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1. Abstract 

 

Route planning services such as Google Maps are used by over a billion people worldwide. 

They provide many advantages over offline maps including live traffic information and live 

re-routing between the user’s source and destination, and these services are provided for 

almost all internet-connected devices. As more people depend on these services in the 21st 

century, a focus has grown onto the security risks brought upon by using these services. 

 

This report details the development of a proof-of-concept system implementing a novel 

obfuscation method of source-destination pairs with a strong foundation of differential 

privacy and k-anonymity. The implemented system utilises the tagging system of the free 

online service OpenStreetMap to generate semantically generalised fake source-destination 

pairs which are then sent simultaneously to the route planning service. The system’s results 

generated from this system are then evaluated and compared to a similar approach named 

ShiftRoute. 

 

The evaluation found that the novel method was effective in producing semantically 

generalised source-destination pairs but exhibited performance issues. The novel system and 

ShiftRoute were found to run counter to each other: in areas where one excelled, the other 

struggled and vice versa.  
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2. Introduction 

 

With the rise of smartphones and affordable internet in the 2000s, technologies that were 

previously reserved for a select few are now in the pockets of over 90% of the human 

population in the form of smartphones (Turner 2021). As user needs became more 

demanding, mobile devices moved away from on-device processing towards becoming 

access-points for online services. 

 

Location-based services (LBS) are a very popular category of online services. The most 

common type of LBS are route planning services. One such example, used by over a billion 

people worldwide, is Google Maps (Russell 2019). Rather than downloading and storing an 

entire map on-device, mobile devices send requests to online servers that bring extra benefits 

such as real-time traffic information and live rerouting. 1 

Route planning services such as this require the user to submit a source and destination 

location pair, in addition to optional constraints such as “Avoid Motorways” or “Means of 

Travel: Walking”. The service then provides directions presenting the optimal route from the 

given source to the given destination, taking live traffic and user constraints into 

consideration. Over time, many in the field of security have questioned the privacy of 

submitting personal locations to route planning services (e.g., the location of your home or 

workplace). As expressed by (Corcoran et al. 2020) “If one assumes the use of a secure 

communication protocol, such as SSH which exploits advances in encryption, the threat 

posed by an attacker eavesdropping on the communication can be considered minimal. 

Therefore the most significant threat is that posed by an attacker in the form of a service 

provider”.  

It is possible for the user of a route planning service to implement privacy-protecting 

measures if they have privacy concerns. They may decide to hide their location from the 

service but doing so defeats its core functionality as an LBS. Therefore, a more suitable 

approach is to obfuscate their location rather than hiding it completely. (Duckham and Kulik 

2005) defined obfuscation as “The practice of deliberately degrading the quality of 

information in some way, so as to protect the privacy of the individual to whom that 

information refers”  

In this report, we propose a novel obfuscation method that involves examining the real 

location pairs from the user and generating fake, semantically similar sets of pairs that are 

simultaneously submitted to the route planning service. If the service provider cannot 

differentiate between true and fake pairs, they cannot determine which is the actual true 

location pair.  

The aim of this report is to document the design and implementation of this novel obfuscation 

method to enhance user privacy against route planning services. We will also be comparing 

the novel method to a comparable method proposed in a separate academic paper, 

determining the strengths and weaknesses of each and the optimal scenarios in which they 

 

1
 Now that mobile devices are becoming more powerful, the industry is seeing a shift back to 

on-device processing: see the example of modern iPhone models that now process verbal 

requests on-device due to improved neural processing units. However, this shift is unlikely to 

occur in route planning services due to their aforementioned inherent benefits. 
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should be implemented. In the following section, 3. Background, we will be introducing this 

comparable method and the paper from which it was established. In addition, the section will 

include a minor exploration into what it means for these methods to provide “privacy” and 

what schemes exist to assess the effectiveness of these methods. 

Section 4, Scope and Specification, details the functional requirements of the novel method, 

forming a foundation for the in-depth comparisons between methods in section 7: Results and 

Evaluation 

Section 5 explains the fundamental algorithms and data structures behind the novel 

obfuscation method in a language-agnostic way, whereas section 6 details its implementation 

in the Python programming language. 

Section 8 consists of our conclusions after evaluating the novel method, describing the 

limitations identified and their impact on the method’s effectiveness. 

Finally, in section 9 I will be personally reflecting on my learning looking back at my 

handling of the project, establishing what could have been improved and what extensions 

could be made to my implementation. 
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3. Background 

 

A great deal of research has been conducted on location-based services in the past 15 years. 

As mentioned in the previous section, the widespread adoption of smart mobile devices has 

boosted output of privacy-oriented papers on the subject; after all, it’s likely that the authors 

themselves use such devices on a daily basis.  

 

To better illustrate the motivation behind the project, this section will begin with an 

exploration into what “privacy” means in the context of route planning services. This will be 

followed by an introduction and general overview of the main location obfuscation algorithm 

that we will be comparing to the proposed novel method. 

 

3.1 – Differential Privacy 

 

When mass data collection is conducted by a research company, the information of 

individuals is most often anonymised. What this often means is that the individual’s personal 

identifiers are scrubbed from the dataset (e.g., Name, Full Address). However, past research 

has shown that even general information can be used to identify individuals when used in 

conjunction with other datasets (Narayanan and Shmatikov 2008). This is known as a linkage 

attack. (Sweeney 2000) found that 87% of the population in the United States had reported 

characteristics that likely made them unique based only on {5-digit ZIP, gender, date of 

birth}. As Figure 1 shows, there exist certain attributes that are common between databases 

and can be used to link multiple sources of data to a single individual. 

 

Figure 1 – Venn Diagram Showing Overlap of Sensitive Characteristics  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Data Anonymization. 2020) 

 

 

Differential privacy is a property denoting that when data has been shared, individuals are 

fully protected against such attacks. In other words, that process “satisfies” differential 

privacy. An informal definition for differential privacy is shown in Figure 2  
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Figure 2 – Informal Definition of Differential Privacy 

(Near et al. 2020) 

 

To satisfy differential privacy, each individual entry in a dataset must not be able to be 

singled out based on a combination of its attributes. A common method for achieving  

this is by adding Laplace noise to the data: enough noise to satisfy differential privacy, but 

not so much that the data becomes unusable (Near and Abuah 2021). Depending on the 

context of the data, it is possible to sample noise from other distributions rather than Laplace 

(e.g., posterior distribution) as suggested by (Dimitrakakis et al. 2016).  

 

When implementing differential privacy, approaches can be categorised into local and central 

differential privacy. In local differential privacy, the data is anonymised by the user before 

being retrieved for data collection. In central differential privacy, the full data is sent for 

collection then anonymised by the collection server. For the purposes of this report, since we 

are assuming that the route planning service provider is untrustworthy and may not 

anonymise user data, we will be focusing on local differential privacy. An example of local 

differential privacy used in LBS is geo-indistinguishability (Andrés et al. 2013). An example 

of geo-distinguishability implemented in route planning services is a location obfuscation 

method called ShiftRoute, proposed by (Zhang et al. 2018). 

 

In section 7 of this report, we will be analysing the results of the proposed novel obfuscation 

method to identify whether it satisfies differential privacy. We will also be analysing the 

comparable obfuscation method ShiftRoute and comparing the results against each other.  

 

3.2 – K-Anonymity 

 

Another method of safeguarding privacy in datasets is ensuring that it has the property k-

anonymity. K-anonymity, introduced by (Samarati and Sweeney 1998), is similar to 

differential privacy in that it aims to prevent linkage attacks within datasets. While 

differential privacy is often satisfied by adding noise to the dataset, k-anonymity has two 
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common methods that may either be applied together or individually2: generalisation, and 

suppression. 

 

Generalisation involves replacing all values of certain attributes with a broader range of 

values. For example, the value 35 would be replaced by the range (30 < Value ≤ 40). 

Suppression involves replacing all values of certain attributes by an asterisk (*). For example, 

all values under the ‘name’ column of a dataset would be replaced by (*). 

 

The aim of these two operations is to ensure that, for each existing combination of attributes 

in the dataset, there exists at least (k-1) other entries with the same values of those attributes. 

To illustrate the results of this property, we shall take an example from (Sweeney 2000). In 

the paper, Dr Latanya Sweeney was able to match data entries between a dataset of public 

voter records and a dataset of public medical records. This became a high-profile incident 

when she used these two datasets to successfully identify the medical records of then 

Massachusetts governor, William Weld. 

 

Had the datasets satisfied k-anonymity, rather than a single voter entry matching to a single 

medical entry, a single voter entry would have matched k number of medical entries. Since 

the attacker would have no means of determining which k medical entries belonged to the 

Massachusetts governor, his privacy would have been assured. 

 

Later in the report, we will recognise that our novel obfuscation method works similarly to 

one of the methods used to ensure k-anonymity: generalisation. We will be analysing the 

results of the novel method to determine whether this parallel has a similar effect on privacy 

as k-anonymity achieved with suppression and generalisation. To this end, we will also 

explore the possibility that this novel method is a whole other robust means to satisfy k-

anonymity, distinct from the generalisation method. 

 

While differential privacy and k-anonymity are the most widely used metrics for privacy in 

location-based services, the problems we attempt to resolve with our novel method are very 

particular in nature. As explained by (Lee et al. 2009), there is a distinct difference between 

location privacy and navigational path privacy. Location privacy involves anonymising a 

single point in space, often the user’s location. Navigational path privacy involves 

anonymising the travel between two points in space, alongside anonymising the two points 

themselves3. This distinction means that the issue of navigational path privacy cannot be 

solved only through location privacy methods, and the amount of literature available for this 

particular issue is vastly reduced. Therefore, we will need to incorporate differential privacy 

in combination with further sub-branches of k-anonymity that shall be described in the next 

section. 

 

 

 

 

 

2 Generalisation is the most common method, while suppression is a step that may be applied 

afterwards. There are circumstances in which it is impossible to apply suppression, in which 

case only generalisation is applied, and k-anonymity may still be achieved. 
3
 Please note that in this report, we will still be referring to the proposed obfuscation method 

as a Location Obfuscation Method since (Lee et al. 2009) was the first paper to coin the term 

Navigational Path Privacy and it is not a widely recognized term in literature. 
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3.3 – Categorising K-Anonymity  

 

K-anonymity is a property with a rigid definition, simplifying its application into datasets: the 

dataset either satisfies k-anonymity or it doesn’t. This is to prevent linkage attacks that aim to 

determine the identity of an individual behind specific entries. However, when dealing with 

route planning services as we are in this report, the interest of the service provider is often not 

to discover the personal identity of the individual, but to build up a profile of the user’s 

requests and profit from the profile. In this case, the data sent from the user to the service 

provider (source location, destination location, means of travel) can be linked with other 

requests from the same user. A record of commonly visited locations can then be used as a 

means of inferring user interests and future requests. 

 

To prevent these inferences that may be considered a breach of personal privacy, (Gkoulalas-

Divanis et al. 2010) identified that location-based implementations of k-anonymity can be 

partitioned into three categories: Historical k-anonymity, location k-anonymity, and 

trajectory k-anonymity. While it is beneficial to achieve k-anonymity in one of these 

categories, the aim of this report is to introduce a novel method of client-side obfuscation that 

achieves k-anonymity in all three categories. Our reasoning behind this is that while only one 

category of k-anonymity is satisfied, the other unsatisfied categories will be sufficient to 

allow a significant breach in personal privacy. We will see, however, that trajectory k-

anonymity is a more specialised category that may not be feasible for the scope of our 

implementation.  

 

Historical k-anonymity stipulates that a series of points of interests (POIs) that are frequently 

visited in sequence can generate a potential exploitation of privacy. Consider an example 

where an individual often visits a grocery store, followed by a fast-food restaurant, followed 

by their place of residence. An attacker could recognise that the individual is currently at the 

grocery store and accurately predict that they will next travel to their usual fast-food 

restaurant. Therefore, to satisfy k-anonymity in this category, k-1 other users must also pass 

by the location of the request, preventing the attacker from recognising which user has made 

which request. 

 

Location k-anonymity is often the most familiar category of k-anonymity for location-based 

services. It involves anonymising a single point in space. An example of location k-

anonymity is submitting 1 real query and k-1 additional dummy queries to different locations, 

such that an attacker cannot distinguish which location is the true location the user desires 

information about. 

 

Trajectory k-anonymity is similar to historical k-anonymity in that it prevents prediction of 

future locations, however it is only appropriate for cases in which the user engages in 

continuous queries with the location-based service (e.g., live car navigation). This category 

protects the anonymity of the individual throughout their whole journey. We will discuss in 

the next section, Scope and Specification, why our novel obfuscation method is not 

appropriate for this category of k-anonymity. Due to this, we will not be exploring trajectory 

k-anonymity further in this section. 

 

For example, while a service provider may not be able to determine the user’s location, a 

request to a “nearest petrol station” will reveal to the service provider that the user drives a 

car. This information suggests to the service provider that the user may have driven a car in 
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the past and/or is going to in the future. In short, location k-anonymity does not assure 

historical k-anonymity or trajectory k-anonymity. 

 

3.4 – ShiftRoute 

 

In section 7 of this report, we will be comparing our proposed novel method to a method 

outlined in (Zhang et al. 2018), named ShiftRoute. Here we will be giving an overview of the 

approach as we will soon identify further in this report that it has visible similarities with our 

proposed novel method. 

 

The premise of ShiftRoute is that transformation-based methods of location obfuscation often 

result in poor accuracy in real-world locations due to the inconsistency of human settlements, 

be it small towns or large-scale megacities. Transformation-based methods transform the 

original space of the query into an encoded space, the server then processes user queries and 

returns results in the encoded space, which the user can then decode into the original space. 

The alternative approach to a transformation-based method is to use complex server query 

processing (i.e., k-nearest neighbours calculations). While this approach provides more 

practical results in location obfuscation, it can result in a high amount of data transmission 

and processing, especially when applied to locations with a high density of POIs. 

 

ShiftRoute provides a compromise between the efficient processing of transformation-based 

methods and the real-world accuracy of k-nearest neighbours calculations: 

 

The user defines a set of source and destination pairs. Firstly, the client-side system draws a 

calculated region A that encloses the real destination a and several other points of interest. 

The same is done for a region B, containing the real destination b and several other points of 

interest. The regions A and B are then sent to an anonymisation server. The server conducts a 

“differential-private selection” to return a fake source-destination pair. Submitting this fake 

pair to a route planning service should result in a calculated route that is sufficiently similar 

to the original route, since the fake locations are close to the real locations. Submitting the 

fake source-destination pair to the route planning service will result in little difference in 

route length, and little compromise in privacy.4  

 

This method can be simplified into a two-step process:  

1. Drawing the regions A and B 

2. Selecting the fake locations a and b 

 

The first step is explained in-depth in page 5 of the referenced pdf version of the paper, 

however the main privacy constraint secured by this step is: “the grid that user specifies to the 

AS (anonymisation server) should always contain more than Th POIs, such that the AS 

cannot distinguish which POI the real endpoint is associate with”. The value Th is the user-

defined protection level, representing the number of POIs that occur in each regions A and B. 

 

 

4
 Please see Figure 3 in the appendix for a visualised example of ShiftRoute. Rather than the 

user routing to Sloan Kettering cancer centre, the user routes to a semantically different 

location in close proximity: The Rockerfeller University. 
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The second step is explained in-depth in pages 5 and 6 of the referenced pdf version of the 

paper, however the main privacy constraint secured by this step is a version of differential 

privacy based on geo-indistinguishability as defined by (Andrés et al. 2013). 

 

 

Background Appendix 

 

Figure 3 – Example of ShiftRoute Results 

(Zhang et al. 2018) 
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4. Scope and Specification 

 

As mentioned in the previous section, there have been a large number of privacy protection 

methods proposed and implemented for the use of location-based services, with a smaller 

number specifically designed for route planning services. To differentiate our proposed 

method from others, in this section we will be outlining the scope of the implementation and 

specifying its functional requirements. In this section, we are determining where this method 

can and cannot be applied, not the inner workings of the method itself. The algorithms will be 

covered in the next section: 5. Proposed Location Obfuscation Method. The implementation 

will be covered in-depth in section 6.  

 

4.1 Specification of Functional Requirements 

 

The goal of the project is to develop a system for generating fake location pairs which cannot 

be distinguished from real location pairs corresponding to a given user. 

The solution proposed is a system that locally keeps track of user queries, building a profile 

consisting of the user’s repeated locations. The system will then create a number of similar 

profiles, using the same categories, but with fake locations that fit their respective real 

locations (e.g. ‘Senghennyd Hall – Building: Dormitory ’ is replaced with ‘Manchester 

Student Village – Building: Dormitory’). When the user sends a query, a query is sent 

simultaneously for each local profile. If a real location source or destination is identified as 

previously unvisited, the fake profiles also use a previously unvisited location in their 

respective queries. These fake profiles are also each set in geographically distant locations to 

further protect the user’s privacy. These locally stored profiles should be updated with every 

query and the system should allow the user to delete a profile if desired. 

The target user is one that intends to use a route planning service for routing from location A 

to location B. The system should be used in conjunction with the route planning service, but 

the system itself should not interact with the service directly. The system should take an input 

of real source destination location pairs and return an output of k fake source destination 

pairs. When the user proceeds to use the route planning service, they should input the fake 

pairs along with the real pairs sequentially. When the user inputs a fake pair, they may 

discard the routing information. When the user inputs a real pair, they can accept the correct 

routing information. 

It is evident that this implementation is intended as a proof-of-concept and is not intended to 

be used as-is by a mass user-base. In the sub-section below, we go through the scope of the 

implementation, exploring how the system would differ in real-world use and what real-

world constraints exist. 

4.2 Scope of Implementation 

 

The motivation of the proposed method originated from the mass use of route planning 

services such as Google Maps, and the possible breaches of privacy from repeatedly using the 

service. Therefore, the implementation of the method should be usable in conjunction with a 

route planning service, namely for the service’s functionality of plotting a route from location 

A to location B. 
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However, as explained in section 2, route planning services offer more advanced 

functionality than just plotting the quickest route between two points. Below is a list of 

additional functionalities that our implementation does not consider, along with justifications 

for their absence: 

 

• “Mode of Transport” selection 

Since our implementation does not interact directly with the route planning service, the 

output of the implementation can be thought of as instructions for the user to input to the 

service itself. We have determined that because route planning services often have at most 

four options for mode of transport (walking, driving, public transport, and cycling), it is 

unnecessary to select these based on semantic meaning just as the system does for the 

location pairs. 

 

It is conceivable that having knowledge of an individual’s common mode of transport will 

pose a privacy risk. For example, knowing that somebody drives a car every day means that 

they will be more responsive to advertisements of car insurance than somebody that cycles 

every day. 

 

The choice of mode of transport is most often decided by the length of the route (e.g., a 

distance is too far to walk, so the user chooses to drive instead). Therefore, since the fake 

routes will be of similar length to the real routes, semantically the mode of transport should 

not change.  

 

• Live navigation modes 

An example of live navigation is supplied as Figure 4 in the appendix: when the system gives 

the user instructions as they travel through the route. If the user deviates from the given route, 

or there is a slowdown in traffic, the service recalculates a new optimal route.  

 

This can present a breach of privacy since the service provider requires an exact location of 

the user at all times to calculate the most optimal route. In addition, knowledge of the path 

the user has taken can be used to predict where they will end up at the end of the navigation 

session. In the Background section, we identified that anonymising this procedure involves 

trajectory k-anonymity. Our system operates on sending multiple fake queries per real query, 

and since live navigation modes operate on maintaining a continuous connection to the 

service rather than sending individual queries, our current system is not suitable for this use 

case. 

 

• Multiple stop selection 

When plotting the start and end locations for a route, the user may add intermediary points to 

stop at. Since this process is completed before the initial query is sent to the route planning 

service, it diverges from how our proposed system is designed to operate. 

 

Our system is designed to generate location pairs: from location A to location B. Therefore, if 

the user decides to add 3 intermediary stops to their route, they will have to insert 8 locations 

to our system since the start and end locations are repeated for every stop. 

 

It is not a challenging task to extend the system to accommodate for this functionality, but as 

it stands, the system does not currently do so. Future extensions of the system will be 

discussed in section 8: Conclusion and Future Work 
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Scope and Specificaton Appendix 

 

 

Figure 4 – Example of Apple Maps live navigation mode 
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5. Proposed Location Obfuscation Method 

 

Our proposed method is enabled primarily by the tagging system established by 

OpenStreetMap. The specifics of how data is represented in OpenStreetMap will be covered 

in the implementation section of the report. This pseudocode representation does not consider 

external services and will treat the getNeighbours function as a black box that returns 

semantically similar POIs given the inputs anchorPoint, tags, searchRadius. The exact tuning 

of the function will also be covered in the implementation section. 

 

5.1 Main Algorithm 

 

Our method takes an input of a source location, destination location, and their respective tags. 

The algorithm utilizes hash maps, present in every major programming language, to store a 

key-value pair for every location input by the user. The key is defined as the real location, 

and the value is defined as a corresponding fake location. For future reference, we can define 

this as a real-fake pair in the hash map. The layout of the data structure is illustrated by 

Figure 5 in the appendix. 

 

The algorithm generates k number of hash maps, each representing a fake profile for the user. 

Each profile starts with a pre-defined anchor point: a location where all fake locations are to 

be selected in proximity to. In this report, we used example anchor points in Tokyo-Japan, 

New York-USA, and Manchester-UK. Whenever the user submits a real query to the route 

planning service, they also submit as a dummy query using a real-fake pair from each profile, 

resulting in k+1 total submitted queries. 

This is illustrated by the pseudocode below: 

 

Algorithm 1: Generate Profiles  

 

Input: Real Source Location rs, Real Destination Location rd, Source Location Tags, 

Destination Location Tags destinationTags 

Output: Profile Hash Maps (1…K) 

 

for each profile in profileList: 

        if rs not in profile: 

            CreateFakeSource(rs, sourceTags, profile) 

        fs = profile[rs] 

        if rd not in profile: 

            CreateFakeDestination(rs, fs, rd, destinationTags, profile) 

        fd = profile[rd] 

 

pair1 = [profiles[0][rs], profiles[0][rd]] 

pair2 = [profiles[1][rs], profiles[1][rd]] 

pair3 = [profiles[2][rs], profiles[2][rd]] 

pairK = [profiles[k-1][rs], profiles[k-1][rd] 

 

As illustrated, the algorithm iterates through each profile to check if the input locations 

already exist as a key in the hash map. If the source location key does not already exist, the 

algorithm invokes the subroutine CreateFakeSource to create a real-fake pair for that 

location. The same is done for the destination location, using the subroutine 

CreateFakeDestination.  
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5.2 Helper Functions 

 

Here we will go through the two helper functions mentioned previously: CreateFakeSource 

and CreateFakeDestination. Starting with the former, CreateFakeSource takes an input of the 

source location, the source location tags, and the ‘profile’ hash map to save the real-fake pair 

to. 

 

The subroutine begins by collating a list of POIs nearby to the profile anchor point. These 

POIs are to be semantically similar to the real location, however the means of identifying 

these POIs, getNeighbours, will be covered in the implementation section since our approach 

utilises OpenStreetMap’s tagging system and APIs. For now we can assume it is a black box 

function that returns semantically similar nearby POIs. For the POI search, a starting value of 

1000 metres is set for the search radius, providing a 3km2 search area. The main loop for this 

subroutine is intended to keep iterating until the number of semantically similar POIs reaches 

k. The value of k is arbitrary and may be increased for better security or decreased for quicker 

processing. In the report and implementation, we use the value k = 10. From the list of POIs, 

the selection is conducted randomly and only one is used as a fake location, the rest are 

discarded. 

 

The real-fake pair for the input location in the hash map is then saved and no values are 

returned. The aim of these helper functions is to insert key-value pairs into the profile hash 

map, ready to be accessed in the main function. 

The CreateFakeSource subroutine is illustrated in pseudocode below: 

 

Subroutine 1: Generate Fake Source Location 

 

Input: Real Source Location rs, Source Location Tags sourceTags, Profile Hash Map pHash 

 

sourceRadius = 1000 

poiList = getNeighbours(anchorPoint, sourceTags, sourceRadius) 

sourceNum = len(poiList) 

 

while sourceNum < k do 

 sourceRadius = sourceRadius * 3 

 poiList = getNeighbours(anchorPoint, sourceTags, sourceRadius) 

 sourceNum = len(poiList) 

 

ix = randint(0, sourceNum-1) 

profileDict[rs] = poiList[ix] 

 

The second helper function, CreateFakeDestination, is similar to the first but has additional 

calculations to consider. Unlike the previous subroutine, here we take inputs of both the 

source location and the destination location. This is because the distance from fake source to 

fake destination must be similar to the distance from real source to real destination. For this 

calculation we once again call upon external libraries, so we can consider the function 

distanceBetweenPoints a black box that returns the distance between two input locations. 

 

This time, rather than creating a search radius from the profile anchor point, we create a 

search radius from the source location. Collecting POIs within a set radius from the source 
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location fulfills the previously mentioned distance requirement for our fake source-

destination pair. 

The CreateFakeDestination subroutine is illustrated in the pseudocode below: 

 

Subroutine 2: Generate Fake Destination Location 

 

Input: Real Source Location rs, Fake Source Location fs, Real Destination Location rd, 

Destination Location Tags destinationTags, Profile Hash Map pHash 

 

sourceCoords = getCoords(rs) 

destinationCoords = getCoords(rd) 

destinationRadius = distanceBetweenPoints(sourceCoords, destinationCoords) 

 

poiList = getNeighbours(anchorPoint, destinationTags, destinationRadius) 

destinationNum = len(poiList) 

 

while destinationNum < k do 

 destinationRadius = destinationRadius * 3 

 poiList = getNeighbours(anchorPoint, destinationTags, destinationRadius) 

 destinationNum = len(poiList) 

 

ix = randint(0, destinationNum-1) 

profileDict[rd] = poiList[ix] 
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Proposed Location Obfuscation Method Appendix 

 

 

Figure 5 – Illustration of the hash map data structure layout of a single profile 

 

Key (Real Location) Value (Fake Location) 

Cardiff University  MMU Arts Culture & Media Hub 

Senghennydd Hall Manchester Student Village 

Cardiff Roathwell Surgery  Shanghai Clinic Acupuncture & Chinese 

herbs 

Starbucks Cafe Anchor Cafe 

Apple Store St David’s Co-op Food 

Cardiff Central Train Station Boundary Lane/Trinity High School Bus 

Stop 

Breatos Restaurant Pret a Manger 
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6. Implementation 

 

In this section, we will be going through the implementation of the proposed method, 

programmed in Python. We felt that Python was the optimal choice for a project of this type: 

mostly processing data from online APIs and libraries. Python is widely recognised for its 

readability and large ecosystem of external support, which is ideal for this project. All these 

benefits are brought with sacrifices to performance. However, since most of the processing 

for this implementation is not completed locally, but offloaded to OpenStreetMap servers, it 

is not a major impediment. 

 

Each sub-section will be focused on one of the major elements of the python file, for example 

a subroutine, a specific functionality, or an external library used. 

 

6.1 Collecting Semantically Similar Points of Interest (CreateFakeSource()) 

 

This functionality is integral to generating fake profiles that are indistinguishable from the 

user’s. A profile can be conceptualised as a list of every location that a route planning service 

knows the user has visited. To create indistinguishable fake profiles, rather than creating the 

profiles from scratch we can just take the real profile and generalise it. This is similar to 

generalisation in k-anonymity in which we take specific values and scale them up to a 

numerical range (taking the value 35 and replacing it with 30 < Value ≤ 40). In our case, if 

we take the example of an individual visiting a HIV clinic, which may be sensitive 

information, we can generalise the location from a HIV clinic to any kind of ‘clinic’. It is 

possible for the generalised location to be more specialised: for example a cancer clinic, 

abortion clinic, or family planning clinic. On the other hand, the generalised location could be 

more common: for example a dental clinic or a primary care clinic. 

 

We mentioned in the previous section that we required a black box function GetNeighbours 

that could take an input of an anchor point, along with a POI, and return a list of semantically 

similar POIs within a set proximity. For the implementation, we utilised the open-source 

python module OSMnx. OSMnx is a package ‘for Acquiring, Constructing, Analyzing, and 

Visualizing Complex Street Networks’ (Boeing 2016) designed as a complement for the 

online service OpenStreetMap (OSM). 

 

We found that the tagging system used in OpenStreetMap was ideal for determining semantic 

meaning behind locations. Each POI in the OSM database is given a set of tags (see Figure 6 

in the appendix for an example of the café Starbucks), an OSM_ID, and then is stored as an 

element5. Using these tags, we can generate a grouping policy to collect locations that are 

semantically similar to the real input location. OSMnx has a series of modules and queries 

that almost all take OSM tags as parameters. The query we found most useful for our 

objective was geometries_from_point(center_point, tags, dist=1000) from the Geometries 

module. This query takes in a centre point value in latitude and longitude, a dictionary of 

OSM tags in the form [{tag_name: tag_value},…]6, and a search radius in metres. The output 

 

5
 OSM operates on a graph-based structure made up of elements: single-point locations and 

some buildings are represented by nodes, roads and paths are represented by ways, buildings 

and areas are often represented by closed ways. More complex shapes, such as universities 

that have multiple buildings, can be represented by relations. 
6
 An example of the tag dictionary for a Starbucks Cafe would be {“amenity”: “café”, 

“name”: “Starbucks”, “cuisine”: “coffee_shop”, “internet_access”: “wlan”} 
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format of this query is a tabular data structure called a GeoDataFrame, which can be iterated 

through to retrieve its data. 

 

Firstly, we want all fake locations to be indistinguishable from real locations, so we proposed 

a fundamental rule for our policy to adhere to: 

If it is sound for a person to visit the real location regularly, then it must also be sound for a 

person to visit the corresponding fake location regularly 

 

In generalising the semantic meaning of the real locations, we found that there were cases in 

which the semantic meaning should be kept unchanged. For example, if a user navigates from 

their workplace to a residential building every evening, it is unsuitable to generalise the 

semantic meaning from ‘residential’ to all kinds of buildings (it is not sound for a person to 

navigate from their workplace to a different office building, from which they will navigate to 

work again in the morning). Below, we will be going through the main tags that the system 

accounts for and whether the semantic meaning is kept the same, generalised, or set to a 

default value: 

 

- With each of these tags, the value chosen does not make a difference to the credibility 

of the fake location. 

• Leisure (Example possible values: Garden, Park, Sports Centre)  

• Public Transport (Example possible values: Platform, Train Station, Bus)  

• Office (Example possible values: Government, Estate Agent, Lawyer)  

 

- With these tags, the system collects POIs with the same value as the real location. 

Changing the tag value may be detrimental to the credibility of the fake location. For 

example, routing to and from a residential road every day will be more credible than 

routing to and from a public footpath every day. 

o Highway (Example possible values: Residential, Footpath, Motorway) 

o Amenity (Example possible values: Restaurant, University, Parking)  

o Tourism (Example possible values: Hotel, Attraction, Viewpoint)  

o Building (Often “yes”, but can be Residential, Hospital, House etc.)  

 

- If the real location has this tag, the fake location’s tag value defaults to ‘convenience’. 

Gaming and other types of stores are too specialised and are not visited at the same 

rate as supermarkets and convenience stores. To generalise the real value, every time 

a shop is visited as a real location, the system picks randomly between the values 

‘supermarket’ and ‘convenience’ for the fake location. 

§ Shop (Example possible values: Supermarket, Game, Convenience)  

 

The tag values for the source location are stored in a dictionary named sourceTags, used as 

an argument in the geometries_from_point function. The centre point parameter is set as the 

anchor point location, so we do not yet need the real location’s latitude and longitude. The 

function returns a list of POIs that are the union of each tag, not the intersection. So if the tag 

dictionary consisted of {“tourism”: “attraction”, “building”: “house”}, a returned POI may 

be either a tourist attraction, a building, or both. This function, along with our tag tunings, 

allows the system to semantically similar, generalised fake locations for a location input. 

 

The main code snippet for this sub-section is shown in Figure 7 

 

 



 20 

Figure 7 – CreateFakeSource Function Code Snippet 

 

 

6.2 Producing Suitable Destination Locations (CreateFakeDestination()) 

 

A secondary function that is called after CreateFakeSource is named CreateFakeDestination. 

It requires an extra parameter which is the previously generated fake source location. Since 

the fake destination must be a similar distance from the fake source as the real destination is 

from the real source, the system must have a way of calculating the distance between given 

locations. For this functionality, we utilised the distance function from the GeoPy package 

(GeoPy 2021). However, this function operates on latitude and longitude values, and the only 

data we have on our source and destination locations are their OSM_IDs. 

 

To extract the exact locations of our OSM nodes, we opted for a modular approach and 

defined a new function named GetLatLongFromID. Firstly, we require a service to geocode 

our locations, that is to generate a geographical location from an OSM_ID. For this we chose 

the Nominatim API (Nominatim 2021). Being a web API, we required the inbuilt ‘requests’ 

python module to send the queries. The format of the queries are as follows: 

 

https://nominatim.openstreetmap.org/lookup?osm_ids=[N|W|R]<value>,…,…,&<params> 

 

POIs in OSM are split into three main categories: node (N), way (W), and relation (R). The 

corresponding character is used as a code for the query, followed by the OSM_ID. The code 

and OSM_ID replace “[N|W|R]<value>” in the query format. The parameter code used is 

“&format=json” to indicate that we require the data in json format, simplifying data 

extraction to a single dictionary retrieval. The parameter code replaces “&<params>” in the 

query format.  

 



 21 

The full query generation is shown in Figure 8 as a code snippet. 

 

Figure 8 – GetLatLongFromId Function Code Snippet 

 

Now that we can retrieve the latitude and longitude for every OSM POI, we can simply input 

them as arguments to the distance function as shown in Figure 9. With the distance between 

real source and real destination calculated, we can use this value for the search radius of the 

geometries_from_point function mentioned previously.  

Figure 9 – CreateFakeDestination Code Snippet 

6.3 Reading in OSM POI data (GetXML()) 

 

Now we have already established that each OSM POI has a set of tags and an OSM_ID, but 

the system needs a method of reading in whichever locations the user desires. To obtain the 

data for a location, the user needs to navigate to https://www.openstreetmap.org and search 

for their desired location7. After selecting the correct location, there is a link to “Download 

 

7
 There exist more efficient methods for the user to retrieve OSM data in XML/JSON format, 

for example the R package osmdata, but there does not seem to be such a package for Python 

implementations. Either way, while our approach is less efficient, it is more user-friendly 

since the OpenStreetMap website presents a graphical user interface rather than a complex 

command-line interface that requires the user to memorise queries. 
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XML”. An example XML file for an OSM POI is shown in Figure 10. For the system to 

access the correct XML file, it asks the user to input the file name on the command line 

excluding the .xml file extension. Since the system is a proof-of-concept for now, there is no 

exception handling. However, this is inconsequential given that we’re using a limited set of 

test XML files for this project. 

 

Figure 10 – Example XML File For Starbucks Café  

To read in the XML file, the system uses the built-in xml.etree.ElementTree function to 

reduce the file into a simpler tree-like data structure stored in the variable root. root.tag 

returns the type of element the POI is (node, way, or relation), and root.attrib returns a 

dictionary containing the key-value pairs of the attributes inside the root tag. The root tag 

itself can be iterated through to extract its children tags. The way of extracting attribute data 

using Python commands is shown in Figure 11 and Figure 12. 

 

Figure 11 – ‘Node’ Tag Represented in Python 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Representation in Python: 

 

root.tag = ‘node’ 

root.attrib = { 

“id”: “3407104093”,  

“visible”: “true”, 

“version”: “7”, 

“changeset”: “101860276”, 

“timestamp”: “2021-03-28T04:00:47Z”, 

“user”: “gomedia91”, 

“uid”: “10473450”, 

“lat”: “51.4835010”, 

“lon”: “-3.1682296” 

} 
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Figure 12 – ‘Tag’ Tag Represented in Python 

 

 

 

 

 

 

 

 

 

 

 

 

As the system iterates through the root’s child tags, it is checking for the “k” value in each 

attribute dictionary. The “k” entry denotes name of the OSM tag, and the “v” entry denotes 

the value of that OSM tag. This is shown visually in Figure 12. It is at this point where the 

system builds up the sourceTags/destinationTags dictionary, creating entries for each OSM 

tag it encounters and choosing which values to enter according to the policy in the previous 

sub-section 6.1: Collecting Semantically Similar Points of Interest (CreateFakeSource()) 

 

The function then returns a tuple containing the POI type and its OSM_ID. In addition, the 

OSM tags for the POI are returned in a dictionary format, ready to be input into the 

geometries_from_point function. 

 

The code for the functionality in this sub-section is shown in Figure 13 

Figure 13 – GetXML Function Code Snippet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Representation in Python: 

 

root.tag = ‘tag’ 

root.attrib = { 

“k”: “amenity”, 

“v”: “cafe” 

} 
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6.4 Loading and Saving Profiles 

 

To maintain user profiles after running the initial Python script, we utilised the Python Pickle 

module. Pickle is used to serialize objects in Python, allowing them to be saved to disk. 

When the Python object is required again, it is deserialized and returned to its original format. 

The code snippet for the functionality in this sub-section is shown in Figure 14. 

 

Figure 14 – LoadProfiles Function Code Snippet 

 

 

For our system, we modularised the loading process so that the function LoadProfiles is run 

every time the Python script is run. The function checks the directory of the Python file for 

the pkl files named “dict1.pkl”, “dict2.pkl”, and “dict3.pkl”. Each file, when deserialized into 

a Python dictionary, has an entry: {"Search Area": (latitude_value, longitude_value)} 

containing float values of the latitude and longitude of that profile’s anchor point.  

 

Since the privacy of the user is dependent on them using multiple fake profiles, if the script 

does not detect every required pkl file, it returns default latitude and longitude values for: 

Tokyo Japan, New York USA, Manchester UK respectively. When the script has finished 

running, the newly created dictionaries are serialised and saved in the directory of the Python 

file as fkl files. 

 

Every time the Python script is run, the user is asked through a command line prompt 

whether they would like to delete their currently existing profiles, in which case the script 

deletes the pkl files from its directory and continues using the default anchor point values. 
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6.5 The Implementation Process 

 

From the initial plan of the project, we decided on a waterfall methodology, working on 

getting individual functionalities of the system working properly before moving on. A 

common criticism of this methodology is that it stops the design from evolving throughout 

development and the developer gets locked into their initial ideas. However, given that this is 

a proof-of-concept system that runs in a command-line environment, there was very little 

design work and polishing to do.  

 

Partway through the implementation process, we encountered first-hand the trap of relying 

too much on third-party libraries and packages. With no prior indication, the system stopped 

working completely: the Python interpreter would crash midway through fake pair 

generation. We had narrowed down the issue to a problem with the Nominatim geocoder, 

eventually even submitting an issue ticket to the API’s GitHub site thinking that there was a 

newly pushed update. After a few days, a response came back to say that the API does not 

and has never worked with certain OSM locations without name values. It turned out that in 

all the testing conducted during prior development, we were simply lucky (or unlucky) 

enough not to have encountered such a common OSM location. 

 

In terms of following the initial plan, we tried our best to follow the work plan to the letter, 

even accidentally working ahead of schedule without realising it. As mentioned previously, 

there were some roadblocks, but they were overcome with time. We had regular supervisor 

meetings in which we went through current progress and plans for future functionality. These 

were invaluable as Dr Corcoran had an insightful background on spatial and geographical 

data.  



 26 

 

 

 

Implementation Appendix 

 

Figure 6 – OSM tags for Starbucks café in Cardiff 

 

 

 

 

 

 

 

 

 

 

(OpenStreetMap 2022) 
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7. Results and Evaluation 

 

To show the results of the implementation, we have mapped the real and fake locations onto 

four maps: one map of Cardiff to show the real locations, and maps of Tokyo, New York, and 

Manchester to show the fake locations in the default anchor points. 

 

After the results, we will be analysing them to determine if they satisfy k-anonymity. We will 

then be comparing the implementation with the similar method named ShiftRoute. 

 

7.1 Mapped Results 

Figure 15 – Cardiff Map (Real Locations) 
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Figure 16 – Tokyo Map (Fake Location Profile 1) 

Figure 17 – New York Map (Fake Location Profile 2) 
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Figure 18 – Manchester Map (Fake Location Profile 3) 
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Figure 19 – Map Key 

 

The figures above show a journey consisting of 7 stops across Cardiff City Centre. The 

locations were chosen from a range of categories, listed in the key (Dormitory, University, 

etc.), in order to produce a real-life situation. As demonstrated, the fake locations have a 

generalised semantic meaning: for example the user may have either travelled to a GP 
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surgery in Cardiff, an ophthalmology centre, a pediatrics centre, or a traditional Chinese 

medicine clinic.  

 

Another element of note is the map scale for each profile: the distance between every point in 

the Cardiff map is approximately 200-400m, excluding the journey from point 4 to point 5. In 

the Cardiff map, the journey between point 4 and point 5 is approximately twice the distance 

of the other journeys. This jump in distance is visibly replicated in the fake locations. 

 

7.2 Performance 

 

While this system is currently a proof-of-concept, it is important to assess its performance to 

gauge how it would fare in the hands of a larger user base. The main metrics used to assess 

performance are time complexity, space complexity, and total run-time. 

 

The time and space complexity are the simplest to obtain since there is no testing required. 

The time complexity of the local processing is O(k + k*i) and the space complexity is also 

O(k + k*i) where k = number of profiles, i = number of POIs within search area. The 

elements to consider are: 

• The number of locations to save to profile dictionary (2 locations per profile = 2*k = 

simplifies to k) 

• Accessing POI data from profile dictionary (constant time lookup in a hash table) 

• Iterating through retrieved POI data from OSMnx (2 OSMnx queries per profile = 

2*k*i = k*i) 

 

Below are the run-times for three example location pairs, split into run-time of source 

location generation and run-time of destination location generation. 

 

Cardiff University à Breatos Restaurant, Cardiff 

 Profile 1 (Tokyo, 

Japan) 

Profile 2 (New York, 

USA) 

Profile 3 (Manchester, 

UK) 

Source Location 

Generation 

0.17s 0.14s 0.08s 

Destination Location 

Generation 

3.13s 2.35s 2.11s 

   

Senghennydd Hall, Cardiff à Starbucks Café, Cardiff 

 Profile 1 (Tokyo, 

Japan) 

Profile 2 (New York, 

USA) 

Profile 3 (Manchester, 

UK) 

Source Location 

Generation 

0.11s 0.12s 0.04s 

Destination Location 

Generation 

4.84s 3.79s 6.78s 
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As evidenced by the readings above, the majority of the run-time is composed of the system 

generating fake destinations, rather than fake sources. Exploring deeper into the two 

functions CreateFakeSource and CreateFakeDestination, we can track the runtime for 

individual lines of code. Below, Figure 20 shows the time taken for each OSMnx query to 

process. As explained in the implementation section, an OSMnx query is run first with the 

search radius set as the distance from real location A to real location B. Then as long as k (in 

this case, 3) number of fake location candidates have not been found, the query repeats with a 

search radius doubling each time. The Figure below shows that, with very uncommon 

locations such as universities, the time taken doubles with every query to the point where the 

run-time reaches 33 seconds. In this case, the query repeats until 3 universities are found in a 

single search area which, as one can imagine, requires a very large search area.  

 

Figure 20 – Query Run-Time Breakdown for University POI Search 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is a clear drawback with our implementation, however the processing for this is all 

completed on OSM servers. Therefore, to improve performance, all we can do is update the 

local tag policy. Perhaps universities could be generalised to a more common POI such as a 

school or learning centre. This would improve performance by reducing the need for extra 

queries with an unnecessarily high search radius.  

 

Cardiff Central Station à Roathwell Surgery, Cardiff 

 Profile 1 (Tokyo, 

Japan) 

Profile 2 (New York, 

USA) 

Profile 3 (Manchester, 

UK) 

Source Location 

Generation 

0.19s 0.06s 0.13s 

Destination Location 

Generation 

3.71s 2.90s 3.01s 
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7.4 Comparison to ShiftRoute 

 

We decided that a comparable obfuscation method to our implementation is ShiftRoute. In 

short summary, ShiftRoute works by creating two search areas around the source location and 

destination location. Each search area is sent to an anonymisation server to perform a 

“differential-private” selection of a POI as a fake substitute for the real location. The issue we 

take with this approach is that its POI selection is based on grid cells and geographical 

coordinates, not semantic meaning. This means that if the user’s queries were inspected by an 

automated process, this method ensures no loss of privacy. However, if the queries were 

inspected by a human being with a higher level of critical thinking, they would be able to 

work out that the locations have been run through some form of anonymisation process. In 

addition, the user would not get the same result from the route planning service in inputting 

the fake location pairs as if they input the real location pairs. 

 

Another aspect to consider is that ShiftRoute is functionally equivalent to simple location 

cloaking: blurring the user’s exact location into a larger region. This introduces a flaw into 

ShiftRoute’s approach. The fake POIs selected by ShiftRoute are, by design, required to be 

close enough to the real locations that a route planning service returns a route with a similar 

path and travel time. By reducing the effective ‘cloak’ to such a small region, the original 

objectives of the method are undermined. Fundamentally, this method sacrifices the user’s 

location privacy to obtain a similar route but doesn’t maintain semantic meaning between real 

and fake locations. This calls into question whether the approach even provides better results 

than simple randomised dummy queries. 

 

Looking back at Figure 19, viewing purely those 7 queries, there are no locations that would 

reveal which profile is real or fake. If the user submits their location pairs into our system, 

since the fake locations are only generalised selections of the real locations, the fake locations 

cannot be declared implausible. If the semantic meaning is unchanged, and the distance 

between locations is unchanged, there is nothing to distinguish the real location pair from the 

fakes. 

 

One of the main privacy metrics we are measuring our implementation with is k-anonymity. 

Namely, whether our implementation satisfies k-anonymity. In the background section, we 

categorized k-anonymity into two effective groups: historical k-anonymity and location k-

anonymity. Historical k-anonymity prevents use of historical locations to predict future 

locations. With our implementation, since the semantic meaning is unchanged, it is possible 

to predict the user’s future location using their past locations, however the attacker would not 

be able to determine which of the k future locations is the correct one. This creates the same 

state for location k-anonymity. The attacker is able to determine the location of the user for 

each profile, but they would be at a loss as to which location is real. Utilising k number of 

fake profiles, keeping semantic meaning and geographical distance the same, our 

implementation satisfies our requirements of historical and location k-anonymity. 

 

Another point of comparison between these two methods is their reliance on external 

services. Our implementation utilizes OSM servers and OSMnx queries to collect 

semantically similar POIs. However, the queries themselves only take three arguments: 

Anchor Point Coordinates, Semantic Tags, and the Search Radius. The coordinates of the real 

locations are never sent for processing. Therefore, even if we assume OSM is untrustworthy, 

they have no means of breaching user privacy. ShiftRoute on the other hand, does not. The 

anonymization server utilised by ShiftRoute requires the user’s local device to send over the 
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approximate regions of their real locations. This adds another vulnerability to ShiftRoute 

from attackers. 

 

A potential drawback we found with our method was that since it functions using anchor 

points, it does not provide accurate results when supplied with long distance source-

destination pairs. Ordinary users of route planning services do not only use them in their 

home towns, but also while abroad or travelling. Because the fake profiles only generate fake 

locations in the vicinity of a single anchor point, an attacker would notice that only one 

profile is breaking the pattern and leaving the proximity of its anchor point. Therefore, we 

advise that our approach is most appropriate for everyday use in medium-large sized cities. 

For use with longer journeys or abroad, we suggest that other location obfuscation methods 

such as ShiftRoute be used. 

 

In summary, we find that while our implementation has some performance issues to be 

improved upon, our approach functions more effectively from a privacy standpoint than the 

comparable method ShiftRoute when used in city environments. However, when used in 

irregular circumstances such as during long-distance travel, we find ShiftRoute to be the 

optimal solution in those cases. 
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8. Conclusion and Future Work 

 

The initial objective of the project was to produce a method of creating fake source-

destination location pairs such that they would be indistinguishable from corresponding real 

pairs. The implementation described in this report succeeds in completing that objective, but 

in comparing our system to a comparable method ShiftRoute, we discovered pros and cons to 

our approach.  

 

While our system was more effective in protecting privacy for smaller-scale daily journeys, it 

was not equipped to handle location pairs with a long distance from each other. ShiftRoute 

was more effective in this aspect since it does not take into account the distance between 

source and destination locations, merely acting on each location input individually. This is 

not to say that ShiftRoute is a perfect approach as we did have privacy concerns over its main 

algorithm. 

 

In the future, our system could be extended to work as a full mobile app, thus reducing the 

need for the user to individually download location XML files and operate multiple 

applications at once. If this system was extended as a mobile app, it would ideally handle all 

interactions between OpenStreetMap and the user’s desired route planning service. This 

would raise the method from a proof-of-concept to a practical privacy tool. 

 

In addition, further tuning of the tag policy is required to optimise the performance of the 

system. As it currently stands, the system generates queries that have far too large a search-

area. By further generalising the OSM tags, both the user privacy and system performance is 

likely to increase. 

 

9. Reflection on Learning 

 

If I were to do this project again, I would try not to follow the initial plan so closely as I did. I 

think that allowing myself to research new ideas and plans, even scrapping current ideas and 

starting afresh would have made for a more stimulating project. An initial idea I had was to 

use machine learning to identify patterns in sets of source-destination pairs, creating a 

machine learning model to generate indistinguishable fake pairs. However, since I didn’t 

realise exactly how much extra time we were given until halfway through the project, I took 

the cautious route and kept going with my OSM tag approach. Either way, I feel that the one 

of the most important lessons I learned from this experience was that even if some topic or 

technology feels overwhelmingly complex, the best thing to do is to throw yourself in at the 

deep end, read about it, and build up a foundation of knowledge that way. 

 

I feel like there were benefits from working consistently throughout the whole project, 

checking the exact week on the work plan and making sure I’m up to date, and it made the 

whole process a lot less stressful than I know it was for some of my peers. One of the most 

arduous parts of this project for me was the multitude of papers and articles I had to read to 

grasp the foundations of security in location-based services. The more I read, the more I 

realised there was to learn.  

 

I genuinely do not regret this project at all and I enjoyed working on a project in the realm of 

cyber-security where I could see the results of my system with my own eyes, as opposed to 

more theoretical domains. 
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