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Abstract

Plants come with complicated structures and abundant details . 3D virtual plant requires combination of
plant morphology , computer science , and rendering techniques.

This report covers an implementation of plants modelling algorithm known as L-system. The project
aims to create an application that visualize 3D realistic plants. It requires to abstract the morphological
structure and to analyze the expanding and branching progress of real plants, as well as a rendering
process that draws the plants on the screen. Furthermore, to generate plants with random structure
which makes it more natural. The report will also discuss the success and major problems of the process

of implementation, as well as failures of results.
Results will be analyzed and discussed by adjusting parameters that change the shape of 3D virtual

plants. Ideas to expand the solution will be put forward, as well as the reflection on the learning during

implementation, including the positives and negatives.

PAGE 1



Acknowledgements
| would like to thank my supervisor, Professor Yukun Lai, for his help and invaluable suggestions and

criticism at every stage of this project.

PAGE 2



Table of Contents

Generating and visualising realistic plants ...............ceeeueeeeueeeeenieeeeiereeniereenereensesrenieeraseernnsensnns 0
/1Y o X1 1 g L of OO 1
VYol 4 Tod0T] [=Jo [o T=] 1 1 T=] o1 X3RN 2
TADIE Of CONLENLS ....caeeeeeeeeeeiiiieiiiiiiiiiiiiiesteiniiisssensiessssnssssssssnssssssssssssssssnssssssssssssssssnsssssssnnes 3
TADIC Of fIQUIES .....ceeeeeeeeiieeeiiiiieiiiiiieiiiiiesteensiisssnnsisssssnsssssssssssssssssnsssssssnssssssssssssssssnnsssssssnnns 5
TADIE Of COAC fIlUS.........ccuueunneeeeeeeiiiieeiciiiteiicissiiiiiessenieissseesissssensssssssnssssssssssssssssnsssssssnnes 7
O 1o To 17 Lo 1 Lo N 7
2.BACKGIOUN ..........ceeneeeeeneeeeeieeeenieeeeseetnnsereanseensseseesssensssssnssessassssssssssnsssssnssnsnsssssnsssssasessnnsnsen 8
2.1 Plants classification by stem type and branching description ........cccccovveiiiiiieniiiiiieniinneeniinneeeen. 8
2.2 A plant branching pattern: Sympodial branching ..........ceueeriiieiiiiiirccrreccrrerccrreeeer e e 10
2.2.1 Related concepts of sympodial branChing..........ccceieiiiiieeiii e e aaee e 10

2.3 Plants modelling based 0N L-SYStEM.......ccccceiieiiiiniiieeiiieniieecerenierenereoereasesensessnssesesssssnsessnsens 12
2.3. 1 PrinCiple Of L-SYSTRM ..ciiiiiiiie ittt ettt ettt ettt e et e st e e sat e e sab e e bt e e be e e bt e e saneebeeebeesaneenn 12

2.3.2  Explanation by L- system turtle in 2D Plane ......cooceeeieeiiiiniieieeee e e 12
2.3.2  Explanation by L- system turtle in 3D SPACE ....cccvcueeeiciieeeiie e cteee ettt e eee e e e e s e e saae e e snaeeeeas 14
2 T T o1 10 o U=l d o Toll R V] =T o OO PPPPRRPPP 16

2.4 Brief introduction of Unreal ENGINE 4 .........cceeeiiiiieieiiiieierieinnceesenanessensseseensssssesnsssssesnnssssenns 16

P NV - o B PP PPPPPPPPPPPPPIRE 16
Sy 2 Yo i o] ol - 11U PPUR P 17

2.4.2 ACEOI'S COMPONENT ..oiiiuiiieeeitiieeeeteeeeetteeestteeeeeteeeeeatareeeestteeeeasbseeeassaseesabssseanssseeassasessnsseseanstasesassseesassanaans 18

B N =) U] Y P PPPPPPPPPPPRt 19
N G- o o Tl 4 o T [T RURR PR 19
3.5pecification ANA DESiQN ..........c...eeeeueeeeeneeeeniereenereeeserennsesrasesssssessnssessasssssssssssssessnsssssnsessnns 19
3.1 Parametric L-system construction of sympodial tree component ..........cccccerririiiiinniicrieeniennes 19
3.11 Construction of SYMPOGIAl TrEE ......cciceiie e e e et e e st e e e s eae e e snaeeeeesnnaeeean 19

3.2 L-system turtle COMPONENt ..ottt e rrneerenseseasessasssenssssnnssssnsssensasannans 21
3.2.1 Basic information to describe the status of L-system turtle ........ccccoooiiiiieiiicciie e, 21

I 2 You i [o] o [ o) ll BV =T TR AU | o 4 [ PSRRI 22

3.3 MeSsh COMPONENT.......ciiieiiiircccrrrce et eererassessenassessennsssssennsssssenssssseensssssssnsssssennsssssenns 23
T8 700 A I =Y U PPN 23

T8 707 2 =Y o ol o TSP 24
TR T T T PSPPI 24

3.4 Working mechanism of the System............ciiieiiiiiiiiiiicccrriceerrreeceeeene e s eeeneeeseeansseeesnnsansenns 24
4. IMPICMENTATION. ....ce.eeeeeneeeeerereeeereurereeesereuerenstereasererssesesssesenssessssssenssessnssssnssesenssessnssssnsans 25
4.1 UML Class diagram ........cceeeeeeiiremeniiriennneerrenessesrennssessenssssseensssssesnsssssssnsssssssnssssssnnsssssennsssssennnes 26

PAGE 3



L2907 0 I =Y =T ofo 5 0 o Lo 4 =T o1 26

4.2.1 Generate random NUMDETS ......ccccciii e ciee et e et e e srtee e e e et e e e estaeeesabeeeasstaeesassseeesssseeeasseeseeessesesnssees 26
4.2.2 GENEIATE SENTENCE...utiiiiiiiiiiiieieitteeteteteeeeeteeteteeetetetet ettt et ttttttetetetetetetetetetteetereeeeeeeerrerererteeetteeerereeerereren 27

4.3 L-system turtle COmMPONeNnt .......cccviiiiiiiiiiiiiiiiiiiiieeniesierressisrsenssistsesssssssessssssssssssssssnsss 28
4.3.1 Overall working proCess: IEEIatioN .......ccc.uiiiiiiiiieriie ettt et sbee e b e s b eesanes 28
4.3.2 ROtation Of L-SYSTEM TUIMIE c....viiiiiiee et e e e st e e s sbae e s saba e e e sabe e e e ssteessaneeas 32
e e B o] VY= o F U PTRR 33
A.3.4 PUSN QN0 POP ettt ettt st e s e et e bt e bt e s bt e bt e e bt e s bt e eat e s bt sa bt e et e e e at e e s aneebbeenareenees 36
e B R D 1] 1<) I YIS PRt 36

L 0 AV F=T o I oo T T e Yo T o T=T o | 37
o Y or- L= N0 i o o V=T 1 =T o SRS 37

L BT UL =T T} =Y o - o - 39
4.5.1 Overall design Of USEr iNtEIfACE ......coiuiiiiiiiieeee et rb e st sb e b e neesars 39
4.5.2 Implementation Of USEr iINTEITACE ......cccuii i et e e e e e e e sabe e e eeatae e e e eaaeas 39

4.6 GAME MOUE......cciiueiiiiiniiiiireiieitraieeteresiestenassestenssiessenssssssensssssssnssssssansssssssnssssssnsssssssnssssssanesss 41
4.7 Important problems during implementation ..........ccccceeiiiriiiiiiieiccerre e reee e e e enanes 42
4.7.1 Rough and bumpy surface of mesh COMPONENT......cociiiiiiiiiiii e 42
4.7.2 Performance iMPrOVEMENT.......cccciiiiicciee e cieeeecie e e eette e e srte e e eestteeeesataeeesabaeeeastaeesassaeeesasaaeeasreseeeessaeesnssees 43
5.Results and EVAIUGLION.............ccceeeueiiriienniiiiiienniiisisnnsiisissniisssssesisssmssssssssssnsssssssssssssssssnsssns 45
L% U =T o 1Y =T o - ol SRS 45
5.1 Effect of @aCh Parameter.... ... . veciieeiiiiiiiircireerrtcereeereanereenerensessassesensersassssnsessassessnssssnsessnnens 46
5.2 Different types Of trEES .....cciieeuiiiieiiciieicee ittt ceereraneereraseseennssessennssessennsseseenssssseennssssssnnsnnsenns 49
5.3 Observation from different Perspective....ccccceeiieeiiieeiiieeniitererreierennereeereeseernseesnseeresssensersnsens 53
6. FULUI® WOKK ......eeeeeeeneeeeieiieiiiiiiiseiiseisieseesissnesessnsssssassssesssssnsssssesssssssessnsssssnssssnsssssnsssnne 54
A 00T Yol 71 Lo T KOS 54
8. Reflection ON LeAINiNg ............cc..eeeeuceeeenieeeniereesirieesissessissasissessessessessessssssssssnssessasssssassssnns 55
9. RESIEICES ......ceeuueeeeerereueeeeeneerruserensserensessnssersasesssssessnssssensssssssessnssessnsssssssessnssessnssssnssessnne 56

PAGE 4



Table of figures

Figure 1 The picture of @ WOOdY Plant......oueiiiiiiiiee et e s sare e e s snree e e e eas 9
Figure 2 An axial tree. (Prusinkiewicz P and Lindenmayer A, 1990) ........ccccieiiiiiiiieeeiieeeecciee e ecieee e ecvreee e 9
Figure 3 Sympodial branChing ... e e s e e st rre e e s saneee s 10
= VN S T Ta Tl o gV oY o [T S 10
=V 2 T Ta ol o 1T a Y- [ o T= [ TSP 11
Figure 6 NUMDBErs of BranChing .......oocuiiiiiiiie et et e et e e s e ab e e e s e bt e e aeeeeanaees 11
Figure 7 Interpretation of the control string. (Prusinkiewicz P and Lindenmayer A, 1990) ........c.cccccuueee. 13
Figure 8 Demonstration of L-SyStem tUMIE......cocuuiiiiiiee e 14
Figure 9 Controlling the turtle in 3D space. (Prusinkiewicz P and Lindenmayer A, 1990)..........ccccceeeuunenn. 15
Figure 10 Amap in UNreal ENGINE 4......ooiiieiieeeiee ettt e ssvee e e sttt e e s sbae e s s b ee e s s sbae e s snbaeeeesnbeeesenasareeas 17
=V Y B R o Tor=Yu ToT 0 - o o 0] - 1 f (o] o VNSRS 17
Figure 12 Location and rotation of an 0bJeCt ........cooviiiii i 17
Figure 13 The world coordinate(left) and local coordinate system(right).........ccoceveeeiiiiieiiieeecciieeeecieee, 18
Figure 14 A static MESh @CTOr. .o i e e e e e e st e e e e s bt e e e s s saraeeeeanaeees 18
Figure 15 Branches with different materials ..........ooouiiiiiiiie e e 19
Figure 16 Demonstration of dir@Ction VECTOIS.......ciiiiiiiiiiiie et aree s 22
Figure 17 Demonstration of a trunk and its information...........cccueeeeeii e 22
FIUIE 18 WOIKING PrOCESS ...veiiiiiiiieciiiie ettt ee ettt e ettt e e ettt e e e ette e e e etaeeeeeataeeeessaeeeeassaeesansseeesesansaeeesnnsanens 23
Figure 19 Tree trunk COMPONENT .....ccccuiiie it eecitee ettt et e et e e e st e e e e saae e e ssaaaeeesstaeeesssaeeesssseeesessssees 24
Figure 20 BranCh COMPONENT.........oiiiiiiiiieeiiee ettt et eecttte e e e e ettt e e ee bt e e e e e taeeeesasaeeeesseeesansseeeeannnsaeeesnnsaeeas 24
Figure 21 Leaf COMPONENT .....oii et e e e e e e et e e e saaa e e e sasaeeessnsaeeaeeesssaeessnssees 24
Figure 22 Working MEChANISM ... ....uuiiiiiee et e e e e s et e e e e e e e bate e e e aeseesanssanrraeeeaeens 25
FIBUIE 23 2-8ENEIatioN Tr@ ..uiiiiiiiiiiiiiiiiiiiiieieieeeee ettt ettt et ettt e e e e e ee e e e et e e e e e e et eeeeeseaesaeeeeseesrsrssssssesaranns 29
Figure 24 Demonstration of factors distribUtioN ...........cooiciiiii i e 29
Figure 25 The actual FENAEr PrOCESS. .....uiiiiciiieeeiiieeeectee e et e e eee e e s re e e e s tre e s e sabaeeessbaeeesssaeeeesabeeesenaseseeas 30
Figure 26 Demonstration Of MOVING........coouiiiiiiiiiee ettt e et e e te e e e e atee e e e aae e e e eabaeeeeeaneseeas 33
Figure 27 Demonstration of static Mesh actors........ccc.uiiiiiiii i 34
Figure 28 Confirming location (1d€al deSIZN) ........ueieiiiiiieciiie ettt ettt e et e e et e e e e eaaaeaean 34
Figure 29 Actual confirmation of next [0CatioN ........cccuuiii i e 35
Figure 30 A branch, trunk, and leaf (Original).........ccoccuiiiiciiie i aaee e 38

PAGE 5



Figure 31 Design Of USEr iNTEITACE ...cocuiiie et e e s rae e e e ae e e e enreeas 39

Figure 32 A Widget DIUEPIINT Class ...ciiuiiiiiiiiiieeiee e e s e e s sbee e e e sab e e e e enareeas 40
Figure 33 Previous Mesh of BranCh ...t ae e e aree s 42
= U R ¥ B Y AU o1 RSR 42
=V LR 2T =Y o Tol o S 43
Figure 36 Cropping process 0N 3DS IMAX 2010....ccii ittt ettt ettt e e e e e sairree e e e e s s e sinneeeeeeseas 43
Figure 37 Frame rate testing before improving..........u e 44
Figure 38 Default lighting SETting iN @ MapP .....cciciiii et e e e e e aree e e e nreeeas 44
Figure 39 Frame rate test after iIMProVING. ... ..o rae e e s aaeee s 45
= U N Ol O Y ] ) (<Y =Vl <D S 45
Figure 41 Same type of tree with different generation (7,9).....cccceceeeciiecieeciee e 46
Figure 42 Same type of tree with different triple branching probability (0.4,0.6) ........cccevcvveeecivveeeinnnnnn. 47
Figure 43 Same type of tree with different initial length (300,400) ........cccceeeiiieiieerieecee e e 47
Figure 44 Same type of tree with different initial width (70,80) ......ccccvviiiiiiiiiiiiieeeee e, 48
Figure 45 Same type of tree with different rotation angles around z-axis (-45,45,105) (-30,30,90) ......... 48
Figure 46 Same type of tree with different rotation angles around x-axis (-30,35, -40) (-20,30, -35)........ 49
= Uy A g Yo oY [ - | I A Y Y RSP 49
FIgure 48 SYMPOTIAl TrEE 2 ..ottt ettt et e e e et e e et e e e e tae e e e saaaeeeesteeesanstaee e sansaeeesnsaeeas 50
= VR e Y g Yo ToTe [T | N A Y. TR 51
Figure 50 SYMPOGIAl TrEE 4 ..ottt e ettt e s e e et e e e s ata e e e s aabeeesansbaee e sansaeeeensaeeas 51
= U g Y o oY [T | N A YT TSRS 52
Figure 52 Observe the tree from the right..........cuooi i e 53
Figure 53 Observe the tree from the DOttOM .........oooiiiiii e et 53
Figure 54 Observe the tree from the tOP.......iii i aaee e 53

PAGE 6



Table of code fields

Code 1 Generate probability for different branching(SympodialTree_3.cpp) ...cccceeeeeecereieeenieecieeecieens 27
Code 2 Generate random numbers sequence(SympodialTree.CPP) wvveevvrrreririeeeiiiiee e ecree e errre e e e 27
Code 3 Rewrite character(SympodialTrEE.CPP) .uveeirieiiireiieeeieeeieeerte e ste e eteeertereesteeeteeessreesaseesseeesnneens 28
Code 4 Double-branching (LsystemTuUrtl@ACTOr.CPP).cecccrieeiiieei e e 31
Code 5 Angle distribution (LsystemTUItIEACTOr.CPP) ueerrriiieeiiie e ettt e cte e ereeesee e sre e e errreesare e sreeesneeesnreens 32
Code 6 Angle declaration of sympodial tree (SympodialTree_3.Cpp) ..cccvveereriieeeiiiiee e 32
Code 7 Rotation (LsyStemMTUIIEACTON.CPP) .cccrrreeeiiiieeecitiee ettt e e eette e e ectee e e e e ebteeeeebaeeeseataeeesasteeeesseneesansens 33
Code 8 Spawning static mesh actors (LsystemTUrtlEACtOr.CPP)...coorrereerireeeeiireeeeeetreeeeeetreeeeeteeeeeeeetreeeeeanes 35
Code 9 Store references (LsystemMTUItIEACIOI.CPP) . ueeeiirireeeiieeeeeiee et et eree e eere e e e e are e e e ebree e eenres 37
Code 10 Iterate arrays (LSystemMTUITIEACTOI.CPP) .cciurreeirrreiieeeieeeiteeectteesteeesteeestee e e eteeestaeessreesseeeseeesnseens 37
Code 11 First scaling adjustment of branch (StaticTreeComponent.CPP) ...ccccererecieeeeeiieeeeeieeeeeciee e 38
Code 12 First scaling adjustment of trunk (TreeTrunkComponent.CPP) ....ceevveerireerireeeiieesree e e 38
Code 13 Method to adjust scale (StaticTreeCompPONENT.CPP) wuveerrrrreeeiireeeeirieeeeeieeeeecteeeeeireee e e e eeareeeeenees 38
Code 14 Method to adjust scale (TreeTrunkCoOmMPONENT.CPP) vvrerrrererereiirerreesireeeiteeesreesreesrreaeesreesseeens 39
Code 15 An Example of connecting component (MyUserWidget.Cpp) ..cocvveiecieeeiriiieeeecieeeeecrieeeeeieee e 40
Code 16 Declaration of widget object (IPGameModeBase.CPP) ...vveevererrreiiieeciieeireeecteeeteeerteeeseveeeneeens 40
Code 17 Example of data transmit and generating a tree (MyUserWidget.cpp) ...ccccceeevereeeiieeeecvieeeenen, 41
Code 18 Create and assign L-system turtle object (IPGameModeBase.CPpP) ....eeeeereeeeecrireereireeeeeeieeeeenees 41
Code 19 BeginPlay() in Game mode (IPGameMOdEBaSE.CPP...uuieireerirereirreerieeeteeerreeestreesreeseseeesreesreeens 41
1.Introduction

With the huge development of 3D technology, the topological structure and geometrical morphology of
plants has become a key researching point within related field. By using computer to generate realistic
plants, time expenses can be saved from constructing 3D plants model manually. In terms of realness of
plants, computer program can generate random shape of plants which is an advantage compared to

manual construction.
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The project aims to generate and visualize realistic virtual plants on computer. However, we will need to
solve 2 aspects of problems. First, to learn and describe the structure of plants and made it into a digital

term. Second, render the plants on computer based on the digital structure of plants.

Topological structure is a significant symbol for plants, which contains the structure and morphology of
plant organs. There are several methods to simulate structure of plants, in this project, we will focus on
L-system. L-system is a parallel rewriting system producing control string. Control string starts with
simple symbol string called “axiom” string and by expanding each symbol into larger string of symbols, a
complex control string can be used to describe the structure of plants. In this project, L-system will be

implemented by C++.

To render the digital structure of plants, a 3D graphics tool called Unreal Engine 4 will be used in this
project. Unreal Engine 4 is a game engine developed by Epic Games. It has been used in variety of
genres of 3D games and has seen adoption by other industries like film and television industry. In
comparison with other render method like using graphics API like OpenGL, Unreal Engine 4 can be

efficient in generating more realistic result, in terms of lighting, model importing and texture attaching.

This report will cover the implementation of the L-system algorithm from beginning to end. It starts with
introducing the mechanism of L-system as well as the Unreal Engine 4. Following with the
implementation and result of L-system. Finally, the report will discuss the failure of the projects

compared to the initial planning and the potential future work.

2.Background

2.1 Plants classification by stem type and branching description

Plant is classified as herbaceous plant and woody plant by stem type. Herbaceous plants are plants that,
by definition, have non-woody stems. A woody plant is a plant that produces wood as its structural
tissue and thus has a hard stem. Woody plants are usually either trees, shrubs, or lianas (Wikipedia,
n.d.)[1]. Considering the time limit of this project, we will only research and discuss tree, a type of
woody plant, in this project.
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Figure 1 The picture of a woody plant

There are three forms of branching. The first one is between a trunk and branches, the second one is
between branches and branches, and the last one is between branches and leaves. Considering the
features of L-system, in this project, we will only focus on the ones which relate to a trunk and branches.
In nature, leaves have more complex branching strategy that they tend to be soft and drooping.
Therefore, we will not focus on branching form between branches and leaves.

The way we use to describe the branching is called “axial tree”[2]. A demonstration of an axial tree and
its definition are as follows:

Tree top __)3 Zero order (main) axis

“*

.

First order
axis

OTerminal node
®Branching point
---9 Apex
—pInternode

Branch
base

Straight
segment

N

Second order
branch

Lateral
segment

¢——Tree root

Figure 2 An axial tree. (Prusinkiewicz P and Lindenmayer A, 1990)

As shown in the figure, the trunk starts at tree root is called zero order axis, or main axis. Grows from
the trunk, the next axis is called first order axis, and so on. The shape of each axis is the same, but child
axis is smaller. Overall, the shape of each axis is basically same as the shape of the whole tree, which is
an important feature of L-system.
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2.2 A plant branching pattern: Sympodial branching

Sympodial branching is one of the plant branching patterns. It means that after a period time of
growing, the main branch will stop growing, or even die and forming lateral branch to grow. This patten
will also be applied to the new branches repeatedly. In this project, sympodial branching will be
implemented.

| %

Figure 3 Sympodial branching

2.2.1 Related concepts of sympodial branching

Three concepts that make influences are given to explain sympodial branching.
(1) Branching order

The axis originating at the root of the entire plant has order zero. A branch originating as a lateral
segment of an n-order parent branch has order n+1[2]. As shown in the figure 6, by its definition, the

tree has at most 2 orders of branching.
Second order branch

Zero order branch——é First order branch

(main axis)

Figure 4 Branching order

(2) Branching angle
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Branching angle is another important factor of trees’ branching characteristic. Branching angle is the
angle between a branch and its parent branch. It makes a significant influence on the overall structure of
a tree. Multiple branching angles will also appear on one type of tree.

Branching angle

Child branch

Parent branch

Figure 5 Branching angle
(3) Numbers of branching

Numbers of branching could be different on different order of branch. For example, there could be 2
child branches on the zero-order branch, 4 child branches on the first order branch and 6 child branches
on the second order branch. In nature, the numbers of child branching are random. However, in this
project, the numbers of branching have been manually set as 2 or 3, which means that there could be 2
child branches or 3 child branches on a parent branch.

2 child branches

3 child branches

2 child branches

Figure 6 Numbers of branching
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2.3 Plants modelling based on L-system

2.3.1 Principle of L-system

L-System is a unique type of iteration process. Its core concept is rewriting. L-system uses character
from alphabet or strings that formed by character to generate the initial form of control string, which is
Axiom. After that, it rewrites the string by replacing every character in Axiom with rewriting rules
repeatedly. Finally, the result is the ultimate control string that is needed.

L-system are formalized as a tuple as followed:
G=(V,w,P)

Within the tuple, V is the alphabet of system, or all potential symbols in the string. w is the initial string
of system, which is the Axiom. P is a finite set of rewriting rules.

For example, a specific L-system can be as follows:
V ={a, b}
w =ab
P ={a—- b,b - ab}

There are 2 rewriting rules in P, if we replace a with b, replace b with ab, then the iteration process can
be described as:

ab - bab - abbab - bababbab — abbabbababbab - --- ---

When we assign actual meaning to each character and make a geometric explanation to the ultimate
control string, we can get the corresponding images.

2.3.2 Explanation by L- system turtle in 2D plane

L-system turtle is one of the geometric interpretation ways of the string that L-system generates. L-
system turtle is put forward by Prusinkiewicz[3] and Hana[4].

(1) Traditional L-system turtle

The state of L-system turtle can be defined by a triad (x, y, o). Within the triad, (x, y) represents the
Cartesian coordinates of turtle, o represents the heading direction of turtle. Now we define a L-system
as following:

Alphabet V = {F, +, -}
Axiomw = F

Set of rewriting rulesP = {F - FFF — FF —F —F + F + FF — F — FFF}
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Given the length of each move s and the angle increment is §. The actions that turtle will perform for
each character in alphabet are as following:

F : The turtle moves forward a step of length s. The new coordinate of turtle is (x’,y'). Suppose the
direction vector of turtle’s forward is (cos0, sin@), then x’ = x + s cosf, y' =y + s sin6. The turtle
draws a line between (x, y) and (x',y").

+: Turn left by 90 degree, the next status of turtle is (x, y,  + 90).
—: Turn right by 90 degree, the next status of turtle is (x, y, o — 90).

In this case, if the iteration time is 1, the control string that is generated by L-system is FFF — FF — F —
F + F + FF — F — FFF. Set initial angle ¢ = 90° and the movement unit s equals to the length of grid.
Then we can get an explanation graph of this control string as follow:

Start

FFF-FF-F-F+F+FF-F-FFF

Figure 7 Interpretation of the control string. (Prusinkiewicz P and Lindenmayer A, 1990)

(2) L-system turtle with bracket structure

We will use a pair of brackets introduced by Lindenmayer to deal with tree’s branching structure.
Suppose a L-system as follows:

Alphabet V = {F,+,—, [[}
Axiomw = F
Set of rewriting rules P = {F - F[+F][—F]}

Given the length of each move s and the angle increment is §. The actions that turtle will perform for
each character in alphabet are as following:
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F : The turtle moves forward a step of length s. The new coordinate of turtle is (x’,y"). Suppose the
direction vector of turtle’s forward is (cos0, sin@), then x’ = x + s cosf, y' =y + s sin6. The turtle
draws a line between (x, y) and (x',y").

+: Turn left by 30 degree, the next status of turtle is (x, y, d + 30).

—: Turn right by 30 degree, the next status of turtle is (x,y,  — 30).

[ : Push turtle’s status into a stack. The information includes turtle’s location, and degree of rotation.
]: Pop turtle’s information out of a stack as turtle’s status.

In this case, if the iteration time is 1, the control string that is generated by L-system is F[+F][—F]. Set
initial angle 0 = 90° and the movement unit equals to the length of grid. Then the process of drawing
will be as follows:

(-08.3) 5 o
2 col);q0° Z ) 390’ 2w nd o) +490°
— — —
astan Push, Rotate me Fa F Puesh
srng  F FC FL+F FLF]
Stack  Nall o :90° o 390° o :40° Nl
003&‘
0.1 :90° 0:1) 3 w ‘;o. Vs Qg"
— — —
Rotute, broa PoP
sine FL4F] [ FI4F] [- FL4F] [-F FI4F1 [-F]
Stack o 390" o190 0:90° A/UM/

Figure 8 Demonstration of L-system turtle

As we can see, red dot represents the position of the turtle. The information of status includes the
coordinate and the degree of rotation of the turtle.

2.3.2 Explanation by L- system turtle in 3D space

According to the theory of Abelson and diSessa[5], the explanation by L-system turtle can be extended

to 3D space. The current orientation of turtle can be represented by three vectors, H,L,U, indicating
the turtle’s heading, the direction to the left, and the direction up[2].
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Figure 9 Controlling the turtle in 3D space. (Prusinkiewicz P and Lindenmayer A, 1990)

The orientation of the turtle can be represented by following equation:
(700 = [d,L,0]R,

Where R is a 3 X 3 rotation matrix [6]. Specifically, rotation by each axis of direction should be
represented by 3 matrixes as follows:

[ coso sino 0]
Ry(0) =|—sinc cosa 0
0 0 1.

[cosc 0 —sino]
R(c)=| 0 1 0
lsinc 0 coso |

[1 0 0
Ry(o) =0 cosoc —sino
|0 sino coso |

The following characters control the actions of the turtle:
+ Turn left by angle o around U axis (Up direction), using rotation matrix Ry (o)

- Turn right by angle o around U axis (Up direction), using rotation matrix Ry (—o)

& Pitch down by angle ¢ around L axis (Left direction), using rotation matrix R; (o)

A Pitch up by angle ¢ around L axis (Left direction), using rotation matrix R; (—o)

\ Roll left by angle o around H axis (Heading direction), using rotation matrix Ry (o)

/ Roll right by angle ¢ around H axis (Heading direction), using rotation matrix Ry (—o)

What needs to be mentioned is that this section is meant to explain the principle of L-system. In this
project, the characters, and the rules we use will be based on the rules above. However, in Unreal
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Engine 4, left-handed coordinate is being used instead of right-handed. During implementation, the
action rules will be slightly different than these rules, which will be clarified in the following report.

2.3.3 Parametric L-system

This section only aims to introduce the basic concepts of the construction of sympodial tree by
parametric L-system. The actual implementation will be based on this theory and there are several
modifications being made because of some features of Unreal Engine 4, which will be explained in the
following report.

(1) Parametric L-system [7]

Based on L-system, parametric L-system introduces parametric symbols. A formalized parametric L-
system is an ordered tetrad as follows:

G=UY w/P)

Specifically, V is the alphabet of system, or all potential symbols in the string. w is the initial string of
system, which is the Axiom. P is a finite set of rewriting rules. ), is a set of parameters that control the
shape of tree. In parametric L-system, a rewriting rule is made of three parts: Prerequisite, condition,
and result.

prer : cond — res
An example of a parametric L-system is as follow:
Alphabet V = {A,B,C, D}
Parameters set ), ={t}
Axiom w = A(9)
Set of rewriting rules P = {A(t):t > 5 - B(t + 1)CD(t — 1)}

According to the rules of rewriting, the prerequisite is A(t), the conditionis t > 5, and the result is
B(t + 1)CD(t — 1). As we can see, when w = A(9), t=9 and t > 5. Therefore, the result of rewriting
string will be replaced by B(t + 1)CD(t — 1), which will be B(10)CD(9).

2.4 Brief introduction of Unreal Engine 4

2.4.1 Map

A map, or a scene in Unreal Engine 4 is a three-dimensional space where every object is placed. In a
map, a left-handed cartesian coordinate system is used as the world coordinate system. This coordinate
system is formed by X, y, z axis where the x axis indicates the front direction, the y axis indicates the
right direction, and the z axis indicates the up direction by default.
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Figure 10 A map in Unreal Engine 4
2.4.2 Actor class

Actor is the base class for an Object that can be placed or spawned in a level. Actors may contain a
collection of ActorComponents, which can be used to control how actors move, how they are rendered,
etc. An actor object contains two 3D coordinate to represent the location and the degree of rotation.

k4 0.000004° O [§ -0.000073°

Figure 11 Location and rotation

Figure 12 Location and rotation of an object

The location and rotation of an actor object can be represented by two types of coordinate systems.
One is the local coordinate system; the other is the world coordinate system. The world coordinate
system is used when we try to describe a location or rotation of an object relative to the map. The local
(or relative) coordinate system is used to describe a location or rotation relative to objects other than
the map (It can be the object itself).
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Figure 13 The world coordinate(left) and local coordinate system(right)

2.4.2 Actor’s component

Actors can be thought of, in one sense, as containers that hold special types of Objects called
Components. Different types of Components can be used to control how Actors move, how they are
rendered, etc. The other main function of Actors is the replication of properties and function calls across
the network during play [8].

Actors support having a hierarchy of SceneComponents. Each Actor also has a RootComponent property
that designates which Component acts as the root for the Actor. Actors themselves do not have
transforms, and thus do not have locations, rotations, or scales. Instead, they rely on the transforms of
their Components; more specifically, their root Component.

In this project, an important type of component called “Static mesh component” is used frequently. The
StaticMeshComponent is used to create an instance of a UStaticMesh. A Static Mesh is a piece of
geometry that consists of a static set of polygons and are the basic unit used to create world geometry
for levels in Unreal Engine 4. In addition to building levels, Static Meshes can be used for creating
movers such as doors or lifts, rigid body physics objects, foliage and terrain decorations, procedurally
created buildings, game objectives, and many more visual elements.

Below, a StaticMeshComponent representing a ceiling light mesh.

Figure 14 A static mesh actor
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2.4.3 Textures

Textures are image assets that are primarily used in Materials but can also be directly applied outside of
Materials, like when using an texture for a heads up display (HUD).

For Materials, textures are mapped to surfaces which the Material is applied to. Textures can be used
for a variety of calculations within a Material by being applied directly to an input (such as, Base Color),
used as a mask, or using the RGBA values for other calculations [9].

/ :. /
—— T
Figure 15 Branches with different materials

2.4.4 Game modes

While certain fundamentals, like the number of players required to play, or the method by which those
players join the game, are common to many types of games, limitless rule variations are possible
depending on the specific game you are developing. Regardless of what those rules are, Game Modes
are designed to define and implement them. There are currently two commonly used base classes for
Game Modes [10]. All Game Modes are subclasses of ‘AGameModeBase’, which contains considerable
base functionality that can be overridden.

In this project, a ‘AGameModeBase’ class is used to create and spawn any objects that relate to L-system
when program starts to run.

3.Specification and Design

In this section, we will focus on specifying the design of the system and how it works overall. There are
three components in this system, a sympodial tree component explained by parametric L-system, a L-
system turtle component that executes the render process, and finally, mesh component that provides
visual structure of trees.

3.1 Parametric L-system construction of sympodial tree component

3.11 Construction of sympodial tree

Trees with sympodial branching have unfolding tree crowns without distinct tree trunks, compared to
monopodial trees. As a sympodial tree grows, the width and length of branches become smaller. The
shape of the tree crown is mainly decided by the order of branches and the angle of branches. The
shape of a typical type of tree should be random to look natural.
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Based on the features that are mentioned above, we set the order of branches and the angle of
branches as parameter to control the iteration times and the direction of growing. Setting length of
branch as parameter to control the length of each order of branch as well as the width of branch.

To generate a random shape, there are 2 types of branching conditions. One is double branching, which
means that there will be 2 child branches on 1 parent branch. The other is triple branching, which means
3 child branches on 1 parent branch. Therefore, 2 rewriting rules are required.

A parametric L-system for sympodial trees is as follows:
G=U,Y wPmr)
AlphabetV = {B,F,[],!, @,+,/}
Parameters set ), = {L,w, Ly, Ly, L3, Ly, L5, Wy, W,, W3, W,, W5, B1, B2, B3, 61,05, 63}
Axiom w = B(Lg, Wp)
Probability m = {a,1 — a}
Set of rewriting rules

_ ) BL,w):L>=min — > LW)F(L)[+(B)/(01)B (Ly, W[+ (B2)/ (82) B Ly, W] [+(B3)/(85)B (L, W)]

I -a
B(L,w): L >= min = @W)F(L)[+(B1)/(61)B (La, W) ][+(B2)/(62)B(Ls, W5)]

There are 2 rewriting rules within our parametric L-system. To specify them, we use P; and P, to represent
them as follow:

Py: B(Lw): L >=min —— | (w)F(L)[+(B1)/(61)B (L, W)][+(B2)/ (62) B (La, W)][+(B5)/ (6) B (Ls, Wy)]

Pyr B(L,w): L >= min——— @W)F(L)[+(B1)/(O1)B(Ly, W[+ (B,)/(62) B (Ls, Ws)]

We will still use a pair of brackets introduced by Lindenmayer to deal with tree’s branching structure.

[ : Push turtle’s status into a stack. The information includes turtle’s location, direction vectors (up, right,
forward) and degree of rotation.

]: Pop turtle’s information out of a stack as turtle’s status.

As we can see in this L-system, B and C can be seen as vertexes. The rewriting rule P;means that there is
a percent chance for a vertex B being replaced by a branch and three new vertexes B, B, B, which
indicates triple branching. P, means that there is 1 — a percent for a vertex B being replaced by a
branch and two new vertexes B, B, which indicates double branching. L, stands for the initial length of
the tree trunk while W, represents the initial width of the tree trunk. L; and L represent the length of
branches, W; and W stand for the width of the branches. §; and 6; represent the angle of branches,
which control the direction of growing. Min gives out the threshold value of branches’ length. When a
branch is shorter than min, it cannot be generated.
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Next, we will introduce more detail information about branches’ length and width.
(1) Branch length

To gradually shorten the branches, shrink factors 7; are being introduced. As we can see in the L-system
demonstration, there are 5 different lengths being assigned to different branches. Ly = L * 1y L, =
L+*ry, Ly =L *13, Ly=L *1, Lg=L * r5, whileL;,i = 1,2,3 represent the lengths for triple
branching, L;,i = 4,5 represent the lengths for double branching.

(2) Branch width

To make tree more natural, we will set the factors of width based on the Leonardo’s Rule[11]. The rule
says that when a tree's trunk splits into two branches, the total cross section of those secondary
branches will equal the cross section of the trunk [12]. The formula of it is:

N
w? = E w?
1

where the w; is the width of the it child branch. Based on this rule, letw; = w * p¢,w, = w * q¢,
w3 =wx* (1—-pr—q),wy =w*p3, ws =w*q3,p+q <1,p,+q, = 1.Here,p;,q;,e
control the width of the branch. According to Leonardo’s Rule, let e = 0.5 so that the total cross
section of those secondary branches will equal the cross section of the parent branch. Therefore, we will
getw? = wi + w? + w? for the rewriting rule P;, w? = w2 + w2 for the rewriting rule P,.

3.2 L-system turtle component

In this section, we will introduce how L-system turtle component works in this project. Overall, L-system
turtle reads through the control string generated by tree component and perform different actions
based on different character.

3.2.1 Basic information to describe the status of L-system turtle

L-system turtle is derived from Actor. The status of L-system turtle can be described by three direction
vectors as well as the coordinates of location and rotation.

The direction vectors include up, right and front vectors. The reason for maintaining these vectors is that
L-system turtle always moves toward “up direction”. However, the “up direction” is not always vertical
to the ground level. It changes as the turtle rotates to make certain angles between different branches.
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Figure 16 Demonstration of direction vectors

The location and rotation of L-system turtle is represented by world coordinate. The location and
rotation of a tree component (like a trunk) are same as the ones of turtle.

Figure 17 Demonstration of a trunk and its information

3.2.2 Actions of L-system turtle

F: The turtle moves towards the direction of up vector with the length of a branch.
+: Rotate the turtle actor around up vector.
/: Rotate the turtle actor around front vector.

[: Push turtle’s status into a stack. The information includes turtle’s location, rotation, direction vectors
(up, right, forward).

]: Pop turtle’s information out of a stack as turtle’s status.
I: Prepare to render triple branches.
@: Prepare to render double branches.

(1) Working process of L-system turtle
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Figure 18 Working process

3.3 Mesh component

In this project, there are 3 types of mesh component: tree trunk, branch, and leaf. They will be used and
placed by L-system turtle component. In Unreal Engine 4, they are static mesh actors with static mesh
components.

3.3.1 Tree trunk

The tree trunk component is consisted of a tree trunk mesh and a sphere mesh. The sphere is located
on the top of the trunk to act as a joint. This joint makes branching point more natural and materials of
joint and trunk are consistent.

Sphere joint

Trunk
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Figure 19 Tree trunk component

3.3.2 Branch

The branch component is consisted of a branch mesh and a sphere mesh. The sphere is located on the
top of the branch to act as a joint. This joint makes branching point more natural and materials of joint
and trunk are consistent.

Sphere joint

Branch

Figure 20 Branch component

3.3.3 Leaf

The leaf component is only consisted of a leaf mesh.

Figure 21 Leaf component

3.4 Working mechanism of the system

In this system, three components work together to generate a realistic sympodial tree. First, the tree
component will generate a control string that represents tree’s structure. It also provides every
parameter that control the shape of the tree to the L-system turtle component. Second, the L-system
turtle component is spawned at a specific location in a map with a preset rotation. It reads every
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character in the control sentence and makes corresponding actions. L-system turtle is also responsible
to spawn and adjust mesh component in the map to form the tree.

Tree component
i generates control string and
provides parameters

Y

L-system turtle reads a
character of control string

no  J

L-system turtle makes
actions

f control string
empty

Figure 22 Working mechanism

4.Implementation

In this section, we will start with demonstrating a UML class diagram. Then coding details of each
component will be introduced. Lastly, some problems that are difficult to solve during implementation
will be demonstrated. The attempts to solutions are also included.
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4.1 UML Class diagram

Plants

+ branchLength:double
+ branchWidth:double
+ interationTime: int
+rulles : pair<charstring>
+ rules2 : pair<char,string>
+ branchTheta : double{3]
+ branchBeta: double(3]
+ lengthFactor: double(5]
+ widthFactor: double{S}
+ ranNum: int{100);
+ sentence: string
{virtual} +GenerateSentence():
void
{virtual} +GenerateProbal); void

+ Plants()

SympodialTrees

+SympodialTrees(int)
+GenerateSentencel): void
+GenerateProba(): void

1 2 .3 4 .5
1 1 1 1 1
, MyUserWidget
y < textBlockArTay:
LsystemTurtleActor IPGameModeBase il SR
+treeComponentSet:TArray<AStati +MyWidgetinstance: + sentence_1: UEditableTextBox*
cTreeComponent> UMyUserWidg u
+treeTrunkComponentSet: TArray< 17| Hisystem: ALsystemTurtieActort | +probability: UEditableTextBox*
AtreeTrunkComponent*> [ TAIPGameModeBase) | +MinLength: UEditableTextBox*
+leafComponentSet<AleafCompon {virtuall +BeginPlavl)void +InitialLength: UEditableTextBox*
ent*> +initialWidth: UEditableTextBox*
+locationStore: stack<FVector> +branchTheta: UEditableTextBox*
+rotationStore: stack<FVector> +branchTheta_1:
+rotatorStore: stack<FRotator> UEditableTextBox*
+turtieLocation: FVector +branchTheta_2
+turtleForward: FVector UEditableTextBox*
+turtleUp: FVector +branchBeta: UEditableTextBox*
+turtieRight: FVector +branchBeta_1:
+turtleRotator: FRotator UEditableTextBox*
+currentChar: int 1 +branchBeta_2:
+p: Plants* UEditableTextBox*
+scene: USceneComponent* e +widthFactor: UEditableTextBox*
ALsystemTurtieActorl) 1 _ | #widthFactor_1:
+render()vold UEe
+generateTreelint type, int +widthFactor_2
Gonsatvod UEditableTextBox*
+resetActor(}void +widthFactor_3;
+draw_2_Branch(double, double)v UemsbieTexBoxt
oid +widthFactor_4:
+draw_3_Branch(double,double):v UEditableTextBox*
oid +lengthFactor: UEditableTextBox*
+orward(double, double,nt):void HengihFactor. 1
+tumYaw(double):void UEditableTextBox*
+tumRoll(double)void HengthFactor_2
+tumPitch(double)void UEditableTextBox!
inhlvold +lengthFactor_3
+popl)void U]Edna:;efo(B:x'
+lengthFactor_
il UEditableTextBox*
1 deafultTreeList
UComboBoxString*
+lsystem: ALsystemTurtleActor*
' ‘L 4
StaticTreeComponent TreeTrunkComponent LeafComponent I&;‘&iﬁ&‘fﬁ'{“ﬁf?‘“
“scene: USceneComponent* +scene: USceneComponent TMeshComponent: +OnDefaultTreeSelected(): void
+MeshComponent: +MeshComponent UStaticMeshComponent*
UstaticMeshComponent* UStaticMeshComponent* JrwSI—
+SphereMeshComponent: +SphereMeshComponent:
UStaticMeshComponent* UStaticMeshComponent*

+MAterialinstance:UMateriallnstan

TreeMateriallnstance:
UMateriallnstanceDynamic*

+MAteriallnstance:UMateriallnstan

C
TreeMaterialinstance:
UMateriallnstanceDynamic*

+loadComponent(double, double):
void

+AStaticTreeComponent()

+loadComponent(double,double)
void

+ATreeTrunkComponent()

4.2 Tree component

4.2.1 Generate random numbers

There are 2 types of branching, which are double branching and triple branching as we mentioned
above. However, to make the tree more thriving, the probability for generating triple branching is
higher.
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Therefore, the system will generate a random integer between 6 and 8, let it be A. When system
rewrites a character, it generates an integer between 1 to 10 again. If this new integer is between 1 to A,
then a triple branching is generated. If it is between A to 10, then a double branching is generated.
Overall, the probability of generating triple branching is between 60% to 80% and the probability for
double branching is between 20% to 40%.

In C++, function rand() requires a “seed” to generate different sequence of random numbers. In
practice, we usually use the current time of system as the seed. However, there could be more than 10k
branches on a tree, which means the systems will get system time constantly in a short time. The time
gap between several access of system time could be too short to make the seed changed. Therefore, the
rand() function will keep generating the same random number sequence. In this project, system will
generate 100 random numbers each time to avoid repetition of random numbers sequence.

srand((unsigned)time(NULL));
branchProbability = (rand() % (8 - 6 + 1)) + 6;

Code 1 Generate probability for different branching(SympodialTree _3.cpp)

\void SympodialTrees::GenerateProba()

{

srand((unsigned)time(NULL));

for (inti=0; i< 100; i++) {
ranNum[i] = (rand() % (10 - 1 + 1)) + 1;
}

Code 2 Generate random numbers sequence(SympodialTree.cpp)

4.2.2 Generate sentence

To generate sentence, the system will read the sentence character by character, rewriting character that
fulfill the rewriting rule. More specifically, every time the system rewrites a sentence, a new ‘string’ will
be created. If the system reads a character that does not fulfill the rule, it duplicates the character and
append it to the end of the new string. If the system reads a character that fulfill the rule, it appends the
corresponding replacement to the end of the new string.
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GenerateProba();
for (inti=0; i< iterationTime; i++) {
string nextSentence ="";
for (int32 k = 0; k < sentence.size(); k++) {

char currentChar = sentence.at(k);
//take one random number from the sequence
int probability = ranNum[ranCounter++];

if (currentChar == rules.first && (probability >= 1 && probability <= branchProbability) ) {

nextSentence.append(rules.second);
branch_3_count++;
}
else if (currentChar == rules2.first && (probability > branchProbability)) {
nextSentence.append(rules2.second);
branch_2_count++;
}
else {
nextSentence += currentChar;

}

// The sequence only contains 100 random numbers, if system has already
//rewrote 100 character,
// update the sequence
if (ranCounter == 100)
{
GenerateProba();
ranCounter = 0;
}
}

sentence = nextSentence;

Code 3 Rewrite character(SympodialTree.cpp)
4.3 L-system turtle component

4.3.1 Overall working process: Iteration

First, we will explain why L- system turtle needs an iteration program to read and render the tree.

An example of a 2-generation tree and its sentence are as follow:

IF[+/1F[+/!F[+/B][+/B][+/BII[+/!F[+/B][+/B][+/BII[+/F[+/B][+/B][+/BI]I[+/!F[+/ @F[+/B][+/B]I[+/!F[+/B][+/

BI[+/BI1[+/!F[+/B][+/BI[+/BIIl[+/@F[+/!F[+/B][+/B][+/B]1[+/!F[+/B][+/B][+/B]]]
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Figure 23 2-generation tree

As we know in the previous sections, the width and length shrinking factors of a tree are fixed. They are
used repeatedly on different triple branching and double branching. Therefore, the distribution of those

factors is a breath first process as following picture (First number denotes the sequence number of the
branch, ‘W’ means Width factor, ‘L’ means Length factor)

Figure 24 Demonstration of factors distribution

However, in practice, the sentence of the tree is generated in a depth-first way. The system can only
read through the string from the beginning to the end. Therefore, the actual render process of the L-
system turtle should be as follows:
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Figure 25 The actual render process

As a result, before the L-system turtle starts to render a child branch, the index for width and length
factors should be reserved and an iteration process is needed. If system reads a ‘I’ or ‘@’, it will start a
new render function for triple branching or double branching where the index for length and width
factors can be reset. Current render function waits until the inner iterations end.

An iteration ends when system finishes reading a substring representing a triple branching or double
branching. However, for the first iteration, it ends when system finishes reading the whole sentence.

void ALsystemTurtleActor::draw_2_Branch(double branchLength, double branchWidth)
{

int count = 0;

int length = p->rules2.second.size() - 1;
int angleindex = 0;

int lengthFactorindex = 3;

int lable = 0;

double rotateX = 0;
branchLength = (branchLength < p->minLength) ? p->minLength : branchLength;

lable = (currentChar == 1) ? 1 : lable;

bool endingCondition = true;

while (endingCondition) {
char current = p->sentence.at(currentChar++);

if (current =="'1")

{

double lengthFactor = p->lengthFactor[lengthFactorindex];
double widthFactor = p->widthFactor[lengthFactorindex++];
draw_3_Branch(branchLength * lengthFactor, branchWidth * widthFactor);
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else if (current =='@")

{
double lengthFactor = p->lengthFactor[lengthFactorindex];
double widthFactor = p->widthFactor[lengthFactorindex++];
draw_2_Branch(branchLength * lengthFactor, branchWidth * widthFactor);
}
else if (current =="F'")
{
forward(branchLength, branchWidth, O, rotateX);
}
else if (current =="'+')
{
turnYaw(p->branchBeta[anglelndex]);
}
else if (current =="/")
{
rotateX = p->branchTheta[angleIndex];
turnRoll(p->branchTheta[angleIndex++]);
}
else if (current =="'&")
{
turnPitch(p->branchBeta[angleIindex++]);
}
else if (current =="[')
{
push();
}
else if (current =="]")
{
pop();
}
else
{
forward(branchLength, branchWidth, 1, rotateX);
}
count++;
if (lable == 1)
{
endingCondition = ((!(count >= length)) | | !(currentChar >= p->sentence.size() - 1));
}
else {
endingCondition = (!(count >= length));
}

Code 4 Double-branching (LsystemTurtleActor.cpp)
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4.3.2 Rotation of L-system turtle

There are 2 types of rotation actions for L-system turtle. One is rotating around “Up” vector, the other is
rotating around “Front” vector. Like the distribution of length and width factors, the rotation angles
around “up” vector and “front” vector are the same among double branching or triple branching.

else if (current =="'+')

{
turnYaw(p->branchBeta[anglelndex]);
count++;

}

else if (current =="/")

{
turnRoll(p->branchTheta[angleIndex++]);
count++;

}

Code 5 Angle distribution (LsystemTurtleActor.cpp)

SympodialTrees_3::SympodialTrees_3(int iterationTime) : SympodialTrees(iterationTime)
{
//z
branchBeta[0] = -30.0f;
branchBeta[1] = 30.0f;
branchBeta[2] = 90.0f;

//x

branchTheta[0] = -30.0f;
branchTheta[1] = 35.0f;
branchTheta[2] = -40.0f;

Code 6 Angle declaration of sympodial tree (SympodialTree_3.cpp)

In Unreal Engine 4, to rotate around an actor ‘s “local coordinate axis”, (in this case, the local coordinate
axis is same as actor’s Up, Front or Right vector), a useful function “AddActorLocalRotation” can be used.
The parameter for this function is a Vector structure called “FRotator”. It denotes the rotation angles
around Z axis (Up), Y axis (Right), and X axis (Front). For example, AddActorLocalRotation
(FRotator(100,0,0)) means rotate the actor around local Z axis by 100 degrees.

PAGE 32



void ALsystemTurtleActor::turnYaw(double branchAngle)

{

turtleRight = turtleRight.RotateAngleAxis(branchAngle, turtleUp);
turtleFoward = turtleFoward.RotateAngleAxis(branchAngle, turtleUp);

AddActorLocalRotation(FRotator(0, branchAngle, 0));
}

void ALsystemTurtleActor::turnRoll(double branchAngle)

{
turtleRight = turtleRight.RotateAngleAxis(-branchAngle, turtleFoward);

turtleUp = turtleUp.RotateAngleAxis(-branchAngle, turtleFoward);

AddActorLocalRotation(FRotator(0, 0, branchAngle));

Code 7 Rotation (LsystemTurtleActor.cpp)

In the previous parts of the report, we mentioned that the L-system turtle actor needs to maintain and
update three direction vectors up, right and front vector. The reason why we need to keep them is that
Unreal Engine 4 does not provide real time direction vectors of an actor. Therefore, if an actor has
rotated before, we cannot get the current direction vectors of it. The front actor is necessary for an L-
system actor to confirm the next location.

Therefore, as we showed above, the direction vectors are also rotated by using RotateAngleAxis()
function. This function allows a vector to rotate around another vector, which is suitable in this case.

4.3.3 Forward

In L-system, turtle will move to next location after several rotations. In nature, tree always grow
vertically. Therefore, in this project, the turtle will always move towards the direction of ‘Up’ vector.
Here, we will first introduce how L-system turtle moves to the next location.

As we know in the previous section, the length of a branch is acknowledged. Therefore, we can get:

NextLocation = currentLocation * Up

Figure 26 Demonstration of Moving
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To spawn a static mesh actor, we need to input a location as well as a rotation. We have already known
the rotation for it, which is the rotation of L-system actor. Now, we will focus on the location for this
newly created mesh component.

As we can see in the following pictures, the branch and trunk can be approximately seen as cylinders. In
Unreal Engine 4, the position of a static mesh is confirmed by the center point of it. Therefore, we can
align the center of the branch (or trunk) to the middle point between turtle’s current location and the
next location. It can be represented as:

MeshLocation = (currentLocation + nextLocation)/2

Figure 27 Demonstration of static mesh actors

Mesh'’s center point = (nextLocation+currentLocation)/2

Figure 28 Confirming location (Ideal design)
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This solution is not perfect. Ideally, the vertical length of the mesh should be the same as the length of
branch that we preset. Yet, they are slightly different. The length of the branch could be longer than the
actual length of the mesh. The scale of the mesh is not defined by concrete numbers. It needs to be
adjusted by multiplying constants in different dimensions (x, y, or z). The length and width of branches
are only the parameters that affect the actual length of width of the mesh. Here, we call the location
calculated by the equation below as ‘Preset next location’

Preset next location = currentLocation * Up

As a result, we need to manually set the next location as the location of sphere component of branches
or trunk after the mesh actor is spawned. So that the child branches will be generated at correct
location.

) Modified next location
=

Preset next location(nextLocation+currentLocation)/2

Figure 29 Actual confirmation of next location

if (currentChar == 2)
{
ATreeTrunkComponent* treeComponent = GWorld->GetWorld()-
>SpawnActor<ATreeTrunkComponent>(treeComponent->StaticClass(), (turtleLocation + nextLocation) / 2, GetActorRotation());
treeComponent->loadComponent(branchWidth, branchLength);
treeTrunkComponentSet.Add(treeComponent);
turtleLocation = treeComponent->SphereMeshComponent->GetComponentLocation();
}
else
{
AStaticTreeComponent* treeComponent = GWorld->GetWorld()-
>SpawnActor<AStaticTreeComponent>(treeComponent->StaticClass(), (turtleLocation + nextLocation) / 2, GetActorRotation());
treeComponent->loadComponent(branchWidth, branchLength);
treeComponentSet.Add(treeComponent);
turtleLocation = treeComponent->SphereMeshComponent->GetComponentLocation();

Code 8 Spawning static mesh actors (LsystemTurtleActor.cpp)
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4.3.4 Push and pop

The status of L-system turtle is consisted of location, rotation and direction vector (up, forward, right).

Therefore, 2 stacks that store FVector and 1 stack that stores FRotator are needed.

{

}

{

void ALsystemTurtleActor::push()

locationStore.push(turtleLocation);
rotationStore.push(turtleFoward);
rotationStore.push(turtleUp);
rotationStore.push(turtleRight);

rotatorStore.push(GetActorRotation());

\void ALsystemTurtleActor::pop()

turtleLocation = locationStore.top();
locationStore.pop();

turtleRight = rotationStore.top();
rotationStore.pop();

turtleUp = rotationStore.top();
rotationStore.pop();

turtleFoward = rotationStore.top();
rotationStore.pop();

SetActorRotation(rotatorStore.top());
rotatorStore.pop();

4.3.5 Delete tree

To change the shape of the tree in real time, we need a delete function for L-system turtle. L-system

turtle should delete all components of a tree and starts to create a new one.

In Unreal Engine 4, an object of actor class is declared as a reference. Therefore, we can save all

references of component objects into arrays. lterating these arrays and delete every component object

by using function Destroy(). The Destroy() function is an embedded function of Actor.

AlLeafComponent* leafComponent = GWorld->GetWorld()-
>SpawnActor<AlLeafComponent>(leafComponent->StaticClass(), turtleLocation,

GetActorRotation());

leafComponent->SetActorRelativeScale3D(FVector(1, 1.5, 1));

if (treeComponentSet.Num() !=0)

{

treeComponentSet.Last()->SphereMeshComponent->SetVisibility(false);

//Add this component to the array
leafComponentSet.Add(leafComponent);
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if (currentChar == 2)
{
ATreeTrunkComponent* treeComponent = GWorld->GetWorld()-
>SpawnActor<ATreeTrunkComponent>(treeComponent->StaticClass(), (turtleLocation + nextLocation) / 2, GetActorRotation());
treeComponent->loadComponent(branchWidth, branchLength);

//Add this component to the array
treeTrunkComponentSet.Add(treeComponent);
turtleLocation = treeComponent->SphereMeshComponent->GetComponentLocation();
}
else
{
AStaticTreeComponent* treeComponent = GWorld->GetWorld()-
>SpawnActor<AStaticTreeComponent>(treeComponent->StaticClass(), (turtleLocation + nextLocation) / 2, GetActorRotation());
treeComponent->loadComponent(branchWidth, branchLength);
//Add this component to the array
treeComponentSet.Add(treeComponent);
turtleLocation = treeComponent->SphereMeshComponent->GetComponentLocation();

Code 9 Store references (LsystemTurtleActor.cpp)

void ALsystemTurtleActor::deleteTree()

{

for (auto n : treeComponentSet) {
n->Destroy();

}

for (auto n : leafComponentSet) {
n->Destroy();

}

for (auto n : treeTrunkComponentSet) {
n->Destroy();

}

Code 10 Iterate arrays (LsystemTurtleActor.cpp)
4.4 Mesh component

4.4.1 Scale of the mesh

In the previous section, we know that the parameters ‘width’ and ‘length’ of branches are the factors
that affect the actual width and length of branch meshes. In this section, we will focus on the
implementation of adjusting scale of meshes.

First, we need to clarify that the original meshes of three components (branch, trunk, leaf), are out of
shape. They need to be adjusted in the first place of spawning.
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Figure 30 A branch, trunk, and leaf (Original)

Specifically, the first phase of scale adjustment takes place in the construction function.

FVector scale = MeshComponent->GetRelativeScale3D();
scale.X *=4.056;

scale.Y *=5.131;
MeshComponent->SetRelativeScale3D(scale);

Code 11 First scaling adjustment of branch (StaticTreeComponent.cpp)

FVector scale = MeshComponent->GetRelativeScale3D();
scale.X *=3.556;

scale.Y *=4.031;
MeshComponent->SetRelativeScale3D(scale);

Code 12 First scaling adjustment of trunk (TreeTrunkComponent.cpp)

Second phase of scaling adjustment happens after mesh actors are spawned. The mesh component
actors provide a method to input the branch length as parameter.

\void AStaticTreeComponent::loadComponent(double width, double length)

{
SetActorScale3D(FVector(width / 82.0f, width / 82.0f, length / 60.0f));
//MeshComponent->SetWorldScale3D(FVector(width / 100.0f, width / 100.0f, length / 100.0f));
SphereMeshComponent->SetWorldScale3D(FVector(width / 140.0f, width / 140.0f, width / 80.0f));

}

Code 13 Method to adjust scale (StaticTreeComponent.cpp)
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\void ATreeTrunkComponent::loadComponent(double width, double length)

{

SetActorScale3D(FVector(width / 137.0f, width / 137.0f, length / 150.0f));
//MeshComponent->SetWorldScale3D(FVector(width / 100.0f, width / 100.0f, length / 100.0f));
SphereMeshComponent->SetWorldScale3D(FVector(width / 130.0f, width / 128.0f, width / 73.0f));

Code 14 Method to adjust scale (TreeTrunkComponent.cpp)

4.5 User interface

In this section, we will not discuss the declaration of every component in this interface. Instead, we will
introduce how input data transmits from user interface to L-system turtle.

4.5.1 Overall design of user interface

Figure 31 Design of user interface

Users can input the parameters that control the shape of the tree. Five default settings of trees are
provided. When users click generate, the system will generate a tree in the middle of the screen. If user
click reset, all input content can be erased.

4.5.2 Implementation of user interface

In Unreal Engine 4, a user interface can be designed by a visual development tool called ‘Blueprint’. The
design above is done by blueprint. Yet, the function of user interface should be developed in C++ in this
project. Therefore, a link between ‘blueprint’ design and C++ class is necessary.

First, we create a C++ widget class called “MyWidget”. Then we can create a blueprint widget class
derived from “MyWidget”.
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NewWidgetBlueprint (Widget Blueprint)

Blueprint Typ

s Data Only: F

Num Replicated Properties: 0
Tick Prediction Reason: Native
Tick Frequency: Auto

Tick Prediction: Will Tick
Property Bindings: 0

Figure 32 A widget blueprint class

After finishing the visual design of the widget, we can connect the blueprint widget class to the C++
widget class each component by each component with the following code. This is only an example of
implementation of button, there are many other components in this widget class.

if (UButton* btn = Cast<UButton>(GetWidgetFromName("Generate")))
{
FScriptDelegate Del;
Del.BindUFunction(this, "OnBtnGenerateClick");
btn->OnClicked.Add(Del);
}

Code 15 An Example of connecting component (MyUserWidget.cpp)

Next, in the game mode class, we need to instantiate the widget class like below:

/ Check if there is already a widget class exists
(MyWidgetInstance)
{
MyWidgetInstance->RemoveFromViewport();
MyWidgetInstance = nullptr;
}
/Load the class of widget
if (UClass* MyWidgetClass = LoadClass<UMyUserWidget>(NULL,
ITEXT("WidgetBlueprint'/Game/NewWidgetBlueprint.NewWidgetBlueprint_C")))
{
//Get user controller
if (APlayerController* PC = GetWorld()->GetFirstPlayerController())
{
//Create a widget object
MyWidgetInstance = CreateWidget<UMyUserWidget>(PC, MyWidgetClass);
if (MyWidgetInstance)
{
MyWidgetInstance->AddToViewport();
}
}
UE_LOG(LogTemp, Warning, TEXT("Added"));
}

Code 16 Declaration of widget object (IPGameModeBase.cpp)
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In widget class, we declare a L-system turtle pointer. When the widget class is instantiated, we assign
the reference of L-system turtle object to this pointer. So that we can transmit all input data to L-system

turtle.

Isystem->p->lengthFactor[0] = FCString::Atod(*lengthFactor->GetText().ToString());

Isystem->p->lengthFactor[1] = FCString::Atod(*lengthFactor_1->GetText().ToString());

Isystem->p->lengthFactor[2] = FCString::Atod(*lengthFactor_2->GetText().ToString());

Isystem->p->lengthFactor[3] = FCString::Atod(*lengthFactor_3->GetText().ToString());

Isystem->p->lengthFactor[4] = FCString::Atod(*lengthFactor_4->GetText().ToString());

UE_LOG(LogTemp, Warning, TEXT("lengthFactor: %f,%f,%f,%f,%f"), Isystem->p->lengthFactor[0], Isystem->p-
>lengthFactor[1], Isystem->p->lengthFactor[2], Isystem->p->lengthFactor[3], Isystem->p->lengthFactor[4]);

Isystem->p->GenerateSentence();
Isystem->render();

Code 17 Example of data transmit and generating a tree (MyUserWidget.cpp)

Isystem = GWorld->GetWorld()->SpawnActor<ALsystemTurtleActor>(Isystem->StaticClass(), FVector(0, 0, 70), FRotator(0, O,
0));

MyWidgetInstance->loadTurtle(Isystem);

Code 18 Create and assign L-system turtle object (IPGameModeBase.cpp)

4.6 Game mode

Game mode is like the Main function in Java. It is the entry point of the program in Unreal Engine 4
project. In this project, the instantiation of the L-system turtle class and the widget class happen within
the BeginPlay() function of Game mode class. BeginPlay() function will be run when the program starts.

if (MyWidgetInstance)
{
MyWidgetInstance->RemoveFromViewport();
MyWidgetInstance = nullptr;
}
if (UClass* MyWidgetClass = LoadClass<UMyUserWidget>(NULL,
ITEXT("WidgetBlueprint'/Game/NewWidgetBlueprint.NewWidgetBlueprint_C")))

{
if (APlayerController* PC = GetWorld()->GetFirstPlayerController())
{
MyWidgetInstance = CreateWidget<UMyUserWidget>(PC, MyWidgetClass);
if (MyWidgetInstance)
{
MyWidgetInstance->AddToViewport();
}
}
}
Isystem = GWorld->GetWorld()->SpawnActor<ALsystemTurtleActor>(lsystem->StaticClass(), FVector(0, 0, 70), FRotator(0, O,
0));

MyWidgetInstance->loadTurtle(lsystem);

Code 19 BeginPlay() in Game mode (IPGameModeBase.cpp
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4.7 Important problems during implementation

4.7.1 Rough and bumpy surface of mesh component

In the early stage of development, the mesh of branch is made of a standard cylinder and a standard
circle. It will come up with a problem that the surface of branch is too smooth to look natural.

o o

Figure 33 Previous mesh of branch

To solve this problem, realistic models for branch and trunk are needed. After searching a model library
called Quixel Bridge, a better model for tree trunk has been found. As we can see in the demonstration
figures, the surface of this trunk is rough and bumpy. At the same time, the upper part of the trunk is

close to a cylinder. Therefore, we can crop the upper part of the trunk and take it as the model for
branch.

II!. . N

Figure 34 Tree trunk
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Figure 35 Branch

What needs to be mentioned is that the material for those meshes are different than the material we
use on the mesh component. The cropping process is done on 3DS MAX 2019

Figure 36 Cropping process on 3DS MAX 2019

4.7.2 Performance improvement

One significant issue that affects the performance is lighting in the scene. There are two of the lighting
types in Unreal Engine 4 that are needed to introduce.

(1) Stationary lights [13]

Stationary Lights are lights that are intended to stay in one position, but are able to change in other
ways, such as their brightness and color. This is the primary way in which they differ from Static Lights,
which cannot change in any way during gameplay. However, it should be noted that runtime changes to
brightness only affect the direct lighting. Indirect (bounced) lighting, since it is pre-calculated by
Lightmass, will not change.

Of the three light mobilities, Stationary lights tend to have the highest quality, medium mutability, and
medium performance cost.
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(2) Static light [14]

Static Lights are lights that cannot be changed or moved in any way at runtime. They are calculated only
within Lightmaps, and once processed, have no further impact on performance. Movable objects cannot
integrate with static lights, so the usefulness of static lights is limited.

Of the three light mobilities, Static lights tend to have medium quality, lowest mutability, and the lowest
performance cost.

By default, the light in a map will be a stationary light. It causes significant impact on performance
because in this project, tens of thousands of static mesh actors are created. It means that the system
must calculate real-time lighting for all those actors. The frame rate in inspecting window is very low.

beanchRole_1
» Click for Mouse CONtrol . sanchRole 2

B branch probabiity (between Oto 1)
intsLength ([ IniatWicen

Width reduction factors

D B BN B G ot redoction factor

B oo ctonine

Generate Reset

Figure 37 Frame rate testing before improving

15 actors (1 :5el'_;|

5 Details
a
+ Add Component~ o Blueprint/fAdd Script

Search Components

Search Details

S V) 7 B
S VS 2 S -

s Static =

Figure 38 Default lighting setting in a map
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By changing the light into static, the performance of program has improved. The frame rate has
increased significantly. However, the quality of light is also lower.

Figure 39 Frame rate test after improving

5.Results and Evaluation

5.1 User interface

Figure 40 User interface
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5.1 Effect of each parameter

Trees are controlled by parameters that are mentioned above. Therefore, changing in each parameter of
one type of tree is necessary.

Basic parameter of a type of tree:

Axiom w = B(300,70), Probability = = {0.6,0.4}, generation =9, initial length = 300,

Initial width =90,

Branch angle around Z axis { —30°,30°,90°}, Branch angle around X axis { —30°,35°,—90°}
Width parameters: p; = 0.5 g; = 0.3 p, = 0.3

Length parameters: { 0.68,0.78,0.58,0.68,0.78}

Rewriting rules: {B - ! F[+/B] [+/B][+/B1}, {B — ! F[+/B] [+/B]}

Figure 41 Same type of tree with different generation (7,9)
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Figure 42 Same type of tree with different triple branching probability (0.4,0.6)

Figure 43 Same type of tree with different initial length (300,400)
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70,80)

Figure 44 Same type of tree with different initial width (

5,105) (-30,30,90)

axis (-45,4

Figure 45 Same type of tree with different rotation angles around z
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Figure 46 Same type of tree with different rotation angles around x-axis (-30,35, -40) (-20,30, -35)

5.2 Different types of trees

Axiom w = B(300,60), Probability = = {0.8,0.2}, generation = 8, initial length = 300,
Initial width = 60,

Branch angle around Z axis { —30°,30°,90°}, Branch angle around X axis { 27°, —68°, 60°}
Width parameters: p; = 0.5 g; = 0.3 p, = 0.3

Length parameters: { 0.65,0.71,0.55,0.65,0.71}

Rewriting rules: {B — ! F[+/B] [+/B][+/B1}, {B — ! F[+/B] [+/B]}

Figure 47 Sympodial tree 1
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Axiom w = B(200,50), Probability = = {0.6,0.4}, generation =9, initial length = 200,
Initial width = 50,

Branch angle around Z axis { —30°,30°,90°}, Branch angle around X axis { 25°, —25°, 60°}
Width parameters: p; = 0.45 q; = 0.3 p, = 0.5

Length parameters: { 0.5, 0.85,0.55, 0.5, 0.85}

Rewriting rules: {B - ! F[+/B] [+/B][+/B]}, {B —» | F[+/B] [+/B]}

Figure 48 Sympodial tree 2

Axiom w = B(300,70), Probability = = {0.7,0.3}, generation =9, initial length = 300,

Initial width = 70,

Branch angle around Z axis { —30°,30°,90°}, Branch angle around X axis { —20°, 35°, —40°}
Width parameters: p; = 0.5 qg; = 0.3 p, =0.3

Length parameters: { 0.65,0.71,0.55,0.65,0.71}

Rewriting rules: {B —» ! F[+/B] [+/B][+/B]}, {B = | F[+/B] [+/B]}
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Figure 49 Sympodial tree _3
Axiom w = B(120,50), Probability = = {0.7,0.3}, generation =9, initial length = 120,
Initial width = 50,
Branch angle around Z axis { —90°,90°, —5°}, Branch angle around X axis { 5°, —30°, —40°}
Width parameters: p; = 0.5 qg; = 0.3 p, = 0.6
Length parameters: { 0.95,0.75,0.68,0.95,0.75}

Rewriting rules: {B - ! F[+/B] [+/B][+/B1}, {B — ! F[+/B] [+/B]}

Figure 50 Sympodial tree 4
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Axiom w = B(100,20), Probability = = {0.6,0.4}, generation =9, initial length = 120,

Initial width = 20,

Branch angle around Z axis { 137°,137°,—5°}, Branch angle around X axis { —5°,25°, —40°}
Width parameters: p; = 0.4 ¢, = 0.3 p, =04

Length parameters: { 0.95,0.75,0.68,0.55,0.95}

Rewriting rules: {B —» ! F[+/B] [+/B]}, {B - ! F[+/B] [+/B]}

Figure 51 Sympodial tree _5
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5.3 Observation from different perspective

Figure 52 Observe the tree from the right

Figure 54 Observe the tree from the top
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6. Future work

Due to time constraints during this project, the program did not implement the export 3D model
function. In this project, trees are formed by tens of thousands of static mesh components, and they are
independent from each other. To export the tree, we need to combine all components as one static
mesh actor. However, there is not a simple way to automatically combine actors when the programming
is running. A potential solution is to extract the mesh data from the lower level of render pipeline and
combine those data, which requires longer time to study.

As mentioned in section 4.7.1, one important feature that makes tree look realistic is the surface of
trunk and branch. In nature, the surface of a tree is bumpy and rough. Although in this project, this
problem can be solved by using a better 3D model, the branch and trunk of the tree will be completely
identical. Because they are using a fixed 3D model. This can be potentially fixed by using ‘bump map’
and apply random bump map onto the surface of branches and trunk.

As described in initial plan, there are more than one type of tree in nature. A potential future work can
be studying and implementing other types of trees with different rewriting rules. For example,
monopodial tree.

Another area for potential improvement is that the branches of a tree are all straight. In nature,
branches are usually curving. Although this can be solved by using B Spline [16]. B Spline curve line
simulation is broadly used in many areas, including plants modeling. In this project, B Spline can be used
to simulate a curved branch by combining several straight branches with certain angles. However, the
theory of B Spline is complicated, and it requires more time to understand and to be implemented in
practice.

7. Conclusions

The primary aim of this project is to research and implement L-system on Unreal Engine 4, researching
plants morphology and generate a realistic plant. The L-system was successfully implemented in C++ and
a system based on C++ has been designed and it has been successfully run on Unreal Engine 4. The
results of the evaluation have shown that a realistic 3D tree can be generated. User can change the
shape of it by modifying the parameters. Although the parameters that are extracted from plants cannot
perfectly simulate and describe the plants perfectly, it has left a research direction for the future work.

The secondary aim was to develop a system with a user interface that allows user to adjust the
parameters directly and import customized 3D model and material. An export functionality is also
expected, it provides a way for user to export the tree that has been generated as an FBX. File for future
use. The secondary aim has partly achieved. A user interface has been implemented and user can
change tree’s parameter. However, the export and import functionality are missing. As discussed briefly
in Section 7, this is potential for improvement.
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8. Reflection on Learning

The project has achieved its practical aims with deliverable results. In addition to it, | have also benefit
from completing the project. By designing and developing L-system on Unreal Engine 4 by C++, | have
expanded my programming skills and the familiarity of Unreal Engine 4 platform, as well as computer
graphics. | am deeply interested in them, and | hope to keep researching in field of computer graphics
and game engineering. This project has also provided an opportunity to explore mathematical plants
simulations. Although | cannot invent a simulation method, it is also very helpful to implement an
existing method.

The project has also been very helpful to my time management skills and carrying out a project from
start to finish. By completing the project, | have had the opportunity to research and to learn how to
use Unreal Engine 4, which is my intended future area to work in.
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