
1

͞Music ŵakes you ruŶ faster…?͟

Author Student No: C1827663

Author Name: Tyler Cole Jenkins

Module Code: CM2303

Module Title: One Semester Individual Project

Module Leader: Dr. Frank Langbein

 Supervisor: Martin Chorley

Moderator: Carl Jones

Word Count: 23538

Word Count excluding Title Page, ToC, ToF, Appendices and References: 21032

2

Abstract
Running is one of the most accessible sports in the world. With more and more people becoming

interested in the sport, there are also more people looking for ways to improve their performance.

Many runners like to listen to music whilst they run, and many believe that certain songs can help

them to push that little bit further and motivate them during their activities.

With a recent rise in smartphone applications that allow users to track their runs, it is now easier

than ever to track your running performance over a period of time and visualise areas where you

could improve. In addition to this, the number of people using a music streaming service which allow

them to stream music anywhere and anytime is at an all-time high. These two services together

provide the basis for this project. This project aimed to investigate ways in which we could help

runners understand if music does have an impact on their runs. By creating a web-application which

allows users to connect their accounts from a popular activity tracking service known as Strava, and

a popular music streaming service known as Last.FM, this project will act as a tool for allowing users

to visualise the effects that music has on their runs and thereby ultimately help them to decide if

͞MusiĐ ŵakes Ǉou ƌuŶ fasteƌ.͟.

Acknowledgments
I would like to thank my supervisor, Martin Chorley, for meeting with me consistently throughout

this pƌojeĐt to ŵoŶitoƌ the pƌojeĐt’s pƌogƌess aŶd for providing valuable suggestions throughout

development.

3

Table of Contents
Abstract ... 2

Acknowledgments ... 2

Table of Contents .. 3

Table of Figures ... 5

1. Introduction .. 8

1.1 Introduction .. 8

1.2 Initial Assumptions .. 8

1.3 Project Aims and Objectives ... 8

1.4 Intended Audience .. 10

1.5 Project Approach .. 10

1.6 Project Scope .. 11

1.7 Summary of Outcomes ... 11

2. Background ... 12

2.1 Wider Project Context... 12

2.2 Identified Problem and Stakeholders ... 13

2.3 Associated Theory ... 14

2.4 Existing Solutions .. 15

2.5 Methods and Tools Used .. 16

2.6 Further and Implicit Assumptions ... 18

2.7 Concluding Research Questions .. 18

2.7.1 Aim: ... 18

2.7.2 Research Question(s): ... 18

3. Specification and Design ... 19

3.1 Business Requirements ... 19

3.2 User Interface ... 19

3.2.1 Connect Strava and Last.FM Accounts Screens .. 20

3.2.2 Home Page .. 22

3.2.3 Analyse Activity Page .. 24

3.2 Dynamic Behaviour and Data Flows ... 28

3.3 System Architecture .. 34

4. Implementation .. 36

4.1 External API Limitations .. 36

4.2 Asynchronous Functions and Promises .. 37

4.3 Strava Authentication ... 38

4.4 Last.FM User Data Retrieval .. 40

4

4.5 API Request Methods.. 41

4.6 Analysing Activities and Segment Efforts.. 43

4.7 Mapping Strava Data... 45

4.8 Song Genre Data ... 47

4.9 Suggesting Similar Songs ... 50

4.10 Dealing with DateTime Objects .. 52

4.11 Live Webhosting .. 53

4.12 Security ... 55

5. Results and Evaluation .. 56

5.1 First round of testing – 25/02/2022.. 56

5.2 Second round of testing – 14/04/2022 ... 59

5.3 Feedback from Demonstrating to an Internal Group ... 62

5.4 Evaluation of Testing ... 62

5.5 Evaluation of System Against Project Aims .. 63

5.6 Evaluation of Methodology and Tools .. 65

6. Future Work .. 66

7. Conclusions ... 69

8. Reflection on Learning .. 71

Table of Abbreviations .. 73

Appendices .. 74

Additional Wireframe designs: ... 74

Round 1 of Testing screenshots: ... 77

Round 2 of testing Screenshots: ... 83

References .. 89

5

Table of Figures
Figure 1: Example of a run activity on Strava separated into segments .. 14

Figure 2: Default React-Bootstrap Carousel Component ... 16

Figure 3: Customised React-Bootstrap Carousel Component used on RaceTracks 17

Figure 4: Default React-Minimal-Pie-Chart Component ... 17

Figure 5: Customized React-Minimal-Pie-Chart Component .. 17

Figure 6: Home page view during early stages of development .. 20

Figure 7: Wireframe showing Connect Last.FM account screen .. 20

Figure 8: Wireframe showing Connect Strava Account screen .. 20

Figure 9: Screenshot showing final Connect Strava Account Screen .. 21

Figure 10: Screenshot showing final Connect Last.FM Account Screen ... 21

Figure 11: Wireframe - Desktop view of home page .. 22

Figure 12: Wireframe - Mobile view of home page .. 22

Figure 13: Final Solution - Desktop Home Page .. 23

Figure 14: Final Solution - Mobile Home Page .. 23

Figure 15: Wireframe - Mobile view of Analyse Activity Page .. 24

Figure 16: Wireframe - Desktop view of Analyse Activity Page .. 24

Figure 17: Screenshot showing desktop view of Analyse Activity page ... 25

Figure 18: Screenshot showing second section of mobile view of Analyse Activity Page 26

Figure 19: Screenshot showing first section of mobile view of Analyse Activity Page 26

Figure 20: Screenshot showing final section of mobile view of Analyse Activity Page 27

Figure 21: UML Diagram showing Strava OAuth Data Flow ... 29

Figure 22: UML Diagram showing stravaUserData Object ... 30

Figure 23: UML Diagram showing data flow for connecting a Last.FM account 31

Figure 24: UML Diagram showing created lastFmUserData object .. 32

Figure 25: UML Activity Diagram showing high level overview of user interaction with the system .. 33

Figure 26: Code Snippet showing asynchronous function that fetches a user's recent songs in

LastFmFunctions.js file .. 37

Figure 27: Code Snippet showing asynchronous mapping function for getting songs for multiple

activities .. 38

Figure 28: Code Snippet showing Strava Authentication Function in StravaFunctions.js file 39

Figure 29: Code Snippet showing function to get the returned Strava Auth code from the URL in

StravaFunctions.js file ... 39

Figure 30: Code Snippet showing get Strava Auth Token Function in StravaFunctions.js file 40

Figuƌe ϯϭ: Code “Ŷippet shoǁiŶg fuŶĐtioŶ foƌ gettiŶg a useƌ’s Last.FM aĐĐouŶt data 40

Figure 32: Code Snippet showing handleFetchActivitiesByDate method .. 41

Figure 33: Code Snippet showing handleFetchSegment method ... 41

Figure 34: Code Snippet showing handleFetchSongsBetweenDateRange method 42

Figuƌe ϯϱ: Code “Ŷippet shoǁiŶg fuŶĐtioŶ foƌ gettiŶg a Useƌ’s Fastest “egŵeŶt Effoƌt 43

Figure 36: Code Snippet showing function for getting a User's highest average heart rate segment . 44

Figure 37: Screenshot showing example map for a highest average heartrate segment 45

Figure 38: Example encoded segment polyline returned by Strava ... 45

Figure 39: Code Snippet showing method for decoding Strava Polyline data into an array of

coordinates in StravaMap.js ... 46

Figure 40: Example screenshot of decoded polyline coordinates .. 46

Figure 41: Code Snippet showing function for making a call to TheAudioDb to get genre data for each

song in a list of songs .. 48

file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986173
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986174
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986175
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986178
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986179
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986180
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986182
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986183
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986185
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986186
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986192
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986193
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986193
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986195
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986206
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986206
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986208
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986208

6

Figure 42: Example data structure which should be supplied to the React-Minimal-Pie-Chart

Component ... 48

Figure 43: Code Snippet showing function taking a list of Song Genres and structuring it for the pie

chart .. 49

Figure 44: Screenshot showing example of a rendered pie chart key .. 50

Figure 45: Code Snippet showing rendering of pie chart key ... 50

Figure 46: Code Snippet showing function for getting similar songs from Last.FM 51

Figure 47: Highest average heart rate segment showing similar suggested songs 52

Figure 48: Code Snippet showing conversion of Last.FM date to the local system time zone 53

Figure 49: Screenshot showing the Azure Pipeline commands for creating a production build of the

application .. 54

Figure 50: Screenshot showing the Azure Release Pipeline commands .. 54

Figure 51: Testing table showing first round of testing on 25/02/2022 ... 58

Figure 52: Testing table showing first round of testing on 15/04/2022 ... 61

Figure 53: UML diagram showing proposed high-level dataflow for each log in after implementation

of a new log in system .. 67

Figure 54: Wireframe showing mobile view of Connect Strava Account Screen 74

Figure 55: Wireframe showing mobile view of Connect Last.FM Account Screen 74

Figure 56: Wireframe showing desktop design for Activity Search Results Screen 75

Figure 57: Wireframe showing mobile view for Activity Search Results Screen 76

Figure 58: Redirect to Strava log in page .. 77

Figure 59: Redirect to Strava authorisation page ... 77

Figure 60: Redirected to connect Last.FM screen after successful Strava authorization 77

Figure 61: Home page as of first round of testing showing data from connected Strava and Last.FM

accounts .. 78

Figure 62: Entering incorrect data into connect last.fm box returns a 404 message 78

Figuƌe ϲϯ: AŶalǇse ͞RuŶ͟ aĐtiǀitǇ sĐƌeeŶ as of fiƌst ƌouŶd of testiŶg ... 79

Figure 64: Shows drop down changed to Lowest average heartrate as of first round of testing 79

Figure 65: Shows invalid date search as of first round of user testing ... 80

Figure 66: Shows successful activity date range search as of first round of user testing..................... 80

Figure 67: Shows analyse several activities page as of first round of testing 81

Figure 68: Shows successful segment filter change on analysing multiple activities as of first round of

testing ... 81

Figuƌe ϲ9: “hoǁs aĐtiǀitǇ filteƌ ĐhaŶged to ͞Woƌkout͟ as of fiƌst ƌouŶd of testiŶg 82

Figure 70: Shows attempt to analyse a non-running activity as of first round of testing 82

Figuƌe ϳϭ: “hoǁs aŶotheƌ useƌ’s aĐĐouŶt ĐoŶŶeĐted as Last.FM aĐĐouŶt as of fiƌst ƌouŶd of testiŶg 82

Figure 72: Redirect to Strava log in page .. 83

Figure 73: Authorize RaceTracks access to Strava screen .. 83

Figure 74: Screenshot showing connect Last.FM account screen .. 84

Figure 75: Screenshot showing home page as of second round of self-testing 84

Figure 76: Screenshot showing connect Last.FM account screen with invalid username entered 84

Figure 77: Screenshot showing Analyse Activity page after second round of self-testing 85

Figure 78: Screenshot showing the map updating to show the selected segments location 85

Figure 79: Screenshot showing invalid date search after second round of self testing 86

Figure 80: Screenshot showing activity date search results after second round of self-testing 86

Figure 81: Screenshot showing "Workout" activities as of second round of self-testing 87

Figure 82: Screenshot showing analyse workout activity page as of second round of self-testing 87

Figure 83: Screenshot showing analyse workout activities page as of second round of self-testing... 88

file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986211
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986212
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986213
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986220
file:///C:/Users/Admin/Documents/Computer%20Science%20Year%203/Project/Final%20Report.docx%23_Toc102986220

7

Figure 84: Screenshot showing error from testing on analyse workouts page during second round of

self-testing .. 88

Figure 85: Screenshot shoǁiŶg aŶotheƌ useƌ’s Last.FM aĐĐouŶt ĐoŶŶeĐted folloǁiŶg seĐoŶd ƌouŶd of
self-testing .. 88

8

1. Introduction

1.1 Introduction

This project is based on the idea that ŵusiĐ has aŶ iŵpaĐt oŶ people’s peƌfoƌŵaŶĐe ǁheŶ theǇ aƌe
exercising. It is an interesting concept to think that different kinds of music can have both positive

and Ŷegatiǀe effeĐts oŶ soŵeďodǇ’s peƌfoƌŵaŶĐe, but how exactly does a song affect someone

whilst they are exercising? Do certain songs increase their average heart rate or their average

running speed? Or how about different genres of music? Is a certain genre of music the best for

listening to during exercise? In order to help users better understand what music they perform best

to; this project aims to create a web-application (web-app) that will allow a user to compare their

tracked exercise history with their music listening history. This web-application has been named

͞RaĐeTƌaĐks͟ aŶd will be referred to by this name throughout this report. RaceTracks aims to help

users deteƌŵiŶe ǁhetheƌ oƌ Ŷot ͞MusiĐ ŵakes Ǉou ƌuŶ fasteƌ͟.

1.2 Initial Assumptions

There are a number of assumptions which were made at the start of the project. Firstly, it was

assumed that most runners are likely to utilise a mobile application (app) to track their runs, for

example, Strava, Fitbit or Apple Fitness. It was also assumed that whilst doing so, these users also

employ the use of a music streaming service to listen to music, such as Last.FM, Spotify or Apple

Music. The final assumption made was that most of the end-users for this solution will make use of

some form of smart watch or fitness tracker during their exercises which will measure their heart

rate during the course of their activities.

1.3 Project Aims and Objectives

During the initial planning phase for this project, several aims were outlined to determine the goals

of the project, and these were split into primary and secondary aims. The primary aims of the

project were outlined to be the aims which were most important to achieve in order to create a

minimum viable product (MVP and were expected to be achievable within the time frame of the

project. The secondary aims were outlined as further functionality which would further improve the

solution, although the feasibility of being able to deliver the features and achieve these aims within

the time frame of the project was unclear. The list of aims were as follows:

Primary Aims:

1. To create a web-appliĐatioŶ ǁhiĐh ǁill displaǇ a useƌ’s ƌuŶŶiŶg aĐtiǀitǇ histoƌǇ as ǁell as
their music listening history for each activity.

a. Recent activities should be displayed to the user with an option to search for

activities by date.

2. To iŵpleŵeŶt fuŶĐtioŶalitǇ ǁhiĐh alloǁs ĐoŵpaƌisoŶs ďetǁeeŶ a useƌ’s single running

activity and the music they were listening to during the time-period of that activity.

a. This should include information such as which song they were listening to when

their heart rate / pace was at its highest.

3. To implement functionality which compares all of a useƌs’ running activities and all of the

music listening history for those activities, across a given time frame by the user.

9

a. This should include also include information such as what genre of music the user

typically performs best at when listening to.

4. To design and implement a suitable and user-friendly user interface.

a. It should be intuitive to use with a mobile-first approach taken for development.

Secondary Aims:

1. To update the application logic to allow for different kinds of activities to be included as

opposed to just running. For example, cycling, weightlifting, boxing etc.

2. To extend the level of detail which is offered by the insights of the music and activity

comparison, for example calculating the optimum beats per minute (bpm) of the music the

user should listen to when they exercise.

3. To add functionality for song suggestions based on how the user performs whilst listening to

certain genres of music.

4. To implement a log-in system which would mean that users would not have to connect their

Strava and Last.FM accounts each time they want to use the application.

After beginning development and progressing through the early stages of the project, it was realised

that there were several other features ǁhiĐh hadŶ’t been outlined in the original set of aims but

would provide a great opportunity to improve the implementation. One of the new aims which was

set during the development process was:

• To deploy the web-application on a live-hosting service, to make it accessible online to any

user.

This aim is a strong measurement of the success of the project. By being able to host a fully

functional application on a live server, this would be a strong demonstration that the development

of the solution was successful. The final aim which was set during development for this project was:

• To investigate the incorporation of mapping tools, to display to a user where they have run

during their recorded activities.

This aim was set following the design phase for the initial user interfaces. It was noticed that the

page designs felt as though they were missing something and could possibly feel quite uninteresting

to a user. Adding a map to the designs aimed to engage the user and provide them with more real-

world context as to what section of a run the song data is referring to. It also allowed me to set

myself a technical challenge, as I have minimal experience in working with web-development

mapping tools, and I was interested to see what I could do with my implementation.

Alongside these aims, there were also some personal objectives which outlined outcomes that I

wanted to achieve and things that I wanted to learn as I went through the process of developing my

solution. These were as follows:

10

Objectives

• To iŶǀestigate, uŶdeƌstaŶd aŶd ǁoƌk ǁith eǆteƌŶal deǀelopeƌ API’s aǀailaďle fƌoŵ seǀeƌal

companies and see the extent of what data can be obtained from each one.

• To investigate, understand, and implement authentication workflows using authentication

pƌoĐeduƌes used ďǇ eǆteƌŶal API’s.
• To work with available resources to better understand and learn some best practices for

front-end JavaScript development.

1.4 Intended Audience

The intended audience for this project are runners who actively track their activities already through

a mobile application and listen to music through a music streaming service whilst doing so. The

audience of the solution however is not limited to those who are already tracking their activities, it is

open to anybody who would like to gain a better understanding of how music can affect their

performance, and once they have begun collecting data on their workouts, they will also be able to

use the solution. The existing user base for activity tracking and music streaming services is huge.

One of the largest activity tracking services in the world is Strava, which as of 2021 reportedly had

over 76 million users (1). Similarly, looking at one of the ǁoƌld’s leading music streaming services,

Spotify, who as of when this report was written, currently have over 406 million users, 180 of which

are subscribed to their premium paid service (2). Anybody who regularly uses both of these services

at the same time will be included in the intended audience. Whether a user would like to gain more

of an insight into how music affects their performance or whether they would just like to get a recap

of what songs they listened to on a specific run, the RaceTracks application would suit their needs.

With ŵusiĐ ďeiŶg aŶ iŵpoƌtaŶt aspeĐt of ŵaŶǇ people’s runs, I think that the opportunity to have an

application which can correlate data between the two services could be beneficial to all runners

looking to improve their performance, whether they be at a casual or at a high-level.

1.5 Project Approach

The approach to this project was set out in the initial plan. A rough timeline was created in the form

of a Gantt chart which outlined the tasks that would need completing, the order in which they

should be completed and roughly how long they should take. This way of working initially sounds

very much like the waterfall methodology way of working, where every stage of work must be done

in order and the next phase of the project is not started until the current one has been completed.

However, the approach on this project was much more in tune with the agile methodology, where I

developed work in 1-week sprints that allowed me to prioritise tasks each week and work on

developing the features which were brought into each sprint. The priority of certain tasks rose or

declined as things changed during development (3). Depending on the success of a sprint in a week,

if all of the tasks had been completed early, I was able to bring in new tasks which would have been

set for the following week. This allowed for a high degree of freedom and flexibility during the

development process and granted me the ability to adjust the projects scope where necessary.

Because of this way of working, I was also able to implement some of the extra features which I had

hoped to, whilst scaling down on other features I initially thought might have been quite important

to the solution but ultimately were not.

11

1.6 Project Scope

The initial scope of this project was to create a web-based application which would allow a user to

connect to their account with an activity tracking service and a music streaming service to receive an

analysis of how the music they listen to affects their running performance. The scope that was

defined in the initial plan was certainly feasible within the time frame of the project, and I was able

to implement almost all of the features that I had aimed to, as well as add a few new ones which

were not specified in the original plan. However, one of the secondary aims was to investigate the

implementation of a log in system for my application, and although it was possible to delegate some

time to looking at implementing this, the feature unfortunately had to be de-scoped from the

project. The technical requirements and time investment for implementing this functionality were

just not feasible within the time left after the first phases of development. The addition of this

feature would also have meant that I would have had to through gain ethical approval for the

project since I would have been storing useƌs’ data, and again unfortunately, I did not have the time

remaining to do so. It is unsurprising however that this feature had to be de-scoped, as it was clear

from the beginning that this would be a big undertaking for the project. The exemption of the login

system did not have any impact on the functionality of the system, and it presented itself as more of

a ͞ŶiĐe-to-haǀe͟. Disregarding this feature, the scope of the project was realised as being suitable

and manageable for my skillset with the time given to develop it.

1.7 Summary of Outcomes

The main outcome from this project, given the aims that have been listed above and the scope of

the project, is to create a live hosted web-application which is accessible online, that provides

runners with a tool to connect to both their activity tracking and music streaming services in order to

gain a better understanding of how music affects their performance. In regard to my own personal

outcomes, I aimed to gain more experience in JavaScript web-development, external API’s
(Application Programming Interfaces), mapping frameworks, version control and live web-hosting

applications.

12

2. Background
This section of the report aims to provide an explanation of some necessary background topics

which are needed to fully understand the later content of this report.

2.1 Wider Project Context

As previously mentioned, the use of activity tracking applications is becoming more and more

common. They are used across a wide variety of sports such as running and cycling, to help the

athlete better gauge their performance during their activities, and visual their progress over time.

These apps support the measuring of a useƌ’s pace and activity time through smart phone

applications. Smartphones are becoming increasingly more accurate on measuring this data, and use

ŵetƌiĐs suĐh as a peƌsoŶ’s height, stride, the accelerometer, and GPS location data to calculate an

accurate as possible reading (4). Although smart phones are becoming more and more reliable for

measuring this data, the activity tracking service is best used in combination with some form of

smart watch or fitness band which supports the tracking of the useƌ’s heart rate, calories burned and

other biometric data. If a user is not using one of these devices whilst tracking their workouts, then

the data which can be obtained is somewhat limited and only includes metrics such as their pace,

step count and activity time.

The activity tracking service which has been chosen to implement into the RaceTracks solution is

Strava. Strava is one of the largest activity tracking services in the world and provides users with

detailed breakdowns of their activities. One of the main reasons for choosing to implement a

solution with Strava, is that all of the data collected from a user can be accessed through a well-

documented public-facing API, as long as the user has authorized an application to access their data.

In addition to this, it was not feasible to implement a hexagonal architecture (5) into the solution

which allow a user to connect to several different activity tracking services given the time frame of

this project, and so therefore it was an important decision on which service was going to be chosen.

Ultimately, Strava was chosen for a very important reason, Strava allows users to connect their

accounts from several different third-party activity tracking services and import all their activities to

Strava seamlessly, this includes services such as Fitbit, Apple Fitness, Nike+, Garmin, Samsung Health

and many more (6). This helps to mitigate the issue of RaceTracks not being able to connect a

number of different services. Any user who tracks their activities on a service which is not Strava,

would simply need to create themselves a Strava account and connect their account for the service

which they use regularly. Following this, all of their activity data will be automatically synced with

Strava and would then be made accessible to RaceTracks. By using Strava as almost a hub for the

activity tracking services, we also eliminate the issue of completely isolating an entire user base from

other applications and allow RaceTracks to become a much more inclusive application.

Music streaming services are also widely used by people who exercise, with most people being

subscribed to a paid service such as Spotify, Apple Music or Tidal. Before beginning development, I

did some research around these services in order to see how accessible a useƌ’s data would be. After

reading through their API documentations, it appeared that none of these services would be suitable

for the approach I was taking. A key feature of the RaceTracks application is that it needed to allow a

user to view any of their activities recorded on any given date and the music they listened to during

that activity. BeĐause of this, ǁe Ŷeed a Đoŵplete ƌeĐoƌd of a useƌ’s eŶtiƌe ŵusiĐ listeŶiŶg histoƌǇ.
This posed a severe issue with the previously mentioned services into RaceTracks.

13

For example, although Spotify offers a public-facing API, Spotify does not keep a permanent record

of a useƌ’s listening history which is directly available through their API, we can only get a list of a

useƌ’s most recently listened to tracks, this was also true for Apple Music. This meant that by using

one of these services, it would not be possible to implement the solution as intended. This is where

a website called Last.FM becomes very useful. Last.FM is also a music streaming service, but unlike

the other services previously mentioned, it keeps a complete record of a useƌ’s listening history. In

addition to this, users can connect their accounts from other services including Spotify, Apple Music

and Tidal, and Last.FM will keep a record of any songs listened to on those services too (7). Last.FM

also provides a well-documented public-facing API which will allows access to a useƌ’s listening

history.

By using Last.FM there is also the benefit we saw with using Strava as a hub for external applications,

in that it is helping to mitigate the issue of isolating an entire group of users. For example, if Spotify

had been chosen, then any users who listen to music through apple music or another service would

be unable to use the application.

2.2 Identified Problem and Stakeholders

The problem which has been identified is investigating the possibility of building a web-based

application that will allow users to connect an activity tracking service (Strava) and a music

streaming service (Last.FM) to gain an understanding of what music positively and negatively affects

their performance whilst exercise.

The relevant stakeholders which have been identified are:

• People who exercise regularly whilst tracking their workouts and listening to music through

a supported platform.

• The chosen activity tracking platform: Strava.

• The chosen music streaming service: Last.FM.

• An external data source which was used for retrieving extra music data: TheAudioDb.

• Myself as the project developer.

• My project supervisor.

The first mentioned stakeholder and the projects main target audience are people who exercise

regularly, tracking their activities whilst streaming music. The end users are one of the most vital

stakeholders as they are the people who will ultimately use the solution (8). Their interest in the

project is a deciding factor between the pƌojeĐt’s success or failure. The project should meet their

expectations and provide them with the features and the functionality that they expect.

Another stakeholder of the project is the activity tracking service which was chosen to base the

implementation around; Strava. Strava has a stake in the project as without the data provided by

the, the solution fails to function. The solution works on the basis that the data received from Strava

contains specific fields and is structured in a very specific way, there is a responsibility which lies

with Strava to ensure their data is stored and provided correctly. If the structure of their data or the

way in which their API functions were to change, then it is highly likely that the solution will fail to

work. In addition to this, Strava have a stake in the project as they may be interested in novel uses of

their data as well as the potential outcome of the project. For example, if the project were to be

majorly successful, could it become something that Strava as a business would like to explore

themselves.

14

Furthermore, the music streaming service which has been chosen to implement the solution around;

Last.FM, are another key stakeholder to the project. They provide an API similar to Strava, with data

which is crucial for the RaceTracks application to function. If the structure or contents of the data

provided by Last.FM’s API, or the way in which their API handles requests were to change, then the

application would fail to function. They also may have a vested interest in the pƌojeĐt’s outcome and

seeing different possible uses of their data.

A further stakeholder is one more source which is used to obtain music data, a web data base called

TheAudioDb. Their service requires a paid monthly membership to be able to use their API and there

are several different tiers at different price points which allow you to make a certain number of API

calls each day. As an organization, they would have an interest in the overall success of the project;

as if the scope of the RaceTracks application were to increase and there were to be multiple daily

users, the tier of the current paid membership would need to be increased, ultimately increasing

their revenue from this project.

The final two stakeholders that have been identified for this project are both myself as the

developer, and the project supervisor. Both of us have a vested interest in the project and would like

to see it succeed to its full potential.

2.3 Associated Theory

It is important to understand how we can infer from the activity data provided by Strava and the

music data provided by Last. FM, how music is having an impact on a useƌ’s performance. There can

be different types of activities recorded on Strava, however the focus for this implementation was

on running activities. For every recorded run, Strava provides several pieces of useful data which we

can use to measure a useƌ’s performance across the duration of their run. This includes data such as

their max heartrate, average heartrate, distance covered and time elapsed. In addition to this, Strava

ďƌeaks doǁŶ eaĐh ƌuŶ iŶto seǀeƌal sepaƌate seĐtioŶs ǁhiĐh it Đalls ͞“egŵeŶts͟.

Figure 1: Example of a run activity on Strava separated into segments

These segments are different sections of a run, it could be that the road from your house to the park

is one segment, and then half a lap of the park is the next segment. For each of these segments

Strava provides a start time, an end time, the distance covered, the max heartrate achieved during

the segment and the average heart rate across the entirety of the segment. Using the distance and

time taken to complete each segment, we can then calculate the useƌ’s speed for each segment for a

15

run as ͞speed = distaŶĐe / tiŵe͟. With this we can then identify the segment where a user was

running at their fastest.

Using the start and end time for the segment, we are then able to get the songs the user listened to

during that segment and provide them with this list, as well as suggest similar songs they could try

listening to. Using this method of analysing segments, we are also able to provide the user with the

songs they listened to when they performed at their lowest on their run.

Expanding on this, one of the project aims was to allow a user to analyse their performance across

several activities. By selecting a date range and looking at all of the runs within that time-period, we

can get the segments for each run, calculate the pace for each of them and then find which segment

was the users best and worst then perform the same action of getting the songs for each segment

and displaying them to the user. This was the most suitable method I found for evaluating a useƌ’s

performance during a run.

2.4 Existing Solutions

The closest existing product which aims to provide a similar solution to the problem proposed by this

project is a smart phone application called Perform (9). Perform allows users to connect their Strava

account alongside their Spotify or Apple Music account to provide their service. Perform aims to

help users improve their workouts by using artificial intelligence to create a playlist of songs in real-

time as you run. The application looks to be a well built and very professional service, which has a

whole range of features which the RaceTracks solution would be unable to offer under the current

aims and scope. Although this service can be labelled as similar to RaceTracks, there are several

features which have been implemented into RaceTracks which Perform do not offer as part of their

service. Firstly, Perform only provides support for running activities. RaceTracks introduces support

for visualizing a useƌ’s listening history over different kinds of exercises such as High Intensity

Interval Training and weightlifting. Although the support for these types of activities may be minimal

currently, the option is still there for users who do not exercise only by running and can be built

upon in the future. Secondly, RaceTracks offers users the ability to compare a selected number of

activities across a specific date range and view which songs the user performed best to during those

activities. This is something which Perform, to my knowledge, does not currently offer. Lastly,

Perform limits its users to those who subscribe to only Spotify or Apple Music, and only keeps a

record of their listening history from the moment they create a Perform account and link their music

streaming service. RaceTracks allows users to connect a Last.FM account which allows for the

integration of a number of different music streaming services. This makes RaceTracks much more

open to different user groups, and those who already have a Last.FM account will already have all of

their music listening data stored.

One other solution which is similar to RaceTracks is a service called RockMyRun (10). Like RaceTracks

aŶd Peƌfoƌŵ, RoĐkMǇRuŶ’s goal is to aid useƌs iŶ ďetteƌ uŶdeƌstaŶdiŶg ǁhat kiŶd of ŵusic can make

them run faster. RockMyRun acts as its own activity tracking and music streaming service and

creates playlists of optimized running music for users to listen to whilst they run. It provides heart

rate tempo matching and allows the user to manually set the BPM of the songs being played to

match their stride pattern. As RockMyRun is a stand-alone service, this negates the need for users

needing to have a specific external activity tracking or music streaming service. Although this may be

a benefit for some users, this also has its deficiencies. For example, users will not be able to

retrospectively analyse any of their runs which they have already recorded on other platforms such

as Strava. This may also be off-putting for some users, as they will need to exclusively switch over to

16

RockMyRun and will not be able to compare any of their new runs with their old runs on other

services. RaceTracks aims to improve upon this deficiency and integrates directly with Strava and so

there is no need for a user to switch services and start tracking their runs from fresh, they can simply

connect their pre-existing account.

In conclusion, to my knowledge, there is no pre-existing web-application which allows a user to

connect directly with Strava and Last.FM to provide aŶ aŶalǇsis of hoǁ a useƌ’s peƌfoƌŵaŶĐe duƌiŶg
exercise is impacted by the music they are listening to in the way that my solution does so. There are

similar solutions which have a similar goal which have been discussed above (Perform and

RockMyRun), however they act as their own activity tracking and or music streaming service, and do

not support the option for users to connect their pre-existing accounts from other services.

2.5 Methods and Tools Used

Regarding the development tools used and those that will be referred to in the upcoming sections of

this report, the entirety of the RaceTracks web-application was written in JavaScript. More

specifically, JavaScript alongside React, version 17.0.2 (11). React is a free and open-source, front-

end JavaScript library which is incredibly useful for building user interfaces and single page

applications (12). I used a tool Đalled ͞Cƌeate ReaĐt App͟ (13) which creates a basic front-end

pipeline build and also sets up certain other JavaScript packages such as Babel (14) and Webpack

(15) which are needed for developing web-applications with React. Babel is a JavaScript compiler

and Webpack is used for bundling assets and the compiled JavaScript files together to create a

production-ready build of the web-application, which can then be deployed on a webserver.

͞Create-react-app͟ also sets up Node.js (16), which is a JavaScript package manager, that lists the

dependencies of the packages which are used in the web-app and ensures they are all installed to

their correct versions.

One of the aims for this project was to develop a web-application which would be accessible on both

desktop and mobile platforms. To do so, a mobile-first development approach was taken, and

several tools were utilised to ensure the web-app had a responsive design that would dynamically fit

the screen size of the device it was being used on. In order to facilitate this, I used the Bootstrap CSS

styling package to promote quicker development and help me structure the elements on the site

(17). Alongside this I utilised a more specific package called ͞ReaĐt-Bootstƌap͟ (18), which as the

name suggests, is provided by bootstrap to be used specifically in React applications. It provides

several pre-created, complex UI components which can be embedded onto a react application and

then customised. Some of the components that were utilised were the loading spinner which

provided a spiŶŶiŶg aŶiŵatioŶ iŶ plaĐe of data ǁhiĐh hasŶ’t loaded Ǉet aŶd the carousel component

to display various data to the user on my web-apps home screen. Shown below in Figure 2 is an

example of the default carousel component included in React-Bootstrap. Figure 3 shows a

customized ǀeƌsioŶ to displaǇ a useƌ’s ƌeĐeŶtlǇ listeŶed to soŶgs oŶ the RaĐeTƌaĐks hoŵe page.

Figure 2: Default React-Bootstrap Carousel Component

17

Figure 3: Customised React-Bootstrap Carousel Component used on RaceTracks

Other JavaScript libraries which were used during development were Leaflet (19) and React-Leaflet

(20). Leaflet is the leading open-source JavaScript library for developing mobile-friendly and

interactive maps. React-Leaflet is an extension which adds a few components to make these

mapping tools much easier and suitable to work with in React. I also utilised the Luxon.JS (21)

package which is a library for dealing with dates and times in JavaScript. This allowed for the

conversion of dates from a UTC format as provided by Strava and Last.FM, to a more human

readable format. A final JavaScript package that was used was Đalled ͞React-Minimal-Pie-Chart͟ (22),

a simple React component which comes bundled in a Node.js package, that allows the creation of

easily customizable pie charts.

Figure 4: Default React-Minimal-Pie-Chart Component

Figure 5: Customized React-Minimal-Pie-Chart Component

One of the most important tools during development was Microsoft Azure DevOps (23). Azure

DevOps provides unlimited free Git hosted repositories which allowed me to employ correct version

control and therefore I was able to set up the project with a main branch and a development branch.

This allowed me to work on different branches of code and experiment with different solutions,

before committing any changes to the main code repository. I used Microsoft Visual Studio Code as

my Integrated Development Environment (IDE) which connects directly to my Azure development

account to pull, push, and commit code changes. I also used Microsoft Azure for hosting a live

version of the completed RaceTracks web-application. This was done using their build and release

pipelines.

18

2.6 Further and Implicit Assumptions

As the project developed, there were some further assumptions that were made. It was assumed

that most users would want to retrospectively view their activities from any previous date and not

just recent ones, which was an important factor when choosing between Last.FM and Spotify, as

Last.FM provided a complete historical data set. The assumption was also made that users would be

looking for a strong level of detail on their performances and not just a brief overview or reflection

of an activity, which was made during the design process.

2.7 Concluding Research Questions

2.7.1 Aim:

The aim of this project is to develop a responsive web-application that allows users to connect their

accounts from an activity tracking service and a music streaming service, in order for them to

compare their exercise data against their music listening data to see how music impacts their

performance during exercise.

2.7.2 Research Question(s):

͞In order to demonstrate the achievement of the stated aim, this project will provide support for

connecting a single activity tracking service and a single music streaming service, use an algorithm to

process the data provided from both services such as the users’ pace and heart rate, and therefore

help the user conclude which songs made them run faster.͟

19

3. Specification and Design
This section of the report aims to provide an explanation of the business model supported by the

solution, the design of the user interfaces and the structure of the system architecture.

3.1 Business Requirements

As part of the specification and design process, the business requirements of the solution needed to

be outlined. Business requirements can be defined as being used to describe the characteristics of a

proposed system from the viewpoint of the end-user (24). With this in mind, and using the project

aims as a basis, these are the following requirements which have been outlined in order for the

sǇsteŵ to ŵeet the useƌ’s Ŷeeds:

• A user can view their recently tracked activities.

• A user can search for activities within a given date range.

• A user can view the songs listened to during those activities.

• A user receives information about those songs, (BPM, genre).

• A user can compare their activity and listening history for a single activity.

• A user can compare their activity and listening history for a group of activities.

• A user can see an analysis of their activity, and view segments where they performed at

their highest and lowest.

• A user can easily navigate the interface.

Each requirement has been refined from the high-level project aims and attempts to provide a direct

reference point as to what the end-system should be able to do.

3.2 User Interface

One of the primary aims for this project was to design and implement a user-friendly interface which

was suitable for both desktop and mobile views. Before beginning development on this project, I did

not have much experience in designing user interfaces and so I decided to begin by conducting some

research into best practices of designing suitable interfaces and how to strive towards a good user

experience. After some research, I found some ideals around developing web-apps with mobile

interfaces in mind, these included points such as keeping content and interface elements to a

minimum to ensure only relevant data is displayed to the user and minimizing user input so that the

user can easily navigate the application (25).

Before creating a design for the user interface, I began development work on retrieving data from

the Strava and Last.FM APIs to see what data was available to work with. After early stages of

deǀelopŵeŶt aŶd settiŶg up the data floǁs foƌ the API’s, the solution had this simple user interface

(UI) as shown in Figure 6.

20

This initial page became the inspiration for how the final solution would look and some of the

functionality that would be present.

3.2.1 Connect Strava and Last.FM Accounts Screens

Once the data from Strava and Last.FM was available in the application I began designing the various

pages which would make up the RaceTracks site. The first designs made were for the first pages the

user would visit when they access the application. These were the screens for connecting their

Strava and their Last.FM accounts. I ǁaŶted to keep these siŵple, as theƌe didŶ’t Ŷeed to ďe
anything displayed to the user besides some information telling them to connect their accounts and

some buttons. My initial designs can be seen below in Figure 7 and Figure 8:

Figure 6: Home page view during early stages of development

Figure 8: Wireframe showing Connect Strava Account screen Figure 7: Wireframe showing Connect Last.FM account screen

21

These designs were kept simple for the user. With a button to redirect the user from the Strava

page, and a text box on the Last.FM page for the user to enter in their username to connect. This is

also where the colour scheme for RaceTracks was decided, I chose to use a blue colour after reading

about how users can perceive websites with different colours. A blue colour is often associated with

optimism and reliability, making users feel more confidence in a system, whilst also making it appear

more professional (26).The final designs for these screens did not change much in the final

implementation. The only difference being that there were a few icon images added to give the page

some more substance and allow the user to infer what the application would offer more from

imagery. The final designs can be seen below in Figure 9 and Figure 10.

Figure 9: Screenshot showing final Connect Strava Account Screen

Figure 10: Screenshot showing final Connect Last.FM Account Screen

22

3.2.2 Home Page

The next page that wireframes were created for was the home page. These designs were inspired

heavily from the initial prototyping solution shown in Figure 6. There were wireframes created for

both the desktop and mobile view of the page, both of which can be seen below in Figure 12 and

Figure 11.

The aim with these designs was to keep the view simplistic and provide the user with relevant data,

without overwhelming them with too much unnecessary information. The three sections on the

page provide the user with three different options, they can either scroll their recent activities and

choose one to analyse, search for an activity on a specific date to analyse or they can view their

recently listened to songs.

The outcome of the final solution can be seen below in Figure 13 and Figure 14. The design of the

home page stayed very true to the original wireframes, with new additions such as displaying the

users connected account usernames along the navigation bar with log out buttons, and I also chose

to introduce a logo alongside the website name. The different views for mobile and desktop were

made possible through the use of CSS media breakpoints which allow for declaring what styles an

element should have on screens with a certain number of pixels.

Figure 11: Wireframe - Desktop view of home page Figure 12: Wireframe - Mobile view of

home page

23

Figure 14: Final Solution - Mobile Home Page

Figure 13: Final Solution - Desktop Home Page

24

3.2.3 Analyse Activity Page

AŶotheƌ ǀeƌǇ iŵpoƌtaŶt desigŶ ǁhiĐh ǁas Đƌeated foƌ the solutioŶ ǁas the ͞AŶalǇse AĐtiǀitǇ͟ page.
This is an important page which displays the breakdown analysis of a useƌ’s performance to them.

Before designing these wireframes, I had the idea of usiŶg “tƌaǀa’s segŵeŶts to aŶalǇse a useƌ’s

performance and therefore the UI foƌ the ͞AŶalǇse AĐtiǀitǇ͟ page was designed surrounding this

idea. Figure 15 and Figure 16 below show the wireframes for both the desktop and mobile version of

this page.

The aim with these designs was to provide the user with information on their activity and the music

they have listened to. I tried to keep the theme of the home page by keeping the page split into 3

different sections, starting from the top of the page with the chosen segment data, moving to the

pie chart displaying what genres the user listened to during that activity and then lastly the list of the

songs the user listened to. Shown below in Figure 17, Figure 18, Figure 19 and Figure 20 are the

completed solutions for the desktop and mobile view for the Analyse Activity page.

Figure 15: Wireframe - Mobile view of Analyse

Activity Page
Figure 16: Wireframe - Desktop view of Analyse Activity Page

25

Figure 17: Screenshot showing desktop view of Analyse Activity page

26

Figure 19: Screenshot showing first section of mobile view of

Analyse Activity Page
Figure 18: Screenshot showing second section of mobile

view of Analyse Activity Page

27

Figure 20: Screenshot showing final section of mobile view of Analyse Activity Page

As can be seen in the figures above, the final designs stayed mostly true to the original wireframes.

The standout difference of course being that there is now a map showing the chosen segment on

the page. Upon implementing the other features on the page, the page felt as though something

was missing. Being an application, which dealt heavily with location data, a map view seemed like a

necessary and welcomed addition to the project. The other addition being a pie chart upon the

segment showing the genre of songs listened to during that chosen segment.

There are more wireframes which were created for the final solution, all of which can be seen in the

appendix of this report.

28

3.2 Dynamic Behaviour and Data Flows

There are several important data flows which take place in the system. The first data flow which

takes place is the Strava user authorization flow. For a user to connect their Strava account to

RaceTracks, they must be redirected to the Strava website, log in and then authorize RaceTracks to

access their data. Strava uses OAuth2 authentication for their API (27). OAuth2 allows external

appliĐatioŶs to ƌeƋuest authoƌizatioŶ to a useƌ’s data to allow users to grant access to their data on a

per-application basis. Shown below in Figure 21 is the exact data flow which takes place to obtain

access to a user’s Strava data in RaceTracks.

29

Figure 21: UML Diagram showing Strava OAuth Data Flow

30

After this OAuth data flow has successfully completed, RaceTracks has aĐĐess to a useƌ’s Strava data

and is then able to make API calls to their account data using their unique access token. With the

user’s data that is ƌetuƌŶed fƌoŵ the “tƌaǀa API, aŶ oďjeĐt Đalled ͞stƌaǀaUseƌData͟ is created which

stores all the users account information. Figure 22 below shows the created stravaUserData object.

There are a number of fields included by Strava which RaceTracks does not make use of currently,

but they are also added to the object by default and could potentially be used in any future work.

Figure 22: UML Diagram showing stravaUserData Object

In addition to the Strava authentication flow, there is a data flow which is needed to get the users

Last.FM account data. This process is only allowed to occur once a user has successfully connected a

Strava account. It is important that the dataflow for obtaiŶiŶg a useƌs’Last.FM aĐĐouŶt runs after the

“tƌaǀa autheŶtiĐatioŶ has ďeeŶ suĐĐessful. This is ďeĐause authoƌiziŶg a useƌs’ “tƌaǀa aĐĐouŶt
requires a redirect to another website, whereas obtaining their Last.FM data does not. If we were to

obtain the useƌs’ Last.FM data before their Strava data, upon the Strava redirect, their account data

would be lost by RaceTracks. This is because the account data is currently stored as a variable and is

not cached or stored in a cookie.

Shown below in Figure 23 is a UML diagƌaŵ of the Last.FM data floǁ foƌ ĐoŶŶeĐtiŶg a useƌ’s aĐĐouŶt
to the system.

31

Figure 23: UML Diagram showing data flow for connecting a Last.FM account

32

FolloǁiŶg the ƌespoŶse fƌoŵ this data floǁ, a ͞lastFŵUseƌData͟ oďjeĐt is created with the data

returned from this process. Figure 24 shows a UML diagram of this object.

Figure 24: UML Diagram showing created lastFmUserData object

The final important behaviour and flow of data within the system is how the user can interact with

the system. Figure 25 below shows a very high-level overview of the interactions a user can make

with the system, and how the data flows through to each section.

33

Figure 25: UML Activity Diagram showing high level overview of user interaction with the system

34

3.3 System Architecture

As the project was developed using solely JavaScript and React, it was very important to outline a

suitable system architecture. The structure of the code base and the partitioning of the modules are

set up in a way to encourage easily understandable, maintainable, and scalable code.

The top level of the project repository contains several files and folders, these include:

• (Folder): Public

o Contains web configuration files and website favicon.

• (Folder): Src

o Source code folder; contains image assets, JavaScript files and CSS files.

• (File): .env

o A top-level file used for declaring environment wide variables such as API keys, URLs,

aŶd ĐlieŶt ID’s.
• (File): package.json

o A top-level file used for declaring all the package dependencies required for building

and running the solution.

Of the files aŶd foldeƌs outliŶed aďoǀe, the ͞“ƌĐ͟ foldeƌ is the oŶe ǁhiĐh ĐoŶtaiŶs the ǁƌitteŶ Đode
which produced the solution. This folder is organised as follows:

• (Folder): Assets

o Contains image assets used.

• (Folder): Components

o Important folder containing all the JavaScript files and their corresponding CSS files.

• (Folder): Utils:

o Contains two files:

▪ StravaFunctions.js

▪ LastFmFunctions.js

o These files contain reusable functions for calling the different endpoints for each of

the used API’s.
• (File): App.js

o The main component file containing routing logic which decides which components

to show to the user.

• (File) App.css

o The CSS file for the App.js file.

• (File): Index.js

o The top-level file of the web-application which is rendered by default by the

website.

Of the files aŶd foldeƌs outliŶed aďoǀe, the ͞CoŵpoŶeŶts͟ foldeƌ is of the ŵost iŶteƌest. As

previously stated, this is the main folder containing all of the JavaScript source code for the

RaceTracks site. This folder is broken down into separate folders for each unique component. Each

unique folder contains a JavaScript file for the component and a relating CSS file which styles it. This

helps keep code separated and easily manageable. The high-leǀel stƌuĐtuƌe of the ͞CoŵpoŶeŶts͟
folder looks as follows:

35

Components:

• (Folder): Activities

o Contains folders for displaying recent activity components and search activity

components.

• (Folder): AnalyseActivities

o Contains several folders for different components used for analysing activities.

• (Folder): ConnectAccounts

o Contains the logic for setting up and rendering the connection components for users

Strava and Last.FM accounts.

• (Folder): ConnectLastFm

o Contains the JavaScript component file used to allow a user to connect a Last.FM

account and its CSS file.

• (Folder): ConnectStrava

o Contains the JavaScript component file used to allow a user to connect a Strava

account and its CSS file.

• (Folder): Home

o Contains the JavaScript and CSS files for rendering the Home page component.

• (Folder): NavBar

o Contains the JavaScript and CSS files for rendering the NavBar component.

• (Folder): SegmentEfforts

o Contains JavaScript and CSS files for rendering segment effort components.

• (Folder): Songs

o Contains several folders for different components used in displaying song data. This

iŶĐludes ͞“oŶgList͟, ͞GeŶƌePieChaƌt͟ aŶd ͞ReĐeŶt“oŶgs͟.
• (Folder): StravaMap

o Includes JavaScript and CSS files for rendering the map displaying segment data.

This file structure allows the files to be easily found and easily managed.

36

4. Implementation
This section of the report aims to give a more detailed insight into the implementation of the

solution. We will look at some of the important functions within the code which are especially

critical to the operation of the system, as well as discuss some of the difficulties faced during the

development process due to various factors such as complexity or lack of documentation.

4.1 External API Limitations

The external APIs from Strava and Last.FM both employ rate limits; this means that there is a limit to

the number of requests that any application can make to the services each day. For Strava, this rate

limit is set at 100 requests every 15 minutes, with an allowance up to 1000 requests every day (28).

For Last.FM there is no particular set limit, however under their terms of service which must be

agreed to in order to use the API, it states that applications should not put the API under excessive

stƌaiŶ, aŶd theǇ eŵploǇ a ͞DailǇ ReasoŶaďle Usage Cap͟ of ϭϬϬMB, and any applications abusing

their API will have their API access terminated (29). The Last.FM API also only permits 1 request per

second. For the scope and scale of this project, there is no worry that the limits of the APIs will

become an issue. However, if the application were to have a large user base in the future, then

licensing to upgrade the applications Strava API call limit would need to be obtained.

Although these limits are not an issue for the live production build of the application, I did encounter

some issues with them when developing. Whilst implementing new features and testing how

different solutions would work, I was routinely making API calls by refreshing the page an excessive

number of times. There were several occasions where I unintentionally made 100 requests to the

Strava API within a 15-minute window, which led to my application being blocked from making

requests until the next 15-minute window. This was not too detrimental to development as I would

only have to wait a few minutes before I could continue. The bigger issue came when I

unintentionally reached the daily limit of 1000 API calls. This happened on a few occasions when I

was trying to implement new features and would accidentally create an endless loop which caused

API calls to be made repeatedly. This would cause me to reach the 1000 call limit within seconds and

led to the RaceTracks application being locked out of the Strava API for the rest of the day. This did

cause some setbacks as I was then unable to continue with development on those days, since the

application relied on the data from Strava to function. In hindsight, if I were to work on a similar

project again, I would use a tool such as JSON server (30) to overcome situations like this. JSON

seƌǀeƌ alloǁs Ǉou to set up aŶ offliŶe, ͞Fake͟ API, ǁith eŶdpoiŶts aŶd seeded data ǁhiĐh aŶ
application running in development mode on localhost can make requests to. Using this tool, I

Đould’ǀe set up a duŵŵǇ ǀeƌsioŶ of the “tƌaǀa API ǁith ŵǇ oǁŶ data to ŵake ƌeƋuests to, alloǁiŶg
me to bypass the issue of call limits during development.

There were also limitations to the Last.FM API in terms of the amount of data they provide for songs.

Song data returned from Last.FM is lacking things such as genre data and beats per minute (BPM) for

a given song. To try and overcome this issue, RaceTracks makes use of, and external API called

TheAudioDb which acts as a community run database for song data. The data returned from

TheAudioDb includes genre data for most songs, however it does have limitations itself, as some

songs which may have only just released or are not well-known, may not exist within the database.

37

4.2 Asynchronous Functions and Promises

One of the biggest challenges faced during development was dealing with making API requests to

ǀaƌious eǆteƌŶal API’s. For the system to function and load correctly, it must have complete sets of

the user’s data from both Strava and Last.FM. During the runtime of the solution, when the user is

interacting in different ways with the system such as choosing to analyse a specific activity or a range

of activities, then new data must be called from 3 separate API’s: Strava, Last.FM and TheAudioDb.

These API calls need to happen in a very specific order otherwise the system will error. Upon

analysing an activity, firstly the Strava API needs to be called to get the data for that activity. Once

the data has been returned for this activity, then the call to Last.FM can be made with the date and

time-period of the activity to get the songs listened to during that time stamp. Once that call has

completed and the data from Last.FM has been returned, we can make the call to TheAudioDb to

get the genre data for the songs listened to. It is crucial to the operation of the system that these

functions happen in that order, otherwise the system will fail and try to make calls with data it does

not have or display data that does not yet exist.

At its base, JavaScript is a synchronous and single-threaded language (31), this means that functions

are run line by line one after another, which can cause some issues when we are trying to retrieve

data from an API which is not returned instantly. The ͞FetĐh͟ API method in JavaScript is used to

access resources across a network using HTTP requests, which acts as an asynchronous method. This

means that when this line of code is run, the rest of the code that follows it will continue to be

executed whilst this process completes in the background (32). This can cause some problems when

trying to run two asynchronous methods one after another when the second one relies on the data

that would be achieved from the first, because it will be missing. To overcome this issue, the use of

JavaScript promises is required. A promise is a temporary representation of a completion of a

request. They can be in one of three states; fulfilled, pending, or rejected. Using promises, we can

make asynchronous code work in a synchronous way. Figure 26 below shows an example code

snippet of an asynchronous function making use of these promises.

The ͞aǁait͟ stateŵeŶts tell the Đode to ǁait foƌ a fulfilled pƌoŵise ƌespoŶse ďefoƌe ĐoŶtiŶuiŶg. So,

in this example, which is getting a useƌ’s ƌeĐeŶt soŶgs, ǁe ͞aǁait͟ the fetĐh ŵethod’s ƌespoŶse fƌoŵ
Last.FM, then once the respoŶse has ďeeŶ fulfilled, ǁe eǆtƌaĐt this as J“ON to the ͞data͟ ǀaƌiaďle,
and then we can successfully set the songs. This method of using async functions and await

statements are commonly used throughout this solution and will be spoken about again in further

sections.

Figure 26: Code Snippet showing asynchronous function that fetches a user's recent songs in LastFmFunctions.js file

38

In addition to these basic asynchronous functions, I also had to utilise asynchronous mapping

functions. These functions can quite quickly become a lot more complex. The underlying idea of this

is that we need to make lots of asynchronous calls to an API, but we want the code to wait until all

of these requests have been completed successfully before continuing, rather than just waiting for

one call to finish like we see above in Figure 26. Shown below in Figure 27 is an example of one of

the methods within the system which makes use of these asynchronous mapping promises.

Figure 27: Code Snippet showing asynchronous mapping function for getting songs for multiple activities

This method is used when analysing a group of activities over a date range. It takes a list of activities

as a parameter, and for each of these activities we need to find the list of songs that were listened

to. As finding the songs for each activity needs to be done in separate API requests, we employ the

asynchronous mapping method as shown above. The ͞aǁait Pƌoŵise.all͟ deĐlaƌatioŶ saǇs foƌ the
code to wait for all of the asynchronous calls within the promise to be fulfilled before continuing

(33). This ensures that all of the calls will be completed, and the code will not try to continue without

the data it needs.

4.3 Strava Authentication

The high-level data flow of how the Strava Authentication method works was previously discussed in

section 3.2 and shown in Figure 21. Here we will discuss in finer detail the code which handles this

process. Following the user being redirected to Strava and them logging in and providing RaceTracks

with access to their profile, they are redirected back to the RaceTracks home page where the

following functions shown in the figures below, run on page load:

39

Figure 28 shows a very important function in the solution. It is the function that handles the data for

the useƌ’s “tƌaǀa aĐĐouŶt autheŶtiĐatioŶ. This function needs to be asynchronous as it contains fetch

requests to another resource over HTTPS and so we make use of the ͞await͟ statements for the

code to run in a seemingly synchronous way. The ͞stƌaǀaAutheŶtiĐatioŶ͟ fuŶĐtioŶ Đalls tǁo otheƌ
fuŶĐtioŶs ǁithiŶ itself, oŶe ďeiŶg the ͞getAuthCode͟ fuŶĐtioŶ ǁhiĐh ĐaŶ ďe seeŶ below in Figure 29

aŶd the otheƌ ďeiŶg the ͞getAuthTokeŶ͟ fuŶĐtioŶ ǁhiĐh ĐaŶ ďe seeŶ below in Figure 30.

Once the user is redirected back to the application from Strava, the auth code we need is placed into

the URL. Shown below in Figure 29 is a simple function which takes the current URL and extracts the

auth code from it so that we can make use of it.

Figure 29: Code Snippet showing function to get the returned Strava Auth code from the URL in StravaFunctions.js file

The last fuŶĐtioŶ Đalled ǁithiŶ the ͞stƌaǀaAutheŶtiĐatioŶ͟ fuŶĐtioŶ is the ͞getAuthTokeŶ͟ fuŶĐtioŶ

which can be seen below in Figure 30. This function is also asynchronous as it makes a POST request

to the Strava API with the users auth code to obtain a valid authorization token which can be used to

then make further API calls. The endpoint is called with the RaceTracks Strava client id, client secret

and the auth code which we obtained previously from the redirect URL.

Figure 28: Code Snippet showing Strava Authentication Function in StravaFunctions.js file

40

Figure 30: Code Snippet showing get Strava Auth Token Function in StravaFunctions.js file

Once this method has successfully run, then the users userId and access token is available to

RaceTracks, and it can then make further API requests to retrieve user data using the userId and the

access token.

4.4 Last.FM User Data Retrieval

In contrast to acquiring the users Strava data, acquiring their Last.FM data is much more straight

foƌǁaƌd. Last.FM’s useƌ data is puďliĐ faĐiŶg aŶd does Ŷot ƌeƋuiƌe user authentication in order to

access it. Because of this there are no required redirects from the application, and all that we need

from the user is their Last.FM username. Once the user inputs their username into the given text box

aŶd ĐliĐks the ͞CoŶŶeĐt to Last.FM͟ ďuttoŶ, the folloǁiŶg fuŶĐtioŶ shoǁŶ ďeloǁ iŶ Figure 31 is run.

Figure 31: Code “nippet shoǁing function for getting a user’s Last.FM account data

41

This is a simple asynchronous function which makes an API GET request to Last.FM for the users

account information. We can also then use this username to make all of the other API requests to

Last.FM.

4.5 API Request Methods

Within the sǇsteŵ aƌĐhiteĐtuƌe theƌe aƌe tǁo files stoƌed ǁithiŶ the ͞utils͟ foldeƌ. These tǁo foldeƌs
aƌe the ͞LastfŵFuŶĐtioŶs,js͟ file aŶd the ͞“tƌaǀaFuŶĐtioŶs.js͟ file. Both of these folders contain the

methods for making the requests to both of the respective services APIs. Storing the methods here

in this file separately allows them to be imported into other JavaScript files within the code base and

reused in different ways. All of the fetch requests used, receive a JSON response which is then

serialized before being manipulated and set as a variable within the system. Within the

͞“tƌaǀaFuŶĐtioŶs.js͟ file, soŵe of the ŵethods iŶĐlude ͞haŶdleFetĐhAĐtiǀities͟ ǁhiĐh fetĐhes a
specified number of the users most recent activities. There is also a function for getting a users

aĐtiǀities ďetǁeeŶ a speĐified date ƌaŶge Đalled ͞haŶdleFetĐhAĐtiǀitiesBǇDate͟, ǁhiĐh ĐaŶ ďe seeŶ
below in Figure 32.

Figure 32: Code Snippet showing handleFetchActivitiesByDate method

 AŶotheƌ iŵpoƌtaŶt ŵethod iŶ the ͞“tƌaǀaFuŶĐtioŶs.js͟ file is the ͞haŶdleFetĐh“egŵeŶt͟ ŵethod

which can be seen below in Figure 33. This is used for requesting more data on a specific segment of

a run. This is necessary to retrieve the polyline data to be displayed on a map on the analyse activity

page.

Figure 33: Code Snippet showing handleFetchSegment method

42

As well as the methods for requesting data from the Strava API, there are similar functions which

request data from the Last.FM API. The most important method here is the

͞haŶdleFetĐh“oŶgsBetǁeeŶDateRaŶge͟ ŵethod, ǁhiĐh as the Ŷaŵe suggests, fetĐhes all of the
songs that the user listened to during a specified date range and can be seen below in Figure 34.

Figure 34: Code Snippet showing handleFetchSongsBetweenDateRange method

This is one of the most complex methods for fetching data within the system. This is because

Last.FM has a quirk where if a user is currently listening to a song when the request is being made, it

will always return that song regardless of what date range was selected. For example, if we were to

request all of the songs listened to between the 1st of March 2022 and the 5th of March 2022 on the

30th of March, and we currently have a song playing, then we will get the list of songs

between the 1st and 5th, as well as the current song playing. We need to account for this,

and so extra logic is needed to find this song in the list and remove it before returning the

list of songs.

There are a number more methods for requesting data from both Strava and Last.FM. All of

which can be found as previously stated, ǁithiŶ the Đodeďase iŶ the ͞“tƌaǀaFuŶĐtioŶs.js͟
aŶd ͞LastFŵFuŶĐtioŶs.js͟ files iŶ the utils foldeƌ.

43

4.6 Analysing Activities and Segment Efforts

One of the most important functions of the system is the Strava segment analysis functionality. This

is where the users runs are analysed in segments to find the parts of their run where their heart rate

was the highest or lowest, and where their pace is the highest or lowest. There are 4 functions in

total, one for each of these options to calculate the specified segment from a list of given segments.

Each of the functions takes in a list of segments as a parameter and runs the specific algorithm to

find the segment that matches the chosen criteria. The algorithms for making the necessary

calculations went through many iterations throughout the projects lifecycle before finally settling on

the final methods. Figure 35 below shows a code snippet of the method used for calculating the

fastest segment effort from the given list.

Figure 35: Code Snippet showing function for getting a User’s Fastest Segment Effort

The above function outlines the basis of the 4 different functions. Each of the functions is

asynchronous and makes use of the mapping promises as discussed previously in section 4.2. With

this function, we find the users running speed for each of the segments, and then return the

segment with the highest speed value. There is a similar function for finding the users slowest

segment, the only difference being that instead of returning the segment with the highest speed

value, we return the segment with the lowest speed value.

There are also two functions which find the users highest and lowest average heartrate. Figure 36

below shows the code snippet for getting the segment with the highest average heartrate.

44

Figure 36: Code Snippet showing function for getting a User's highest average heart rate segment

This function is incredibly similar to the one for finding the users fastest pace. The difference being

that we do not need to calculate the users heart rate, we only need to remove any segments from

the list which do not have any heartrate data associated with them, this is to catch any errors where

the user might not have worn a smart watch or activity tracker on their run. Following this we can

find the segment with the highest average heart rate and return it. There is a similar function for

finding the lowest average heart rate segment, the difference being that we return the lowest

average heartrate segment instead. These functions work whether the user is analysing one single

activity, or several activities collectively across a date range.

As mentioned in the project aims, there were plans for integrating support for analysing other types

of workouts such as HIIT workouts, weightlifting, boxing etc. Upon investigating the addition of this

functionality however, I discovered that there were limitations in the data provided by Strava for

these kinds of activities. Whereas running activities are broken down into segments with start and

end times and relevant heartrate data, other activities such as boxing or HIIT workouts are not.

Strava does not split these workouts into segments, and so they cannot be analysed in a similar way

to the running activities. The only data we are provided with is the start and end times and the users

average heart rate across the entire activity. After some investigation it was concluded that

unfortunately there was no suitable way to analyse these activities individually in a way that would

provide any useful information to the user. The most that the application can provide on a single one

of these activities is just the list of songs that the user listened to during that workout, and the

genres of the songs.

Although there was this limitation with the data, I was still able to implement some form of analysis

for other types of workouts. As a compromise, I implemented the functionality for analysing a

number of different workouts of the same type across a specified date range collectively. This would

instead allow the user to find the specific workout across a number of workouts where their average

heartrate was the highest or lowest, see what songs they listened to during that workout, and then

receive recommendations for similar songs based on that workout.

45

4.7 Mapping Strava Data

The decision to introduce a map into the solution came midway during development. When

aŶalǇsiŶg ͞RuŶ͟ aĐtiǀities, the useƌ is now presented with a map which shows them the map for the

segment which they currently have selected, for example, if the user has selected to view their

segment with their lowest average heart rate, then the map will show them the route of that

segment. An example of this can be seen below in Error! Reference source not found..

Figure 37: Screenshot showing example map for a highest average heartrate segment

Implementing this feature into the application became quite a challenge, and the solution to the

problem is particularly interesting. As previously mentioned, the mapping library which was used

was Leaflet.js, alongside the React-Leaflet package. To be able to display location data on the map, it

is necessary to obtain the encoded polyline data from Strava for the segment that needs to be

shown, decode this polyline data and then set the result as a line on the map. An example of the

encoded polyline which Strava returns can be seen below in Figure 38.

Figure 38: Example encoded segment polyline returned by Strava

Unfortunately, we cannot use the encoded polyline directly to display data on the map, it first needs

to be decoded. In order to do this I researched into various different possible solutions, and finally

settled on using an available JavaScript paĐkage Đalled ͞Mapďoǆ͟ (34), which provides a number of

46

tools for manipulating map data. The method that we need in particular is the ͞deĐode͟ ŵethod
which can be used on the encoded polyline data to convert it into usable data.

Figure 39 above shoǁs the ŵethod foƌ deĐodiŶg the polǇliŶe data usiŶg ͞Mapďoǆ͟ in the

StravaMap.js file. Upon a new segment being selected, the encoded polyline is run through the

͞polǇliŶe.deĐode͟ ŵethod, which returns an array of coordinates.

Figure 40: Example screenshot of decoded polyline coordinates

This array of coordinates is what is then plotted on the map component to display the segment line.

To make this feature moƌe usaďle foƌ the useƌ I also iŵpleŵeŶted a ͞ŵap.flǇTo()͟ fuŶĐtioŶ, ǁhiĐh
moves the map to the location of the new segment once it has been loaded onto the map so that

the user can see it straight away and does not need to manually search for it.

Figure 39: Code Snippet showing method for decoding Strava Polyline data into an array of coordinates in StravaMap.js

47

4.8 Song Genre Data

A particularly interesting and unexpected issue which was encountered during the development

process was the implementation of song genres. One of the primary aims for this project was to

display information to the users about the songs that they have listened to, including their genres.

This was one of the later features implemented into the project, and due to an oversight on the data

available from the Last.FM API, caused a momentary roadblock in development. The encountered

issue was that data for any song returned by the Last.FM API does not include a genre field. This

meant that as of that moment, the application had no way of defining songs into certain genres and

therefore no way of displaying this data to the user.

To overcome this issue, I researched into different ways in which I could obtain song data and at

first, I turned my attention to the Spotify API. Although I had already decided not to use Spotify as

part of the implementation, as an API provider, Spotify is one of the ǁoƌld’s leading data providers

with an extensive amount of data on each song, including the needed genre data. The idea was to

continue to have a user connect a Last.FM account and use this for getting their listening history,

and then take that list of Last.FM songs and make a call to the Spotify API to get extra data on each

song. Unfortunately, I encountered another issue here where the Spotify API requires an

authenticated user to make any API calls. This meant that in order to obtain genre data for their

songs, I would have had to require the user to also connect a valid Spotify account. This would have

defeated my purpose for choosing Last.FM as the service used, as only Spotify account holders

would then have access to this feature, and it would exclude users of other services as well as adding

unnecessary level of complexity for the user by requiring them to log in and use 3 different external

services.

Continuing research into other solutions, I found a website called TheAudioDb. TheAudioDb is a

community run database of audio artwork and metadata with a JSON API (35). The API is well

documented and provides the exact functionality that was needed for the application. The only

caveat to this service is that it is no longer free and currently costs £3 a month to receive access to

an API key. Ultimately it was decided that TheAudioDb would work as the better method in this

instance, and so after obtaining an API key, I began implementing the solution.

Working with TheAudioDb API proved to be tricky, as I needed to obtain genre data for each song,

and as there is no endpoint for taking a list of songs and just returning this data, I had to make an

individual API call for each song in the list. This led to the implementation of a somewhat more

complex and interesting method for solving this problem. As we have already discussed, making a

fetch request is an asynchronous function. However, because we are going to be making a lot of

these requests, it is vital that we ensure these calls are handled properly using an asynchronous

mapping method. Figure 41 below shows a code snippet of the function created for handling this.

48

Once the above function has run successfully, we should have a set of data for each of the songs

which includes the genre data. We then need to process this data order to provide the information

to the user in a useful way. The way that we display the genre data to the user is through pie charts.

The pie charts provide a visual representation of what genres they listened to and make the data

easily readable for the user. To create the pie chart component I used a JavaScript package called

͞ReaĐt-minimal-pie-Đhaƌt͟ (22), as previously mentioned, which enables quick creation of pie charts

on a web page. The pie chart component needs to be provided with an array of objects, each with a

͞title͟; the Ŷaŵe of the geŶƌe, a ͞ǀalue͟; the number of songs with this genre, aŶd a ͞Đolouƌ͟; the

colour of the pie chart segment for the specified genre. In order to use the genre data, I had

obtained from TheAudioDb I first had to process the data into a specific format so that I could supply

it to the pie chart. Figure 42 below shows an example of how the data given as a parameter to the

pie chart should be structured.

Figure 42: Example data structure which should be supplied to the React-Minimal-Pie-Chart Component

To format the data in this way, a function was created Đalled ͞getPieData͟ that takes a list of all of

the song genres and returns the data structured in this way. This function can be seen below in

Figure 43.

Figure 41: Code Snippet showing function for making a call to TheAudioDb to get genre data for each song in a list of songs

49

Figure 43: Code Snippet showing function taking a list of Song Genres and structuring it for the pie chart

There are 3 main sections to this function. As the pƌoǀided ͞soŶgGeŶƌes͟ list ĐaŶ ĐoŶtaiŶ multiple of

the same genre, the first step is to create a new list of genres which only contains one occurrence of

each. IŶ this step ǁe also ƌeŵoǀe the ͞ŶoGeŶƌe͟ flags ǁhiĐh ǁeƌe added to the array for songs

where genre data did not exist. The next step in the function is to count how many times each genre

appears, meaning how many songs the user listened to in each genre. These values are then stored

iŶ the ͞oĐĐuƌƌeŶĐes͟ aƌƌaǇ. The final step is to build the dataset for the pie chart, looping through

each unique genre, setting the title as the name of the genre, the value as its number of occurrences

and then its colour. This complete array is then set as the data variable used by the pie chart.

Styling the pie chart component in a suitable way for the page was more time consuming than I had

first anticipated. The documentation available for how the pie chart works and how to style the

different segments was very comprehensive, however the details on how it should be sized on the

page were lacking. In addition to this, I did not want to display the values of the chart segments on

the chart itself, but instead I wanted a separate key alongside the pie chart, and I was unable to find

any documentation on how to do this easily. My solution to this was to use the pieData array of

objects I had created, and then loop through it to render a label and a div block with the background

50

colour set to the matching colour for each of the items in the array. The code for generating this key

and an example of the resulting key can be seen below in Figure 44 and Figure 45.

4.9 Suggesting Similar Songs

As outlined in the project aims, one of the features that was discussed was some functionality to

suggest similar songs to the user based on the ones that they performed best to during their

workouts. This functionality had many implications which needed to be addressed before it could be

implemented. It was decided that the suggested songs would be based upon the music listened to

during the useƌs’ best segments for the analysed run, for example their segment with the highest

heart rate or fastest pace. My original idea was to take the songs the user had listened to in these

segments, find information about them such as their genre or tempo, and find songs similar with

these properties. This proved to be much more difficult than I had first anticipated due to the issue I

had where there was no genre or tempo data for songs provided by Last.FM. Although I worked

around the genre data issue with TheAudioDb, TheAudioDb does not provide tempo data either.

This meant that I would have had to find another external data source which could provide this data

to the application, however this could have put a serious strain on the loading with another layer of

API calls which would need to be made and also would increase the risk of the application failing

should one of the data source providers being unavailable.

After some further reading, I discovered that the Last.FM API actually has a method available called

͞track.getSimilar͟. This allows us to make a request to the API with a song name and its artist and

receive similar songs as a response. It is not clear in the documentation exactly how the songs

ƌetuƌŶed aƌe Đlassed as ͞siŵilaƌ͟, hoǁeǀeƌ afteƌ soŵe testiŶg. In most cases it appears to choose

similar songs from the same artist, but this is not always the case. I opted to utilise this method as a

solution to the problem in order to implement the functionality in some way albeit I was unable to

match the songs by specific beats per minute.

Although Last.FM offers this method, as of the date this project was developed, there is an issue

with their ͞tƌaĐk.get“iŵilaƌ͟ method. For all of the song images which are displayed on RaceTracks,

Figure 45: Code Snippet showing rendering of pie chart key Figure 44: Screenshot showing example of a rendered pie chart key

51

the images are being loaded directly from Last.FM. The image URLS are included as part of the song

objects returned by the API, and these are then used to display the images on site. Unfortunately the

͞tƌaĐk.get“iŵilaƌ͟ ŵethod does Ŷot ĐoƌƌeĐtlǇ ƌetuƌŶ the URLs foƌ soŶg iŵages, aŶd iŶstead ƌetuƌŶs
invalid URLs. This means that using this method alone would result in all of the songs being displayed

with null images. In order to work around this bug, RaceTracks gets the list of similar songs from

Last.FM and then makes another set of API requests to get information on each of those songs,

which includes the correct image URL.s. This became one of the more complex features within the

system and required careful planning on how to properly handle the API requests using async

ŵethods aŶd pƌoŵises. The ͞get“iŵilaƌ“oŶgsFoƌTƌaĐks͟ ŵethod ǁhiĐh I Đƌeated ĐaŶ ďe seeŶ ďeloǁ
in Figure 46.

Figure 46: Code Snippet showing function for getting similar songs from Last.FM

52

Although it is not exactly how I would have liked to implement the feature, due to time constraints

and limitations with the Last.FM API, it was a suitable work around and meant that the feature

would not be entirely missing from the completed solution. The similar suggested songs feature can

be seen below in Figure 47.

Figure 47: Highest average heart rate segment showing similar suggested songs

4.10 Dealing with DateTime Objects

Appropriate and correct handling of dates and times are a critical part of the application. Both

activities and songs have DateTime data associated with them, which we use to display the correct

songs listened to during specific workouts. As previously discussed, a JavaScript package called

Luxon (21), is used within the system that allows the manipulation of dates and times. Both Strava

and Last.FM provide their dates in a UTC / Epoch date format in seconds, which should allow for

consistency across the application and easier date matching between activities and songs. There

were little to no issues in dealing with DateTimes throughout development, until towards the end of

the project where I noticed that the times that songs were listened to on some of the activities did

not match up with the time the activity actually took place and that they were 1 hour off. This was

due to the daylight-saving change on the 27th of March 2022, where the United Kingdom time zone

moved from 1:00am to 2:00am. Strava accounts for this change on an account specific basis, and as

my account which I was using for testing purposes was based in the UK, the UTC times provided by

the API were correct following this time change. Last.FM however, does not account for daylight

savings. Therefore, all of the song data which I was receiving and using to display when the songs

were listened to, was an hour behind the correct time. To counter this issue, I used a feature within

Luxon to take the UTS time provided and convert it to the time zone of the useƌ’s system. Assuming

the useƌ’s system is correctly set to their time zone, this should mitigate this issue. A future

53

improvement would be to find a way to get the time zone that Strava is using for the useƌ’s data and

use this to convert the Last.FM datetimes. A code example of a Last.FM DateTime being converted

can be seen below in Figure 48. We take the date provided in UTC and convert it to the systems time

zone and then format it appropriately. In LuǆoŶ, ͞ff͟ foƌŵats a date tiŵe iŶ the foƌŵat of: ͞31 Mar

2022, 13:10͟ (36).

Figure 48: Code Snippet showing conversion of Last.FM date to the local system time zone

4.11 Live Webhosting

As previously discussed, something which become an aim of the project during the development

process was the have the application hosted on the web so that a live version of it is available to

access. Several different solutions for free and simple ways of hosting React applications were

investigated. Initially I looked at using GitHub Pages as a solution (37), which allows the hosting of

live sites using production code directly from a GitHub repository. I encountered issues with this

service however since it could not handle the URL routing on single page applications in the way I

needed. Due to my application redirecting to Strava for authorization and then being redirected back

with a new URL, GitHub pages would error since it did not recognise the new redirected URL as a

valid one.

Following this issue and as I was hosting my code repository in Microsoft Azure DevOps, I decided to

investigate the available options for hosting the RaceTracks with Azure. Azure provided the support

for handling the single page routing which my application needed, although to make this possible, I

needed to add a ͞.ǁeď-ĐoŶfig͟ file, ǁhiĐh ĐaŶ ďe fouŶd iŶ the ͞puďliĐ͟ foldeƌ of the pƌojeĐt souƌĐe
code. Azure uses the rules outlined in this config file to ignore the URL routing on the application and

always redirect to the correct page.

UsiŶg Azuƌe’s tools, I Đƌeated a Ŷeǁ ͞App Service͟, which is the HTTP-based service used for hosting

web applications. I then began creating a production pipeline which when triggered, runs pre-set

commands on the code base in order to create a production ready build of the source code which

can be hosted on the created app service. Figure 49 below shows the azure GUI with the commands

run by the pipeline. The pipeline runs ͞npm install͟ which is a Node.js command to install all of the

required Jaǀa“Đƌipt paĐkages, aŶd theŶ ͞Ŷpm ruŶ ďuild͟ which is also a Node.js command, to create

a production ready build of the codebase.

54

Figure 49: Screenshot showing the Azure Pipeline commands for creating a production build of the application

Once the pipeline has run, theŶ a Ŷeǁ ͞Release͟ is Đƌeated. This release deploys the production-

ready code onto the previously mentioned App-service where it is then available to access at:

https://racetracksreactapp.azurewebsites.net/. The release pipeline can be seen below in Figure 50.

Figure 50: Screenshot showing the Azure Release Pipeline commands

https://racetracksreactapp.azurewebsites.net/

55

4.12 Security

An important thing to consider when building and deploying a new web application is the Security

measures put in place. There are various aspects of the system that promote a secure

implementation. Firstly, the system implements the secure HTTPS protocol. HTTPS is an extension of

the HTTP protocol which is used for secure communication over a computer network and is widely

used on the internet. The HTTPS protocol is encrypted using Transport Layer Security (38). Because

RaceTracks is using solelǇ HTTP“ to ŵake ƌeƋuests to the eǆteƌŶal API’s, the tƌaffiĐ ďetǁeeŶ the tǁo
servers is encrypted to prevent eavesdropping and the exposure of any private data.

As previously discussed, the application also implements OAuth2 authorization when making

requests to the Strava API. As this has been implemented correctly and uses HTTPS for making the

requests, the user’s data is protected from eavesdropping and man-in-the-middle attacks.

Furthermore, all the data obtained from users Last.FM accounts is all public-facing data, and anyone

could obtain this data should they wish to, so there is no risk of exposing anything personal or

private here.

Lastly, as the application is being hosted on Microsoft’s Azure servers, there are several security

features which are provided as part of the service. The Azure servers provide an Internal Load

Balancer (ILB), which provides the web application with a firewall to offer enterprise-level protection

from security threats such as DDoS attacks, URI filtering and SQL injection (39).

56

5. Results and Evaluation

5.1 First round of testing – 25/02/2022

After completing development work on the features that met that primary aims for this project and

satisfied the criteria laid out for a minimum viable product, the first round of testing on the system

was carried out. As a test-driven development approach was taken, many of the bugs and issues

which could have been picked up in the round of testing, may have already been fixed or resolved.

With this testing session the aim was to check and verify that all the key features and functionality

were working as intended.

The data for this round of testing was collected by myself using an Apple Watch series 6, running the

latest version of the Strava app as of this date, whilst listening to music through my Spotify account

that was connected to my Last.FM account through my iPhone X. I carried out the testing of the

web-app on my most recent codebase running as a live website hosted on Microsoft Azure. This

allowed me to also test for any issues which may not be present during local development. The

results for this round of testing can be seen in the table below:

57

Test

Number

Action Expected Result Achieved Result Test

Result

Comments Evidence

1 Click connect to

Strava button

Redirect to

Strava Login

page

As expected Pass Appendix:

Figure 58

2 Log in to Strava Redirects to

Authorize app

page

As expected Pass Appendix:

Figure 59

3 Click Authorize on

Strava account

Redirects to my

web-app with

connect to

last.fm screen

showing

As expected Pass Connect Strava

screen shows

momentarily after

redirecting back to

my web app

Appendix:

Figure 60

4 Enter LastFm

username and

click connect to

last.fm

Home page

should load with

loaded recent

strava activities

and recent

LastFm songs

As expected Pass Username was

͞TǇleƌJeŶkiŶsϮϮ͟

Appendix:

Figure 61

5 Enter a non-

existing LastFm

username and

click connect to

last.fm

App should not

direct to home

page and should

stay on connect

to last.fm

screen

As expected Pass App tries to make

the GET request but

receives a 404

message, app does

not crash

Appendix:

Figure 62

6 Click analyse on a

recent activity

Analyse activity

page loads with

correct data in

songs list,

segments, and

genre pie chart

As Expected Pass Appendix:

Figure 63

7 Change

dropdown for

segment filter to

each option

Loads selected

segment

As expected Pass Appendix:

Figure 64

8 Click back button

on analyse

activity page

Returns to

home page

As expected Pass N/A

9 Enter invalid date

ranges and click

search for

activities by date

No results

should be

returned

As expected Pass A message to say

please select valid

dates or disable

search button for

invalid search dates

could be in place.

Also, should add

͞“taƌt date͟ aŶd
͞EŶd date͟ laďels

Appendix:

Figure 65

10 Enter valid date

ranges and click

Results between

date ranges

As expected Pass If date range is too

big, only most

Appendix:

Figure 66

58

search for

activities by date

should be

displayed

recent 30 activities

will be returned

11 Click analyse all

activities

between these

dates button

Analyse

activities page

loads with data

from all

activities in that

selected range

As expected Pass Appendix:

Figure 67

12 Change

dropdown for

segment filter to

each option

Loads selected

segment and

should be

correct across

all selected

activities

As expected Pass Appendix:

Figure 68

13 Click back button

on analyse

activities page

Returns to

home page

As expected Pass N/A

14 After successful

activity date

range search,

change activity

filter to

͞Woƌkout͟

Should show

͞Woƌkout͟
activities

As expected Pass These activities

currently cannot be

aŶalǇsed like ͞RuŶ͟
activities

Appendix:

Figure 69

15 Clicking analyse

on an activity

which is not

͞RuŶ͟

Should load

analyse page

with any music

data but inform

the user that

this activity

cannot be

analysed

As expected Pass Support for other

activities should be

added as a future

feature

Appendix:

Figure 70

16 Entering another

users username

oŶ ͞CoŶŶeĐt to
Last.FM͟ sĐƌeeŶ

App will load

with authorized

strava account

activities but

another users

songs

As expected Pass Username

used:͟JohŶ͟

This is not a bug, as

Last.FM profile data

is public. However,

there is no log out

option currently so

if someone enters

their username

wrong they must

refresh the app.

Appendix:

Figure 71

Figure 51: Testing table showing first round of testing on 25/02/2022

59

Following the results of the first round of testing, I noted that there were a few small things which

could benefit from being changed, such as displaying certain messages to the user or implementing a

log out feature so that the useƌ ǁasŶ’t stuĐk if theǇ had ĐoŶŶeĐted aŶ iŶĐoƌƌeĐt Last.FM aĐĐouŶt. I

was confident enough with my system that I would be able to move forward in the development

process and begin implementing the new proposed features that I had outlined in my secondary

aims. This included features such as song suggestions, more detailed insights in data comparison and

the possibility of investigating a log in system for the application.

5.2 Second round of testing – 14/04/2022

Upon reaching the end of development, I began a final round of testing on the system I had

developed. This followed the previous round of testing, and I had also been testing throughout

development. With this testing session I aimed to check and verify that all the key features and

functionality were working as intended.

The data for this round of testing was collected similarly to the first round. It was collected by myself

using an Apple Watch series 6, running the latest version of the Strava app as of this date, whilst

listening to music through my Spotify account that was connected to my Last.FM account through

my iPhone X. The testing was done against the latest codebase running as a live website hosted on

Microsoft Azure.

Test

Number

Action Expected Result Achieved Result Test

Result

Comments Evidence

1 Click connect to

Strava button

Redirect to

Strava Login

page

As expected Pass Appendix:

Figure 72

2 Log in to Strava Redirects to

Authorize app

page

As expected Pass Appendix:

Figure 73

3 Click Authorize on

Strava account

Redirects to my

web-app with

connect to

last.fm screen

showing

As expected Pass Connect Strava

screen shows

momentarily after

redirecting back to

my web app

Appendix:

Figure 74

4 Enter LastFm

username and

click connect to

last.fm

Home page

should load with

loaded recent

strava activities

and recent

LastFm songs

As expected Pass Username was

͞TǇleƌJeŶkiŶsϮϮ͟

Appendix:

Figure 75

5 Enter a non-

existing LastFm

username and

click connect to

last.fm

App should not

direct to home

page and should

stay on connect

to last.fm

screen

As expected Pass App tries to make

the GET request but

receives a 404

message, app does

not crash

Appendix:

Figure 76

6 Click analyse on a

recent activity

Analyse activity

page loads with

As Expected Pass Appendix:

Figure 77

60

correct data in

songs list,

segments, map

and genre pie

chart.

7 Change

dropdown for

segment filter to

each option

Loads selected

segment and

updates map

with new

segment

location

As expected Pass Appendix:

Figure 78

8 Click back button

on analyse

activity page

Returns to

home page

As expected Pass N/A

9 Enter invalid date

ranges and click

search for

activities by date

No results

should be

returned

As expected Pass Still no message to

notify the user of an

incorrect search.

Could also have

disabled search

button when

incorrect dates

selected.

Appendix:

Figure 79

10 Enter valid date

ranges and click

search for

activities by date

Results between

date ranges

should be

displayed

As expected Pass If date range is too

big, only most

recent 30 activities

will be returned

Appendix:

Figure 80

11 Click analyse all

activities

between these

dates button

Analyse

activities page

loads with data

from all

activities in that

selected range

As expected Pass Appendix:

Figure 77

12 Change

dropdown for

segment filter to

each option

Loads selected

segment and

should be

correct across

all selected

activities

As expected Pass Appendix:

Figure 78

13 Click back button

on analyse

activities page

Returns to

home page

As expected Pass N/A

14 After successful

activity date

range search,

change activity

filter to

͞Woƌkout͟

Should show

͞Woƌkout͟
activities

As expected Pass These activities

currently cannot be

aŶalǇsed like ͞RuŶ͟
activities

Appendix:

Figure 81

15 Clicking analyse

on an activity

Should load

analyse activity

page

As expected Pass It was not possible

to analyse a single

workout activity as

Appendix:

Figure 82

61

which is not

͞RuŶ͟

discussed, these

activities can only

be analysed as a

group

16 Clicking analyse

all activities in

date range for

͞Woƌkout͟
activities

Should load

analyse

activities page

As expected Appendix:

Figure 83

17 Changing filter on

analyse workout

page should

Should display

workout activity

matching the

selected filter

Application

crashed and

displayed a blank

page

Fail Seems to be an

issue with displaying

the similar songs.

Appendix:

Figure 84

18 Entering another

users username

oŶ ͞CoŶŶeĐt to
Last.FM͟ sĐƌeeŶ

App will load

with authorized

Strava account

activities but

another users

songs

As expected Pass Username

used:͟JohŶ͟

This is not a bug, as

Last.FM profile data

is public. There is

Ŷoǁ a ͞Log Out͟
button, which was

picked up in the first

round of testing

Appendix:

Figure 85

19 CliĐk ͞Log Out͟ of
Strava account

button

App should

return to

connect Strava

account screen

and retain users

Strava account

info

Application

redirects to the

connect Strava

account and

retains Last.FM

account

Pass with

concern

Although technically

the Last.FM account

is retained, upon

connecting a new

Strava account, the

Last.FM account is

lost during the

redirect to Strava.

This is a minor issue

and could possibly

be resolved using

browser caching

and cookies.

N/A

20 CliĐk ͞Log Out͟ of
Last.FM account

button

App should

return to

connect Last.FM

account screen

and retain users

Strava account

info

As expected Pass N/A

Figure 52: Testing table showing first round of testing on 15/04/2022

The second round of self-testing aimed to build upon the first round. I re-tested all of the features

which had been previously tested, as well as any new ones which had been implemented. Some of

the suggestions from the first round of testing were implemented to improve the user experience

such as the log out functionality. The majority of tests passed with results as expected, however

there were a few outlying cases. In test case 17 of the second round of testing, it was expected that

62

changing the filter of which best activity to view, that the page would update to show the matching

activity. However, changing the filter resulted in the page crashing with errors being thrown in the

console. This test highlighted a core issue with the system. After some investigation it appeared that

the bug had been introduced when the functionality for suggesting similar songs was implemented,

following this testing session, I was able to re-visit the code base and implement a fix for this issue so

that this page works as expected and now passes the test case.

One other test which highlighted a concern within the system was test case 19. This test technically

passed as expected, however there were issues which followed. UpoŶ ĐliĐkiŶg the ͞Log Out͟ ďuttoŶ
for the users Strava account, the Last.FM account details were not lost, and the user is returned to

the connect Strava account screen. However, the issue appears when the user then clicks the

͞ĐoŶŶeĐt aĐĐouŶt͟ ďuttoŶ to ďe ƌediƌeĐted to “tƌaǀa to re-connect their account. As the application

does not store Last.FM account details within the browser cache or cookies as of right now, the

users Last.FM account details are then lost, and they will then have to reconnect their Last.FM

account. This does not cause any errors or issues within the application itself, however it is more of a

consistency issue, and inconvenient for the user to have to redo. In future work I might like to

investigate the implementation of cookies and caching in order to mitigate this issue, or through the

implementation of the proposed log in system for the application this could also be resolved.

5.3 Feedback from Demonstrating to an Internal Group

After obtaining permission, I was able to join a small group of other students who were all working

on similar projects and demonstrate to them the final RaceTracks solution. After only a short demo, I

was able to receive some feedback from them. The overall consensus was very positive, and people

were impressed with the work that had been done. The main areas of the application which people

found most notable were the ability to search for activities between a date range including all types

of workouts and not just runs, the map feature showing the user where their best segments were,

the genre pie charts and the suggestions for similar songs based on the ones that the user had

listened to. I was happy with the overall feedback, and in addition to this there were also some

critiques which I have taken on board. The main concern was that the analyse activity screen has the

potential to be somewhat overwhelming to new users with lots of information being presented. This

is a completely valid point, and something which I would to be addressed in future iterations of

work.

5.4 Evaluation of Testing

After completing multiple testing sessions on the final version of the system and demonstrating the

project to a small select group of people I have come to several conclusions. Due to employing a

test-driven development approach I was able to mitigate a scenario where most of the test cases

would result in failure during the testing sessions. Looking at the results from each testing session, I

am confident in the system that I have produced and although there are some small features which

could benefit from being tweaked, I am pleased with the overall performance and the way the

system holds up. In order to gain further confidence in the system, I would like to have performed

some real external user testing sessions, to see how the system performs with other useƌs’ data and

how the other users would interact with the system. It is quite likely that this form of testing would

highlight bugs and features which could be improved in order to better the user experience, which I

may not have noted during my testing. This would also help to eliminate any bias I might have had

from testing my own system. In addition to user testing, the integration of automatic unit testing

63

would have greatly improved my confidence in the system and would have highlighted any scenarios

where introducing new features would have an unintended effect on another area of the system and

introduced bugs. If I were to implement these two methods of testing, then the documentation for

declaring the system stable and well developed would be much stronger and would strengthen my

confidence in the system.

5.5 Evaluation of System Against Project Aims

As part of the system evaluation, I have used the original aims specified in section 1.3 of this

document as a reference point to determine the success of the project.

Looking at the projects first primary aim; ͞To Đreate a web-appliĐatioŶ ǁhiĐh ǁill displaǇ a user’s
running activity history as well as their music listening history for each activity.͟, I have concluded

that this aim was achieved successfully. The system allows users to connect their Strava and Last.FM

accounts and are able to view their recent activities as well as search for activities within a specified

date range. These activities are then displayed alongside the songs which the user listened to during

that activity.

The second of the primary aims; ͞To implement functionality which allows comparisons between a

user’s siŶgle ruŶŶiŶg aĐtiǀitǇ aŶd the ŵusiĐ theǇ ǁere listeŶiŶg to duriŶg the tiŵe-period of that

activity.͟, was also achieved successfully. The application certainly does provide the user with the

information that was intended, they are given a breakdown of their runs and are able to view what

songs they were listening to at various segments, including where their heart rate was at its highest

or lowest, or where their pace was at its highest or lowest.

The third primary aim of the project; ͞3To iŵpleŵeŶt fuŶĐtioŶalitǇ ǁhiĐh Đoŵpares all of a users’
running activities and all of the music listening history for those activities, across a given time

frame by the user.͟ was also successfully achieved. As previously mentioned, the application allows

a user to search for activities within a specified date range, these activities can then be analysed as a

collective and the user can view their best segments along with the songs, they listened to during

them.

The final primary aim of the project; ͞To design and implement a suitable and user-friendly user

interface.͟ is difficult to measure in regard to its success. The user interface was developed with a

mobile-first approach, and is usable on devices of all form factors, including mobile phones, tablets,

and desktops. The designs were kept simple, and the aim was not to overwhelm the user with too

much information. Although personally I am happy with the design and believe that this aim was

successfully achieved to an extent, I would need to carry out specific user testing sessions in order to

record how other people interact with the system and note their views on the suitability and

usability of the user interface. From a session I was involved in with demonstrating the system, the

feedback was mostly positive with people liking the overall design of the system. The only comments

on things which could be changed were some of the animations on the home screen where the

recent songs and activities carousels slide automatically after a few seconds, or that there could

potentially become an overwhelming amount of data given to the user on the analyse activity

screen.

In addition to evaluating the system against the primary aims, the system can also be evaluated

against the secondary aims. The first of the secondary aims; ͞To update the application logic to

allow for different kinds of activities to be included as opposed to just running. For example,

cycling, weightlifting, boxing etc.͟ can be classified as successful to an extent. As we discussed, the

64

application does allow the user to view all of their activity types in addition to runs. However, it is

much more difficult to analyse these types of activities as they are not broken down into segments.

Because of this, the other types of activities can only be analysed in groups, and not as individual

activities. Because there is some functionality for analysing these kinds of activities, I would classify

this aim as achieved successfully, although I would have liked to see each of these activities being

able to be analysed individually like with the runs.

The second secondary aim was ͞To extend the level of detail which is offered by the insights of the

music and activity comparison, for example calculating the optimum beats per minute (bpm) of the

music the user should listen to when they exercise.͟ which unfortunately was not achieved during

this project. Due to the limitations of the Last.FM API and it not providing any data on BPM for

songs, I was unable to acquire this data. I explored other solutions, Spotify being the best option,

however implementing the Spotify API introduced new hurdles such as the user needing to have a

Spotify account, which as we discussed previously, isolated the user base. Because of this, I

unfortunately had to forgo the implementation of this feature for the purpose of this project.

The third secondary aim ǁas ͞To add functionality for song suggestions based on how the user

performs whilst listening to certain genres of music.͟. This aim was successfully achieved with the

similar suggested songs feature which was discussed in section 4 of this document. The application

uses Last.FM to get similar songs to songs which the user listened to during their best segments

when analysing an activity.

The final secondary aim was ͞To implement a log-in system which would mean that users would

not have to connect their Strava and Last.FM accounts each time they want to use the

application.͟. This aim was not achieved during this project. I expected that the implementation of a

log in system would be an incredibly large undertaking, and my preconceptions proved to be correct.

After implementing the other features previously discussed, I began some initial research into how I

could develop a log in system for the application. I quickly realised that this feature would need to

be completely de-scoped, as it would be completely infeasible for me to implement this feature as I

would need to rebuild a large amount of the system, which would have been too large a task to

undertake within the timeframe I had left of the project. Because of this the feature had to be de-

scoped. Although the feature was de-scoped, there is very minimal impact on the user because of

this. The log-in system would not have provided the user with any additional functionality, and

would have only prevented them from having to reconnect their Strava and Last.FM accounts each

time they wanted to use it.

The last mentionable points are the two aims which I set during the pƌojeĐt’s lifecycle. These two

aims were:

• ͞To deploy the web-application on a live-hosting service, to make it accessible online to

any user.͟

• ͞To investigate the incorporation of mapping tools, to display to a user where they have

run during their recorded activities.͟

Both of these aims were successfully met, as previously discussed, the application is available online

on MiĐƌosoft’s Azure servers and can be accessed by anybody. Mapping of the Strava segments was

also implemented on the analyse activity pages using Leaflet.JS.

In conclusion, I would classify the project myself as a success. The majority of the aims that were set

have been successfully met, and those that were not, were only de-scoped due to limiting factors

65

such as time constraints or available data. All of the core functionality was successfully

implemented, and I was able to include some extra features such as the map.

5.6 Evaluation of Methodology and Tools

Based on the outcome of the several rounds of testing and the evaluation of the system against the

project aims, it is clear that the approach and methodology adapted over the course of this project

were suitable and appropriately chosen. Adopting the agile methodology as previously discussed

allowed the project to be flexible and adapt to any changes which needed to be made to designs,

functionality and what tools were being used. If a waterfall methodology had been chosen, I believe

that the project would have suffered as a result. By losing the flexibility to add new features during

the development process, some of the most defining parts of the system would have been missing

from the final product such as the map components.

In terms of the tools and technology used during development, it is my belief that all of the tools

which were used were a suitable and correct choice for the project. Using JavaScript alongside the

React framework proved to be a good choice as it promoted code reusability, reduced code

redundancy, and allowed me to implement some features with a fair degree of complexity. There

were however some limitations with using React when dealing with passing data around the system.

React is commonly used with another JavaScript framework called Redux (40). Redux is a state

management tool (41), that creates a centralized data store to ensure consistent data across the

application. The project could have benefited from realising the potential with this tool sooner, as it

would have greatly improved the way data is handled within the system and it would have made

several of the main processes more efficient. In addition to this it would clean up a lot of the code

throughout the system, and heavily reduced the complexity of accessing different data sets within

different sections of the system.

Choosing to use Microsoft Azure DevOps for version control was also the perfect tool for the project,

as it provided easy integration with Visual Studio Code, and an easy to work with and understand

user interface for navigating the different branches and commits. The last tool which I used was

Đalled ͞PostŵaŶ͟. PostŵaŶ is an tool which allows you to make API requests from a GUI and

visualise the data that is being returned (42).

66

6. Future Work
Although I feel that this project was successful in many ways and achieved most of the aims outlined

by the project, there are still a number of ways in which the solution could be improved and built

upon in the future. I feel that RaceTracks in its current state is more of a prototype that

demonstrates the feasibility of a scalable, and worthwhile system. From my own research,

development, and evaluation, I believe that there is a real use for an application like this, which has

the potential to appeal to a sizeable user base.

The first improvement and something which I wish I had been able to implement during

development, is unit testing. Unit testing is a software development process in which small sections

of the system are run through automated tests to ensure correct and properly functioning code (43).

Jest is a framework which offers unit testing for JavaScript applications and works with React

projects (44). This would be the perfect solution for implementing unit testing on the RaceTracks

application which has been already built, and would allow the codebase to be maintainable,

scalable, aŶd also eŶsuƌe that Ŷeǁ Đode doesŶ’t iŶtƌoduĐe as many new bugs. Furthermore, as part

of Azuƌe DeǀOps’ pƌoduĐtioŶ pipeliŶe, these new unit tests can be set to automatically run before

any new code is allowed to merge into the main code branch. This will also aid in preventing the

accidental introduction of new bugs.

Once completing work on the addition of unit testing, the application would then be in a more

suitable state for the addition of new features. One of the projects secondary aims was to offer a

higher level of detail about the music the user listened to during their workouts. Although I was able

to provide the user with the music genres, I was not able to display metrics such as beats per minute

(bpm), and in turn use this data to find other songs with a matching bpm. This was mainly due to the

limitations that we discussed with the APIs, sand o in future iterations of the project, I would like to

iŶǀestigate otheƌ aǀailaďle API’s in more detail such as the Spotify API. I believe that a great deal of

insightful data can be gained from using the Spotify API, and although it was decided that this

project would not use it in order to not isolate the user base, it could be possible that in order to

improve the aŶalǇsis’ leǀel of detail, it will have to be utilised in some form. The implementation of a

new music data source however would require an overhaul of several parts of the system. A lot of

the components and functions rely on the data structure provided ďǇ Last.FM’s API and it is highly

unlikely that the data structure from Spotify would match this exactly. Because of this, measures for

dealing with a new data structure would need to be put in place. My initial idea would be to create a

generic ͞RaceTracks“oŶg͟ oďjeĐt, ǁith fields that ĐaŶ ďe populated fƌoŵ eitheƌ “potifǇ’s oƌ Last.FM’s
respective song objects, and then overhaul the rest of the system to utilise this new

͞RaĐeTƌaĐks“oŶg͟ object. This would allow for the implementation of a more hexagonal architecture

(5) which aims at creating loosely coupled application components that can be easily connected to

external software environments.

A further aim of the project was to investigate the addition of a log in system for RaceTracks. Whilst I

would have ultimately liked to have implemented a login system, after some investigation this

proved to be a very development heavy, complex, and time-consuming feature which the project

sĐope just didŶ’t aĐĐouŶt foƌ. If this system were to be built upon and made for commercial use,

then a log in system would be a vital addition. By allowing users to create a RaceTracks account, they

will only then need to connect their external activity tracking and music listening account details to a

single account one time. This will negate the need for the user to connect these accounts every

single time they wish to use the application. If this feature were to be implemented, there would

need to be several new additions to the system architecture to allow for it. The first being a back-

end database and the second being an API. The database would need to store all of the users

67

account details and potentially other data such as their Strava activity and Last.FM music data. When

storing this data, it is crucial that appropriate security measures such as password hashing are put in

place. This dataďase ǁould likelǇ ďe iŵpleŵeŶted usiŶg MiĐƌosoft’s A“P.NET fƌaŵeǁoƌk (45), which

would allow for creating a fast and scalable database alongside an API which would be needed for

accessing the stored data. The API would need multiple endpoints for reading, writing, and deleting

data stored within the database, and the React application will then need to be updated to be able

to call these various endpoints. The overall dataflow of the system will also need overhauling to

account for the data being stored within the RaceTracks database and using this as an access point

rather than Last.FM or Strava. One of the main benefits to storing the data within our own database

is that it will heavily reduce the number of API calls made to each of the external API’s aŶd would

therefore reduce the risk of the application reaching the rate limits for one of the APIs. In addition to

this, storing the data ourselves would reduce the reliance on so many other services and would

mitigate the risk of the application failing if one of the eǆteƌŶal API’s ǁas uŶaǀailaďle foƌ aŶǇ ƌeasoŶ.
Figure 53 below shows a potential dataflow for the overhauled system which would run each time

the user logs in.

Figure 53: UML diagram showing proposed high-level dataflow for each log in after implementation of a new log in system

68

If the log in system were to be introduced as detailed above, the system would also benefit from the

introduction of the Redux JavaScript package. As previously discussed, this was something that I

would have liked to include had I only ƌealised it’s poteŶtial sooŶeƌ. If the system were to scale to

become any larger than it is in its current state, then the addition of the Redux package for state

management would be vital. Some of the final changes I would also like to add in future work are

adding new ways of analysing segments and some page styling changes. Although I am happy with

the styling work done on the project in its current state, I would like to further improve on this and

implement a sleeker and more modern looking design. This could include an overhaul of the colour

palette chosen, as well as updated structure of the web pages to reduce potentially overwhelming

the user with too much information.

69

7. Conclusions
The initial aim of this project was to create a responsive web-application that would allow users to

connect their activity tracking and music streaming service accounts together in order to gain an

understanding of how the music that they listen to can affect their performance. As already

evaluated, there were several primary aims which were outlined at the beginning of this project;

these were:

1. To create a web-appliĐatioŶ ǁhiĐh ǁill displaǇ a useƌ’s ƌuŶŶiŶg aĐtiǀitǇ histoƌǇ as ǁell as
their music listening history for each activity.

2. To implement functionality which allows the comparisons between a siŶgle useƌ’s ƌuŶŶiŶg
activity and the music they were listening to during the time-period of that activity.

3. To implement functionality which compares running activities and music listening history

across a given time frame by the user.

4. To design and implement a suitable and user-friendly user interface.

 It can be deemed as conclusive that the solution provides the functionality to achieve these aims

and does so to an agreeable standard. As a supplement to these primary aims, there were several

secondary aims which were also outlined for this project, these were:

1. To update the application logic to allow for different kinds of activities to be included as

opposed to just running. For example, cycling, weightlifting, boxing etc.

2. To extend the level of detail which is offered by the insights of the music and activity

comparison, for example calculating the optimum beats per minute (bpm) of the music the

user should listen to when they exercise.

3. To add functionality for song suggestions based on how the user performs whilst listening to

certain genres of music.

4. To implement a log-in system which would mean users would not have to connect their

Strava and Last.FM accounts each time they want to use the application.

5. To deploy the web-application on a live-hosting service, to make it accessible online to any

user.

6. To investigate the incorporation of mapping tools, to display to a user where they have run

during their recorded activities.

Unfortunately, not all of the secondary aims can be noted as achieved. Whilst secondary aims 1, 3, 5

and 6 can be noted as successfully achieved, sadly, secondary aims 2 and 4 were not successfully

achieved. This was as discussed previously in detail, due to limitations with the external data sources

used, time constraints and the levels of complexity which would come with implementing the

features, primarily the log in system.

It is my belief that the project was managed well throughout its entirety. The research, specification

and design phases were well documented, and therefore allowed me to make the most out of the

time delegated to the implementation. I believe that some of the most notable pieces of work on

this project include the location mapping functionality, the work with several external APIs in order

to mitigate the issues with genre data due to the lack of its availability from Last.FM and the overall

design of the system being suitable for both mobile and desktop views. As a final notable piece of

work, having the solution available as a live website is something which I am particularly proud of, as

initially this was not something that I had envisioned being able to achieve.

Although there was a great deal of success over the course of this project, there was certainly areas

which could have been improved. Had I been able to achieve the final 2 secondary aims, they would

70

have greatly improved the final solution. In addition to this, upon reflection I should have

investigated the addition of Redux and Unit tests more with this project. Using both of these tools

would have instilled me with more confidence in the final system and would have allowed for a

much more dependable and scalable product.

To conclude, a successful development process has led to the creation of a system with a solid

foundation for future development. The solution is a prime example of a proof of concept, and I

believe there is great potential for a product like it. With the current functionality, and despite the

issues posed by data limitations, the solution delivers the user with a tool that allows them to

analyse their activities and see how the music they listened to during them had an impact on their

performance. They can see segments of their run where they ran their fastest or the slowest, or

where their heart rate was at its highest or its lowest. As intended, this project has led to the

creation of a solution which allows users to analyse their activities and determine whether or not,

͞MusiĐ ŵakes Ǉou ƌuŶ fasteƌ͟.

71

8. Reflection on Learning
At the start of this project, I outlined some objectives which I aimed to work towards over the

duration of the project. These objectives were mainly based on developing my knowledge with new

technical concepts which I had not worked with before and so reflecting on them is an opportunity

for me to gauge how much I have been able to learn across this project.

My first objective was ͞To iŶǀestigate, understand aŶd ǁork ǁith eǆterŶal deǀeloper API’s
available from several companies and see the extent of what data can be obtained from each

one.͟. I was really interested prior to starting development, as to how to work with the available

API’s. There were three diffeƌeŶt API’s ǁhiĐh aƌe iŵpleŵeŶted iŶto the solution, each of which

worked in slightly different ways. This proved to be an incredible learning process as I became

familiar with how to navigate the available documentation for each API and learn about new

ĐoŶĐepts suĐh as ClieŶt ID’s aŶd seĐƌet keǇs. I also learned to understand the importance of data

security whilst working with these services and how to make requests to them securely using HTTPS

calls.

My second objective was ͞To iŶǀestigate, uŶderstaŶd, and implement authentication workflows

usiŶg autheŶtiĐatioŶ proĐedures used ďǇ eǆterŶal API’s.͟. Authentication is something which I have

always been aware of, however I had little to no understanding on how or why it should be

implemented. Working with the Strava API presented a strong learning experience in integrating an

authentication workflow into a system. As we have already discussed, the Strava API implements

OAuth2 authentication, and I faced several challenges with the integration of this workflow.

Although the process was well documented, I initially struggled to understand it. Although I was able

to research example implementations of the Strava API, whilst I was trying to implement it into my

own project, the problems I faced were ones which I felt as though I had to tackle myself as I was

working as a solo developer. I was able to overcome the problems, and by doing so my

understanding of the authentication process was much stronger than it would have been had I not

had any problems. By repeatedly reading the documentation and finding better ways to implement a

solution, my technical skills and understanding of authentication have improved greatly.

My final objective was ͞To ǁork ǁith aǀailaďle resourĐes to ďetter uŶderstaŶd aŶd learŶ some best

practices for front-eŶd Jaǀa“Đript deǀelopŵeŶt.͟. This objective outlines one of my biggest personal

goals with this project. Front-end JavaScript web development is something that I wanted to

improve my skills in, and by developing an application entirely in JavaScript using the React

framework I was able to do just that. Although there are some sections of the system which I would

like to have been able to refactor, throughout the development process I was always looking for the

best way I could find to implement a new feature. This led me to research ways in which certain

things should be handled in JavaScript, one key thing being asynchronous calls and promises as we

have discussed previously. I was also able to research several best practices for developing with

React, and although I was unable to implement everything which I have learned, my understanding

of how I would approach the scenario if I were to tackle this kind of project again in the future has

greatly improved.

In addition to these objectives, I would also like to reflect on my general performance across the

project. I am particularly proud of my time management throughout the process, and I was

consistently ahead of the initial schedule which I proposed in my initial report. I worked heavily on

development in the first weeks of the project and was quickly able to meet my criteria for an MVP,

and although it might not be reflective in the report, an incredible amount of time went into the

development process to make this project possible. I did also make sure to designate plenty of time

72

towards the writing of this report, and so did not find myself in a situation where I felt that I had to

rush sections or that they were incomplete. I am also proud of the programming skills that I have

developed across the process of this project, and the work that I have accomplished. I hope to use

everything that I have learnt from start to finish with this project on future projects.

73

Table of Abbreviations
Abbreviation Full Terminology

API Application Programming Interface

App Application

BPM Beats Per Minute

GUI Graphical User Interface

HTTP Hyper-Text-Transfer-Protocol

HTTPS Hyper-Text-Transfer-Protocol-Secure

IDE Integrated Development Environment

ILB Internal Load Balancer

UI User Interface

Web-App Web Application

74

Appendices

Additional Wireframe designs:

Figure 54: Wireframe showing mobile view of Connect Strava Account Screen

Figure 55: Wireframe showing mobile view of Connect Last.FM Account Screen

75

Figure 56: Wireframe showing desktop design for Activity Search Results Screen

76

Figure 57: Wireframe showing mobile view for Activity Search Results Screen

77

Round 1 of Testing screenshots:

Figure 58: Redirect to Strava log in page

Figure 59: Redirect to Strava authorisation page

Figure 60: Redirected to connect Last.FM screen after successful Strava authorization

78

Figure 61: Home page as of first round of testing showing data from connected Strava and Last.FM accounts

Figure 62: Entering incorrect data into connect last.fm box returns a 404 message

79

Figure 63: Analyse ͞Run͟ actiǀity screen as of first round of testing

Figure 64: Shows drop down changed to Lowest average heartrate as of first round of testing

80

Figure 65: Shows invalid date search as of first round of user testing

Figure 66: Shows successful activity date range search as of first round of user testing

81

Figure 67: Shows analyse several activities page as of first round of testing

Figure 68: Shows successful segment filter change on analysing multiple activities as of first round of testing

82

Figure 69: “hoǁs actiǀity filter changed to ͞Workout͟ as of first round of testing

Figure 70: Shows attempt to analyse a non-running activity as of first round of testing

Figure 71: “hoǁs another user’s account connected as Last.FM account as of first round of testing

83

Round 2 of testing Screenshots:

Figure 72: Redirect to Strava log in page

Figure 73: Authorize RaceTracks access to Strava screen

84

Figure 74: Screenshot showing connect Last.FM account screen

Figure 75: Screenshot showing home page as of second round of self-testing

Figure 76: Screenshot showing connect Last.FM account screen with invalid username entered

85

Figure 77: Screenshot showing Analyse Activity page after second round of self-testing

Figure 78: Screenshot showing the map updating to show the selected segments location

86

Figure 79: Screenshot showing invalid date search after second round of self testing

Figure 80: Screenshot showing activity date search results after second round of self-testing

87

Figure 81: Screenshot showing "Workout" activities as of second round of self-testing

Figure 82: Screenshot showing analyse workout activity page as of second round of self-testing

88

Figure 83: Screenshot showing analyse workout activities page as of second round of self-testing

Figure 84: Screenshot showing error from testing on analyse workouts page during second round of self-testing

Figure 85: Screenshot showing another user’s Last.FM account connected following second round of self-testing

89

References
1. Strava Revenue and Usage Statistics (2022) [Internet]. Business of Apps. 2020 [cited

2022 Mar 11]. Available from: https://www.businessofapps.com/data/strava-statistics/

2. Spotify — About Spotify [Internet]. [cited 2022 Mar 11]. Available from:

https://newsroom.spotify.com/company-info/

3. Hoory L. Agile vs. Waterfall: Which Project Management Methodology Is Best For You?

[Internet]. Forbes Advisor. 2022 [cited 2022 May 2]. Available from:

https://www.forbes.com/advisor/business/agile-vs-waterfall-methodology/

4. How Does My Phone Track My Steps? [Internet]. MUO. 2021 [cited 2022 Mar 11].

Available from: https://www.makeuseof.com/how-does-my-phone-track-my-steps/

5. Hexagonal architecture (software). In: Wikipedia [Internet]. 2022 [cited 2022 Apr 6].

Available from:

https://en.wikipedia.org/w/index.php?title=Hexagonal_architecture_(software)&oldid

=1075385603

6. Data Importers | Strava Apps – Theƌe’s oŶe foƌ eǀeƌǇ athlete. [IŶteƌŶet]. [Đited ϮϬϮϮ
Mar 11]. Available from: https://www.strava.com/apps/data-importer

7. Track My Music [Internet]. Last.fm. [cited 2022 Mar 11]. Available from:

https://www.last.fm/about/trackmymusic

8. The End-User Stakeholders [Internet]. [cited 2022 Mar 15]. Available from:

https://www.thesalesblog.com/blog/the-end-user-stakeholders

9. Perform | AI-Powered Music Workouts [Internet]. [cited 2022 Mar 15]. Available from:

https://perform.fm

10. RockMyRun, Music that Moves You [Internet]. 2022 [cited 2022 Mar 16]. Available

from: https://www.rockmyrun.com/

11. React – A JavaScript library for building user interfaces [Internet]. [cited 2022 Mar 16].

Available from: https://reactjs.org/

12. React (JavaScript library). In: Wikipedia [Internet]. 2022 [cited 2022 Mar 11]. Available

from:

https://en.wikipedia.org/w/index.php?title=React_(JavaScript_library)&oldid=1076081

030

13. Create a New React App – React [Internet]. [cited 2022 Mar 11]. Available from:

https://reactjs.org/docs/create-a-new-react-app.html

14. Babel · The compiler for next generation JavaScript [Internet]. [cited 2022 Mar 16].

Available from: https://babeljs.io/

90

15. webpack [Internet]. webpack. [cited 2022 Mar 16]. Available from:

https://webpack.js.org/

16. Node.js. Node.js [Internet]. Node.js. [cited 2022 Mar 16]. Available from:

https://nodejs.org/en/

17. contributors MO Jacob Thornton, and Bootstrap. Bootstrap [Internet]. [cited 2022 Mar

11]. Available from: https://getbootstrap.com/

18. React-Bootstrap [Internet]. [cited 2022 Mar 16]. Available from: https://react-

bootstrap.github.io/

19. Leaflet — an open-source JavaScript library for interactive maps [Internet]. [cited 2022

Mar 16]. Available from: https://leafletjs.com/

20. React Leaflet | React Leaflet [Internet]. [cited 2022 Mar 16]. Available from:

https://react-leaflet.js.org/

21. Home [Internet]. [cited 2022 Mar 16]. Available from:

https://moment.github.io/luxon/#/?id=luxon

22. react-minimal-pie-chart [Internet]. npm. [cited 2022 Mar 16]. Available from:

https://www.npmjs.com/package/react-minimal-pie-chart

23. Azure DevOps Services | Microsoft Azure [Internet]. [cited 2022 Mar 16]. Available

from: https://azure.microsoft.com/en-us/services/devops/

24. Business requirements. In: Wikipedia [Internet]. 2022 [cited 2022 Apr 28]. Available

from:

https://en.wikipedia.org/w/index.php?title=Business_requirements&oldid=108354986

6

25. nishan_clrbridge. Mobile App Design: Designing for a Web App vs. Native App

[Internet]. Clearbridge Mobile. 2020 [cited 2022 Mar 17]. Available from:

https://clearbridgemobile.com/mobile-app-design-designing-for-a-web-app-vs-native-

app/

26. Advantages of using blue in your web design – Pumpkin Web Design Manchester

[Internet]. [cited 2022 May 2]. Available from:

https://www.pumpkinwebdesign.com/web-design-manchester/advantages-of-using-

blue-in-your-web-design/

27. Strava Developers [Internet]. [cited 2022 Mar 17]. Available from:

https://developers.strava.com/docs/authentication/

28. Strava Developers [Internet]. [cited 2022 Apr 4]. Available from:

https://developers.strava.com/docs/rate-limits/

29. API Terms of Service [Internet]. Last.fm. [cited 2022 Apr 4]. Available from:

https://www.last.fm/api/tos

91

30. json-server [Internet]. npm. [cited 2022 Apr 4]. Available from:

https://www.npmjs.com/package/json-server

31. jquery - When is JavaScript synchronous? [Internet]. Stack Overflow. [cited 2022 Mar

22]. Available from: https://stackoverflow.com/questions/2035645/when-is-javascript-

synchronous

32. How to Use Fetch with async/await [Internet]. Dmitri Pavlutin Blog. 2020 [cited 2022

Mar 22]. Available from: https://dmitripavlutin.com/javascript-fetch-async-await/

33. Sallai T. How to use async functions with Array.map in Javascript [Internet]. [cited 2022

Apr 5]. Available from: https://advancedweb.hu/how-to-use-async-functions-with-

array-map-in-javascript/

34. @mapbox/polyline [Internet]. npm. [cited 2022 Mar 23]. Available from:

https://www.npmjs.com/package/@mapbox/polyline

35. Home | TheAudioDB.com [Internet]. [cited 2022 Mar 11]. Available from:

https://www.theaudiodb.com/

36. Formatting [Internet]. [cited 2022 Apr 12]. Available from:

https://moment.github.io/luxon/#/formatting?id=table-of-tokens

37. GitHub Pages [Internet]. GitHub Pages. [cited 2022 Apr 4]. Available from:

https://pages.github.com/

38. HTTPS. In: Wikipedia [Internet]. 2022 [cited 2022 Apr 16]. Available from:

https://en.wikipedia.org/w/index.php?title=HTTPS&oldid=1082479259

39. cephalin. Security - Azure App Service [Internet]. [cited 2022 Apr 16]. Available from:

https://docs.microsoft.com/en-us/azure/app-service/overview-security

40. Redux - A predictable state container for JavaScript apps. | Redux [Internet]. [cited

2022 Apr 25]. Available from: https://redux.js.org/

41. State Managers [Internet]. JavaScript Stuff. [cited 2022 Apr 25]. Available from:

https://www.javascriptstuff.com/state-managers/

42. Postman API Platform [Internet]. [cited 2022 May 3]. Available from:

https://www.postman.com/product/what-is-postman/

43. What is Unit Testing? Definition from WhatIs.com [Internet]. SearchSoftwareQuality.

[cited 2022 Apr 6]. Available from:

https://www.techtarget.com/searchsoftwarequality/definition/unit-testing

44. Jest · Delightful JavaScript Testing [Internet]. [cited 2022 Apr 6]. Available from:

https://jestjs.io/

45. ASP.NET | Open-source web framework for .NET [Internet]. Microsoft. [cited 2022 Apr

12]. Available from: https://dotnet.microsoft.com/en-us/apps/aspnet

