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ABSTRACT 

Rota creation for home-help services is often a complicated, manual task, 

with very few solutions available that can factor in the routes that carers will 

travel to complete their daily work. What’s more, carers on zero-hours 

contracts are often left dealing with unpaid travel time and job assignments 

which appear unfair. 

This project investigates this problem from a combinatorial optimisation 

perspective, studying the social and mathematical background, and 

formulating a solution based on a vehicle routing problem. A multi-objective 

integer linear program is implemented in Python to optimise travel time, 

fairness, and optional similarity to existing rotas, and results are visualised 

and evaluated for effectiveness. 
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1 INTRODUCTION 

1.1 THE PROBLEM 
Carers who provide home-help to elderly clients perform a wide range of 

duties, including housework, washing and physical assistance, cooking 

meals, and running errands. Whatever the needs of the client, the travel 

required to get to their home is an essential part of every job.  

Companies offering this service create rotas for their staff, with some giving 

more consideration than others to how far each carer will be expected to travel 

between jobs. Rota creation is often time-consuming, and it can be near 

impossible to manually produce rotas which avoid excess travel. 

Additionally, a good rota maintains client satisfaction with carer-client 

familiarity, by consistently sending clients the same carers. These repeated 

pairings also contribute to carer job satisfaction, as does fair and transparent 

distribution of work between carers. 

We define our problem as follows: given a set of locations, let k carers be 

located individually at their k home locations. Let the remaining n locations 

be the home locations of n clients. Our problem is to find routes for the k 

carers such that each of the n clients is visited at home exactly once by exactly 

one carer, with each carer starting and ending their route at their own home. 

The total travel time by all carers must be minimised, subject to the routes 

being fair for all carers, and optionally subject to similarity of the routes to an 

existing set of routes from a previous rota. 

1.2 COMBINATORIAL OPTIMISATION 
Combinatorial (or discrete) optimisation is one of the most active fields in the 

interface of operations research, computer science, and applied mathematics 

(Du and Pardalos 1998). Its applications include corporate planning, database 

query design, computational biology, and, most interestingly to us, both 

scheduling and vehicle routing. 

In a combinatorial optimisation problem, there exists a discrete (but normally 

large) set of feasible solutions, and an objective function which can be applied 

to any given solution, the minimising (or maximising) of which will provide 

an optimal solution. 

1.3 INTEGER LINEAR PROGRAMMING 
Integer linear programming is commonly used as an approach to solving 

combinatorial optimisation problems. In an integer linear program (ILP) 

being used to solve a combinatorial optimisation problem, integer values will 

be assigned in various combinations to a set of variables, with each 

combination able to represent a feasible solution. In the case of a routing 

problem, this might mean a variable xij for each directed edge of a graph 

where i and j are the locations joined by that edge. Each variable will be 
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assigned a value of 1 if the edge is travelled and 0 if it is not. To fully represent 

a combinatorial optimisation problem, the assignment of value to ILP 

variables is subject to a set of relevant constraints, and an objective function 

provides a way to measure the value of each solution. 

1.4 THE PROJECT 
The aim of this project is to create and implement an algorithm which can 

take as an input the addresses of carers and clients, along with other relevant 

details. The implementation of this algorithm should produce an ordered list 

of job assignments for each carer which is optimised for overall travel time 

while still being fair, and optionally consistent with an existing rota, all with 

the aim of enhancing the ability of home-help services to create efficient 

rotas. Treating this project as a combinatorial optimisation problem, rather 

than using other artificial intelligence approaches such as machine learning, 

provides us with an appropriate level of control over how we represent needs 

and preferences in the algorithm, and will allow us to evaluate highly 

explainable results. We will be able to encode the sorts of logic used by 

humans in manual rota creation, but with the added ability of a computer to 

quickly explore thousands of routing options. 

The well-established use of ILPs to solve route optimisation problems makes 

them an ideal candidate for tackling this project. In the Background section 

of this report, we explore the context of our problem, as well as existing 

literature on the use of ILPs to solve related routing problems and some 

definitions of fairness. In the Basic Solution section, we use what we have 

discovered to formulate an ILP which is specific to solving the problem of 

creating home-help rotas, following which we create a dataset and a Python 

implementation. An Advanced Solution section sees the ILP expanded to 

solve the problem with an improved definition of fairness and the addition of 

a client-carer familiarity feature in order to increase the usefulness of the 

solution in a business setting. We test and evaluate our ILPs in the Results 

and Evaluation section for route optimisation, fairness, and consistency with 

existing rotas. A Future Work section suggests ways that this limited proof of 

concept could be expanded to create a more comprehensive solution. 

2 BACKGROUND 

2.1 CONTEXT 
In the UK, employers are required to pay home-help care workers (also 

known as domiciliary care workers) at least the National Minimum Wage 

(NMW) for time spent working, which includes travel time between 

appointments. This is in addition to any reimbursement for travel costs. 

Employers will either pay for travel time explicitly, or instead pay just for 

time spent caring with wages that are high enough to be the equivalent of 
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NMW once travel time is accounted for (Minimum wage for different types 

of work 2022). Despite this, Rubery et al. (2015) finds that, 

An index of fragmented time practices among 52 independent-

sector domiciliary care providers reveals widespread tendencies 

to use zero-hours contracts and limit paid hours to face-to-face 

contact time, leaving travel time and other work-related activities 

unpaid. 

Indeed, all domiciliary care workers interviewed in another study (Hebson et 

al. 2015) reported high job satisfaction overall, but several expressed that 

terms and conditions of employment were a source of dissatisfaction, 

specifically: pay, working time and staff shortages. The study explored the 

rewarding nature of care work and how a resulting willingness to tolerate low 

pay is taken for granted by employers. 

After outlining the difficulties of packed rotas and unforeseen client needs in 

home-help care, Wibberley (2013) finds that, 

These time pressures are exacerbated by the lack of travel time 

allocated on rotas, particularly in the private sector… It is very 

difficult to reduce the amount of time travelling and, therefore, 

domiciliaries have to save time elsewhere. 

In addition to the lack of time and pay allocated for travel between 

appointments, issues over the distribution of the jobs themselves are common. 

Ravalier et al. (2018) studied the stress of working as a domiciliary care 

worker on a zero-hours contract, as approximately 60% of domiciliary care 

workers are employed in this way. The study reports, 

Respondents felt that there was often a lack of fairness in the way 

in which hours were offered across those with zero‐hours 

contracts, with a lack of clarity in the way that hours were offered 

adding to this feeling of uncertainty and unfairness. 

There is sufficient motivation here to design a program that could reduce the 

incentive for employers to shift a burden of unpaid labour onto carers, and to 

include provision for a fair distribution of the work. An ideal solution would 

minimise carers’ overall travel time through the optimal assignment of jobs, 

with sufficient provision in the rota for the amount of time required for travel. 

This increased efficiency would make it possible for carers to spend a higher 

percentage of a working day carrying out home-help care, increasing income 

for the business, without obliging carers to travel backwards and forwards to 

their own homes between appointments at their own expense. 

2.2 COMMON APPROACHES 
While home-help rotas have traditionally been created without the help of 

computerised systems, a national review in Wales reported that the use of 

scheduling software is becoming increasingly commonplace (Care and Social 
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Services Inspectorate Wales 2016). As well as creating simple schedules, 

some more sophisticated programs are able to: 

• Factor in travel times between calls. 

• Link to satellite navigation systems to give travel directions to care 

workers and provide the agency with real time location of where their 

care workers are. This helps providers estimate call times, contact 

service users and bring in extra care workers if needed. 

• Calculate wages and allow for holidays. 

• Identify replacement care workers who the person receiving care 

already knows. 

• Predict and calculate care worker continuity. 

Current popular examples of these programs include offerings from Access 

(PeoplePlanner 2022) and Care Planner Ltd. (CarePlanner 2022). They 

provide solutions to the problem of a lack of travel time allocated on rotas, 

but are not able to optimise routes to minimise this time. 

The same national review detailed a common approach for companies who 

attempt to minimise travel time: the region is split up into smaller areas and 

each carer’s workload is clustered in just one area. This is certainly better than 

no optimisation as carers are not having to drive long distances between jobs, 

but can still give rise to the complaint that they are having to travel backwards 

and forwards across an area in the course of a day. 

2.3 ALGORITHMIC PROBLEMS 
There are many well-known routing problems for which solutions have been 

formulated as ILPs. Here we explore a series of the problems which most 

closely resemble our own, with increasing generalisation until we reach a 

formulation which we can adapt to suit our unique requirements. 

2.3.1 Travelling Salesperson Problem 

Almost synonymous with route optimisation is the Travelling Salesperson 

Problem (TSP). Although mention of this problem can be found as far back 

as 1832, it was formulated mathematically by both Kirkman and Hamilton in 

1856 (Schrijver 2005). Generalising the problem of finding a Hamiltonian 

cycle in a graph, the TSP is: given n cities and the distances between each 

pair of cities, find a shortest route traversing each city exactly once and 

returning to the city of origin (see Figure 1). 

  

Figure 1: Example feasible 

solution for a TSP 
Figure 2: Route with subtours 

- these are not permitted 
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The TSP is one of the most well studied optimisation problems, with a variety 

of exact algorithms and heuristics recorded. It can also be formulated as an 

ILP, done notably by Dantzig, Fulkerson and Johnson (1954) 

utilising n2 binary variables xij as recorded by Roberti and Toth (2012): 

݁ݏ݅݉݅݊݅� ∑ ∑ ܿ௜௝�௜௝�
௝=ଵ

�
௜=ଵ ሺͳሻ 

s.t. 

∑ �௜௝�
௜=ଵ = ͳ,        ݆ = ͳ, . . . , ݊ ሺʹሻ 

∑ �௜௝�
௝=ଵ = ͳ,        ݅ = ͳ, . . . , ݊ ሺ͵ሻ 

∑ ∑ �௜௝௝א�௜א� ൑ |ܵ| − ͳ,        ܵ ⊂ � ∶ ܵ ≠ ∅ ሺͶሻ �௜௝ א {Ͳ,ͳ},        ݅, ݆ = ͳ, . . . , ݊ ሺͷሻ 

Where V={1,...,n} is the vertex set, xij (5) is equal to 1 if and only if arc (i, j) 

(i=1,...,n; j=1,...,n) is in the optimal tour. The objective (1) is to minimise the 

tour length which is the total cost cij of every arc xij traversed. Constraints (2) 

and (3) impose that the in-degree and out-degree of each vertex, respectively, 

is equal to one, while constraints (4) are Subtour Elimination Constraints 

(SECs) and impose that no partial circuit exists (see Figure 2). 

The most basic case of our problem can be said to be a TSP as it involves 

finding the shortest route for one carer to visit all client locations, starting at 

and returning to the carer’s own home. 

2.3.2 Multiple Travelling Salesperson Problem 

The TSP can be generalised to a Multiple Travelling Salesperson Problem 

(MTSP). The most basic version of this problem is as the TSP, but with m 

salespeople located at the depot city 1. As in Figure 3, each other city must 

appear exactly once in exactly one tour, and the overall distance cost to visit 

all cities must be minimised. 

Figure 3: Example feasible solution for an MTSP with three salespeople 
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Kara and Bektas (2006) adjust the problem to include upper and lower bounds 

on the number of cities a salesperson must visit. Their ILP formulation for an 

MTSP with a single depot is as follows: 

݁ݏ݅݉݅݊݅� ∑ ∑ ܿ௜௝�௜௝�
௝=ଵ

�
௜=ଵ ሺ͸ሻ 

s.t. 

∑ �ଵ௝�
௝=ଶ = ݉ ሺ͹ሻ 

∑ �௝ଵ�
௝=ଶ = ݉ ሺͺሻ 

∑ �௜௝�
௜=ଵ = ͳ,        ݆ = ʹ, . . . , ݊ ሺͻሻ 

∑ �௜௝�
௝=ଵ = ͳ,        ݅ = ʹ, . . . , ݊ ሺͳͲሻ 

௜ݑ + ሺܣ − ʹሻ�ଵ௜ − �௜ଵ ൑ ܣ − ͳ,        ݅ = ʹ, . . . , ݊ ሺͳͳሻ ݑ௜ + �ଵ௜ + ሺʹ − ሻ�௜ଵܤ ൒ ʹ,        ݅ = ʹ, . . . , ݊ ሺͳʹሻ �ଵ௜ + �௜ଵ ൑ ͳ,        ݅ = ʹ, . . . , ݊ ሺͳ͵ሻ ݑ௜ − ௝ݑ + ௜௝�ܣ + ሺܣ − ʹሻ�௝௜ ൑ ܣ − ͳ,        ʹ ൑ ݅ ≠ ݆ ൑ ݊ ሺͳͶሻ ݑ௜ א {ͳ, … , ݅        {ܣ = ͳ, . . . , ݊ ሺͳͷሻ �௜௝ א {Ͳ,ͳ},        ݅, ݆ = ͳ, . . . , ݊ ሺͳ͸ሻ 

We define xij as a binary variable equal to 1 if arc (i,j) is in the optimal solution 

and 0 otherwise (16). For any salesperson, ui (15) is the number of nodes 

visited on that salesperson’s path from the origin up to node i (i.e., the visit 

number of the ith node). A is the maximum number of nodes a salesperson 

may visit; thus, 1 ≤ ui ≤ A for all i ≥ 2. In addition, let B be the minimum 

number of nodes a salesperson must visit, i.e., if xi1 = 1, then B ≤ ui ≤ A must 

be satisfied. 

Once again, the objective (6) is to minimise the tour length which is the total 

cost cij of every arc xij traversed. In this formulation, constraints (7) and (8) 

ensure that exactly m salespeople leave from and return to the depot. 

Constraints (9) and (10) are the degree constraints, ensuring that each non-

depot node is visited exactly once. The inequalities given in (11) and (12) 

serve as upper and lower bound constraints on the number of nodes visited by 

each salesperson, and initialize the value of ui to 1 if and only if i is the first 

node on the tour for any salesperson. Constraints (11) and (12) we call 
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bounding constraints, and were completely new introductions by Kara and 

Bektas for the MTSP. Inequality (13) forbids a vehicle from visiting only a 

single node. The inequalities given in (14) ensure that uj = ui + 1 if and only 

if xij = 1. Thus, they prohibit the formation of any subtour between non-depot 

nodes, so they are the SECs of the formulation. 

We will need to generalise this MTSP further to reach a formulation relevant 

to our problem, but can take inspiration from Kara and Bektas’ novel 
introduction of bounding constraints to pursue our aim of a fair distribution 

of jobs. 

2.3.3 Multi-Depot Multiple Travelling Salesperson Problem 

Multi-Depot Multiple Travelling Salesperson Problems (MDMTSPs), 

generalise MTSPs with the introduction of more than one depot and a number 

of salespeople initially located at each depot. A common variation is the 

nonfixed destination MDMTSP in which salespeople do not have to return to 

their original depots but the number of salespeople at each depot should 

remain the same at the end as it was in the beginning (see Figure 4). 

Also due to Kara and Bektas (2006) is this ILP formulation of an MDMTSP: 

݁ݏ݅݉݅݊݅� ∑ ∑ ܿ௜௝�௜௝�
௝=ଵ

�
௜=ଵ ሺͳ͹ሻ 

s.t. ∑ �௜௝௝א�′ = ݉௜,        ݅ א � ሺͳͺሻ 

∑ �௜௝௜א�′ = ௝݉ ,        ݆ א � ሺͳͻሻ 

∑ �௜௝௜א� = ͳ,        ݆ א �′ ሺʹͲሻ 

Figure 4: Example feasible solution for a nonfixed 

destination MDMTSP with two depots and two 

salespeople 



12 

 

∑ �௜௝௝א� = ͳ,        ݅ א �′ ሺʹͳሻ 

௜ݑ + ሺܣ − ʹሻ ∑ �௞௜௞א� − ∑ �௜௞௞א� ൑ ܣ − ͳ,        ݅ א �′ ሺʹʹሻ 

௜ݑ + ∑ �௞௜௞א� + ሺʹ − ሻܤ ∑ �௜௞௞א� ൒ ʹ,        ݅ א �′ ሺʹ͵ሻ �௞௜ + �௜௞ ൑ ͳ,        ݇ א �, ݅ א �′ ሺʹͶሻ ݑ௜ − ௝ݑ + ௜௝�ܣ + ሺܣ − ʹሻ�௝௜ ൑ ܣ − ͳ,        ݅ ≠ ݆;   ݅, ݆ א �′ ሺʹͷሻ ݑ௜ א {ͳ, … , ݅        {ܣ = ͳ, . . . , ݊ ሺʹ͸ሻ �௜௝ א {Ͳ,ͳ},        ݅, ݆ = ͳ, . . . , ݊ ሺʹ͹ሻ 

We partition the node set such that V = D ∪ V’ , where the first d nodes of V 

are depot set D, there are mi salespeople located at depot i initially and the 

total number of salespeople is m. Also, let V’ = {d + 1, d + 2, ..., n} be the set 

of customer nodes. xij variables, A, B and ui variables are defined as before. 

In this formulation, for each i א D, mi outward and mi inward arcs are 

guaranteed by (18) and (19). Equations (20) and (21) are the degree 

constraints for the customer nodes. Constraints (22) and (23) impose bounds 

on the number of nodes a salesperson visits together with initializing the value 

of the ui variables as 1 if i is the first node visited on the tour. Constraints (24) 

prohibit a salesperson from serving only a single customer. Finally, 

constraints (25) are SECs in that they break all subtours between customer 

nodes. Observe that there are O(n2) binary variables and O(n2) constraints in 

this formulation. It is easily seen that the MDMTSP model reduces to that of 

the MTSP when D contains only one depot node. 

While we can begin to see parallels between this MDMTSP problem and our 

own, we will need to generalise again to find a problem studied in the 

literature on which to model a new ILP, which takes into account carers 

leaving from and returning to their own homes, along with timings for client 

visits and other related features. 

2.3.4 Vehicle Routing Problem 

While the formulations we have seen so far all have applications in logistics, 

Vehicle Routing Problems (VRPs) take this further still and are another group 

of widely studied problems. VRPs tend to be generalisations of MTSPs or 

MDMSTPs, with added constraints placed on each vehicle such as capacity 

or maximum distance. For this project, we are specifically interested in fixed 

destination VRPs, where each vehicle must end their route at the same depot 

at which they started (see Figure 5). 
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Ramos et al. (2019) reported the following VRP, with binary variables xijk that 

indicate whether vehicle k travels directly from node i to node j: 

Indices 

i,j node index 

k vehicle index 

Sets 

V̅ the set of nodes V̅ = {1, ... , n + w}; V̅ = Vc ∪ Vd 

Vc the subset of customer nodes Vc = {1, ... , n} 

Vd the subset of depots nodes Vd = {n + 1, ... , n + w} 

K the set of vehicles K = {1, ... , r}; K = K1 ∪ ... ∪ Ki 

Ki the subset of vehicles belonging to depot i 

Parameters 

dij distance between nodes i and j 

r ij travelling time from node i to node j 

Qk capacity of vehicle k 

pi customer i demand 

ti service duration at customer i 

T maximum time allowed for a route 

∑    ݁ݏ݅݉݅݊݅�  ∑ ∑ �௜௝௞݀௜௝௞א�௝א�௜א� ሺʹͺሻ 

s.t. ∑ ∑ �௜௝௞ = ͳ,௞א�௜א�         ∀݆ א �௖ ሺʹͻሻ 

Figure 5: Example feasible solution for a fixed 

destination VRP with two depots and two 

vehicles 
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∑ ∑ �௜௝௞௞א�௝א� = ͳ,        ∀݅ א �௖ ሺ͵Ͳሻ 

∑ �௜ℎ௞௜א� − ∑ �ℎ௝௞௝א� = Ͳ,        ∀݇ א �,    ∀ℎ א � ሺ͵ͳሻ 

∑ ∑ �௜�௜௝௞௝א�௜א�� ൑ �௞ ,        ∀݇ א � ሺ͵ʹሻ 

∑ ∑ �א௜�א௜�௜௝௞௝ݐ + ∑ ∑ �א௜�א௜௝�௜௝௞௝ݎ ൑ ܶ,        ∀݇ א � ሺ͵͵ሻ 

∑ �௜௝௞௝א�� ൑ ͳ,        ∀݇ א �௜,    ∀݅ א �ௗ ሺ͵Ͷሻ 

∑ �௜௝௞௜א�� ൑ ͳ,        ∀݇ א �௝ ,    ∀݆ א �ௗ ሺ͵ͷሻ 

∑ �௜௝௞௜א�� = Ͳ,        ∀݆ א �ௗ,    ∀݇ ב �௝ ሺ͵͸ሻ 

∑ �௜௝௞௝א�� = Ͳ,        ∀݅ א �ௗ,    ∀݇ ב �௜ ሺ͵͹ሻ ݑ௜ − ௝ݑ + ݊ × �௜௝௞ ൑ ݊ − ͳ,        ͳ ൑ ݅ ≠ ݆ ൑ ݊,    ∀݇ א � ሺ͵ͺሻ �௜௝௞ א {Ͳ,ͳ}        ∀݅ א �,    ∀݆ א �,    ∀݇ א � ሺ͵ͻሻ ݑ௜ א {ͳ, … , ݊}        ∀݅ א �௖ ሺͶͲሻ 

The objective function (28) states that total distance travelled is to be 

minimised. Constraints (29) and (30) ensure that each customer is visited 

exactly once by a single vehicle. Route continuity is guaranteed by constraint 

(31), i.e., if a vehicle enters a site, it must exit that site. Constraint (32) ensures 

that the vehicle capacity is not exceeded. Similarly, constraint (33) guarantees 

that route duration (including service time duration and travelling time 

between nodes) does not exceed the maximum time allowed. Constraints (34) 

and (35) ensure that each vehicle will leave and return to its home depot at 

most once. Constraint (36) and (37) jointly ensure that a vehicle cannot leave 

and return to a depot other than its home depot. Constraint (38) is a redefined 

version of the Miller–Tucker–Zemlin SEC (Miller et al. 1960). Finally, 

constraints (39) and (40) set the variable domains. 

While adaptations will be required to achieve aims such as fairness, this is the 

most appropriate problem we have seen from which to build a solution to the 

problem of applying route optimisation to rota generation for home-help 

services. 
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2.4 NP-HARDNESS 
As mentioned previously, the most basic case of our problem can be said to 

be a TSP. The TSP is known to be NP-hard, so we can also say that all 

generalisations of the TSP are NP-hard, including MTSPs and VRPs. NP-

hard problems are not solvable in polynomial time, unless P=NP1, so it is 

likely that any algorithm to find the optimal solution to our problem will have 

a high time cost for large companies. It is not, however, a given that this cost 

will be prohibitively high, as there appear to be considerable differences in 

complexity within the class of NP-hard problems (Lenstra and Kan 1981). 

2.5 FAIRNESS 
As we match carers to clients, one of our main aims is a fair assignment of 

jobs. In the fields of mathematics, economics, and computer science there are 

several established fairness measures. Hoang et al. (2016) summarise some 

of the most commonly used definitions of fairness to have emerged in the 

allocation problem literature in the last six decades or so, using the example 

of a cake cutting problem (usually a cake with different toppings, so a 

heterogeneous resource) with a finite set of players N and a cake CAKE. A 

division of the cake is a vector x = (x1,..., xn) where xi ⊂ CAKE is the share of 

player i and UiN xi = CAKE. Each player i has a utility function ui that 

associates a real number to any xi. Player i prefers share xi to x’i, if and only 

if, ui(xi) > ui(x’i). The utility function is additive; that is, for any disjoint 

subsets xk and xl, we have: 

 ui(xk ∪ xl) = ui(xk) + ui(xl). 

In particular, this implies that the utility of an empty allocation is equal to 

zero, i.e., ui(∅) = 0, and by the normalisation of the whole-cake value, we 

have ui(CAKE) = 1, ∀iאN. 

In our problem, the ‘cake’ to be divided is the set of all available caring jobs. 

The utility function for each carer will vary based on whether or not the 

employer pays for travel explicitly, and could relate to amount of paid work, 

amount of paid work proportional to unpaid work, or some combination of 

these. 

Using our cake cutting problem notation, we have the following four 

definitions: 

Exact fairness 

A division is exact if all players' allocations are identical, i.e., exchanging 

shares will not affect any player's outcome. So, for any player iאN, ui(xj) = 

1/n, ∀jאN. We know intuitively that this will not be possible to achieve in our 

problem given any utility measure involving travel, as is it extremely unlikely 

that a carer would have exactly the same travel time when swapping for 

otherwise identical jobs in alternative locations. 

 
1 See https://www.britannica.com/science/P-versus-NP-problem for more, accessed May 2022 

https://www.britannica.com/science/P-versus-NP-problem
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Proportionality 

A division is proportionally fair if every player prefers its allocation to an 

allocation from an exact division. If we suppose that the cake is fully allocated 

among n agents, then proportionality can be interpreted as an allocation where 

each agent prefers its share to the average of what they would get if 

allocations were given away uniformly randomly. So, a division is 

proportionally fair if any player gets at least 1/n, i.e., ui(xi) ≥ 1/n, ∀iאN. Given 

the difficulties we encounter with exact fairness and its relationship to 

proportionality, we do not pursue this fairness measure in the project. We do, 

however, discuss its use in the Future Work section. 

Envy-freeness 

A division is envy-free if every player prefers its allocation to any other 

player's allocation. So, for any player i, ui(xi) ≥ ui(xj), ∀jאN. In our problem, 

as in many others, this is not a realistic measure. We cover this in more detail 

later in this report. 

Equitable fairness 

A division is equitable if all players have the same utility for their respective 

shares, i.e., ui(xi) = uj(xj), ∀i,jאN. Related to our issues with exact fairness, 

given any utility measure involving travel, it is extremely unlikely that a carer 

will have exactly the same utility as another carer for their respective jobs. 

 

Although none of these definitions can be straightforwardly applied to our 

problem, we will be able to use relaxations of both exact fairness and 

equitable fairness to inspire the ILPs we formulate for route-optimised rota 

generation. 

With an inability to guarantee a division of jobs which is exact or equitable, 

we might look to envy-freeness as a better approach, especially as route 

optimisation involves choosing for each party the route that is most 

appropriate for them. But Bouveret and Lang (2008) note that, 

A key concept in the literature on fair division is envy-freeness: 

an allocation is envy-free if and only if each agent likes her share 

at least as much as the share of any other agent. Ensuring envy-

freeness is considered a desirable property; however, envy-

freeness alone does not suffice as a criterion for finding 

satisfactory allocation 

Indeed, for many problems there can be no envy-free allocation, and this is 

further complicated in our case by the high likelihood of our aims of travel 

minimisation being at odds with a pursuit of envy-freeness, as we will see 

later. This being said, we saw from Ravalier et al. (2018) in section 2.1 that, 

Respondents felt that there was often a lack of fairness in the way 

in which hours were offered across those with zero‐hours 
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contracts, with a lack of clarity in the way that hours were offered 

adding to this feeling of uncertainty and unfairness. 

Envy-free allocations may not exist for all/any of our rota-creation problems, 

but the spirit of envy-freeness is relevant: clarity and impartiality in the 

system can reduce envy, and we can borrow intuitively from envy-freeness 

as we evaluated the strength of our proposed solutions, and test whether we 

are able to create rotas for which there would be little incentive for carers to 

swap jobs with one another in the pursuit of fairness. We will need to test this 

empirically, and the availability of visualisations will play a role here. 

2.6 EXISTING WORK 
Here we identify three articles which present important problems and 

solutions related to this project. 

An et al. (2012) present a two-phase heuristic algorithm which makes use of 

a mixed-integer program (MIP) to optimise the ordering of a nurse’s pre-

assigned jobs with the objective of minimising total travel time. 

An algorithm based on particle swarm optimisation for home care worker 

scheduling in the UK due to Akjiratikarl et al. (2007) has very similar aims 

to this project but with some notable differences. They base their algorithm 

on a VRP with time windows, which is beyond the scope of this project, but 

which will be mentioned in the Future Work section.  

And finally, Luo et al. (2021) formulate a route and speed optimization 

problem in home health care as an MIP and then propose an alternative ant 

colony optimisation based heuristic approach that can better handle large-

scale instances. This problem deals with instances where clients must be 

visited by multiple carers simultaneously, and in this problem all carers must 

start the day at a central office and end the day at a medical laboratory. 

In contrast to these three approaches, our project will add to route 

optimisation a focus on carer and client satisfaction, with attention given to 

fairness and carer-client familiarity. In Akjiratikarl et al.’s study a straight-
line distance is assumed for travel between clients, whereas we will include 

real travel times. 

3 BASIC SOLUTION 

3.1 APPROACH 
As we are primarily interested in the role of route optimisation in home-help 

rota generation, we first formulate an ILP which can model the assigning of 

carers to ordered lists of clients while minimising the total distance travelled 

by all carers. Starting by adapting the VRP encountered in section 2.3.4 

allows for a gradual introduction of our unique features of fairness and 

similarity. We choose this VRP for its fixed-destination problem and its 
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handling of travel time and visit duration, which will allow us to expand into 

an advanced solution once we have visualised its behaviour. 

We use a Python program to solve the ILP for sets of addresses chosen at 

random from a pool of real UK addresses across adjacent towns. These 

addresses have themselves been collected randomly and are not provided with 

this report as they constitute data relating to real individuals2. Visualisations 

of the optimal solutions generated by the program serve to demonstrate the 

effectiveness of the ILP and support the later stages of the project (Figure 6). 

 

Figure 6: Project milestones 

We assume that our program would be used to divide a chosen number of 

jobs between a chosen number of carers rather than, for example, to select the 

most appropriate carer from a pool of many to carry out a job. We can 

therefore assume that the number of clients will always be greater than or 

equal to the number of carers. 

3.1.1 Fairness Definition 

We assume that it is desirable for carers to be allocated an equal share of the 

available work. For this basic solution, we use the concept we saw in our 

background research of exact fairness, and divide the number of available 

jobs to be shared between carers so that all carer’s allocations are identical. 
We treat all jobs as having an equal utility for all carers in the set of carers N, 

so that, using our notation from section 2.5, for an exact division for any carer 

iאN, ui(xj) = 1/n, ∀jאN. 

Of course, this is a naïve approach to pursuing exact fairness, both because 

there will be cases where the jobs do not divide exactly between the carers, 

and because we do not account for probable large variations in the total time 

individual carers will be required to spend travelling and therefore the 

variation in carers’ utility for any given assignment of jobs. However, this 

approach is worth exploring as it will provide a level of fairness while 

allowing flexibility for the algorithm to find a solution which truly minimises 

overall travel time. It is also of interest as it is likely a common method for 

dividing work between carers in situations where route optimisation is not 

considered, making it an useful basic case. We assume jobs of equal length 

(one hour) for this basic solution. 

 
2 These individuals are not known to us, and the school’s ethics committee has granted a 

favourable opinion on the use of this data for the project 

Research Basic ILP
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To ensure fairness according to this measure, we will introduce upper and 

lower bounds on the number of jobs a carer must be assigned. These bounds 

will be based on the result of dividing the total number of jobs by the total 

number of carers. If the resulting number is an integer (that is, if the job 

number is exactly divisible by the carer number) then this will be the value of 

both the upper and lower bounds, guaranteeing that the jobs are assigned with 

exact fairness. Otherwise, the result will be rounded up to the nearest integer 

for the upper bound and down for the lower bound, ensuring that the 

difference between the number of jobs assigned to any two carers is no more 

than one. 

3.1.2 Integer Linear Programming Formulation 

We begin by adapting the ILP we saw earlier from Ramos et al. (2019): 

Indices 

i,j node index 

k carer index 

Sets 

V̅ the set of nodes V̅ = {1, ... , n + w}; V̅ = Vc ∪ Vd 

where n is the number of clients to visit 

and w is the number of carer homes (depots) 

Vc the subset of client nodes Vc = {1, ... , n} 

Vd the subset of depots nodes Vd = {n + 1, ... , n + w} 

K the set of carers K = {1, ... , l}; K = K1 ∪ ... ∪ Ki 

where l is the number of carers 

Ki the subset of carers belonging to carer home i 

Parameters 

r ij travelling time from node i to node j 

ti visit duration at customer i 

T maximum time allowed for a route 

A maximum number of clients a carer may visit 

B minimum number of clients a carer may visit 

∑    ݁ݏ݅݉݅݊݅�  ∑ ∑ �௜௝௞ݎ௜௝௞א�௝א�௜א� ሺͶͳሻ 
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s.t. ∑ ∑ �௜௝௞ = ͳ,௞א�௜א�         ∀݆ א �௖ ሺͶʹሻ 

∑ ∑ �௜௝௞௞א�௝א� = ͳ,        ∀݅ א �௖ ሺͶ͵ሻ 

∑ �௜ℎ௞௜א� − ∑ �ℎ௝௞௝א� = Ͳ,        ∀݇ א �,    ∀ℎ א � ሺͶͶሻ 

∑ ∑ ��א௜�א௜�௜௝௞௝ݐ + ∑ ∑ �א௜�א௜௝�௜௝௞௝ݎ ൑ ܶ,        ∀݇ א � ሺͶͷሻ 

∑ �௜௝௞௝א�� = ͳ,        ∀݇ א �௜ ,    ∀݅ א �ௗ ሺͶ͸ሻ 

∑ �௜௝௞௜א�� = ͳ,        ∀݇ א �௝ ,    ∀݆ א �ௗ ሺͶ͹ሻ 

∑ �௜௝௞௜א� = Ͳ,        ∀݆ א �ௗ,    ∀݇ ב �௝ ሺͶͺሻ 

∑ �௜௝௞௝א� = Ͳ,        ∀݅ א �ௗ,    ∀݇ ב �௜ ሺͶͻሻ �௜௝௞ א {Ͳ,ͳ}        ∀݅ א �,    ∀݆ א �,    ∀݇ א � ሺͷͲሻ 

The objective function (41) has been adapted to minimise the total travel time 

rather than distance. Constraints (42) and (43) ensure that each client is visited 

exactly once by a single carer. Route continuity is guaranteed by constraint 

(44), i.e., if a carer arrives at a client’s home, they must also depart from that 

client’s home. Constraint (45) guarantees that route duration (including client 

visit duration and travelling time between homes) does not exceed the 

maximum time allowed for a carer’s working day. Note that we now include 

service times for client homes only, not carer homes. Constraints (46) and 

(47) have been adapted to ensure that each carer will leave and return to their 

home exactly once. Constraint (48) and (49) have been adapted to jointly 

ensure that a carer cannot travel to or from any carer’s home that is not their 
own. Constraint (50) sets the variables domain. 

Additional parameter A is the upper bound on the number of clients a carer 

may visit, while B is the lower bound. Inspired by the MTSPs we saw from 

Kara and Bektas (2006), these bounds are introduced to ensure a fair division 

of jobs. 

We therefore include the following constraints: ݑ௜ − ௝ݑ + ܣ × �௜௝௞ ൑ ܣ − ͳ,        ͳ ൑ ݅ ≠ ݆ ൑ ݊,    ∀݇ א � ሺͷͳሻ 
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௜ݑ א {ͳ, … , ݅∀        {ܣ א �௖ ሺͷʹሻ ∑ ∑ �௜௝௞௝א�௜א� ൒ ܤ + ͳ,         ݅ ≠ ݆, ∀݇ א � ሺͷ͵ሻ 

We replace the adapted Miller–Tucker–Zemlin SEC seen in the background 

section (38) with an adapted SEC (51) which also introduces the upper bound 

A by using ui variables which denote, for each client i, where they are placed 

in an ordered list of visits. The constraint enforces that no carer may have an 

(A+1)th client visit. Constraint (52) sets the related variables domain. We also 

create a new constraint (53) to impose the lower bound, where the total 

number of journeys made by each carer must be greater than or equal to one 

more than the minimum number of visits required (since, for example, 

visiting five clients will involve six journeys including those starting and 

ending at the carer’s home). 

3.2 IMPLEMENTATION 

3.2.1 Gurobi 

To solve our ILP we turn to Gurobi who claim to be the fastest and most 

powerful mathematical programming solver available for linear programs 

(Gurobi Optimizer. 2022). Their widely used, state-of-the-art optimiser offers 

interfaces for many popular programming languages, including Python, and 

provides free academic licenses. We make use of the gurobipy module, for 

which there is extensive documentation. When presented with a linear 

program as part of a Python script, the solver is able to select the most 

appropriate from a range of optimisation algorithms without input from the 

user, including simplex, parallel barrier, cutting planes, and branch and 

bound. 

3.2.2 Routingpy 

It is important that this project maintains a focus on developing a proof-of-

concept solution which is relevant to the real world in which our problem is 

based. To that end, several options were explored to find an API for 

translating UK addresses into latitude and longitude coordinates which could 

be used to create a matrix of the car travel times from each address to every 

other address. Python 3 client routingpy enables easy and consistent access to 

third-party spatial webservices to request route directions, isochrones or time-

distance matrices (routingpy. 2022). routingpy facilitated easy testing of 

services such as Here Maps, Google Maps, Graphhopper, and Mapbox 

Valhalla, acquiring API keys through each service’s website but using nearly 

the same code for each test. Ultimately Mapbox Valhalla was chosen as the 

free version offered all the functionality required for this project. Calls to the 

API for address to latitude and longitude conversion, however, are limited to 

one per second, so when running repeated tests to evaluate our ILP we will 

use an adapted testing script which accepts a dataset with pre-converted 

addresses. 
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3.2.3 The Program 

The command line interface takes as an argument a csv file which has two 

columns: carer and address. On each row, the address column contains the 

home address of either a client or carer, and the carer column indicates 

whether the address belongs to a client or carer with a 0 or a 1 respectively 

(see Figure 7). The program in its current form has a sample variable which 

can be set to False or True to indicate whether input should be treated as an 

example problem or as a dataset from which to randomly select a sample of 

addresses to represent a chosen number of clients and carers. 

Functions are called to generate coordinates from the addresses and to create 

a travel time matrix, after which a make_model function produces the sets, 

parameters, objective function, and constraints described in section 3.1.2. 

Creating this function involved acquiring knowledge of gurobipy syntax, but 

functions including Gurobi’s quicksum() and well written documentation 

made this a relatively straightforward process. More complicated was 

extracting the results once the model had been optimised. After the xijk 

variables with a value of 1 have been identified as the active arcs, for each 

carer k we collect into a list the arcs travelled by that carer and then a recursive 

get_route function is called with the carer’s home location indicator as an 

initial argument. This function adds each visit, in order, to a route which starts 

as a list containing only the carer’s home. The pseudocode for this function 

is as follows: 

Function get_route( current_location ) 

 For arc ijk in arc_list 

  If arc first value == current_location 

   Add arc second value to route 

    If arc second value == carer_home 

     End 

    Else 

     get_route( arc second value ) 

Figure 7: Example input csv with exact address details redacted 
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A csv file (Figure 8) is produced as an output with a row for each carer, 

identifying them by their address and coordinates, and containing details of 

the ordered list of jobs they will undertake along with an expected total time 

for their route. 

Plots using latitude and longitude coordinates and straight lines between them 

give a basic visualisation of the problem space and the solution given by the 

program, as shown in Figure 9. 

Code adapted from a raw.githubusercontent.com notebook (Notebooks. 

2022) provides a look at the exact routes proposed on a map of the area. In 

Figure 10 we see a map of the East Sussex area on which carer home locations 

are visualised as red squares while blue circles denote client locations. Exact 

efficient driving routes provided by Mapbox Valhalla’s API are shown in 

black. 

 

 

 

 

Figure 9: Plotted job assignments seen in Figure 8 of nine clients between three carers  

Figure 8: Example csv output with exact location details redacted 

Figure 10: Carer routes for Figure 8 job assignments 
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4 ADVANCED SOLUTION 

We use insights from our basic solution and background research to introduce 

an improved fairness measure in section 4.1. Following this, a feature is 

created in section 4.2 which can optionally generate job assignments which 

favour similarity to a previous rota. 

4.1 IMPROVED FAIRNESS 

4.1.1 Fairness Definition 

We know from exploring the context of our problem that time spent caring is 

only a part of the working day for home-help care workers, and that it is far 

from the only factor determining employee satisfaction. Our problem is 

motivated by a lack of attention given to the travel carried out by carers in the 

course of a working day, and so we must take this into account when 

considering fairness. 

We see in Figure 11 an example of a job assignment that is allowed according 

to our fairness measure of a relaxed ‘exact’ division of jobs, but which results 

in a significant difference in the amount of time each carer spends working, 

and the distance travelled, both overall and proportional to the number of jobs 

assigned to them. The carer with three jobs will spend 60 minutes travelling, 

while one carer with four jobs will spend 75 minutes travelling and the other 

with four must travel for 145 minutes, nearly twice as many. 

Intuitively we know that this is not a fair assignment, and that the utility each 

carer gains from their assigned jobs is not equal to their utility for the other 

carers’ assignments. In cases where carers’ pay is calculated based on the 

amount of time spent caring, there is a clear unfairness here between the two 

carers who will be paid the same amount when one’s working day will last 
over an hour longer than the others. And in cases where caring and travel time 

are paid alike, unfairness lies in the over two-hour difference between the 

longest and shortest working days offered to carers. 

Figure 11: Assignment provided by the basic solution for 11 clients between three carers 
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For a more intelligent approach to ensuring fairness, we will adapt our basic 

solution to take into account total travel time for each carer. Whether or not 

carers are paid explicitly for time spent travelling greatly impacts what would 

constitute a fair assignment of jobs. As we are interested in a solution which 

will increase efficiency by lowering a company’s overall travel time, we will 
assume that we are developing a solution for companies who will pay carers 

a set, time-based wage for both travel time and caring time. 

The concept of equitable fairness is relevant here. We saw in section 2.5 that 

a division is equitable if all players have the same utility for their respective 

shares, i.e., ui(xi) = uj(xj), ∀i,jאN. In our problem, we may now define a carer’s 
utility for an assignment as the amount of paid working time that it will take 

them to complete the jobs assigned to them. While requiring precisely the 

same utility for all carers is not sensible, requiring the same amount of work 

within a reasonable range, 60 minutes for example, could generally be 

expected, and this is what we will seek to achieve. 

It is worth noting that here we consider an alternative definition of utility 

which relates to the working time associated with a particular allocation, 

independent from the amount of working time which would be associated 

with an allocation of the whole set of available jobs. In this definition, a 

carer’s utility function is no longer additive. That is to say, ui(xk ∪ xl) ≠ ui(xk) 

+ ui(xl) because, for example, adding a carer’s utility (total working time) for 

an assignment of two jobs to their utility for an assignment of another three 

jobs will not be equal to that carer’s utility for an assignment of all five jobs 

as the total amount of required travel time will be different in each case. 

Although the scope of this project does not extend to implementing care 

appointments of varying lengths, an ILP formulation using this equitable 

fairness measure will allow for the introduction of varying appointment 

lengths for client visits, which would not have been easily integrated into our 

basic solution of equitably dividing the jobs between carers. No adjustment 

to the ILP would be required to accommodate such an input – the Python 

program would simply require a few extra lines of code to use the input to 

create a set of visit times relating to the set of clients. 

4.1.2 Multi-Objective VRP 

Now that our measure of fairness is no longer directly tied to the number of 

jobs assigned to each carer, we need a way to achieve our new objective of 

equitable fairness while maintaining our existing objective of route 

optimisation. It makes sense, therefore, to remove our existing fairness 

constraints (51), (52) and (53), and instead create a second objective function, 

with our ILP becoming a multi-objective VRP. Bowerman et al. (1995), with 

their paper on multi-objective optimisation for bus routing, provide 

inspiration for the following objective function: 

∑    ݁ݏ݅݉݅݊݅� |∑ ∑ ��א௜�א௜�௜௝௞௝ݐ + ∑ ∑ �א௜�א௜௝�௜௝௞௝ݎ − ∑ ∑ ∑ ��א௜�א௝�א௜�௜௝௞௞ݐ + ∑ ∑ ∑ ݈�א௜�א௝�א௜௝�௜௝௞௞ݎ |௞א� ሺͷͶሻ 
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This function (54) works by minimising the total of the absolute differences 

between each carer’s total route time and the mean total route time for all 

carers. 

Having removed previous fairness constraints, we must reintroduce an SEC 

(55) and related variables (56) into the ILP: ݑ௜ − ௝ݑ + ݊ × �௜௝௞ ൑ ݊ − ͳ,        ͳ ൑ ݅ ≠ ݆ ൑ ݊,    ∀݇ א � ሺͷͷሻ ݑ௜ א {ͳ, … , ݊}        ∀݅ א �௖ ሺͷ͸ሻ 

4.1.3 Implementation 

Gurobi supports two approaches to combining objective functions: blended 

and hierarchical (Working With Multiple Objectives. 2022). 

The choice of method to combine our two functions is important because, 

with the removal of the upper and lower bounds implemented in the basic 

solution, the optimum result according to our fairness objective function will 

be vastly different to the optimum result according to our original objective 

function. We see this in Figure 12 and Figure 13, which show the two 

objective functions producing very different optimal assignments when 

applied independently. In this example, minimising travel time produces one 

route of 2.42 hours and one of 9.24 hours, while the two routes produced by 

minimising unfairness each take 6.69 hours to complete. 

This difference is relevant when considering whether to use the blended or 

hierarchical approach. While the blended approach uses programmer-defined 

weights to consider multiple objective functions simultaneously, the 

hierarchical approach optimises according to each objective function in a 

programmer-determined order. Once optimal solutions have been found for 

the first objective, Gurobi’s algorithm finds the solution from among these 
which is optimal according to the second objective. The programmer can 

choose an amount by which to allow the program to degrade the solution 

favoured by the first objective, with the program choosing from the 

previously explored solutions within the allowed value range to find that 

which optimises the second objective. However, the process of optimising the 

first objective function is not repeated, so only the solutions which were 

initially found in pursuit of an optimum are available to be considered against 

the second objective. The benefit of Gurobi’s optimisation algorithms is that 

they efficiently explore the solution space without needing to enumerate 

every feasible solution. This is ideal for optimisation – exploring every 

feasible solution would result in extremely poor performance. This does 

mean, however, that a majority of solutions explored are close to the optimum 

solution, so in a case where we seek to combine two objective functions with 

very different optimal solutions, optimising each in order is ineffective as it 

is likely that solutions important for compromise will remain unexplored by 

the first objective and therefore unavailable to the second. 
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A blended approach, therefore, is the better of Gurobi’s options for combining 
our objectives of minimising both travel time and unfairness. We use the 

default weight for the travel time objective and in section 5 we test three 

values as weights for the fairness objective, including weights less than and 

greater than the default. 

Figure 14 shows the optimal solution given by a Python program 

implementing the new algorithm with a default weight of 1 for travel time and 

a weight of 0.8 for fairness. We see that the number of job assignments given 

to each carer is balanced with the time spent travelling, with the carer with 

three jobs rather than four travelling the furthest. The difference in total time 

spent working is now just 12 minutes compared to the 145 minutes given by 

the basic solution. In the basic solution the total working time for all carers 

was 940 minutes, whereas the advanced solution gives 960 minutes working 

time. So, for this example, the cost to the business for a dramatic increase in 

fairness would be an additional 20 working minutes. 

Figure 13: Assignment of eight clients to two carers with only the fairness objective 

Figure 12: Assignment of eight clients to two carers with only the travel time objective 



28 

 

4.2 SIMILARITY TO PREVIOUS ROTA 
We identify two distinct areas of usefulness for the creation of a rota with 

similarities to a previous rota, using these to motivate a similarity feature 

which will address both. 

4.2.1 Legacy Rota 

Given a lack of route optimisation in the common approaches to rota creation 

seen in section 2.2, we assume that there would be companies already 

operating with a rota who could be interested in changing their approach to 

using a program implementing our solution. We call their existing rota a 

legacy rota, and anticipate that the ability to optimise for travel time and 

fairness while still maintaining some of the existing carer-client pairings 

present on a legacy rota, could contribute to ongoing carer and client 

satisfaction and therefore be a desirable feature when transitioning to using a 

route optimising program. 

4.2.2 Live Rota 

New rotas may be created on a daily or weekly basis, and may also need to 

be generated when unforeseen circumstances arise, such as carer absence or 

a carer needing to stay longer with a client to wait for an ambulance. In either 

case, there will be circumstances in which it is useful to be able to reoptimise 

job assignments based on a rota already generated by our algorithm, but now 

with an adjusted set of carers and/or clients. 

4.2.3 Similarity Objective Function 

As with fairness, we seek an approach which can balance our aims, rather 

than maintaining similarity at the expense of all route optimisation. We will 

therefore create a third objective function for similarity which can be 

combined with the ILP’s two existing functions. 

Figure 14: Problem seen in Figure 11 with assignments by new ILP 
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Although not pursued here, carer-client pairings which are strictly necessary, 

as opposed to preferred, could be modelled as a constraint in the ILP to ensure 

that certain pairings are maintained regardless of effect on overall travel time. 

We introduce the following new parameter and objective function: 

ski carer-client pairing from existing rota, with a value of 1 if carer k is 

paired with client i in existing rota, 0 otherwise �݅݊݅݉݅݁ݏ    − ∑ ∑ ∑ �௜௝௞ݏ௞௜௞א�௝א�௜א��  ሺͷ͹ሻ 

This function (57) maximises (by minimising the negative, in order to be 

consistent with the existing objectives) the total similarity value of a set of 

assignments, effectively maximising the number of instances of a client being 

visited by a carer who would have visited them in the existing rota. 

4.2.4 Implementation 

We add to the command line interface the ability to take a second csv file as 

an optional additional argument. This csv file must contain an address column 

and a visit_addresses column. On each row, the address column must contain 

the street address of a carer and the visit_addresses column must contain the 

street addresses of all clients visited by that carer in an existing rota. The 

program’s output (Figure 8) fits this description and can be used as an input 

with no adjustments needed. If this second csv is not provided, the program 

will model the ILP without the similarity objective. 

The program extracts relevant information from the previous rota, using a 

get_ccp_matrix function to identify only those existing carer-client pairings 

which relate to carers and clients who are both part of the dataset from which 

a new rota should be constructed. This information is used to construct a carer 

client paring matrix which functions as the ski parameter for the new objective 

function (57). 

To meet our aim of rota similarity, we will select the set of assignments which 

contains the most carer-client pairings found in the existing rota, from the best 

assignment options found by our existing algorithm. To achieve this, both of 

Gurobi’s hierarchical and blended approaches to combining objective 

functions are used. The priority parameter for both the travel time and fairness 

objective functions is set to a 2, with the similarity objective function given a 

lower priority value of 1. This means that Gurobi will first fully optimise 

using the blended higher priority functions, before turning its attention to the 

similarity objective function. As described in section 4.1.3, we allow Gurobi 

to degrade higher priority objectives by a limited amount, selecting the 

solution with the highest similarity value from among the best solutions 

explored in pursuit of the blended objective’s optimum (Working With 

Multiple Objectives. 2022). We set the amount of permitted degradation using 

the higher priority functions’ ObjNRelTol attribute. Where optimising 

produces an objective value a, further steps may degrade this value by no 
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more than ObjNRelTol*|a|. For example, Figure 15 shows an optimal job 

assignment for 15 clients shared between five carers. 

Given the scenario of a (randomly selected) carer calling in sick to work and 

their jobs requiring redistribution, Figure 16 shows the set of new assignments 

chosen by the algorithm with no use of the similarity feature, maintaining four 

of the 12 original carer-client pairings held by the remaining carers. Figure 

17 shows a set of assignments which has been created with the existing rota 

given as an input and the similarity objective function permitted to degrade 

travel time and fairness by up to 0.25 and 0.1 respectively, maintaining 11 of 

the 12 original pairings. 

 
Figure 16: Plotted job assignments of 15 clients 

between four carers 

 
Figure 17: Plotted job assignments of 15 clients 

between four carers with similarity 

4.3 FINAL ADVANCED INTEGER LINEAR PROGRAM 
For completeness, we record the final ILP, including advanced fairness and 

similarity. 

Figure 15: Plotted job assignments of 15 clients between five carers 
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Indices 

i,j node index 

k carer index 

Sets 

V̅ the set of nodes V̅ = {1, ... , n + w}; V̅ = Vc ∪ Vd 

where n is the number of clients to visit 

and w is the number of carer homes (depots) 

Vc the subset of client nodes Vc = {1, ... , n} 

Vd the subset of depots nodes Vd = {n + 1, ... , n + w} 

K the set of carers K = {1, ... , l}; K = K1 ∪ ... ∪ Ki 

where l is the number of carers 

Ki the subset of carers belonging to carer home i 

Parameters 

r ij travelling time from node i to node j 

ski carer-client pairing from existing rota, with a value of 1 if carer k is 

paired with client i in existing rota, 0 otherwise 

ti visit duration at customer i 

T maximum time allowed for a route 

∑    ݁ݏ݅݉݅݊݅�  ∑ ∑ �௜௝௞ݎ௜௝௞א�௝א�௜א� ሺͷͺሻ 

∑    ݁ݏ݅݉݅݊݅� |∑ ∑ ��א௜�א௜�௜௝௞௝ݐ + ∑ ∑ �א௜�א௜௝�௜௝௞௝ݎ − ∑ ∑ ∑ ��א௜�א௝�א௜�௜௝௞௞ݐ + ∑ ∑ ∑ ݈�א௜�א௝�א௜௝�௜௝௞௞ݎ |௞א� ሺͷͻሻ 
−    ݁ݏ݅݉݅݊݅� ∑ ∑ ∑ �௜௝௞ݏ௞௜௞א�௝א�௜א��  ሺ͸Ͳሻ 

s.t. ∑ ∑ �௜௝௞ = ͳ,௞א�௜א�         ∀݆ א �௖ ሺ͸ͳሻ 

∑ ∑ �௜௝௞௞א�௝א� = ͳ,        ∀݅ א �௖ ሺ͸ʹሻ 

∑ �௜ℎ௞௜א� − ∑ �ℎ௝௞௝א� = Ͳ,        ∀݇ א �,    ∀ℎ א � ሺ͸͵ሻ 
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∑ ∑ ��א௜�א௜�௜௝௞௝ݐ + ∑ ∑ �א௜�א௜௝�௜௝௞௝ݎ ൑ ܶ,        ∀݇ א � ሺ͸Ͷሻ 

∑ �௜௝௞௝א�� = ͳ,        ∀݇ א �௜ ,    ∀݅ א �ௗ ሺ͸ͷሻ 

∑ �௜௝௞௜א�� = ͳ,        ∀݇ א �௝ ,    ∀݆ א �ௗ ሺ͸͸ሻ 

∑ �௜௝௞௜א� = Ͳ,        ∀݆ א �ௗ,    ∀݇ ב �௝ ሺ͸͹ሻ 

∑ �௜௝௞௝א� = Ͳ,        ∀݅ א �ௗ,    ∀݇ ב �௜ ሺ͸ͺሻ �௜௝௞ א {Ͳ,ͳ}        ∀݅ א �,    ∀݆ א �,    ∀݇ א � ሺ͸ͻሻ ݑ௜ − ௝ݑ + ݊ × �௜௝௞ ൑ ݊ − ͳ,        ͳ ൑ ݅ ≠ ݆ ൑ ݊,    ∀݇ א � ሺ͹Ͳሻ ݑ௜ א {ͳ, … , ݊}        ∀݅ א �௖ ሺ͹ͳሻ 

Objective functions (58), (59) and (60) set the objective of minimising total 

travel time, unfairness and dissimilarity respectively. Constraints (61) and 

(62) ensure that each client is visited exactly once by a single carer. Route 

continuity is guaranteed by constraint (63), i.e., if a carer arrives at a client’s 
home, they must also depart from that client’s home. Constraint (64) 

guarantees that route duration (including client visit duration and travelling 

time between homes) does not exceed the maximum time allowed for a 

carer’s working day. Constraints (65) and (66) ensure that each carer will 

leave and return to their home exactly once. Constraints (67) and (68) jointly 

ensure that a carer cannot travel to or from any carer’s home that is not their 
own. Constraint (70) is a modified Miller–Tucker–Zemlin SEC (Miller et al. 

1960), and (69) and (71) set the variables domains. 

5 RESULTS AND EVALUATION 

Although results have already been presented in the previous sections of this 

report in the form of visualisations which appear, intuitively, to show correct 

functioning of our algorithm, proving this correctness is challenging. It is not 

possible to verify our solutions are optimal by enumerating all feasible 

solutions and comparing them, nor it is possible to check our ILP against an 

existing solver in a majority of cases. 

We can, however, check our ILP against an existing solver for sample sizes 

in which we have only one carer. As we saw in section 2.31, this is a special 

case of our problem, which can be said to be a TSP as it involves finding the 

shortest route for one carer to visit all client locations, starting at and returning 

to the carer’s own home. 
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After using an online TSP solver to verify our algorithm for the simplest case 

of our problem, several hundred examples are tested to help us evaluate the 

performance of the algorithm. To evaluate the business value of our advanced 

fairness measure, we test it against our basic ILP. 

5.1 TSP VERIFICATION 
AtoZmath.com’s TSP solver (Shah 2022), using the branch and bound 

(penalty) method, was used to verify the result given by our program for one 

carer and six clients. Our dataset of 60 addresses was randomly sampled to 

produce a set of home addresses. A travel time matrix constructed by our 

program was given to both solvers (see Figures 25 and 26 in the Appendix 

section), which produced the results seen in Figure 18 and Figure 19. 

 

Figure 18: Solution given by our program 

 

Figure 19: Solution given by the online TSP solver 

The two solutions are the same route between the locations, just with a 

different starting point. They also give the same distance (in seconds) of 9989 

for the route. From these results, from the knowledge that our ILP is based on 

existing formulations of problems which minimise distance, and on the 

strength of the visualisations presented in this report which appear to show 

short, sensible routes, we may trust that our ILP’s travel time minimisation is 

functioning correctly. 

5.2 FAIRNESS 
We have seen from Figure 12 and Figure 13 in section 4.1.3 that the objective 

of fairness is somewhat at odds with the objective of travel time minimisation. 

However, we have also seen (in section 2.1) that fairness is important for carer 

satisfaction, the neglect of which can lead to higher staff turnover, which can 

in turn negatively impact client satisfaction. 

In light of the need to balance these objectives carefully, 3,193 tests were run 

on data randomly sampled from our dataset of 60 addresses, the results of 

which appear in Figure 27 in the appendix section. For each sample size, 100 

random samples were each optimised by four algorithms: three versions of 

our advanced ILP with different weights placed on the fairness objective 

function, and the basic ILP to function as a baseline. 
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Due to limits on time and computational power, the number of clients and 

carers in each sample size were limited. A time limit of 3600 seconds (one 

hour) was set for each problem. 

 

In Figure 20, we can observe that all variations of our advanced ILP have the 

advantage over the basic ILP of a smaller mean average time range, which is 

the difference between the maximum and minimum carer route times for test, 

with a lower number equating to a fairer division of jobs. 

On the other hand, each advanced ILP performs worse than the basic ILP for 

total travel time, which we also seek to minimise. This is to be expected in a 

situation where we have somewhat opposing objectives. A worsening of the 

programs’ runtimes also correlates with an increase in the weight of the 

fairness objective. 

From the results seen is Figure 20 and Figure 27 results, we rule out the 

program with a fairness weight of 0.4 for having a mean time range which is 

too close to our preferred limit of one hour, especially with a standard 

deviation of up to 0.77 for some sample sizes. The results for the weight of 

1.5, however, show too great a cost in exchange for the fairness achieved. 

Increasing the average overall time by 0.59 hours in what are relatively small 

sample sizes suggests that there are cases in which routes are made 

deliberately inefficient in order to balance travel time (Figure 13 would be an 

extreme example of this phenomenon). The program with a weight of 0.8 for 

fairness is able to more than halve the average time range while adding less 

than a quarter of an hour to the overall time. 

Having identified 0.8 as an appropriate weight for our fairness objective 

function, we visualise the benefits of the advanced fairness objective function 

using the results from optimising routes for three carers and 13 clients. We 

choose this sample size because being one of the larger sample sizes in our 

test set makes it closer to an expected real world use case. 

Figure 21 and Figure 22 together show the significant benefit of the ILP with 

advanced fairness measure which we have introduced in this project; a 

marginal increase to the overall travel time suggested in our basic ILP yields 

a significant increase in fairly distributed work for carers when our advanced 

ILP is used. And it is worth noting that we are comparing performance with 

a program with route optimisation and basic fairness, so the potential benefit 

mean time 

range (hours)

mean total 

time (hours)

mean 

runtime (sec)

0.4_fairness 0.91 11.75 18.69

0.8_fairness 0.64 11.94 33.75

1.5_fairness 0.35 12.29 82.07

basic_fairness 1.33 11.70 6.34

Figure 20: Comparison of average results 
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given by the use of this advanced ILP when compared to a manual system 

which does not optimise for travel time or fairness is likely to be even greater. 

 

These figures help to show the value of our ILP: able to maximise carer 

satisfaction while also maximising the amount of time spent caring 

proportionately over the time spent travelling. But they also show evidence 

of achieving a level of relaxed equitable fairness, with all carers have the 

approximately (in this case within 1.5 hours) the same utility for their 

respective shares, i.e., ui(xi) ≈ uj(xj), ∀i,jאN. 

5.2.1 Evaluating Envy-freeness 

As we have taken a combinatorial optimisation approach to solving this 

problem, we are interested to see what outcomes can be proved in terms of 

our initial aims. In section 2.5 we introduced the fairness measure of envy-

Figure 21: Graph showing difference in total time between basic and advanced solutions 

Figure 22: Graph showing difference in fairness between basic and advanced solutions 
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freeness and judged that the spirit of envy-freeness is relevant to our problem 

of the fair and efficient division of home-help care jobs, even if the exact 

definition does not apply. 

As we established, a division is envy-free if every carer prefers their 

allocation to any other carer's allocation. So, for any carer i, ui(xi) ≥ ui(xj), ∀jאN. If both travel time minimisation and relaxed equitable fairness are 

achieved as intended, we may conjecture that envy-freeness, as defined here, 

will not be achieved. 

If we have that carers’ home locations have been a factor in 

determining appropriate division of the available jobs based on 

minimising travel, and that they have therefore been assigned a route 

based on its proximity to their home, 

Then it follows that the sum of: the distance from the home of carer 

i to their first job, and the distance from their last job back to their 

home, and the distance from the home of carer j to their first job, and 

the distance from their last job back to their home, will be less than 

it would be if they were to travel to and from the first and last jobs 

of one another. 

Then it is the case that at least one of carer i or j would have a higher 

travel time, and therefore utility, given the share of the other. 

In order for it to be the case that neither would benefit from a swap, 

the existing assignment would need to involve unnecessary travel, 

and we have already established that for a correct assignment this 

will not be the case. 

So for our solution, and indeed for any reasonable solution which 

seeks to avoid unnecessary travel, envy-freeness with this definition 

cannot be achieved. 

However, assuming that carer-client familiarity is desirable for carers as well 

as clients, it may be possible to model a carer’s utility function for a share of 

the available jobs in a way that includes both the amount of paid work and 

the similarity of the assignment to previous assignments, which could yield 

more provably envy-free divisions. 

The logic we have used here also applies to whether or not we can prove that 

a division is optimised for fairness based on whether carers would be 

interested in swapping individual jobs with one another to improve their 

utility. If the aim for carers is more hours, then of course swaps could decrease 

efficiency to increase time spent travelling for both carers, and in this sense 

likely all divisions are unstable. However, if we limit swaps (unless necessary 

for reasons other than fairness) to those which do not increase travel time for 

both carers, then there is no longer a mutual, time-based incentive to swap. 
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If we assume, on the other hand, that unnecessary travel is undesirable to all 

parties, then there will be cases where swapping jobs assigned by our 

algorithm could reduce the overall travel time, but these cases would also 

result in a time increase for one carer and a decrease for the other (or an 

decrease for both with a third colleague retaining a larger amount of work 

time), which would be unfair if our main basis for fairness is the equitable 

distribution of work time (but sensibly, with the desire to minimise travel). 

These cases, in which the swapping of individual jobs or entire routes would 

actually result in reduced travel time for both carers involved, are a casualty 

of our current ILP formulation. While some additional mileage may be 

deemed acceptable in order to maintain carer-client pairings, it is not so 

acceptable for the algorithm to reorder a route so that a carer’s travel time 
increases to bring their overall work time in line with the work time given to 

the other carers. Finetuning the balance used by Gurobi to combine objective 

functions helps to prevent this phenomenon in a majority of cases, but it 

would still need to be addressed before commercial use of such an algorithm. 

Although envy-freeness is not possible for our problem with the given 

definition, a program has been created which is able to assign jobs in a way 

that offers more fairness and clarity than other solutions, and thus would be 

able to reduce envy. 

5.3 RUNTIME 
A problem encountered in testing was that of large runtimes. Runtime 

averages have been seen in Figure 20 and in the appendix in Figure 27, and 

the chart in Figure 25 with a logarithmic scale further highlights the 

exponential complexity of our NP-hard problem. 

Despite the otherwise promising results produced by the program, the issue 

of prohibitively large runtimes would need to be addressed before our ILP 

could see any commercial use. 

Figure 23: Assignment of 11 clients to three carers with inefficient travel used to compensate for what 

would otherwise be a larger difference in route durations 
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Figure 24: Chart with logarithmic scale showing average runtimes for different programs 

 

6 FUTURE WORK 

The complex social and mathematical contexts make applying route 

optimisation to rota generation for home-help services a very rich subject 

area. The results achieved in this project show potential for further 

development of the work, while the issues with runtime point to the 

exploration of alternative approaches for creating and implementing a similar 

algorithm. 

6.1 EXTENDING THIS WORK 
The process of researching and implementing this project led to several 

interesting potential avenues for expansion. Here we outline some of the most 

relevant. 

6.1.1 Varied Appointment Lengths 

As discussed in section 4.1.1, this project’s final algorithm is able to carry out 

route, fairness, and similarity optimisation for a set of job assignments 

containing jobs of varying lengths. This was not included in the 

implementation, in order to maintain the simplicity of the route visualisations 

produced by the program, with appointments of the same length providing 

plots which allow the reader to understand the effectiveness of the route 

optimisation feature. However, the program would be adapted for use to take 

as an input an appointment length value for each client. 
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6.1.2 VRPTW 

We saw in our Existing Work section (2.6) that work has already been done 

on the use of vehicle routing problems with time windows (VRPTWs) 

(Akjiratikarl et al. 2007). Time windows could be added to this project’s ILP 

to include the ability to identify set periods of time during the day in which a 

client should receive, or not receive, a visit from a carer. In terms of approach, 

these time periods would be set as constraints if they are strictly necessary, or 

included in the objective function with associated costs if they are 

preferences. 

The inclusion of time windows in the ILP could also be used to enhance the 

similarity feature, offering clients a consistent visit time as well as a 

consistent carer. 

6.1.3 CMTSP 

The coloured multiple travelling salesperson problem (CMTSP) is a problem 

in which some cities must be visited by a particular salesperson or subgroup 

of salespeople. In one example (Li et al. 2015), two types of city groups are 

defined, i.e., each group of exclusive cities of a single colour for a salesman 

to visit and a group of shared cities of multiple colours allowing all salesmen 

to visit. 

This logic of a CMTSP could be applied to our problem in order to restrict 

the assigning of certain clients, based on their needs and preferences, to carers 

who fall into a certain gender, lifting ability, or medical skill category. 

6.1.4 Traffic 

Although our program goes further than any examples we have seen by using 

real travel times to optimise overall travel time, it does not account for 

augmented travel times due to poor traffic. Although some traffic problems 

are unpredictable, certain times on certain days of the week are known to have 

increased travel times. If implementing a VRPTW, the ILP could be set up to 

augment expected travel times if a majority of a journey is to take place within 

a time window known to be associated with poor traffic conditions. 

6.1.5 Varied Days 

Although the scope of this project has been limited to the assigning of jobs to 

be carried out in one working day, an ideal solution would extend this to a 

rota spanning several days, in which workload is balanced for fairness across 

the days rather than treating each day individually for fairness. This could 

allow for variation in the length of time worked each day. 

Given the complexity of balancing workloads over just one day in our existing 

problem, it is to be expected that a new approach would be needed to 

realistically implement multi-day rota generation with fairness. Indeed, when 

using an ILP formulation to solve a multi-day VRP, which has in common 

with ours its three-index formulation and three objective functions, Ribeiro & 

Lourenço (2001) concluded that in order to improve running times they would 

need to use a heuristic, iterated local search approach in their further work. 
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6.1.6 Different working hours 

Although we have assumed a scenario in which carers desire an equal amount 

of paid work, there are certainly situations in which carers working for the 

same home-help service would have a variety of lengths of working day. 

Although it would be straightforward to implement a carer-specific upper 

limit to the amount of time allowed for a day’s route, the current fairness 

objective function does not account for such scenarios. 

Instead of minimising the total absolute difference between each route time 

and the mean route time, the difference between each route time as a 

percentage of a carer’s working hours and the mean of each route time as a 

percentage of respective working hours could instead be minimised. In other 

words, instead of seeking to give carers similar length working days, fairness 

could be reinterpreted as assigning working hours which are equally as close 

(proportionately or otherwise) to each worker’s desired load. 

6.1.7 Proving Proportionality 

As we saw in section 2.5, a division is proportionally fair if any player gets at 

least 1/n, i.e., ui(xi) ≥ 1/n, ∀iאN. That is, if a carer’s utility for their assigned 

jobs is at least an nth of the utility they would have if assigned all available 

jobs. 

It was beyond the scope of this project to create an algorithm to find the exact 

utility function for a carer that would associate a real number to any share of 

any division of job assignments between N carers. Doing this in future would 

create the means to prove whether or not our solution creates assignments for 

which every carer receives a share for which their utility is at least an nth of 

their utility in the case where they are assigned all jobs. 

6.1.8 Open Path MSTP 

Given our motivation of the benefits of reduced travel for all involved, and 

our motivation of fairness, we have modelled our problem as a closed path, 

fixed destination VRP in which carers start and end the day at their own 

homes. But it is not actually the case that they must be paid for the whole 

route. Of home-help care work in the UK, Pennycook (2013) states, 

The law on travel time is relatively clear: unless genuinely self-

employed, a worker travelling for the purposes of duties carried 

out in the course of his or her work will be required to be paid at 

least the minimum wage, excluding the first and last journeys of 

the day and travel to and from breaks. 

It would therefore be legitimate to reformulate our solution as an open path 

MTSP, in which we find the n shortest routes between clients to be assigned 

to n carers, with or without consideration given to distances between each 

carer’s home location and the start or end of their route. 

This amount of time spent travelling by a carer in the unpaid first and last 

journeys of the day would impact on a sense of fairness, although it could be 
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argued that this is not the responsibility of the employer as long as the travel 

is still within the agreed geographical area covered by the business. 

6.1.9 Front-End Application 

For use in a commercial setting, a user interface would need to be developed 

for the program, including an easy method for importing both carer-client data 

(including addresses, needs and preferences) and existing rotas. Alternatively, 

an adapted version of our algorithm could be incorporated into an existing 

offering, to add the novel functionalities of route optimisation, fairness and 

similarity to currently available software already being used to generate rotas 

for home-help services. 

6.2 ALTERNATIVE APPROACHES 
In the literature encountered in this report there are several examples of VRPs 

and MTSPs which have been formulated as ILPs or MIPs before being 

adapted. When their MIP approach was too slow for large companies, Luo et 

al. (2021) formulated an ant colony optimisation (ACO) algorithm. And 

Akjiratikarl et al. (2007), discussing the NP-hardness of their problem, state, 

The number of possible solutions for VRPTW grows exponentially 

with the problem size. Using an exact algorithm will lead to an 

excessive computational requirement. As an alternative, heuristic 

techniques that are fast and yield good quality solutions should 

be applied. PSO [particle swarm optimisation] is such a technique 

that has many desirable characteristics as stated above and it 

performs well for scheduling when compared to various other 

heuristics. This indicates that the PSO-based algorithm is 

potentially suitable to efficiently solve the home care worker 

scheduling problem.  

A significant issue encountered in testing our algorithm has been the 

exponential growth in the complexity of the problem as the sample size 

increases. We would therefore look to adapt our algorithm using 

combinatorial optimisation approaches other than ILPs, choosing from 

among existing meta-heuristics such as those mentioned above, which have 

been used to approximate optimal solutions to similar problems. 

7 CONCLUSIONS 

An in-depth study of the problem has been undertaken, and a novel solution 

produced which achieves the aims set out at the start of this project. The 

central goal of rota generation with route optimisation has proven effective, 

and we have added to our algorithm successful objective functions to make 

this route optimisation subject to fairness and optional carer-client familiarity. 

The three objective functions in our final ILP join together to offer 

considerable value to home-help services. To be a viable solution, the 
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algorithm would need to be adapted into an alternative approach which could 

solve runtime issues, and occasional inefficiencies arising from balancing the 

objectives of travel time and fairness optimisation would need to be fixed. 

While real life circumstances may require refinements to the program, it has 

already been shown that the algorithm could improve both efficiency and 

fairness in the rotas of home-help services, and that it is possible to package 

this solution as one which can take a company’s existing rota as an input, in 

order to ease the transition to a more efficient rota. 

Although business, employee and client needs can often appear to be at odds 

with one another, we have found a way to satisfactorily balance the needs of 

all three in an algorithm which has the potential to create a positive outcome 

for all involved. 

8 REFLECTION ON LEARNING 

This project was my first introduction to more in-depth academic research 

and I enjoyed making extensive use of Google Scholar, knowing that my 

ability to learn all that I needed for this project had been built through the 

course of my degree. 

Although I made use of reference material throughout the project, going 

through my full background research thoroughly after having developed my 

solutions inspired some last-minute improvements to the project. This 

reminded me of the learning process that unfolds in the implementation stage, 

which sheds light on the literature in a way that simply reading it does not. 

I found my initial plan to be an extremely useful document, and I benefitted 

greatly from the weekly supervision meetings in which I was able to present 

my work and seek guidance. Making use of both the plan and these meetings 

helped me to stay on track with my project and to keep my aims at the 

forefront of my mind. When there were unpredictable changes such as when 

I underestimated time for literature review and overestimated time for the 

initial algorithm formulation, I was especially grateful for the way that laying 

out the project stages helped with time management and motivation. When I 

lost the majority of a seven week period to illness (which also impacted time 

for testing and access to a more powerful computer), the progress I had 

already made in creating my solution thanks to good project planning meant 

that I was able to adapt my plan and still complete the project with the help 

of a two week extension. Although I had informally tested the similarity 

feature and knew it to be effective, I was disappointed not to be able to show 

off more of my work due to the limited resources I had available for testing 

already being used to create a full set of results to test the more nuanced 

fairness objective. 
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9 TABLE OF ABBREVIATIONS 

API  Application Programming Interface 

CMTSP Coloured Multiple Travelling Salesperson Problem 

ILP  Integer Linear Program 

MDMTSP Multi-Depot Multiple Travelling Salesperson Problem 

MIP  Mixed-Integer Program 

MTSP  Multiple Travelling Salesperson Problem 

NMW  National Minimum Wage 

SEC  Subtour Elimination Constraint 

TSP  Travelling Salesperson Problem 

VRP  Vehicle Routing Problem 

VRPTW Vehicle Routing Problem with Time Windows 
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10 APPENDIX 

 

Figure 25: Program output for one carer visiting six clients 
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Figure 26: One carer six client problem input for online TSP solver 
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