CARDIFF

UNIVERSITY

PRIFYSGOL

(AFRDY(

Chinese Chess Al Player

FINAL REPORT

Author: Mingrui Fang

Supervisor: Yukun Lai

Moderator: Oktay Karakus

Module: CM3203 — One Semester Individual Project (40 Credits)

Institution: School of Computer Science and Informatics, Cardiff University

Abstract

This project’s objective is to investigate different Al techniques for building an automatic
game player for Chinese chess. A variety of existing Al algorithms such as the Negamax
Search and so on are discussed in the report.

The report in the early stage covers the whole process of Al Chinese chess game design
including the Ul (User Interface) design and the implementation of Al algorithms of Chinese
chess, including Negamax, Alpha-beta Search and its optimization algorithms such as
fail-soft Alpha-beta Search, Aspiration Search, MTD(f) and Minimal Window Search (PVS).
In the later stage, these Al algorithms which are successfully implemented will be
experimented and tested, and the report will show a comparison of operating efficiency of
different Al algorithms and how well the Al players are playing against the human players,
so as to obtain the overall results and evaluation to these different Al techniques.

Acknowledgements

First of all, | would like to acknowledge yukun, my supervisor, for his support of my project.
During the weekly online meetings, Yukun was very patient in answering my questions and
gave some very positive and constructive feedback. Then | would like to acknowledge my
friends who helped me all the time. In the experiment part of my project, they were very
patient to help me test my project, which allowed me to get more experiment data.

Table of Contents
Abstract

Acknowledgements
Introduction

Background and Research
Chinese Chess
Game Background
Game rules
Game and Al
Al Algorithms Research
Minimax & Negamax Search

Alpha-beta Search and its optimisation & improvement

Alpha-beta Search
Fail-Soft Alpha-beta Search
Aspiration Search
Minimal Window Search (PVS)
MTD(f)
Evaluation Function

Piece Value

Piece Position

Piece Flexibility

Approach

Design and Implementation
Uml Class Diagram
Overall Structure
Ul Module
DrawUl class
Selection class
Listener class
Al Module
Robot class
Evaluation class
Implementation
Ul Implementation
Al Implementation
Algorithm Implementation
Negamax Search implementation
Alpha-beta Search implementation
Fail-soft Alpha-beta Search implementation
Aspiration Search implementation

© 00O NOOOOOO O W DN

[G L (I U G U G G ¢
D Or oo 01 A WN =~ 2~ ©

-
(=]

N NDN NMN DN MNMNMNMNMNMDN A A A QA Q@ QO QO Q=D
O N~ PSP O OO O O © O 0 0 0 0 N

Minimal Window Search implementation
MTD(f) implementation
Evaluation Function Implementation

Experiments
Experiments approach
Results and Evaluation
The Comparison of search efficiency (Al & Al)
Negamax Search & Alpha-beta Search
Alpha-beta Search & Fail-Soft Alpha-beta Search
Fail-Soft Alpha-beta Search & Aspiration Search
Aspiration Search & Minimal Window Search
Minimal Window Search & MTD(f)
Summary
Human Player vs Al player Evaluation (Human & Al)
Minimal Window Search(PVS) Al Player vs Human Player

Future Work for the project
Improvements to existing Al algorithms
Implementation of New Al player
Monte Carlo Tree Searching (MCTS)
Reinforcement Learning

Conclusion
Reflection
Table of Figures

Appendices
Appendix 1
Appendix 2

References

31
33
35

36
36
37
37
37
37
38
38
38
39
40
40

40
40
41
41
41

42
42
43

44
44
44

45

Introduction

Artificial intelligence (Al), as a branch of computer science, has more and more widespread
concern in the computer field. Al systems are part of many of the world’s devices and
technologies, such as personal assistants, smart cars, content generation systems, and
more [1]. With the improvement of Al theory and technique, the application field of Al is also
expanding. Adversarial games like board games such as Othello, Gomoku, Checkers and
Go can also be applied in Al technique. An Al player can be created in the board games by
the Al technique of analysing board game situations and evaluating the possible moves an
opponent can make to choose the most optimal moves on each game step. With the
success of computer games in Othello, Checker and Chess, scholars all over the world
have focused on more complex Chinese Chess and Shogi Go [2].

My project aims to create an Al player for Chinese chess. The main goal of my project is to
implement multiple Al algorithms and evaluate their performance through a series of tests
and data comparisons. To achieve this goal, | firstly need to implement a Ul (User Interface)
of Chinese chess so that users can easily interact and play with Al players or other human
players. Before designing a Ul, it is necessary for me to fully understand the game logic
and rules of Chinese chess to ensure the feasibility and accuracy of the game. Then, | will
start to create an Al player for Chinese chess. | will create a set of Al classes in the project
that contain different Al algorithms. Human players will be able to randomly choose the Al
algorithms which are implemented in the Ul to play against Al players. In the duration of the
game, the relevant data such as operating efficiency of the Al player will be recorded on the
console for each move to performance evaluation later.

Though the Al techniques of Chinese chess have been researched and solved to a certain
extent, | still think that it is meaningful and interesting to create the Chinese chess game Ul
and implement and evaluate the performance of the Al algorithms. There are still many
potential Al algorithms worth studying and exploring in the field of Al Chinese chess.

Background and Research

Before the beginning of designing and implementing my project, | first gather a range of
information which is related to my project to start my research. This section contains all the
information | have gathered including the background and rules of Chinese chess and
relevant potential Al algorithms. This research will help me better to make the approach to
implement the game logic and Al algorithms.

Chinese Chess

Game Background

Chinese chess, also called Xiangqi, is one of the most popular and historical board games
in China, which dates back to the Song Dynasty (1127-1279 A.D.). It is a two-player,
zero-sum game with complete information [3]. The board represents the battle field
between two armies, with one river across in the middle [3]. Each team has one King, two

Horses, two Elephants, two Advisors, two Rooks, two Canons, and five Pawns [3]. The
team who captures the opponent king first wins the game [3].

Chinese chess is played on a board with 9 lines wide and 10 lines long. The pieces are
placed on the intersections, which are known as points. The vertical lines are known as
files and the horizontal lines are known as ranks [4]. Centred at the first to third and eighth
to tenth ranks of the board are two zones, each three points by three points, demarcated by
two diagonal lines connecting opposite corners and intersecting at the centre point [4].
Each of these areas is known as a castle. Dividing the two opposing sides, between the
fifth and sixth ranks, is a river. Although the river provides a visual division between the two
sides, only two pieces are affected by its presence: soldiers have an enhanced move after
crossing the river, and elephants cannot cross it [4]. The starting points of the soldiers and
cannons are usually, but not always, marked with small crosses [4].

HEHENEAE THEHEHE

P
3

] [

6 Q@) @ G @y @) G @

Figure 1: A 9x10 Chinese chess board

Name Pieces
Advisor @
Cannon I@
Rook '@
Elephant I@
King I@ @
Horse I@ ,
Pawn I@ e;}

Figure 2: A table which shows the meaning of each pieces

Game rules

The pieces start in the position shown in the diagram of Figure 1 above. Each player can
move the pieces according to the following rules:

The King moves only one space at a time, either horizontally or vertically. Furthermore, the
King must always stay within the palace, which is a square marked with an X.

The Advisor moves only one space at a time diagonally. Similar to the King, the Advisor
must stay within the palace.

The Elephants move two spaces at a time diagonally (i.e. 2 spaces left/right and 2 spaces
up/down in a move). They must stay within their own side of the river. If there is a piece
midway between the original and final intended position of an Elephant, the Elephant is
blocked and the move is not allowed.

The Rooks move one or more spaces horizontally or vertically provided that all positions
between the original and final positions are empty.

The Horses move two spaces horizontally and one space vertically (or respectively 2
spaces vertically and one space horizontally). If there is a piece next to the Horse in the
horizontal (vertical) direction, the horse is blocked and the move is not allowed.

The Cannons move one or more spaces horizontally or vertically like a Rook. However, in a
capture move, there must be exactly one non-empty space in between the original and final
position. In a non-capture move, all spaces in between must be empty.

The Pawns move one space at a time. If a Pawn does not cross the river yet, it can only
move forward vertically. Once crossing the river, the Pawn can also move horizontally.

Capture: When a piece moves to a position currently held by an opponent's piece, it
captures that opponent's piece. The captured piece is removed from the board.

King's line of sight: The two Kings in the board must never be on the same file (vertical line)
without any pieces in between them. A move that puts the two Kings in such a setting is
illegal.

King safety: One must never leave the King to be captured by the opponent in the next
move. Any moves that put the King in such a setting is illegal.

The game ends when one of these two situations happens: (1) If one threatens to capture
the opponent's King and the opponent has no way to resolve the threat, one wins. (2) If one
does not have any valid move, one loses.

Game and Al

As a two-player, zero-sum game with complete information, Chinese chess is very suitable
to be researched in the field of artificial intelligence. Compared to Chess, which has had the
great improvement on the research of Al, the field of artificial intelligence in Chinese chess
still needs to be further researched. In recent years, the Al Chinese chess has gradually
attracted the attention of many researchers. Therefore, the field of artificial intelligence in
Chinese chess has high research value and potential in the future.

Al Algorithms Research

The research into Al algorithms is quite significant to choose and implement the creation of
Chinese Al players. Therefore, | will show as much information as possible | have gathered
about Al algorithms and their relevant pseudocode so as to help me more easily and
quickly to understand the principle of their approach before | begin to implement them.

Minimax & Negamax Search

The minimax theorem was first proven and published in 1928 by John von Neumann [5],
which was considered the starting point of game theory. In the mathematical area of game
theory, the minimax theorem provides conditions that guarantee that the max—min
inequality is also an equality.

In game theory, the Minimax algorithm is to address the problem of n-players playing
against each other in a zero-sum based game. It is a decision rule for minimising the
possible loss for a worst case (maximum loss) scenario. When dealing with gains, it is to
maximise the minimum gain. Originally formulated for n-player zero-sum game theory,
covering both the cases where players take alternate moves and those where they make
simultaneous moves, it has also been extended to more complex games and to general
decision-making in the presence of uncertainty [6]. Chinese chess, as a two-player,
zero-sum game with complete information, is a great fit to be applied in the Minimax
algorithm.

The Minimax algorithm is used in Chinese chess to denote minimising the opponent's
maximum payoff. In a zero-sum game, this is identical to minimising one's own maximum
loss, and to maximising one's own minimum gain. For example, in Figure 3, there is a tree
based on Minimax. The circles represent the moves of the maximising player running the
algorithm, and squares represent the moves of the opponent who is as a minimising player.
Because of the deficiency of computation efficiency on computers, the tree can just search
ahead of 4 moves. Suppose the search depth is 4. Then when the Al player moves a step
(it is thought to be the best, record it as the number of steps 1, and the search depth is 4), it
will first consider that if the opponent moves this step 1, then the Al player will definitely
move the worst step 2 which is the most relevant to this step (search depth 3), and then Al
player will assume the best move steps 3 (search depth 2) according to move steps 2, and
continues to consider the worst move step 4 according to the move step 3 (search depth 1)
Then, the search depth is 0. At this time, the evaluation function of this situation will be
given.

(-t
a=iidl I sHENERGE

------------------- R S e

OB B DOO 066

Figure 3: A tree based on Minimax

As for the program code of Minimax, the algorithm is based on recursion. Figure 4 is the
pseudocode of the Minimax algorithm.

int Max(int depth) {
int best = -INFINITY;
if (depth <=0) {
return Evaluate();

}
GeneratelLegalMoves(); /lgenerate all reasonable moves
while (MovesLeft()) {
MakeNextMove(); /lIwhen moves this step
val = Min(depth - 1); /laccepts a relevant minimum
UnmakeMove();
if (val > best) {
best = val,
}
}
return best; /Ireturns a relevant maximum value (the Al thinks)

}

int Min(int depth) {
int best = INFINITY;
if (depth <=0) {
return Evaluate();
}
GeneratelLegalMoves();
while (MovesLeft()) {
MakeNextMove();
val = Max(depth - 1); ///accepts a relevant maximum
UnmakeMove();
if (val < best) {
best = val,
}
}
return best; /Ireturns a relevant minimum value (the opponent thinks)

}

Figure 4: Pseudocode of the Minimax algorithm

The code of Figure 4 is very long. This algorithm requires that A selects the move with the
maximum-valued successor while B selects the move with the minimum-valued successor.
There is an optimal algorithm called Negamax algorithm which is a variant form of Minimax
algorithm. Negamax was invented by Knuth and Moore in 1975. This algorithm relies on the
fact that max(a.b) = -min(-a.-b) to simplify the implementation of the minimax algorithm.
Here is a pseudocode of the Negamax algorithm in Figure 7 as follows.

int NegaMax(int depth) {
int best = -INFINITY;
if (depth <= 0) {
return Evaluate();

}

GeneratelLegalMoves();

while (MovesLeft()) {
MakeNextMove();
val = -NegaMax(depth - 1); // there is a negative sign here.
UnmakeMove();
if (val > best) { /lthe best value all the time
best = val;

}
}

return best;
}

Figure 5: Pseudocode of the Negamax algorithm

We can see from Figure 5 that the little of this code makes the algorithm make two less
judgments. This function always finds the optimal value of the current node (always finds
the best way to move the current node). But when the node is transformed (when the Al is
transformed to a human), the function result becomes negative. This change saves the
step of finding the min function and reduces the amount of code.

Alpha-beta Search and its optimisation & improvement

The Minimax algorithm needs to search the entire game tree and choose the route as best
as possible. However, because the branch factor of the game tree is too large, the
efficiency is very low and a deep search cannot be done. Therefore, | will show some
optimization algorithms — Alpha-beta Search and its optimization & improvement.

Alpha-beta Search

Alpha—beta pruning is also a search algorithm that seeks to decrease the number of nodes
that are evaluated by the Minimax algorithm in its search tree. The benefit of it is that the
branch factors of the search tree can be eliminated. It stops evaluating a move when at
least one possibility has been found that proves the move to be worse than a previously
examined move. The Alpha-beta pruning reduces the effective depth to slightly more than
half that of the original Minimax algorithm if the nodes are evaluated in an optimal order.
Effective use of pruning will allow an Al player to evaluate more game states within the
allotted processing time so as to improve the quality of its decisions. When applied to a
standard minimax tree, it returns the same move as minimax would, but prunes away
branches that cannot possibly influence the final decision [7].

The principle of Alpha-beta Search can also be described in a game tree. For example, in
Figure 6, making use of the Alpha-beta pruning, some part of sub-trees such as E, F and G
need not to be completely searched and some of their leaf nodes can be eliminated.

1M E106] 0] [[5] — "

Figure 6: A game tree based on alpha-beta pruning

There are two values in this algorithm including alpha and beta. Alpha player is the
maximising player which needs to ensure the minimum score. A beta player is the
minimising player which needs to ensure the maximum score. In the start, both players
start with their worst possible score. Whenever the maximum score that the beta player is
assured of becomes less than the minimum score that the alpha player is assured of (alpha
> beta), the alpha player will need not to consider further descendants of this node because
their scores will never be reached in the actual play. Here is a pseudocode of the
Alpha-beta Search algorithm in Figure 7 as follows.

int AlphaBeta(int depth, int alpha, int beta) {
if (depth == 0) {
return Evaluate();

}

GenerateLegalMoves();
while (MovesLeft()) {
MakeNextMove();
val = -AlphaBeta(depth - 1, -beta, -alpha); //recurse to search new node
UnmakeMove();
if (score >= alpha) {
alpha = score; //get the biggest value
bestmove = m; //make the best move

}
if (alpha >= beta) {
break; //occur to the beta pruning

}
}

return alpha; // get the best value
}
Figure 7: Pseudocode of the Alpha-beta Search algorithm

Fail-Soft Alpha-beta Search

The Fail-Soft Alpha-beta Search algorithm is based on Alpha-beta Search algorithm. The
idea of this algorithm is to limit the alpha-beta value of the Alpha-Beta search so as to
subtract more nodes. When the search fails, return the current value. This is available to
avoid the situation when the search fails and cannot obtain any information leading to
searching again. Here is a pseudocode of the Fail-soft Alpha-beta Search algorithm in
Figure 8 as follows.

int FAIpah(int depth,int alpha,int beta){
int current =-INFINITY; //current=A7%5
if(game over or depth <=0)
return eval();
if(depth <=0)
return eval();
for(each possible move m) {
make move m;
score =-FAlpahBeta(depth-1,-beta,-alpha) //recurse to search new node
unmake move m;
if(score >current){
current =score; //retain the maximum value
if(score >=alpha)
alpha=score; //change the boundary of alpha
if(score>=beta)
break; //beta pruning

}
}

return current; //get the best value
}
Figure 8: Pseudocode of the Fail-Soft Alpha-beta Search algorithm

Aspiration Search

The Aspiration Search algorithm can be also based on Alpha-beta Search algorithm or
Fail-Soft Alpha-beta Search algorithm. The idea of this algorithm is to assume that the
search results are near a certain value, so as to use Alpha-Beta search within a given small
range, and adjust the range when fail high and fail low, which belongs to a narrow window
search. Although this may cause the search to not return the correct value, it is also
possible to find the correct value faster. When it is found that the returned value is not
within the predicted range, it needs to be searched again. If the cost saved by narrowing
the window is greater than the cost increased by searching again, the search speed will be
improved. Here is a pseudocode of the Aspiration Search in Figure 9 as follows.

int alpha = previous - WINDOW,;
int beta = previous + WINDOW;
for (55){
score = alphabeta(depth, alpha, beta); //use Alpha-beta algorithm
if (score <= alpha) { //lower than the fail low of window
alpha =-WIN;
} else if (score >= beta) { //higher than the fail high of window
beta = WIN;
} else {
break;

}
}

Figure 9: Pseudocode of the Aspiration Search algorithm

Minimal Window Search (PVS)

The Minimal Window Search is also called NegaScout or Principal Variation Search (PVS).
The idea of this algorithm is that in a strongly ordered game tree, the first move on each
node is likely to be the best and proving a subtree is inferior takes less time than calculating
the game value of this subtree.

According to this thinking, this algorithm assumes that the first move at each node is the
best, and tries to keep proving that the following moves are relatively inferior until this
assumption is proved wrong. For the first subtree of the node, use the complete search
window [a, B] to perform an exhaustive search to obtain the game value V of the subtree.
For the remaining subtrees of this node, use the smallest search window [V, V + 1] to
search so as to quickly find out whether the subtree is relatively inferior. If it proves that the
current subtree is not inferior, the subtree needs to be searched again and the game value
V needs to be modified. When the search depth is 5, the efficiency of this algorithm is about
250% better than Alpha-beta Search. This minimum window is also called the Null Window.
Here is a pseudocode of the Principal Variation Search in Figure 10 as follows.

int PVS(int depth, int alpha, int beta) {
move bestmove, current;
if (game over or depth <= 0) {
return eval();
}
make move m;
current = -PVS(depth - 1, -beta, -alpha); //make the first move and assume it is the best move
unmake move m;
for (other possible move m) { //make other moves
make move m;
score = -PVS(depth - 1, -alpha - 1, -alpha);
if (score > alpha && score < beta) {
/lindicate the assumption of that the first move is the best move is not check out
[/[search again and find the best move
score = -PVS(depth - 1, -beta, -alpha);
}
unmake move m;
if (score >= current) {
current = score;
bestmove = m;
if (score >= alpha) {
alpha = score;
}
if (score >= beta) {
break;
}
}
}
return current;

}

Figure 10: Pseudocode of the Minimal Window Search algorithm

MTD(f)

MTD(f) was first described in a University of Alberta Technical Report authored by Aske
Plaat, Jonathan Schaeffer, Wim Pijls, and Arie de Bruin [8]. This algorithm is like the
Aspiration search. The difference is that the initial value is adjusted when using the
Alpha-beta Search. The narrower the search window is, the faster the search is. The idea
of this algorithm is to make the search window as narrow as possible. It always uses "beta
= alpha + 1" to use Alpha-Beta Search. The effect of using such a "zero-width" search is to
compare the Alpha value to the exact value. If the search returns a value that is at most
Alpha value, the exact value itself is at most an Alpha value. otherwise, the exact value is
greater than Alpha value. Here is a pseudocode of MTD(f) in Figure 11 as follows.

int alpha = -WIN;
int beta = +WIN;
while (beta > alpha + 1) {
int test = (alpha + beta) / 2;
if (alphabeta(depth, test, test + 1) <= test) {
beta = test;
}else {
alpha =test + 1;
}
}

Figure 11: Pseudocode of the MTD(f)

Evaluation Function

An evaluation function, also known as a heuristic evaluation function or static evaluation
function, is a function used by game-playing computer programs to evaluate the value or
goodness of a position (usually at a leaf or terminal node) in a game tree [9]. The
evaluation function is the “brain” of Al Chinese chess. It is used for evaluating which moves
might be relevant to the Al Player at the current game state. Each possible move will be
provided a score as the evaluation. The evaluation function is flexible and variable using
the Negamax algorithm. The evaluation results from the same game board may be
different, relying on whose turn the player is. There are mainly three factors for evaluation
function that need to be considered in Al Chinese chess including the piece value, piece
position and piece flexibility.

Piece Value

The piece value refers to the value of a piece itself. For example, if the rook is worth 500, it
might be 300 for the horse, 80 for the pawn, etc. Hence, when evaluating the situation, we
first need to consider the comparison of the sum of the sub-forces of the two sides. For
example, if one player has full Rooks, Horses and cannons, and another player only has
one Rook and two horses, then the former player has an obvious advantage.

Piece Position

The piece position refers to the position occupied by a piece of a player on the chessboard.
For example, Cannons moving to the bottom of the opponent, Pawns passing river, and are

the good pieces of chess position status, while kings leaving the bottom, etc, are bad
pieces of chess position status.

Piece Flexibility

The piece flexibility refers to the movability of the pieces. For example, the Rook at the
starting position has poor mobility, so we pay attention to moving Rook away from the
starting position as soon as possible in Chinese chess. Similarly, Horses at their starting
position with their legs held back on all sides have poor mobility (for a piece that cannot
move any step, it can be considered that its mobility is 0).

Approach

For my project, the approach taken to create a Chinese chess Al player is based on the
background information | gathered in the previous section. According to my research into
Chinese chess and its relevant Al techniques development, | think the project about
creating a Chinese chess Al player is feasible and meaningful. To achieve this goal, firstly,
the design of Ul (User Interface) of Chinese chess is needed. This is to visualise the game
so that human players can play Chinese chess on this interface. Then, | will start to
implement the creation of Chinese chess Al players according to the Al approach | have
gathered in the previous section. The implementation of the Al approach includes two
parts: search algorithm and situation evaluation function. The search algorithm will use
different types to create multiple different Al players such as Negamax Search, Alpha-beta
Search and its relevant optimization Search algorithm. Finally, | will test and analyse
different Al players through human-Al playing and data comparison between different Al
players. The console will output relevant data, such as time spent, the number of nodes
searched, etc, for each move of Al players.

| will use the Java programming language to implement these approaches. The reason why
| choose this programming language is because | am familiar with it. During my study in
Cardiff University, many of my courses were based on Java language, and | completed
many relevant coursework using Java, which made me accumulate a lot of experience on
Java. Hence, | think choosing Java is able to improve my work efficiency to a certain extent.

What is more, as an object-oriented programming language, Java can make it easier for
me to divide the functions | need to implement into various modules, such as Ul module
and Al module, for management. This will make my project code have a better extendability
and be easier to debug and modify. Additionally, the Java programming language contains
abundant packages that can be imported directly. These packages can help me implement
some functions quickly. For example, through the swing package, | will be able to design
the Ul of Chinese chess more quickly and easily. This also improves my work efficiency.

To provide myself with a clear design idea to follow in the implementation stage, | created
an overall design flow diagram shown in Figure 12. | will further implement these functions
according to this flow diagram.

: ‘ .

Al player 1 Al player 2 Al player 3

Initialize board
and pieces
Y
Human vs Al
h 4 L J
Restart Withdraw
Start a new
Regret a move f—
game

End

Figure 12: An overall design flow diagram

As for the specific design and implementation of Ul and Al approaches, | will describe them
in detail in the next section.

Design and Implementation

In this section, | will detailly show the design and implementation of Chinese chess Ul and
Al. Some relevant uml diagrams and source code implementation will be directly attached
so as to help readers easier to understand the processing of design and implementation.

Uml Class Diagram

The structure of the program is described in a Uml class diagram and | will explain these
classes in detail.

Overall Structure

Figure 13 is the Uml class diagram showing the general structure of the Chinese chess

project.

DrawUl

-serialVersionUID: long
+ls: Listener

init
+x00: int
+x0: int

+initui()
+paint(Graphics)
+main(String[])

|

Listener

Selection

-contentPane: JPanel

——

+Selection()

RedWin

-serialVersionUID: int
-Is: Listener

+g: Graphics
+action: String
+x1: int

+x2: int

+yl:int

+y2: int

+rint

+c:int
+chessflag: int
+ui: DrawlU!
+lianbiao: int[]]]
+curchess: intf][]
+beforechess: intf]]
+flag: int]][]
+robot: Robot
+step: int

+y0: int

+row: int
+column: int
+chesssize: int
+size: int

Evaluation

Robot

#CurPosition: int]][]
#m_pEval: Evaluation
#m_nSearchDepth: int
#m_nMaxDepth: int
#name: String
Hlistener: Listener
#bestMove: int]]
+nodeSearchCount: int

#algorithm: String

+init()

BlackWin

+serialVersionUID: int
+ls: Listener

+init()

+3etG(Graghpics)
+setUl(DrawUI)

+getcr()

+seter(int, int)

+3etlb()

+recurchess()

+setcur(int, int)

+rebec()

+setbefore(int, int)
+rechessflag()
+walk(boolean)

+RobotWalk()
+mouseClicked(MouseEvent)
+ifwalk(int): int

+renew()

+Regret_Chess{)
+actionPerformed(ActionEvent)
+indnumb(int, int, int, int): int
+fwin()

+Robot(Listener)
+memcpy(intl][l, int(D)
+setAlgorithm(String, int]
+SearchAGoodMove(int[]): int
+AspirationSearchAGoodMove(int[][): int
#update(int, int, int, inf)
+lsSameSide(int, int): boolean
#negaMax(int): int
#alphabeta(int, int, int): int
#fAlphabeta(int, int, int): int
#PVS(int, int, int): int
#isGameOver(int[[], inf): int

+BASEVALUE PAWN: int
+BASEVALUE BISHOP: int
+BASEVALUE_ELEPHANT: int
+BASEVALUE CAR: int

BASE' E HORSE: int

BA AMNON: int
+BASEVALUE_KING: int
+FLEXIBILITY PAWN: int
+FLEXIBILITY BISHOP: int
+FLEXIBILITY ELEPHANT: int
+FLEXIBILITY_CAR: int
+FLEXIBILITY HORSE: int
+FLEXIBILITY CANON: int
+FLEXIBILITY KING: int
+m_BaseValue: Map<Integer, Integer=>
+m_FlexValue: Map<integer, Integer=
+m_AttackPos: int[][]

+m_GuardPos: int[][]
+m_FlexibilityPos: int[][]
+m_chessValue: int[][]

+nPosCount: int

+RelatePos: int]]]]

+BAOQ: int]

+BA1: int

+count: int

Ul Module

The Ul module is made up of DrawUl class, Selection class and Listener class, which is to
create the graphical user interface, create the game rules and create an operating function
in the button.

+Evaluation(}

+getBingValue(int, int, int][): int
+|sSameSide(int, inf): boolean
+eveluate(int][], boolean): int
+AddPoint(int, int)
+getRelatePiece(int[][], int, int): int
+canTouch(int[][], int, int, int, int): boolean
+getCount(): int

+setCount(inf)

Figure 13: Overall Uml class diagram of Chinese chess

DrawUI class

DrawUI class is created to define the variables and instance objects used in the game,
initialise the graphical user interface through the constructor, add components and chess
pieces, and register event components.

There are three buttons created in the DrawUl class including the “Start” button, “Restart”
button and “Withdraw” button. The "Start” button is to initialise the game state to start the
game. When clicking the “Restart” button, the game board will be initialised again. This will
clear the current operating status and recreate a new initial game board. When clicking the
“Withdraw” button, the program will go back to the last step game situation.

Selection class

Selection class is to create a prompt box to let users choose the Al player and the depth of
search in two drop-down menus. This class will be used when clicking the “Start” button or
the “Restart” button. And there is also a "Confirm” button in this class so as to send the
action information of users.

Listener class

Listener class is created to set the game rules and do some action events on the mouse.
Many functions such as starting the game, restarting the game and pieces withdrawing are
implemented in this class.

What is more, this class is a significant “pivot” to combine the Ul module and Al module. All
calls of Al algorithms initially start in this class. This makes the game playing between
Human players and Al players can be implemented.

Al Module

The Al module is made up of Robot class and Evaluation class, which is to implement the
Al algorithms and analyse the game board situation so as to create Al players.

Robot class

Robot class is created to implement a variety of Al algorithms and the Evaluation class will
be called when an Al player searches for possible moves. The Robot class is called by the
Listener class.

Evaluation class

Evaluation class is created to evaluate which moves might be relevant to the Al Player at
the current game state. Each possible move will be provided a score as the evaluation.
Each piece is given a variant of their piece value, piece position and piece flexibility. Some
methods referring to piece relations use these variants to obtain the values of searching in
this class.

Implementation

The project implementation contains the Ul and Al implementation of Chinese chess. To
clearly show the process of implementation, the screenshot of the whole process of
interface interaction and some key source codes will be shown in the report. | will explain
these interface screenshots and source codes in detail.

Ul Implementation

The Ul implementation is via Java’s Swing package. The main frame is created in the main
interface page using the JFrame class. This interface has three panes containing the
chessboard pane, button pane and logo pane, which all extend the JPanel class.

Logo pane contains an instance of the JLabel class. It uses the paint() method of JPanel to
place the Chinese chess image logo into the pane. Figure 14 shows the Chinese chess
logo placed in the interface.

Fabai

START

Figure 14: Chinese chess logo

Chessboard pane is to place the Chinese chess board. The image is from the internet. |
also use the paint() method of JPane to implement. Here is the chessboard placed in the
interface in Figure 15.

o
=
5
i
-

T
L

=
=
=
o

:

Figure 15: Chessboard

Button pane has three buttons containing the “Start” button, “Restart” button and
“Withdraw” button. | use the paint() method of JButton class to add an image to the button,
and set the position of the button by the setBounds() method. A JPane is created to place
these buttons. Figure 15 shows the Buttons placed in the interface.

RESTART

Figure 15: Buttons in the interface

These panes above consist of the original and basic static interface. To implement the
creation and control of the pieces in the chessboard, a Listener class is created. In this
class, there are some methods created to control the pieces.

| created a 2-dimensional array named flag. Each piece can be signified by a number on
the chess board. For example, the Rooks are signified as 1 or 11 on the chess board, the
Elephants are signified as 3 or 33 on the chess board. If there are no pieces in a position
on the chess board, this position can be signified as 0. The detailed number signs of pieces
are as follows.

Black pieces Red pieces
Piece Sign Piece Sign
Rook 1 Rook 11
Horse 2 Horse 12

Elephant 3 Elephant 13
Advisor 4 Advisor 14
King S King 15
Cannon 6 Cannon 16
Pawn 7 Pawn 17

Figure 16: Number signs of pieces in 2-dimensional array

Here is an example of the piece Cannon signed in the chessboard in Figure17 as follows.

2 3 4 5 4 3 0 1
0O 0 000 O O0@DO
6 0 0 0 0 2 6 O
o 7 0 7 0 7 0 7
0O 0 000 0 0O
0O 0 0 0O0O 0 0O
o 770 770 770 77
O 0 O ej0 0 66 O
0O 0 000 0 0O
11 22 33 44 55 44 33 22 11

Figure 17: An example of the piece Cannon signed in the chessboard

Now, the design of the interface is finished. Figure 18 shows the whole main interface.

Z2 5 X R

ar
L
=

.
-
alls:
-
ol

-
-
&

Figure 18: The whole interface

Next, | will introduce the implementation of the functions of moving pieces, withdrawing
pieces and restarting. These functions are implemented in the Listener class.

| have mentioned above | create a 2-dimensional array named flag to place the pieces on
the chessboard. If we hope that the pieces can move, just need to change the values of this
array. Firstly, use the mouseclick() method to obtain the current click position. Then, use the
getcr() method to the coordinate of row and column of the current click position.

When | click a piece, and then click another position, the piece can move to this new
position. There are two array variants including curchess and beforechess created to save
each click position.

The move of pieces needs to follow the game rules. Hence, the findnumb() method is
created to get the number of pieces in the middle of the start position and the click position
when they are on a straight line, so as to judge whether the Cannon and the Rook can
move. The ifwalk() method contains the rule of all piece move.

Now, the piece can move following the game rules. Figure 19 shows an example of the
Horse move. We can see from Figure 19 that the red Horse moved from (9, 1) to (7, 2).

- |Final Project (Al Chinese Chess) — [XL Final Project (Al Chinese Chess) - o x

g WITHORAW H

Figure 19: An example of the Horse move

Additionally, in order to allow human players to freely select the Al algorithm and search
depth, | created a Selection class. This Selection class is to create a prompt box which has
two drop- down menus and a “Confirm” button. This prompt box will be called when clicking
the “Start” button or the “Restart” button in the main interface page.

Selection class extends the JFrame class. There is a private variant contentPane which is
an instance of JPane. There are two instances containing algorithmBox and depthBox
which are instances of JComboBox. One is to select the algorithm and another is to select
the search depth. These two boxes will be added in the contentPane. And there is also a
”"Confirm” button in this class so as to send the selected action of users. Figure 20 shows
this prompt box.

& —] X < — O X & — O X
| i
Algorithm:|Negamax Search : 1 Algorithm:|Negamax Search ‘v | Algorithm:|Negamax Search :
Negamax Search 1
Search deplh: Search defAlpha-beta Search Search depth:3 |+
Fail-soft Alpha-beta Search 1
1 |Aspiration Search 2
! Minimal Window Search 1 [3 :|
] MTD(f) 4

Figure 20: An prompt box using for selecting the algorithm and search depth

Besides, there is also a function of 'regretting‘ to withdraw a move. This function is
implemented by creating an array(int[][] lianbiao) to save a last move. When clicking the
“Withdraw” button, the Regret_Chess() method in Listener class will be called to let current
move back to the last move which is saved in the array(int[][] lianbiao).

All Ul requirements have been implemented so far. | will start to create a Chinese chess Al
player.

Al Implementation

Al implementation means to successfully create Chinese chess Al players. In my java
project, | create two classes including a Robot class which implements the Al algorithm and
an Evaluation class which implements the evaluation function. In the report, | will show the
flow diagrams of these algorithms to explain their principle process and some relevant
source code | wrote in the project will be attached so as to make it easy for the reader to
understand.

Algorithm Implementation

Negamax Search implementation

Due to the Negamax algorithm having the same algorithm logic as the Minimax algorithm, |
decided to just implement the Negamax algorithm. To implement the Negamax algorithm, |
created a NegaMax(int depth) method in the Robot class. The flow diagram of the
NegaMax(int depth) method is shown in Figure 21.

Negamax

initial value
current = -20000

int negaMax{int depth)

| i = isGameQOver({CurPosition, depth) |

return m_pEval.eveluate(CurPosition, (m_nMaxDepth -
depth) % 2 ==1 7 true : false)

int[][] temp = new int[10][9];
memepy(temp, CurPosition);
listener walk(true);

!

score = -negaMax(depth - 1); |

}

| memcpy(CurPosition, temp); |

score > current

Yes

| current = score; |

retum current

Figure 21: A flow diagram of NegaMax(int depth) method

We can see from Figure 21 that the Negamax algorithm has an initial variant “current” and
current = -20000. Firstly, use the isGameOver(CurPosition, depth) method to check
whether the game is over. when the game is over (1 != 0), return maximum/minimum value.
Then, if the depth < 0, obtain the evaluation value of leaf node by calling the evaluate(int[][]
position, boolean blsRedTurn) method. Later, search and list all possible moves. For each
possible move, make a temporary move. Call score = -NegaMax(nDepth-1) using
recursion to search the next depth. Then recover the current move. If score > current,
modify the variant current to score. Finally, return the variant current. The source code of
the Negamax algorithm is shown in Figure 22.

protected int negaMax(int depth) {
int current = -20000;
int score;
int i, 3j;

nodeSearchCount++; // record the search count of leaf nodes

i = isGameOver(CurPosition, depth); // check whether the game is over
if (i 1= @)
return i;// when the game is over, return maximum/minimum value

if (depth <= @) // obtain the evaluation value of leaf node
return m_pEval.eveluate(CurPosition, (m nMaxDepth - depth) % 2 == 1 ? true : false);

for (i = ©; i < 18; i++) { // list all possible moves
for (j =0; j < 9; j++) {
if (CurPosition[i][j] == @ || ((m_nMaxDepth - depth) % 2 == @ && CurPosition[i][j] > 10)
|| ({m_nMaxDepth - depth) % 2 == 1 & CurPosition[i][j] < 18)) {
continue;
¥
for (int x = 8; x < 10; x++) {
for (int y = 8; y < 9; y++) {
update(i, j, x, ¥);
if (x == 1 & y == j) {
continue;
}

if (IsSameSide(CurPosition[x][y], CurPosition[i][§])) {
continue;

3

if (listener.ifwalk(CurPosition[i][j]) == @) {
continue;

}

int[][] temp = new int[10][9];

memcpy(temp, CurPosition);// copy the current move
listener.walk(true);

score = -negaMax(depth - 1);

memcpy{CurPosition, temp);// recover the current move

if (score > current) {
current = score;
if (depth == m_nMaxDepth) { // save the best move

bestmove(x, y, i, 3);

H

¥

}
¥
}
1

return current; // return the maximum value

}

Figure 22: A source code of the Negamax algorithm

Alpha-beta Search implementation

Alpha-beta Search algorithm is to “prune” the branches of the game tree under certain
conditions. To implement the Alpha-beta Search algorithm, | created an alphabeta(int
depth, int alpha, int beta) method in the Robot class. In this method, the value alpha is to
maximum and the value beta is to minimum. The flow diagram of the alphabeta(int depth,
int alpha, int beta) method is shown in Figure 23.

Alpha-beta Search

Initial variants
alpha = -20000
beta = 20000

v

int alphabeta(int depth, int alpha, int beta)

A
i = isGameOver(CurPosition, depth)

0 Yes— return i

Mo
_ return m_pEval eveluate(CurPosition,
Ll Ve (m_nMaxDepth - depth) % 2 == 1 2 true - false)
No
. J

list all feasible moves

l

for(;)

A
int{][] temp = new int[10][9];

memcpy(temp, CurPosition);
listenerwalk(true);

Y
[score = -alphabeta(depth - 1. -beta, -alpha) |

A
I memcpy(CurPosition, temp); |

Yes

¥

alpha = score;

alpha == beta

Yes

return alpha

Figure 23: A flow diagram of alphabeta(int depth, int alpha, int beta) method

We can see from Figure 22 that Alpha-beta Search algorithm has initial variants “alpha” and
“beta”. The “alpha” is given a value -20000 and the "beta” is given a value 20000. Most of

the steps of this algorithm are the same as the Negamax algorithm. The difference is that
for each possible move, maybe there is a pruning process. If score > alpha, let alpha =
score to retain the maximum value. If alpha > beta, the node can be pruned. Finally, return
the maximum alpha. The source code of the Alpha-beta Search algorithm is shown in
Figure 24.

protected int alphabeta(int depth, int alpha, int beta) {
int score;
int 1, Jj;

nodeSearchCount++;

i = isGameOver(CurPosition, depth);
if (i 1= @)
return 1;

if (depth <= @) // obtain the evaluation value of leaf node
return m_pEval.eveluate(CurPosition, (m_nMaxDepth - depth) % 2 == 1 ? true : false);

for (i = @; i < 1@; i++) {
for (j = 0; < 9; j++) {
if (CurPosition[i][j] == @ || ((m_nMaxDepth - depth) % 2 == @ && CurPosition[i][j] > 1)
|| ({m_nMaxDepth - depth) % 2 == 1 && CurPosition[i][j] < 10)) {
continue;

for (int x = B; x < 18; x++) {
for (int y = @; y < 9; y++) {
update(i, 3, %, ¥);
if (x ==1 8 y == j) {
continue;

}
if (IsSameSide(CurPosition[x][y], CurPosition[i][]])}) {
continue;

}
if (listener.ifwalk(CurPosition[i][j]) == @) {
continue;

3

int[][] temp = new int[1@][92];

memcpy (temp, CurPosition);
listener.walk(true);

score = -alphabeta(depth - 1, -beta, -alpha);
memcpy (CurPosition, temp);

if (score > alpha) {
alpha = score;// retain the maximum value
/ record the best move when closing to the root node
if (depth == m_nMaxDepth) {
bestmove(x, v, i, i);

}
}
if (alpha >= beta) {
break;// prune and give the rest of nodes
¥
¥
}
}
}
return alpha;// return maximum value

¥

Figure 24: A source code of the Alpha-beta Search algorithm

Fail-soft Alpha-beta Search implementation

Fail-soft Alpha-beta Search algorithm is one of the optimizations of Alpha-beta Search
algorithm. This difference is that the values "current” and “alpha” are saved separately. This
modification can let computers get the “fail-soft” information. To implement the Fail-soft
Alpha-beta Search algorithm, | created an fAlphabeta(int depth, int alpha, int beta) method
in the Robot class. The flow diagram of the fAlphabeta(int depth, int alpha, int beta) method
is shown in Figure 25.

(Fail—suﬂ Alpha-beta Search)

Initial variants
current =-20000
alpha = -20000
beta = 20000

y

int fAlphabeta(int depth, int alpha, int beta)

X

i = isGameOver(CurPositien, depth)

¢ At retumn i

No

_ return m_pEval eveluate(CurPosition,
Lzpine= Yes™™ (m_nMaxDepih - depth) % 2 = 1 2 true - false)

No
list all feasible
moves

int[][] temp = new int[10][9];
memcpy(temp, CurPosition);
listenarwalk(true);

:

| score = -alphabeta(depth - 1, -beta, -alpha) |

| memcpy(CurPosition, temp); |

current = score

Yes

SCore > current

Y
l return alpha ,L‘-. Yes:

Figure 25: A flow diagram of fAlphabeta(int depth, int alpha, int beta) method

We can see from Figure 25 that Fail-soft Alpha-beta Search algorithm has initial variants
“current”, “alpha” and “beta”. The “current” is given a value -20000. The “alpha” is given a
value -20000 and the "beta” is given a value 20000. Different from Alpha-beta Search

algorithm, for each possible move, if score > current, retain the maximum value (current =

score). When score > alpha, modify the alpha boundary. When score >= beta, prune beta.
Finally, return the value “current”. The source code of the Fail-soft Alpha-beta Search
algorithm is shown in Figure 26.

protected int fAlphabeta(int depth, int alpha, int beta) {
int current = -20000;
int score;
int i, j;

i = isGameOver(CurPosition, depth);
if (i 1= @)
return i;

if (depth <= @) // cbtain the evaluation value of leaf node
return m_pEval.eveluate(CurPosition, (m_nMaxDepth - depth) % 2 == 1 ? true : false);

for (i = ©; i < 10; i++) {
for (3 = 8; 3 < 9; j++) {
if (CurPosition[i][j] == @ || ((m_nMaxDepth - depth) % 2 == @ && CurPosition[i][j] > 18)
|| ((m_nMaxDepth - depth) % 2 == 1 && CurPosition[i][j] < 10)) {
continue;

for (int x = 8; x < 10; x++) {
for (int y = @; y < 9; y++) {
update(i, 3, %, y);
if (x == 1 & y == j) {

continue;

}

if (IsSameSide(CurPosition[x][y], CurPosition[i][3j])) {
continue;

}

if (listener.ifwalk(CurPosition[i][j]) == @) {
continue;

int[][] temp = new int[108][9];

memcpy(temp, CurPosition);
listener.walk(true);

score = -alphabeta(depth - 1, -beta, -alpha);
memcpy{CurPosition, temp);

if (score » current) {
current = score;// retain the maximum value

// // record the best move when closing to the root node
if (depth == m_nMaxDepth) {

bestmove(x, v, i, i);
if (score > alpha)

alpha = score;// modify the boundary of alpha

if (score »>= beta)
break;// beta pruning

H

return current;

}

Figure 26: A source code of the Fail-soft Alpha-beta Search algorithm

Aspiration Search implementation

The Aspiration Search algorithm is not to modify the Alpha-beta Search algorithm, it is just
to change a way to call the search process from the outside. The feature of Aspiration
Search is that We can directly set a narrow window centred around the previous search
value, which is often useful for searching. If your search fails, increase the width of the
window and search again. To implement the Aspiration Search algorithm, | created an
AspirationSearch(int[][] position) method in the Robot class. The flow diagram of the
AspirationSearch(int[][] position) method is shown in Figure 27.

‘ AspirationSearch ’

| int[] AspirationSearch(int[[] position) I

Initial variants
int x, y;
CurPosition = position;

m_nMaxDepth = m_nSearchDepth - 1;
x = fAlphabeta({m_nMaxDepth, -20000, 20000);

m_nMaxDepth = m_nSearchDepth;
y = fAlphabeta(m_nMaxDepth, x - 50, x + 50);

<>

Yes

fAlphabeta(m_nMaxDepth, -20000, y)

<xe>

Yes

L J

fAlphabeta(m_nMaxDepth, y, 20000)

update(bestMove[0], bestMove[1], bestMove[2], bestMove[3])

‘ return bestMove ’

Figure 27: Aflow diagram of AspirationSearch(int[][] position) method

We can see from Figure 27 that the Aspiration Search algorithm has initial x and y, which
will be set as the window range. The value x and y will be assumed by calling the
fAlphabeta(m_nMaxDepth, -20000, 20000) method. Then, if y < x - 50, this means the
fail-low research and need to call fAlphabeta(m_nMaxDepth, -20000, y) method again. If y
> x + 50, this means the fail-high research and need to call fAlphabeta(m_nMaxDepth, vy,
20000) method again. Finally, update the best move and return it. The source code of the
Aspiration Search algorithm is shown in Figure 28.

public int[] AspirationSearch(int[][] position) {
int x, vy;

CurPosition = position;
m_nMaxDepth = m_nSearchDepth - 1;
x = fAlphabeta(m_nMaxDepth, -28000, 20008);

m_nMaxDepth = m_nSearchDepth;
y = fAlphabeta(m_nMaxDepth, x - 58, x + 58);

if (y < x - 5@) {// fail-low research
falphabeta(m nMaxDepth, -20008, y);

if (y » x + 5@) {// fail-high research
fAlphabeta(m_nMaxDepth, vy, 20008);
}

update(bestMove[@], bestMove[l], bestMove[2], bestMowe[3]);
return bestMove;

¥

Figure 28: A source code of the Aspiration Search algorithm

Minimal Window Search implementation

The idea of the Minimal Window Search algorithm (PVS) is that In a game tree, assume the
first move is the best. Then, the rest of the search is to build a very small search tree with a
narrow window (v, v+1) each time. To implement the Minimal Window Search algorithm, |
created an PVS(int depth, int alpha, int beta) method in the Robot class. The flow diagram
of the PVS(int depth, int alpha, int beta) method is shown in Figure 29.

PVS

Initial variants
alpha = -20000
beta = 20000
current = 0
score =10
index = false

¥

| int PVS(int depth, int alpha, int beta) |

'

i = isGameOver(CurPosition, depth) |

W,

return i

return m_pEval.eveluate(CurPosition,
(m_nMaxDepth - depth) % 2 == 1 ? true : false)

list all feasible
moves

int[][] temp = new int[10][9];
memcpy(temp, CurPosition);
listener walk(true);

l—Ves Nor

int[][] temp1 = new int[10][9]
memcpy(temp1, CurPesition);
listener.walk(true);

Yes

current > alpha
alpha = current

| current = -PVS(depth - 1, -beta, -alpha); I

!

| memcpy(CurPosition, temp); |

| index = true;

int{]]] temp1 = new int[10][9];
memcpy(temp1, CurPosition);
listener.walk(true);

Y

| score = -PVS(depth - 1, -alpha - 1, -alpha) |

y
Zore > alpha) && (score < bai3

Yes Yes
Y

| current = -PVS(depth - 1, -beta, -score) | I current = score |

| |
v

| memcpy(CurPositien, temp); |

retum current

Figure 29: A flow diagram of PVS(int depth, int alpha, int beta) method

We can see from Figure 29 that the Minimal Window Search algorithm has initial variants
alpha = -20000, beta = 20000, current, score and index. The boolean value “index” is to
recognize the first move and the rest of moves. The first possible move is called the current
= -PVS(depth - 1, -beta, -alpha) and let index = true. Then, the rest of the possible moves

will use the narrow window to search. If it fails high, search again. The source code of the
Minimal Window Search algorithm is shown in Figure 30.

protected int PVS(int depth, int alpha, int beta) {
int current = @, score = @;

int i, j;
boolean index = false;
nodeSearchCount++;

i = isGameOver(CurPosition, depth);
if (i 1= @)
return i;
if (depth <= @) // obtain the evaluation value of leaf node
return m_pEval.eveluate(CurPosition, (m_nMaxDepth - depth) % 2 == 1 ? true : false);
for (i = @; i < 18; i++) {
for (J =0; 3 < 9; j++) {
if (CurPosition[i][3j] == @ || ({m_nMaxDepth - depth) % 2 == @ & CurPosition[i][j] > 18)
|| ((m_nMaxDepth - depth) % 2 == 1 && CurPosition[i][j] < 18)) {
continue;
H
for (int x = 8; x < 10; x++) {
for (int y = @; y < 9; y++) {
update(i, 3, x, ¥);
if (x == 1i && y == j) {
continue;

¥
if (IsSameSide(CurPosition[x][y], CurPesitien[i][3j])) {

continue;

}

if (listener.ifwalk(CurPosition[i][]j]) == @) {
continue;

}

if (lindex) {
int[][] templ = new int[1@][2];
memcpy (templ, CurPosition);
listener.walk(true);
current = -PVS(depth - 1, -beta, -alpha);
memcpy (CurPosition, templ);

if (depth == m_nMaxDepth) {
bestmove(x, y, i, J);
1
index = true;
} else {
if (current < beta) { // if cannot beta pruning
if (current » alpha) {
alpha = current;

¥
int[][] templ = new int[10][9];
memcpy (templ, CurPosition);
listener.walk(true);
score = -PVS(depth - 1, -alpha - 1, -alpha);//narrow window search
if ((score > alpha) && (score < beta)) {
current = -PVS{depth - 1, -beta, -score);// fail-high, search again
if (depth == m_nMaxDepth) {
bestmove(x, vy, i, 3);

} else if (score > current) {
current = score; //narrow window search hits
if (depth == m_nMaxDepth) {
bestmove(x, vy, i, 3);
H
}

memcpy (CurPosition, templ);

}

return current; // return the best value

Figure 30: A source code of the Minimal Window Search algorithm

MTD(f) implementation

MTD(f) algorithm is to adjust the initial value when calling the Alpha-beta Search algorithm.
MTD(f) searches the move using an empty window and adjusts the position of the empty
window according to the search result. The narrower the search window, the faster the
search. To implement the MTD(f) algorithm, | created an MTDf(int firstguess, int nDepth)
method in the Robot class. The flow diagram of the MTDf(int firstguess, int nDepth) method
is shown in Figure 31.

int score, lowerbound, upperbound, beta
firstguess = 0
score = firstguess
upperbound = 20000
lowerbound = -20000

!

int MTDf(int firstguess, int nDepth) |

< Jpwerbound < upperboungd

Yes

score = lowerbound
|

Ve N
| beta = score + 1 | | beta = score |

score = PVS(nDepth,
beta - 1, beta) No

score < beta
|
Ve Nor

et
l return bestMove -t

Figure 31: Aflow diagram of MTDf(int firstguess, int nDepth) method

We can see from Figure 31 that the MTD(f) algorithm has initial variants lowerbound =
-20000, upperbound = 20000, firstguess, score and beta. | set the initial guess value
“firstguess” = 0. Then, use a while loop to narrow the window. While lowerbound <
upperbound, use empty window search to adjust the range of the window. Finally, return the
score. The source code of the MTD(f) algorithm is shown in Figure 32.

protected int MTDf(int firstguess, int nDepth) {
int score, lowerbound, upperbound, bets;
score = firstguess;
// the initial search range is between -20000 and 260880
upperbound = 20060;
lowerbound = -20800;
while (lowerbound < upperbound) {
// move the window to the object

if (score == lowerbound) {
beta = score + 1;
} else {

beta = score;

score = PVS(nDepth, beta - 1, beta);// Empty window search
if (score < beta) {
upperbound = score;
} else {
lowerbound = score;
H
}
return score;

}

Figure 32: A source code of the MTD(f) algorithm

Evaluation Function Implementation

To implement the evaluation function of Al Chinese chess, | created a separate Evaluation
class in my Java project. In this class, | firstly define the variants which define the basic
value and flexibility of each piece. Figure 33 shows the definition of the basic value and the
flexibility value of each piece.

public static final int BASEVALUE_PAWN = 108; public static final int FLEXIBILITY_PAWN = 15;
public static final int BASEVALUE_ADVISOR — 259; Public static final int FLEXIBILITY_ADVISOR = 1;
public static final int BASEVALUE_ELEPHANT = 250; public static final int FLEXIBILITY_ELEPHANT = 1;
public static final int BASEVALUE_ROOK = 500; public static final int FLEXIBILITY_ROOK = 6;
public static final int BASEVALUE_HORSE = 350; public static final int FLEXIBILITY_HORSE = 12;
public static final int BASEVALUE_CANNON = 358; public static final int FLEXIBILITY_CANNON = &;
public static final int BASEVALUE_KING = 10000; public static final int FLEXIBILITY_KING = 9;

Figure 33: The definition of the basic value and the flexibility value of each piece

Then, there are some arrays created to store these data including the basic value of
pieces, flexibility value of pieces, piece threatened and protected at each position. All of
these variants will be initialised in the Constructor Evaluation().

In the game board, the piece “Pawn” has extra value when it "passes the river”. Hence, |
create two 2-dimensional arrays “BA0” and “BA1” to store the "Pawn” extra value. Figure 34
shows the array variants which are to store information.

Map<Integer, Integer> m_BaseValue = new HashMap<Integer, Integer>();// A array to store the information of basic
// value of pieces

Map<Integer, Integer> m_FlexValue = new HashMap<Integer, Integer>();// A array to store the information of
// flexibility of pieces

private int[][] m_AttackPos = new int[10][9];// Store information of piece threatened at each position

private int[][] m_GuardPos = new int[1©][9];// Store information of piece protected at each position

private int[][] m_FlexibilityPos = new int[18][9];// Store the flexibility score of piece at each position

private int[][] m_chessValue = new int[18][9];// Store the total score of piece at each position

private int nPosCount;// Record the number of relevant positions of a piece

private int[][] RelatePos = new int[20][2];// An array to record the relevant positions of a piece

// Extra value matrix of red pawn
private static final int[][] BA@ = { { @, @, @, ©, @, @, 8, ©, 8 }, { 98, 98, 118, 120, 120, 120, 11@, 9@, 98 },[]

/{ Extra value matrix of black pawn
private static final int[][] BA1 = { { @, 0, ©, 6, 0, @, 68, 0, 0 }, {©, 0, 8, @, 0, 8, 0, 0, @ },[|

Figure 34: The array variants which are to store information

A evaluate(int[][] position, boolean blsRedTurn) method is created to implement the
evaluation function. Other relevant methods are also needed in this class to be called.
Figure 35 shows all created methods in Evaluation class and the function of these methods
are described in the annotation.

// return the extra value of each Pawn
private int getBingValue(int x, int y, int[][] CurSituation) {[]

// Evaluation function
// bIsRedTurn is a sign to get which player turn, true is red, false is black
public int evaluate(int[][] position, boelean bIsRedTurn) {[]

// add a position into the array RelatePos
private void AddPoint(int x, int y) {[]

// Enumerate all the relevant positions of Pieces including accessible positions
// and protected positions
private int getRelatePiece(int[][] position, int j, int i) {]

// judge if the a piece can be moved from A to B

// If OK, return True,else return False
private boolean canTouch(int[][] position, int nFromX, int nFromY, int nToX, int nToY) {[]

Figure 35: All created methods in Evaluation class

Experiments

Experiments approach

In this section, experiments and tests for different Al techniques will be done to collect
relevant data. And then evaluate and analyse the strength and feasibility of these Al
approaches according to the experimental data. The experiment evaluation of Al
approaches includes two aspects: 1. Comparison of search efficiencies between different
Al approaches (Al & Al). 2 Evaluation of the effect of playing games against each other
between human players and Al players (Human & Al).

Comparison of search efficiencies between different Al approaches (Al & Al) has two
aspects including the average number of search nodes and the search time of Al players.
In order to collect the average number of search nodes of Al players, | created a variable
"nodesearchcount” in Robot class. Every time before calling the search algorithm, the
variable will be set to 0, and then each time one node is searched, the value of this variant
will be increased by 1. When the search ends, the value of this variant is the final number
of search nodes. The data collection of average search time spent is also obtained in robot
class. | use the currentTimeMillis() method in the Java System package to get the start time
and end time of the search. Then, the search time spent can be obtained by "endtime -
starttime".

Additionally, by playing games against each other between human players and Al players
and then statistics on the winning percentage of Al players, it will be more intuitive to show
the strength and effect of Al approaches. In the test, human players will not be allowed to
use the "Withdraw" function to ensure the accuracy and fairness of the experiment.

All experiment data will be output on the console. In each step of the game, the data
including selected algorithm, search depth, time spent, the number of search nodes and the
move of the Al player will be shown on the console. Figure 36 shows an example of the
result of console output.

#. Problems| @ Javadoc [2 Declaration|2 Console

DrawUI (4) [Java Application] C:\Program Files\Java\jre
Start
step[1]: Algorithm: Negamax Search

Search-depth: 3

Time-spent: 498ms

NodeSearchCount: 68638

AI player move: (8, 7) ---> (2, &)
step[2]: Algorithm: Negamax Search

Search-depth: 3

Time-spent: 342ms

NodeSearchCount: 48547

AI player move: (3, ©) ---> (4, @)
step[3]: Algorithm: Negamax Search

Search-depth: 3

Time-spent: 3@1lms

NodeSearchCount: 64866

AI player move: (2, 6) ---> (3, 4)

Figure 36: An example of the result of console output

Finally, | will organise these experiment data and show them in the form of tables so as to
clearly show the comparison of different Al approaches, which will help me more
conveniently evaluate and analyse the data.

Results and Evaluation

The Comparison of search efficiency (Al & Al)

Negamax Search & Alpha-beta Search

In this experiment, | compare the search efficiency between Negamax Search and
Alpha-beta Search. The result is as follow:

The comparison of the average number of search nodes;

Algorithm \ Search Depth 1 2 3 4 5
Negamax Search 44 1637 67244 2294524)|187270310
Alpha-beta Search 44 244 20549 119156]| 2068190
The comparison of the average search time spent;
Algorithm \ Search Depth 1 2 3 4 5
Negamax Search 1 81 4316 163481| 6715029
Alpha-beta Search 3 29 392 4305 57286

The result shows that the average number of search nodes in Alpha-beta Search is
obviously more than Negamax Search while the average search time spent is converse,
which indicates that the search efficiency of Alpha-beta Search is completely better than
Negamax. This results as | expected. Because Negamax Search needs to search the
whole game tree, which leads to the low search efficiency while Alpha-beta Search to some
extent prunes part of redundant children nodes, which improves the search efficiency,
especially when the search depth is higher than 3.

Alpha-beta Search & Fail-Soft Alpha-beta Search

In this experiment, | compare the search efficiency between Alpha-beta Search and
Fail-soft Alpha-beta Search. The result is as follow:

The comparison of the average number of search nodes;

Algorithm \ Search Depth 1 2 3 4 5
Alpha-beta Search 44 544 20549| 119156| 2068190
Fail-Soft Alpha-beta Search 44 552 21865| 108327 1903691
The comparison of the average search time spent;
Algorithm \ Search Depth 1 2 3 4 5
Alpha-beta Search 3 29 392 4305 57286
Fail-Soft Alpha-beta Search 3 29 375 4162 51837

In this result, we can see that Alpha-beta Search and Fail-soft Alpha-beta Search have
similar average number of search nodes and search time spent, which proves that their

search efficiency is similar. When the search depth is higher than 4, the search efficiency of
Fail-soft Alpha-beta search is slightly better.

Fail-Soft Alpha-beta Search & Aspiration Search

In this experiment, | compare the search efficiency between Fail-soft Alpha-beta Search
and Aspiration Search. The result is as follow:

The comparison of the average number of search nodes;

Algorithm \ Search Depth 1 2 3 4 5
Fail-Soft Alpha-beta Search 44 252 21865| 108327 1903691
Aspiration Search 71 693 18039 42305| 1037988

The comparison of the average search time spent;

Algorithm \ Search Depth 1 2 3 4 5
Fail-Soft Alpha-beta Search 3 29 375 4162 51837
Aspiration Search 1 40 402 2480 36152

The result shows that the search efficiency of Aspiration Search is better than Fail-soft
Alpha-beta Search. As the search depth increases, The advantages of Aspiration Search
are more obvious. Because the assumed value in Aspiration Search can always be in the
expected range, which saves nearly half time.

Aspiration Search & Minimal Window Search

In this experiment, | compare the search efficiency between Aspiration Search and Minimal
Window Search. The result is as follow:

The comparison of the average number of search nodes;

Algorithm \ Search Depth 1 2 3 4 5
Aspiration Search 71 693 18039 42305(1037988
Minimal Window Search 44 571 8398 71274 823910

The comparison of the average search time spent;

Algorithm \ Search Depth 1 2 3 4 5
Aspiration Search 1 40 402 2480 36152
Minimal Window Search 7 43 576 4626 30795

This comparison indicates that the search efficiency of Minimal Window Search is better
than Aspiration in general. This is mainly because the setting of the narrow window of
Minimal Window Search makes the search range become smaller. However, this setting of
narrow windows exists a risk and accident because if the returned value of Minimal Window
Search is out of bounds, it is necessary to search again, which leads to more time spent.
We can see from the table that this risk occurs when the search depth is 3 and 4.

Minimal Window Search & MTD(f)

In this experiment, | compare the search efficiency between Minimal Window Search and

MTD(f). The result is as follow:

The comparison of the average number of search nodes;

Algorithm \ Search Depth 1 2 3 4 5
Minimal Window Search 44 571 8398 71274 823910
MTD(f) 44 588 19232| 102123| 934144
The comparison of the average search time spent;
Algorithm \ Search Depth 1 2 3 4 5
Minimal Window Search 7 43 376 3626 20795
MTD(f) 1 35 396 4542 35045

The result shows that the search efficiency of MTF(f) is not better than Minimal Window
Search and even not better than Aspiration Search. | think the reason is that the MTD(f)
needs the Transposition Table to coordinate so as to save the time of searching again.

Summary

The comparison of the average number of search nodes;

Algorithm \ Search Depth 1 2 3 4 5
Negamax Search 44 1637 67244 2294524|87270310
Alpha-beta Search 44 544 20549 119156| 2068190
Fail-Soft Alpha-beta Search 44 552 21865 108327 1903691
Aspiration Search 71 693 18039 42305| 1037988
Minimal Window Search 44 571 8398 71274 823910
MTD(f) 44 588 19232 102123 934144

Figure 37: The comparison of the average number of search nodes of all algorithms

The comparison of the average search time spent;

Algorithm \ Search Depth 1 2 3 4 5
Negamax Search 1 81 4316 163481 6715029
Alpha-beta Search 3 29 392 4305 57286
Fail-Soft Alpha-heta Search 3 29 375 4162 51837
Aspiration Search 1 40 402 2480 36152
Minimal Window Search 7 43 376 3626 20795
MTD(f) 1 35 396 4542 35045

Figure 38: The comparison of search time spent of all algorithms

In Figure 37 and Figure 38, it is clear to see the comparison of the search efficiency of all Al
algorithms. According to the data from these two tables, the Negamax Search is shown the
worst search efficiency due to its feature of complete search game tree. Apart from the
Negamax search, other five algorithms have the optimisation to some extent. Among these
optimised algorithms, Minimal Window Search has better search efficiency than other

algorithms. The experiment data still has occasionality, but in general, the result reached
my expectation.

Human Player vs Al player Evaluation (Human & Al)

In this experiment, | selected the best Al player — Minimal Window Search(PVS) which is
proved above to test and evaluate its performance by playing games against each other
between human players and PVS Al players. There will be 20 matches played of this
experiment between two players. | will statistics on the winning rate of the Al player in the
end.

Minimal Window Search(PVS) Al Player vs Human Player

Al & Human PVS Al player Human player
Win times 11 9
Win rate 55% A5%

Figure 39: PVS Al player vs Human player

In Figure 39, we can see that in the 20 matches played between PVS Al player and Human
player, the PVS wins 11 times and the Human player wins 9 times, which means that the
winning rate of PVS Al players is more than 50%. This experiment result indicates that the
PVS Al player is competitive and can give challenges to the Human player. However, the
winning rate which is just over 50 % also indicates that the strength and performance of the
Al algorithm still need to be further improved.

Future Work for the project

In general, | have achieved the original goal of the project. | succeeded in creating Chinese
chess Al players. Multiple Al algorithms have been implemented, including all optimization
algorithms based on the alpha-beta pruning algorithm. | am very pleased with my
implementation of this Chinese chess project.

However, as can be seen from the experimental results and analysis, the Al players | have
created are not the most perfect, and there are the deficiencies on performance to some
extent. This is because the algorithms | have implemented so far are relatively Independent
and cannot combine the advantages of multiple algorithms together to enhance the
performance and strength of the algorithm.

Additionally, the existing Al players | have implemented are all based on the same set of
evaluation functions, which makes these Al players essentially only have the difference in
search efficiency but without the difference of strength and level among them.

Hence, in the future, | will go on trying to create new Al players that are completely different
from the current ones, such as the Al players based on Monte Carlo search algorithm and
reinforcement learning.

Improvements to existing Al algorithms

To address the problem that my existing Al algorithms are too independent to combine their
respective advantages, | think it is necessary to research some enhancement algorithms
that can cooperate with the Alpha-beta Search algorithm. In the background information |
gathered before, | found that the Transposition Table algorithm is a very efficient
enhancement algorithm. Transposition Table Search is a cache of previously seen positions
and associated evaluations in a game tree generated in the game of Chinese chess. If a
position recurs via a different sequence of moves, the value of the position is retrieved from
the table, avoiding re-searching the game tree below that position [10]. Transposition tables
are primarily useful in perfect-information games. This algorithm can be called before
calling the Alpha-beta Search algorithm. If the Transposition Table finds the best move
which is stored previously, the Alpha-beta Search algorithm will not need to be called again.
The higher depth Al player search, the more obvious the effect of the Transposition Table
algorithm.

In addition, although the existing pruning algorithm reduces the amount of search tree
nodes, which improves the search efficiency, the efficiency is still not high enough. The
search depth of existing Al players is 5 at most. When the search depth is higher than 5,
the number of search nodes will be very huge, which will lead to too long search time being
spent. Iterative Deepening Search algorithm overcomes this issue to some extent. The idea
of the lterative Deepening Search algorithm is to continue the search based on the best
move found in the first search. This allows the search depth to be higher. With each
iteration, the search depth is doubled. Iterative Deepening is not just a simple search, but
also writes heuristic information for the implementation of the Transposition Table. The
iteration can help the Al player to find the good search sequence of the next iteration.
When iterative deepening mixing with Alpha-beta Search algorithm, the efficiency of
iterative deepening will be further improved. Therefore, the lterative Deepening Search
algorithm plays an important role in improving Al algorithm performance.

Implementation of New Al player

Monte Carlo Tree Searching (MCTS)

Monte Carlo Tree Searching algorithm is the latest algorithm which is applied in the artificial
intelligence of Chinese chess. The Monte Carlo method, which uses random sampling for
deterministic problems which are difficult or impossible to solve using other approaches,
dates back to the 1940s [11].

The idea of Monte Carlo Tree Searching is based on the analysis of the most promising
moves, expanding the search tree based on random sampling of the search space. The
most basic way to use playouts is to apply the same number of playouts after each legal
move of the current player, then choose the move which led to the most victories [12]. The
implementation of MCTS of each step in Chinese chess contains four parts: Selection,
Expansion, Simulation and Backpropagation.

Reinforcement Learning

Reinforcement learning is also an interesting Al approach which is applied in Al Chinese
chess. This skill has been successfully applied in the game of Go. In 2016, the Al player
AlphaGo, which is based on reinforcement learning beated the human champion Lee Sedol
in Go. So, | think this skill can be good to apply to Al Chinese chess.

The principle of reinforcement learning is to learn a large amount of game cases in a big
database to train the model to become an advanced Al player.

Conclusion

The project aims to investigate different Al techniques for creating multiple Chinese chess
Al players and evaluate their performance through a series of tests and data comparisons.
To achieve this goal, | divide my work into two parts: Ul implementation and Al
implementation.

Ul implementation includes the implementation of creating the chessboard, moving the
pieces, and setting the rules of the pieces. Besides, there is also the function of
"withdraw"(back the chess move to the previous step). The successful creation of the Ul is
to provide a visual interface to the user, so as to let users better view the state of the
game.game state.

Al implementation is a core and key part of this project. In order to achieve the creation of
Chinese chessAl players, | have created two classes in JAVA project including Robot class
and Evaluation class. Robot class contains all the algorithms | have implemented, including
Negamax Search, Alpha-beta Search, Fail-soft Alpha-beta Search, Aspiration Search,
Minimal Window Search and MTD(d). In this part, | spent a lot of time researching how to
implement these Al algorithms. Evaluation class is to implement the evaluation function,
which is used to give a score to each possible move to find the best move. The two
classes, Robot class and evaluation class, work together to allow me to successfully create
Al players.

Finally, | will evaluate the performance of each created Al player, so as to know the strength
and level of these Al players.

Overall, | am very satisfied with the work | have achieved. Different Al players have been
successfully created.

Reflection

In order to achieve the goal of the project, in the early stage of work, | spent a lot of time
gathering background information related to Al Chinese chess. This is to let me have a
better understanding of how this project is achieved and | can decide which Al approach |
want to implement. This has given a good heuristic for later writing code to create Chinese
chess Al players.

However, | think there are still many aspects of my project that can be further optimised and
improved. First of all, although a number of Al players have been successfully created,

these Al players are not strong enough and are only suitable for confrontation with amateur
Chinese chess Human players, and cannot form a threat to top Chinese chess Human
players so far. Hence, | think | need to further research some enhancement algorithms,
such as the Transposition Table and Iterative Deepening algorithm, so as to improve the
strength of Chinese chess Al players.

In addition, the experiment evaluation for Al players needs to be more comprehensive and
systematic. At this stage, the sample size of the experimental data is relatively small, which
leads to the possible deviation of the experiment data and affects the accuracy of the
evaluation.

Finally, | also hope to implement more advanced Al techniques such as Monte Carlo search
and Neural Networks. If these can be achieved, the level and strength of Al players will be
greatly improved.

Table of Figures

Figure 1: A 9x10 Chinese chess board

Figure 2: A table which shows the meaning of each pieces

Figure 3: A tree based on Minimax

Figure 4: Pseudocode of the Minimax algorithm

Figure 5: Pseudocode of the Negamax algorithm

Figure 6: A game tree based on alpha-beta pruning

Figure 8: Pseudocode of the Fail-Soft Alpha-beta Search algorithm

Figure 10: Pseudocode of the Minimal Window Search algorithm

Figure 11: Pseudocode of the MTD(f)

Figure 12: An overall design flow diagram

Figure 13: Overall Uml class diagram of Chinese chess

Figure 14: Chinese chess logo

Figure 15: Buttons in the interface

Figure 16: Number signs of pieces in 2-dimensional array

Figure 17: An example of the piece Cannon signed in the chessboard

Figure 18: The whole interface

Figure 19: An example of the Horse move

Figure 20: An prompt box using for selecting the algorithm and search depth

Figure 21: A flow diagram of NegaMax(int depth) method

Figure 22: A source code of the Negamax algorithm

Figure 23: A flow diagram of alphabeta(int depth, int alpha, int beta) method

Figure 24: A source code of the Alpha-beta Search algorithm

Figure 25

: Aflow diagram of fAlphabeta(int depth, int alpha, int beta) method

Figure 26

: A source code of the Fail-soft Alpha-beta Search algorithm

Figure 27

: A flow diagram of AspirationSearch(int[][] position) method

Figure 28

: A source code of the Aspiration Search algorithm

Figure 29

: Aflow diagram of PVS(int depth, int alpha, int beta) method

Figure 30

: A source code of the Minimal Window Search algorithm

Figure 31

: A flow diagram of MTDf(int firstguess, int nDepth) method

Figure 32

: A source code of the MTD(f) algorithm

Figure 33

: The definition of the basic value and the flexibility value of each piece

Figure 34

: The array variants which are to store information

Figure 35

- All created methods in Evaluation class

Figure 36

: An example of the result of console output

Figure 37

: The comparison of the average number of search nodes of all algorithms

Figure 38

: The comparison of search time spent of all algorithms

Figure 39

: PVS Al player vs Human player

Appe

ndices

Appendix 1

Example of Chinese chess game states

Appendix 2

Example of the game state when the red player wins

kﬂ“

\

5 i
b 3
i -

/\\’.X\

L
—r

Q0,00

@)
e

References

[1] Albright, Daniel. 26th September 2016. 10 Examples of Atrtificial Intelligence You're
Using in Daily Life [Online]. Available at:
http://beebom.com/examples-of-artificial-intelligence/. Last accessed 31st January 2017.

[2] J.E. Laird, "Using a Computer Game to Develop Advanced Al," Computer, vol. 34, no. 7,
pp. 70-75, July 2001.

[3] Deng, Li. "Al Agent for Chinese Chess."

[4] Wikipedia. Xiangqi, April 2016. URL https://en.wikipedia.org/wiki/Xianggi.

[5] Von Neumann, J. (1928). "Zur Theorie der Gesellschaftsspiele". Math. Ann. 100:
295-320. doi:10.1007/BF01448847.

[6] Wikipedia. Xiangqi, April 2016. URL https://en.wikipedia.org/wiki/Minimax.

[7] Russell, Stuart J.; Norvig, Peter (2010). Artificial Intelligence: A Modern Approach (3rd
ed.). Upper Saddle River, New Jersey: Pearson Education, Inc. p. 167. ISBN
978-0-13-604259-4.

[8] "Adaptive Strategies of MTD-f for Actual Games". Tokyo University of Agriculture and
Technology. K SHIBAHARA et al

[9] Shannon, Claude (1950), Programming a Computer for Playing Chess (PDF), Ser. 7,
vol. 41, Philosophical Magazine, retrieved 12 December 2021

[10] Wikipedia. Transposition_table, April 2016. URL
|] ikipedi wiki/T ition_table.

https://en.wikipedia.org/wiki/Xiangqi
https://en.wikipedia.org/wiki/Minimax
https://en.wikipedia.org/wiki/Minimax

[11] Nicholas, Metropolis; Stanislaw, Ulam (1949). "The monte carlo method". Journal of
the American Statistical Association. 44 (247): 335-341.
doi:10.1080/01621459.1949.10483310. PMID 18139350.

[12] Brigmann, Bernd (1993). Monte Carlo Go (PDF). Technical report, Department of
Physics, Syracuse University.

[13] Xiaochun Wang. PC game programming (game theory)[M]. Public of Chongging
University, 2002.

[14] CSDN. Implementation of Chinese chess using Java, August 2019. URL
https://blog.csdn.net/weixin_44547562/article/details/99711390.

