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Abstract 

Plants come with complicated structures and abundant details . 3D virtual plant requires combination of

 plant morphology , computer science , and rendering techniques. 

This report covers an implementation of plants modelling algorithm known as L-system. The project 

aims to create an application that visualize 3D realistic plants. It requires to abstract the morphological 

structure and to analyze the expanding and branching progress of real plants, as well as a rendering 

process that draws the plants on the screen. Furthermore, to generate plants with random structure 

which makes it more natural. The report will also discuss the success and major problems of the process 

of implementation, as well as failures of results.  

 

Results will be analyzed and discussed by adjusting parameters that change the shape of 3D virtual 

plants. Ideas to expand the solution will be put forward, as well as the reflection on the learning during 

implementation, including the positives and negatives. 
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 1.Introduction  

With the huge development of 3D technology, the topological structure and geometrical morphology of 

plants has become a key researching point within related field. By using computer to generate realistic 

plants, time expenses can be saved from constructing 3D plants model manually. In terms of realness of 

plants, computer program can generate random shape of plants which is an advantage compared to 

manual construction.  
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The project aims to generate and visualize realistic virtual plants on computer. However, we will need to 

solve 2 aspects of problems. First, to learn and describe the structure of plants and made it into a digital 

term. Second, render the plants on computer based on the digital structure of plants. 

 

Topological structure is a significant symbol for plants, which contains the structure and morphology of 

plant organs. There are several methods to simulate structure of plants, in this project, we will focus on 

L-system. L-system is a parallel rewriting system producing control string. Control string starts with 

siŵple sǇŵďol stƌiŶg Đalled ͞aǆioŵ͟ stƌiŶg aŶd ďǇ eǆpaŶdiŶg each symbol into larger string of symbols, a 

complex control string can be used to describe the structure of plants. In this project, L-system will be 

implemented by C++. 

 

To render the digital structure of plants, a 3D graphics tool called Unreal Engine 4 will be used in this 

project. Unreal Engine 4 is a game engine developed by Epic Games. It has been used in variety of 

genres of 3D games and has seen adoption by other industries like film and television industry. In 

comparison with other render method like using graphics API like OpenGL, Unreal Engine 4 can be 

efficient in generating more realistic result, in terms of lighting, model importing and texture attaching.  

 

This report will cover the implementation of the L-system algorithm from beginning to end. It starts with 

introducing the mechanism of L-system as well as the Unreal Engine 4. Following with the 

implementation and result of L-system. Finally, the report will discuss the failure of the projects 

compared to the initial planning and the potential future work.  

2.Background 

2.1 Plants classification by stem type and branching description 

Plant is classified as herbaceous plant and woody plant by stem type. Herbaceous plants are plants that, 

by definition, have non-woody stems. A woody plant is a plant that produces wood as its structural 

tissue and thus has a hard stem. Woody plants are usually either trees, shrubs, or lianas (Wikipedia, 

n.d.)[1]. Considering the time limit of this project, we will only research and discuss tree, a type of 

woody plant, in this project.  
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Figure 1 The picture of a woody plant 

There are three forms of branching. The first one is between a trunk and branches, the second one is 

between branches and branches, and the last one is between branches and leaves. Considering the 

features of L-system, in this project, we will only focus on the ones which relate to a trunk and branches. 

In nature, leaves have more complex branching strategy that they tend to be soft and drooping. 

Therefore, we will not focus on branching form between branches and leaves. 

The way we use to describe the branching is called ͞aǆial tƌee͟[2]. A demonstration of an axial tree and 

its definition are as follows: 

 

Figure 2 An axial tree. (Prusinkiewicz P and Lindenmayer A, 1990) 

As shown in the figure, the trunk starts at tree root is called zero order axis, or main axis. Grows from 

the trunk, the next axis is called first order axis, and so on. The shape of each axis is the same, but child 

axis is smaller. Overall, the shape of each axis is basically same as the shape of the whole tree, which is 

an important feature of L-system. 
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2.2 A plant branching pattern: Sympodial branching 

Sympodial branching is one of the plant branching patterns. It means that after a period time of 

growing, the main branch will stop growing, or even die and forming lateral branch to grow. This patten 

will also be applied to the new branches repeatedly. In this project, sympodial branching will be 

implemented. 

 
Figure 3 Sympodial branching 

 

2.2.1 Related concepts of sympodial branching 

Three concepts that make influences are given to explain sympodial branching. 

(1) Branching order 

The axis originating at the root of the entire plant has order zero. A branch originating as a lateral 

segment of an n-order parent branch has order n+1[2]. As shown in the figure 6, by its definition, the 

tree has at most 2 orders of branching.  

  
Figure 4 Branching order 

(2) Branching angle 

Second order branch 

First order branch Zero order branch 

(main axis) 
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BƌaŶĐhiŶg aŶgle is aŶotheƌ iŵpoƌtaŶt faĐtoƌ of tƌees͛ ďƌaŶĐhiŶg ĐhaƌaĐteƌistiĐ. BƌaŶĐhiŶg aŶgle is the 
angle between a branch and its parent branch. It makes a significant influence on the overall structure of 

a tree. Multiple branching angles will also appear on one type of tree. 

 

Figure 5 Branching angle 

(3) Numbers of branching 

Numbers of branching could be different on different order of branch. For example, there could be 2 

child branches on the zero-order branch, 4 child branches on the first order branch and 6 child branches 

on the second order branch. In nature, the numbers of child branching are random. However, in this 

project, the numbers of branching have been manually set as 2 or 3, which means that there could be 2 

child branches or 3 child branches on a parent branch. 

 

Figure 6 Numbers of branching 

Branching angle 

Child branch 

Parent branch 

3 child branches 

2 child branches 

2 child branches 
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2.3 Plants modelling based on L-system 

2.3.1 Principle of L-system 

L-System is a unique type of iteration process. Its core concept is rewriting. L-system uses character 

from alphabet or strings that formed by character to generate the initial form of control string, which is 

Axiom. After that, it rewrites the string by replacing every character in Axiom with rewriting rules 

repeatedly. Finally, the result is the ultimate control string that is needed. 

L-system are formalized as a tuple as followed: ܩ = ,�,ܸۃ  ۄ�
Within the tuple, V is the alphabet of system, or all potential symbols in the string. � is the initial string 

of system, which is the Axiom. P is a finite set of rewriting rules. 

For example, a specific L-system can be as follows:  ܸ = {ܽ, ܾ} � = ܾܽ � = {ܽ → ܾ, ܾ → ܾܽ} 
There are 2 rewriting rules in P, if we replace a with b, replace b with ab, then the iteration process can 

be described as: ܾܽ → ܾܾܽ → ܾܾܾܽܽ → ܾܾܾܾܾܽܽܽ → ܾܾܾܾܾܾܾܾܽܽܽܽܽ → ⋯⋯ 

When we assign actual meaning to each character and make a geometric explanation to the ultimate 

control string, we can get the corresponding images. 

2.3.2 Explanation by L- system turtle in 2D plane 

L-system turtle is one of the geometric interpretation ways of the string that L-system generates. L-

system turtle is put forward by Prusinkiewicz[3] and Hana[4].  

(1) Traditional L-system turtle 

The state of L-system turtle can be defined by a triad ሺݔ, ,ݕ �ሻ. Within the triad, ሺݔ,  ሻ represents theݕ

Cartesian coordinates of turtle, � represents the heading direction of turtle. Now we define a L-system 

as following: 

Alphabet ܸ =  {−,+,ܨ}
Axiom � =  ܨ

Set of rewriting rules � = ܨ} → ܨܨܨ − ܨܨ − ܨ − ܨ + ܨ + ܨܨ − ܨ −  {ܨܨܨ
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Given the length of each move ݏ and the angle increment is �. The actions that turtle will perform for 

each character in alphabet are as following: ܨ : The turtle moves forward a step of length s. The new coordinate of turtle is ሺݔ′,  ሻ.  Suppose the′ݕ

direction vector of turtle͛s forward is ሺܿݏ݋�, ′ݔ ሻ, then�݊�ݏ = ݔ + ′ݕ  ,�ݏ݋ܿ ݏ = ݕ +  The turtle .�݊�ݏ ݏ

draws a line between ሺݔ, ,′ݔሻ and ሺݕ ,ݔሻ. +: Turn left by ͻͲ degree, the next status of turtle is ሺ′ݕ ,ݕ � + ͻͲሻ. −: Turn right by ͻͲ degree, the next status of turtle is ሺݔ, ,ݕ � − ͻͲሻ. 
In this case, if the iteration time is 1, the control string that is generated by L-system is ܨܨܨ − ܨܨ − ܨ ܨ− + ܨ + ܨܨ − ܨ − � Set initial angle .ܨܨܨ = ͻͲ° and the movement unit s equals to the length of grid. 

Then we can get an explanation graph of this control string as follow: 

 

 

Figure 7 Interpretation of the control string. (Prusinkiewicz P and Lindenmayer A, 1990) 

 

(2) L-system turtle with bracket structure 

We ǁill use a paiƌ of ďƌaĐkets iŶtƌoduĐed ďǇ LiŶdeŶŵaǇeƌ to deal ǁith tƌee͛s ďƌaŶĐhiŶg stƌuĐtuƌe. 
Suppose a L-system as follows: 

Alphabet ܸ = ,−,+,ܨ} []} 
Axiom � =  ܨ

Set of rewriting rules � = ܨ} →  { [ܨ−][ܨ+]ܨ
Given the length of each move ݏ and the angle increment is �. The actions that turtle will perform for 

each character in alphabet are as following: 
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,′ݔThe turtle moves forward a step of length s. The new coordinate of turtle is ሺ : ܨ  ሻ.  Suppose the′ݕ

diƌeĐtioŶ ǀeĐtoƌ of tuƌtle͛s foƌǁaƌd is ሺܿݏ݋�, ′ݔ ሻ, then�݊�ݏ = ݔ + ′ݕ  ,�ݏ݋ܿ ݏ = ݕ +  The turtle .�݊�ݏ ݏ

draws a line between ሺݔ, ,′ݔሻ and ሺݕ ,ݔሻ. +: Turn left by ͵Ͳ degree, the next status of turtle is ሺ′ݕ ,ݕ � + ͵Ͳሻ. −: Turn right by ͵Ͳ degree, the next status of turtle is ሺݔ, ,ݕ � − ͵Ͳሻ. [ : Push tuƌtle͛s status iŶto a staĐk. The iŶfoƌŵatioŶ iŶĐludes tuƌtle͛s loĐatioŶ, aŶd degƌee of ƌotatioŶ. ]: Pop tuƌtle͛s iŶfoƌŵatioŶ out of a staĐk as tuƌtle͛s status. 

In this case, if the iteration time is 1, the control string that is generated by L-system is [ܨ−][ܨ+]ܨ. Set 

initial angle � = ͻͲ° and the movement unit equals to the length of grid. Then the process of drawing 

will be as follows: 

 

Figure 8 Demonstration of L-system turtle 

As we can see, red dot represents the position of the turtle. The information of status includes the 

coordinate and the degree of rotation of the turtle. 

2.3.2 Explanation by L- system turtle in 3D space 

According to the theory of Abelson and diSessa[5], the explanation by L-system turtle can be extended 

to 3D space. The current orientation of turtle can be represented by three vectors, ⃑⃑ܪ  , ,  ܮ⃑ ܷ⃑⃑ , indicating 

the tuƌtle͛s headiŶg, the diƌeĐtioŶ to the left, aŶd the diƌeĐtioŶ up[2].   
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Figure 9 Controlling the turtle in 3D space. (Prusinkiewicz P and Lindenmayer A, 1990) 

The orientation of the turtle can be represented by following equation: [⃑⃑ܪ  ′, ,′  ܮ⃑ ܷ⃑⃑  ′] = ,  ܪ⃑⃑]  ,  ܮ⃑ ܷ⃑⃑ ] � , 

Where R is a ͵ × ͵ rotation matrix [6]. Specifically, rotation by each axis of direction should be 

represented by 3 matrixes as follows: 

��ሺ�ሻ = [ �ݏ݋ܿ �݊�ݏ Ͳ−ݏ�݊� �ݏ݋ܿ ͲͲ Ͳ ͳ] 
��ሺ�ሻ = �ݏ݋ܿ] Ͳ Ͳ�݊�ݏ− ͳ Ͳݏ�݊� Ͳ �ݏ݋ܿ ] 
��ሺ�ሻ = [ͳ Ͳ ͲͲ �ݏ݋ܿ Ͳ�݊�ݏ− �݊�ݏ �ݏ݋ܿ ] 

 

The following characters control the actions of the turtle: + Turn left by angle � around U axis (Up direction), using rotation matrix ��ሺ�ሻ − Turn right by angle � around U axis (Up direction), using rotation matrix ��ሺ−�ሻ & Pitch down by angle � around L axis (Left direction), using rotation matrix ��ሺ�ሻ ∧ Pitch up by angle � around L axis (Left direction), using rotation matrix ��ሺ−�ሻ \ Roll left by angle � around H axis (Heading direction), using rotation matrix ��ሺ�ሻ ∕ Roll right by angle � around H axis (Heading direction), using rotation matrix ��ሺ−�ሻ 
What needs to be mentioned is that this section is meant to explain the principle of L-system. In this 

project, the characters, and the rules we use will be based on the rules above. However, in Unreal 
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Engine 4, left-handed coordinate is being used instead of right-handed. During implementation, the 

action rules will be slightly different than these rules, which will be clarified in the following report. 

 

2.3.3 Parametric L-system  

This section only aims to introduce the basic concepts of the construction of sympodial tree by 

parametric L-system. The actual implementation will be based on this theory and there are several 

modifications being made because of some features of Unreal Engine 4, which will be explained in the 

following report.  

(1) Parametric L-system [7] 

Based on L-system, parametric L-system introduces parametric symbols. A formalized parametric L-

system is an ordered tetrad as follows: ܩ = ,�,∑,ܸۃ  ۄ�
Specifically, V is the alphabet of system, or all potential symbols in the string. � is the initial string of 

system, which is the Axiom. P is a finite set of rewriting rules. ∑  is a set of parameters that control the 

shape of tree. In parametric L-system, a rewriting rule is made of three parts: Prerequisite, condition, 

and result.  ݎ݁ݎ݌ ∶ ݀݊݋ܿ →   ݏ݁ݎ
 An example of a parametric L-system is as follow: 

Alphabet ܸ = ,ܣ} ,ܤ ,ܥ  {ܦ
Parameters set  ∑  = {t} 

Axiom � =  ሺͻሻܣ
Set of rewriting rules � = :ሻݐሺܣ} ݐ > ͷ → ݐሺܤ + ͳሻܦܥሺݐ − ͳሻ} 
According to the rules of rewriting, the prerequisite is  ܣሺݐሻ, the condition is  ݐ > ͷ, and the result is ܤሺݐ + ͳሻܦܥሺݐ − ͳሻ. As we can see, when � =  ሺͻሻ, t = 9 and t > 5. Therefore, the result of rewritingܣ

string will be replaced by ܤሺݐ + ͳሻܦܥሺݐ − ͳሻ, which will be ܤሺͳͲሻܦܥሺͻሻ.  
2.4 Brief introduction of Unreal Engine 4 

2.4.1 Map 

A map, or a scene in Unreal Engine 4 is a three-dimensional space where every object is placed. In a 

map, a left-handed cartesian coordinate system is used as the world coordinate system.  This coordinate 

system is formed by x, y, z axis where the x axis indicates the front direction, the y axis indicates the 

right direction, and the z axis indicates the up direction by default.  
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Figure 10 A map in Unreal Engine 4 

2.4.2 Actor class 

Actor is the base class for an Object that can be placed or spawned in a level. Actors may contain a 

collection of ActorComponents, which can be used to control how actors move, how they are rendered, 

etc. An actor object contains two 3D coordinate to represent the location and the degree of rotation. 

 

Figure 11 Location and rotation 

 

Figure 12 Location and rotation of an object 

 

The location and rotation of an actor object can be represented by two types of coordinate systems. 

One is the local coordinate system; the other is the world coordinate system. The world coordinate 

system is used when we try to describe a location or rotation of an object relative to the map. The local 

(or relative) coordinate system is used to describe a location or rotation relative to objects other than 

the map (It can be the object itself). 
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Figure 13 The world coordinate(left) and local coordinate system(right) 

Ϯ.ϰ.Ϯ AĐtoƌ͛s ĐoŵpoŶeŶt 

Actors can be thought of, in one sense, as containers that hold special types of Objects called 

Components. Different types of Components can be used to control how Actors move, how they are 

rendered, etc. The other main function of Actors is the replication of properties and function calls across 

the network during play [8]. 

Actors support having a hierarchy of SceneComponents. Each Actor also has a RootComponent property 

that designates which Component acts as the root for the Actor. Actors themselves do not have 

transforms, and thus do not have locations, rotations, or scales. Instead, they rely on the transforms of 

their Components; more specifically, their root Component. 

IŶ this pƌojeĐt, aŶ iŵpoƌtaŶt tǇpe of ĐoŵpoŶeŶt Đalled ͞“tatiĐ ŵesh ĐoŵpoŶeŶt͟ is used frequently. The 

StaticMeshComponent is used to create an instance of a UStaticMesh. A Static Mesh is a piece of 

geometry that consists of a static set of polygons and are the basic unit used to create world geometry 

for levels in Unreal Engine 4. In addition to building levels, Static Meshes can be used for creating 

movers such as doors or lifts, rigid body physics objects, foliage and terrain decorations, procedurally 

created buildings, game objectives, and many more visual elements. 

Below, a StaticMeshComponent representing a ceiling light mesh. 

 

Figure 14 A static mesh actor 



PAGE 19 

2.4.3 Textures 

Textures are image assets that are primarily used in Materials but can also be directly applied outside of 

Materials, like when using an texture for a heads up display (HUD). 

For Materials, textures are mapped to surfaces which the Material is applied to. Textures can be used 

for a variety of calculations within a Material by being applied directly to an input (such as, Base Color), 

used as a mask, or using the RGBA values for other calculations [9]. 

 

Figure 15 Branches with different materials 

2.4.4 Game modes 

While certain fundamentals, like the number of players required to play, or the method by which those 

players join the game, are common to many types of games, limitless rule variations are possible 

depending on the specific game you are developing. Regardless of what those rules are, Game Modes 

are designed to define and implement them. There are currently two commonly used base classes for 

Game Modes [10]. All Game Modes are subclasses of ͚AGameModeBase͛, which contains considerable 

base functionality that can be overridden. 

IŶ this pƌojeĐt, a ͚AGaŵeModeBase͛ Đlass is used to Đƌeate aŶd spaǁŶ aŶǇ oďjects that relate to L-system 

when program starts to run. 

3.Specification and Design 

In this section, we will focus on specifying the design of the system and how it works overall. There are 

three components in this system, a sympodial tree component explained by parametric L-system, a L-

system turtle component that executes the render process, and finally, mesh component that provides 

visual structure of trees. 

3.1 Parametric L-system construction of sympodial tree component  

3.11 Construction of sympodial tree 

Trees with sympodial branching have unfolding tree crowns without distinct tree trunks, compared to 

monopodial trees. As a sympodial tree grows, the width and length of branches become smaller. The 

shape of the tree crown is mainly decided by the order of branches and the angle of branches. The 

shape of a typical type of tree should be random to look natural.  



PAGE 20 

Based on the features that are mentioned above, we set the order of branches and the angle of 

branches as parameter to control the iteration times and the direction of growing. Setting length of 

branch as parameter to control the length of each order of branch as well as the width of branch.  

To generate a random shape, there are 2 types of branching conditions. One is double branching, which 

means that there will be 2 child branches on 1 parent branch. The other is triple branching, which means 

3 child branches on 1 parent branch. Therefore, 2 rewriting rules are required. 

A parametric L-system for sympodial trees is as follows: ܩ = ,�,∑,ܸۃ �,  ۄ�
Alphabet ܸ = ,ܤ} ,ܨ [], !, @,+,/} 
Parameters set  ∑ = ,ݓ,ܮ} ,ଵܮ ,ଶܮ ,ଷܮ ,ସܮ ,ହܮ ଵܹ, ଶܹ, ଷܹ, ସܹ, ହܹ, ,ଵߚ ,ଶߚ ,ଷߚ �ଵ, �ଶ, �ଷ} 

Axiom � = ,଴ܮሺܤ ଴ܹሻ 
Probability � = ,ߙ} ͳ −  {ߙ
Set of rewriting rules  

� = { ,ܮሺܤ ܮ :ሻݓ >= ݉�݊        �       →      ! ሺݓሻܨሺܮሻ[+ሺߚଵሻ/ሺ�ଵሻܤሺܮଵ, ଵܹሻ][+ሺߚଶሻ/ሺ�ଶሻܤሺܮଶ, ଶܹሻ][+ሺߚଷሻ/ሺ�ଷሻܤሺܮଷ, ଷܹሻ] ܤሺܮ, ܮ :ሻݓ >= ݉�݊       ଵ−�     →       @ሺݓሻܨሺܮሻ[+ሺߚଵሻ/ሺ�ଵሻܤሺܮସ, ସܹሻ][+ሺߚଶሻ/ሺ�ଶሻܤሺܮହ, ହܹሻ]                                             
There are 2 rewriting rules within our parametric L-system. To specify them, we use �ଵ and �ଶ to represent 

them as follow: �ଵ：ܤሺܮ, ܮ :ሻݓ >= ݉�݊        �       →      ! ሺݓሻܨሺܮሻ[+ሺߚଵሻ/ሺ�ଵሻܤሺܮଵ, ଵܹሻ][+ሺߚଶሻ/ሺ�ଶሻܤሺܮଶ, ଶܹሻ][+ሺߚଷሻ/ሺ�ଷሻܤሺܮଷ, ଷܹሻ] �ଶ：ܤሺܮ, ܮ :ሻݓ >= ݉�݊       ଵ−�     →       @ሺݓሻܨሺܮሻ[+ሺߚଵሻ/ሺ�ଵሻܤሺܮସ, ସܹሻ][+ሺߚଶሻ/ሺ�ଶሻܤሺܮହ, ହܹሻ]   
 

We will still use a paiƌ of ďƌaĐkets iŶtƌoduĐed ďǇ LiŶdeŶŵaǇeƌ to deal ǁith tƌee͛s ďƌaŶĐhiŶg stƌuĐtuƌe. [ : Push tuƌtle͛s status into a staĐk. The iŶfoƌŵatioŶ iŶĐludes tuƌtle͛s loĐatioŶ, diƌeĐtioŶ ǀeĐtoƌs ;up, ƌight, 
forward) and degree of rotation. ]: Pop tuƌtle͛s iŶfoƌŵatioŶ out of a staĐk as tuƌtle͛s status. 

As we can see in this L-system, B and C can be seen as vertexes. The rewriting rule �ଵmeans that there is ߙ percent chance for a vertex B being replaced by a branch and three new vertexes B, B, B, which 

indicates triple branching. �ଶ means that there is ͳ −  percent for a vertex B being replaced by a ߙ

branch and two new vertexes B, B, which indicates double branching. ܮ଴ stands for the initial length of 

the tree trunk while ଴ܹ represents the initial width of the tree trunk. ܮ� and ܮ represent the length of 

branches, �ܹ and ܹ stand for the width of the branches. ߚ� and �� represent the angle of branches, 

which control the direction of growing. Min gives out the threshold value of branches͛ leŶgth. WheŶ a 
branch is shorter than min, it cannot be generated.  
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Neǆt, ǁe ǁill iŶtƌoduĐe ŵoƌe detail iŶfoƌŵatioŶ aďout ďƌaŶĐhes͛ leŶgth aŶd ǁidth. 

(1) Branch length 

To gradually shorten the branches, shrink factors ݎ� are being introduced. As we can see in the L-system 

demonstration, there are 5 different lengths being assigned to different branches. ܮଵ = ∗ ܮ  ଶܮ   ଵݎ  ∗ ܮ= ଷܮ  , ଶݎ   = ∗ ܮ ସܮ  ,ଷݎ  = ∗ ܮ ହܮ  ,ସݎ  = ∗ ܮ , �ܮ ହ, whileݎ  � =  ͳ,ʹ,͵ represent the lengths for triple 

branching,  ܮ� , � =  Ͷ,ͷ represent the lengths for double branching. 

 

(2) Branch width 

To ŵake tƌee ŵoƌe Ŷatuƌal, ǁe ǁill set the faĐtoƌs of ǁidth ďased oŶ the LeoŶaƌdo͛s ‘ule[11]. The rule 

says that when a tree's trunk splits into two branches, the total cross section of those secondary 

branches will equal the cross section of the trunk [12]. The formula of it is: 

ଶݓ  = �ଶ�ݓ∑ 
ଵ  

where the ݓ� is the width of the ��ℎ child branch. Based on this rule, let ݓଵ  = ∗ ݓ  ଶݓ , �ଵ݌   = ∗ ݓ  ଷݓ ,�ଵݍ   = ∗ ݓ   ሺͳ − ଵ݌ − ସݓ ,ଵሻݍ  = ∗ ݓ  ହݓ  ,�ଶ݌   = ∗ ݓ  ଵ݌ ,�ଶݍ  + ଵݍ < ͳ, ݌ଶ + ଶݍ  =  ͳ. Here, ݌�  , , �ݍ ݁ 

control the width of the ďƌaŶĐh. AĐĐoƌdiŶg to LeoŶaƌdo͛s ‘ule, let ݁ =  Ͳ.ͷ so that the total cross 

section of those secondary branches will equal the cross section of the parent branch. Therefore, we will 

get ݓଶ  = ଵଶݓ   ଶଶݓ+ ଶݓ ,ଷଶ for the rewriting rule �ଵݓ+  = ସଶݓ    .ହଶ for the rewriting rule �ଶݓ+

3.2 L-system turtle component 

In this section, we will introduce how L-system turtle component works in this project. Overall, L-system 

turtle reads through the control string generated by tree component and perform different actions 

based on different character.  

3.2.1 Basic information to describe the status of L-system turtle  

L-system turtle is derived from Actor. The status of L-system turtle can be described by three direction 

vectors as well as the coordinates of location and rotation.  

The direction vectors include up, right and front vectors. The reason for maintaining these vectors is that 

L-sǇsteŵ tuƌtle alǁaǇs ŵoǀes toǁaƌd ͞up diƌeĐtioŶ͟. Hoǁeǀeƌ, the ͞up diƌeĐtioŶ͟ is Ŷot alǁaǇs ǀeƌtiĐal 
to the ground level. It changes as the turtle rotates to make certain angles between different branches.  
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Figure 16 Demonstration of direction vectors 

The location and rotation of L-system turtle is represented by world coordinate. The location and 

rotation of a tree component (like a trunk) are same as the ones of turtle. 

  

Figure 17 Demonstration of a trunk and its information 

3.2.2 Actions of L-system turtle  ܨ: The turtle moves towards the direction of up vector with the length of a branch. +: Rotate the turtle actor around up vector. /: Rotate the turtle actor around front vector. [: Push tuƌtle͛s status iŶto a staĐk. The iŶfoƌŵatioŶ iŶĐludes tuƌtle͛s location, rotation, direction vectors 

(up, right, forward). ]: Pop tuƌtle͛s iŶfoƌŵatioŶ out of a staĐk as tuƌtle͛s status. !: Prepare to render triple branches. @: Prepare to render double branches. 

(1) Working process of L-system turtle 
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Figure 18 Working process 

3.3 Mesh component 

In this project, there are 3 types of mesh component: tree trunk, branch, and leaf. They will be used and 

placed by L-system turtle component. In Unreal Engine 4, they are static mesh actors with static mesh 

components. 

3.3.1 Tree trunk 

The tree trunk component is consisted of a tree trunk mesh and a sphere mesh.  The sphere is located 

on the top of the trunk to act as a joint. This joint makes branching point more natural and materials of 

joint and trunk are consistent.  

 

Sphere joint 

Trunk 
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Figure 19 Tree trunk component 

3.3.2 Branch 

The branch component is consisted of a branch mesh and a sphere mesh.  The sphere is located on the 

top of the branch to act as a joint. This joint makes branching point more natural and materials of joint 

and trunk are consistent.  

 

Figure 20 Branch component 

3.3.3 Leaf 

The leaf component is only consisted of a leaf mesh.   

 

Figure 21 Leaf component 

3.4 Working mechanism of the system 

In this system, three components work together to generate a realistic sympodial tree. First, the tree 

component will geŶeƌate a ĐoŶtƌol stƌiŶg that ƌepƌeseŶts tƌee͛s stƌuĐtuƌe. It also pƌoǀides eǀeƌǇ 
parameter that control the shape of the tree to the L-system turtle component. Second, the L-system 

turtle component is spawned at a specific location in a map with a preset rotation. It reads every 

Sphere joint 

Branch 
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character in the control sentence and makes corresponding actions. L-system turtle is also responsible 

to spawn and adjust mesh component in the map to form the tree.  

 

Figure 22 Working mechanism 

4.Implementation 

In this section, we will start with demonstrating a UML class diagram. Then coding details of each 

component will be introduced. Lastly, some problems that are difficult to solve during implementation 

will be demonstrated. The attempts to solutions are also included. 
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4.1 UML Class diagram 

 

4.2 Tree component 

4.2.1 Generate random numbers 

There are 2 types of branching, which are double branching and triple branching as we mentioned 

above. However, to make the tree more thriving, the probability for generating triple branching is 

higher.  
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Therefore, the system will generate a random integer between 6 and 8, let it be A. When system 

rewrites a character, it generates an integer between 1 to 10 again. If this new integer is between 1 to A, 

then a triple branching is generated. If it is between A to 10, then a double branching is generated. 

Overall, the probability of generating triple branching is between 60% to 80% and the probability for 

double branching is between 20% to 40%. 

In C++, function rand() ƌeƋuiƌes a ͞seed͟ to geŶeƌate diffeƌeŶt seƋueŶĐe of ƌaŶdoŵ Ŷuŵďeƌs. In 

practice, we usually use the current time of system as the seed. However, there could be more than 10k 

branches on a tree, which means the systems will get system time constantly in a short time. The time 

gap between several access of system time could be too short to make the seed changed. Therefore, the 

rand() function will keep generating the same random number sequence. In this project, system will 

generate 100 random numbers each time to avoid repetition of random numbers sequence. 

 

 srand((unsigned)time(NULL)); 

 branchProbability = (rand() % (8 - 6 + 1)) + 6; 

 

Code 1 Generate probability for different branching(SympodialTree_3.cpp) 

void SympodialTrees::GenerateProba() 

{ 

  

 srand((unsigned)time(NULL)); 

 

 for (int i = 0; i < 100; i++) { 

  ranNum[i] = (rand() % (10 - 1 + 1)) + 1; 

 } 

   

} 

 

Code 2 Generate random numbers sequence(SympodialTree.cpp) 

4.2.2 Generate sentence 

To generate sentence, the system will read the sentence character by character, rewriting character that 

fulfill the rewriting rule. Moƌe speĐifiĐallǇ, eǀeƌǇ tiŵe the sǇsteŵ ƌeǁƌites a seŶteŶĐe, a Ŷeǁ ͚stƌiŶg͛ ǁill 
be created. If the system reads a character that does not fulfill the rule, it duplicates the character and 

append it to the end of the new string. If the system reads a character that fulfill the rule, it appends the 

corresponding replacement to the end of the new string. 
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GenerateProba(); 

 for (int i = 0; i < iterationTime; i++) { 

  string nextSentence = ""; 

  for (int32 k = 0; k < sentence.size(); k++) { 

 

   char currentChar = sentence.at(k); 

   //take one random number from the sequence 

   int probability = ranNum[ranCounter++]; 

    

 

   if (currentChar == rules.first && (probability >= 1 && probability <= branchProbability) ) { 

 

    nextSentence.append(rules.second); 

    branch_3_count++; 

   } 

   else if (currentChar == rules2.first && (probability > branchProbability)) { 

    nextSentence.append(rules2.second); 

    branch_2_count++; 

   } 

   else { 

    nextSentence += currentChar; 

   } 

    

  // The sequence only contains 100 random numbers, if system has already   

 //rewrote 100 character, 

   // update the sequence 

   if (ranCounter == 100) 

   { 

    GenerateProba(); 

    ranCounter = 0; 

   } 

  } 

  sentence = nextSentence; 

 } 

 

Code 3 Rewrite character(SympodialTree.cpp) 

4.3 L-system turtle component 

4.3.1 Overall working process: Iteration 

First, we will explain why L- system turtle needs an iteration program to read and render the tree.  

An example of a 2-generation tree and its sentence are as follow: 

!F[+/!F[+/!F[+/B][+/B][+/B]][+/!F[+/B][+/B][+/B]][+/!F[+/B][+/B][+/B]]][+/!F[+/@F[+/B][+/B]][+/!F[+/B][+/

B][+/B]][+/!F[+/B][+/B][+/B]]][+/@F[+/!F[+/B][+/B][+/B]][+/!F[+/B][+/B][+/B]]] 
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Figure 23 2-generation tree 

As we know in the previous sections, the width and length shrinking factors of a tree are fixed. They are 

used repeatedly on different triple branching and double branching. Therefore, the distribution of those 

factors is a breath first process as following picture (First number denotes the sequence number of the 

ďƌaŶĐh, ͚W͛ ŵeaŶs Width faĐtoƌ, ͚L͛ ŵeaŶs LeŶgth faĐtoƌͿ 

 

Figure 24 Demonstration of factors distribution 

However, in practice, the sentence of the tree is generated in a depth-first way. The system can only 

read through the string from the beginning to the end. Therefore, the actual render process of the L-

system turtle should be as follows: 

1: W1, L1 2: W2,L2 

3: W3 L3 

4: W1,L1 

5: W2, L2 
6: W3,L3

7: W1, L1 

8: W2, L2 

9: W3, L3

……
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Figure 25 The actual render process 

As a result, before the L-system turtle starts to render a child branch, the index for width and length 

factors should be reserved and aŶ iteƌatioŶ pƌoĐess is Ŷeeded. If sǇsteŵ ƌeads a ͚!͛ oƌ ͚@͛, it ǁill staƌt a 

new render function for triple branching or double branching where the index for length and width 

factors can be reset. Current render function waits until the inner iterations end.

 

An iteration ends when system finishes reading a substring representing a triple branching or double 

branching. However, for the first iteration, it ends when system finishes reading the whole sentence. 

void ALsystemTurtleActor::draw_2_Branch(double branchLength, double branchWidth) 

{ 

 

 int count = 0; 

 int length = p->rules2.second.size() - 1; 

 int angleIndex = 0; 

 int lengthFactorIndex = 3; 

 int lable = 0; 

 

 double rotateX = 0; 

 branchLength = (branchLength < p->minLength) ? p->minLength : branchLength; 

 lable = (currentChar == 1) ? 1 : lable; 

 

 bool endingCondition = true; 

 

 

 while (endingCondition) { 

 

  char current = p->sentence.at(currentChar++); 

 

  if (current == '!') 

  { 

 

   double lengthFactor = p->lengthFactor[lengthFactorIndex]; 

   double widthFactor = p->widthFactor[lengthFactorIndex++]; 

   draw_3_Branch(branchLength * lengthFactor, branchWidth * widthFactor);  

1: W1, L1 

2: W1, L1 

3: W2 L2 4: W3, L3 

5: W2, L2 

6: W1, L1 7: W2, L2 

8: W3, L3 

9: W3, L3 
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 } 

  else if (current == '@') 

  { 

 

   double lengthFactor = p->lengthFactor[lengthFactorIndex]; 

   double widthFactor = p->widthFactor[lengthFactorIndex++]; 

   draw_2_Branch(branchLength * lengthFactor, branchWidth * widthFactor); 

  } 

  else if (current == 'F') 

  { 

 

   forward(branchLength, branchWidth, 0, rotateX); 

  } 

  else if (current == '+') 

  { 

 

   turnYaw(p->branchBeta[angleIndex]); 

  } 

  else if (current == '/') 

  { 

 

   rotateX = p->branchTheta[angleIndex]; 

   turnRoll(p->branchTheta[angleIndex++]); 

  } 

  else if (current == '&') 

  { 

   turnPitch(p->branchBeta[angleIndex++]); 

  } 

  else if (current == '[') 

  { 

   push(); 

  } 

  else if (current == ']') 

  { 

   pop(); 

  } 
  else 

  { 

   forward(branchLength, branchWidth, 1, rotateX); 

  } 

  count++; 

  if (lable == 1) 

  { 

   endingCondition = ((!(count >= length)) || !(currentChar >= p->sentence.size() - 1)); 

  } 

  else { 

   endingCondition = (!(count >= length)); 

  } 

 } 

} 

 

Code 4 Double-branching (LsystemTurtleActor.cpp) 
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4.3.2 Rotation of L-system turtle 

There are 2 types of rotation actions for L-sǇsteŵ tuƌtle. OŶe is ƌotatiŶg aƌouŶd ͞Up͟ ǀeĐtoƌ, the otheƌ is 
ƌotatiŶg aƌouŶd ͞FƌoŶt͟ ǀeĐtoƌ. Like the distribution of length and width factors, the rotation angles 

aƌouŶd ͞up͟ ǀeĐtoƌ aŶd ͞fƌoŶt͟ ǀeĐtoƌ aƌe the same among double branching or triple branching. 

else if (current == '+') 

  { 

 

   turnYaw(p->branchBeta[angleIndex]); 

   count++; 

  } 

  else if (current == '/') 

  { 

 

   turnRoll(p->branchTheta[angleIndex++]); 

   count++; 

  } 

 

Code 5 Angle distribution (LsystemTurtleActor.cpp) 

 

SympodialTrees_3::SympodialTrees_3(int iterationTime) : SympodialTrees(iterationTime) 

{ 

 //z 

 branchBeta[0] = -30.0f; 

 branchBeta[1] = 30.0f; 

 branchBeta[2] = 90.0f; 

 

 //x 

 branchTheta[0] = -30.0f; 

 branchTheta[1] = 35.0f; 

 branchTheta[2] = -40.0f; 

 

Code 6 Angle declaration of sympodial tree (SympodialTree_3.cpp) 

In Unreal Engine 4, to rotate around an aĐtoƌ ͚s ͞loĐal ĐooƌdiŶate aǆis͟, ;iŶ this Đase, the loĐal ĐooƌdiŶate 
aǆis is saŵe as aĐtoƌ͛s Up, FƌoŶt or ‘ight ǀeĐtoƌͿ, a useful fuŶĐtioŶ ͞AddAĐtoƌLoĐal‘otatioŶ͟ ĐaŶ ďe used. 
The paƌaŵeteƌ foƌ this fuŶĐtioŶ is a VeĐtoƌ stƌuĐtuƌe Đalled ͞F‘otatoƌ͟.  It denotes the rotation angles 

around Z axis (Up), Y axis (Right), and X axis (Front). For example, AddActorLocalRotation 

(FRotator(100,0,0)) means rotate the actor around local Z axis by 100 degrees. 
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void ALsystemTurtleActor::turnYaw(double branchAngle) 

{ 

 

 turtleRight = turtleRight.RotateAngleAxis(branchAngle, turtleUp); 

 turtleFoward = turtleFoward.RotateAngleAxis(branchAngle, turtleUp); 

 

 AddActorLocalRotation(FRotator(0, branchAngle, 0)); 

} 

 

void ALsystemTurtleActor::turnRoll(double branchAngle) 

{ 

 turtleRight = turtleRight.RotateAngleAxis(-branchAngle, turtleFoward); 

 turtleUp = turtleUp.RotateAngleAxis(-branchAngle, turtleFoward); 

 

 AddActorLocalRotation(FRotator(0, 0, branchAngle)); 

} 

 

Code 7 Rotation (LsystemTurtleActor.cpp) 

In the previous parts of the report, we mentioned that the L-system turtle actor needs to maintain and 

update three direction vectors up, right and front vector. The reason why we need to keep them is that 

Unreal Engine 4 does not provide real time direction vectors of an actor. Therefore, if an actor has 

rotated before, we cannot get the current direction vectors of it. The front actor is necessary for an L-

system actor to confirm the next location. 

Therefore, as we showed above, the direction vectors are also rotated by using RotateAngleAxis() 

function. This function allows a vector to rotate around another vector, which is suitable in this case. 

 

4.3.3 Forward 

In L-system, turtle will move to next location after several rotations. In nature, tree always grow 

vertically. Therefore, in this project, the turtle will always move towards the diƌeĐtioŶ of ͚Up͛ ǀeĐtoƌ. 
Here, we will first introduce how L-system turtle moves to the next location. 

As we know in the previous section, the length of a branch is acknowledged. Therefore, we can get: ܰ݁݊݋�ݐܽܿ݋ܮݐݔ = ݊݋�ݐܽܿ݋ܮݐ݊݁ݎݎݑܿ ∗  ݌ܷ

 

Figure 26 Demonstration of Moving 
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To spawn a static mesh actor, we need to input a location as well as a rotation. We have already known 

the rotation for it, which is the rotation of L-system actor. Now, we will focus on the location for this 

newly created mesh component.  

As we can see in the following pictures, the branch and trunk can be approximately seen as cylinders. In 

Unreal Engine 4, the position of a static mesh is confirmed by the center point of it. Therefore, we can 

align the center of the branch (or truŶkͿ to the ŵiddle poiŶt ďetǁeeŶ tuƌtle͛s ĐuƌƌeŶt loĐatioŶ aŶd the 
next location. It can be represented as: ݏ݁ܯℎ݊݋�ݐܽܿ݋ܮ = ሺܿ݊݋�ݐܽܿ݋ܮݐ݊݁ݎݎݑ +  ʹ/ሻ݊݋�ݐܽܿ݋ܮݐݔ݁݊

 

 

Figure 27 Demonstration of static mesh actors 

 

Figure 28 Confirming location (Ideal design) 

Current location 

Next location 

Mesh’s center point = (nextLocation+currentLocation)/2 
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This solution is not perfect. Ideally, the vertical length of the mesh should be the same as the length of 

branch that we preset. Yet, they are slightly different. The length of the branch could be longer than the 

actual length of the mesh. The scale of the mesh is not defined by concrete numbers. It needs to be 

adjusted by multiplying constants in different dimensions (x, y, or z). The length and width of branches 

are only the parameters that affect the actual length of width of the mesh. Here, we call the location 

ĐalĐulated ďǇ the eƋuatioŶ ďeloǁ as ͚Pƌeset Ŷeǆt loĐatioŶ͛ �݊݋�ݐܽܿ݋݈ ݐݔ݁݊ ݐ݁ݏ݁ݎ = ݊݋�ݐܽܿ݋ܮݐ݊݁ݎݎݑܿ ∗  ݌ܷ

As a result, we need to manually set the next location as the location of sphere component of branches 

or trunk after the mesh actor is spawned. So that the child branches will be generated at correct 

location. 

 

Figure 29 Actual confirmation of next location 

  if (currentChar == 2) 

   { 

    ATreeTrunkComponent* treeComponent = GWorld->GetWorld()-

>SpawnActor<ATreeTrunkComponent>(treeComponent->StaticClass(), (turtleLocation + nextLocation) / 2, GetActorRotation()); 

    treeComponent->loadComponent(branchWidth, branchLength); 

    treeTrunkComponentSet.Add(treeComponent); 

    turtleLocation = treeComponent->SphereMeshComponent->GetComponentLocation(); 

   } 

   else 

   { 

    AStaticTreeComponent* treeComponent = GWorld->GetWorld()-

>SpawnActor<AStaticTreeComponent>(treeComponent->StaticClass(), (turtleLocation + nextLocation) / 2, GetActorRotation()); 

    treeComponent->loadComponent(branchWidth, branchLength); 

    treeComponentSet.Add(treeComponent); 

    turtleLocation = treeComponent->SphereMeshComponent->GetComponentLocation(); 

   } 

 

Code 8 Spawning static mesh actors (LsystemTurtleActor.cpp) 

Current location 

Preset next location(nextLocation+currentLocation)/2 

Mesh’s location 

Modified next location 
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4.3.4 Push and pop 

The status of L-system turtle is consisted of location, rotation and direction vector (up, forward, right). 

Therefore, 2 stacks that store FVector and 1 stack that stores FRotator are needed. 

void ALsystemTurtleActor::push() 

{ 

 locationStore.push(turtleLocation); 

 rotationStore.push(turtleFoward); 

 rotationStore.push(turtleUp); 

 rotationStore.push(turtleRight); 

 

 rotatorStore.push(GetActorRotation()); 

} 

 

void ALsystemTurtleActor::pop() 

{ 

 turtleLocation = locationStore.top(); 

 locationStore.pop(); 

 

 turtleRight = rotationStore.top(); 

 rotationStore.pop(); 

 

 turtleUp = rotationStore.top(); 

 rotationStore.pop(); 

 

 turtleFoward = rotationStore.top(); 

 rotationStore.pop(); 

 

 SetActorRotation(rotatorStore.top()); 

 rotatorStore.pop(); 

} 

 

4.3.5 Delete tree 

To change the shape of the tree in real time, we need a delete function for L-system turtle. L-system 

turtle should delete all components of a tree and starts to create a new one. 

In Unreal Engine 4, an object of actor class is declared as a reference. Therefore, we can save all 

references of component objects into arrays. Iterating these arrays and delete every component object 

by using function Destroy(). The Destroy() function is an embedded function of Actor. 

ALeafComponent* leafComponent = GWorld->GetWorld()-

>SpawnActor<ALeafComponent>(leafComponent->StaticClass(), turtleLocation, 

GetActorRotation()); 

   leafComponent->SetActorRelativeScale3D(FVector(1, 1.5, 1)); 

 

   if (treeComponentSet.Num() != 0) 

   { 

    treeComponentSet.Last()->SphereMeshComponent->SetVisibility(false); 

 

    //Add this component to the array 

    leafComponentSet.Add(leafComponent); 

   }  
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   if (currentChar == 2) 

   { 

    ATreeTrunkComponent* treeComponent = GWorld->GetWorld()-

>SpawnActor<ATreeTrunkComponent>(treeComponent->StaticClass(), (turtleLocation + nextLocation) / 2, GetActorRotation()); 

    treeComponent->loadComponent(branchWidth, branchLength); 

 

    //Add this component to the array 

    treeTrunkComponentSet.Add(treeComponent); 

    turtleLocation = treeComponent->SphereMeshComponent->GetComponentLocation(); 

   } 

   else 

   { 

    AStaticTreeComponent* treeComponent = GWorld->GetWorld()-

>SpawnActor<AStaticTreeComponent>(treeComponent->StaticClass(), (turtleLocation + nextLocation) / 2, GetActorRotation()); 

    treeComponent->loadComponent(branchWidth, branchLength); 

    //Add this component to the array 

    treeComponentSet.Add(treeComponent); 

    turtleLocation = treeComponent->SphereMeshComponent->GetComponentLocation(); 

   } 

 

Code 9 Store references (LsystemTurtleActor.cpp) 

void ALsystemTurtleActor::deleteTree() 

{ 

 for (auto n : treeComponentSet) { 

  n->Destroy(); 

 } 

 

 for (auto n : leafComponentSet) { 

  n->Destroy(); 

 } 

 

 for (auto n : treeTrunkComponentSet) { 

  n->Destroy(); 

 } 

} 

 

Code 10 Iterate arrays (LsystemTurtleActor.cpp) 

4.4 Mesh component 

4.4.1 Scale of the mesh 

In the pƌeǀious seĐtioŶ, ǁe kŶoǁ that the paƌaŵeteƌs ͚ǁidth͛ aŶd ͚leŶgth͛ of ďƌaŶĐhes are the factors 

that affect the actual width and length of branch meshes. In this section, we will focus on the 

implementation of adjusting scale of meshes. 

First, we need to clarify that the original meshes of three components (branch, trunk, leaf), are out of 

shape. They need to be adjusted in the first place of spawning. 
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Figure 30 A branch, trunk, and leaf (Original) 

Specifically, the first phase of scale adjustment takes place in the construction function. 

  FVector scale = MeshComponent->GetRelativeScale3D(); 

  scale.X *= 4.056; 

  scale.Y *= 5.131; 

  MeshComponent->SetRelativeScale3D(scale); 

 

Code 11 First scaling adjustment of branch (StaticTreeComponent.cpp) 

 

  FVector scale = MeshComponent->GetRelativeScale3D(); 

  scale.X *= 3.556; 

  scale.Y *= 4.031; 

  MeshComponent->SetRelativeScale3D(scale); 

 

Code 12 First scaling adjustment of trunk (TreeTrunkComponent.cpp) 

Second phase of scaling adjustment happens after mesh actors are spawned. The mesh component 

actors provide a method to input the branch length as parameter.  

 

void AStaticTreeComponent::loadComponent(double width, double length) 

{ 

 SetActorScale3D(FVector(width / 82.0f, width / 82.0f, length / 60.0f)); 

 //MeshComponent->SetWorldScale3D(FVector(width / 100.0f, width / 100.0f, length / 100.0f)); 

 SphereMeshComponent->SetWorldScale3D(FVector(width / 140.0f, width / 140.0f, width / 80.0f)); 

} 

 

Code 13 Method to adjust scale (StaticTreeComponent.cpp) 
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void ATreeTrunkComponent::loadComponent(double width, double length) 

{ 

 

 SetActorScale3D(FVector(width / 137.0f, width / 137.0f, length / 150.0f)); 

 //MeshComponent->SetWorldScale3D(FVector(width / 100.0f, width / 100.0f, length / 100.0f)); 

 SphereMeshComponent->SetWorldScale3D(FVector(width / 130.0f, width / 128.0f, width / 73.0f)); 

} 

 

Code 14 Method to adjust scale (TreeTrunkComponent.cpp) 

4.5 User interface 

In this section, we will not discuss the declaration of every component in this interface. Instead, we will 

introduce how input data transmits from user interface to L-system turtle. 

4.5.1 Overall design of user interface 

 

Figure 31 Design of user interface 

Users can input the parameters that control the shape of the tree. Five default settings of trees are 

provided. When users click generate, the system will generate a tree in the middle of the screen. If user 

click reset, all input content can be erased. 

4.5.2 Implementation of user interface 

IŶ UŶƌeal EŶgiŶe ϰ, a useƌ iŶteƌfaĐe ĐaŶ ďe desigŶed ďǇ a ǀisual deǀelopŵeŶt tool Đalled ͚BluepƌiŶt͛. The 
design above is done by blueprint. Yet, the function of user interface should be developed in C++ in this 

pƌojeĐt. Theƌefoƌe, a liŶk ďetǁeeŶ ͚ďluepƌiŶt͛ desigŶ aŶd C++ Đlass is ŶeĐessaƌǇ. 

Fiƌst, ǁe Đƌeate a C++ ǁidget Đlass Đalled ͞MǇWidget͟. TheŶ ǁe ĐaŶ Đƌeate a ďluepƌiŶt ǁidget Đlass 
deƌiǀed fƌoŵ ͞MǇWidget͟. 
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Figure 32 A widget blueprint class 

After finishing the visual design of the widget, we can connect the blueprint widget class to the C++ 

widget class each component by each component with the following code. This is only an example of 

implementation of button, there are many other components in this widget class. 

 

    if (UButton* btn = Cast<UButton>(GetWidgetFromName("Generate"))) 

    { 

        FScriptDelegate Del; 

        Del.BindUFunction(this, "OnBtnGenerateClick"); 

        btn->OnClicked.Add(Del); 

    } 

 

Code 15 An Example of connecting component (MyUserWidget.cpp) 

Next, in the game mode class, we need to instantiate the widget class like below: 

// Check if there is already a widget class exists 

(MyWidgetInstance) 

    { 

        MyWidgetInstance->RemoveFromViewport(); 

        MyWidgetInstance = nullptr; 

    } 

//Load the class of widget 

    if (UClass* MyWidgetClass = LoadClass<UMyUserWidget>(NULL, 

TEXT("WidgetBlueprint'/Game/NewWidgetBlueprint.NewWidgetBlueprint_C'"))) 

    { 

       //Get user controller 

        if (APlayerController* PC = GetWorld()->GetFirstPlayerController()) 

        { 

            //Create a widget object 

            MyWidgetInstance = CreateWidget<UMyUserWidget>(PC, MyWidgetClass); 

            if (MyWidgetInstance) 

            { 

                MyWidgetInstance->AddToViewport(); 

            } 

        } 

        UE_LOG(LogTemp, Warning, TEXT("Added")); 

    } 

 

Code 16 Declaration of widget object (IPGameModeBase.cpp) 
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In widget class, we declare a L-system turtle pointer. When the widget class is instantiated, we assign 

the reference of L-system turtle object to this pointer. So that we can transmit all input data to L-system 

turtle.

        lsystem->p->lengthFactor[0] = FCString::Atod(*lengthFactor->GetText().ToString()); 

        lsystem->p->lengthFactor[1] = FCString::Atod(*lengthFactor_1->GetText().ToString()); 

        lsystem->p->lengthFactor[2] = FCString::Atod(*lengthFactor_2->GetText().ToString()); 

        lsystem->p->lengthFactor[3] = FCString::Atod(*lengthFactor_3->GetText().ToString()); 

        lsystem->p->lengthFactor[4] = FCString::Atod(*lengthFactor_4->GetText().ToString()); 

        UE_LOG(LogTemp, Warning, TEXT("lengthFactor: %f,%f,%f,%f,%f"), lsystem->p->lengthFactor[0], lsystem->p-

>lengthFactor[1], lsystem->p->lengthFactor[2], lsystem->p->lengthFactor[3], lsystem->p->lengthFactor[4]); 

 

        lsystem->p->GenerateSentence(); 

        lsystem->render(); 

 

Code 17 Example of data transmit and generating a tree (MyUserWidget.cpp) 

    lsystem = GWorld->GetWorld()->SpawnActor<ALsystemTurtleActor>(lsystem->StaticClass(), FVector(0, 0, 70), FRotator(0, 0, 

0)); 

 

    MyWidgetInstance->loadTurtle(lsystem); 

 

Code 18 Create and assign L-system turtle object (IPGameModeBase.cpp) 

4.6 Game mode 

Game mode is like the Main function in Java. It is the entry point of the program in Unreal Engine 4 

project. In this project, the instantiation of the L-system turtle class and the widget class happen within 

the BeginPlay() function of Game mode class. BeginPlay() function will be run when the program starts. 

 if (MyWidgetInstance) 

    { 

        MyWidgetInstance->RemoveFromViewport(); 

        MyWidgetInstance = nullptr; 

    } 

    if (UClass* MyWidgetClass = LoadClass<UMyUserWidget>(NULL, 

TEXT("WidgetBlueprint'/Game/NewWidgetBlueprint.NewWidgetBlueprint_C'"))) 

    { 

        if (APlayerController* PC = GetWorld()->GetFirstPlayerController()) 

        { 

            MyWidgetInstance = CreateWidget<UMyUserWidget>(PC, MyWidgetClass); 

            if (MyWidgetInstance) 

            { 

                MyWidgetInstance->AddToViewport(); 

            } 

        } 

    } 

    lsystem = GWorld->GetWorld()->SpawnActor<ALsystemTurtleActor>(lsystem->StaticClass(), FVector(0, 0, 70), FRotator(0, 0, 

0)); 

    MyWidgetInstance->loadTurtle(lsystem); 

 

Code 19 BeginPlay() in Game mode (IPGameModeBase.cpp 
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4.7 Important problems during implementation 

4.7.1 Rough and bumpy surface of mesh component 

In the early stage of development, the mesh of branch is made of a standard cylinder and a standard 

circle. It will come up with a problem that the surface of branch is too smooth to look natural. 

 

Figure 33 Previous mesh of branch 

To solve this problem, realistic models for branch and trunk are needed. After searching a model library 

called Quixel Bridge, a better model for tree trunk has been found. As we can see in the demonstration 

figures, the surface of this trunk is rough and bumpy. At the same time, the upper part of the trunk is 

close to a cylinder. Therefore, we can crop the upper part of the trunk and take it as the model for 

branch. 

 

Figure 34 Tree trunk 
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Figure 35 Branch 

What needs to be mentioned is that the material for those meshes are different than the material we 

use on the mesh component. The cropping process is done on 3DS MAX 2019 

   

Figure 36 Cropping process on 3DS MAX 2019 

4.7.2 Performance improvement 

One significant issue that affects the performance is lighting in the scene. There are two of the lighting 

types in Unreal Engine 4 that are needed to introduce. 

(1) Stationary lights [13] 

Stationary Lights are lights that are intended to stay in one position, but are able to change in other 

ways, such as their brightness and color. This is the primary way in which they differ from Static Lights, 

which cannot change in any way during gameplay. However, it should be noted that runtime changes to 

brightness only affect the direct lighting. Indirect (bounced) lighting, since it is pre-calculated by 

Lightmass, will not change. 

Of the three light mobilities, Stationary lights tend to have the highest quality, medium mutability, and 

medium performance cost. 

Trunk Branch 
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(2) Static light [14] 

Static Lights are lights that cannot be changed or moved in any way at runtime. They are calculated only 

within Lightmaps, and once processed, have no further impact on performance. Movable objects cannot 

integrate with static lights, so the usefulness of static lights is limited. 

Of the three light mobilities, Static lights tend to have medium quality, lowest mutability, and the lowest 

performance cost. 

By default, the light in a map will be a stationary light. It causes significant impact on performance 

because in this project, tens of thousands of static mesh actors are created. It means that the system 

must calculate real-time lighting for all those actors. The frame rate in inspecting window is very low.  

 

Figure 37 Frame rate testing before improving 

 

Figure 38 Default lighting setting in a map 
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By changing the light into static, the performance of program has improved. The frame rate has 

increased significantly. However, the quality of light is also lower. 

 

Figure 39 Frame rate test after improving 

5.Results and Evaluation 

5.1 User interface 

 

Figure 40 User interface 
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5.1 Effect of each parameter 

Trees are controlled by parameters that are mentioned above. Therefore, changing in each parameter of 

one type of tree is necessary. 

Basic parameter of a type of tree: 

Axiom � = � ሺ͵ͲͲ,͹Ͳሻ, Probabilityܤ = {Ͳ.͸,Ͳ.Ͷ}, generation = 9, initial length = 300, 

Initial width = 90,  

Branch angle around Z axis { −͵Ͳ°, ͵Ͳ°, ͻͲ°}, Branch angle around X axis { −͵Ͳ°, ͵ͷ°,−ͻͲ°} 
Width parameters: ݌ଵ = Ͳ.ͷ  ݍଵ = Ͳ.͵  ݌ଶ = Ͳ.͵ 

Length parameters: { Ͳ.͸ͺ, Ͳ.͹ͺ, Ͳ.ͷͺ, Ͳ.͸ͺ, Ͳ.͹ͺ} 
Rewriting rules: {ܤ → ! ܤ} ,{[ܤ/+][ܤ/+] [ܤ/+]ܨ → !  {[ܤ/+] [ܤ/+]ܨ

 

Figure 41 Same type of tree with different generation (7,9) 
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Figure 42 Same type of tree with different triple branching probability (0.4,0.6) 

 

 

Figure 43 Same type of tree with different initial length (300,400) 
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Figure 44 Same type of tree with different initial width (70,80) 

 

Figure 45 Same type of tree with different rotation angles around z-axis (-45,45,105) (-30,30,90) 
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Figure 46 Same type of tree with different rotation angles around x-axis (-30,35, -40) (-20,30, -35) 

5.2 Different types of trees 

Axiom � = � ሺ͵ͲͲ,͸Ͳሻ, Probabilityܤ = {Ͳ.ͺ,Ͳ.ʹ}, generation = 8, initial length = 300, 

Initial width = 60,  

Branch angle around Z axis { −͵Ͳ°, ͵Ͳ°, ͻͲ°}, Branch angle around X axis { ʹ͹°,−͸ͺ°, ͸Ͳ°} 
Width parameters: ݌ଵ = Ͳ.ͷ  ݍଵ = Ͳ.͵  ݌ଶ = Ͳ.͵ 

Length parameters: { Ͳ.͸ͷ, Ͳ.͹ͳ, Ͳ.ͷͷ, Ͳ.͸ͷ, Ͳ.͹ͳ} 
Rewriting rules: {ܤ → ! ܤ} ,{[ܤ/+][ܤ/+] [ܤ/+]ܨ → !  {[ܤ/+] [ܤ/+]ܨ

 

Figure 47 Sympodial tree _1 
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Axiom � = � ሺʹͲͲ,ͷͲሻ, Probabilityܤ = {Ͳ.͸,Ͳ.Ͷ}, generation = 9, initial length = 200, 

Initial width = 50,  

Branch angle around Z axis { −͵Ͳ°, ͵Ͳ°, ͻͲ°}, Branch angle around X axis { ʹͷ°,−ʹͷ°, ͸Ͳ°} 
Width parameters: ݌ଵ = Ͳ.Ͷͷ  ݍଵ = Ͳ.͵  ݌ଶ = Ͳ.ͷ 

Length parameters: { Ͳ.ͷ, Ͳ.ͺͷ, Ͳ.ͷͷ, Ͳ.ͷ, Ͳ.ͺͷ} 
Rewriting rules: {ܤ → ! ܤ} ,{[ܤ/+][ܤ/+] [ܤ/+]ܨ → !  {[ܤ/+] [ܤ/+]ܨ

 

Figure 48 Sympodial tree _2 

Axiom � = � ሺ͵ͲͲ,͹Ͳሻ, Probabilityܤ = {Ͳ.͹,Ͳ.͵}, generation = 9, initial length = 300, 

Initial width = 70,  

Branch angle around Z axis { −͵Ͳ°, ͵Ͳ°, ͻͲ°}, Branch angle around X axis { −ʹͲ°, ͵ͷ°,−ͶͲ°} 
Width parameters: ݌ଵ = Ͳ.ͷ  ݍଵ = Ͳ.͵  ݌ଶ = Ͳ.͵ 

Length parameters: { Ͳ.͸ͷ, Ͳ.͹ͳ, Ͳ.ͷͷ, Ͳ.͸ͷ, Ͳ.͹ͳ} 
Rewriting rules: {ܤ → ! ܤ} ,{[ܤ/+][ܤ/+] [ܤ/+]ܨ → !  {[ܤ/+] [ܤ/+]ܨ
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Figure 49 Sympodial tree _3 

Axiom � = � ሺͳʹͲ,ͷͲሻ, Probabilityܤ = {Ͳ.͹,Ͳ.͵}, generation = 9, initial length = 120, 

Initial width = 50,  

Branch angle around Z axis { −ͻͲ°, ͻͲ°,−ͷ°}, Branch angle around X axis { ͷ°,−͵Ͳ°,−ͶͲ°} 
Width parameters: ݌ଵ = Ͳ.ͷ  ݍଵ = Ͳ.͵  ݌ଶ = Ͳ.͸ 

Length parameters: { Ͳ.ͻͷ, Ͳ.͹ͷ, Ͳ.͸ͺ, Ͳ.ͻͷ, Ͳ.͹ͷ} 
Rewriting rules: {ܤ → ! ܤ} ,{[ܤ/+][ܤ/+] [ܤ/+]ܨ → !  {[ܤ/+] [ܤ/+]ܨ

 

Figure 50 Sympodial tree _4 
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Axiom � = � ሺͳͲͲ,ʹͲሻ, Probabilityܤ = {Ͳ.͸,Ͳ.Ͷ}, generation = 9, initial length = 120, 

Initial width = 20,  

Branch angle around Z axis { ͳ͵͹°, ͳ͵͹°,−ͷ°}, Branch angle around X axis { −ͷ°, ʹͷ°,−ͶͲ°} 
Width parameters: ݌ଵ = Ͳ.Ͷ  ݍଵ = Ͳ.͵  ݌ଶ = Ͳ.Ͷ 

Length parameters: { Ͳ.ͻͷ, Ͳ.͹ͷ, Ͳ.͸ͺ, Ͳ.ͷͷ, Ͳ.ͻͷ} 
Rewriting rules: {ܤ → ! ܤ} ,{[ܤ/+] [ܤ/+]ܨ →  {[ܤ/+] [ܤ/+]ܨ!

 

Figure 51 Sympodial tree _5 
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5.3 Observation from different perspective 

 

Figure 52 Observe the tree from the right 

 

Figure 53 Observe the tree from the bottom 

 

Figure 54 Observe the tree from the top 
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6. Future work 

Due to time constraints during this project, the program did not implement the export 3D model 

function. In this project, trees are formed by tens of thousands of static mesh components, and they are 

independent from each other. To export the tree, we need to combine all components as one static 

mesh actor. However, there is not a simple way to automatically combine actors when the programming 

is running. A potential solution is to extract the mesh data from the lower level of render pipeline and 

combine those data, which requires longer time to study. 

As mentioned in section 4.7.1, one important feature that makes tree look realistic is the surface of 

trunk and branch. In nature, the surface of a tree is bumpy and rough. Although in this project, this 

problem can be solved by using a better 3D model, the branch and trunk of the tree will be completely 

ideŶtiĐal. BeĐause theǇ aƌe usiŶg a fiǆed ϯD ŵodel. This ĐaŶ ďe poteŶtiallǇ fiǆed ďǇ usiŶg ͚ďuŵp ŵap͛ 
and apply random bump map onto the surface of branches and trunk.  

As described in initial plan, there are more than one type of tree in nature. A potential future work can 

be studying and implementing other types of trees with different rewriting rules. For example, 

monopodial tree.  

Another area for potential improvement is that the branches of a tree are all straight. In nature, 

branches are usually curving. Although this can be solved by using B Spline [16]. B Spline curve line 

simulation is broadly used in many areas, including plants modeling. In this project, B Spline can be used 

to simulate a curved branch by combining several straight branches with certain angles. However, the 

theory of B Spline is complicated, and it requires more time to understand and to be implemented in 

practice. 

7. Conclusions 

The primary aim of this project is to research and implement L-system on Unreal Engine 4, researching 

plants morphology and generate a realistic plant. The L-system was successfully implemented in C++ and 

a system based on C++ has been designed and it has been successfully run on Unreal Engine 4. The 

results of the evaluation have shown that a realistic 3D tree can be generated. User can change the 

shape of it by modifying the parameters. Although the parameters that are extracted from plants cannot 

perfectly simulate and describe the plants perfectly, it has left a research direction for the future work. 

The secondary aim was to develop a system with a user interface that allows user to adjust the 

parameters directly and import customized 3D model and material. An export functionality is also 

expected, it provides a way for user to export the tree that has been generated as an FBX. File for future 

use. The secondary aim has partly achieved. A user interface has been implemented and user can 

ĐhaŶge tƌee͛s paƌaŵeteƌ. Hoǁeǀeƌ, the eǆpoƌt aŶd iŵpoƌt fuŶĐtioŶalitǇ aƌe ŵissiŶg. As disĐussed ďƌiefly 

in Section 7, this is potential for improvement. 
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8. Reflection on Learning 

The project has achieved its practical aims with deliverable results. In addition to it, I have also benefit 

from completing the project. By designing and developing L-system on Unreal Engine 4 by C++, I have 

expanded my programming skills and the familiarity of Unreal Engine 4 platform, as well as computer 

graphics. I am deeply interested in them, and I hope to keep researching in field of computer graphics 

and game engineering. This project has also provided an opportunity to explore mathematical plants 

simulations. Although I cannot invent a simulation method, it is also very helpful to implement an 

existing method. 

The project has also been very helpful to my time management skills and carrying out a project from 

start to finish. By completing the project, I have  had the opportunity to research and to learn how to 

use Unreal Engine 4, which is my intended future area to work in. 
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