extent of what data can be obtained from each
one.”. | was really interested prior to starting development, as to how to work with the available
API’s. There were three different API’s which are implemented into the solution, each of which
worked in slightly different ways. This proved to be an incredible learning process as | became
familiar with how to navigate the available documentation for each APl and learn about new
concepts such as Client ID’s and secret keys. | also learned to understand the importance of data
security whilst working with these services and how to make requests to them securely using HTTPS
calls.

My second objective was “To investigate, understand, and implement authentication workflows
using authentication procedures used by external API’s.”. Authentication is something which | have
always been aware of, however | had little to no understanding on how or why it should be
implemented. Working with the Strava APl presented a strong learning experience in integrating an
authentication workflow into a system. As we have already discussed, the Strava APl implements
OAuth2 authentication, and | faced several challenges with the integration of this workflow.
Although the process was well documented, | initially struggled to understand it. Although | was able
to research example implementations of the Strava API, whilst | was trying to implement it into my
own project, the problems | faced were ones which | felt as though | had to tackle myself as | was
working as a solo developer. | was able to overcome the problems, and by doing so my
understanding of the authentication process was much stronger than it would have been had | not
had any problems. By repeatedly reading the documentation and finding better ways to implement a
solution, my technical skills and understanding of authentication have improved greatly.

My final objective was “To work with available resources to better understand and learn some best
practices for front-end JavaScript development.”. This objective outlines one of my biggest personal
goals with this project. Front-end JavaScript web development is something that | wanted to
improve my skills in, and by developing an application entirely in JavaScript using the React
framework | was able to do just that. Although there are some sections of the system which | would
like to have been able to refactor, throughout the development process | was always looking for the
best way | could find to implement a new feature. This led me to research ways in which certain
things should be handled in JavaScript, one key thing being asynchronous calls and promises as we
have discussed previously. | was also able to research several best practices for developing with
React, and although | was unable to implement everything which | have learned, my understanding
of how | would approach the scenario if | were to tackle this kind of project again in the future has
greatly improved.

In addition to these objectives, | would also like to reflect on my general performance across the
project. | am particularly proud of my time management throughout the process, and | was
consistently ahead of the initial schedule which | proposed in my initial report. | worked heavily on
development in the first weeks of the project and was quickly able to meet my criteria for an MVP,
and although it might not be reflective in the report, an incredible amount of time went into the
development process to make this project possible. | did also make sure to designate plenty of time

71

towards the writing of this report, and so did not find myself in a situation where | felt that | had to
rush sections or that they were incomplete. | am also proud of the programming skills that | have
developed across the process of this project, and the work that | have accomplished. | hope to use
everything that | have learnt from start to finish with this project on future projects.

72

Table of Abbreviations

Abbreviation

Full Terminology

API Application Programming Interface
App Application

BPM Beats Per Minute

GUI Graphical User Interface

HTTP Hyper-Text-Transfer-Protocol

HTTPS Hyper-Text-Transfer-Protocol-Secure
IDE Integrated Development Environment
ILB Internal Load Balancer

Ul User Interface

Web-App Web Application

73

Appendices

Additional Wireframe designs:

L\ —-— N

RaceTracks

Welcome to RaceTracks!

Start by connecting your Strava Account
Below:

STRAVA

S 7

Figure 54: Wireframe showing mobile view of Connect Strava Account Screen

—_— N

RaceTracks

Next, connect your Last.FM Account:

lost.fm

S 7,

Figure 55: Wireframe showing mobile view of Connect Last.FM Account Screen

RaceTracks

Recent Activities

Afternoon Run

Search for activities by date:

< 16th March 2022 14:42 >

Search Results:

Analyse all activities between these dates:

Afternoon Run Example Run

16 Mar 2022 12 Mar 2022

Activity: Run

Activity: Run

Example Run
10 Mar 2022

Activity: Run

Example Run
8 Mar 2022

Activity: Run

Recent Songs
Song Image g

Song name—artist

Figure 56: Wireframe showing desktop design for Activity Search Results Screen

75

RaceTracks

Recent Activities

Afternoon Run

< 16th March 2022 14:42 >

Search for activities by date:

Search Results:

Afternoon Run Example Run
16 Mar 2022 12 Mar 2022
Activity: Run Activity: Run

.

RaceTracks

Example Run Example Run

10 Mar 2022 8 Mar 2022

Activity: Run Activity: Run

Example Run Example Run
6 Mar 2022 3 Mar 2022
Activity: Run Activity: Run

Recent Songs

Song name—artist

Figure 57: Wireframe showing mobile view for Activity Search Results Screen

76

Round 1 of Testing screenshots:

LogIn

Log in using facebook

Log in using Gaogle

Signin

Figure 58: Redirect to Strava log in page

Authorize Can music make you
run faster? to connect to Strava

Undergraduate Computer Science Final Year Project

ww.strava.testapp.com./

https://

Can music make you run faster? will be able to:

View data about your public profile {required)

View data about your private activities

Cancel

To revoke access to an application, please visit your
settings at any time.

By authorizing an application you continue to
operate under our Terms of Service.

Figure 59: Redirect to Strava authorisation page

lost.fm

Figure 60: Redirected to connect Last.FM screen after successful Strava authorization

77

ﬂ RACETRACKS

Recent Activities

Roath Park 5K

21 Feb 2022 14:28

Search for activities by date:

dd/mm/yyyy [m]

dd/mmvyyy a

Recent Songs

Ed Sheeran

Shape of You 5

Figure 61: Home page as of first round of testing showing data from connected Strava and Last.FM accounts

@ RACETRACKS a: Tyler Jenkins

| ThislsNotARealUserThisShouldNotWaork

1lssue; B

© »GET https://ws.sudioscrobbler.co [astfmFunctions.js:3 @
m/2.8/2method=user.getinfoluser=T
hisTsMotAReallserThisShouldNotWork&api key=ecfalf7.&Format
=json 484

© »GET https://ws.audioscrobbler.co | actfmFunctions.is:3 @&

m/2.8/method=user.getinfokuser=T
hisTsMotARealUserThisShouldNotWork&api key=ecfalf7.&format

=json 484

Figure 62: Entering incorrect data into connect last.fm box returns a 404 message

78

ﬂ RACETRACKS Strava: Tyler Jenkins

Roath Park 5K - 21 Feb 2022

Activity Type: Run Average heart rate: 169.8 Max heart rate: 188

Select Segment:

Your fastest segment was: Gate to Lake

Max heart rate: 179 Average heart rate:
168.4

Segment Start: Segment Finish:

14:36:28 14:37:58

Elapsed Time: 01:30 Average

speed:12.76km/h

During this segment you listened to:

Serry! There is no song data for this segment.

During this activity you listened to these genres:

op

During this activity you listened to these songs:

». Ed Sheeran - Shape of You 21 Feb 2022, 14:54
ﬁ Clean Bandit - Rockabye (feat. Sean Paul & Anne-Marie} 21 Feb 2022, 14:50
Michael Jackson - Black or White 21 Feb 2022, 14:46

- Kanye West - All of the Lights 21 Feb 2022, 14:40
B rioon Dondir - Sumnhan faat Zars §arcenm 91 Eah 3033 1438

Figure 63: Analyse “Run” activity screen as of first round of testing

ﬂ RACETRACKS ins

88 Roath Park 5K - 21 Feb 2022

y Type: Run Average heart rate: 169.8 Max heart rate: 188

Select Segment: Lowest average heartrate =

Your average heart rate was lowest in this segment: Jog Squad - East side

A

Max heart rate: 177 Average heart rate: 169
Segment Start: Segment Finish:
14:44:35 14:49:15

Elapsed Time: 04:40 Average speed:

During this segment you listened to:

Michael Jackson - Black or White 21 Feb 2022, 14:46

These Genres:

During this activity you listened to these genres:

Figure 64: Shows drop down changed to Lowest average heartrate as of first round of testing

Recent Activities

Afternoon Run
04 Feb 2022 13:30

Search for activities by date:
04/02/2022

09/01/2013

Select the type of activity
you would like to analyse:

Analyse all Run activities between these dates

Please note, there is a limit on how many activities can be loaded at once. If any activities are missing from the time period you have selected, please narrow

down your date range.

Rarant CAnnc

Figure 65: Shows invalid date search as of first round of user testing

ﬂ RACETRACKS

Strava: Tyler Jenkins LastFm: TylerJenkins22

Recent Activities

Evening Walk

03 Dec 2021 19:33

Search for activities by date:
18/11/2021 [m]

> 25/02/2022 [m]

Select the type of activity
you would like to analyse:

Analyse all Run activities between these dates

Roath Park 5K
21 Feb 2022
Activity: Run

Run

Afternoon

04 Feb 2022

Lunch Run
30 Nov 2021

Lunch Run
01 Dec 2021

Activity: Run Activity: Run

Activity: Run

Please note, there is a limit on how many activities can be loaded at once. If any activities are missing from the time period you have selected, please narrow

down your date range.

Recent Songs

Figure 66: Shows successful activity date range search as of first round of user testing

80

ﬂ RACETRACKS

Back

Select Segment:

Your fastest segment was: Gate to Lake

Max heart rate: 179 Average heart rate: 1654
Segment Start: 14:36:28 Segment Finish: 14:37:58
Elapsed Time: 01:30 Average speed:12.76km/h

During this segment you listened to:

Sormy! There is no song data for this segment.

During these activities you listened to these genres:

eCtro House

During these activities you listened to these songs:

Ed Sheeran - Shape of You 21Feb 2022, 14:54
Clean Bandit - Rockabye (feat. Sean Paul & Anne-Marie) 21Feb 2022, 14:50
Michael Jackson - Black or White 21Feb 2022, 14:46
Kanye West - All of the Lights 21 Feb 2022, 14:40
Clean Bandit - Symphony (feat. Zara Larsson) 21Feb 2022, 1435
Dua Lipa - Levitating (feat DaBaby) 21Feb 2022, 1431
) Meduza - Paradise (feat. Dermot Kennedy) 04 Feb 2022, 13:55
Gaullin - So We Go (feat. Katy Tiz) - Martin Jensen Edit 04 Feb 2022, 13:53
Harrison - Breathe Me In 04 Feb 2022, 13:50

Figure 67: Shows analyse several activities page as of first round of testing

RACETRACKS

Select Segment: Lowest average heartrate

Your average heart rate was lowest in this segment: Up Fairoak Road

Max heart rate: 145 Average heart rate: 145
Segment Start: 12:48:19 Segment Finish: 13:52:49
Elspsed Time: 05:30 Average speed:

During this segment you listened to:

Gaullin - So We Go (feat. Katy Tiz) - Martin Jensen Edit 04 Feb 2022, 13:32
Harrison - Breathe Me In 04 Feb 2022, 13:30
These Genres: Sorryl No genre data is

available for these songs

During these activities you listened to these genres:

Figure 68: Shows successful segment filter change on analysing multiple activities as of first round of testing

81

Evening Walk Searcn 1or acuviues py aate:

03 Dec 2021 19:33 02/02/2022 (]
25/02/2022]

S

Select the type of activity you Analyse all Workout activities between these dates
would like to analyse:

Afternoon
Activity
09 Feb 2022

Activity: Workout

Analyse

Please note, there is a limit on how many activities can be loaded at once. If any activities are missing from the time period you have selected, please narrow down your date range.

Recent Songs

Figure 69: Shows activity filter changed to “Workout” as of first round of testing

ﬂ RACETRACKS Strava: Tyler Jenkins LastFm: TylerJenkins22

Afternoon Activity - 09 Feb 2022

Activity Type: Workout Average heart rate: 106.5 Max heart rate: 142

Sorry, this application currently does not support analysis of activities other than running.

During this activity you listened to these genres:

During this activity you listened to these songs:

g Marshmello - Happier 09 Feb 2022, 15:55

DJ Snake - Selfish Love (with Selena Gomez) 09 Feb 2022, 15:52

Figure 70: Shows attempt to analyse a non-running activity as of first round of testing

ﬂ RACETRACKS Strava: Tyler Jenkins

Recent Activities

Evening Walk Search for activities by date:

03 Dec 2021 1933 adfmm/yyyy mi

dd/mmiyyyy B

S

Recent Songs

Pentemple

Pazuzu 2 >

Figure 71: Shows another user’s account connected as Last.FM account as of first round of testing

82

Round 2 of testing Screenshots:

Log In

Log in using Facebook

Log in using Google

Sign in with Apple

Or log in with email

Your Email

vord

® Remember me

Log In

Forgot your password?

Figure 72: Redirect to Strava log in page

RaceTracks

Authorize RaceTracks to connect to Strava

Undergraduate Computer Science Final Year Project

ht

testapp.com./

RaceTracks will be able to:

View data about your public profile (required)

View data about your private activities

Cancel

To revoke access to an application, please visit your settings at any time.

By authorizing an application you continue to operate under our Terms of Service,

Figure 73: Authorize RaceTracks access to Strava screen

@ RACETRACKS Strava: Tyler Jenkins. Log out

Welcome to RaceTracks

Analyse your performance across exercises based on the music you listen to!

[[€

Next, connect your last.fm account below:

lost.fm

|

Figure 74: Screenshot showing connect Last.FM account screen

LastFm:

Strava: Tyler Jenkins Log out Tylerlenkins22

Recent Activities

Lunch Run Search for activities by date:

31 Mar 2022 1242 dd/mm/yyyy =

dd/mmiyyyy
e —

Recent Songs

Catfish and the Bottlemen

Anything >

Figure 75: Screenshot showing home page as of second round of self-testing

ﬂ RACETRACKS Strava: Tyler Jenkins Log out:

Welcome to RaceTracks

Analyse your performance across exercises based on the music you listen to!

SR

Next, connect your last.fm account below:

lost.fm

ThisAccountDoesNotExist

Connect to Last Fm

Figure 76: Screenshot showing connect Last.FM account screen with invalid username entered

84

m Afternoon Run - 17 Mar 2022

Select Segment

Your Fastest segment was: Do, or do not. There is no try! -

17/03/2022
Max heart rate: 179 Average heart rate: 175.6
Segment Start: 13:43:07 Segment Finish: 13:43:34
Elapsed Time: 00:27 Average spesd:11.96km/h
During this segment you listened to:
M Kings of Leon - Sex on Fire 17 Mar 2022, 13:43
These Genres:

Rock: 1 il

Pleasze note: Some songs may not have available genre data

Similar suggested songs:

M Kings of Leon - Use Somebody

M Kings of Leon - Closer

During this activity you listened to these genres:

Pop: 1

Rock: 1
Electronic: 2
Indie Pop: 1

House: 1

indie: 1

Plzase note: Some s0ngs may not have availzble genre data

During this activity you listened to these songs:

Michael Jackson - Black or White

17 Mar 2022, 13:46

Vimnz ~f | amm - S2v e Sies

47 Mar 3023 1242

Figure 77: Screenshot showing Analyse Activity page after second round of self-testing

Afternoon Run - 17 Mar 2022

Select Segment:

Lowest average heartrate ™

East - 17/03/2022

Max heart rate: 155 Average heart rate: 155
Segment Start: 13:21:57 Segment Finish: 13:25:51
Elapsed Time: 03:54 Average speed:9.81km/h

During this segment you listened to:

Your Lowest average heartrate segment was: Cathays cemetery

l . Imagine Dragons - Whatever It Takes 17 Mar 2022, 13:22
These Genres:
Indie: 1 ||

Please note: Some songs may not have available genre data

Figure 78: Screenshot showing the map updating to show the selected segments location

85

Strava: Tyler Jenkins Log out LastFm: TylerJenl

Recent Activities

Afternoon Activity Search for activities by date:

02 Mar 2022 14:16 04/02/2022

15/06/2013
Analyse
L

would like to analyse:

Please note, there is a limit on how many activities can be loaded at once. If any activities are missing from the time period you have selected, please narrow down your date range.

Recent Songs
The Lathums

Fight On >

Figure 79: Screenshot showing invalid date search after second round of self testing

Recent Activities

Afternoon Run Search for activities by date:

17 Mar 2022 13:20 03/02/2022

22/04/2022
Analyse
S

Select t!-'e type of activity you m Analyse all Run activities between these dates
would like to analyse:

Lunch Run Afternoon Run Afternoon Run Afternoon Run Afternoon Run Lunch Run
31 Mar 2022 28 Mar 2022 22 Mar 2022 17 Mar 2022 15 Mar 2022 27 Feb 2022
Activity: Run Activity: Run Activity: Run Activity: Run Activity: Run Activity: Run

Roath Park 5K Afternoon Run

21 Feb 2022 04 Feb 2022

Activity: Run Activity: Run

Please note, there is a limit on how many activities can be loaded at once. If any activities are missing from the time period you have selected, please narrow down your date range.

Figure 80: Screenshot showing activity date search results after second round of self-testing

Recent Activities

Afternoon Activity

02 Mar 2022 14:16

Search for activities by date:
03/02/2022

22/04/2022

Select the type of activity you
would like to analyse:

Analyse all Workout activities between these dates

Afternoon
Activity
26 Feb 2022

Afternoon
Activity
02 Mar 2022

Lunch Activity
25 Feb 2022

Activity: Workout
Activity: Workout

Please note, there is a limit on how many activities can be loaded at once. If any activities are missing from the time period you have selected, please narrow down your date range.

Activity: Workout

Afternoon
Activity

22 Feb 2022
Activity: Workout

Afternoon
Activity
23 Feb 2022

Activity

Activity: Workout

Figure 81: Screenshot showing "Workout" activities as of second round of self-testing

Afternoon

09 Feb 2022
Activity: Workout

m Afternoon Activity - 02 Mar 2022

Activity Type: Workout Average heart rate: 143.5

Max heart rate: 175

To analyse this type of workout, please analyse multiple workouts across a date range.

During this activity you listened to these genres:

Trance: 1 -
Electro House: 1 []

Please note: Some songs may not have available genre data

During this activity you listened to these songs:

Tiésto - The Business

TifsTi

2 Mar 2022, 14:45

AZ2A - Superstar

2 Mar 2022, 14:43

- Meduza - Paradise (feat. Dermot Kennedy)

2 Mar 2022, 14:41

Figure 82: Screenshot showing analyse workout activity page as of second round of self-testing

87

Select Filter: Highest average heartrate ~

Your Highest average heartrate workout was: Afternoon Activity - 23/02/2022

Max heart rate: 170 Average heart rate: 144
Activity Start: 14:50:42 Activity Finish: 15:10:47
Elapsed Time: 20:05

During this activity you listened to:

Havana Brown - We Run The Night - Teddy Cream Remix 23 Feb 2022, 15:09
ATB - Your Love (9PM) 23 Feb 2022, 15:07
Becky Hill - Remember 23 Feb 2022, 15:04
NECKYHILL
DA
NEIKED - Better Days (NEIKED x Mae Muller x Polo G) 23 Feb 2022, 15:01
Lady Gaga - Rain on Me (with Ariana Grande) 23 Feb 2022, 14:59

Figure 83: Screenshot showing analyse workout activities page as of second round of self-testing

ST UPAATErUNCTIONLOMPONENT (FeacT-dom.development.Js:i/sonil)
at beginkork (react-dom.development.is:19063:1)

at HTMLUnknownElement.callCallback (react-dom.development
at Object. invokeGuardedCallbackDev (react-dom.development
at invokeGuardedCallback (react-dom.devel

at beginWork$l (react-don.developmen

© »The above error occurred in the <SimilarSongs> react-dom.development. js:20085
component :

at Similarsongs (http://localhost:3000/main.89631cO...hot-update.j 5)
at div

at WorkoutDetails (http://localhost:3008/static/js/bundle.js:3597:5)

at div

at div

at div

at div

at div

at AnalyseWorkoutActivities (http://localhost:3600/static/js/bundle.js:1276:

at AnalyseActivitiesR http://localhost:3000/static/js/bundle.js:764:5)
at App (http://localhost:3600/static/js/bundle.js:57:88)

Consider adding an error boundary to your tree to customize error handling

behavior.
Visit https://reactjs.org/link/error-boundaries to learn more about error
boundaries.

© Uncaught (in promise) TypeError: Cannot read properties of SimilarSongs.js:88
undefined (reading 'album')
at SimilarSongs.js:88:1
at Array.map (<anonymous>)
at SimilarSongs (SimilarSongs.js:80:1)
at renderWithHooks (react-dom.development.js:14985:1)
at updateFunctionComponent (react-dom.development.js:17356:1)
at beginWork (react-dom.developmen: 19063:1)
at HTMLUnknownElement.callCallback (react-dom.development.js:3945:1)
at Object.invokeGuardedCallbackDev (react
at invokeGuardedCallback (react-dom.devel:
at beginWork$l (react-dom.developmen:

Recent Activities
Lunch Run Search for activities by date:
31 Mar 2022 12:42 dd/mm/fyyyy a

dd/mmyyyy o

Recent Songs

Pentemple

Pazuzu 2 >

Figure 85: Screenshot showing another user’s Last.FM account connected following second round of self-testing

88

References

1.

10.

11.

12.

13.

14.

Strava Revenue and Usage Statistics (2022) [Internet]. Business of Apps. 2020 [cited
2022 Mar 11]. Available from: https://www.businessofapps.com/data/strava-statistics/

Spotify — About Spotify [Internet]. [cited 2022 Mar 11]. Available from:
https://newsroom.spotify.com/company-info/

Hoory L. Agile vs. Waterfall: Which Project Management Methodology Is Best For You?
[Internet]. Forbes Advisor. 2022 [cited 2022 May 2]. Available from:
https://www.forbes.com/advisor/business/agile-vs-waterfall-methodology/

How Does My Phone Track My Steps? [Internet]. MUO. 2021 [cited 2022 Mar 11].
Available from: https://www.makeuseof.com/how-does-my-phone-track-my-steps/

Hexagonal architecture (software). In: Wikipedia [Internet]. 2022 [cited 2022 Apr 6].
Available from:
https://en.wikipedia.org/w/index.php?title=Hexagonal_architecture_(software)&oldid
=1075385603

Data Importers | Strava Apps — There’s one for every athlete. [Internet]. [cited 2022
Mar 11]. Available from: https://www.strava.com/apps/data-importer

Track My Music [Internet]. Last.fm. [cited 2022 Mar 11]. Available from:
https://www.last.fm/about/trackmymusic

The End-User Stakeholders [Internet]. [cited 2022 Mar 15]. Available from:
https://www.thesalesblog.com/blog/the-end-user-stakeholders

Perform | Al-Powered Music Workouts [Internet]. [cited 2022 Mar 15]. Available from:
https://perform.fm

RockMyRun, Music that Moves You [Internet]. 2022 [cited 2022 Mar 16]. Available
from: https://www.rockmyrun.com/

React — A JavaScript library for building user interfaces [Internet]. [cited 2022 Mar 16].
Available from: https://reactjs.org/

React (JavaScript library). In: Wikipedia [Internet]. 2022 [cited 2022 Mar 11]. Available
from:
https://en.wikipedia.org/w/index.php?title=React_(JavaScript_library)&oldid=1076081
030

Create a New React App — React [Internet]. [cited 2022 Mar 11]. Available from:
https://reactjs.org/docs/create-a-new-react-app.htmil

Babel - The compiler for next generation JavaScript [Internet]. [cited 2022 Mar 16].
Available from: https://babeljs.io/

89

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

webpack [Internet]. webpack. [cited 2022 Mar 16]. Available from:
https://webpack.js.org/

Node.js. Node.js [Internet]. Node.js. [cited 2022 Mar 16]. Available from:
https://nodejs.org/en/

contributors MO Jacob Thornton, and Bootstrap. Bootstrap [Internet]. [cited 2022 Mar
11]. Available from: https://getbootstrap.com/

React-Bootstrap [Internet]. [cited 2022 Mar 16]. Available from: https://react-
bootstrap.github.io/

Leaflet — an open-source JavaScript library for interactive maps [Internet]. [cited 2022
Mar 16]. Available from: https://leafletjs.com/

React Leaflet | React Leaflet [Internet]. [cited 2022 Mar 16]. Available from:
https://react-leaflet.js.org/

Home [Internet]. [cited 2022 Mar 16]. Available from:
https://moment.github.io/luxon/#/?id=luxon

react-minimal-pie-chart [Internet]. npm. [cited 2022 Mar 16]. Available from:
https://www.npmjs.com/package/react-minimal-pie-chart

Azure DevOps Services | Microsoft Azure [Internet]. [cited 2022 Mar 16]. Available
from: https://azure.microsoft.com/en-us/services/devops/

Business requirements. In: Wikipedia [Internet]. 2022 [cited 2022 Apr 28]. Available
from:
https://en.wikipedia.org/w/index.php?title=Business_requirements&oldid=108354986
6

nishan_clrbridge. Mobile App Design: Designing for a Web App vs. Native App
[Internet]. Clearbridge Mobile. 2020 [cited 2022 Mar 17]. Available from:
https://clearbridgemobile.com/mobile-app-design-designing-for-a-web-app-vs-native-
app/

Advantages of using blue in your web design — Pumpkin Web Design Manchester
[Internet]. [cited 2022 May 2]. Available from:
https://www.pumpkinwebdesign.com/web-design-manchester/advantages-of-using-
blue-in-your-web-design/

Strava Developers [Internet]. [cited 2022 Mar 17]. Available from:
https://developers.strava.com/docs/authentication/

Strava Developers [Internet]. [cited 2022 Apr 4]. Available from:
https://developers.strava.com/docs/rate-limits/

AP| Terms of Service [Internet]. Last.fm. [cited 2022 Apr 4]. Available from:
https://www.last.fm/api/tos

90

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

json-server [Internet]. npm. [cited 2022 Apr 4]. Available from:
https://www.npmjs.com/package/json-server

jquery - When is JavaScript synchronous? [Internet]. Stack Overflow. [cited 2022 Mar
22]. Available from: https://stackoverflow.com/questions/2035645/when-is-javascript-
synchronous

How to Use Fetch with async/await [Internet]. Dmitri Pavlutin Blog. 2020 [cited 2022
Mar 22]. Available from: https://dmitripavlutin.com/javascript-fetch-async-await/

Sallai T. How to use async functions with Array.map in Javascript [Internet]. [cited 2022
Apr 5]. Available from: https://advancedweb.hu/how-to-use-async-functions-with-
array-map-in-javascript/

@mapbox/polyline [Internet]. npm. [cited 2022 Mar 23]. Available from:
https://www.npmjs.com/package/@mapbox/polyline

Home | TheAudioDB.com [Internet]. [cited 2022 Mar 11]. Available from:
https://www.theaudiodb.com/

Formatting [Internet]. [cited 2022 Apr 12]. Available from:
https://moment.github.io/luxon/#/formatting?id=table-of-tokens

GitHub Pages [Internet]. GitHub Pages. [cited 2022 Apr 4]. Available from:
https://pages.github.com/

HTTPS. In: Wikipedia [Internet]. 2022 [cited 2022 Apr 16]. Available from:
https://en.wikipedia.org/w/index.php?title=HTTPS&o0ldid=1082479259

cephalin. Security - Azure App Service [Internet]. [cited 2022 Apr 16]. Available from:
https://docs.microsoft.com/en-us/azure/app-service/overview-security

Redux - A predictable state container for JavaScript apps. | Redux [Internet]. [cited
2022 Apr 25]. Available from: https://redux.js.org/

State Managers [Internet]. JavaScript Stuff. [cited 2022 Apr 25]. Available from:
https://www.javascriptstuff.com/state-managers/

Postman API Platform [Internet]. [cited 2022 May 3]. Available from:
https://www.postman.com/product/what-is-postman/

What is Unit Testing? Definition from Whatls.com [Internet]. SearchSoftwareQuality.
[cited 2022 Apr 6]. Available from:
https://www.techtarget.com/searchsoftwarequality/definition/unit-testing

Jest - [¥] Delightful JavaScript Testing [Internet]. [cited 2022 Apr 6]. Available from:
https://jestjs.io/

ASP.NET | Open-source web framework for .NET [Internet]. Microsoft. [cited 2022 Apr
12]. Available from: https://dotnet.microsoft.com/en-us/apps/aspnet

91

