
2021-2022

Develop an IoT Edge device to Capture

and Classify Species using Sounds to

Support Wildlife Conservation

Activities

Cardiff University

School of Computer Science and Informatics

CM3203 - One Semester Individual Project - 40 Credits

Author: Ruslan Levond

Supervisor: Charith Perera

Moderator: Victor Gutierrez Basulto

Table of Contents
Table of Contents ... 2

Table of Figures .. 4

Abstract .. 5

Acknowledgements.. 5

1 Introduction ... 6

2 Background .. 7

2.1 Machine Learning Concepts... 7

2.1.1 Balanced and Imbalanced Dataset .. 7

2.1.2 Undersampling and Oversampling .. 7

2.1.3 Data Augmentation .. 8

2.1.4 Convolutional Neural Network .. 8

2.1.5 Hyperparameters ... 8

2.1.6 Nyquist-Shannon Theorem .. 8

2.1.7 Machine Learning Model Evaluation Metrics .. 8

2.1.8 Confidence Threshold .. 9

2.1.9 Feature Extraction Techniques .. 9

2.2 Competitors ... 10

2.2.1 Microsoft Acoustic Bird Detection Model ... 10

2.2.2 BirdCLEF and DCASE ... 11

2.2.3 Wildlife Acoustics ... 12

2.3 3D Modelling and Engineering Principles .. 12

2.3.1 Computer-aided Design ... 12

2.3.2 Cantilever ... 12

2.3.3 Ingress Protection Rating ... 12

2.3.4 Architecture Design Techniques to Control Water Movement 12

2.4 Bird Vocalisation .. 13

2.4.1 Bird Calls vs Songs .. 13

2.4.2 Inter-species Variance.. 14

2.4.3 Audio Frequency .. 14

2.5 Tools and Methods .. 14

2.5.1 Moving Average Filter .. 14

2.5.2 Xeno Canto ... 14

2.5.3 BBC Sound Effects .. 14

2.5.4 GrabCAD Community ... 14

2.5.5 Edge Impulse .. 15

2.6 Technologies .. 15

2.6.1 LoRa .. 15

2.6.2 Grove Connectors .. 15

2.7 Constraints ... 15

2.8 Research Question ... 16

3 Approach .. 17

3.1 IoT Architecture ... 17

3.2 IoT Frameworks ... 19

3.2.1 Edge Framework .. 19

3.2.2 Gateway Framework .. 20

3.2.3 Microsoft Framework .. 21

3.3 Machine Learning Model ... 21

3.4 3D Case Solutions ... 22

4 Implementation ... 24

4.1 Designing IoT Architecture... 24

4.2 Implementing IoT Frameworks .. 24

4.2.1 Edge Framework .. 25

4.2.2 Gateway Framework .. 29

4.2.3 Microsoft Framework .. 31

4.3 Training Machine Learning Model ... 32

4.4 Designing 3D Case Solutions .. 36

5 Results and Evaluation ... 37

5.1 Model Evaluation using metrics... 37

5.2 Model Evaluation in real world .. 38

5.2.1 False Negative Test .. 38

5.2.2 False Positive Test .. 39

5.3 Architecture Evaluation ... 40

6 Future Work ... 42

6.1 Exhaustive Evaluation of Model Performance .. 42

6.2 Arduino Library for LoRa Transceiver .. 42

6.3 Power Optimise Raspberry Pi Edge Architecture .. 42

6.4 Send Audio over LoRa .. 43

6.5 Integration with Helium Network .. 43

7 Conclusions .. 45

8 Reflection ... 46

9 References ... 48

10 Appendix .. 53

10.1 Appendix A – GitHub Repository for Final Year Project .. 53

10.2 Appendix B – 3D Case Solution for Raspberry Pi ... 53

10.3 Appendix C – 3D Case Solution for Arduino .. 54

10.4 Appendix D – Final Year Project Demo .. 54

Table of Figures
Figure 2.1 Representation of Balanced Dataset .. 7

Figure 2.2 Representation of Imbalanced Dataset .. 7

Figure 2.3 Representation of Undersampling and Oversampling (Rahman, 2021) 7

Figure 2.4 Example of Spectrogram extracted from 1 second audio 10

Figure 2.5 Example of MFE extracted from 1 second audio .. 10

Figure 2.6 Example of MFCC extracted from 1 second audio ... 10

Figure 2.7 Examples of SVM plots in 2D and 3D space .. 11

Figure 2.8 Visualisation of Overhang ... 13

Figure 2.9 Visualisation of Drip .. 13

Figure 2.10 Frequency Formula ... 14

Figure 2.11 Moving Average Formula Equation .. 14

Figure 3.1 IoT Architecture Component Diagram .. 18

Figure 3.2 List of ordered hardware .. 19

Figure 3.3 LoRa packet size (Pham, et al., 2020) ... 20

Figure 3.4 Gateway CLI Functionality Sequence Diagram ... 21

Figure 4.1 Error handling example in Gateway Framework .. 25

Figure 4.2 Classification Handler in Edge Framework ... 26

Figure 4.3 Send LoRa Message Function in Edge Framework ... 27

Figure 4.4 Exit Handler in Edge Framework ... 27

Figure 4.5 Loop Block in Edge Framework ... 28

Figure 4.6 Function to switch buffers in Edge Framework .. 29

Figure 4.7 Select Inference Buffer Function in Edge Framework .. 29

Figure 4.8 Listen to results Function in Gateway Framework ... 30

Figure 4.9 Export Function in Gateway Framework .. 30

Figure 4.10 Feature Extraction Function in Microsoft Framework ... 31

Figure 4.11 Inference Function in Microsoft Framework .. 32

Figure 4.12 Machine Learning Model's Properties Overview ... 34

Figure 4.13 Machine Learning Model's Neural Network Settings ... 34

Figure 4.14 Machine Learning Model's MFCC features plotted on 3D Visual Graph 35

Figure 4.15 Machine Learning Model's Confusion Matrix (validation set).............................. 35

Figure 4.16 Machine Learning Model's Dataset .. 35

Figure 4.17 Audio Sample Palette of Machine Learning Model's Dataset 36

Figure 5.1 Precision Metric of Microsoft's and Final Year Project's Model 37

Figure 5.2 Recall Metric of Microsoft's and Final Year Project's Model 38

Figure 5.3 F1 Score Metric of Microsoft's and Final Year Project's Model 38

Figure 5.4 Energy Metrics of Raspberry Pi and Arduino Architectures 40

Figure 5.5 Performance Metrics of Raspberry Pi and Arduino Architectures 41

file://///Users/ruslanlevond/Desktop/Final%20Year%20Project/Final%20Year%20Project%20Report.docx%23_Toc103242740

Abstract
Wildlife has been in danger for quite some time from various kinds of human activities,

ranging from directly destroying habitat to impact from climate change Iaused H┞ huﾏaﾐ’s
unsustainable way of living. Many organisations have established conservation projects and

activities to try to mitigate the effects and save wildlife, one of the most important activities

of which is monitoring species. Automatic sound recognition systems have proven to be an

effective tool used during conservation activities. There are several devices out on the

market which can be installed in the wild and record animal sounds. However, they are

inaccessible due to being expensive and they only record sounds and require further

proprietary software to classify sounds elsewhere. The intention of the project is to create

an alternative low-cost device that can be installed in the wild and be able to both record

and classify animal sounds right on the edge. This involved developing a machine learning

model from scratch that is able to classify bird sounds. The project also created edge

frameworks for two architectures, Raspberry Pi and Arduino to which the machine learning

model is deployed to. As well, 3D case solutions were designed allowing for both

architectures to be safely deployed in the wild. The project then created a gateway device

and a framework for it which is used to store results transmitted by edge devices.

Afterwards, the created model was evaluated agaiﾐst Ioﾏpetitoヴ’s ﾏodel which showed to

have a competitive performance, outperforming competition in some cases. The project has

also investigated performance of the model running on both architectures and compared

architectures to understand which one is more suitable to use when. To achieve the

outlined goals, the project has tackled the development of IoT applications, fundamentals of

machine learning, architectural design and development of computer aided designs.

Acknowledgements
I would like to thank my supervisor Charith Perera for providing continuous support and

guidance throughout the project, and his students for providing expertise in new to me

topics.

I would also like to thank Xeno Canto and BBC Sound Effects for providing critically

important audio samples used to train the model.

1 Introduction
Automatic sound recognition has been available for a while, the first system being

developed back in 1952 by Bell Laboratories called Audrey (Sonix, 2021), which was able to

ヴeIogﾐise huﾏaﾐ’s speeIh, ideﾐtif┞iﾐg spokeﾐ ﾐuﾏHeヴs. Over the past years, many various

systems and projects were developed that performed complex sound recognition using

machine learning techniques, including animal sound recognition.

Within the ecosystem, different animals live in the harmony with each other, making the

environment stable and sustainable. However, wildlife has become endangered in the

recent years due to many factors caused H┞ huﾏaﾐ’s destヴuIti┗e ﾐatuヴe such as global

warming and poaching. This can be backed up by the report from World Wide Fund for

Nature organisation (WWF, 2020), reporting a major 68% decline in species population sizes

since 1970. Due to this reason, many conservation projects have been established with the

aim to preserve wildlife. Automatic sound recognition has played a crucial part in animal

conservation activities, using the technology for monitoring purposes by providing an

automatic way to recognise animals using sounds. There are some commercially available

systems that support such activities, however most of them provide just a recording device

that is installed in the wild with the functionality to only capture sound and requires further

proprietary software to classify sounds, both of which are expensive. An example of such

device is one of the Song Meter devices from Wildlife Acoustics (Wildlife Acoustics, 2022)

starting from $249, which is a waterproof recorder that is required to be retrieved to

download the audio and then import audio into their software to perform analysis and

classification.

The project aims to solve this inaccessibility issue by creating a low-cost edge device that

can be deployed in the wild, with ability to both record and classify sounds right on the edge

whilst having the same performance as commercially available products. The device should

also be able to send the results over long-range wireless network back to the user without

requiring the user to retrieve the device for results.

The pヴojeIt’s fiヴst oHjeIti┗e was to create a machine learning model from scratch, being able

to identify a singular bird called Araripe Manakin. The model was evaluated both on paper

aﾐd ヴeal ┘oヴld, agaiﾐst Ioﾏpetitoヴ’s ﾏodels to see if it peヴfoヴﾏs as good. The pヴojeIt also
designed and developed frameworks for two different architectures, Arduino and Raspberry

Pi that records audio, facilitates the model and sends ﾏodel’s ヴesults ┘iヴelessl┞ to the
gateway device. The project tested ﾏodel’s peヴfoヴﾏaﾐIe oﾐ Hoth aヴIhiteItuヴes, aﾐal┞sing

architectures’ IapaHilities aﾐd ideﾐtifying strengths and weaknesses of each architecture.

Project also included creating a gateway device which is used to listen to results from edge

devices and store them. As well as, providing a command line tool for the user, used to

manage results stored locally. Lastly, project designed and implemented 3D case solutions

for both edge devices which will allow devices to be deployed in the wild, being able to

protect electronics from weather elements and facilitate various kinds of installations on

different surface areas.

2 Background
This section provides the context for the project and all relevant information needed to be

known before reading the specifics of the project.

2.1 Machine Learning Concepts

2.1.1 Balanced and Imbalanced Dataset

A balanced dataset contains an equal or almost equal amount of data samples in each of the

classes, whereas imbalanced dataset has one of the classes containing higher number of

samples than other classes. An example of both datasets can be seen on Figure 2.1 and

Figure 2.2, showing datasets with 2 classes. The project faces imbalanced dataset issue due

to the nature of the dataset, which needs to be resolved.

Figure 2.1 Representation of Balanced Dataset

Figure 2.2 Representation of Imbalanced Dataset

2.1.2 Undersampling and Oversampling

Both techniques are used to convert imbalanced datasets into balanced. Oversampling is a

technique that is used to duplicate a minority class within the dataset with enough number

of samples to have the same amount as majority classes. Comparing to undersampling, it is

the opposite which removes samples from the majority class to have the same number of

samples as minority classes. In the project, we will only be implementing one of the

oversampling techniques because of limited amount of data being available.

Figure 2.3 Representation of Undersampling and Oversampling (Rahman, 2021)

2.1.3 Data Augmentation

Data augmentation is a technique that is used to increase the amount of data in the dataset

by synthetically creating data through copying existing data and slightly modifying it. This

technique allows for increasing diversity of the data too, without requiring to collect new

data making it very powerful when working with small datasets. It has been proved that

using data augmentation can improve the accuracy of the model by 1-3% (Moreno-Barea, et

al., 2020) and the generalisation capability of the model. During the project, this technique

will be used for oversampling one of the classes in the dataset.

2.1.4 Convolutional Neural Network

CNN is a subset of machine learning, being a Deep Learning algorithm that specialises in

processing image type of data. It works by having a hierarchy of layers, where each layer

identifies different features and parts of the image. Taking an image as input, CNN passes it

through these layers, earlier ones identifying simple features such as colours and later layers

identifying bigger elements of the feature such as shapes, until CNN finally recognises the

class the image belongs to. This is just an overview of Convolutional Neural Network, for

more information please check out an explanation from IBM Cloud Education (IBM Cloud

Education, 2020). The project creates a CNN model that is used to classify birds.

2.1.5 Hyperparameters

Hyperparameters are parameters that control the learning process of machine learning

model. They are used to determine how the network is trained, examples of

hyperparameters are learning rate and number of training cycles. They are set by the

practitioner before the training and are neither changed by the model during training nor

used by the resulting trained model. During the project, hyperparameters will be changed

before each training cycle to try to increase ﾏodel’s peヴfoヴﾏaﾐIe.

2.1.6 Nyquist-Shannon Theorem

Nyquist-Shannon Theorem is a sampling theorem used in signal processing which states

さthat a sinusoidal function in time or distance can be regenerated with no loss of

information as long as it is sampled at a frequency greater than or equal to twice per cycleざ

(Colarusso, et al., 1999). Meaning that any sampled analog signal should be collected at

twice the frequency of the highest expected frequency at least, otherwise the sample can

suffer from loss of information. This theorem is used to decide projeIt’s ﾏodel input audio

frequency.

2.1.7 Machine Learning Model Evaluation Metrics

The following evaluation metrics will be used to evaluate machine learning models, to

understand each ﾏodel’s stヴeﾐgths aﾐd ┘eakﾐesses.
Accuracy

Accuracy is the score that represents a ratio of correctly predicted observations to total

observations, which is calculated by number of classifications a model correctly predicted

divided by the total number of predictions made. The metric implies how well can model

identify patterns within data. This metric is great for measuring on symmetric datasets

where there are the same number of false negatives as false positives.

Precision

Precision is used to show the correctness of classification, saying out of all positive class

predictions, how many are actually positive. The score is calculated by having number of

correct positive classifications divided by the total number of predicted positive

classifications. High precision score ultimately shows that model does not pick up many false

positives.

Recall

Recall is used to tell if model is correctly identifying true positives. It can be calculated

through number of correct positive classifications divided by the total number of actual

positive cases. High recall score tells that the model classifies less of false negatives.

F1 Score

F1 Score is a weighted average of both precision and recall, shows a balanced view of both

scores. This means that the F1 Score takes into account both false positives and false

negatives.

Confusion Matrix

Confusion matrix is a visualisation of the performance of a model, presented in a tabular

view. Specifically, confusion matrix shows the number of correct and incorrect predictions

which are represented by a value and separated by classification. Each row in the table

represents instances of the actual class and each column represents instances that were

predicted as the class.

2.1.8 Confidence Threshold

EaIh ﾏaIhiﾐe leaヴﾐiﾐg ﾏodel’s IlassifiIatioﾐ ヴeturns a value for each of the class, telling

how confident the model is about its prediction for the class. Confidence Threshold is a

thヴeshold that ﾏodel’s IoﾐfideﾐIe ┗alue oﾐ the class should match or exceed to be

considered as a positive prediction. Confidence threshold will be set by edge framework to

decide when ﾏodel’s classification is a positive prediction.

2.1.9 Feature Extraction Techniques

Feature extraction is a very important part of the machine learning model, which is used to

find relations and patterns within data. Each technique transforms inputted data into

numerical features in its own way, that can be then processed by the model. During the

project, we will be exploring a few different audio specific feature extraction techniques to

see which one works better for the scenario.

Spectrogram

Spectrogram extracts time and frequency features from the audio signal, capturing features

concisely on an image. It is known to perform well on non-voice audio. Edge Iﾏpulse’s
documentation (Edge Impulse, 2022) explains it further on how they extract features from

audio using spectrograms.

Figure 2.4 Example of Spectrogram extracted from 1 second audio

Mel-filterbank Energies

MFE works similarly to the spectrogram, also extracting time and frequency from the audio

signal. Although, this time frequency is represented in a non-linear scale called Mel-scale

which is known to perform good on non-voice audio again, especially on audio that humans

can hear. Foヴ ﾏoヴe iﾐfoヴﾏatioﾐ, please ヴead Edge Iﾏpulse’s doIuﾏeﾐtatioﾐs (Edge Impulse,

2022).

Figure 2.5 Example of MFE extracted from 1 second audio

Mel-frequency Cepstral Coefficient

MFCC extracts coefficients from the audio signal, using non-linear scale called Mel-scale just

like MFE. It is mostly used for speech recognition and sometimes performs good on non-

human voice audio such as animal communications. For more information, refer to Edge

Impulse’s doIuﾏeﾐtatioﾐ (Edge Impulse, 2022).

Figure 2.6 Example of MFCC extracted from 1 second audio

2.2 Competitors

2.2.1 Microsoft Acoustic Bird Detection Model

Microsoft Acoustic Bird Detection Model (Microsoft AI for Earth, 2020) is a machine learning

model developed by Microsoft which we ┘ill ヴefeヴ to as さMiIヴosoft’s ﾏodelざ. This is the

main model that ouヴ pヴojeIt’s ﾏodel ┘as Ioﾏpaヴed to. Microsoft’s model deals with the

limited dataset issue, training the model to classify only one bird Araripe Manakin with small

number of audio samples available. Microsoft’s model carries out classifications on 2 second

audio windows and uses MFCC to extract features from the audio. The model chose SVM

classifier to make predictions on features because of its reputation of performing well on

small datasets, which will be covered in more detail in the next subsection. However, due to

spectrograms being large and high dimensional, SVM classifier would not be trained well

with such a small dataset. Therefore, Microsoft’s model decided to reduce input

dimensionality with the use of Principal Component Analysis (PCA) (Jolliffe & Cadima, 2016)

but at the same time preserving all of the necessary information for class differentiation.

Even with PCA, training the model from scratch resulted in poor performance, 87% accuracy

and recall score of only 0.61. So, Microsoft decided to use transfer learning instead, using

the Biophony Model that previously extracted hundreds of thousands of audio examples of

more than 300 species, using the pre-trained model to leverage feature extraction

capabilities. Microsoft’s model has removed the last layer from the Biophony Model which

was used to classify features and replaced it with the trained SVM classifier. This resulted in

Biophony Model becoming a feature extraction tool that passes features to the SVM

classifier, creating a high accuracy model.

Support Vector Machine

SVM classifier is a type of deep learning algorithm which is used to analyse data for

classifications and make predictions. SVM works by plotting the whole dataset to a high

diﾏeﾐsioﾐal featuヴe spaIe, ┘heヴe eaIh saﾏple’s featuヴes aヴe ヴepヴeseﾐted H┞ a singular

point on that space. Next, SVM looks at these data points and groups them by their

positioning, groups are separated into sections using a hyperplane. When making a

pヴediItioﾐ, “VM ┘ill use data’s featuヴes to plot a poiﾐt to high diﾏeﾐsioﾐal spaIe, seeiﾐg
which group the point belongs to.

Figure 2.7 Examples of SVM plots in 2D and 3D space

2.2.2 BirdCLEF and DCASE

Both BirdCLEF and DCASE are highly recognised international competitions that occur

regularly every year, in which participants develop machine learning algorithms that classify

birds using audio. At the end of both challenges, the results are published describing

participants’ appヴoaIhes, e┗aluatiﾐg theiヴ ﾏodels aﾐd disIussiﾐg leaヴﾐed lessons. During the

project, the results of both competitions are used to decide the approach for creation of the

pヴojeIt’s ﾏodel.

2.2.3 Wildlife Acoustics

The biggest pヴojeIt’s commercial competitor that can be found is Wildlife Acoustics,

creating Song Meter devices (Wildlife Acoustics, 2022). They have a range of recorder

devices in the price range between $249 and $849, which are waterproof devices that can

be deployed in the wild to listen to animal sounds. These devices are expensive and have

the capability to only record sounds, requiring additional software to make autonomous

predictions on these sounds. A software license is sold separately Ialled さKaleidosIope Pヴo
Aﾐal┞sis “oft┘aヴeざ (Wildlife Acoustics, 2020) by the same Wildlife Acoustics organisation,

costing $399 per year. The software allows users to quickly label and identify bird songs,

also being able to automatically suggest the most likely species. However, the automatic

suggestion feature only works for bats currently, not being able to do for any of the birds.

The project aims to replace the previously mentioned products from Wildlife Acoustics by

providing inexpensive alternative devices that focus on automatic classifications of birds

rather than manual classification, making the technology more accessible to everyone.

2.3 3D Modelling and Engineering Principles

2.3.1 Computer-aided Design

CAD is a technology that is used to create CAD models which are computer models defined

by the geometrical variables. CAD models are typically in a three-dimensional

representation, which can be easily modified by altering parameters using CAD software.

These models are vector-based, allowing for them be easily viewed under a wide variety of

representations such as enlarged and rotated. During the project, CAD software will be used

to create precise 3D models for case solutions.

2.3.2 Cantilever

Cantilever is a very popular snap-fit joint that is used to join two objects together. This type

of snap-fit joint consists of protrusion that looks like a hook, coming from one of the objects

which is inserted into a slot from another object that deflects the protrusion on insertion.

Once it has been fully inserted, the protrusion bends back to its normal position, locking the

connection and securing the two objects together. Cantilever snap-fit joint will be used

during the project to secure both parts of the case together.

2.3.3 Ingress Protection Rating

IP rating classifies the degree of protection provided by an enclosure for electrical

equipment. This standard specifies different levels of sealing against intrusion of foreign

bodies including dust, water and objects. The IP rating consists of two digits, where the

higher the digit the better protection. The first digit defines the protection of the equipment

within the enclosure against ingress of foreign objects (e.g., fingers) and against dust, both

of which could damage the circuitry. The second digit indicates the level of protection the

enclosure provides against liquids. DSM&T provides an IP Rating reference chart (DSM&T,

2015) that displays how much protection each digit provides. IP rating will be considered

when designing case solutions for IoT edge devices.

2.3.4 Architecture Design Techniques to Control Water Movement

Foヴ the pヴojeIt’s ンD Iase solutioﾐs, ┘e took some inspirations from architecture designs to

keep the water out of the openings within the created enclosure. In particular, we will be

exploring drip and overhang methods to control the water movement, refer to YR

Architecture and Design for more information (YR Architecture Design, 2020).

Overhang

Water sliding on the surface can be diverted by creating an overhang above the opening,

which is an edge protruding outward that provides protection for lower levels of the

structure. This way, the water will slide towards the edge and at the end will be forced to

fall away from the structure.

Figure 2.8 Visualisation of Overhang

Drip

Drip is another design technique to keep the water out of the opening. Drip technique is

applied to the underside surface where water might slide to and cling depending on the

runoff speed, later being drawn into the opening. Drip design technique solves the issue by

having a break within the underside surface which causes to reduce water surface tension

and cause the water to drop down.

Figure 2.9 Visualisation of Drip

2.4 Bird Vocalisation

The project will analyse and understand how bird vocalisation functions to ensure model

generalisation.

2.4.1 Bird Calls vs Songs

Bird calls and songs are birds’ vocalisations that differ by the length, complexity and context.

Bird songs tend to be longer and much more complex which are used for mating purposes.

Comparing to the calls, that are short in duration and much simpler in structure, used for

various functions like keeping members of flock in contact or alarms.

2.4.2 Inter-species Variance

As the project is working with bird sounds, it is important to account for inter-species

variance. The same bird species in different locations might sound different, which could

affeIt ﾏodel’s peヴfoヴﾏaﾐIe. Birds work just like humans, in which species communicate

differently depending on the country they live in.

2.4.3 Audio Frequency

The audio frequency is measured in hertz, which computes the number of times per second

the sound ┘a┗e’s I┞Ile ヴepeats. The greater the frequency, the higher the pitch humans

perceive. Audio frequency is calculated by dividing the velocity which is the wave speed by

the wavelength which is the distance of one frequency wave peak to the other.

Figure 2.10 Frequency Formula

2.5 Tools and Methods

2.5.1 Moving Average Filter

Moving average filter is calculated by averaging a number of input signals to produce one

single output signal as shown on Figure 2.11 where x is the input signal, y is the output

signal and M is the number of signals used in the average (Analog, 2022). The moving

average filter is really good for reducing random noise and retaining fast response. This filter

will be used on the project’s model classification predictions to reduce number of false

positives produced by the model.

Figure 2.11 Moving Average Formula Equation

2.5.2 Xeno Canto

Xeno Canto is an online repository where volunteers upload and annotate recordings of bird

calls and songs found all around the world. Within the project, we have used this repository

to download bird sounds and use them to train our model.

2.5.3 BBC Sound Effects

BBC Sound Effects is an online sound library consisting of over 33,000 various clips of audio

found across the world collected over the past 100 years. During the project we used the

library to collect environmental sounds which were then used to train the model.

2.5.4 GrabCAD Community

GrabCAD Community is a platform managed by the community of 7 million members where

members can share and download CAD files. Within the project, we have used the platform

to download 3D models of Raspberry Pi 4 Model B (Kaparykha, 2021) and Arduino Nano 33

BLE Sense (Peterson, 2021), which were used to design and develop 3D case solutions.

2.5.5 Edge Impulse

Edge Impulse is a development platform for machine learning on edge devices. The platform

allows users to collect data by integrating data sources using open APIs, design models and

its paヴaﾏeteヴs, test ﾏodel’s peヴfoヴﾏaﾐIe aﾐd fiﾐall┞ deplo┞ the de┗eloped model to edge

devices. During the project, we used the platform just for that, allowing to develop the

machine learning model from scratch and then deploy it to both Raspberry Pi and Arduino

solutions.

2.6 Technologies

2.6.1 LoRa

LoRa technology was developed by the chip manufacturer called Semtech (Semtech, 2022),

which stands for Long Range Radio and is targeted mainly towards IoT networks. LoRa is a

wireless protocol that allows for long-range and low-power communications. LoRa provides

a way of transmitting radio signals of small byte messages over 10-mile distances. The

project uses LoRa technology for transmitting results from edge devices installed remotely

in the wild all the way to the gateway device.

2.6.2 Grove Connectors

Grove is a standardised connector system developed by Seeed Studio (Seeed Studio, 2021).

Grove uses building blocks approach to connecting hardware together instead of soldering,

not requiring any tools to assemble electronics making it easier and quicker to prototype

systems. For the project, Grove connectors are used to connect LoRa transceiver to the

Arduino device.

2.7 Constraints

The project had a fair share of imposed constraints which we had to work around. Time was

one of the biggest limiting factors, having to do so much in the project required careful time

management to ensure that all of the critical parts of the system are implemented before

the deadline.

Another big constraint the project had was the limited amount of control over the created

machine learning model. Edge Impulse was used as a tool to create the model, which had

appealing ease of use but had limitations in data management, hyperparameter

customisation, model design and more, forcing to create a model which had to be

supported by the Edge Impulse platform.

One more constraint the project was imposed on was personal understanding of machine

learning and C++ programming language. Both were very new to me and had a steep

learning curve due to being complex in nature. Both areas of knowledge were very

important to the project due to being extensively used within, requiring me to learn the

fundamentals before we could tackle the problem.

Lastly, the project was constrained to the ordered hardware. On choosing the hardware at

the start of the project, we were forced to utilise only a limited set of haヴd┘aヴe’s supported

libraries and tools. As will be discussed later in the project, this has posed a big problem on

the project, which could not have been counteracted by ordering alternative hardware that

would have the supported libraries and tools due to time implications.

2.8 Research Question

In order to achieve the stated aims, the project is required to identify what technologies will

be used and design a comprehensive architecture that utilises outlined technologies to

create a foundation for the mentioned aims, identify what successful machine learning

techniques competitors use to classify birds with high accuracy, identify what classes the

model will classify and collect all of the required training data, develop machine learning

model and demonstrate how it has similar performance to competitors, implement

frameworks that will make use of both machine learning model and technologies to perform

the outlined aims and finally identify environmental hazards to the architecture and

compose a case solution for the hardware.

3 Approach
The pヴojeIt’s overall aim is to replace one of the already mentioned recording devices on

the commercial market with an inexpensive IoT edge device that will capture and classify

birds using sound.

3.1 IoT Architecture

The first objective is to design hardware architecture for edge device on two different

platforms: Arduino and Raspberry Pi. Both solutions are required to take audio inputs,

transmit messages wirelessly, ability to run machine learning model and be battery

powered. As well, we extended the objectives with another IoT architecture called gateway

device, that would read the transmitted messages and store them locally, ready for

retrieval.

As can be seen on the Figure 3.1, the architecture starts at the two different edge solutions,

Raspberry Pi and Arduino which will be deployed in the wild. Both have identical

architecture but with different hardware. They consist of Arduino microcontroller or

Raspberry Pi single-board computer themselves, which are responsible for running the

machine learning model and IoT framework. Both use microphone for audio input to listen

to environment sounds. As they will be deployed remotely, they will have their own

rechargeable battery module. Lastly, LoRa protocol was chosen for wireless communication

because of its power efficiency and wide coverage range of more than 10 miles in rural

areas and up to 3 miles in dense urban environments (LoRa, 2019). Both edge devices use

LoRa transceiver that will send classification results as radio messages to the gateway. As for

the gateway architecture, it consists of Raspberry Pi that will be used to listen to incoming

radio messages by utilising LoRa transceiver and then saving these messages locally on SD

card. The gate┘a┞ de┗iIe ┘ill He IoﾐﾐeIted to the saﾏe ﾐet┘oヴk as the deplo┞eヴ’s
computer machine, allowing for the deployer to connect to the gateway using SSH at any

given time to retrieve classification results stored on the gateway.

Figure 3.1 IoT Architecture Component Diagram

A list of hardware ordered for the IoT architecture can be seen on Figure 3.2. For edge

Raspberry Pi device, it has been decided for it to have a slightly larger 4GB RAM capacity,

extra memory for machine learning inference. For edge Arduino device, we decided to use

Grove based connectors to connect LoRa transceiver to the Arduino through Grove Shield,

due to simplicity and no necessity for soldering. In terms of gateway Raspberry Pi device, it

was decided to have a larger 64 GB SD card to store all results on and have a power supply

to take infinite supply of power from the socket instead of being battery powered,

delivering no downtime. Also, all of the devices have a LoRa transceiver with the same 433

MHz frequency, to allow them to communicate with each other.

Figure 3.2 List of ordered hardware

3.2 IoT Frameworks

Four different frameworks need to be designed that provide a set of functionalities on IoT

architectures.

3.2.1 Edge Framework

Another objective of the project is to be able to run machine learning model inference on

IoT edge devices. IoT edge framework is required to take audio input, extract features, feed

it to the model for inference, transmit results to the gateway device and store inferred

audio locally.

On booting up, the framework starts taking audio inputs straight away, on condition that

machine learning model is present and microphone input device is available. The audio is

then passed to the ﾏaIhiﾐe leaヴﾐiﾐg’s liHヴaヴ┞ for feature extraction. Next the library feeds

the features to the model for inference, returning classification results. The audio collection

process aﾐd ﾏodel’s inference process both are done concurrently, meaning that no audio

will be missed during classification. The audio returned by the model is saved locally instead

of sending over LoRa due to LoRa’s liﾏited 256 bytes message size as can be seen on Figure

3.3. On specified confidence threshold, the results with metadata are wirelessly transmitted

over the LoRa protocol, being converted into binary representation just before. The

following results are sent over LoRa: audio file name which will contain path and name of

the audio file stored locally on edge device, confidence level which is how confident the

model is on the classification between 0.0 and 1.0, classification which is the Hiヴd’s name

the model predicted and date with time which was captured in ISO 8601 (ISO, 2022) format.

ISO 8601 was chosen due to being global standard for time and date formats, being clearly

understandable by both machines and humans.

Figure 3.3 LoRa packet size (Pham, et al., 2020)

3.2.2 Gateway Framework

For gateway device, the ヴeケuiヴeﾏeﾐts aヴe foヴ it to listeﾐ to edge de┗iIes’ ヴesults
transmissions and store them locally.

On boot up, the framework starts constantly listening to LoRa messages. On receiving a

LoRa message, the framework converts the message from binary into its original ascii

format. After which all of the data is stored within the SQLite database, that has a singular

table called さclassification_resultsざ. The reason for choosing SQLite for storage is because it

is energy efficient compared to larger-scale database systems and at the same time has rich

ability to query data compared to storing in a text file such as CSV format. As the framework

is connected to the same network as the deployer, deployer using SSH can connect to the

gateway with CLI for more interactive functionalities as shown on Figure 3.4. The first two

functionalities allow the user to list all collected classifications and classifications by

specified label respectively. The next functionality allows user to export all of the stored

results into the CSV file, requiring user to specify the file name data will be exported to.

Another function is to start listening to results which was explained previously. Lastly,

gateway framework gives an option to download audio files stored on the edge device, only

when that edge device is connected to the same network as the gateway device. The

command will go through the local database to retrieve all audio file names, after which will

download sound files from the edge device using SSH into the specified directory. This

functionality was introduced in response to limitations with LoRa’s ﾏaximum packet size as

discussed in the previous section.

3.2.3 Microsoft Framework

Foヴ e┗aluatioﾐ puヴposes, ┘e aヴe ヴeケuiヴed to deplo┞ MiIヴosoft’s acoustic bird detection

model on both Arduino and Raspberry Pi devices. Similarly to the edge framework,

Microsoft framework takes audio input, extracts features, feeds iﾐto MiIヴosoft’s ﾏodel foヴ
inference and then prints out the results.

3.3 Machine Learning Model

Aﾐotheヴ pヴojeIt’s oHjeIti┗e is to create a machine learning model that would be able to

classify bird sounds, being able to consistently distinguish certain types of birds in real world

environments where various background noises are present.

Figure 3.4 Gateway CLI Functionality Sequence Diagram

As we want to distinguish various birds, this is a multiclass classification type of problem.

Reviewing results of the BirdCLEF (Kahl, et al., 2021) and DCASE (DCASE, 2021) that also

tackle the same type of problem, gave a lot of insight on how to design pヴojeIt’s model. The

results showed that all winners and most teams in general used Convolutional Neural

Network based models, many used data augmentation techniques and there was a split

between using MFE and Spectrograms for feature extraction. Therefore, it has been decided

to choose Convolutional Neural Network based model and experiment with MFE and

Spectrograms as feature extraction techniques when working on the pヴojeIt’s ﾏodel. As for

splitting the dataset, it is split into 60% training set used to Ihaﾐge ﾏodel’s ﾐeuヴoﾐs, 20%

validation set used to estimate model skill and to tune hyperparameters and 20% test set

used to give an unbiased estimate of skill of the final tuned model, a ratio of 3:1:1 which is

the general rule of thumb.

The model has three different categories of classes it will capture. The first and main

category of classes is target sounds, these classes are birds that we are interested in

classifying, that include bird sounds with data augmentation applied. The next class category

is called noises which comprises of environment sounds found in the habitat of the target

birds. This category is introduced to ensure the model is aware of what non-bird sounds are.

Lastly, unknown class category is created that includes sounds of all kinds of birds which do

not include target birds. This is made so the model can differentiate different birds and

ensure it does not classify random birds as targets.

In terms of collecting data, dataset needs to be very diverse and representative of real-

world settings. As highlighted by the さAudio Based Bird Species Identification using Deep

Learning Techniquesざ paper (Sprengel, et al., 2016), there are many challenges with

classifying birds by sound. These include having background noises when capturing bird

sounds, birds can make calls and songs which are different by former being shorter and

latter being longer, multiple birds singing at the same time and inter-species variance.

Therefore, to combat all of these challenges, different examples of bird songs and calls

captured in the natural environment are collected over a number of years, conditions and

regions. Furthermore, target bird sounds’ dataset is enhanced with data augmentation,

using some of the successful techniques outlined by the BirdCLEF with DCASE and previously

mentioned paper to improve generalisation performance of the system. These techniques

include time shift to avoid overfitting, adding noise to improve generalisation, small 5%

pitch shift and speed change to account for the inter-species variance. At the same time, the

collected dataset needs to be balanced to ensure the dataset is not biased or skewed that

imbalanced dataset suffers from (Brownlee, 2019).

3.4 3D Case Solutions

The last objective of the project is to have the ability to deploy the IoT edge devices in the

wild environment. For this, an enclosed 3D case solution for both types of edge devices

need to be designed that is required to be weatherproof, securely capture all hardware

inside, provide openings for the microphone and support different kinds of installations on

various surface areas such as tree branches and bushes.

Both 3D case solutions are designed to achieve IP23 rating which provides protection

against solid objects greater than 12.5mm in diameter such as a finger and protection from

vertical sprays of water up to 60 degrees. They also both follow the same design principles,

where everything starts at the base of the case. The base captures all of the hardware and

has four mounting points for Raspberry Pi and two for Arduino with screw holes for 3 mm

wide and 5 mm long screws. At the bottom and outside of the base, there are additional

four screw holes for 3 mm screws and two zip tie mounting points that support up to 7.6

mm sized zip ties (Hont, 2022) designed for installation purposes. A lid for the base is

designed to enclose the case, which is connected with a snap-fit joint called cantilever

(Bayer, 2020). The reason for choosing cantilever snap-fit joint is due to being time-saving

and low-cost connection method because of their simple design that also supports rapid

assembly and disassembly. However, cantilever snap-fit joint is not waterproof on its own

hence both cases require water seal design. The top of the base is designed to have O-ring

groves for 2mm sized O-ring which is used to seal the case from water when the top snaps

on and compresses rubber. Furthermore, case solutions have small openings that allow

microphones to capture sounds from environment, that slightly differ by the case. For

Raspberry Pi case, a rectangular opening is used to allow insertion of USB microphone which

is then surrounded by walls. These walls use drip design technique to relieve water pressure

and cause water to drip instead of gliding into the microphone opening. Case for Raspberry

Pi can be installed only one way down, having microphone opening pointing downwards to

ensure the water comes from the top only. For Arduino case, as the microphone is built into

the microcontroller, small holes are designed at the top part of the case on the lid, where

Arduino itself will be located at. To make it waterproof, a small roof on top of the holes is

created that uses overhang design technique to force the water to fall away from the

surface of the case. For this reason, the Arduino case can only be installed vertically,

allowing roof to protect the openings from rainfall falling from the sky.

In terms of hardware assembly, for Raspberry Pi it is very simple because all of the

components are HATs that snap on top of the Raspberry Pi and do not require any further

mounting, leaving the Raspberry Pi to be screwed in to the previously mentioned four

mounting holes. For Arduino assembly, all components apart from the shield are separate

and only battery holder has screw holes. Therefore, only the battery holder is screwed into

previously mentioned Iase’s mounting points and Arduino connected to Grove Shield is

placed on top, being supported by the battery holder from the bottom. The lid will be then

snapped on which will touch the Arduino, providing support from the top. To make sure

that Arduino and Grove Shield stay in place and have horizontal support, the lid has four

extended walls around the shield to hold it in place and further four alignment pillars that

go through four holes in Arduino to give further horizontal support.

4 Implementation
This section discusses the implementation of the approach previously described. Before

starting any of the implementations, a wiki document was created for every implementation

with the design explaining what and how something is going to be implemented. As well, a

highly detailed README file was created providing documentation on how to install

frameworks, how to deploy machine learning model, device configurations and more. After

implementing features, they were pushed to the GitHub repository for version control

which can be found at Appendix A – GitHub Repository for Final Year Project.

4.1 Designing IoT Architecture

The first iteration of the IoT architecture did not include the gateway device which listened

to edge devices for results. Initially, the project only required edge devices to send the

results wirelessly with an assumption a PC is able to read the signals. However, due to

choosing LoRa as a wireless communication protocol, a LoRa transceiver was required to be

purchased to allow to listen to LoRa communications as normal PCs cannot listen to LoRa

transmissions. However, due to lack of affordable LoRa transceivers for PCs, it has been

decided to extend the pヴojeIt to iﾐIlude a gate┘a┞ de┗iIe that ┘ould listeﾐ to edge de┗iIes’
messages. Also, this made the project a lot more practical as it no longer required PC to be

turned on actively to ensure that no messages will be missed, handing down the task to a

more power efficient IoT device that can be powered 24/7.

Another problem occurred with the IoT architecture was when we received the hardware.

Wrong v1.0 version of the Grove Shield was received which was not compatible with

Arduino Nano 33 BLE Sense due to not supporting 5 V signals (Arduino, 2022) which v1.0

Grove Shield operates at. Furthermore, the commercial market had no v1.1 Grove Shields

available that has 3.3 V power mode. Therefore, due to time constraints it has been decided

to manually change the Grove Shield to operate on 3.3 V by soldering the power cable of

LoRa transceiver to 3.3 V pin on Grove Shield instead of taking power from 5 V pin.

4.2 Implementing IoT Frameworks

The edge framework for Arduino has been developed in C++ and all gateway, Microsoft and

edge frameworks for Raspberry Pi were developed in Python. To make the development

process easy, we connected to the Raspberry Pi using SSH and VNC which allowed to

implement IoT framework from the laptop remotely, not requiring any physical connection.

Developing IoT framework on Arduino required a USB connection to the laptop, through

which code was uploaded to the Arduino and then using serial monitor to see the

fヴaﾏe┘oヴk’s output running on Arduino device for debugging purposes. For all frameworks,

I ensured the code has some exception handling and help messaging, to ensure that either

of frameworks are used correctly. An example of error handling can be seen on Figure 4.1, a

piece of code from gate┘a┞’s framework that handles wrong and empty inputs from user

when running the library. We also followed good programming practices when writing

frameworks, so they are easy to maintain in the future. The practices included commenting

complicated pieces of code, following DRY principle, consistent naming and more.

Figure 4.1 Error handling example in Gateway Framework

4.2.1 Edge Framework

For both frameworks, I started from examples provided H┞ Edge Iﾏpulses’ doIuﾏeﾐtatioﾐ

(Edge Impulse, 2021) and extended the implementation of them further.

Foヴ RaspHeヴヴ┞ Pi’s ┗eヴsioﾐ of the fヴaﾏe┘oヴk, two arguments are required to run the

fヴaﾏe┘oヴk. The fiヴst is path to the .eiﾏ file ┘hiIh is the leaヴﾐiﾐg ﾏodel’s file that Iaﾐ He
exported from Edge Impulse. The second argument is device id for the microphone, with

which audio collection will be carried out. Edge Impulse supplies Python SDK (Edge Impulse,

2021) which is used by the framework that provides API functions to collect audio through

microphone and run inference on the model. On running the framework, this library would

be initialised and start taking audio samples and run inference concurrently. The library uses

a buffer to continuously fill audio in two second increments. While there is data in that

buffer, library will generate features and pass them into the model, returning classification

for that two second audio and the audio itself. Originally, the library returned the extracted

featuヴes iﾐstead of audio as a ヴesult. We had to Ihaﾐge the liHヴaヴ┞’s Iode to return audio

instead, by tapping into audio recorder function within the provided SDK. For each

classification returned by the model as seen on Figure 4.2, prediction with the highest

confidence is chosen. On condition of the predicted class has confidence over or equal to

the confidence threshold and if prediction’s label does not start with underscore (i.e. not

capturing generic classes such as _noise), then the result is sent to the gateway. Right

before sending the classification results, audio is saved locally using predicted label and time

as filename to ensure uniqueness. After creating a result dictionary that will be sent over

LoRa, a lightweight asynchronous process is started in the background for sending the

results over LoRa. The process will finish at its own pace without blocking audio collection

and model inference processes.

Figure 4.2 Classification Handler in Edge Framework

Looking at Figure 4.3, the asynchronous send LoRa message function starts off by converting

the results dictionary into JSON and then further into binary. It then creates metadata

required by LoRa to send to the correct node at the ヴight fヴeケueﾐI┞. Gate┘a┞’s addヴess
being 0 and its own address being 100, the function specifies the high and low 8-bit address

for both addresses, as well as the offset frequency. Alongside with metadata, the results in

binary representation will be sent as LoRa message using the sx126x library provided by the

manufacturer (Waveshare, 2020).

Figure 4.3 Send LoRa Message Function in Edge Framework

We also guarantee a safe exit ┘heﾐ useヴ does aﾐ iﾐteヴヴupt usiﾐg さCTRL + Cざ IoﾏHiﾐatioﾐ. To
make sure that no processes are left in the background after the exit, the model and all

spawned processes that send LoRa messages are stopped before terminating the session.

Figure 4.4 Exit Handler in Edge Framework

In terms of the initialisation, it has been decided to execute the framework as Python file

during boot up. The Python script execution is added to the bashrc file which will start

running the script on every shell initialisatioﾐ. RaspHeヴヴ┞ Pi’s Ioﾐfiguヴatioﾐ is also alteヴed to
run a shell session on start-up, which will in turn start the framework.

As for the Arduino edge framework, the framework relies on the Arduino compiled model

file that is exported from Edge Impulse. The model exported will be EON Compiled

(Jongboom, 2020), optimising the model by compiling the model to C++ source code,

resulting in up to 55% less RAM and 35% less ROM usage whilst having the same model

accuracy. As with any Arduino library, everything including inference task and buffers are

initialised within the setup block, as well as starting the audio sampling process. Then as

could be seen on Figure 4.5, within the loop block a buffer with audio is collected, which is

inferenced using the model and results are printed, whilst ensuring that tasks are ready to

run and errors are handled appropriately. Inference process is run in parallel to audio

collection process, both being run as separate threads ensuring that sound is still being

collected during the inference. The iﾐfeヴeﾐIe pヴoIess Ialls さヴuﾐ_Ilassifieヴ_Ioﾐtiﾐuousざ
fuﾐItioﾐ fヴoﾏ Edge Iﾏpulse’s C++ SDK (Edge Impulse, 2021) to extract features and do the

inference, passing on audio slices to it. The function has its own time sequential FIFO (First

In First Out) buffer which is filled with audio slices. After each iteration the oldest audio slice

is removed from the buffer and new one is inserted at the beginning, resulting in audio slice

being inferenced multiple times improving the accuracy. This introduces moving average

filter, filtering out false positives.

Figure 4.5 Loop Block in Edge Framework

Within this framework, the audio collection is done manually. Two buffers are going to be

used to store audio data, one is used by the inference process to extract features and run

inference on, and another one used by audio sampling process for filling the buffer with

new audio data. Both buffers will be switched between. When the sampling buffer becomes

full of audio slices, the process will pass full buffer to the inference process and then will

clear and fill up the old buffer with new audio. This can be seen on Figure 4.6, when buffer

becomes full after enough of audio collection, the buffers are switched by

さiﾐfeヴeﾐIe.Huf_seleItざ and marks the old buffer as ready to inference by

さiﾐfeヴeﾐIe.Huf_ヴead┞ざ.

Figure 4.6 Function to switch buffers in Edge Framework

Afterwards, the inference process selects that full of audio buffer before doing the

inference, this could be seen on Figure 4.7.

Figure 4.7 Select Inference Buffer Function in Edge Framework

There has been some difficulty at sending results over LoRa using LoRa transceiver on

Arduino edge framework. The manufacturer of LoRa transceiver does provide a library to

send LoRa messages, however it does not support the chosen Arduino device. As well, there

are a few general use libraries that supports common data radio protocols including LoRa on

a range of microprocessors. However, because of Nano 33 BLE Sense being relatively new

device with a completely different approach to other Arduino boards using Mbed OS,

neither of libraries work on the device. Due to time constraints, it has been decided to drop

the ability to send LoRa messages on Arduino edge framework for the time being.

4.2.2 Gateway Framework

Gateway framework has a few interesting implementations. Firstly, listen to results function

(can be seen on Figure 4.8) which is used to listen to LoRa messages. The function starts off

by initialising LoRa transceiver at 433 MHz and address 0 using the same sx126x library,

meaning that it will only read messages sent at that frequency and to that address. Next, in

the infinite while loop, the framework will continuously listen to LoRa messages and on

receiving, it will decode the message from binary to utf-8 format and insert it into the

database. The function also handles exceptions by ignoring broken messages received from

the edge device, which could have happened due to packet loss or for any other reasons.

Figure 4.8 Listen to results Function in Gateway Framework

As for the rest of the functions, they all use SQL to manipulate data in the database. As an

example, さe┝poヴt/1ざ fuﾐItioﾐ that e┝poヴts data ┘ithiﾐ the dataHase iﾐto C“V file (can be

seen on Figure 4.9), it first creates a database connection and then selects all data from the

table using a cursor. After the function is done working with data, it closes the connection

with the database.

Figure 4.9 Export Function in Gateway Framework

In terms of the initialisation, it works the same as edge framework for Raspberry Pi,

executing the framework as Python script during boot up, calling fヴaﾏe┘oヴk’s listeﾐ to
results function.

4.2.3 Microsoft Framework

For this framework, two external files are required to run the framework which are the

feature model that extracts features and SVM classifier that performs the classifications,

both ﾐeed to He e┝poヴted fヴoﾏ the MiIヴosoft’s aIoustiI ヴepositoヴ┞. As the framework is for

evaluation purposes, the tasks will be run synchronously meaning it will not start inference

whilst recording audio. For audio recording part of the framework, a wav file is created or

overwritten with the captured audio. The feature extraction function as seen on Figure 4.10,

then reads the audio file and splits the audio in two second clips. After, the framework pads

clips that are less than 2 seconds with zeros, making sure that model gets features with the

correct dimensions. Lastly, for each clip Mel-frequency spectrograms are generated which

are then returned as features by the function.

Figure 4.10 Feature Extraction Function in Microsoft Framework

The features are then passed to the inference function (is shown on Figure 4.11), which first

normalizes input to be in line with what the pre-trained model expects by scaling the

features and dropping the final frequency bin. Afterwards, feature model and SVM classifier

are loaded and utilised to return classifications results, the former being used to decompose

audio spectrograms into feature vector and the latter being used to carry out the inference.

Figure 4.11 Inference Function in Microsoft Framework

4.3 Training Machine Learning Model

Edge Impulse development platform was used to develop and train the machine learning

model. For data collection, Xeno-Canto was used to accumulate bird samples and BBC

Sound Effects was used to collect environment sounds. For the model we chose to have only

one target bird called Araripe Manakin, this is because the project aims to demonstrate

proof-of-concept model that can be trained further if required. Araripe Manakin is one of

the rarest birds in the world found in Brazil, with only a handful of audio samples available.

Due to taヴget Hiヴd’s soﾐg aﾐd call duration being slightly longer than a second, the two

second window size for the model was chosen.

The training procedure in Edge Impulse consisted of first importing all of the audio samples

into the repository. Then, split and crop tools provided by Edge Impulse were used to split

the imported audio into two second samples. Afterwards, we generated features for all

collected audio, right before which the audio was up or down sampled to the chosen audio

frequency. After feature generation, we trained the model and viewed results. Before next

training iteration, we changed ﾏodel’s h┞peヴpaヴaﾏeteヴs to tヴ┞ to iﾏpヴo┗e ﾏodel’s
performance.

The very first dataset for the model consisted of two classes. First, さararipe_manakinざ which

contained the whole 6 minutes of all Hiヴd’s souﾐd saﾏples available on Xeno-Canto. The

second class called さ_noiseざ which consisted of 6 minutes of random environment sounds

found in the wild; 1 minute of stream/waterfall, 2 minutes of forest, 1 minute of wind, 1

minute of village and 1 minute of people talking. In terms of input parameters, the highest

audio frequency 44100 Hz was chosen to ensure that no audio would be down sampled and

lose quality before feature extraction. For feature extraction, MFE was selected just for the

first iteration. As for the model, 1D Convolutional Neural Network model was chosen due to

having small number of classes within the dataset and to start off with the simplest model

as possible. The training results returned 100% accuracy with 0 loss, which is a clear

indication of overfitting. On deploying and testing in real world, model could not distinguish

any birds from Araripe Manakin, classifying all birds as the target class.

The ﾐe┝t iteヴatioﾐ iﾐtヴoduIed a ﾐe┘ Ilass to the dataset Ialled さ_uﾐkﾐo┘ﾐざ ┘hiIh included

6 minutes of many random birds singing together. However, that still resulted in the same

performance and was classifying silence as the Araripe Manakin class. The model was

overfitting this time due to the issue within the dataset, the unknown and sound classes

were busy and had sounds playing constantly, whereas the target class had a lot of breaks

with silence.

For the next iteration, it was decided to increase the dataset by 50% and add more varied

and quieter data to the unknown and noise classes. For the noise class, 2 minutes of silence

and static noises were collected from BBC Sound Effects and additional 1 minute of random

crackles and bangs sounds were collected manually. For unknown class, six random birds

were selected that made calls and songs on their own just like in Araripe Manakin class,

these were; Boat-tailed Grackle, Mute Swan, Song Sparrow, Tricolored Heron, Common

Blackbird and Ocellated Crake, each 30 seconds long. Due to limited available data for

Araripe Manakin class, we had to perform oversampling to ensure the dataset is kept

balanced. Using random oversampling technique, we duplicated half of the Araripe Manakin

class. The training performance dropped to 95.7% and 0.33 loss which had less signs of

overfitting.

For the next few iterations, we have experimented with feature extraction methods,

changing between MFE, Spectrogram and MFCC. MFCC performed best, with training

performance being slightly lower 93% accuracy but with a way better loss 0.18. As well,

visually features were a lot more separated when plotting them on a 3D graph, making it

easier for the model to classify audio.

The next iteration experimented with input audio frequency. We chose to change the

frequency down to 16000 Hz because most bird sounds have frequency ranges between

1000 Hz and 8000 Hz (All About Birds, 2009) and considering Nyquist-Shannon sampling

theorem, 16000 Hz should be just enough to capture all relative data in the audio sample.

This has ﾐot Ihaﾐged ﾏodel’s training performance; however, it has simplified feature

extraction process making it faster and cheaper to compute features.

The oﾐe afteヴ iteヴatioﾐ aiﾏed to iﾏpヴo┗e ﾏodel’s geﾐeヴalisatioﾐ peヴfoヴﾏaﾐIe. The

previously duplicated 3 minutes of Araripe Manakin audio samples were replaced by

randomly augmented data. Once again, 50% of data from original Araripe Manakin class

were randomly duplicated and then augmented with one of the following techniques

randomly selected; change pitch by 1 step higher/lower, change speed by 0.2 faster/slower,

inject static background noise with 0.001 noise factor or shift time forward/backward by a

maximum of 0.2 seconds. For time shift and speed change, data is zero padded to ensure

the length of the sample stays the same. This has increased the performance of the model

drastically to 97.7% accuracy and 0.09 loss.

For the last lot of iterations, we were experimenting with changing hyperparameters to see

┘hat ┘ould iﾐIヴease ﾏodel’s peヴfoヴﾏaﾐIe. This iﾐIluded Ihaﾐgiﾐg to ヲD Coﾐ┗olutioﾐal
Neural Network, applying various data augmentation techniques provided by Edge Impulse

such as masking random blocks from the frequency axis, modifying number of epochs and

changing learning rate. Oﾐl┞ oﾐe h┞peヴpaヴaﾏeteヴ ┘as aHle to iﾏpヴo┗e ﾏodel’s
performance, which was low masking of random blocks from the time axis. Model’s tヴaiﾐiﾐg
performance has changed to a lower loss of 0.06 and the accuracy stayed the same.

The final version of model’s pヴopeヴties Iaﾐ He seeﾐ oﾐ Figure 4.12 aﾐd ﾏodel’s ﾐeuヴal
network settings on Figure 4.13. Then the Figure 4.14 shows how ﾏodel’s MFCC features

generated from training dataset are visually separated when plotted on a 3D graph. As well,

Figure 4.15 shows ﾏodel’s Ioﾐfusioﾐ matrix that was done on validation set, with overall

training performance of 97.7% accuracy and 0.06 loss. Lastly, Figure 4.16 shows the whole

dataset for the final version of the model that can be previewed using audio sample palette

on Figure 4.17.

Property Value

Window Size 2000 ms

Window Increase 500 ms

Frequency 16000 Hz

Feature Extraction Block MFCC

Learning Block Classification Keras

Output Features _noise, _unknown and araripe_manakin

Dataset Split (Training:Validation:Test) 60:20:20
Figure 4.12 Machine Learning Model's Properties Overview

Property Value

Number of Training Cycles 100

Learning Rate 0.005

Further Data Augmentation Techniques Mask time bands (low)

Neural Network Architecture 1D Convolutional
Figure 4.13 Machine Learning Model's Neural Network Settings

Figure 4.14 Machine Learning Model's MFCC features plotted on 3D Visual Graph

 _noise _unknown araripe_manakin

_noise 97.8% 2.2% 0%

_unknown 0% 97.4% 2.6%

araripe_manakin 0% 2.2% 97.8%

F1 Score 0.99 0.96 0.98
Figure 4.15 Machine Learning Model's Confusion Matrix (validation set)

Figure 4.16 Machine Learning Model's Dataset

Class Sound Sample Audio

araripe_manakin Raw Araripe Manakin
araripe_manakin Augmented Araripe Manakin (speed changed)

_noise Random crackle/bang

_noise Stream/waterfall

_noise Forest

_noise Wind

_noise Village

_noise People Talking

_noise Silence and static noise

_unknown Many random birds singing together

_unknown Boat-tailed Grackle

_unknown Mute Swan

_unknown Song Sparrow

_unknown Tricolored Heron

_unknown Common Blackbird

_unknown Ocellated Crake

Figure 4.17 Audio Sample Palette of Machine Learning Model's Dataset

4.4 Designing 3D Case Solutions

We used Fusion 360 (Autodesk, 2013) a 3D modelling platform to create all of the designs.

Before creating case models, it was required to prototype all the physical hardware that will

be going inside the case as CAD models. CAD models for Raspberry Pi and Arduino devices

have been retrieved from GrabCAD. However, for the rest of the hardware we were not able

to find both 3D CAD models and blueprints, having to produce physical hardware as CAD

models. We used a ruler to measure the dimensions of hardware which were then used in

CAD software to create 3D models. Afterwards, all models were assembled within Fusion

360 as they would be in real life and then both Raspberry Pi and Arduino case solutions

were created around them (see Appendix B – 3D Case Solution for Raspberry Pi and

Appendix C – 3D Case Solution for Arduino).

Throughout the whole case development, most of the good principles outlined by Hubs

(Wall, 2021) were followed, these include; a minimum 2mm wall thickness to ensure the

wall does not break due to being too thin, adding fillets to corners to help reduce stress at

corners, having 0.5mm component clearance around all of the internal hardware to

compensate for printer tolerances, uniform wall thickness as good design practice, 2mm

port clearance to ensure cables fit through the opening and lastly subtracting 0.25mm from

the screw hole diameter to allow the screw to make its own thread during installation.

https://drive.google.com/file/d/1jtuAqlVm6tXPDiVXfDs3n3Rcr6lDw3Kx/view?usp=sharing
https://drive.google.com/file/d/1JM573T2c9_eW6RzlF60OwfvfZzNAvwKu/view?usp=sharing
https://drive.google.com/file/d/1mRSzkehBJR9YdjLIq7NqfQgi70EalUCW/view?usp=sharing
https://drive.google.com/file/d/108cnXe0ixC1m1eKDxqXlLppO2AtNAabH/view?usp=sharing
https://drive.google.com/file/d/1tN9U8hF4zEYXrWBxs0v37w_piGOyrvI0/view?usp=sharing
https://drive.google.com/file/d/1XyFKFEe99bLKuLGmLBEaNPq_SbmE_jZJ/view?usp=sharing
https://drive.google.com/file/d/1WLke6Cea1kMdVutwvHk-f-kEodneLCe9/view?usp=sharing
https://drive.google.com/file/d/1Pad2HMLE_oMacJ-3vb-JJPN3GZqTY0Q2/view?usp=sharing
https://drive.google.com/file/d/1npoUT4-FEMWe4d0WCuuIkzYFAL40nJ5M/view?usp=sharing
https://drive.google.com/file/d/1GiSND4RxXCD-DOWcRrXOv3XqirKiIEPs/view?usp=sharing
https://drive.google.com/file/d/1B83sKKuFJq6HEjdQAtfabZR-HFaRm6EW/view?usp=sharing
https://drive.google.com/file/d/1pOTBd8pUOh40DwUdMZ3rD3LEBdZ60oju/view?usp=sharing
https://drive.google.com/file/d/10in7gF8xLW_hUkqn62KuSiag9gk9XUwv/view?usp=sharing
https://drive.google.com/file/d/1dsmYUDuDD5L2rdFlkEwzXX5XhJwhqgr4/view?usp=sharing
https://drive.google.com/file/d/10Xzfqz7qQ3_qBTuAFmztC05jEdekAjOQ/view?usp=sharing
https://drive.google.com/file/d/1FrlRZKOtzlz7xr-14dmpo0HqNhUcD0bO/view?usp=sharing

5 Results and Evaluation
This section covers aﾐ e┗aluatioﾐ of the s┞steﾏs Iヴeated to aIhie┗e the outliﾐed pヴojeIt’s
goals. Before carrying out any evaluation, a well-defined evaluation plan was created that

included information about what will be captured and how the evaluation will be done.

5.1 Model Evaluation using metrics

Iﾐ this seItioﾐ, the pヴojeIt’s de┗eloped ﾏodel is compared to the MiIヴosoft’s oﾐe usiﾐg
purely metrics. As both models have been trained with balanced datasets, the following

metrics were captured to evaluate the models; accuracy, precision, recall and F1 score. To

obtain metrics, both models were evaluated against test data which consisted of 20% of

unseen data from the dataset. The results showed that the overall accuracy of the

MiIヴosoft’s ﾏodel rounded up to the nearest whole percentage is 96% compared to the

fiﾐal ┞eaヴ pヴojeIt’s ﾏodel 97% being slightly ahead. This implies that both models are really

good at identifying patterns in test data. Microsoft’s ﾏodel can only classify two classes

being araripe_manakin and everything else, therefore the latter class will be compared to

final year project’s ﾏodel’s both _noise and _unknown classes when comparing confusion

matrices of both models because both classes also capture all of the noises outside of the

target bird.

As could be seen on Figure 5.1, the final year project’s ﾏodel’s precision for target class is

Hetteヴ H┞ ヰ.ヰヵ, ﾏeaﾐiﾐg that it Iaptuヴes less false positi┗es thaﾐ the MiIヴosoft’s ﾏodel,
capturing more relevant Araripe Manakins than irrelevant sounds. In terms of non-target

classifications, the precision is pretty much the same for both models being around 0.97,

having the same number of false positives. Foヴ ヴeIall, MiIヴosoft’s ﾏodel has IoﾐsideヴaHl┞
lower score for target class than the final year pヴojeIt’s ﾏodel, less by 0.07. This implies that

MiIヴosoft’s ﾏodel classifies more false negatives for the target class, capturing less of actual

Araripe Manakins. For non-target classes, final year project captures all of the true positives

from _noise class and only 0.93 for _unknown class, however roughly on average having the

saﾏe ヰ.9Α ヴeIall sIoヴe as the MiIヴosoft’s ﾏodel. Having combined both previous metrics

using F1 Score, final year pヴojeIt’s ﾏodel outpeヴfoヴﾏs the MiIヴosoft’s ﾏodel oﾐ taヴget Ilass
by 0.06, capturing the target class more accurately and precisely. As for the non-target class,

on average final year pヴojeIt’s ﾏodel has slightl┞ less sIoヴe H┞ ヰ.ヰヰヵ ┘hiIh is not significant,

having about the same performance as the Microsoft’s model.

In conclusion, on paper final year project’ model has a better performance than the

Microsoft’s model in both capturing less false negatives and false positives for the target

class. As for the identifying non-target sounds, both models perform nearly identical.

Model _noise Precision _unknown Precision araripe_manakin

Precision

Microsoft’s Model 0.97 0.97 0.91

Final Year Project’s

Model

0.95 1 0.96

Figure 5.1 Precision Metric of Microsoft's and Final Year Project's Model

Model _noise Recall _unknown Recall araripe_manakin

Recall

Microsoft’s Model 0.97 0.97 0.91

Final Year Project’s

Model

1 0.93 0.98

Figure 5.2 Recall Metric of Microsoft's and Final Year Project's Model

Model _noise F1 Score _unknown F1 Score araripe_manakin F1

Score

Microsoft’s Model 0.97 0.97 0.91

Final Year Project’s

Model

0.97 0.96 0.97

Figure 5.3 F1 Score Metric of Microsoft's and Final Year Project's Model

5.2 Model Evaluation in real world

In this section, both final year project’s model and Microsoft’s model are compared to each

other after running them in real world, seeing how they perform under realistic

circumstances. Both models were run on two different architectures Raspberry Pi and

Arduino with the exception of Microsoft’s Model running on Arduino due to the absence of

suppoヴt foヴ P┞thoﾐ’s “VM Ilassifieヴ ﾏodule iﾐ C++ ┘hiIh is used H┞ the ﾏodel. This was

done to see if the performance changes depending on the hardware and the framework.

Two different evaluations were carried out, which were doﾐe ﾏaﾐuall┞ ┘ith ﾏoHile phoﾐe’s
speakers used as source of audio. These tests were subjected to various environments and

conditions, simulating the real habitat.

5.2.1 False Negative Test

For this evaluation, models were tested to see how well they classify target class in different

conditions. The test involved playing five different sounds of the target class for each

condition variation and measuring how many times did the model classify the bird correctly,

with confidence threshold of 0.8.

There were four different test categories for the controlled environment per architecture

and model combination where tests were carried out in a silent room. These tests involved

background noise being played using mobile phone device, to see how well the model can

classify target sounds whilst having various noises playing at the same time in the

background. For each test category, four tests with the same background noise playing at 70

dB volume were carried out, playing the target sound starting at 70 dB all the way down to

40 dB, both sounds being played at constant 1 metre distance away from the device running

the model. The results showed that Microsoft’s model could classify target sound 0.75 times

on average for tests with people talking sound as the background noise. Comparing to a lot

higher 3.25 times on average for final year project’s model running on Raspberry Pi and 2

times on average when running on Arduino. For tests with water stream in the background,

once again Microsoft’s model’s 0.75 average was a lot lower than final year project’s

ﾏodel’s ヲ.ヵ tiﾏes oﾐ RaspHeヴヴ┞ Pi aﾐd ヱ.Αヵ times on Arduino. For tests with wind whistling

as background noise, both models performed really well at all ranges of target volume,

Microsoft’s ﾏodel’s 3.75 average compared to final year project’s ﾏodel’s slightl┞ higheヴ ヴ.ヵ
average on Raspberry Pi and slightly lower 3 average on Arduino. This happened most likely

because of background sound being much quieter than previous ones, being able to hear

the target sound over it much easily. Lastly, tests with many random birds singing as the

background noise, Microsoft’s model did not perform that well with 2.3 times on average

compared to final year project’s ﾏodel’s ン.ヵ tiﾏes oﾐ RaspHeヴヴ┞ Pi aﾐd ヲ.ヵ tiﾏes oﾐ
Arduino.

For the tests carried out in the wild environment which was done in one of the forests North

of Cardiff, tests were only subjected to the natural habitat noise with no additional

background noise added. Five different tests were carried out per platform and model, with

target sound being played at consistent 50 dB volume and distance ranging from 1 to 20

metres. The results revealed that up to 15 metres, both models performed very well, final

year project’s model running on Raspberry Pi classifying every sound and when running on

Arduino classifying 80% of sounds compared to Microsoft’s model classifying 87% of sounds.

Then between 15 and 20 metres, performance of final year project’s model running on

Raspberry Pi dropped to 50% and running on Arduino down to 20% compared to 40% for

Microsoft’s model.

In conclusion, final year project’s model running on Raspberry Pi had the best performance

out of all in both types of tests, considerably outperforming Microsoft’s model and having

an upper edge over the same model being ran on Arduino. Microsoft’s model comparing to

final year project’s model running on Arduino, on average performed worse in controlled

environment tests but performed better in the wild environment. The reason for final year

project’s ﾏodel’s peヴfoヴﾏaﾐIe oﾐ Aヴduiﾐo is due to the appヴoaIh of the fヴaﾏe┘oヴk. The
framework filters out true positives with the implemented moving average filter, which was

supposed to help filter out false positives. On choosing which architecture should the final

year project’s model be run on, choosing Arduino when requiring to classify birds within

short distance is fine as the difference between Raspberry Pi architecture is not that

significant. However, if accuracy of identifying true positives is of high importance or if

classifying birds on longer distances is required, then Raspberry Pi architecture should be

chosen.

5.2.2 False Positive Test

For this evaluation, models were tested against all kinds of sounds not including the target

class sounds, to see if the model classifies them incorrectly as target. The test played five

different variations of the sound, measuring how many times did the model classify them

incorrectly as target class with the same 0.8 confidence threshold. All of the sounds were

evaluated under the same conditions of being in controlled environment with sound being

played 1 metre away from the device and at the volume of 60 dB.

Two different categories of sounds were played during this evaluation. The first one includes

sounds that can be found in the habitat but do not include sounds of birds, they are: people

having conversations, environmental sounds (water stream, wind and forest) and random

mammal animal sounds. The second category of sounds includes sounds of specific birds.

The category has sounds of three randomly picked birds which are Ivory-billed

Woodcreeper, Olivaceous Saltator and Prairie Warbler. The category also includes Helmeted

Manakin which is a bird from the same family and another bird called Caroline Wren which

has similar pitch and call to the targeted bird, to see how models perform on similarly

sounding birds.

The results for this evaluation showed that both models performed very well on non-bird

sounds from the former class, not classifying any as the target sound apart from the final

year project’s model running on Arduino classified random mammal animal sound once as

the target. For the randomly selected birds, the final year project’s model running on both

architectures classified birds as target class 2.3 times on average compared to 1 for

Microsoft’s Model, more than twice less accurate at filtering out random birds. When it

came down to birds with similar sounds, both models could not differentiate the bird from

the same family due to having a nearly identical call to the target. For the bird with similar

pitch and call, final year project’s model was twice more accurate than Microsoft’s model,

identifying incorrectly twice on both platforms compared to four times for the latter model.

In conclusion, both models performed well on not identifying random sounds as the target

bird. Microsoft’s model performs best with random birds, whereas final year project’s
model performs best with similar sounding birds. The reason for Microsoft’s ﾏodel’s
performance most likely lies within the approach, being very good at identifying non-target

sounds due to being far apart in the vector space of SVM, but not so good on similar

sounding audios due to them being close to the target in space. For the final year project’s

model, it performs nearly identical on both Raspberry Pi and Arduino platforms, so neither

of the frameworks affected ﾏodel’s performance on identifying non-target sounds

incorrectly. This proves that the moving average filter technique used by edge framework

for Arduino has not worked as intended, having the same performance on filtering out false

positives as edge framework for Raspberry Pi that does not use such technique.

5.3 Architecture Evaluation

In this evaluation, the final year project’s model was evaluated running on both Raspberry Pi

and Arduino architectures, to see which architecture has better performance and efficiency.

When measuring ﾏodel’s performance on the device, Edge Iﾏpulse’s pヴo┗ided さOﾐ-device

peヴfoヴﾏaﾐIeざ estiﾏates were used which were further confirmed by manually running the

model on both architectures and taking an average over 10 classifications. For measuring

energy and RAM usage, PowerTOP (Ven, 2010) diagnostic tool was used on Raspberry Pi.

However, due to lack of Arduino libraries that measure power consumption, Aヴduiﾐo’s
official datasheet for Arduino Nano 33 BLE Sense (Arduino, 2021) was used to calculate

estimates.

In terms of efficiency, as could be seen on Figure 5.4 Raspberry Pi has 50% less battery

capacity and significantly more energy usage than the Arduino architecture. This makes the

opeヴatiﾐg tiﾏe of RaspHeヴヴ┞ Pi to oﾐl┞ ン houヴs Ioﾏpaヴed to Aヴduiﾐo’s ﾐeaヴl┞ ヱヰ da┞s. This

makes the Arduino architecture way more practical for long term deployments, being able

to deploy the device for longer amount of time. Raspberry Pi in comparison will have a lot

more downtimes due to the need for frequent recharging, during which missing potential

classifications.

Platform Battery

Capacity

Energy Usage Operating Time

Raspberry Pi 3000 mAh 967 mA 3 hours and 6 min

Arduino 4500 mAh 19 mA 236 hours and 50 min
Figure 5.4 Energy Metrics of Raspberry Pi and Arduino Architectures

As for the performance, model running on Arduino architecture in total takes 24 times

longer classifying sounds than model running on Raspberry Pi, most of the time taken

extracting features. Ho┘e┗eヴ, Aヴduiﾐo’s RAM usage is IoﾐsideヴaHl┞ lo┘eヴ Heiﾐg ヲヶ KB
Ioﾏpaヴed to RaspHeヴヴ┞ Pi’s ンヰヴ MB. This implies that Raspberry Pi has way better

performance than Arduino architecture even through it uses more resources, which explains

the bad energy efficiency. Raspberry Pi is substantially quicker at classifying than Arduino,

allowing for results being received faster. As well, this means that Raspberry Pi architecture

is more scalable compared to Arduino, allowing for more complex models to be deployed

with greater amount of target classes.

Platform Processing time

for feature

extraction

Processing time

for inference

Total

processing time

RAM usage

average

Raspberry Pi 8 ms 1 ms 9 ms 304 MB

Arduino 206 ms 10 ms 216 ms 26 KB
Figure 5.5 Performance Metrics of Raspberry Pi and Arduino Architectures

In conclusion, each architecture has its own advantages and disadvantages that need to be

considered when choosing which architecture to deploy. For long term deployments,

Arduino architecture is the one to choose due to its long operating time. If performance is a

concern, deploying a new version of the model with more target classes and higher

complexity, then Raspberry Pi architecture should be chosen.

6 Future Work
Within this section, we talk about what can be done next that would improve the project

and solve any of the previously outlined issues.

6.1 Exhaustive Evaluation of Model Performance

The evaluation of both models was not fully exhaustive especially the real-world tests and

quite likely did ﾐot gi┗e a full piItuヴe of the ﾏodels’ peヴfoヴﾏaﾐIes. Therefore, it is

recommended to perform more exhaustive tests of both models running on both

architectures, this time including Microsoft’s model running on Arduino by finding a way to

import SVM library over to C++. The test should include more conditions and combinations

of these conditions that would be more representative of the environment within the real

habitat. As well, both models should be evaluated within the actual habitat where the target

birds can be found, testing the models against real birds in real environments. This will

solidify the findings by having a more accurate evaluation of models against real data, as

this is what the model will be working against when it will be deployed in the future.

To take the evaluation further, tests can be automated through a list of exhaustive unit

tests. A range of conditions can be collected as audio samples which can be then combined

with samples of target birds, that would pass the model through different environments and

see how it performs. This way, evaluation will be done a lot faster and will require less of

manual work.

6.2 Arduino Library for LoRa Transceiver

As outlined previously by the implementation section, there were difficulties finding a

library for Arduino Nano 33 BLE Sense that would be able to send radio messages using LoRa

transceiver. Due to this difficulty, the project currently does not send Arduino edge device’s

results over to the gateway device. It is encouraged to write a specialised library from

scratch or fork and adapt one of the libraries out there such as RadioHead (Crespo, 2018) for

Arduino Nano 33 BLE Sense to enable usage of LoRa transceiver for sending classification

results over to the gateway device. An alternative to this would be finding another Arduino

device that is capable of running machine learning model and that already has support for

using LoRa transceiver by one of the libraries online. However, this would then require

rewriting edge framework for Arduino and modifying 3D case design, to support then new

Arduino device.

6.3 Power Optimise Raspberry Pi Edge Architecture

The biggest issue with Raspberry Pi edge architecture currently is that it uses a lot of power

to run the framework, having a very small operating time compared to Arduino architecture.

Currently, the Raspberry Pi boots up into normal mode with GUI present, using that extra

energy to load the graphics when it is not required to. This could be avoided by running the

device in the headless mode, which would load only terminal and disable GUI access to the

device.

Additionally, according to article on blues wireless (Lauer, 2021), power can be saved by

disabling Wi-Fi and Bluetooth interfaces as they will not be used by the edge framework,

saving up to 40 mA. Furthermore, all onboard LEDs can be disabled which will not be seen

by anyone after the deployment, that could save around 10 mA. As well, a few mA can be

sa┗ed H┞ uﾐdeヴIloIkiﾐg RaspHeヴヴ┞ Pi’s CPU. As with the current model, the device utilises

only 19.6% of the CPU on average, so slowing down the CPU ﾏight ﾐot ヴeduIe ﾏodel’s
performance on the device. However, this should be evaluated and tested before deploying

the architecture.

Reviewing all of the running processes during bootup could also help with power

consumption by finding irrelevant background processes that are not used by the

framework during deployment. Another way to increase operating time on remote

deployments is by introducing supplemental power. A small solar panel such as PiJuice Solar

(Pi Supply, 2020) can be added on top of the Raspberry Pi as a HAT that would extend

battery life of the edge architecture. However, this would then require revising the case for

Raspberry Pi as it will need another waterproof opening for the solar panel.

6.4 Send Audio over LoRa

As was mentioned previously, it was not possible to send audio from edge framework over

to the gateway using LoRa due to the maximum LoRa message size of 256 bytes. Measuring

the size of the 2 second raw audio returned by the model, the average size of the audio is

110 kilobytes which is considerably larger than the LoRa’s ﾏa┝iﾏuﾏ ﾏessage size. To send

audio over LoRa, the audio can be split up into smaller segments and sent in multiple goes.

This could work by having a queue on edge framework which would be filled with audio and

results when there is a new classification. When there is something in the queue, a process

could be spawned which would work parallelly to the inference and data collection process,

that sends the classification results with the first LoRa message as done currently. Then for

the audio, the process could start off with a simple handshake to ensure that the gateway

device is turned on and is ready to listen. The handshake would work by having edge device

calculate how big the audio is and how many parts the audio is split into, which would send

that information to the gateway device, waiting for the confirmation response. After

receiving confirmation from the gateway device, the edge device would sequentially send

the audio in parts of 256 bytes, until the full audio is sent. The gateway framework would

then re-assemble the audio and save locally. To combat packet loss, TCP’s fast ヴetヴaﾐsﾏit
(Medhi & Ramasamy, 2018) technique could be used, which introduces acknowledge

mechanism to the receiver (i.e. gateway device) used on each received packet. Each packet

will be numbered and on receiving out of order packet, the receiver will send the

acknowledgment for the last packet it has successfully received once again. The sender (i.e.

edge device) would get a duplicate acknowledgement and would know to send the lost

packets again. This feature could be implemented to both architectures, so there will be no

need for retrieving edge devices to extract audio stored on them.

6.5 Integration with Helium Network

Currently, the project is limited by the LoRa’s ヴaﾐge, allowing for edge devices to be

deployed only within 10 miles of the gateway device. This can be improved by integrating

with Helium network (Helium, 2022) which provides secure, robust and affordable network

powered by the Helium blockchain. Helium network is made up of devices called hotspots

which can be purchased by anyone and installed anywhere. Hotspots relay data over long

distances using the same LoRa protocol. Helium hotspot providers get rewarded by the

users of the network in cryptocurrency called HNT and are constantly verified with Proof of

Coverage consensus (Helium, 2022) to ensure the validity of the nodes. The project can use

Helium network to relay edge de┗iIes’ LoRa messages over to the gateway device, allowing

to be deployed over longer distances without previously mentioned restrictions. The

integration will also require additional funding to pay for the network usage, paying for each

relayed message. However, before integrating with the network, an analysis must be made

to ensure that Helium network is physically present within the deployment location,

otherwise the network will not be able to receive the messages.

7 Conclusions
The project’s ﾏodel o┗eヴall has Heeﾐ very successful, being able to confidently classify

target birds within real world environments. Model’s peヴfoヴﾏaﾐIe oﾐ Hoth aヴIhiteItuヴes is

as good or better than an already existent Microsoft’s model which is currently used for bird

conservations. On paper, final year pヴojeIt’s ﾏodel aIhie┗es the saﾏe aIIuヴaI┞ as the
Microsoft’s model and has a better F1 score, outperforming the competition at both

detecting less of irrelevant data and capturing more of the real data. In practice, it has been

discovered that actually the final year pヴojeIt’s model captures more false positives than the

Microsoft’s model. However, it is at the trade of having a lot less false negatives, being able

to detect birds in noisy environments and differentiate similar sounding birds better than

the Microsoft’s model. Coﾏpaヴiﾐg fiﾐal ┞eaヴ pヴojeIt’s model running on both architectures,

Raspberry Pi proved to have a better performance over Arduino in all kinds of tests. Model

running on Raspberry Pi was able to capture more of actual bird sounds than model running

on Arduino device. As well, Raspberry Pi performed equal to Arduino in terms of filtering out

false positives, which Arduino was supposed to have an upper edge on. Overall, the final

┞eaヴ pヴojeIt’s model is ready to be retrained for other types of birds if needed and then

deployed to see how it performs against real data.

As for the frameworks, the project has not achieved all of the outlined aims. The edge

framework for Arduino was not able to transmit results over the wireless network due to

difficulties with the hardware, making it not ready for deployment. Although, the edge

framework for Raspberry Pi was able to satisfy all requirements which are taking audio

input, facilitating model to carry out inference and finally transmit results wirelessly over

LoRa. Due to unforeseen issues with receiving LoRa signals, the project has been extended

to implement another framework for the gateway device, which listens to the results and

saves them locally.

In terms of the architectures, both Arduino and Raspberry Pi solutions have achieved all

projeIt’s oHjeIti┗es. The design of the architectures has been successful, making it

theoretically possible to transmit results wirelessly, take audio inputs, run machine learning

model and be battery powered. On comparing both architectures, the Arduino architecture

is a lot more power efficient, being able to be deployed for longer periods of time compared

to Raspberry Pi. Nevertheless, Raspberry Pi framework proved to have a better

performance, making it a lot more scalable for the future models.

For 3D case solutions, Hoth desigﾐs ha┗e aIhie┗ed all of the pヴojeIt’s ヴeケuiヴeﾏents of being

weather resistant, provide openings for the microphone, support various installation

methods and capture all of the hardware securely within itself.

Overall, the project was considered a success. All of the main aims of the project have been

achieved to a sufficient degree, being able to be deployed in real habitats and used for

conservation activities. A quick demo of the project can be found at Appendix D – Final Year

Project Demo.

8 Reflection
The project has challenged me a lot, requiring to do a lot of research and learning a lot of

concepts prior starting working on the project. Before the project, I only had general

knowledge about machine learning. To start working on the model, I had to learn basic

concepts of machine learning and understand ﾏaIhiﾐe leaヴﾐiﾐg’s more in-depth mechanics

relating to my problem which includes feature extraction techniques for bird audio, over

sampling due to small dataset, audio data augmentation and more. I was also required to

gain an understanding on bird vocalisation and certain vocal features that could

differentiate birds from one another. As well, learning about possible issues with bird

vocalisation that could impair the model’s peヴfoヴﾏaﾐIe such as inter-species variance and

bird calls compared to songs. Learning about how sounds work was required too, making

suヴe that all of the Hiヴd’s ┗oIal details aヴe Iaptuヴed during audio collection and feature

extraction. Before starting to work on 3D case solutions, I had to understand general design

principles for 3D printing to ensure that the case after being printed would be structurally

stable. I also had to research common engineering designs for creating a snap fit joint and

making casing waterproof, from which I unexpectedly learnt a lot about 3D modelling.

As for the skills that I have developed throughout the project development, I was able to

learn new to me programming language C++. Programming at lower level was unusual to

me, from which I was able to gain knowledge on how to do memory management by

implementing buffers. As well, I have developed knowledge in source control, database,

data structures and algorithms, radio networking, testing and architecture design by

implementing the frameworks for IoT architectures. I had little experience in 3D modelling

prior to the project. During the project, I was able to learn how to read schematics, how and

what tools to use in CAD software, how to take proper references from real life objects to

remodel them virtually and understanding geometry concepts such as curvature and

projection by creating 3D models of hardware and cases within CAD software.

If I was to redo this project from scratch, I would spend a lot more time researching about

the technologies that will be used in the project. As mentioned previously, the project had

to be extended to support LoRa signals due to my incorrect assumption that regular

personal devices can read radio signals. If I had spent more time understanding LoRa

technology, I would have been able to take actions early, whether to continue with this

technology or not. However, due to being late with the realisation of the issue, I was forced

to extend my project’s sIope to suit this technology. Also, choosing LoRa protocol was

another mistake I would like to avoid next time when working with long range wireless

transmissions. Due to limited size of LoRa’s ﾏessages, I ┘as uﾐaHle to seﾐd full ヴesults o┗eヴ
to the gateway device, being forced to work around by saving audio locally and retrieving it

physically. This problem occurred once again due to not fully understanding the LoRa

teIhﾐolog┞ at the tiﾏe of desigﾐiﾐg the aヴIhiteItuヴe, kﾐo┘iﾐg LoRa’s ﾏa┝iﾏuﾏ paIket size I

would have redesigned the architecture or accounted for during early stages of the project.

Another issue that I had with the project was having trouble with finding a library for LoRa

transceiver that would support the chosen Arduino microcontroller. Next time, I would carry

out more thorough research and ensure that all of the components including libraries for

them are compatible. At the very least, I would include developing a specialised library

within my initial plan, having some arranged time to make the hardware compatible which I

did not have previously.

During the project, there were many things that went well which I would like to reuse when

working on something similar in the future. Firstly, the creation of machine learning model

was very successful as proved by the evaluation. Data augmentation techniques have played

a Hig paヴt at iﾐIヴeasiﾐg ﾏodel’s aIIuヴaI┞, helping to generate more data which did not

overfit the model and instead brought more variation to the class. In the future, data

augmentation will definitely be of use when working with small datasets. As well, creating

two extra classes for the model, one being generic environment noises and another for non-

target birds have really helped the model to differentiate target birds from all other sounds.

Giving context to the model of the outside world has played a tremendous part in making

the model competitive against other models, which I will consider when working on

machine learning models in the future. Another task that went well was designing 3D case

solutions for the architectures. All of the applied design principles for 3D printing have

successfully helped these cases become sturdy, which I will reuse next time I will be doing

3D modelling. Also, learning how to create cantilever snap fit joint allowed to enclose casing

without requiring extra tools, accelerating the prototyping and development processes.

Cantilever snap fit joint proved to be an easy and rapid way of assembling and

disassembling cases, which I will also reuse in the future.

9 References
All About Birds, 2009. Do Bird Songs Have Frequencies Higher Than Humans Can Hear?.

[Online]

Available at: https://www.allaboutbirds.org/news/do-bird-songs-have-frequencies-higher-

than-humans-can-hear

[Accessed 02 04 2022].

Analog, 2022. Moving Average Filters. [Online]

Available at: https://www.analog.com/media/en/technical-documentation/dsp-

book/dsp_book_ch15.pdf

[Accessed 02 04 2022].

Arduino, 2021. Arduino Nano 33 BLE Sense datasheet. [Online]

Available at:

https://docs.arduino.cc/static/702c3afe4d443ad7fc171d434ba0ee4a/ABX00031-

datasheet.pdf

[Accessed 13 03 2022].

Arduino, 2022. About Nano boards with disabled 5 V pins. [Online]

Available at: https://support.arduino.cc/hc/en-us/articles/360014779679-About-Nano-

boards-with-disabled-5-V-pins

[Accessed 12 04 2022].

Autodesk, 2013. Fusion 360. [Online]

Available at: https://www.autodesk.com/products/fusion-360/overview

[Accessed 20 03 2022].

Bayer, 2020. Snap-Fit Joints for Plastics. [Online]

Available at:

http://fab.cba.mit.edu/classes/S62.12/people/vernelle.noel/Plastic_Snap_fit_design.pdf

[Accessed 02 03 2022].

Brownlee, J., 2019. A Gentle Introduction to Imbalanced Classification. [Online]

Available at: https://machinelearningmastery.com/what-is-imbalanced-classification/

[Accessed 25 02 2022].

Colarusso, P., Kidder, L., Levin, I. & Lewis, N., 1999. Raman and Infrared Microspectroscopy.

[Online]

Available at: https://www.sciencedirect.com/science/article/pii/B0122266803004026

[Accessed 05 03 2022].

Crespo, E., 2018. RadioHead. [Online]

Available at: https://github.com/jecrespo/RadioHead

[Accessed 06 04 2022].

DCASE, 2021. Few-shot Bioacoustic Event Detection Challenge Results. [Online]

Available at: https://dcase.community/challenge2021/task-few-shot-bioacoustic-event-

detection-results

[Accessed 01 04 2022].

DSM&T, 2015. IP Rating Chart. [Online]

Available at: https://www.dsmt.com/resources/ip-rating-chart/

[Accessed 20 02 2022].

Edge Impulse, 2021. Documentation. [Online]

Available at: https://docs.edgeimpulse.com/docs

[Accessed 02 04 2022].

Edge Impulse, 2021. Edge Impulse DSP and Inferencing SDK. [Online]

Available at: https://github.com/edgeimpulse/inferencing-sdk-cpp

[Accessed 04 04 2022].

Edge Impulse, 2021. Edge Impulse Linux SDK for Python. [Online]

Available at: https://github.com/edgeimpulse/linux-sdk-python

[Accessed 20 03 2022].

Edge Impulse, 2022. Audio MFCC. [Online]

Available at: https://docs.edgeimpulse.com/docs/tutorials/processing-blocks/audio-mfcc

[Accessed 21 04 2022].

Edge Impulse, 2022. Audio MFE. [Online]

Available at: https://docs.edgeimpulse.com/docs/tutorials/processing-blocks/audio-mfe

[Accessed 21 04 2022].

Edge Impulse, 2022. Spectrogram. [Online]

Available at: https://docs.edgeimpulse.com/docs/tutorials/processing-blocks/spectrogram

[Accessed 21 04 2022].

Helium, 2022. Proof of Coverage. [Online]

Available at: https://docs.helium.com/blockchain/proof-of-coverage/

[Accessed 04 30 2022].

Helium, 2022. Use the Network. The People's Network delivers secure, ubiquitos, and

affordable wireless connectivity.. [Online]

Available at: https://www.helium.com/enterprise

[Accessed 04 30 2022].

Hont, 2022. Complete Plastic Cable Ties Sizes (in MM) Summary Chart. [Online]

Available at: https://hont-electric.com/what-are-the-plastic-cable-ties-sizes-in-mm/

[Accessed 13 03 2022].

IBM Cloud Education, 2020. Convolutional Neural Networks. [Online]

Available at: https://www.ibm.com/cloud/learn/convolutional-neural-networks

[Accessed 10 04 2022].

ISO, 2022. ISO 8601 Date and Time Format. [Online]

Available at: https://www.iso.org/iso-8601-date-and-time-format.html

[Accessed 25 03 2022].

Jolliffe, I. & Cadima, J., 2016. Principal component analysis: a review and recent

developments. [Online]

Available at: https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0202

[Accessed 18 03 2022].

Jongboom, J., 2020. Introducing EON: Neural Networks in Up to 55% Less RAM and 35% Less

ROM. [Online]

Available at: https://www.edgeimpulse.com/blog/introducing-eon

[Accessed 04 04 2022].

Kahl, S. et al., 2021. Overview of BirdCLEF 2021: Bird call identification in soundscape

recordings. [Online]

Available at: http://ceur-ws.org/Vol-2936/paper-123.pdf

[Accessed 20 04 2022].

Kaparykha, S., 2021. Raspberry Pi 4 Model B. [Online]

Available at: https://grabcad.com/library/raspberry-pi-4-model-b-03-1

[Accessed 10 04 2022].

Lauer, R., 2021. Optimizing Raspberry Pi Power Consumption. [Online]

Available at: https://blues.io/blog/tips-tricks-optimizing-raspberry-pi-power/

[Accessed 22 03 2022].

LoRa, 2019. What are LoRa and LoRaWAN?. [Online]

Available at: https://lora-developers.semtech.com/documentation/tech-papers-and-

guides/lora-and-lorawan/

[Accessed 07 04 2022].

Medhi, D. & Ramasamy, K., 2018. Packet Queueing and Scheduling. [Online]

Available at: https://www.sciencedirect.com/science/article/pii/B978012800737200020X

[Accessed 21 04 2022].

Microsoft AI for Earth, 2020. Tutorial: Accurate Bioacoustic Species Detection from Small

Numbers of Training Clips Using the Biophony Model. [Online]

Available at: https://github.com/microsoft/acoustic-bird-detection

[Accessed 24 03 2022].

Moreno-Barea, F., Jerez, J. & Franco, L., 2020. Improving classification accuracy using data

augmentation on small data sets. [Online]

Available at: https://www.sciencedirect.com/science/article/abs/pii/S0957417420305200

[Accessed 20 02 2022].

Peterson, A., 2021. Arduino Nano 33 BLE. [Online]

Available at: https://grabcad.com/library/arduino-nano-33-ble-1

[Accessed 10 04 2022].

Pham, C., Bounceur, A., Clavier, L. & Noreen, U., 2020. Radio channel access challenges in

LoRa low-power wide-area networks. [Online]

Available at:

https://www.sciencedirect.com/science/article/pii/B9780128188804000041#f0025

[Accessed 02 04 2022].

Pi Supply, 2020. PiJuice Solar. [Online]

Available at: https://uk.pi-supply.com/products/pijuice-solar

[Accessed 28 03 2022].

Rahman, S., 2021. Undersampling and oversampling: An old and a new approach. [Online]

Available at: https://medium.com/analytics-vidhya/undersampling-and-oversampling-an-

old-and-a-new-approach-4f984a0e8392

[Accessed 05 04 2022].

Seeed Studio, 2021. Grove System. [Online]

Available at: https://wiki.seeedstudio.com/Grove_System/

[Accessed 22 03 2022].

Semtech, 2022. What Is LoRa?. [Online]

Available at: https://www.semtech.com/lora/what-is-lora

[Accessed 04 03 2022].

Sonix, 2021. A short history of speech recognition. [Online]

Available at: https://sonix.ai/history-of-speech-recognition

[Accessed 04 04 2022].

Sprengel, E., Jaggi, M., Kilcher, Y. & Hofmann, T., 2016. Audio Based Bird Species

Identification using Deep Learning Techniques. [Online]

Available at: http://ceur-ws.org/Vol-1609/16090547.pdf

[Accessed 03 03 2022].

Ven, A. v. d., 2010. PowerTOP. [Online]

Available at: https://github.com/fenrus75/powertop

[Accessed 05 04 2022].

Wall, J., 2021. Enclosure design for 3D printing. [Online]

Available at: https://www.hubs.com/knowledge-base/enclosure-design-3d-printing-step-

step-guide/

[Accessed 03 03 2022].

Waveshare, 2020. SX1268 433M LoRa HAT. [Online]

Available at: https://www.waveshare.com/wiki/SX1268_433M_LoRa_HAT

[Accessed 06 04 2022].

Wildlife Acoustics, 2020. Kaleidoscope Pro Pro Analysis Software. [Online]

Available at: https://www.wildlifeacoustics.com/products/kaleidoscope-pro

[Accessed 24 4 2022].

Wildlife Acoustics, 2022. Song Meter Comparison. [Online]

Available at: https://www.wildlifeacoustics.com/products/song-meter-sm4-vs-mini-vs-micro

[Accessed 05 03 2022].

WWF, 2020. 68% Average Decline in Species Population Sizes Since 1970, Says New WWF

Report. [Online]

Available at: https://www.worldwildlife.org/press-releases/68-average-decline-in-species-

population-sizes-since-1970-says-new-wwf-report

[Accessed 05 04 2022].

YR Architecture Design, 2020. Design Techniques to Control Water Movement. [Online]

Available at: https://yr-architecture.com/keeping-water-out-7-design-techniques-to-

control-water-movement/

[Accessed 22 03 2022].

10 Appendix

10.1 Appendix A – GitHub Repository for Final Year Project

• https://github.com/RuslanLevond/final-year-project

10.2 Appendix B – 3D Case Solution for Raspberry Pi

https://github.com/RuslanLevond/final-year-project

10.3 Appendix C – 3D Case Solution for Arduino

10.4 Appendix D – Final Year Project Demo

• https://www.youtube.com/watch?v=M5sv8-thzCE

https://www.youtube.com/watch?v=M5sv8-thzCE

