

Final Report

Generating Fake Travel Source and Destination
Location Pairs

Cardiff University

School of Computer Science and Informatics

CM3203 One Semester Individual Project: 40 Credits

10,322 Words

Author: Andrei Cojocariu

Supervisor: Dr Padraig Corcoran

 1

Table of Contents

1. Abstract .. 2

Acknowledgements ... 2

2. Introduction .. 3

3. Background .. 5

3.1 – Differential Privacy .. 5

3.2 – K-Anonymity ... 6

3.3 – Categorising K-Anonymity .. 8

3.4 – ShiftRoute .. 9

Background Appendix .. 10

4. Scope and Specification ... 11

4.1 Specification of Functional Requirements .. 11

4.2 Scope of Implementation .. 11

Scope and Specificaton Appendix .. 13

5. Proposed Location Obfuscation Method ... 14

5.1 Main Algorithm .. 14

5.2 Helper Functions ... 15

Proposed Location Obfuscation Method Appendix .. 17

6. Implementation .. 18

6.1 Collecting Semantically Similar Points of Interest (CreateFakeSource()) 18

6.2 Producing Suitable Destination Locations (CreateFakeDestination()) 20

6.3 Reading in OSM POI data (GetXML()) .. 21

6.4 Loading and Saving Profiles ... 24

6.5 The Implementation Process ... 25

Implementation Appendix .. 26

7. Results and Evaluation .. 27

7.1 Mapped Results ... 27

7.2 Performance .. 31

7.4 Comparison to ShiftRoute... 33

8. Conclusion and Future Work ... 35

9. Reflection on Learning ... 35

Reference list .. 36

 2

1. Abstract

Route planning services such as Google Maps are used by over a billion people worldwide.

They provide many advantages over offline maps including live traffic information and live

re-routing between the user’s source and destination, and these services are provided for

almost all internet-connected devices. As more people depend on these services in the 21st

century, a focus has grown onto the security risks brought upon by using these services.

This report details the development of a proof-of-concept system implementing a novel

obfuscation method of source-destination pairs with a strong foundation of differential

privacy and k-anonymity. The implemented system utilises the tagging system of the free

online service OpenStreetMap to generate semantically generalised fake source-destination

pairs which are then sent simultaneously to the route planning service. The system’s results

generated from this system are then evaluated and compared to a similar approach named

ShiftRoute.

The evaluation found that the novel method was effective in producing semantically

generalised source-destination pairs but exhibited performance issues. The novel system and

ShiftRoute were found to run counter to each other: in areas where one excelled, the other

struggled and vice versa.

Acknowledgements

I would like to thank my supervisor Dr Padraig Corcoran for guiding me through this project,

this report could not exist without his invaluable advice and support throughout this semester.

I would also like to thank my friends and family who supported me this whole time and kept

me going through the harder times.

…and finally, I would like to thank the mysterious hacker that goes by the alias

FlameWaterW00T.

 3

2. Introduction

With the rise of smartphones and affordable internet in the 2000s, technologies that were

previously reserved for a select few are now in the pockets of over 90% of the human

population in the form of smartphones (Turner 2021). As user needs became more

demanding, mobile devices moved away from on-device processing towards becoming

access-points for online services.

Location-based services (LBS) are a very popular category of online services. The most

common type of LBS are route planning services. One such example, used by over a billion

people worldwide, is Google Maps (Russell 2019). Rather than downloading and storing an

entire map on-device, mobile devices send requests to online servers that bring extra benefits

such as real-time traffic information and live rerouting. 1

Route planning services such as this require the user to submit a source and destination

location pair, in addition to optional constraints such as “Avoid Motorways” or “Means of

Travel: Walking”. The service then provides directions presenting the optimal route from the

given source to the given destination, taking live traffic and user constraints into

consideration. Over time, many in the field of security have questioned the privacy of

submitting personal locations to route planning services (e.g., the location of your home or

workplace). As expressed by (Corcoran et al. 2020) “If one assumes the use of a secure

communication protocol, such as SSH which exploits advances in encryption, the threat

posed by an attacker eavesdropping on the communication can be considered minimal.

Therefore the most significant threat is that posed by an attacker in the form of a service

provider”.

It is possible for the user of a route planning service to implement privacy-protecting

measures if they have privacy concerns. They may decide to hide their location from the

service but doing so defeats its core functionality as an LBS. Therefore, a more suitable

approach is to obfuscate their location rather than hiding it completely. (Duckham and Kulik

2005) defined obfuscation as “The practice of deliberately degrading the quality of

information in some way, so as to protect the privacy of the individual to whom that

information refers”

In this report, we propose a novel obfuscation method that involves examining the real

location pairs from the user and generating fake, semantically similar sets of pairs that are

simultaneously submitted to the route planning service. If the service provider cannot

differentiate between true and fake pairs, they cannot determine which is the actual true

location pair.

The aim of this report is to document the design and implementation of this novel obfuscation

method to enhance user privacy against route planning services. We will also be comparing

the novel method to a comparable method proposed in a separate academic paper,

determining the strengths and weaknesses of each and the optimal scenarios in which they

1
 Now that mobile devices are becoming more powerful, the industry is seeing a shift back to

on-device processing: see the example of modern iPhone models that now process verbal

requests on-device due to improved neural processing units. However, this shift is unlikely to

occur in route planning services due to their aforementioned inherent benefits.

 4

should be implemented. In the following section, 3. Background, we will be introducing this

comparable method and the paper from which it was established. In addition, the section will

include a minor exploration into what it means for these methods to provide “privacy” and

what schemes exist to assess the effectiveness of these methods.

Section 4, Scope and Specification, details the functional requirements of the novel method,

forming a foundation for the in-depth comparisons between methods in section 7: Results and

Evaluation

Section 5 explains the fundamental algorithms and data structures behind the novel

obfuscation method in a language-agnostic way, whereas section 6 details its implementation

in the Python programming language.

Section 8 consists of our conclusions after evaluating the novel method, describing the

limitations identified and their impact on the method’s effectiveness.

Finally, in section 9 I will be personally reflecting on my learning looking back at my

handling of the project, establishing what could have been improved and what extensions

could be made to my implementation.

 5

3. Background

A great deal of research has been conducted on location-based services in the past 15 years.

As mentioned in the previous section, the widespread adoption of smart mobile devices has

boosted output of privacy-oriented papers on the subject; after all, it’s likely that the authors

themselves use such devices on a daily basis.

To better illustrate the motivation behind the project, this section will begin with an

exploration into what “privacy” means in the context of route planning services. This will be

followed by an introduction and general overview of the main location obfuscation algorithm

that we will be comparing to the proposed novel method.

3.1 – Differential Privacy

When mass data collection is conducted by a research company, the information of

individuals is most often anonymised. What this often means is that the individual’s personal

identifiers are scrubbed from the dataset (e.g., Name, Full Address). However, past research

has shown that even general information can be used to identify individuals when used in

conjunction with other datasets (Narayanan and Shmatikov 2008). This is known as a linkage

attack. (Sweeney 2000) found that 87% of the population in the United States had reported

characteristics that likely made them unique based only on {5-digit ZIP, gender, date of

birth}. As Figure 1 shows, there exist certain attributes that are common between databases

and can be used to link multiple sources of data to a single individual.

Figure 1 – Venn Diagram Showing Overlap of Sensitive Characteristics

(Data Anonymization. 2020)

Differential privacy is a property denoting that when data has been shared, individuals are

fully protected against such attacks. In other words, that process “satisfies” differential

privacy. An informal definition for differential privacy is shown in Figure 2

 6

Figure 2 – Informal Definition of Differential Privacy

(Near et al. 2020)

To satisfy differential privacy, each individual entry in a dataset must not be able to be

singled out based on a combination of its attributes. A common method for achieving

this is by adding Laplace noise to the data: enough noise to satisfy differential privacy, but

not so much that the data becomes unusable (Near and Abuah 2021). Depending on the

context of the data, it is possible to sample noise from other distributions rather than Laplace

(e.g., posterior distribution) as suggested by (Dimitrakakis et al. 2016).

When implementing differential privacy, approaches can be categorised into local and central

differential privacy. In local differential privacy, the data is anonymised by the user before

being retrieved for data collection. In central differential privacy, the full data is sent for

collection then anonymised by the collection server. For the purposes of this report, since we

are assuming that the route planning service provider is untrustworthy and may not

anonymise user data, we will be focusing on local differential privacy. An example of local

differential privacy used in LBS is geo-indistinguishability (Andrés et al. 2013). An example

of geo-distinguishability implemented in route planning services is a location obfuscation

method called ShiftRoute, proposed by (Zhang et al. 2018).

In section 7 of this report, we will be analysing the results of the proposed novel obfuscation

method to identify whether it satisfies differential privacy. We will also be analysing the

comparable obfuscation method ShiftRoute and comparing the results against each other.

3.2 – K-Anonymity

Another method of safeguarding privacy in datasets is ensuring that it has the property k-

anonymity. K-anonymity, introduced by (Samarati and Sweeney 1998), is similar to

differential privacy in that it aims to prevent linkage attacks within datasets. While

differential privacy is often satisfied by adding noise to the dataset, k-anonymity has two

 7

common methods that may either be applied together or individually2: generalisation, and

suppression.

Generalisation involves replacing all values of certain attributes with a broader range of

values. For example, the value 35 would be replaced by the range (30 < Value ≤ 40).

Suppression involves replacing all values of certain attributes by an asterisk (*). For example,

all values under the ‘name’ column of a dataset would be replaced by (*).

The aim of these two operations is to ensure that, for each existing combination of attributes

in the dataset, there exists at least (k-1) other entries with the same values of those attributes.

To illustrate the results of this property, we shall take an example from (Sweeney 2000). In

the paper, Dr Latanya Sweeney was able to match data entries between a dataset of public

voter records and a dataset of public medical records. This became a high-profile incident

when she used these two datasets to successfully identify the medical records of then

Massachusetts governor, William Weld.

Had the datasets satisfied k-anonymity, rather than a single voter entry matching to a single

medical entry, a single voter entry would have matched k number of medical entries. Since

the attacker would have no means of determining which k medical entries belonged to the

Massachusetts governor, his privacy would have been assured.

Later in the report, we will recognise that our novel obfuscation method works similarly to

one of the methods used to ensure k-anonymity: generalisation. We will be analysing the

results of the novel method to determine whether this parallel has a similar effect on privacy

as k-anonymity achieved with suppression and generalisation. To this end, we will also

explore the possibility that this novel method is a whole other robust means to satisfy k-

anonymity, distinct from the generalisation method.

While differential privacy and k-anonymity are the most widely used metrics for privacy in

location-based services, the problems we attempt to resolve with our novel method are very

particular in nature. As explained by (Lee et al. 2009), there is a distinct difference between

location privacy and navigational path privacy. Location privacy involves anonymising a

single point in space, often the user’s location. Navigational path privacy involves

anonymising the travel between two points in space, alongside anonymising the two points

themselves3. This distinction means that the issue of navigational path privacy cannot be

solved only through location privacy methods, and the amount of literature available for this

particular issue is vastly reduced. Therefore, we will need to incorporate differential privacy

in combination with further sub-branches of k-anonymity that shall be described in the next

section.

2 Generalisation is the most common method, while suppression is a step that may be applied

afterwards. There are circumstances in which it is impossible to apply suppression, in which

case only generalisation is applied, and k-anonymity may still be achieved.
3
 Please note that in this report, we will still be referring to the proposed obfuscation method

as a Location Obfuscation Method since (Lee et al. 2009) was the first paper to coin the term

Navigational Path Privacy and it is not a widely recognized term in literature.

 8

3.3 – Categorising K-Anonymity

K-anonymity is a property with a rigid definition, simplifying its application into datasets: the

dataset either satisfies k-anonymity or it doesn’t. This is to prevent linkage attacks that aim to

determine the identity of an individual behind specific entries. However, when dealing with

route planning services as we are in this report, the interest of the service provider is often not

to discover the personal identity of the individual, but to build up a profile of the user’s

requests and profit from the profile. In this case, the data sent from the user to the service

provider (source location, destination location, means of travel) can be linked with other

requests from the same user. A record of commonly visited locations can then be used as a

means of inferring user interests and future requests.

To prevent these inferences that may be considered a breach of personal privacy, (Gkoulalas-

Divanis et al. 2010) identified that location-based implementations of k-anonymity can be

partitioned into three categories: Historical k-anonymity, location k-anonymity, and

trajectory k-anonymity. While it is beneficial to achieve k-anonymity in one of these

categories, the aim of this report is to introduce a novel method of client-side obfuscation that

achieves k-anonymity in all three categories. Our reasoning behind this is that while only one

category of k-anonymity is satisfied, the other unsatisfied categories will be sufficient to

allow a significant breach in personal privacy. We will see, however, that trajectory k-

anonymity is a more specialised category that may not be feasible for the scope of our

implementation.

Historical k-anonymity stipulates that a series of points of interests (POIs) that are frequently

visited in sequence can generate a potential exploitation of privacy. Consider an example

where an individual often visits a grocery store, followed by a fast-food restaurant, followed

by their place of residence. An attacker could recognise that the individual is currently at the

grocery store and accurately predict that they will next travel to their usual fast-food

restaurant. Therefore, to satisfy k-anonymity in this category, k-1 other users must also pass

by the location of the request, preventing the attacker from recognising which user has made

which request.

Location k-anonymity is often the most familiar category of k-anonymity for location-based

services. It involves anonymising a single point in space. An example of location k-

anonymity is submitting 1 real query and k-1 additional dummy queries to different locations,

such that an attacker cannot distinguish which location is the true location the user desires

information about.

Trajectory k-anonymity is similar to historical k-anonymity in that it prevents prediction of

future locations, however it is only appropriate for cases in which the user engages in

continuous queries with the location-based service (e.g., live car navigation). This category

protects the anonymity of the individual throughout their whole journey. We will discuss in

the next section, Scope and Specification, why our novel obfuscation method is not

appropriate for this category of k-anonymity. Due to this, we will not be exploring trajectory

k-anonymity further in this section.

For example, while a service provider may not be able to determine the user’s location, a

request to a “nearest petrol station” will reveal to the service provider that the user drives a

car. This information suggests to the service provider that the user may have driven a car in

 9

the past and/or is going to in the future. In short, location k-anonymity does not assure

historical k-anonymity or trajectory k-anonymity.

3.4 – ShiftRoute

In section 7 of this report, we will be comparing our proposed novel method to a method

outlined in (Zhang et al. 2018), named ShiftRoute. Here we will be giving an overview of the

approach as we will soon identify further in this report that it has visible similarities with our

proposed novel method.

The premise of ShiftRoute is that transformation-based methods of location obfuscation often

result in poor accuracy in real-world locations due to the inconsistency of human settlements,

be it small towns or large-scale megacities. Transformation-based methods transform the

original space of the query into an encoded space, the server then processes user queries and

returns results in the encoded space, which the user can then decode into the original space.

The alternative approach to a transformation-based method is to use complex server query

processing (i.e., k-nearest neighbours calculations). While this approach provides more

practical results in location obfuscation, it can result in a high amount of data transmission

and processing, especially when applied to locations with a high density of POIs.

ShiftRoute provides a compromise between the efficient processing of transformation-based

methods and the real-world accuracy of k-nearest neighbours calculations:

The user defines a set of source and destination pairs. Firstly, the client-side system draws a

calculated region A that encloses the real destination a and several other points of interest.

The same is done for a region B, containing the real destination b and several other points of

interest. The regions A and B are then sent to an anonymisation server. The server conducts a

“differential-private selection” to return a fake source-destination pair. Submitting this fake

pair to a route planning service should result in a calculated route that is sufficiently similar

to the original route, since the fake locations are close to the real locations. Submitting the

fake source-destination pair to the route planning service will result in little difference in

route length, and little compromise in privacy.4

This method can be simplified into a two-step process:

1. Drawing the regions A and B

2. Selecting the fake locations a and b

The first step is explained in-depth in page 5 of the referenced pdf version of the paper,

however the main privacy constraint secured by this step is: “the grid that user specifies to the

AS (anonymisation server) should always contain more than Th POIs, such that the AS

cannot distinguish which POI the real endpoint is associate with”. The value Th is the user-

defined protection level, representing the number of POIs that occur in each regions A and B.

4
 Please see Figure 3 in the appendix for a visualised example of ShiftRoute. Rather than the

user routing to Sloan Kettering cancer centre, the user routes to a semantically different

location in close proximity: The Rockerfeller University.

 10

The second step is explained in-depth in pages 5 and 6 of the referenced pdf version of the

paper, however the main privacy constraint secured by this step is a version of differential

privacy based on geo-indistinguishability as defined by (Andrés et al. 2013).

Background Appendix

Figure 3 – Example of ShiftRoute Results

(Zhang et al. 2018)

 11

4. Scope and Specification

As mentioned in the previous section, there have been a large number of privacy protection

methods proposed and implemented for the use of location-based services, with a smaller

number specifically designed for route planning services. To differentiate our proposed

method from others, in this section we will be outlining the scope of the implementation and

specifying its functional requirements. In this section, we are determining where this method

can and cannot be applied, not the inner workings of the method itself. The algorithms will be

covered in the next section: 5. Proposed Location Obfuscation Method. The implementation

will be covered in-depth in section 6.

4.1 Specification of Functional Requirements

The goal of the project is to develop a system for generating fake location pairs which cannot

be distinguished from real location pairs corresponding to a given user.

The solution proposed is a system that locally keeps track of user queries, building a profile

consisting of the user’s repeated locations. The system will then create a number of similar

profiles, using the same categories, but with fake locations that fit their respective real

locations (e.g. ‘Senghennyd Hall – Building: Dormitory ’ is replaced with ‘Manchester

Student Village – Building: Dormitory’). When the user sends a query, a query is sent

simultaneously for each local profile. If a real location source or destination is identified as

previously unvisited, the fake profiles also use a previously unvisited location in their

respective queries. These fake profiles are also each set in geographically distant locations to

further protect the user’s privacy. These locally stored profiles should be updated with every

query and the system should allow the user to delete a profile if desired.

The target user is one that intends to use a route planning service for routing from location A

to location B. The system should be used in conjunction with the route planning service, but

the system itself should not interact with the service directly. The system should take an input

of real source destination location pairs and return an output of k fake source destination

pairs. When the user proceeds to use the route planning service, they should input the fake

pairs along with the real pairs sequentially. When the user inputs a fake pair, they may

discard the routing information. When the user inputs a real pair, they can accept the correct

routing information.

It is evident that this implementation is intended as a proof-of-concept and is not intended to

be used as-is by a mass user-base. In the sub-section below, we go through the scope of the

implementation, exploring how the system would differ in real-world use and what real-

world constraints exist.

4.2 Scope of Implementation

The motivation of the proposed method originated from the mass use of route planning

services such as Google Maps, and the possible breaches of privacy from repeatedly using the

service. Therefore, the implementation of the method should be usable in conjunction with a

route planning service, namely for the service’s functionality of plotting a route from location

A to location B.

 12

However, as explained in section 2, route planning services offer more advanced

functionality than just plotting the quickest route between two points. Below is a list of

additional functionalities that our implementation does not consider, along with justifications

for their absence:

• “Mode of Transport” selection

Since our implementation does not interact directly with the route planning service, the

output of the implementation can be thought of as instructions for the user to input to the

service itself. We have determined that because route planning services often have at most

four options for mode of transport (walking, driving, public transport, and cycling), it is

unnecessary to select these based on semantic meaning just as the system does for the

location pairs.

It is conceivable that having knowledge of an individual’s common mode of transport will

pose a privacy risk. For example, knowing that somebody drives a car every day means that

they will be more responsive to advertisements of car insurance than somebody that cycles

every day.

The choice of mode of transport is most often decided by the length of the route (e.g., a

distance is too far to walk, so the user chooses to drive instead). Therefore, since the fake

routes will be of similar length to the real routes, semantically the mode of transport should

not change.

• Live navigation modes

An example of live navigation is supplied as Figure 4 in the appendix: when the system gives

the user instructions as they travel through the route. If the user deviates from the given route,

or there is a slowdown in traffic, the service recalculates a new optimal route.

This can present a breach of privacy since the service provider requires an exact location of

the user at all times to calculate the most optimal route. In addition, knowledge of the path

the user has taken can be used to predict where they will end up at the end of the navigation

session. In the Background section, we identified that anonymising this procedure involves

trajectory k-anonymity. Our system operates on sending multiple fake queries per real query,

and since live navigation modes operate on maintaining a continuous connection to the

service rather than sending individual queries, our current system is not suitable for this use

case.

• Multiple stop selection

When plotting the start and end locations for a route, the user may add intermediary points to

stop at. Since this process is completed before the initial query is sent to the route planning

service, it diverges from how our proposed system is designed to operate.

Our system is designed to generate location pairs: from location A to location B. Therefore, if

the user decides to add 3 intermediary stops to their route, they will have to insert 8 locations

to our system since the start and end locations are repeated for every stop.

It is not a challenging task to extend the system to accommodate for this functionality, but as

it stands, the system does not currently do so. Future extensions of the system will be

discussed in section 8: Conclusion and Future Work

 13

Scope and Specificaton Appendix

Figure 4 – Example of Apple Maps live navigation mode

 14

5. Proposed Location Obfuscation Method

Our proposed method is enabled primarily by the tagging system established by

OpenStreetMap. The specifics of how data is represented in OpenStreetMap will be covered

in the implementation section of the report. This pseudocode representation does not consider

external services and will treat the getNeighbours function as a black box that returns

semantically similar POIs given the inputs anchorPoint, tags, searchRadius. The exact tuning

of the function will also be covered in the implementation section.

5.1 Main Algorithm

Our method takes an input of a source location, destination location, and their respective tags.

The algorithm utilizes hash maps, present in every major programming language, to store a

key-value pair for every location input by the user. The key is defined as the real location,

and the value is defined as a corresponding fake location. For future reference, we can define

this as a real-fake pair in the hash map. The layout of the data structure is illustrated by

Figure 5 in the appendix.

The algorithm generates k number of hash maps, each representing a fake profile for the user.

Each profile starts with a pre-defined anchor point: a location where all fake locations are to

be selected in proximity to. In this report, we used example anchor points in Tokyo-Japan,

New York-USA, and Manchester-UK. Whenever the user submits a real query to the route

planning service, they also submit as a dummy query using a real-fake pair from each profile,

resulting in k+1 total submitted queries.

This is illustrated by the pseudocode below:

Algorithm 1: Generate Profiles

Input: Real Source Location rs, Real Destination Location rd, Source Location Tags,

Destination Location Tags destinationTags

Output: Profile Hash Maps (1…K)

for each profile in profileList:

 if rs not in profile:

 CreateFakeSource(rs, sourceTags, profile)

 fs = profile[rs]

 if rd not in profile:

 CreateFakeDestination(rs, fs, rd, destinationTags, profile)

 fd = profile[rd]

pair1 = [profiles[0][rs], profiles[0][rd]]

pair2 = [profiles[1][rs], profiles[1][rd]]

pair3 = [profiles[2][rs], profiles[2][rd]]

pairK = [profiles[k-1][rs], profiles[k-1][rd]

As illustrated, the algorithm iterates through each profile to check if the input locations

already exist as a key in the hash map. If the source location key does not already exist, the

algorithm invokes the subroutine CreateFakeSource to create a real-fake pair for that

location. The same is done for the destination location, using the subroutine

CreateFakeDestination.

 15

5.2 Helper Functions

Here we will go through the two helper functions mentioned previously: CreateFakeSource

and CreateFakeDestination. Starting with the former, CreateFakeSource takes an input of the

source location, the source location tags, and the ‘profile’ hash map to save the real-fake pair

to.

The subroutine begins by collating a list of POIs nearby to the profile anchor point. These

POIs are to be semantically similar to the real location, however the means of identifying

these POIs, getNeighbours, will be covered in the implementation section since our approach

utilises OpenStreetMap’s tagging system and APIs. For now we can assume it is a black box

function that returns semantically similar nearby POIs. For the POI search, a starting value of

1000 metres is set for the search radius, providing a 3km2 search area. The main loop for this

subroutine is intended to keep iterating until the number of semantically similar POIs reaches

k. The value of k is arbitrary and may be increased for better security or decreased for quicker

processing. In the report and implementation, we use the value k = 10. From the list of POIs,

the selection is conducted randomly and only one is used as a fake location, the rest are

discarded.

The real-fake pair for the input location in the hash map is then saved and no values are

returned. The aim of these helper functions is to insert key-value pairs into the profile hash

map, ready to be accessed in the main function.

The CreateFakeSource subroutine is illustrated in pseudocode below:

Subroutine 1: Generate Fake Source Location

Input: Real Source Location rs, Source Location Tags sourceTags, Profile Hash Map pHash

sourceRadius = 1000

poiList = getNeighbours(anchorPoint, sourceTags, sourceRadius)

sourceNum = len(poiList)

while sourceNum < k do

 sourceRadius = sourceRadius * 3

 poiList = getNeighbours(anchorPoint, sourceTags, sourceRadius)

 sourceNum = len(poiList)

ix = randint(0, sourceNum-1)

profileDict[rs] = poiList[ix]

The second helper function, CreateFakeDestination, is similar to the first but has additional

calculations to consider. Unlike the previous subroutine, here we take inputs of both the

source location and the destination location. This is because the distance from fake source to

fake destination must be similar to the distance from real source to real destination. For this

calculation we once again call upon external libraries, so we can consider the function

distanceBetweenPoints a black box that returns the distance between two input locations.

This time, rather than creating a search radius from the profile anchor point, we create a

search radius from the source location. Collecting POIs within a set radius from the source

 16

location fulfills the previously mentioned distance requirement for our fake source-

destination pair.

The CreateFakeDestination subroutine is illustrated in the pseudocode below:

Subroutine 2: Generate Fake Destination Location

Input: Real Source Location rs, Fake Source Location fs, Real Destination Location rd,

Destination Location Tags destinationTags, Profile Hash Map pHash

sourceCoords = getCoords(rs)

destinationCoords = getCoords(rd)

destinationRadius = distanceBetweenPoints(sourceCoords, destinationCoords)

poiList = getNeighbours(anchorPoint, destinationTags, destinationRadius)

destinationNum = len(poiList)

while destinationNum < k do

 destinationRadius = destinationRadius * 3

 poiList = getNeighbours(anchorPoint, destinationTags, destinationRadius)

 destinationNum = len(poiList)

ix = randint(0, destinationNum-1)

profileDict[rd] = poiList[ix]

 17

Proposed Location Obfuscation Method Appendix

Figure 5 – Illustration of the hash map data structure layout of a single profile

Key (Real Location) Value (Fake Location)

Cardiff University MMU Arts Culture & Media Hub

Senghennydd Hall Manchester Student Village

Cardiff Roathwell Surgery Shanghai Clinic Acupuncture & Chinese

herbs

Starbucks Cafe Anchor Cafe

Apple Store St David’s Co-op Food

Cardiff Central Train Station Boundary Lane/Trinity High School Bus

Stop

Breatos Restaurant Pret a Manger

 18

6. Implementation

In this section, we will be going through the implementation of the proposed method,

programmed in Python. We felt that Python was the optimal choice for a project of this type:

mostly processing data from online APIs and libraries. Python is widely recognised for its

readability and large ecosystem of external support, which is ideal for this project. All these

benefits are brought with sacrifices to performance. However, since most of the processing

for this implementation is not completed locally, but offloaded to OpenStreetMap servers, it

is not a major impediment.

Each sub-section will be focused on one of the major elements of the python file, for example

a subroutine, a specific functionality, or an external library used.

6.1 Collecting Semantically Similar Points of Interest (CreateFakeSource())

This functionality is integral to generating fake profiles that are indistinguishable from the

user’s. A profile can be conceptualised as a list of every location that a route planning service

knows the user has visited. To create indistinguishable fake profiles, rather than creating the

profiles from scratch we can just take the real profile and generalise it. This is similar to

generalisation in k-anonymity in which we take specific values and scale them up to a

numerical range (taking the value 35 and replacing it with 30 < Value ≤ 40). In our case, if

we take the example of an individual visiting a HIV clinic, which may be sensitive

information, we can generalise the location from a HIV clinic to any kind of ‘clinic’. It is

possible for the generalised location to be more specialised: for example a cancer clinic,

abortion clinic, or family planning clinic. On the other hand, the generalised location could be

more common: for example a dental clinic or a primary care clinic.

We mentioned in the previous section that we required a black box function GetNeighbours

that could take an input of an anchor point, along with a POI, and return a list of semantically

similar POIs within a set proximity. For the implementation, we utilised the open-source

python module OSMnx. OSMnx is a package ‘for Acquiring, Constructing, Analyzing, and

Visualizing Complex Street Networks’ (Boeing 2016) designed as a complement for the

online service OpenStreetMap (OSM).

We found that the tagging system used in OpenStreetMap was ideal for determining semantic

meaning behind locations. Each POI in the OSM database is given a set of tags (see Figure 6

in the appendix for an example of the café Starbucks), an OSM_ID, and then is stored as an

element5. Using these tags, we can generate a grouping policy to collect locations that are

semantically similar to the real input location. OSMnx has a series of modules and queries

that almost all take OSM tags as parameters. The query we found most useful for our

objective was geometries_from_point(center_point, tags, dist=1000) from the Geometries

module. This query takes in a centre point value in latitude and longitude, a dictionary of

OSM tags in the form [{tag_name: tag_value},…]6, and a search radius in metres. The output

5
 OSM operates on a graph-based structure made up of elements: single-point locations and

some buildings are represented by nodes, roads and paths are represented by ways, buildings

and areas are often represented by closed ways. More complex shapes, such as universities

that have multiple buildings, can be represented by relations.
6
 An example of the tag dictionary for a Starbucks Cafe would be {“amenity”: “café”,

“name”: “Starbucks”, “cuisine”: “coffee_shop”, “internet_access”: “wlan”}

 19

format of this query is a tabular data structure called a GeoDataFrame, which can be iterated

through to retrieve its data.

Firstly, we want all fake locations to be indistinguishable from real locations, so we proposed

a fundamental rule for our policy to adhere to:

If it is sound for a person to visit the real location regularly, then it must also be sound for a

person to visit the corresponding fake location regularly

In generalising the semantic meaning of the real locations, we found that there were cases in

which the semantic meaning should be kept unchanged. For example, if a user navigates from

their workplace to a residential building every evening, it is unsuitable to generalise the

semantic meaning from ‘residential’ to all kinds of buildings (it is not sound for a person to

navigate from their workplace to a different office building, from which they will navigate to

work again in the morning). Below, we will be going through the main tags that the system

accounts for and whether the semantic meaning is kept the same, generalised, or set to a

default value:

- With each of these tags, the value chosen does not make a difference to the credibility

of the fake location.

• Leisure (Example possible values: Garden, Park, Sports Centre)

• Public Transport (Example possible values: Platform, Train Station, Bus)

• Office (Example possible values: Government, Estate Agent, Lawyer)

- With these tags, the system collects POIs with the same value as the real location.

Changing the tag value may be detrimental to the credibility of the fake location. For

example, routing to and from a residential road every day will be more credible than

routing to and from a public footpath every day.

o Highway (Example possible values: Residential, Footpath, Motorway)

o Amenity (Example possible values: Restaurant, University, Parking)

o Tourism (Example possible values: Hotel, Attraction, Viewpoint)

o Building (Often “yes”, but can be Residential, Hospital, House etc.)

- If the real location has this tag, the fake location’s tag value defaults to ‘convenience’.

Gaming and other types of stores are too specialised and are not visited at the same

rate as supermarkets and convenience stores. To generalise the real value, every time

a shop is visited as a real location, the system picks randomly between the values

‘supermarket’ and ‘convenience’ for the fake location.

§ Shop (Example possible values: Supermarket, Game, Convenience)

The tag values for the source location are stored in a dictionary named sourceTags, used as

an argument in the geometries_from_point function. The centre point parameter is set as the

anchor point location, so we do not yet need the real location’s latitude and longitude. The

function returns a list of POIs that are the union of each tag, not the intersection. So if the tag

dictionary consisted of {“tourism”: “attraction”, “building”: “house”}, a returned POI may

be either a tourist attraction, a building, or both. This function, along with our tag tunings,

allows the system to semantically similar, generalised fake locations for a location input.

The main code snippet for this sub-section is shown in Figure 7

 20

Figure 7 – CreateFakeSource Function Code Snippet

6.2 Producing Suitable Destination Locations (CreateFakeDestination())

A secondary function that is called after CreateFakeSource is named CreateFakeDestination.

It requires an extra parameter which is the previously generated fake source location. Since

the fake destination must be a similar distance from the fake source as the real destination is

from the real source, the system must have a way of calculating the distance between given

locations. For this functionality, we utilised the distance function from the GeoPy package

(GeoPy 2021). However, this function operates on latitude and longitude values, and the only

data we have on our source and destination locations are their OSM_IDs.

To extract the exact locations of our OSM nodes, we opted for a modular approach and

defined a new function named GetLatLongFromID. Firstly, we require a service to geocode

our locations, that is to generate a geographical location from an OSM_ID. For this we chose

the Nominatim API (Nominatim 2021). Being a web API, we required the inbuilt ‘requests’

python module to send the queries. The format of the queries are as follows:

https://nominatim.openstreetmap.org/lookup?osm_ids=[N|W|R]<value>,…,…,&<params>

POIs in OSM are split into three main categories: node (N), way (W), and relation (R). The

corresponding character is used as a code for the query, followed by the OSM_ID. The code

and OSM_ID replace “[N|W|R]<value>” in the query format. The parameter code used is

“&format=json” to indicate that we require the data in json format, simplifying data

extraction to a single dictionary retrieval. The parameter code replaces “&<params>” in the

query format.

 21

The full query generation is shown in Figure 8 as a code snippet.

Figure 8 – GetLatLongFromId Function Code Snippet

Now that we can retrieve the latitude and longitude for every OSM POI, we can simply input

them as arguments to the distance function as shown in Figure 9. With the distance between

real source and real destination calculated, we can use this value for the search radius of the

geometries_from_point function mentioned previously.

Figure 9 – CreateFakeDestination Code Snippet

6.3 Reading in OSM POI data (GetXML())

Now we have already established that each OSM POI has a set of tags and an OSM_ID, but

the system needs a method of reading in whichever locations the user desires. To obtain the

data for a location, the user needs to navigate to https://www.openstreetmap.org and search

for their desired location7. After selecting the correct location, there is a link to “Download

7
 There exist more efficient methods for the user to retrieve OSM data in XML/JSON format,

for example the R package osmdata, but there does not seem to be such a package for Python

implementations. Either way, while our approach is less efficient, it is more user-friendly

since the OpenStreetMap website presents a graphical user interface rather than a complex

command-line interface that requires the user to memorise queries.

 22

XML”. An example XML file for an OSM POI is shown in Figure 10. For the system to

access the correct XML file, it asks the user to input the file name on the command line

excluding the .xml file extension. Since the system is a proof-of-concept for now, there is no

exception handling. However, this is inconsequential given that we’re using a limited set of

test XML files for this project.

Figure 10 – Example XML File For Starbucks Café

To read in the XML file, the system uses the built-in xml.etree.ElementTree function to

reduce the file into a simpler tree-like data structure stored in the variable root. root.tag

returns the type of element the POI is (node, way, or relation), and root.attrib returns a

dictionary containing the key-value pairs of the attributes inside the root tag. The root tag

itself can be iterated through to extract its children tags. The way of extracting attribute data

using Python commands is shown in Figure 11 and Figure 12.

Figure 11 – ‘Node’ Tag Represented in Python

Representation in Python:

root.tag = ‘node’

root.attrib = {

“id”: “3407104093”,

“visible”: “true”,

“version”: “7”,

“changeset”: “101860276”,

“timestamp”: “2021-03-28T04:00:47Z”,

“user”: “gomedia91”,

“uid”: “10473450”,

“lat”: “51.4835010”,

“lon”: “-3.1682296”

}

 23

Figure 12 – ‘Tag’ Tag Represented in Python

As the system iterates through the root’s child tags, it is checking for the “k” value in each

attribute dictionary. The “k” entry denotes name of the OSM tag, and the “v” entry denotes

the value of that OSM tag. This is shown visually in Figure 12. It is at this point where the

system builds up the sourceTags/destinationTags dictionary, creating entries for each OSM

tag it encounters and choosing which values to enter according to the policy in the previous

sub-section 6.1: Collecting Semantically Similar Points of Interest (CreateFakeSource())

The function then returns a tuple containing the POI type and its OSM_ID. In addition, the

OSM tags for the POI are returned in a dictionary format, ready to be input into the

geometries_from_point function.

The code for the functionality in this sub-section is shown in Figure 13

Figure 13 – GetXML Function Code Snippet

Representation in Python:

root.tag = ‘tag’

root.attrib = {

“k”: “amenity”,

“v”: “cafe”

}

 24

6.4 Loading and Saving Profiles

To maintain user profiles after running the initial Python script, we utilised the Python Pickle

module. Pickle is used to serialize objects in Python, allowing them to be saved to disk.

When the Python object is required again, it is deserialized and returned to its original format.

The code snippet for the functionality in this sub-section is shown in Figure 14.

Figure 14 – LoadProfiles Function Code Snippet

For our system, we modularised the loading process so that the function LoadProfiles is run

every time the Python script is run. The function checks the directory of the Python file for

the pkl files named “dict1.pkl”, “dict2.pkl”, and “dict3.pkl”. Each file, when deserialized into

a Python dictionary, has an entry: {"Search Area": (latitude_value, longitude_value)}

containing float values of the latitude and longitude of that profile’s anchor point.

Since the privacy of the user is dependent on them using multiple fake profiles, if the script

does not detect every required pkl file, it returns default latitude and longitude values for:

Tokyo Japan, New York USA, Manchester UK respectively. When the script has finished

running, the newly created dictionaries are serialised and saved in the directory of the Python

file as fkl files.

Every time the Python script is run, the user is asked through a command line prompt

whether they would like to delete their currently existing profiles, in which case the script

deletes the pkl files from its directory and continues using the default anchor point values.

 25

6.5 The Implementation Process

From the initial plan of the project, we decided on a waterfall methodology, working on

getting individual functionalities of the system working properly before moving on. A

common criticism of this methodology is that it stops the design from evolving throughout

development and the developer gets locked into their initial ideas. However, given that this is

a proof-of-concept system that runs in a command-line environment, there was very little

design work and polishing to do.

Partway through the implementation process, we encountered first-hand the trap of relying

too much on third-party libraries and packages. With no prior indication, the system stopped

working completely: the Python interpreter would crash midway through fake pair

generation. We had narrowed down the issue to a problem with the Nominatim geocoder,

eventually even submitting an issue ticket to the API’s GitHub site thinking that there was a

newly pushed update. After a few days, a response came back to say that the API does not

and has never worked with certain OSM locations without name values. It turned out that in

all the testing conducted during prior development, we were simply lucky (or unlucky)

enough not to have encountered such a common OSM location.

In terms of following the initial plan, we tried our best to follow the work plan to the letter,

even accidentally working ahead of schedule without realising it. As mentioned previously,

there were some roadblocks, but they were overcome with time. We had regular supervisor

meetings in which we went through current progress and plans for future functionality. These

were invaluable as Dr Corcoran had an insightful background on spatial and geographical

data.

 26

Implementation Appendix

Figure 6 – OSM tags for Starbucks café in Cardiff

(OpenStreetMap 2022)

 27

7. Results and Evaluation

To show the results of the implementation, we have mapped the real and fake locations onto

four maps: one map of Cardiff to show the real locations, and maps of Tokyo, New York, and

Manchester to show the fake locations in the default anchor points.

After the results, we will be analysing them to determine if they satisfy k-anonymity. We will

then be comparing the implementation with the similar method named ShiftRoute.

7.1 Mapped Results

Figure 15 – Cardiff Map (Real Locations)

 28

Figure 16 – Tokyo Map (Fake Location Profile 1)

Figure 17 – New York Map (Fake Location Profile 2)

 29

Figure 18 – Manchester Map (Fake Location Profile 3)

 30

Figure 19 – Map Key

The figures above show a journey consisting of 7 stops across Cardiff City Centre. The

locations were chosen from a range of categories, listed in the key (Dormitory, University,

etc.), in order to produce a real-life situation. As demonstrated, the fake locations have a

generalised semantic meaning: for example the user may have either travelled to a GP

 31

surgery in Cardiff, an ophthalmology centre, a pediatrics centre, or a traditional Chinese

medicine clinic.

Another element of note is the map scale for each profile: the distance between every point in

the Cardiff map is approximately 200-400m, excluding the journey from point 4 to point 5. In

the Cardiff map, the journey between point 4 and point 5 is approximately twice the distance

of the other journeys. This jump in distance is visibly replicated in the fake locations.

7.2 Performance

While this system is currently a proof-of-concept, it is important to assess its performance to

gauge how it would fare in the hands of a larger user base. The main metrics used to assess

performance are time complexity, space complexity, and total run-time.

The time and space complexity are the simplest to obtain since there is no testing required.

The time complexity of the local processing is O(k + k*i) and the space complexity is also

O(k + k*i) where k = number of profiles, i = number of POIs within search area. The

elements to consider are:

• The number of locations to save to profile dictionary (2 locations per profile = 2*k =

simplifies to k)

• Accessing POI data from profile dictionary (constant time lookup in a hash table)

• Iterating through retrieved POI data from OSMnx (2 OSMnx queries per profile =

2*k*i = k*i)

Below are the run-times for three example location pairs, split into run-time of source

location generation and run-time of destination location generation.

Cardiff University à Breatos Restaurant, Cardiff

 Profile 1 (Tokyo,

Japan)

Profile 2 (New York,

USA)

Profile 3 (Manchester,

UK)

Source Location

Generation

0.17s 0.14s 0.08s

Destination Location

Generation

3.13s 2.35s 2.11s

Senghennydd Hall, Cardiff à Starbucks Café, Cardiff

 Profile 1 (Tokyo,

Japan)

Profile 2 (New York,

USA)

Profile 3 (Manchester,

UK)

Source Location

Generation

0.11s 0.12s 0.04s

Destination Location

Generation

4.84s 3.79s 6.78s

 32

As evidenced by the readings above, the majority of the run-time is composed of the system

generating fake destinations, rather than fake sources. Exploring deeper into the two

functions CreateFakeSource and CreateFakeDestination, we can track the runtime for

individual lines of code. Below, Figure 20 shows the time taken for each OSMnx query to

process. As explained in the implementation section, an OSMnx query is run first with the

search radius set as the distance from real location A to real location B. Then as long as k (in

this case, 3) number of fake location candidates have not been found, the query repeats with a

search radius doubling each time. The Figure below shows that, with very uncommon

locations such as universities, the time taken doubles with every query to the point where the

run-time reaches 33 seconds. In this case, the query repeats until 3 universities are found in a

single search area which, as one can imagine, requires a very large search area.

Figure 20 – Query Run-Time Breakdown for University POI Search

This is a clear drawback with our implementation, however the processing for this is all

completed on OSM servers. Therefore, to improve performance, all we can do is update the

local tag policy. Perhaps universities could be generalised to a more common POI such as a

school or learning centre. This would improve performance by reducing the need for extra

queries with an unnecessarily high search radius.

Cardiff Central Station à Roathwell Surgery, Cardiff

 Profile 1 (Tokyo,

Japan)

Profile 2 (New York,

USA)

Profile 3 (Manchester,

UK)

Source Location

Generation

0.19s 0.06s 0.13s

Destination Location

Generation

3.71s 2.90s 3.01s

 33

7.4 Comparison to ShiftRoute

We decided that a comparable obfuscation method to our implementation is ShiftRoute. In

short summary, ShiftRoute works by creating two search areas around the source location and

destination location. Each search area is sent to an anonymisation server to perform a

“differential-private” selection of a POI as a fake substitute for the real location. The issue we

take with this approach is that its POI selection is based on grid cells and geographical

coordinates, not semantic meaning. This means that if the user’s queries were inspected by an

automated process, this method ensures no loss of privacy. However, if the queries were

inspected by a human being with a higher level of critical thinking, they would be able to

work out that the locations have been run through some form of anonymisation process. In

addition, the user would not get the same result from the route planning service in inputting

the fake location pairs as if they input the real location pairs.

Another aspect to consider is that ShiftRoute is functionally equivalent to simple location

cloaking: blurring the user’s exact location into a larger region. This introduces a flaw into

ShiftRoute’s approach. The fake POIs selected by ShiftRoute are, by design, required to be

close enough to the real locations that a route planning service returns a route with a similar

path and travel time. By reducing the effective ‘cloak’ to such a small region, the original

objectives of the method are undermined. Fundamentally, this method sacrifices the user’s

location privacy to obtain a similar route but doesn’t maintain semantic meaning between real

and fake locations. This calls into question whether the approach even provides better results

than simple randomised dummy queries.

Looking back at Figure 19, viewing purely those 7 queries, there are no locations that would

reveal which profile is real or fake. If the user submits their location pairs into our system,

since the fake locations are only generalised selections of the real locations, the fake locations

cannot be declared implausible. If the semantic meaning is unchanged, and the distance

between locations is unchanged, there is nothing to distinguish the real location pair from the

fakes.

One of the main privacy metrics we are measuring our implementation with is k-anonymity.

Namely, whether our implementation satisfies k-anonymity. In the background section, we

categorized k-anonymity into two effective groups: historical k-anonymity and location k-

anonymity. Historical k-anonymity prevents use of historical locations to predict future

locations. With our implementation, since the semantic meaning is unchanged, it is possible

to predict the user’s future location using their past locations, however the attacker would not

be able to determine which of the k future locations is the correct one. This creates the same

state for location k-anonymity. The attacker is able to determine the location of the user for

each profile, but they would be at a loss as to which location is real. Utilising k number of

fake profiles, keeping semantic meaning and geographical distance the same, our

implementation satisfies our requirements of historical and location k-anonymity.

Another point of comparison between these two methods is their reliance on external

services. Our implementation utilizes OSM servers and OSMnx queries to collect

semantically similar POIs. However, the queries themselves only take three arguments:

Anchor Point Coordinates, Semantic Tags, and the Search Radius. The coordinates of the real

locations are never sent for processing. Therefore, even if we assume OSM is untrustworthy,

they have no means of breaching user privacy. ShiftRoute on the other hand, does not. The

anonymization server utilised by ShiftRoute requires the user’s local device to send over the

 34

approximate regions of their real locations. This adds another vulnerability to ShiftRoute

from attackers.

A potential drawback we found with our method was that since it functions using anchor

points, it does not provide accurate results when supplied with long distance source-

destination pairs. Ordinary users of route planning services do not only use them in their

home towns, but also while abroad or travelling. Because the fake profiles only generate fake

locations in the vicinity of a single anchor point, an attacker would notice that only one

profile is breaking the pattern and leaving the proximity of its anchor point. Therefore, we

advise that our approach is most appropriate for everyday use in medium-large sized cities.

For use with longer journeys or abroad, we suggest that other location obfuscation methods

such as ShiftRoute be used.

In summary, we find that while our implementation has some performance issues to be

improved upon, our approach functions more effectively from a privacy standpoint than the

comparable method ShiftRoute when used in city environments. However, when used in

irregular circumstances such as during long-distance travel, we find ShiftRoute to be the

optimal solution in those cases.

 35

8. Conclusion and Future Work

The initial objective of the project was to produce a method of creating fake source-

destination location pairs such that they would be indistinguishable from corresponding real

pairs. The implementation described in this report succeeds in completing that objective, but

in comparing our system to a comparable method ShiftRoute, we discovered pros and cons to

our approach.

While our system was more effective in protecting privacy for smaller-scale daily journeys, it

was not equipped to handle location pairs with a long distance from each other. ShiftRoute

was more effective in this aspect since it does not take into account the distance between

source and destination locations, merely acting on each location input individually. This is

not to say that ShiftRoute is a perfect approach as we did have privacy concerns over its main

algorithm.

In the future, our system could be extended to work as a full mobile app, thus reducing the

need for the user to individually download location XML files and operate multiple

applications at once. If this system was extended as a mobile app, it would ideally handle all

interactions between OpenStreetMap and the user’s desired route planning service. This

would raise the method from a proof-of-concept to a practical privacy tool.

In addition, further tuning of the tag policy is required to optimise the performance of the

system. As it currently stands, the system generates queries that have far too large a search-

area. By further generalising the OSM tags, both the user privacy and system performance is

likely to increase.

9. Reflection on Learning

If I were to do this project again, I would try not to follow the initial plan so closely as I did. I

think that allowing myself to research new ideas and plans, even scrapping current ideas and

starting afresh would have made for a more stimulating project. An initial idea I had was to

use machine learning to identify patterns in sets of source-destination pairs, creating a

machine learning model to generate indistinguishable fake pairs. However, since I didn’t

realise exactly how much extra time we were given until halfway through the project, I took

the cautious route and kept going with my OSM tag approach. Either way, I feel that the one

of the most important lessons I learned from this experience was that even if some topic or

technology feels overwhelmingly complex, the best thing to do is to throw yourself in at the

deep end, read about it, and build up a foundation of knowledge that way.

I feel like there were benefits from working consistently throughout the whole project,

checking the exact week on the work plan and making sure I’m up to date, and it made the

whole process a lot less stressful than I know it was for some of my peers. One of the most

arduous parts of this project for me was the multitude of papers and articles I had to read to

grasp the foundations of security in location-based services. The more I read, the more I

realised there was to learn.

I genuinely do not regret this project at all and I enjoyed working on a project in the realm of

cyber-security where I could see the results of my system with my own eyes, as opposed to

more theoretical domains.

 36

Reference list

Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K. and Palamidessi, C. 2013. Geo-

indistinguishability. Proceedings of the 2013 ACM SIGSAC conference on Computer &

communications security - CCS ’13 . Available at: https://arxiv.org/pdf/1212.1984.pdf

[Accessed: 10 May 2022].

Boeing, G. 2016. OSMnx: New Methods for Acquiring, Constructing, Analyzing, and

Visualizing Complex Street Networks. Available at:

https://geoffboeing.com/publications/osmnx-complex-street-networks/.

Corcoran, P., Mooney, P. and Gagarin, A. 2020. A distributed location obfuscation method

for online route planning. Computers & Security 95. Available at:

https://www.sciencedirect.com/science/article/pii/S016740481831071X?via%3Dihub

[Accessed: 5 May 2022].

Data Anonymization 2020. Available at: https://inversegravity.net/2020/data-anonymization/

[Accessed: 7 May 2022].

Dimitrakakis, C., Nelson, B., Zhang, and Z., Mitrokotsa, A. and Rubinstein, B. 2016.

Bayesian Differential Privacy through Posterior Sampling. arXiv:1306.1066 [cs, stat] .

Available at: https://arxiv.org/abs/1306.1066 [Accessed: 10 May 2022].

Duckham, M. and Kulik, L. 2005. A Formal Model of Obfuscation and Negotiation for

Location Privacy. Lecture Notes in Computer Science , pp. 152–170. doi:

10.1007/11428572_10.

GeoPy 2021. GeoPy 1.21.0 documentation. Available at:

https://geopy.readthedocs.io/en/stable/ [Accessed: 24 May 2022].

Gkoulalas-Divanis, A., Kalnis, P. and Verykios, V.S. 2010. Providing K-Anonymity in

location based services. ACM SIGKDD Explorations Newsletter 12(1), pp. 3–10. doi:

10.1145/1882471.1882473.

Lee, K.C.K., Lee, W.-C., Leong, H.V. and Zheng, B. 2009. Navigational path privacy

protection. Proceeding of the 18th ACM conference on Information and knowledge

management - CIKM ’09 . doi: 10.1145/1645953.1646041.

Narayanan, A. and Shmatikov, V. 2008. Robust De-anonymization of Large Sparse Datasets.

Available at: https://www.cs.cornell.edu/~shmat/shmat_oak08netflix.pdf [Accessed: 7 May

2022].

 37

Near, J. and Abuah, C. 2021. Differential Privacy — Programming Differential Privacy.

Available at: https://programming-dp.com/notebooks/ch3.html [Accessed: 7 May 2022].

Near, J., Darais, D. and Boeckl, K. 2020. Differential Privacy for Privacy-Preserving Data

Analysis. Available at: https://www.nist.gov/blogs/cybersecurity-insights/differential-

privacy-privacy-preserving-data-analysis-introduction-our [Accessed: 7 May 2022].

Nominatim 2021. Nominatim 4.0.1. Available at: https://nominatim.org/release-docs/latest/

[Accessed: 24 May 2022].

OpenStreetMap 2022. Node: Starbucks (9140939591). Available at:

https://www.openstreetmap.org/node/9140939591 [Accessed: 20 May 2022].

Russell, E. 2019. 9 things to know about Google’s maps data: Beyond the Map | Google

Cloud Blog. Available at: https://cloud.google.com/blog/products/maps-platform/9-things-

know-about-googles-maps-data-beyond-map [Accessed: 5 May 2022].

Samarati, P. and Sweeney, L. 1998. Protecting Privacy when Disclosing Information: k-

Anonymity and Its Enforcement through Generalization and Suppression. Available at:

https://epic.org/wp-content/uploads/privacy/reidentification/Samarati_Sweeney_paper.pdf

[Accessed: 9 May 2022].

Sweeney, L. 2000. Simple Demographics Often Identify People Uniquely. Sweeney.

Available at: https://dataprivacylab.org/projects/identifiability/paper1.pdf [Accessed: 7 May

2022].

Turner, A. 2021. 1 Billion More Phones Than People In The World! BankMyCell. Available

at: https://www.bankmycell.com/blog/how-many-phones-are-in-the-world [Accessed: 5 May

2022].

Zhang, P., Hu, C., Chen, D., Li, H. and Li, Q. 2018. ShiftRoute: Achieving Location Privacy

for Map Services on Smartphones. IEEE Transactions on Vehicular Technology 67(5), pp.

4527–4538. Available at: https://ieeexplore.ieee.org/document/8252747 [Accessed: 9 May

2022].

