

FiŶal ‘epoƌt

GENE‘ATING AND VI“UALI“ING

‘EALI“TIC PLANT“

CM3203 One Semester Individual Project

Cardiff School of Computer Science and Informatics

Author: Yao Xiao

Supervisor: Professor Yukun Lai

Moderator: Dr Sylwia Polberg

PAGE 1

Abstract

Plants come with complicated structures and abundant details . 3D virtual plant requires combination of

 plant morphology , computer science , and rendering techniques.

This report covers an implementation of plants modelling algorithm known as L-system. The project

aims to create an application that visualize 3D realistic plants. It requires to abstract the morphological

structure and to analyze the expanding and branching progress of real plants, as well as a rendering

process that draws the plants on the screen. Furthermore, to generate plants with random structure

which makes it more natural. The report will also discuss the success and major problems of the process

of implementation, as well as failures of results.

Results will be analyzed and discussed by adjusting parameters that change the shape of 3D virtual

plants. Ideas to expand the solution will be put forward, as well as the reflection on the learning during

implementation, including the positives and negatives.

PAGE 2

Acknowledgements

I would like to thank my supervisor, Professor Yukun Lai, for his help and invaluable suggestions and

criticism at every stage of this project.

PAGE 3

Table of Contents

Generating and visualising realistic plants ... 0

Abstract .. 1

Acknowledgements ... 2

Table of Contents .. 3

Table of figures ... 5

Table of code fields .. 7

1.Introduction ... 7

2.Background .. 8

2.1 Plants classification by stem type and branching description ...8

2.2 A plant branching pattern: Sympodial branching ... 10

2.2.1 Related concepts of sympodial branching ... 10

2.3 Plants modelling based on L-system .. 12

2.3.1 Principle of L-system .. 12

2.3.2 Explanation by L- system turtle in 2D plane .. 12

2.3.2 Explanation by L- system turtle in 3D space .. 14

2.3.3 Parametric L-system .. 16

2.4 Brief introduction of Unreal Engine 4 .. 16

2.4.1 Map .. 16

2.4.2 Actor class .. 17

Ϯ.ϰ.Ϯ AĐtoƌ͛s ĐoŵpoŶeŶt .. 18

2.4.3 Textures ... 19

2.4.4 Game modes .. 19

3.Specification and Design ... 19

3.1 Parametric L-system construction of sympodial tree component ... 19

3.11 Construction of sympodial tree .. 19

3.2 L-system turtle component ... 21

3.2.1 Basic information to describe the status of L-system turtle .. 21

3.2.2 Actions of L-system turtle .. 22

3.3 Mesh component.. 23

3.3.1 Tree trunk .. 23

3.3.2 Branch .. 24

3.3.3 Leaf ... 24

3.4 Working mechanism of the system .. 24

4.Implementation .. 25

4.1 UML Class diagram ... 26

PAGE 4

4.2 Tree component ... 26

4.2.1 Generate random numbers ... 26

4.2.2 Generate sentence ... 27

4.3 L-system turtle component ... 28

4.3.1 Overall working process: Iteration ... 28

4.3.2 Rotation of L-system turtle .. 32

4.3.3 Forward .. 33

4.3.4 Push and pop ... 36

4.3.5 Delete tree ... 36

4.4 Mesh component.. 37

4.4.1 Scale of the mesh ... 37

4.5 User interface ... 39

4.5.1 Overall design of user interface ... 39

4.5.2 Implementation of user interface .. 39

4.6 Game mode .. 41

4.7 Important problems during implementation ... 42

4.7.1 Rough and bumpy surface of mesh component .. 42

4.7.2 Performance improvement.. 43

5.Results and Evaluation.. 45

5.1 User interface ... 45

5.1 Effect of each parameter ... 46

5.2 Different types of trees ... 49

5.3 Observation from different perspective ... 53

6. Future work ... 54

7. Conclusions .. 54

8. Reflection on Learning ... 55

9. References ... 56

PAGE 5

Table of figures

Figure 1 The picture of a woody plant .. 9

Figure 2 An axial tree. (Prusinkiewicz P and Lindenmayer A, 1990) ... 9

Figure 3 Sympodial branching ... 10

Figure 4 Branching order .. 10

Figure 5 Branching angle ... 11

Figure 6 Numbers of branching .. 11

Figure 7 Interpretation of the control string. (Prusinkiewicz P and Lindenmayer A, 1990) 13

Figure 8 Demonstration of L-system turtle ... 14

Figure 9 Controlling the turtle in 3D space. (Prusinkiewicz P and Lindenmayer A, 1990) 15

Figure 10 A map in Unreal Engine 4 .. 17

Figure 11 Location and rotation .. 17

Figure 12 Location and rotation of an object ... 17

Figure 13 The world coordinate(left) and local coordinate system(right) .. 18

Figure 14 A static mesh actor.. 18

Figure 15 Branches with different materials .. 19

Figure 16 Demonstration of direction vectors .. 22

Figure 17 Demonstration of a trunk and its information.. 22

Figure 18 Working process ... 23

Figure 19 Tree trunk component .. 24

Figure 20 Branch component .. 24

Figure 21 Leaf component .. 24

Figure 22 Working mechanism ... 25

Figure 23 2-generation tree .. 29

Figure 24 Demonstration of factors distribution .. 29

Figure 25 The actual render process ... 30

Figure 26 Demonstration of Moving ... 33

Figure 27 Demonstration of static mesh actors .. 34

Figure 28 Confirming location (Ideal design) .. 34

Figure 29 Actual confirmation of next location .. 35

Figure 30 A branch, trunk, and leaf (Original)... 38

PAGE 6

Figure 31 Design of user interface .. 39

Figure 32 A widget blueprint class .. 40

Figure 33 Previous mesh of branch .. 42

Figure 34 Tree trunk .. 42

Figure 35 Branch ... 43

Figure 36 Cropping process on 3DS MAX 2019 ... 43

Figure 37 Frame rate testing before improving .. 44

Figure 38 Default lighting setting in a map ... 44

Figure 39 Frame rate test after improving .. 45

Figure 40 User interface .. 45

Figure 41 Same type of tree with different generation (7,9).. 46

Figure 42 Same type of tree with different triple branching probability (0.4,0.6) 47

Figure 43 Same type of tree with different initial length (300,400) ... 47

Figure 44 Same type of tree with different initial width (70,80) .. 48

Figure 45 Same type of tree with different rotation angles around z-axis (-45,45,105) (-30,30,90) 48

Figure 46 Same type of tree with different rotation angles around x-axis (-30,35, -40) (-20,30, -35) 49

Figure 47 Sympodial tree _1 ... 49

Figure 48 Sympodial tree _2 ... 50

Figure 49 Sympodial tree _3 ... 51

Figure 50 Sympodial tree _4 ... 51

Figure 51 Sympodial tree _5 ... 52

Figure 52 Observe the tree from the right .. 53

Figure 53 Observe the tree from the bottom ... 53

Figure 54 Observe the tree from the top .. 53

PAGE 7

Table of code fields

Code 1 Generate probability for different branching(SympodialTree_3.cpp) ... 27

Code 2 Generate random numbers sequence(SympodialTree.cpp) .. 27

Code 3 Rewrite character(SympodialTree.cpp) .. 28

Code 4 Double-branching (LsystemTurtleActor.cpp).. 31

Code 5 Angle distribution (LsystemTurtleActor.cpp) .. 32

Code 6 Angle declaration of sympodial tree (SympodialTree_3.cpp) .. 32

Code 7 Rotation (LsystemTurtleActor.cpp) ... 33

Code 8 Spawning static mesh actors (LsystemTurtleActor.cpp) ... 35

Code 9 Store references (LsystemTurtleActor.cpp) .. 37

Code 10 Iterate arrays (LsystemTurtleActor.cpp) ... 37

Code 11 First scaling adjustment of branch (StaticTreeComponent.cpp) .. 38

Code 12 First scaling adjustment of trunk (TreeTrunkComponent.cpp) .. 38

Code 13 Method to adjust scale (StaticTreeComponent.cpp) ... 38

Code 14 Method to adjust scale (TreeTrunkComponent.cpp) ... 39

Code 15 An Example of connecting component (MyUserWidget.cpp) .. 40

Code 16 Declaration of widget object (IPGameModeBase.cpp) .. 40

Code 17 Example of data transmit and generating a tree (MyUserWidget.cpp) 41

Code 18 Create and assign L-system turtle object (IPGameModeBase.cpp) ... 41

Code 19 BeginPlay() in Game mode (IPGameModeBase.cpp ... 41

 1.Introduction

With the huge development of 3D technology, the topological structure and geometrical morphology of

plants has become a key researching point within related field. By using computer to generate realistic

plants, time expenses can be saved from constructing 3D plants model manually. In terms of realness of

plants, computer program can generate random shape of plants which is an advantage compared to

manual construction.

PAGE 8

The project aims to generate and visualize realistic virtual plants on computer. However, we will need to

solve 2 aspects of problems. First, to learn and describe the structure of plants and made it into a digital

term. Second, render the plants on computer based on the digital structure of plants.

Topological structure is a significant symbol for plants, which contains the structure and morphology of

plant organs. There are several methods to simulate structure of plants, in this project, we will focus on

L-system. L-system is a parallel rewriting system producing control string. Control string starts with

siŵple sǇŵďol stƌiŶg Đalled ͞aǆioŵ͟ stƌiŶg aŶd ďǇ eǆpaŶdiŶg each symbol into larger string of symbols, a

complex control string can be used to describe the structure of plants. In this project, L-system will be

implemented by C++.

To render the digital structure of plants, a 3D graphics tool called Unreal Engine 4 will be used in this

project. Unreal Engine 4 is a game engine developed by Epic Games. It has been used in variety of

genres of 3D games and has seen adoption by other industries like film and television industry. In

comparison with other render method like using graphics API like OpenGL, Unreal Engine 4 can be

efficient in generating more realistic result, in terms of lighting, model importing and texture attaching.

This report will cover the implementation of the L-system algorithm from beginning to end. It starts with

introducing the mechanism of L-system as well as the Unreal Engine 4. Following with the

implementation and result of L-system. Finally, the report will discuss the failure of the projects

compared to the initial planning and the potential future work.

2.Background

2.1 Plants classification by stem type and branching description

Plant is classified as herbaceous plant and woody plant by stem type. Herbaceous plants are plants that,

by definition, have non-woody stems. A woody plant is a plant that produces wood as its structural

tissue and thus has a hard stem. Woody plants are usually either trees, shrubs, or lianas (Wikipedia,

n.d.)[1]. Considering the time limit of this project, we will only research and discuss tree, a type of

woody plant, in this project.

PAGE 9

Figure 1 The picture of a woody plant

There are three forms of branching. The first one is between a trunk and branches, the second one is

between branches and branches, and the last one is between branches and leaves. Considering the

features of L-system, in this project, we will only focus on the ones which relate to a trunk and branches.

In nature, leaves have more complex branching strategy that they tend to be soft and drooping.

Therefore, we will not focus on branching form between branches and leaves.

The way we use to describe the branching is called ͞aǆial tƌee͟[2]. A demonstration of an axial tree and

its definition are as follows:

Figure 2 An axial tree. (Prusinkiewicz P and Lindenmayer A, 1990)

As shown in the figure, the trunk starts at tree root is called zero order axis, or main axis. Grows from

the trunk, the next axis is called first order axis, and so on. The shape of each axis is the same, but child

axis is smaller. Overall, the shape of each axis is basically same as the shape of the whole tree, which is

an important feature of L-system.

PAGE 10

2.2 A plant branching pattern: Sympodial branching

Sympodial branching is one of the plant branching patterns. It means that after a period time of

growing, the main branch will stop growing, or even die and forming lateral branch to grow. This patten

will also be applied to the new branches repeatedly. In this project, sympodial branching will be

implemented.

Figure 3 Sympodial branching

2.2.1 Related concepts of sympodial branching

Three concepts that make influences are given to explain sympodial branching.

(1) Branching order

The axis originating at the root of the entire plant has order zero. A branch originating as a lateral

segment of an n-order parent branch has order n+1[2]. As shown in the figure 6, by its definition, the

tree has at most 2 orders of branching.

Figure 4 Branching order

(2) Branching angle

Second order branch

First order branch Zero order branch

(main axis)

PAGE 11

BƌaŶĐhiŶg aŶgle is aŶotheƌ iŵpoƌtaŶt faĐtoƌ of tƌees͛ ďƌaŶĐhiŶg ĐhaƌaĐteƌistiĐ. BƌaŶĐhiŶg aŶgle is the
angle between a branch and its parent branch. It makes a significant influence on the overall structure of

a tree. Multiple branching angles will also appear on one type of tree.

Figure 5 Branching angle

(3) Numbers of branching

Numbers of branching could be different on different order of branch. For example, there could be 2

child branches on the zero-order branch, 4 child branches on the first order branch and 6 child branches

on the second order branch. In nature, the numbers of child branching are random. However, in this

project, the numbers of branching have been manually set as 2 or 3, which means that there could be 2

child branches or 3 child branches on a parent branch.

Figure 6 Numbers of branching

Branching angle

Child branch

Parent branch

3 child branches

2 child branches

2 child branches

PAGE 12

2.3 Plants modelling based on L-system

2.3.1 Principle of L-system

L-System is a unique type of iteration process. Its core concept is rewriting. L-system uses character

from alphabet or strings that formed by character to generate the initial form of control string, which is

Axiom. After that, it rewrites the string by replacing every character in Axiom with rewriting rules

repeatedly. Finally, the result is the ultimate control string that is needed.

L-system are formalized as a tuple as followed: ܩ = ,�,ܸۃ ۄ�
Within the tuple, V is the alphabet of system, or all potential symbols in the string. � is the initial string

of system, which is the Axiom. P is a finite set of rewriting rules.

For example, a specific L-system can be as follows: ܸ = {ܽ, ܾ} � = ܾܽ � = {ܽ → ܾ, ܾ → ܾܽ}
There are 2 rewriting rules in P, if we replace a with b, replace b with ab, then the iteration process can

be described as: ܾܽ → ܾܾܽ → ܾܾܾܽܽ → ܾܾܾܾܾܽܽܽ → ܾܾܾܾܾܾܾܾܽܽܽܽܽ → ⋯⋯

When we assign actual meaning to each character and make a geometric explanation to the ultimate

control string, we can get the corresponding images.

2.3.2 Explanation by L- system turtle in 2D plane

L-system turtle is one of the geometric interpretation ways of the string that L-system generates. L-

system turtle is put forward by Prusinkiewicz[3] and Hana[4].

(1) Traditional L-system turtle

The state of L-system turtle can be defined by a triad ሺݔ, ,ݕ �ሻ. Within the triad, ሺݔ, ሻ represents theݕ

Cartesian coordinates of turtle, � represents the heading direction of turtle. Now we define a L-system

as following:

Alphabet ܸ = {−,+,ܨ}
Axiom � = ܨ

Set of rewriting rules � = ܨ} → ܨܨܨ − ܨܨ − ܨ − ܨ + ܨ + ܨܨ − ܨ − {ܨܨܨ

PAGE 13

Given the length of each move ݏ and the angle increment is �. The actions that turtle will perform for

each character in alphabet are as following: ܨ : The turtle moves forward a step of length s. The new coordinate of turtle is ሺݔ′, ሻ. Suppose the′ݕ

direction vector of turtle͛s forward is ሺܿݏ݋�, ′ݔ ሻ, then�݊�ݏ = ݔ + ′ݕ ,�ݏ݋ܿ ݏ = ݕ + The turtle .�݊�ݏ ݏ

draws a line between ሺݔ, ,′ݔሻ and ሺݕ ,ݔሻ. +: Turn left by ͻͲ degree, the next status of turtle is ሺ′ݕ ,ݕ � + ͻͲሻ. −: Turn right by ͻͲ degree, the next status of turtle is ሺݔ, ,ݕ � − ͻͲሻ.
In this case, if the iteration time is 1, the control string that is generated by L-system is ܨܨܨ − ܨܨ − ܨ ܨ− + ܨ + ܨܨ − ܨ − � Set initial angle .ܨܨܨ = ͻͲ° and the movement unit s equals to the length of grid.

Then we can get an explanation graph of this control string as follow:

Figure 7 Interpretation of the control string. (Prusinkiewicz P and Lindenmayer A, 1990)

(2) L-system turtle with bracket structure

We ǁill use a paiƌ of ďƌaĐkets iŶtƌoduĐed ďǇ LiŶdeŶŵaǇeƌ to deal ǁith tƌee͛s ďƌaŶĐhiŶg stƌuĐtuƌe.
Suppose a L-system as follows:

Alphabet ܸ = ,−,+,ܨ} []}
Axiom � = ܨ

Set of rewriting rules � = ܨ} → { [ܨ−][ܨ+]ܨ
Given the length of each move ݏ and the angle increment is �. The actions that turtle will perform for

each character in alphabet are as following:

PAGE 14

,′ݔThe turtle moves forward a step of length s. The new coordinate of turtle is ሺ : ܨ ሻ. Suppose the′ݕ

diƌeĐtioŶ ǀeĐtoƌ of tuƌtle͛s foƌǁaƌd is ሺܿݏ݋�, ′ݔ ሻ, then�݊�ݏ = ݔ + ′ݕ ,�ݏ݋ܿ ݏ = ݕ + The turtle .�݊�ݏ ݏ

draws a line between ሺݔ, ,′ݔሻ and ሺݕ ,ݔሻ. +: Turn left by ͵Ͳ degree, the next status of turtle is ሺ′ݕ ,ݕ � + ͵Ͳሻ. −: Turn right by ͵Ͳ degree, the next status of turtle is ሺݔ, ,ݕ � − ͵Ͳሻ. [: Push tuƌtle͛s status iŶto a staĐk. The iŶfoƌŵatioŶ iŶĐludes tuƌtle͛s loĐatioŶ, aŶd degƌee of ƌotatioŶ.]: Pop tuƌtle͛s iŶfoƌŵatioŶ out of a staĐk as tuƌtle͛s status.

In this case, if the iteration time is 1, the control string that is generated by L-system is [ܨ−][ܨ+]ܨ. Set

initial angle � = ͻͲ° and the movement unit equals to the length of grid. Then the process of drawing

will be as follows:

Figure 8 Demonstration of L-system turtle

As we can see, red dot represents the position of the turtle. The information of status includes the

coordinate and the degree of rotation of the turtle.

2.3.2 Explanation by L- system turtle in 3D space

According to the theory of Abelson and diSessa[5], the explanation by L-system turtle can be extended

to 3D space. The current orientation of turtle can be represented by three vectors, ⃑⃑ܪ , , ܮ⃑ ܷ⃑⃑ , indicating

the tuƌtle͛s headiŶg, the diƌeĐtioŶ to the left, aŶd the diƌeĐtioŶ up[2].

PAGE 15

Figure 9 Controlling the turtle in 3D space. (Prusinkiewicz P and Lindenmayer A, 1990)

The orientation of the turtle can be represented by following equation: [⃑⃑ܪ ′, ,′ ܮ⃑ ܷ⃑⃑ ′] = , ܪ⃑⃑] , ܮ⃑ ܷ⃑⃑] � ,

Where R is a ͵ × ͵ rotation matrix [6]. Specifically, rotation by each axis of direction should be

represented by 3 matrixes as follows:

��ሺ�ሻ = [�ݏ݋ܿ �݊�ݏ Ͳ−ݏ�݊� �ݏ݋ܿ ͲͲ Ͳ ͳ]
��ሺ�ሻ = �ݏ݋ܿ] Ͳ Ͳ�݊�ݏ− ͳ Ͳݏ�݊� Ͳ �ݏ݋ܿ]
��ሺ�ሻ = [ͳ Ͳ ͲͲ �ݏ݋ܿ Ͳ�݊�ݏ− �݊�ݏ �ݏ݋ܿ]

The following characters control the actions of the turtle: + Turn left by angle � around U axis (Up direction), using rotation matrix ��ሺ�ሻ − Turn right by angle � around U axis (Up direction), using rotation matrix ��ሺ−�ሻ & Pitch down by angle � around L axis (Left direction), using rotation matrix ��ሺ�ሻ ∧ Pitch up by angle � around L axis (Left direction), using rotation matrix ��ሺ−�ሻ \ Roll left by angle � around H axis (Heading direction), using rotation matrix ��ሺ�ሻ ∕ Roll right by angle � around H axis (Heading direction), using rotation matrix ��ሺ−�ሻ
What needs to be mentioned is that this section is meant to explain the principle of L-system. In this

project, the characters, and the rules we use will be based on the rules above. However, in Unreal

PAGE 16

Engine 4, left-handed coordinate is being used instead of right-handed. During implementation, the

action rules will be slightly different than these rules, which will be clarified in the following report.

2.3.3 Parametric L-system

This section only aims to introduce the basic concepts of the construction of sympodial tree by

parametric L-system. The actual implementation will be based on this theory and there are several

modifications being made because of some features of Unreal Engine 4, which will be explained in the

following report.

(1) Parametric L-system [7]

Based on L-system, parametric L-system introduces parametric symbols. A formalized parametric L-

system is an ordered tetrad as follows: ܩ = ,�,∑,ܸۃ ۄ�
Specifically, V is the alphabet of system, or all potential symbols in the string. � is the initial string of

system, which is the Axiom. P is a finite set of rewriting rules. ∑ is a set of parameters that control the

shape of tree. In parametric L-system, a rewriting rule is made of three parts: Prerequisite, condition,

and result. ݎ݁ݎ݌ ∶ ݀݊݋ܿ → ݏ݁ݎ
 An example of a parametric L-system is as follow:

Alphabet ܸ = ,ܣ} ,ܤ ,ܥ {ܦ
Parameters set ∑ = {t}

Axiom � = ሺͻሻܣ
Set of rewriting rules � = :ሻݐሺܣ} ݐ > ͷ → ݐሺܤ + ͳሻܦܥሺݐ − ͳሻ}
According to the rules of rewriting, the prerequisite is ܣሺݐሻ, the condition is ݐ > ͷ, and the result is ܤሺݐ + ͳሻܦܥሺݐ − ͳሻ. As we can see, when � = ሺͻሻ, t = 9 and t > 5. Therefore, the result of rewritingܣ

string will be replaced by ܤሺݐ + ͳሻܦܥሺݐ − ͳሻ, which will be ܤሺͳͲሻܦܥሺͻሻ.
2.4 Brief introduction of Unreal Engine 4

2.4.1 Map

A map, or a scene in Unreal Engine 4 is a three-dimensional space where every object is placed. In a

map, a left-handed cartesian coordinate system is used as the world coordinate system. This coordinate

system is formed by x, y, z axis where the x axis indicates the front direction, the y axis indicates the

right direction, and the z axis indicates the up direction by default.

PAGE 17

Figure 10 A map in Unreal Engine 4

2.4.2 Actor class

Actor is the base class for an Object that can be placed or spawned in a level. Actors may contain a

collection of ActorComponents, which can be used to control how actors move, how they are rendered,

etc. An actor object contains two 3D coordinate to represent the location and the degree of rotation.

Figure 11 Location and rotation

Figure 12 Location and rotation of an object

The location and rotation of an actor object can be represented by two types of coordinate systems.

One is the local coordinate system; the other is the world coordinate system. The world coordinate

system is used when we try to describe a location or rotation of an object relative to the map. The local

(or relative) coordinate system is used to describe a location or rotation relative to objects other than

the map (It can be the object itself).

PAGE 18

Figure 13 The world coordinate(left) and local coordinate system(right)

Ϯ.ϰ.Ϯ AĐtoƌ͛s ĐoŵpoŶeŶt

Actors can be thought of, in one sense, as containers that hold special types of Objects called

Components. Different types of Components can be used to control how Actors move, how they are

rendered, etc. The other main function of Actors is the replication of properties and function calls across

the network during play [8].

Actors support having a hierarchy of SceneComponents. Each Actor also has a RootComponent property

that designates which Component acts as the root for the Actor. Actors themselves do not have

transforms, and thus do not have locations, rotations, or scales. Instead, they rely on the transforms of

their Components; more specifically, their root Component.

IŶ this pƌojeĐt, aŶ iŵpoƌtaŶt tǇpe of ĐoŵpoŶeŶt Đalled ͞“tatiĐ ŵesh ĐoŵpoŶeŶt͟ is used frequently. The

StaticMeshComponent is used to create an instance of a UStaticMesh. A Static Mesh is a piece of

geometry that consists of a static set of polygons and are the basic unit used to create world geometry

for levels in Unreal Engine 4. In addition to building levels, Static Meshes can be used for creating

movers such as doors or lifts, rigid body physics objects, foliage and terrain decorations, procedurally

created buildings, game objectives, and many more visual elements.

Below, a StaticMeshComponent representing a ceiling light mesh.

Figure 14 A static mesh actor

PAGE 19

2.4.3 Textures

Textures are image assets that are primarily used in Materials but can also be directly applied outside of

Materials, like when using an texture for a heads up display (HUD).

For Materials, textures are mapped to surfaces which the Material is applied to. Textures can be used

for a variety of calculations within a Material by being applied directly to an input (such as, Base Color),

used as a mask, or using the RGBA values for other calculations [9].

Figure 15 Branches with different materials

2.4.4 Game modes

While certain fundamentals, like the number of players required to play, or the method by which those

players join the game, are common to many types of games, limitless rule variations are possible

depending on the specific game you are developing. Regardless of what those rules are, Game Modes

are designed to define and implement them. There are currently two commonly used base classes for

Game Modes [10]. All Game Modes are subclasses of ͚AGameModeBase͛, which contains considerable

base functionality that can be overridden.

IŶ this pƌojeĐt, a ͚AGaŵeModeBase͛ Đlass is used to Đƌeate aŶd spaǁŶ aŶǇ oďjects that relate to L-system

when program starts to run.

3.Specification and Design

In this section, we will focus on specifying the design of the system and how it works overall. There are

three components in this system, a sympodial tree component explained by parametric L-system, a L-

system turtle component that executes the render process, and finally, mesh component that provides

visual structure of trees.

3.1 Parametric L-system construction of sympodial tree component

3.11 Construction of sympodial tree

Trees with sympodial branching have unfolding tree crowns without distinct tree trunks, compared to

monopodial trees. As a sympodial tree grows, the width and length of branches become smaller. The

shape of the tree crown is mainly decided by the order of branches and the angle of branches. The

shape of a typical type of tree should be random to look natural.

PAGE 20

Based on the features that are mentioned above, we set the order of branches and the angle of

branches as parameter to control the iteration times and the direction of growing. Setting length of

branch as parameter to control the length of each order of branch as well as the width of branch.

To generate a random shape, there are 2 types of branching conditions. One is double branching, which

means that there will be 2 child branches on 1 parent branch. The other is triple branching, which means

3 child branches on 1 parent branch. Therefore, 2 rewriting rules are required.

A parametric L-system for sympodial trees is as follows: ܩ = ,�,∑,ܸۃ �, ۄ�
Alphabet ܸ = ,ܤ} ,ܨ [], !, @,+,/}
Parameters set ∑ = ,ݓ,ܮ} ,ଵܮ ,ଶܮ ,ଷܮ ,ସܮ ,ହܮ ଵܹ, ଶܹ, ଷܹ, ସܹ, ହܹ, ,ଵߚ ,ଶߚ ,ଷߚ �ଵ, �ଶ, �ଷ}

Axiom � = ,଴ܮሺܤ ଴ܹሻ
Probability � = ,ߙ} ͳ − {ߙ
Set of rewriting rules

� = { ,ܮሺܤ ܮ :ሻݓ >= ݉�݊ � → ! ሺݓሻܨሺܮሻ[+ሺߚଵሻ/ሺ�ଵሻܤሺܮଵ, ଵܹሻ][+ሺߚଶሻ/ሺ�ଶሻܤሺܮଶ, ଶܹሻ][+ሺߚଷሻ/ሺ�ଷሻܤሺܮଷ, ଷܹሻ] ܤሺܮ, ܮ :ሻݓ >= ݉�݊ ଵ−� → @ሺݓሻܨሺܮሻ[+ሺߚଵሻ/ሺ�ଵሻܤሺܮସ, ସܹሻ][+ሺߚଶሻ/ሺ�ଶሻܤሺܮହ, ହܹሻ]
There are 2 rewriting rules within our parametric L-system. To specify them, we use �ଵ and �ଶ to represent

them as follow: �ଵ：ܤሺܮ, ܮ :ሻݓ >= ݉�݊ � → ! ሺݓሻܨሺܮሻ[+ሺߚଵሻ/ሺ�ଵሻܤሺܮଵ, ଵܹሻ][+ሺߚଶሻ/ሺ�ଶሻܤሺܮଶ, ଶܹሻ][+ሺߚଷሻ/ሺ�ଷሻܤሺܮଷ, ଷܹሻ] �ଶ：ܤሺܮ, ܮ :ሻݓ >= ݉�݊ ଵ−� → @ሺݓሻܨሺܮሻ[+ሺߚଵሻ/ሺ�ଵሻܤሺܮସ, ସܹሻ][+ሺߚଶሻ/ሺ�ଶሻܤሺܮହ, ହܹሻ]

We will still use a paiƌ of ďƌaĐkets iŶtƌoduĐed ďǇ LiŶdeŶŵaǇeƌ to deal ǁith tƌee͛s ďƌaŶĐhiŶg stƌuĐtuƌe. [: Push tuƌtle͛s status into a staĐk. The iŶfoƌŵatioŶ iŶĐludes tuƌtle͛s loĐatioŶ, diƌeĐtioŶ ǀeĐtoƌs ;up, ƌight,
forward) and degree of rotation.]: Pop tuƌtle͛s iŶfoƌŵatioŶ out of a staĐk as tuƌtle͛s status.

As we can see in this L-system, B and C can be seen as vertexes. The rewriting rule �ଵmeans that there is ߙ percent chance for a vertex B being replaced by a branch and three new vertexes B, B, B, which

indicates triple branching. �ଶ means that there is ͳ − percent for a vertex B being replaced by a ߙ

branch and two new vertexes B, B, which indicates double branching. ܮ଴ stands for the initial length of

the tree trunk while ଴ܹ represents the initial width of the tree trunk. ܮ� and ܮ represent the length of

branches, �ܹ and ܹ stand for the width of the branches. ߚ� and �� represent the angle of branches,

which control the direction of growing. Min gives out the threshold value of branches͛ leŶgth. WheŶ a
branch is shorter than min, it cannot be generated.

PAGE 21

Neǆt, ǁe ǁill iŶtƌoduĐe ŵoƌe detail iŶfoƌŵatioŶ aďout ďƌaŶĐhes͛ leŶgth aŶd ǁidth.

(1) Branch length

To gradually shorten the branches, shrink factors ݎ� are being introduced. As we can see in the L-system

demonstration, there are 5 different lengths being assigned to different branches. ܮଵ = ∗ ܮ ଶܮ ଵݎ ∗ ܮ= ଷܮ , ଶݎ = ∗ ܮ ସܮ ,ଷݎ = ∗ ܮ ହܮ ,ସݎ = ∗ ܮ , �ܮ ହ, whileݎ � = ͳ,ʹ,͵ represent the lengths for triple

branching, ܮ� , � = Ͷ,ͷ represent the lengths for double branching.

(2) Branch width

To ŵake tƌee ŵoƌe Ŷatuƌal, ǁe ǁill set the faĐtoƌs of ǁidth ďased oŶ the LeoŶaƌdo͛s ‘ule[11]. The rule

says that when a tree's trunk splits into two branches, the total cross section of those secondary

branches will equal the cross section of the trunk [12]. The formula of it is:

ଶݓ = �ଶ�ݓ∑
ଵ

where the ݓ� is the width of the ��ℎ child branch. Based on this rule, let ݓଵ = ∗ ݓ ଶݓ , �ଵ݌ = ∗ ݓ ଷݓ ,�ଵݍ = ∗ ݓ ሺͳ − ଵ݌ − ସݓ ,ଵሻݍ = ∗ ݓ ହݓ ,�ଶ݌ = ∗ ݓ ଵ݌ ,�ଶݍ + ଵݍ < ͳ, ݌ଶ + ଶݍ = ͳ. Here, ݌� , , �ݍ ݁

control the width of the ďƌaŶĐh. AĐĐoƌdiŶg to LeoŶaƌdo͛s ‘ule, let ݁ = Ͳ.ͷ so that the total cross

section of those secondary branches will equal the cross section of the parent branch. Therefore, we will

get ݓଶ = ଵଶݓ ଶଶݓ+ ଶݓ ,ଷଶ for the rewriting rule �ଵݓ+ = ସଶݓ .ହଶ for the rewriting rule �ଶݓ+

3.2 L-system turtle component

In this section, we will introduce how L-system turtle component works in this project. Overall, L-system

turtle reads through the control string generated by tree component and perform different actions

based on different character.

3.2.1 Basic information to describe the status of L-system turtle

L-system turtle is derived from Actor. The status of L-system turtle can be described by three direction

vectors as well as the coordinates of location and rotation.

The direction vectors include up, right and front vectors. The reason for maintaining these vectors is that

L-sǇsteŵ tuƌtle alǁaǇs ŵoǀes toǁaƌd ͞up diƌeĐtioŶ͟. Hoǁeǀeƌ, the ͞up diƌeĐtioŶ͟ is Ŷot alǁaǇs ǀeƌtiĐal
to the ground level. It changes as the turtle rotates to make certain angles between different branches.

PAGE 22

Figure 16 Demonstration of direction vectors

The location and rotation of L-system turtle is represented by world coordinate. The location and

rotation of a tree component (like a trunk) are same as the ones of turtle.

Figure 17 Demonstration of a trunk and its information

3.2.2 Actions of L-system turtle ܨ: The turtle moves towards the direction of up vector with the length of a branch. +: Rotate the turtle actor around up vector. /: Rotate the turtle actor around front vector. [: Push tuƌtle͛s status iŶto a staĐk. The iŶfoƌŵatioŶ iŶĐludes tuƌtle͛s location, rotation, direction vectors

(up, right, forward).]: Pop tuƌtle͛s iŶfoƌŵatioŶ out of a staĐk as tuƌtle͛s status. !: Prepare to render triple branches. @: Prepare to render double branches.

(1) Working process of L-system turtle

PAGE 23

Figure 18 Working process

3.3 Mesh component

In this project, there are 3 types of mesh component: tree trunk, branch, and leaf. They will be used and

placed by L-system turtle component. In Unreal Engine 4, they are static mesh actors with static mesh

components.

3.3.1 Tree trunk

The tree trunk component is consisted of a tree trunk mesh and a sphere mesh. The sphere is located

on the top of the trunk to act as a joint. This joint makes branching point more natural and materials of

joint and trunk are consistent.

Sphere joint

Trunk

PAGE 24

Figure 19 Tree trunk component

3.3.2 Branch

The branch component is consisted of a branch mesh and a sphere mesh. The sphere is located on the

top of the branch to act as a joint. This joint makes branching point more natural and materials of joint

and trunk are consistent.

Figure 20 Branch component

3.3.3 Leaf

The leaf component is only consisted of a leaf mesh.

Figure 21 Leaf component

3.4 Working mechanism of the system

In this system, three components work together to generate a realistic sympodial tree. First, the tree

component will geŶeƌate a ĐoŶtƌol stƌiŶg that ƌepƌeseŶts tƌee͛s stƌuĐtuƌe. It also pƌoǀides eǀeƌǇ
parameter that control the shape of the tree to the L-system turtle component. Second, the L-system

turtle component is spawned at a specific location in a map with a preset rotation. It reads every

Sphere joint

Branch

PAGE 25

character in the control sentence and makes corresponding actions. L-system turtle is also responsible

to spawn and adjust mesh component in the map to form the tree.

Figure 22 Working mechanism

4.Implementation

In this section, we will start with demonstrating a UML class diagram. Then coding details of each

component will be introduced. Lastly, some problems that are difficult to solve during implementation

will be demonstrated. The attempts to solutions are also included.

PAGE 26

4.1 UML Class diagram

4.2 Tree component

4.2.1 Generate random numbers

There are 2 types of branching, which are double branching and triple branching as we mentioned

above. However, to make the tree more thriving, the probability for generating triple branching is

higher.

PAGE 27

Therefore, the system will generate a random integer between 6 and 8, let it be A. When system

rewrites a character, it generates an integer between 1 to 10 again. If this new integer is between 1 to A,

then a triple branching is generated. If it is between A to 10, then a double branching is generated.

Overall, the probability of generating triple branching is between 60% to 80% and the probability for

double branching is between 20% to 40%.

In C++, function rand() ƌeƋuiƌes a ͞seed͟ to geŶeƌate diffeƌeŶt seƋueŶĐe of ƌaŶdoŵ Ŷuŵďeƌs. In

practice, we usually use the current time of system as the seed. However, there could be more than 10k

branches on a tree, which means the systems will get system time constantly in a short time. The time

gap between several access of system time could be too short to make the seed changed. Therefore, the

rand() function will keep generating the same random number sequence. In this project, system will

generate 100 random numbers each time to avoid repetition of random numbers sequence.

 srand((unsigned)time(NULL));

 branchProbability = (rand() % (8 - 6 + 1)) + 6;

Code 1 Generate probability for different branching(SympodialTree_3.cpp)

void SympodialTrees::GenerateProba()

{

 srand((unsigned)time(NULL));

 for (int i = 0; i < 100; i++) {

 ranNum[i] = (rand() % (10 - 1 + 1)) + 1;

 }

}

Code 2 Generate random numbers sequence(SympodialTree.cpp)

4.2.2 Generate sentence

To generate sentence, the system will read the sentence character by character, rewriting character that

fulfill the rewriting rule. Moƌe speĐifiĐallǇ, eǀeƌǇ tiŵe the sǇsteŵ ƌeǁƌites a seŶteŶĐe, a Ŷeǁ ͚stƌiŶg͛ ǁill
be created. If the system reads a character that does not fulfill the rule, it duplicates the character and

append it to the end of the new string. If the system reads a character that fulfill the rule, it appends the

corresponding replacement to the end of the new string.

PAGE 28

GenerateProba();

 for (int i = 0; i < iterationTime; i++) {

 string nextSentence = "";

 for (int32 k = 0; k < sentence.size(); k++) {

 char currentChar = sentence.at(k);

 //take one random number from the sequence

 int probability = ranNum[ranCounter++];

 if (currentChar == rules.first && (probability >= 1 && probability <= branchProbability)) {

 nextSentence.append(rules.second);

 branch_3_count++;

 }

 else if (currentChar == rules2.first && (probability > branchProbability)) {

 nextSentence.append(rules2.second);

 branch_2_count++;

 }

 else {

 nextSentence += currentChar;

 }

 // The sequence only contains 100 random numbers, if system has already

 //rewrote 100 character,

 // update the sequence

 if (ranCounter == 100)

 {

 GenerateProba();

 ranCounter = 0;

 }

 }

 sentence = nextSentence;

 }

Code 3 Rewrite character(SympodialTree.cpp)

4.3 L-system turtle component

4.3.1 Overall working process: Iteration

First, we will explain why L- system turtle needs an iteration program to read and render the tree.

An example of a 2-generation tree and its sentence are as follow:

!F[+/!F[+/!F[+/B][+/B][+/B]][+/!F[+/B][+/B][+/B]][+/!F[+/B][+/B][+/B]]][+/!F[+/@F[+/B][+/B]][+/!F[+/B][+/

B][+/B]][+/!F[+/B][+/B][+/B]]][+/@F[+/!F[+/B][+/B][+/B]][+/!F[+/B][+/B][+/B]]]

PAGE 29

Figure 23 2-generation tree

As we know in the previous sections, the width and length shrinking factors of a tree are fixed. They are

used repeatedly on different triple branching and double branching. Therefore, the distribution of those

factors is a breath first process as following picture (First number denotes the sequence number of the

ďƌaŶĐh, ͚W͛ ŵeaŶs Width faĐtoƌ, ͚L͛ ŵeaŶs LeŶgth faĐtoƌͿ

Figure 24 Demonstration of factors distribution

However, in practice, the sentence of the tree is generated in a depth-first way. The system can only

read through the string from the beginning to the end. Therefore, the actual render process of the L-

system turtle should be as follows:

1: W1, L1 2: W2,L2

3: W3 L3

4: W1,L1

5: W2, L2
6: W3,L3

7: W1, L1

8: W2, L2

9: W3, L3

……

PAGE 30

Figure 25 The actual render process

As a result, before the L-system turtle starts to render a child branch, the index for width and length

factors should be reserved and aŶ iteƌatioŶ pƌoĐess is Ŷeeded. If sǇsteŵ ƌeads a ͚!͛ oƌ ͚@͛, it ǁill staƌt a

new render function for triple branching or double branching where the index for length and width

factors can be reset. Current render function waits until the inner iterations end.

An iteration ends when system finishes reading a substring representing a triple branching or double

branching. However, for the first iteration, it ends when system finishes reading the whole sentence.

void ALsystemTurtleActor::draw_2_Branch(double branchLength, double branchWidth)

{

 int count = 0;

 int length = p->rules2.second.size() - 1;

 int angleIndex = 0;

 int lengthFactorIndex = 3;

 int lable = 0;

 double rotateX = 0;

 branchLength = (branchLength < p->minLength) ? p->minLength : branchLength;

 lable = (currentChar == 1) ? 1 : lable;

 bool endingCondition = true;

 while (endingCondition) {

 char current = p->sentence.at(currentChar++);

 if (current == '!')

 {

 double lengthFactor = p->lengthFactor[lengthFactorIndex];

 double widthFactor = p->widthFactor[lengthFactorIndex++];

 draw_3_Branch(branchLength * lengthFactor, branchWidth * widthFactor);

1: W1, L1

2: W1, L1

3: W2 L2 4: W3, L3

5: W2, L2

6: W1, L1 7: W2, L2

8: W3, L3

9: W3, L3

PAGE 31

 }

 else if (current == '@')

 {

 double lengthFactor = p->lengthFactor[lengthFactorIndex];

 double widthFactor = p->widthFactor[lengthFactorIndex++];

 draw_2_Branch(branchLength * lengthFactor, branchWidth * widthFactor);

 }

 else if (current == 'F')

 {

 forward(branchLength, branchWidth, 0, rotateX);

 }

 else if (current == '+')

 {

 turnYaw(p->branchBeta[angleIndex]);

 }

 else if (current == '/')

 {

 rotateX = p->branchTheta[angleIndex];

 turnRoll(p->branchTheta[angleIndex++]);

 }

 else if (current == '&')

 {

 turnPitch(p->branchBeta[angleIndex++]);

 }

 else if (current == '[')

 {

 push();

 }

 else if (current == ']')

 {

 pop();

 }
 else

 {

 forward(branchLength, branchWidth, 1, rotateX);

 }

 count++;

 if (lable == 1)

 {

 endingCondition = ((!(count >= length)) || !(currentChar >= p->sentence.size() - 1));

 }

 else {

 endingCondition = (!(count >= length));

 }

 }

}

Code 4 Double-branching (LsystemTurtleActor.cpp)

PAGE 32

4.3.2 Rotation of L-system turtle

There are 2 types of rotation actions for L-sǇsteŵ tuƌtle. OŶe is ƌotatiŶg aƌouŶd ͞Up͟ ǀeĐtoƌ, the otheƌ is
ƌotatiŶg aƌouŶd ͞FƌoŶt͟ ǀeĐtoƌ. Like the distribution of length and width factors, the rotation angles

aƌouŶd ͞up͟ ǀeĐtoƌ aŶd ͞fƌoŶt͟ ǀeĐtoƌ aƌe the same among double branching or triple branching.

else if (current == '+')

 {

 turnYaw(p->branchBeta[angleIndex]);

 count++;

 }

 else if (current == '/')

 {

 turnRoll(p->branchTheta[angleIndex++]);

 count++;

 }

Code 5 Angle distribution (LsystemTurtleActor.cpp)

SympodialTrees_3::SympodialTrees_3(int iterationTime) : SympodialTrees(iterationTime)

{

 //z

 branchBeta[0] = -30.0f;

 branchBeta[1] = 30.0f;

 branchBeta[2] = 90.0f;

 //x

 branchTheta[0] = -30.0f;

 branchTheta[1] = 35.0f;

 branchTheta[2] = -40.0f;

Code 6 Angle declaration of sympodial tree (SympodialTree_3.cpp)

In Unreal Engine 4, to rotate around an aĐtoƌ ͚s ͞loĐal ĐooƌdiŶate aǆis͟, ;iŶ this Đase, the loĐal ĐooƌdiŶate
aǆis is saŵe as aĐtoƌ͛s Up, FƌoŶt or ‘ight ǀeĐtoƌͿ, a useful fuŶĐtioŶ ͞AddAĐtoƌLoĐal‘otatioŶ͟ ĐaŶ ďe used.
The paƌaŵeteƌ foƌ this fuŶĐtioŶ is a VeĐtoƌ stƌuĐtuƌe Đalled ͞F‘otatoƌ͟. It denotes the rotation angles

around Z axis (Up), Y axis (Right), and X axis (Front). For example, AddActorLocalRotation

(FRotator(100,0,0)) means rotate the actor around local Z axis by 100 degrees.

PAGE 33

void ALsystemTurtleActor::turnYaw(double branchAngle)

{

 turtleRight = turtleRight.RotateAngleAxis(branchAngle, turtleUp);

 turtleFoward = turtleFoward.RotateAngleAxis(branchAngle, turtleUp);

 AddActorLocalRotation(FRotator(0, branchAngle, 0));

}

void ALsystemTurtleActor::turnRoll(double branchAngle)

{

 turtleRight = turtleRight.RotateAngleAxis(-branchAngle, turtleFoward);

 turtleUp = turtleUp.RotateAngleAxis(-branchAngle, turtleFoward);

 AddActorLocalRotation(FRotator(0, 0, branchAngle));

}

Code 7 Rotation (LsystemTurtleActor.cpp)

In the previous parts of the report, we mentioned that the L-system turtle actor needs to maintain and

update three direction vectors up, right and front vector. The reason why we need to keep them is that

Unreal Engine 4 does not provide real time direction vectors of an actor. Therefore, if an actor has

rotated before, we cannot get the current direction vectors of it. The front actor is necessary for an L-

system actor to confirm the next location.

Therefore, as we showed above, the direction vectors are also rotated by using RotateAngleAxis()

function. This function allows a vector to rotate around another vector, which is suitable in this case.

4.3.3 Forward

In L-system, turtle will move to next location after several rotations. In nature, tree always grow

vertically. Therefore, in this project, the turtle will always move towards the diƌeĐtioŶ of ͚Up͛ ǀeĐtoƌ.
Here, we will first introduce how L-system turtle moves to the next location.

As we know in the previous section, the length of a branch is acknowledged. Therefore, we can get: ܰ݁݊݋�ݐܽܿ݋ܮݐݔ = ݊݋�ݐܽܿ݋ܮݐ݊݁ݎݎݑܿ ∗ ݌ܷ

Figure 26 Demonstration of Moving

PAGE 34

To spawn a static mesh actor, we need to input a location as well as a rotation. We have already known

the rotation for it, which is the rotation of L-system actor. Now, we will focus on the location for this

newly created mesh component.

As we can see in the following pictures, the branch and trunk can be approximately seen as cylinders. In

Unreal Engine 4, the position of a static mesh is confirmed by the center point of it. Therefore, we can

align the center of the branch (or truŶkͿ to the ŵiddle poiŶt ďetǁeeŶ tuƌtle͛s ĐuƌƌeŶt loĐatioŶ aŶd the
next location. It can be represented as: ݏ݁ܯℎ݊݋�ݐܽܿ݋ܮ = ሺܿ݊݋�ݐܽܿ݋ܮݐ݊݁ݎݎݑ + ʹ/ሻ݊݋�ݐܽܿ݋ܮݐݔ݁݊

Figure 27 Demonstration of static mesh actors

Figure 28 Confirming location (Ideal design)

Current location

Next location

Mesh’s center point = (nextLocation+currentLocation)/2

PAGE 35

This solution is not perfect. Ideally, the vertical length of the mesh should be the same as the length of

branch that we preset. Yet, they are slightly different. The length of the branch could be longer than the

actual length of the mesh. The scale of the mesh is not defined by concrete numbers. It needs to be

adjusted by multiplying constants in different dimensions (x, y, or z). The length and width of branches

are only the parameters that affect the actual length of width of the mesh. Here, we call the location

ĐalĐulated ďǇ the eƋuatioŶ ďeloǁ as ͚Pƌeset Ŷeǆt loĐatioŶ͛ �݊݋�ݐܽܿ݋݈ ݐݔ݁݊ ݐ݁ݏ݁ݎ = ݊݋�ݐܽܿ݋ܮݐ݊݁ݎݎݑܿ ∗ ݌ܷ

As a result, we need to manually set the next location as the location of sphere component of branches

or trunk after the mesh actor is spawned. So that the child branches will be generated at correct

location.

Figure 29 Actual confirmation of next location

 if (currentChar == 2)

 {

 ATreeTrunkComponent* treeComponent = GWorld->GetWorld()-

>SpawnActor<ATreeTrunkComponent>(treeComponent->StaticClass(), (turtleLocation + nextLocation) / 2, GetActorRotation());

 treeComponent->loadComponent(branchWidth, branchLength);

 treeTrunkComponentSet.Add(treeComponent);

 turtleLocation = treeComponent->SphereMeshComponent->GetComponentLocation();

 }

 else

 {

 AStaticTreeComponent* treeComponent = GWorld->GetWorld()-

>SpawnActor<AStaticTreeComponent>(treeComponent->StaticClass(), (turtleLocation + nextLocation) / 2, GetActorRotation());

 treeComponent->loadComponent(branchWidth, branchLength);

 treeComponentSet.Add(treeComponent);

 turtleLocation = treeComponent->SphereMeshComponent->GetComponentLocation();

 }

Code 8 Spawning static mesh actors (LsystemTurtleActor.cpp)

Current location

Preset next location(nextLocation+currentLocation)/2

Mesh’s location

Modified next location

PAGE 36

4.3.4 Push and pop

The status of L-system turtle is consisted of location, rotation and direction vector (up, forward, right).

Therefore, 2 stacks that store FVector and 1 stack that stores FRotator are needed.

void ALsystemTurtleActor::push()

{

 locationStore.push(turtleLocation);

 rotationStore.push(turtleFoward);

 rotationStore.push(turtleUp);

 rotationStore.push(turtleRight);

 rotatorStore.push(GetActorRotation());

}

void ALsystemTurtleActor::pop()

{

 turtleLocation = locationStore.top();

 locationStore.pop();

 turtleRight = rotationStore.top();

 rotationStore.pop();

 turtleUp = rotationStore.top();

 rotationStore.pop();

 turtleFoward = rotationStore.top();

 rotationStore.pop();

 SetActorRotation(rotatorStore.top());

 rotatorStore.pop();

}

4.3.5 Delete tree

To change the shape of the tree in real time, we need a delete function for L-system turtle. L-system

turtle should delete all components of a tree and starts to create a new one.

In Unreal Engine 4, an object of actor class is declared as a reference. Therefore, we can save all

references of component objects into arrays. Iterating these arrays and delete every component object

by using function Destroy(). The Destroy() function is an embedded function of Actor.

ALeafComponent* leafComponent = GWorld->GetWorld()-

>SpawnActor<ALeafComponent>(leafComponent->StaticClass(), turtleLocation,

GetActorRotation());

 leafComponent->SetActorRelativeScale3D(FVector(1, 1.5, 1));

 if (treeComponentSet.Num() != 0)

 {

 treeComponentSet.Last()->SphereMeshComponent->SetVisibility(false);

 //Add this component to the array

 leafComponentSet.Add(leafComponent);

 }

PAGE 37

 if (currentChar == 2)

 {

 ATreeTrunkComponent* treeComponent = GWorld->GetWorld()-

>SpawnActor<ATreeTrunkComponent>(treeComponent->StaticClass(), (turtleLocation + nextLocation) / 2, GetActorRotation());

 treeComponent->loadComponent(branchWidth, branchLength);

 //Add this component to the array

 treeTrunkComponentSet.Add(treeComponent);

 turtleLocation = treeComponent->SphereMeshComponent->GetComponentLocation();

 }

 else

 {

 AStaticTreeComponent* treeComponent = GWorld->GetWorld()-

>SpawnActor<AStaticTreeComponent>(treeComponent->StaticClass(), (turtleLocation + nextLocation) / 2, GetActorRotation());

 treeComponent->loadComponent(branchWidth, branchLength);

 //Add this component to the array

 treeComponentSet.Add(treeComponent);

 turtleLocation = treeComponent->SphereMeshComponent->GetComponentLocation();

 }

Code 9 Store references (LsystemTurtleActor.cpp)

void ALsystemTurtleActor::deleteTree()

{

 for (auto n : treeComponentSet) {

 n->Destroy();

 }

 for (auto n : leafComponentSet) {

 n->Destroy();

 }

 for (auto n : treeTrunkComponentSet) {

 n->Destroy();

 }

}

Code 10 Iterate arrays (LsystemTurtleActor.cpp)

4.4 Mesh component

4.4.1 Scale of the mesh

In the pƌeǀious seĐtioŶ, ǁe kŶoǁ that the paƌaŵeteƌs ͚ǁidth͛ aŶd ͚leŶgth͛ of ďƌaŶĐhes are the factors

that affect the actual width and length of branch meshes. In this section, we will focus on the

implementation of adjusting scale of meshes.

First, we need to clarify that the original meshes of three components (branch, trunk, leaf), are out of

shape. They need to be adjusted in the first place of spawning.

PAGE 38

Figure 30 A branch, trunk, and leaf (Original)

Specifically, the first phase of scale adjustment takes place in the construction function.

 FVector scale = MeshComponent->GetRelativeScale3D();

 scale.X *= 4.056;

 scale.Y *= 5.131;

 MeshComponent->SetRelativeScale3D(scale);

Code 11 First scaling adjustment of branch (StaticTreeComponent.cpp)

 FVector scale = MeshComponent->GetRelativeScale3D();

 scale.X *= 3.556;

 scale.Y *= 4.031;

 MeshComponent->SetRelativeScale3D(scale);

Code 12 First scaling adjustment of trunk (TreeTrunkComponent.cpp)

Second phase of scaling adjustment happens after mesh actors are spawned. The mesh component

actors provide a method to input the branch length as parameter.

void AStaticTreeComponent::loadComponent(double width, double length)

{

 SetActorScale3D(FVector(width / 82.0f, width / 82.0f, length / 60.0f));

 //MeshComponent->SetWorldScale3D(FVector(width / 100.0f, width / 100.0f, length / 100.0f));

 SphereMeshComponent->SetWorldScale3D(FVector(width / 140.0f, width / 140.0f, width / 80.0f));

}

Code 13 Method to adjust scale (StaticTreeComponent.cpp)

PAGE 39

void ATreeTrunkComponent::loadComponent(double width, double length)

{

 SetActorScale3D(FVector(width / 137.0f, width / 137.0f, length / 150.0f));

 //MeshComponent->SetWorldScale3D(FVector(width / 100.0f, width / 100.0f, length / 100.0f));

 SphereMeshComponent->SetWorldScale3D(FVector(width / 130.0f, width / 128.0f, width / 73.0f));

}

Code 14 Method to adjust scale (TreeTrunkComponent.cpp)

4.5 User interface

In this section, we will not discuss the declaration of every component in this interface. Instead, we will

introduce how input data transmits from user interface to L-system turtle.

4.5.1 Overall design of user interface

Figure 31 Design of user interface

Users can input the parameters that control the shape of the tree. Five default settings of trees are

provided. When users click generate, the system will generate a tree in the middle of the screen. If user

click reset, all input content can be erased.

4.5.2 Implementation of user interface

IŶ UŶƌeal EŶgiŶe ϰ, a useƌ iŶteƌfaĐe ĐaŶ ďe desigŶed ďǇ a ǀisual deǀelopŵeŶt tool Đalled ͚BluepƌiŶt͛. The
design above is done by blueprint. Yet, the function of user interface should be developed in C++ in this

pƌojeĐt. Theƌefoƌe, a liŶk ďetǁeeŶ ͚ďluepƌiŶt͛ desigŶ aŶd C++ Đlass is ŶeĐessaƌǇ.

Fiƌst, ǁe Đƌeate a C++ ǁidget Đlass Đalled ͞MǇWidget͟. TheŶ ǁe ĐaŶ Đƌeate a ďluepƌiŶt ǁidget Đlass
deƌiǀed fƌoŵ ͞MǇWidget͟.

PAGE 40

Figure 32 A widget blueprint class

After finishing the visual design of the widget, we can connect the blueprint widget class to the C++

widget class each component by each component with the following code. This is only an example of

implementation of button, there are many other components in this widget class.

 if (UButton* btn = Cast<UButton>(GetWidgetFromName("Generate")))

 {

 FScriptDelegate Del;

 Del.BindUFunction(this, "OnBtnGenerateClick");

 btn->OnClicked.Add(Del);

 }

Code 15 An Example of connecting component (MyUserWidget.cpp)

Next, in the game mode class, we need to instantiate the widget class like below:

// Check if there is already a widget class exists

(MyWidgetInstance)

 {

 MyWidgetInstance->RemoveFromViewport();

 MyWidgetInstance = nullptr;

 }

//Load the class of widget

 if (UClass* MyWidgetClass = LoadClass<UMyUserWidget>(NULL,

TEXT("WidgetBlueprint'/Game/NewWidgetBlueprint.NewWidgetBlueprint_C'")))

 {

 //Get user controller

 if (APlayerController* PC = GetWorld()->GetFirstPlayerController())

 {

 //Create a widget object

 MyWidgetInstance = CreateWidget<UMyUserWidget>(PC, MyWidgetClass);

 if (MyWidgetInstance)

 {

 MyWidgetInstance->AddToViewport();

 }

 }

 UE_LOG(LogTemp, Warning, TEXT("Added"));

 }

Code 16 Declaration of widget object (IPGameModeBase.cpp)

PAGE 41

In widget class, we declare a L-system turtle pointer. When the widget class is instantiated, we assign

the reference of L-system turtle object to this pointer. So that we can transmit all input data to L-system

turtle.

 lsystem->p->lengthFactor[0] = FCString::Atod(*lengthFactor->GetText().ToString());

 lsystem->p->lengthFactor[1] = FCString::Atod(*lengthFactor_1->GetText().ToString());

 lsystem->p->lengthFactor[2] = FCString::Atod(*lengthFactor_2->GetText().ToString());

 lsystem->p->lengthFactor[3] = FCString::Atod(*lengthFactor_3->GetText().ToString());

 lsystem->p->lengthFactor[4] = FCString::Atod(*lengthFactor_4->GetText().ToString());

 UE_LOG(LogTemp, Warning, TEXT("lengthFactor: %f,%f,%f,%f,%f"), lsystem->p->lengthFactor[0], lsystem->p-

>lengthFactor[1], lsystem->p->lengthFactor[2], lsystem->p->lengthFactor[3], lsystem->p->lengthFactor[4]);

 lsystem->p->GenerateSentence();

 lsystem->render();

Code 17 Example of data transmit and generating a tree (MyUserWidget.cpp)

 lsystem = GWorld->GetWorld()->SpawnActor<ALsystemTurtleActor>(lsystem->StaticClass(), FVector(0, 0, 70), FRotator(0, 0,

0));

 MyWidgetInstance->loadTurtle(lsystem);

Code 18 Create and assign L-system turtle object (IPGameModeBase.cpp)

4.6 Game mode

Game mode is like the Main function in Java. It is the entry point of the program in Unreal Engine 4

project. In this project, the instantiation of the L-system turtle class and the widget class happen within

the BeginPlay() function of Game mode class. BeginPlay() function will be run when the program starts.

 if (MyWidgetInstance)

 {

 MyWidgetInstance->RemoveFromViewport();

 MyWidgetInstance = nullptr;

 }

 if (UClass* MyWidgetClass = LoadClass<UMyUserWidget>(NULL,

TEXT("WidgetBlueprint'/Game/NewWidgetBlueprint.NewWidgetBlueprint_C'")))

 {

 if (APlayerController* PC = GetWorld()->GetFirstPlayerController())

 {

 MyWidgetInstance = CreateWidget<UMyUserWidget>(PC, MyWidgetClass);

 if (MyWidgetInstance)

 {

 MyWidgetInstance->AddToViewport();

 }

 }

 }

 lsystem = GWorld->GetWorld()->SpawnActor<ALsystemTurtleActor>(lsystem->StaticClass(), FVector(0, 0, 70), FRotator(0, 0,

0));

 MyWidgetInstance->loadTurtle(lsystem);

Code 19 BeginPlay() in Game mode (IPGameModeBase.cpp

PAGE 42

4.7 Important problems during implementation

4.7.1 Rough and bumpy surface of mesh component

In the early stage of development, the mesh of branch is made of a standard cylinder and a standard

circle. It will come up with a problem that the surface of branch is too smooth to look natural.

Figure 33 Previous mesh of branch

To solve this problem, realistic models for branch and trunk are needed. After searching a model library

called Quixel Bridge, a better model for tree trunk has been found. As we can see in the demonstration

figures, the surface of this trunk is rough and bumpy. At the same time, the upper part of the trunk is

close to a cylinder. Therefore, we can crop the upper part of the trunk and take it as the model for

branch.

Figure 34 Tree trunk

PAGE 43

Figure 35 Branch

What needs to be mentioned is that the material for those meshes are different than the material we

use on the mesh component. The cropping process is done on 3DS MAX 2019

Figure 36 Cropping process on 3DS MAX 2019

4.7.2 Performance improvement

One significant issue that affects the performance is lighting in the scene. There are two of the lighting

types in Unreal Engine 4 that are needed to introduce.

(1) Stationary lights [13]

Stationary Lights are lights that are intended to stay in one position, but are able to change in other

ways, such as their brightness and color. This is the primary way in which they differ from Static Lights,

which cannot change in any way during gameplay. However, it should be noted that runtime changes to

brightness only affect the direct lighting. Indirect (bounced) lighting, since it is pre-calculated by

Lightmass, will not change.

Of the three light mobilities, Stationary lights tend to have the highest quality, medium mutability, and

medium performance cost.

Trunk Branch

PAGE 44

(2) Static light [14]

Static Lights are lights that cannot be changed or moved in any way at runtime. They are calculated only

within Lightmaps, and once processed, have no further impact on performance. Movable objects cannot

integrate with static lights, so the usefulness of static lights is limited.

Of the three light mobilities, Static lights tend to have medium quality, lowest mutability, and the lowest

performance cost.

By default, the light in a map will be a stationary light. It causes significant impact on performance

because in this project, tens of thousands of static mesh actors are created. It means that the system

must calculate real-time lighting for all those actors. The frame rate in inspecting window is very low.

Figure 37 Frame rate testing before improving

Figure 38 Default lighting setting in a map

PAGE 45

By changing the light into static, the performance of program has improved. The frame rate has

increased significantly. However, the quality of light is also lower.

Figure 39 Frame rate test after improving

5.Results and Evaluation

5.1 User interface

Figure 40 User interface

PAGE 46

5.1 Effect of each parameter

Trees are controlled by parameters that are mentioned above. Therefore, changing in each parameter of

one type of tree is necessary.

Basic parameter of a type of tree:

Axiom � = � ሺ͵ͲͲ,͹Ͳሻ, Probabilityܤ = {Ͳ.͸,Ͳ.Ͷ}, generation = 9, initial length = 300,

Initial width = 90,

Branch angle around Z axis { −͵Ͳ°, ͵Ͳ°, ͻͲ°}, Branch angle around X axis { −͵Ͳ°, ͵ͷ°,−ͻͲ°}
Width parameters: ݌ଵ = Ͳ.ͷ ݍଵ = Ͳ.͵ ݌ଶ = Ͳ.͵

Length parameters: { Ͳ.͸ͺ, Ͳ.͹ͺ, Ͳ.ͷͺ, Ͳ.͸ͺ, Ͳ.͹ͺ}
Rewriting rules: {ܤ → ! ܤ} ,{[ܤ/+][ܤ/+] [ܤ/+]ܨ → ! {[ܤ/+] [ܤ/+]ܨ

Figure 41 Same type of tree with different generation (7,9)

PAGE 47

Figure 42 Same type of tree with different triple branching probability (0.4,0.6)

Figure 43 Same type of tree with different initial length (300,400)

PAGE 48

Figure 44 Same type of tree with different initial width (70,80)

Figure 45 Same type of tree with different rotation angles around z-axis (-45,45,105) (-30,30,90)

PAGE 49

Figure 46 Same type of tree with different rotation angles around x-axis (-30,35, -40) (-20,30, -35)

5.2 Different types of trees

Axiom � = � ሺ͵ͲͲ,͸Ͳሻ, Probabilityܤ = {Ͳ.ͺ,Ͳ.ʹ}, generation = 8, initial length = 300,

Initial width = 60,

Branch angle around Z axis { −͵Ͳ°, ͵Ͳ°, ͻͲ°}, Branch angle around X axis { ʹ͹°,−͸ͺ°, ͸Ͳ°}
Width parameters: ݌ଵ = Ͳ.ͷ ݍଵ = Ͳ.͵ ݌ଶ = Ͳ.͵

Length parameters: { Ͳ.͸ͷ, Ͳ.͹ͳ, Ͳ.ͷͷ, Ͳ.͸ͷ, Ͳ.͹ͳ}
Rewriting rules: {ܤ → ! ܤ} ,{[ܤ/+][ܤ/+] [ܤ/+]ܨ → ! {[ܤ/+] [ܤ/+]ܨ

Figure 47 Sympodial tree _1

PAGE 50

Axiom � = � ሺʹͲͲ,ͷͲሻ, Probabilityܤ = {Ͳ.͸,Ͳ.Ͷ}, generation = 9, initial length = 200,

Initial width = 50,

Branch angle around Z axis { −͵Ͳ°, ͵Ͳ°, ͻͲ°}, Branch angle around X axis { ʹͷ°,−ʹͷ°, ͸Ͳ°}
Width parameters: ݌ଵ = Ͳ.Ͷͷ ݍଵ = Ͳ.͵ ݌ଶ = Ͳ.ͷ

Length parameters: { Ͳ.ͷ, Ͳ.ͺͷ, Ͳ.ͷͷ, Ͳ.ͷ, Ͳ.ͺͷ}
Rewriting rules: {ܤ → ! ܤ} ,{[ܤ/+][ܤ/+] [ܤ/+]ܨ → ! {[ܤ/+] [ܤ/+]ܨ

Figure 48 Sympodial tree _2

Axiom � = � ሺ͵ͲͲ,͹Ͳሻ, Probabilityܤ = {Ͳ.͹,Ͳ.͵}, generation = 9, initial length = 300,

Initial width = 70,

Branch angle around Z axis { −͵Ͳ°, ͵Ͳ°, ͻͲ°}, Branch angle around X axis { −ʹͲ°, ͵ͷ°,−ͶͲ°}
Width parameters: ݌ଵ = Ͳ.ͷ ݍଵ = Ͳ.͵ ݌ଶ = Ͳ.͵

Length parameters: { Ͳ.͸ͷ, Ͳ.͹ͳ, Ͳ.ͷͷ, Ͳ.͸ͷ, Ͳ.͹ͳ}
Rewriting rules: {ܤ → ! ܤ} ,{[ܤ/+][ܤ/+] [ܤ/+]ܨ → ! {[ܤ/+] [ܤ/+]ܨ

PAGE 51

Figure 49 Sympodial tree _3

Axiom � = � ሺͳʹͲ,ͷͲሻ, Probabilityܤ = {Ͳ.͹,Ͳ.͵}, generation = 9, initial length = 120,

Initial width = 50,

Branch angle around Z axis { −ͻͲ°, ͻͲ°,−ͷ°}, Branch angle around X axis { ͷ°,−͵Ͳ°,−ͶͲ°}
Width parameters: ݌ଵ = Ͳ.ͷ ݍଵ = Ͳ.͵ ݌ଶ = Ͳ.͸

Length parameters: { Ͳ.ͻͷ, Ͳ.͹ͷ, Ͳ.͸ͺ, Ͳ.ͻͷ, Ͳ.͹ͷ}
Rewriting rules: {ܤ → ! ܤ} ,{[ܤ/+][ܤ/+] [ܤ/+]ܨ → ! {[ܤ/+] [ܤ/+]ܨ

Figure 50 Sympodial tree _4

PAGE 52

Axiom � = � ሺͳͲͲ,ʹͲሻ, Probabilityܤ = {Ͳ.͸,Ͳ.Ͷ}, generation = 9, initial length = 120,

Initial width = 20,

Branch angle around Z axis { ͳ͵͹°, ͳ͵͹°,−ͷ°}, Branch angle around X axis { −ͷ°, ʹͷ°,−ͶͲ°}
Width parameters: ݌ଵ = Ͳ.Ͷ ݍଵ = Ͳ.͵ ݌ଶ = Ͳ.Ͷ

Length parameters: { Ͳ.ͻͷ, Ͳ.͹ͷ, Ͳ.͸ͺ, Ͳ.ͷͷ, Ͳ.ͻͷ}
Rewriting rules: {ܤ → ! ܤ} ,{[ܤ/+] [ܤ/+]ܨ → {[ܤ/+] [ܤ/+]ܨ!

Figure 51 Sympodial tree _5

PAGE 53

5.3 Observation from different perspective

Figure 52 Observe the tree from the right

Figure 53 Observe the tree from the bottom

Figure 54 Observe the tree from the top

PAGE 54

6. Future work

Due to time constraints during this project, the program did not implement the export 3D model

function. In this project, trees are formed by tens of thousands of static mesh components, and they are

independent from each other. To export the tree, we need to combine all components as one static

mesh actor. However, there is not a simple way to automatically combine actors when the programming

is running. A potential solution is to extract the mesh data from the lower level of render pipeline and

combine those data, which requires longer time to study.

As mentioned in section 4.7.1, one important feature that makes tree look realistic is the surface of

trunk and branch. In nature, the surface of a tree is bumpy and rough. Although in this project, this

problem can be solved by using a better 3D model, the branch and trunk of the tree will be completely

ideŶtiĐal. BeĐause theǇ aƌe usiŶg a fiǆed ϯD ŵodel. This ĐaŶ ďe poteŶtiallǇ fiǆed ďǇ usiŶg ͚ďuŵp ŵap͛
and apply random bump map onto the surface of branches and trunk.

As described in initial plan, there are more than one type of tree in nature. A potential future work can

be studying and implementing other types of trees with different rewriting rules. For example,

monopodial tree.

Another area for potential improvement is that the branches of a tree are all straight. In nature,

branches are usually curving. Although this can be solved by using B Spline [16]. B Spline curve line

simulation is broadly used in many areas, including plants modeling. In this project, B Spline can be used

to simulate a curved branch by combining several straight branches with certain angles. However, the

theory of B Spline is complicated, and it requires more time to understand and to be implemented in

practice.

7. Conclusions

The primary aim of this project is to research and implement L-system on Unreal Engine 4, researching

plants morphology and generate a realistic plant. The L-system was successfully implemented in C++ and

a system based on C++ has been designed and it has been successfully run on Unreal Engine 4. The

results of the evaluation have shown that a realistic 3D tree can be generated. User can change the

shape of it by modifying the parameters. Although the parameters that are extracted from plants cannot

perfectly simulate and describe the plants perfectly, it has left a research direction for the future work.

The secondary aim was to develop a system with a user interface that allows user to adjust the

parameters directly and import customized 3D model and material. An export functionality is also

expected, it provides a way for user to export the tree that has been generated as an FBX. File for future

use. The secondary aim has partly achieved. A user interface has been implemented and user can

ĐhaŶge tƌee͛s paƌaŵeteƌ. Hoǁeǀeƌ, the eǆpoƌt aŶd iŵpoƌt fuŶĐtioŶalitǇ aƌe ŵissiŶg. As disĐussed ďƌiefly

in Section 7, this is potential for improvement.

PAGE 55

8. Reflection on Learning

The project has achieved its practical aims with deliverable results. In addition to it, I have also benefit

from completing the project. By designing and developing L-system on Unreal Engine 4 by C++, I have

expanded my programming skills and the familiarity of Unreal Engine 4 platform, as well as computer

graphics. I am deeply interested in them, and I hope to keep researching in field of computer graphics

and game engineering. This project has also provided an opportunity to explore mathematical plants

simulations. Although I cannot invent a simulation method, it is also very helpful to implement an

existing method.

The project has also been very helpful to my time management skills and carrying out a project from

start to finish. By completing the project, I have had the opportunity to research and to learn how to

use Unreal Engine 4, which is my intended future area to work in.

PAGE 56

9. References

[1] En.wikipedia.org. 2022. Woody plant - Wikipedia. [online] Available at:

<https://en.wikipedia.org/wiki/Woody_plant> [Accessed 12 May 2022].

[2] Prusinkiewicz, P. and Lindenmayer, A., n.d. The algorithmic beauty of plants.

[3] Prusinkiewicz P. Graphical applications of L-systems[C]. Proceedings of Graphics Interface.

1986,86:247-253

[4] Hanan J S. Parametric L-systems and their application to the modeling and visualization of plants[D].

Regina: University of Regina, 1992

[5] Abelson H, diSessa A A. Turtle geometry[M]. Cambridge:M.L.T. Press, 1982.

[6] J. D. Foley and A. Van Dam. Fundamentals of interactive computer graphics. Addison-Wesley,

Reading, Massachusetts, 1982.

[7] Honda, H., 1971. Description of the form of trees by the parameters of the tree-like body: Effects of

the branching angle and the branch length on the shape of the tree-like body. Journal of Theoretical

Biology, 31(2), pp.331-338.

[8] Docs.unrealengine.com. 2022. Actors. [online] Available at:

<https://docs.unrealengine.com/4.26/en-

US/ProgrammingAndScripting/ProgrammingWithCPP/UnrealArchitecture/Actors/#:~:text=An%20Actor

%20is%20any%20object,code%20(C%2B%2B%20or%20Blueprints).> [Accessed 12 May 2022].

[9] Docs.unrealengine.com. 2022. Textures. [online] Available at:

<https://docs.unrealengine.com/5.0/en-US/textures-in-unreal-engine/> [Accessed 12 May 2022].

[10] Docs.unrealengine.com. 2022. Game Mode and Game State. [online] Available at:

<https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Framework/GameMode/>

[Accessed 12 May 2022].

[11] EloǇ, C., ϮϬϭϭ. LeoŶaƌdo͛s ‘ule, “elf-Similarity, and Wind-Induced Stresses in Trees. Physical Review

Letters, 107(25).

[12] 2022. [online] Available at: <https://www.wired.com/2011/11/branching-tree-

physics/#:~:text=Leonardo's%20rule%20holds%20true%20for,cross%20section%20of%20the%20trunk.>

[Accessed 12 May 2022].

[13] Docs.unrealengine.com. 2022. Stationary Lights. [online] Available at:

<https://docs.unrealengine.com/4.27/en-

US/BuildingWorlds/LightingAndShadows/LightMobility/StationaryLights/> [Accessed 12 May 2022].

[14] Docs.unrealengine.com. 2022. Static Lights. [online] Available at:

<https://docs.unrealengine.com/4.27/en-

US/BuildingWorlds/LightingAndShadows/LightMobility/StaticLights/> [Accessed 12 May 2022].

PAGE 57

[15] de Boor, C., 1972. On calculating with B-splines. Journal of Approximation Theory, 6(1), pp.50-62.

