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Abstract 
Wildlife has been in danger for quite some time from various kinds of human activities, 

ranging from directly destroying habitat to impact from climate change Iaused H┞ huﾏaﾐ’s 
unsustainable way of living. Many organisations have established conservation projects and 

activities to try to mitigate the effects and save wildlife, one of the most important activities 

of which is monitoring species. Automatic sound recognition systems have proven to be an 

effective tool used during conservation activities. There are several devices out on the 

market which can be installed in the wild and record animal sounds. However, they are 

inaccessible due to being expensive and they only record sounds and require further 

proprietary software to classify sounds elsewhere. The intention of the project is to create 

an alternative low-cost device that can be installed in the wild and be able to both record 

and classify animal sounds right on the edge. This involved developing a machine learning 

model from scratch that is able to classify bird sounds. The project also created edge 

frameworks for two architectures, Raspberry Pi and Arduino to which the machine learning 

model is deployed to. As well, 3D case solutions were designed allowing for both 

architectures to be safely deployed in the wild. The project then created a gateway device 

and a framework for it which is used to store results transmitted by edge devices. 

Afterwards, the created model was evaluated agaiﾐst Ioﾏpetitoヴ’s ﾏodel which showed to 

have a competitive performance, outperforming competition in some cases. The project has 

also investigated performance of the model running on both architectures and compared 

architectures to understand which one is more suitable to use when. To achieve the 

outlined goals, the project has tackled the development of IoT applications, fundamentals of 

machine learning, architectural design and development of computer aided designs. 
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1 Introduction 
Automatic sound recognition has been available for a while, the first system being 

developed back in 1952 by Bell Laboratories called Audrey (Sonix, 2021), which was able to 

ヴeIogﾐise huﾏaﾐ’s speeIh, ideﾐtif┞iﾐg spokeﾐ ﾐuﾏHeヴs. Over the past years, many various 

systems and projects were developed that performed complex sound recognition using 

machine learning techniques, including animal sound recognition. 

 

Within the ecosystem, different animals live in the harmony with each other, making the 

environment stable and sustainable. However, wildlife has become endangered in the 

recent years due to many factors caused H┞ huﾏaﾐ’s destヴuIti┗e ﾐatuヴe such as global 

warming and poaching. This can be backed up by the report from World Wide Fund for 

Nature organisation (WWF, 2020), reporting a major 68% decline in species population sizes 

since 1970. Due to this reason, many conservation projects have been established with the 

aim to preserve wildlife. Automatic sound recognition has played a crucial part in animal 

conservation activities, using the technology for monitoring purposes by providing an 

automatic way to recognise animals using sounds. There are some commercially available 

systems that support such activities, however most of them provide just a recording device 

that is installed in the wild with the functionality to only capture sound and requires further 

proprietary software to classify sounds, both of which are expensive. An example of such 

device is one of the Song Meter devices from Wildlife Acoustics (Wildlife Acoustics, 2022) 

starting from $249, which is a waterproof recorder that is required to be retrieved to 

download the audio and then import audio into their software to perform analysis and 

classification. 

 

The project aims to solve this inaccessibility issue by creating a low-cost edge device that 

can be deployed in the wild, with ability to both record and classify sounds right on the edge 

whilst having the same performance as commercially available products. The device should 

also be able to send the results over long-range wireless network back to the user without 

requiring the user to retrieve the device for results. 

 

The pヴojeIt’s fiヴst oHjeIti┗e was to create a machine learning model from scratch, being able 

to identify a singular bird called Araripe Manakin. The model was evaluated both on paper 

aﾐd ヴeal ┘oヴld, agaiﾐst Ioﾏpetitoヴ’s ﾏodels to see if it peヴfoヴﾏs as good. The pヴojeIt also 
designed and developed frameworks for two different architectures, Arduino and Raspberry 

Pi that records audio, facilitates the model and sends ﾏodel’s ヴesults ┘iヴelessl┞ to the 
gateway device. The project tested ﾏodel’s peヴfoヴﾏaﾐIe oﾐ Hoth aヴIhiteItuヴes, aﾐal┞sing 

architectures’ IapaHilities aﾐd ideﾐtifying strengths and weaknesses of each architecture. 

Project also included creating a gateway device which is used to listen to results from edge 

devices and store them. As well as, providing a command line tool for the user, used to 

manage results stored locally. Lastly, project designed and implemented 3D case solutions 

for both edge devices which will allow devices to be deployed in the wild, being able to 

protect electronics from weather elements and facilitate various kinds of installations on 

different surface areas. 

 



2 Background 
This section provides the context for the project and all relevant information needed to be 

known before reading the specifics of the project. 

 

2.1 Machine Learning Concepts 

2.1.1 Balanced and Imbalanced Dataset 

A balanced dataset contains an equal or almost equal amount of data samples in each of the 

classes, whereas imbalanced dataset has one of the classes containing higher number of 

samples than other classes. An example of both datasets can be seen on Figure 2.1 and 

Figure 2.2, showing datasets with 2 classes. The project faces imbalanced dataset issue due 

to the nature of the dataset, which needs to be resolved. 

 

 
Figure 2.1 Representation of Balanced Dataset 

 
Figure 2.2 Representation of Imbalanced Dataset 

2.1.2 Undersampling and Oversampling 

Both techniques are used to convert imbalanced datasets into balanced. Oversampling is a 

technique that is used to duplicate a minority class within the dataset with enough number 

of samples to have the same amount as majority classes. Comparing to undersampling, it is 

the opposite which removes samples from the majority class to have the same number of 

samples as minority classes. In the project, we will only be implementing one of the 

oversampling techniques because of limited amount of data being available. 

 

 
Figure 2.3 Representation of Undersampling and Oversampling (Rahman, 2021) 



2.1.3 Data Augmentation 

Data augmentation is a technique that is used to increase the amount of data in the dataset 

by synthetically creating data through copying existing data and slightly modifying it. This 

technique allows for increasing diversity of the data too, without requiring to collect new 

data making it very powerful when working with small datasets. It has been proved that 

using data augmentation can improve the accuracy of the model by 1-3% (Moreno-Barea, et 

al., 2020) and the generalisation capability of the model. During the project, this technique 

will be used for oversampling one of the classes in the dataset. 

 

2.1.4 Convolutional Neural Network 

CNN is a subset of machine learning, being a Deep Learning algorithm that specialises in 

processing image type of data. It works by having a hierarchy of layers, where each layer 

identifies different features and parts of the image. Taking an image as input, CNN passes it 

through these layers, earlier ones identifying simple features such as colours and later layers 

identifying bigger elements of the feature such as shapes, until CNN finally recognises the 

class the image belongs to. This is just an overview of Convolutional Neural Network, for 

more information please check out an explanation from IBM Cloud Education (IBM Cloud 

Education, 2020). The project creates a CNN model that is used to classify birds. 

 

2.1.5 Hyperparameters 

Hyperparameters are parameters that control the learning process of machine learning 

model. They are used to determine how the network is trained, examples of 

hyperparameters are learning rate and number of training cycles. They are set by the 

practitioner before the training and are neither changed by the model during training nor 

used by the resulting trained model. During the project, hyperparameters will be changed 

before each training cycle to try to increase ﾏodel’s peヴfoヴﾏaﾐIe. 
 

2.1.6 Nyquist-Shannon Theorem 

Nyquist-Shannon Theorem is a sampling theorem used in signal processing which states 

さthat a sinusoidal function in time or distance can be regenerated with no loss of 

information as long as it is sampled at a frequency greater than or equal to twice per cycleざ 

(Colarusso, et al., 1999). Meaning that any sampled analog signal should be collected at 

twice the frequency of the highest expected frequency at least, otherwise the sample can 

suffer from loss of information. This theorem is used to decide projeIt’s ﾏodel input audio 

frequency. 

 

2.1.7 Machine Learning Model Evaluation Metrics 

The following evaluation metrics will be used to evaluate machine learning models, to 

understand each ﾏodel’s stヴeﾐgths aﾐd ┘eakﾐesses. 
Accuracy 

Accuracy is the score that represents a ratio of correctly predicted observations to total 

observations, which is calculated by number of classifications a model correctly predicted 

divided by the total number of predictions made. The metric implies how well can model 

identify patterns within data. This metric is great for measuring on symmetric datasets 

where there are the same number of false negatives as false positives. 



Precision 

Precision is used to show the correctness of classification, saying out of all positive class 

predictions, how many are actually positive. The score is calculated by having number of 

correct positive classifications divided by the total number of predicted positive 

classifications. High precision score ultimately shows that model does not pick up many false 

positives. 

Recall 

Recall is used to tell if model is correctly identifying true positives. It can be calculated 

through number of correct positive classifications divided by the total number of actual 

positive cases. High recall score tells that the model classifies less of false negatives. 

F1 Score 

F1 Score is a weighted average of both precision and recall, shows a balanced view of both 

scores. This means that the F1 Score takes into account both false positives and false 

negatives. 

Confusion Matrix 

Confusion matrix is a visualisation of the performance of a model, presented in a tabular 

view. Specifically, confusion matrix shows the number of correct and incorrect predictions 

which are represented by a value and separated by classification. Each row in the table 

represents instances of the actual class and each column represents instances that were 

predicted as the class. 

 

2.1.8 Confidence Threshold 

EaIh ﾏaIhiﾐe leaヴﾐiﾐg ﾏodel’s IlassifiIatioﾐ ヴeturns a value for each of the class, telling 

how confident the model is about its prediction for the class. Confidence Threshold is a 

thヴeshold that ﾏodel’s IoﾐfideﾐIe ┗alue oﾐ the class should match or exceed to be 

considered as a positive prediction. Confidence threshold will be set by edge framework to 

decide when ﾏodel’s classification is a positive prediction. 

 

2.1.9 Feature Extraction Techniques 

Feature extraction is a very important part of the machine learning model, which is used to 

find relations and patterns within data. Each technique transforms inputted data into 

numerical features in its own way, that can be then processed by the model. During the 

project, we will be exploring a few different audio specific feature extraction techniques to 

see which one works better for the scenario. 

Spectrogram 

Spectrogram extracts time and frequency features from the audio signal, capturing features 

concisely on an image. It is known to perform well on non-voice audio. Edge Iﾏpulse’s 
documentation (Edge Impulse, 2022) explains it further on how they extract features from 

audio using spectrograms. 



 
Figure 2.4 Example of Spectrogram extracted from 1 second audio 

Mel-filterbank Energies 

MFE works similarly to the spectrogram, also extracting time and frequency from the audio 

signal. Although, this time frequency is represented in a non-linear scale called Mel-scale 

which is known to perform good on non-voice audio again, especially on audio that humans 

can hear. Foヴ ﾏoヴe iﾐfoヴﾏatioﾐ, please ヴead Edge Iﾏpulse’s doIuﾏeﾐtatioﾐs (Edge Impulse, 

2022). 

 
Figure 2.5 Example of MFE extracted from 1 second audio 

Mel-frequency Cepstral Coefficient 

MFCC extracts coefficients from the audio signal, using non-linear scale called Mel-scale just 

like MFE. It is mostly used for speech recognition and sometimes performs good on non-

human voice audio such as animal communications. For more information, refer to Edge 

Impulse’s doIuﾏeﾐtatioﾐ (Edge Impulse, 2022). 

 
Figure 2.6 Example of MFCC extracted from 1 second audio 

2.2 Competitors 

2.2.1 Microsoft Acoustic Bird Detection Model 

Microsoft Acoustic Bird Detection Model (Microsoft AI for Earth, 2020) is a machine learning 

model developed by Microsoft which we ┘ill ヴefeヴ to as さMiIヴosoft’s ﾏodelざ. This is the 

main model that ouヴ pヴojeIt’s ﾏodel ┘as Ioﾏpaヴed to. Microsoft’s model deals with the 

limited dataset issue, training the model to classify only one bird Araripe Manakin with small 

number of audio samples available. Microsoft’s model carries out classifications on 2 second 

audio windows and uses MFCC to extract features from the audio. The model chose SVM 



classifier to make predictions on features because of its reputation of performing well on 

small datasets, which will be covered in more detail in the next subsection. However, due to 

spectrograms being large and high dimensional, SVM classifier would not be trained well 

with such a small dataset. Therefore, Microsoft’s model decided to reduce input 

dimensionality with the use of Principal Component Analysis (PCA) (Jolliffe & Cadima, 2016) 

but at the same time preserving all of the necessary information for class differentiation. 

Even with PCA, training the model from scratch resulted in poor performance, 87% accuracy 

and recall score of only 0.61. So, Microsoft decided to use transfer learning instead, using 

the Biophony Model that previously extracted hundreds of thousands of audio examples of 

more than 300 species, using the pre-trained model to leverage feature extraction 

capabilities. Microsoft’s model has removed the last layer from the Biophony Model which 

was used to classify features and replaced it with the trained SVM classifier. This resulted in 

Biophony Model becoming a feature extraction tool that passes features to the SVM 

classifier, creating a high accuracy model. 

Support Vector Machine 

SVM classifier is a type of deep learning algorithm which is used to analyse data for 

classifications and make predictions. SVM works by plotting the whole dataset to a high 

diﾏeﾐsioﾐal featuヴe spaIe, ┘heヴe eaIh saﾏple’s featuヴes aヴe ヴepヴeseﾐted H┞ a singular 

point on that space. Next, SVM looks at these data points and groups them by their 

positioning, groups are separated into sections using a hyperplane. When making a 

pヴediItioﾐ, “VM ┘ill use data’s featuヴes to plot a poiﾐt to high diﾏeﾐsioﾐal spaIe, seeiﾐg 
which group the point belongs to. 

 
Figure 2.7 Examples of SVM plots in 2D and 3D space 

2.2.2 BirdCLEF and DCASE 

Both BirdCLEF and DCASE are highly recognised international competitions that occur 

regularly every year, in which participants develop machine learning algorithms that classify 

birds using audio. At the end of both challenges, the results are published describing 

participants’ appヴoaIhes, e┗aluatiﾐg theiヴ ﾏodels aﾐd disIussiﾐg leaヴﾐed lessons. During the 

project, the results of both competitions are used to decide the approach for creation of the 

pヴojeIt’s ﾏodel. 
 



2.2.3 Wildlife Acoustics 

The biggest pヴojeIt’s commercial competitor that can be found is Wildlife Acoustics, 

creating Song Meter devices (Wildlife Acoustics, 2022). They have a range of recorder 

devices in the price range between $249 and $849, which are waterproof devices that can 

be deployed in the wild to listen to animal sounds. These devices are expensive and have 

the capability to only record sounds, requiring additional software to make autonomous 

predictions on these sounds. A software license is sold separately Ialled さKaleidosIope Pヴo 
Aﾐal┞sis “oft┘aヴeざ (Wildlife Acoustics, 2020) by the same Wildlife Acoustics organisation, 

costing $399 per year. The software allows users to quickly label and identify bird songs, 

also being able to automatically suggest the most likely species. However, the automatic 

suggestion feature only works for bats currently, not being able to do for any of the birds. 

The project aims to replace the previously mentioned products from Wildlife Acoustics by 

providing inexpensive alternative devices that focus on automatic classifications of birds 

rather than manual classification, making the technology more accessible to everyone. 

 

2.3 3D Modelling and Engineering Principles 

2.3.1 Computer-aided Design 

CAD is a technology that is used to create CAD models which are computer models defined 

by the geometrical variables. CAD models are typically in a three-dimensional 

representation, which can be easily modified by altering parameters using CAD software. 

These models are vector-based, allowing for them be easily viewed under a wide variety of 

representations such as enlarged and rotated. During the project, CAD software will be used 

to create precise 3D models for case solutions. 

 

2.3.2 Cantilever 

Cantilever is a very popular snap-fit joint that is used to join two objects together. This type 

of snap-fit joint consists of protrusion that looks like a hook, coming from one of the objects 

which is inserted into a slot from another object that deflects the protrusion on insertion. 

Once it has been fully inserted, the protrusion bends back to its normal position, locking the 

connection and securing the two objects together. Cantilever snap-fit joint will be used 

during the project to secure both parts of the case together. 

 

2.3.3 Ingress Protection Rating 

IP rating classifies the degree of protection provided by an enclosure for electrical 

equipment. This standard specifies different levels of sealing against intrusion of foreign 

bodies including dust, water and objects. The IP rating consists of two digits, where the 

higher the digit the better protection. The first digit defines the protection of the equipment 

within the enclosure against ingress of foreign objects (e.g., fingers) and against dust, both 

of which could damage the circuitry. The second digit indicates the level of protection the 

enclosure provides against liquids. DSM&T provides an IP Rating reference chart (DSM&T, 

2015) that displays how much protection each digit provides. IP rating will be considered 

when designing case solutions for IoT edge devices. 

 

2.3.4 Architecture Design Techniques to Control Water Movement 

Foヴ the pヴojeIt’s ンD Iase solutioﾐs, ┘e took some inspirations from architecture designs to 

keep the water out of the openings within the created enclosure. In particular, we will be 



exploring drip and overhang methods to control the water movement, refer to YR 

Architecture and Design for more information (YR Architecture Design, 2020). 

Overhang 

Water sliding on the surface can be diverted by creating an overhang above the opening, 

which is an edge protruding outward that provides protection for lower levels of the 

structure. This way, the water will slide towards the edge and at the end will be forced to 

fall away from the structure. 

 
Figure 2.8 Visualisation of Overhang 

Drip 

Drip is another design technique to keep the water out of the opening. Drip technique is 

applied to the underside surface where water might slide to and cling depending on the 

runoff speed, later being drawn into the opening. Drip design technique solves the issue by 

having a break within the underside surface which causes to reduce water surface tension 

and cause the water to drop down. 

 

 
Figure 2.9 Visualisation of Drip 

2.4 Bird Vocalisation 

The project will analyse and understand how bird vocalisation functions to ensure model 

generalisation. 

 

2.4.1 Bird Calls vs Songs 

Bird calls and songs are birds’ vocalisations that differ by the length, complexity and context. 

Bird songs tend to be longer and much more complex which are used for mating purposes. 

Comparing to the calls, that are short in duration and much simpler in structure, used for 

various functions like keeping members of flock in contact or alarms. 

 



2.4.2 Inter-species Variance 

As the project is working with bird sounds, it is important to account for inter-species 

variance. The same bird species in different locations might sound different, which could 

affeIt ﾏodel’s peヴfoヴﾏaﾐIe. Birds work just like humans, in which species communicate 

differently depending on the country they live in. 

 

2.4.3 Audio Frequency 

The audio frequency is measured in hertz, which computes the number of times per second 

the sound ┘a┗e’s I┞Ile ヴepeats. The greater the frequency, the higher the pitch humans 

perceive. Audio frequency is calculated by dividing the velocity which is the wave speed by 

the wavelength which is the distance of one frequency wave peak to the other. 

 
Figure 2.10 Frequency Formula 

2.5 Tools and Methods 

2.5.1 Moving Average Filter 

Moving average filter is calculated by averaging a number of input signals to produce one 

single output signal as shown on Figure 2.11 where x is the input signal, y is the output 

signal and M is the number of signals used in the average (Analog, 2022). The moving 

average filter is really good for reducing random noise and retaining fast response. This filter 

will be used on the project’s model classification predictions to reduce number of false 

positives produced by the model. 

 
Figure 2.11 Moving Average Formula Equation 

2.5.2 Xeno Canto 

Xeno Canto is an online repository where volunteers upload and annotate recordings of bird 

calls and songs found all around the world. Within the project, we have used this repository 

to download bird sounds and use them to train our model. 

 

2.5.3 BBC Sound Effects 

BBC Sound Effects is an online sound library consisting of over 33,000 various clips of audio 

found across the world collected over the past 100 years. During the project we used the 

library to collect environmental sounds which were then used to train the model. 

 

2.5.4 GrabCAD Community 

GrabCAD Community is a platform managed by the community of 7 million members where 

members can share and download CAD files. Within the project, we have used the platform 



to download 3D models of Raspberry Pi 4 Model B (Kaparykha, 2021) and Arduino Nano 33 

BLE Sense (Peterson, 2021), which were used to design and develop 3D case solutions. 

 

2.5.5 Edge Impulse 

Edge Impulse is a development platform for machine learning on edge devices. The platform 

allows users to collect data by integrating data sources using open APIs, design models and 

its paヴaﾏeteヴs, test ﾏodel’s peヴfoヴﾏaﾐIe aﾐd fiﾐall┞ deplo┞ the de┗eloped model to edge 

devices. During the project, we used the platform just for that, allowing to develop the 

machine learning model from scratch and then deploy it to both Raspberry Pi and Arduino 

solutions. 

 

2.6 Technologies 

2.6.1 LoRa 

LoRa technology was developed by the chip manufacturer called Semtech (Semtech, 2022), 

which stands for Long Range Radio and is targeted mainly towards IoT networks. LoRa is a 

wireless protocol that allows for long-range and low-power communications. LoRa provides 

a way of transmitting radio signals of small byte messages over 10-mile distances. The 

project uses LoRa technology for transmitting results from edge devices installed remotely 

in the wild all the way to the gateway device. 

 

2.6.2 Grove Connectors 

Grove is a standardised connector system developed by Seeed Studio (Seeed Studio, 2021). 

Grove uses building blocks approach to connecting hardware together instead of soldering, 

not requiring any tools to assemble electronics making it easier and quicker to prototype 

systems. For the project, Grove connectors are used to connect LoRa transceiver to the 

Arduino device. 

 

2.7 Constraints 

The project had a fair share of imposed constraints which we had to work around. Time was 

one of the biggest limiting factors, having to do so much in the project required careful time 

management to ensure that all of the critical parts of the system are implemented before 

the deadline. 

 

Another big constraint the project had was the limited amount of control over the created 

machine learning model. Edge Impulse was used as a tool to create the model, which had 

appealing ease of use but had limitations in data management, hyperparameter 

customisation, model design and more, forcing to create a model which had to be 

supported by the Edge Impulse platform.  

 

One more constraint the project was imposed on was personal understanding of machine 

learning and C++ programming language. Both were very new to me and had a steep 

learning curve due to being complex in nature. Both areas of knowledge were very 

important to the project due to being extensively used within, requiring me to learn the 

fundamentals before we could tackle the problem. 

 



Lastly, the project was constrained to the ordered hardware. On choosing the hardware at 

the start of the project, we were forced to utilise only a limited set of haヴd┘aヴe’s supported 

libraries and tools. As will be discussed later in the project, this has posed a big problem on 

the project, which could not have been counteracted by ordering alternative hardware that 

would have the supported libraries and tools due to time implications. 

 

2.8 Research Question 

In order to achieve the stated aims, the project is required to identify what technologies will 

be used and design a comprehensive architecture that utilises outlined technologies to 

create a foundation for the mentioned aims, identify what successful machine learning 

techniques competitors use to classify birds with high accuracy, identify what classes the 

model will classify and collect all of the required training data, develop machine learning 

model and demonstrate how it has similar performance to competitors, implement 

frameworks that will make use of both machine learning model and technologies to perform 

the outlined aims and finally identify environmental hazards to the architecture and 

compose a case solution for the hardware. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 Approach 
The pヴojeIt’s overall aim is to replace one of the already mentioned recording devices on 

the commercial market with an inexpensive IoT edge device that will capture and classify 

birds using sound. 

 

3.1 IoT Architecture 

The first objective is to design hardware architecture for edge device on two different 

platforms: Arduino and Raspberry Pi. Both solutions are required to take audio inputs, 

transmit messages wirelessly, ability to run machine learning model and be battery 

powered. As well, we extended the objectives with another IoT architecture called gateway 

device, that would read the transmitted messages and store them locally, ready for 

retrieval. 

 

As can be seen on the Figure 3.1, the architecture starts at the two different edge solutions, 

Raspberry Pi and Arduino which will be deployed in the wild. Both have identical 

architecture but with different hardware. They consist of Arduino microcontroller or 

Raspberry Pi single-board computer themselves, which are responsible for running the 

machine learning model and IoT framework. Both use microphone for audio input to listen 

to environment sounds. As they will be deployed remotely, they will have their own 

rechargeable battery module. Lastly, LoRa protocol was chosen for wireless communication 

because of its power efficiency and wide coverage range of more than 10 miles in rural 

areas and up to 3 miles in dense urban environments (LoRa, 2019). Both edge devices use 

LoRa transceiver that will send classification results as radio messages to the gateway. As for 

the gateway architecture, it consists of Raspberry Pi that will be used to listen to incoming 

radio messages by utilising LoRa transceiver and then saving these messages locally on SD 

card. The gate┘a┞ de┗iIe ┘ill He IoﾐﾐeIted to the saﾏe ﾐet┘oヴk as the deplo┞eヴ’s 
computer machine, allowing for the deployer to connect to the gateway using SSH at any 

given time to retrieve classification results stored on the gateway. 

 



 
Figure 3.1 IoT Architecture Component Diagram 



A list of hardware ordered for the IoT architecture can be seen on Figure 3.2. For edge 

Raspberry Pi device, it has been decided for it to have a slightly larger 4GB RAM capacity, 

extra memory for machine learning inference. For edge Arduino device, we decided to use 

Grove based connectors to connect LoRa transceiver to the Arduino through Grove Shield, 

due to simplicity and no necessity for soldering. In terms of gateway Raspberry Pi device, it 

was decided to have a larger 64 GB SD card to store all results on and have a power supply 

to take infinite supply of power from the socket instead of being battery powered, 

delivering no downtime. Also, all of the devices have a LoRa transceiver with the same 433 

MHz frequency, to allow them to communicate with each other. 

 

 
Figure 3.2 List of ordered hardware 

3.2 IoT Frameworks 

Four different frameworks need to be designed that provide a set of functionalities on IoT 

architectures. 

 

3.2.1 Edge Framework 

Another objective of the project is to be able to run machine learning model inference on 

IoT edge devices. IoT edge framework is required to take audio input, extract features, feed 

it to the model for inference, transmit results to the gateway device and store inferred 

audio locally. 

 

On booting up, the framework starts taking audio inputs straight away, on condition that 

machine learning model is present and microphone input device is available. The audio is 

then passed to the ﾏaIhiﾐe leaヴﾐiﾐg’s liHヴaヴ┞ for feature extraction. Next the library feeds 

the features to the model for inference, returning classification results. The audio collection 

process aﾐd ﾏodel’s inference process both are done concurrently, meaning that no audio 

will be missed during classification. The audio returned by the model is saved locally instead 

of sending over LoRa due to LoRa’s liﾏited 256 bytes message size as can be seen on Figure 

3.3. On specified confidence threshold, the results with metadata are wirelessly transmitted 



over the LoRa protocol, being converted into binary representation just before. The 

following results are sent over LoRa: audio file name which will contain path and name of 

the audio file stored locally on edge device, confidence level which is how confident the 

model is on the classification between 0.0 and 1.0, classification which is the Hiヴd’s name 

the model predicted and date with time which was captured in ISO 8601 (ISO, 2022) format. 

ISO 8601 was chosen due to being global standard for time and date formats, being clearly 

understandable by both machines and humans. 

 

 
Figure 3.3 LoRa packet size (Pham, et al., 2020) 

3.2.2 Gateway Framework 

For gateway device, the ヴeケuiヴeﾏeﾐts aヴe foヴ it to listeﾐ to edge de┗iIes’ ヴesults 
transmissions and store them locally. 

 

On boot up, the framework starts constantly listening to LoRa messages. On receiving a 

LoRa message, the framework converts the message from binary into its original ascii 

format. After which all of the data is stored within the SQLite database, that has a singular 

table called さclassification_resultsざ. The reason for choosing SQLite for storage is because it 

is energy efficient compared to larger-scale database systems and at the same time has rich 

ability to query data compared to storing in a text file such as CSV format. As the framework 

is connected to the same network as the deployer, deployer using SSH can connect to the 

gateway with CLI for more interactive functionalities as shown on Figure 3.4. The first two 

functionalities allow the user to list all collected classifications and classifications by 

specified label respectively. The next functionality allows user to export all of the stored 

results into the CSV file, requiring user to specify the file name data will be exported to. 

Another function is to start listening to results which was explained previously. Lastly, 

gateway framework gives an option to download audio files stored on the edge device, only 

when that edge device is connected to the same network as the gateway device. The 

command will go through the local database to retrieve all audio file names, after which will 

download sound files from the edge device using SSH into the specified directory. This 

functionality was introduced in response to limitations with LoRa’s ﾏaximum packet size as 

discussed in the previous section. 



 

3.2.3 Microsoft Framework 

Foヴ e┗aluatioﾐ puヴposes, ┘e aヴe ヴeケuiヴed to deplo┞ MiIヴosoft’s acoustic bird detection 

model on both Arduino and Raspberry Pi devices. Similarly to the edge framework, 

Microsoft framework takes audio input, extracts features, feeds iﾐto MiIヴosoft’s ﾏodel foヴ 
inference and then prints out the results. 

 

3.3 Machine Learning Model 

Aﾐotheヴ pヴojeIt’s oHjeIti┗e is to create a machine learning model that would be able to 

classify bird sounds, being able to consistently distinguish certain types of birds in real world 

environments where various background noises are present. 

 

Figure 3.4 Gateway CLI Functionality Sequence Diagram 



As we want to distinguish various birds, this is a multiclass classification type of problem. 

Reviewing results of the BirdCLEF (Kahl, et al., 2021) and DCASE (DCASE, 2021) that also 

tackle the same type of problem, gave a lot of insight on how to design pヴojeIt’s model. The 

results showed that all winners and most teams in general used Convolutional Neural 

Network based models, many used data augmentation techniques and there was a split 

between using MFE and Spectrograms for feature extraction. Therefore, it has been decided 

to choose Convolutional Neural Network based model and experiment with MFE and 

Spectrograms as feature extraction techniques when working on the pヴojeIt’s ﾏodel. As for 

splitting the dataset, it is split into 60% training set used to Ihaﾐge ﾏodel’s ﾐeuヴoﾐs, 20% 

validation set used to estimate model skill and to tune hyperparameters and 20% test set 

used to give an unbiased estimate of skill of the final tuned model, a ratio of 3:1:1 which is 

the general rule of thumb. 

 

The model has three different categories of classes it will capture. The first and main 

category of classes is target sounds, these classes are birds that we are interested in 

classifying, that include bird sounds with data augmentation applied. The next class category 

is called noises which comprises of environment sounds found in the habitat of the target 

birds. This category is introduced to ensure the model is aware of what non-bird sounds are. 

Lastly, unknown class category is created that includes sounds of all kinds of birds which do 

not include target birds. This is made so the model can differentiate different birds and 

ensure it does not classify random birds as targets. 

 

In terms of collecting data, dataset needs to be very diverse and representative of real-

world settings. As highlighted by the さAudio Based Bird Species Identification using Deep 

Learning Techniquesざ paper (Sprengel, et al., 2016), there are many challenges with 

classifying birds by sound. These include having background noises when capturing bird 

sounds, birds can make calls and songs which are different by former being shorter and 

latter being longer, multiple birds singing at the same time and inter-species variance. 

Therefore, to combat all of these challenges, different examples of bird songs and calls 

captured in the natural environment are collected over a number of years, conditions and 

regions. Furthermore, target bird sounds’ dataset is enhanced with data augmentation, 

using some of the successful techniques outlined by the BirdCLEF with DCASE and previously 

mentioned paper to improve generalisation performance of the system. These techniques 

include time shift to avoid overfitting, adding noise to improve generalisation, small 5% 

pitch shift and speed change to account for the inter-species variance. At the same time, the 

collected dataset needs to be balanced to ensure the dataset is not biased or skewed that 

imbalanced dataset suffers from (Brownlee, 2019). 

 

3.4 3D Case Solutions 

The last objective of the project is to have the ability to deploy the IoT edge devices in the 

wild environment. For this, an enclosed 3D case solution for both types of edge devices 

need to be designed that is required to be weatherproof, securely capture all hardware 

inside, provide openings for the microphone and support different kinds of installations on 

various surface areas such as tree branches and bushes. 

 

Both 3D case solutions are designed to achieve IP23 rating which provides protection 

against solid objects greater than 12.5mm in diameter such as a finger and protection from 



vertical sprays of water up to 60 degrees. They also both follow the same design principles, 

where everything starts at the base of the case. The base captures all of the hardware and 

has four mounting points for Raspberry Pi and two for Arduino with screw holes for 3 mm 

wide and 5 mm long screws. At the bottom and outside of the base, there are additional 

four screw holes for 3 mm screws and two zip tie mounting points that support up to 7.6 

mm sized zip ties (Hont, 2022) designed for installation purposes. A lid for the base is 

designed to enclose the case, which is connected with a snap-fit joint called cantilever 

(Bayer, 2020). The reason for choosing cantilever snap-fit joint is due to being time-saving 

and low-cost connection method because of their simple design that also supports rapid 

assembly and disassembly. However, cantilever snap-fit joint is not waterproof on its own 

hence both cases require water seal design. The top of the base is designed to have O-ring 

groves for 2mm sized O-ring which is used to seal the case from water when the top snaps 

on and compresses rubber. Furthermore, case solutions have small openings that allow 

microphones to capture sounds from environment, that slightly differ by the case. For 

Raspberry Pi case, a rectangular opening is used to allow insertion of USB microphone which 

is then surrounded by walls. These walls use drip design technique to relieve water pressure 

and cause water to drip instead of gliding into the microphone opening. Case for Raspberry 

Pi can be installed only one way down, having microphone opening pointing downwards to 

ensure the water comes from the top only. For Arduino case, as the microphone is built into 

the microcontroller, small holes are designed at the top part of the case on the lid, where 

Arduino itself will be located at. To make it waterproof, a small roof on top of the holes is 

created that uses overhang design technique to force the water to fall away from the 

surface of the case. For this reason, the Arduino case can only be installed vertically, 

allowing roof to protect the openings from rainfall falling from the sky. 

 

In terms of hardware assembly, for Raspberry Pi it is very simple because all of the 

components are HATs that snap on top of the Raspberry Pi and do not require any further 

mounting, leaving the Raspberry Pi to be screwed in to the previously mentioned four 

mounting holes. For Arduino assembly, all components apart from the shield are separate 

and only battery holder has screw holes. Therefore, only the battery holder is screwed into 

previously mentioned Iase’s mounting points and Arduino connected to Grove Shield is 

placed on top, being supported by the battery holder from the bottom. The lid will be then 

snapped on which will touch the Arduino, providing support from the top. To make sure 

that Arduino and Grove Shield stay in place and have horizontal support, the lid has four 

extended walls around the shield to hold it in place and further four alignment pillars that 

go through four holes in Arduino to give further horizontal support. 

 

 

 

 

 

 

 

 

 



4 Implementation 
This section discusses the implementation of the approach previously described. Before 

starting any of the implementations, a wiki document was created for every implementation 

with the design explaining what and how something is going to be implemented. As well, a 

highly detailed README file was created providing documentation on how to install 

frameworks, how to deploy machine learning model, device configurations and more. After 

implementing features, they were pushed to the GitHub repository for version control 

which can be found at Appendix A – GitHub Repository for Final Year Project. 

 

4.1 Designing IoT Architecture 

The first iteration of the IoT architecture did not include the gateway device which listened 

to edge devices for results. Initially, the project only required edge devices to send the 

results wirelessly with an assumption a PC is able to read the signals. However, due to 

choosing LoRa as a wireless communication protocol, a LoRa transceiver was required to be 

purchased to allow to listen to LoRa communications as normal PCs cannot listen to LoRa 

transmissions. However, due to lack of affordable LoRa transceivers for PCs, it has been 

decided to extend the pヴojeIt to iﾐIlude a gate┘a┞ de┗iIe that ┘ould listeﾐ to edge de┗iIes’ 
messages. Also, this made the project a lot more practical as it no longer required PC to be 

turned on actively to ensure that no messages will be missed, handing down the task to a 

more power efficient IoT device that can be powered 24/7. 

 

Another problem occurred with the IoT architecture was when we received the hardware. 

Wrong v1.0 version of the Grove Shield was received which was not compatible with 

Arduino Nano 33 BLE Sense due to not supporting 5 V signals (Arduino, 2022) which v1.0 

Grove Shield operates at. Furthermore, the commercial market had no v1.1 Grove Shields 

available that has 3.3 V power mode. Therefore, due to time constraints it has been decided 

to manually change the Grove Shield to operate on 3.3 V by soldering the power cable of 

LoRa transceiver to 3.3 V pin on Grove Shield instead of taking power from 5 V pin. 

 

4.2 Implementing IoT Frameworks 

The edge framework for Arduino has been developed in C++ and all gateway, Microsoft and 

edge frameworks for Raspberry Pi were developed in Python. To make the development 

process easy, we connected to the Raspberry Pi using SSH and VNC which allowed to 

implement IoT framework from the laptop remotely, not requiring any physical connection.  

Developing IoT framework on Arduino required a USB connection to the laptop, through 

which code was uploaded to the Arduino and then using serial monitor to see the 

fヴaﾏe┘oヴk’s output running on Arduino device for debugging purposes. For all frameworks, 

I ensured the code has some exception handling and help messaging, to ensure that either 

of frameworks are used correctly. An example of error handling can be seen on Figure 4.1, a 

piece of code from gate┘a┞’s framework that handles wrong and empty inputs from user 

when running the library. We also followed good programming practices when writing 

frameworks, so they are easy to maintain in the future. The practices included commenting 

complicated pieces of code, following DRY principle, consistent naming and more. 

 



 
Figure 4.1 Error handling example in Gateway Framework 

4.2.1 Edge Framework 

For both frameworks, I started from examples provided H┞ Edge Iﾏpulses’ doIuﾏeﾐtatioﾐ 

(Edge Impulse, 2021) and extended the implementation of them further. 

 

Foヴ RaspHeヴヴ┞ Pi’s ┗eヴsioﾐ of the fヴaﾏe┘oヴk, two arguments are required to run the 

fヴaﾏe┘oヴk. The fiヴst is path to the .eiﾏ file ┘hiIh is the leaヴﾐiﾐg ﾏodel’s file that Iaﾐ He 
exported from Edge Impulse. The second argument is device id for the microphone, with 

which audio collection will be carried out. Edge Impulse supplies Python SDK (Edge Impulse, 

2021) which is used by the framework that provides API functions to collect audio through 

microphone and run inference on the model. On running the framework, this library would 

be initialised and start taking audio samples and run inference concurrently. The library uses 

a buffer to continuously fill audio in two second increments. While there is data in that 

buffer, library will generate features and pass them into the model, returning classification 

for that two second audio and the audio itself. Originally, the library returned the extracted 

featuヴes iﾐstead of audio as a ヴesult. We had to Ihaﾐge the liHヴaヴ┞’s Iode to return audio 

instead, by tapping into audio recorder function within the provided SDK. For each 

classification returned by the model as seen on Figure 4.2, prediction with the highest 

confidence is chosen. On condition of the predicted class has confidence over or equal to 

the confidence threshold and if prediction’s label does not start with underscore (i.e. not 



capturing generic classes such as _noise), then the result is sent to the gateway. Right 

before sending the classification results, audio is saved locally using predicted label and time 

as filename to ensure uniqueness. After creating a result dictionary that will be sent over 

LoRa, a lightweight asynchronous process is started in the background for sending the 

results over LoRa. The process will finish at its own pace without blocking audio collection 

and model inference processes. 

 

 
Figure 4.2 Classification Handler in Edge Framework 

Looking at Figure 4.3, the asynchronous send LoRa message function starts off by converting 

the results dictionary into JSON and then further into binary. It then creates metadata 

required by LoRa to send to the correct node at the ヴight fヴeケueﾐI┞. Gate┘a┞’s addヴess 
being 0 and its own address being 100, the function specifies the high and low 8-bit address 

for both addresses, as well as the offset frequency. Alongside with metadata, the results in 

binary representation will be sent as LoRa message using the sx126x library provided by the 

manufacturer (Waveshare, 2020). 

 



 
Figure 4.3 Send LoRa Message Function in Edge Framework 

We also guarantee a safe exit ┘heﾐ useヴ does aﾐ iﾐteヴヴupt usiﾐg さCTRL + Cざ IoﾏHiﾐatioﾐ. To 
make sure that no processes are left in the background after the exit, the model and all 

spawned processes that send LoRa messages are stopped before terminating the session. 

 

 
Figure 4.4 Exit Handler in Edge Framework 

In terms of the initialisation, it has been decided to execute the framework as Python file 

during boot up. The Python script execution is added to the bashrc file which will start 

running the script on every shell initialisatioﾐ. RaspHeヴヴ┞ Pi’s Ioﾐfiguヴatioﾐ is also alteヴed to 
run a shell session on start-up, which will in turn start the framework. 

 

As for the Arduino edge framework, the framework relies on the Arduino compiled model 

file that is exported from Edge Impulse. The model exported will be EON Compiled 

(Jongboom, 2020), optimising the model by compiling the model to C++ source code, 

resulting in up to 55% less RAM and 35% less ROM usage whilst having the same model 

accuracy. As with any Arduino library, everything including inference task and buffers are 

initialised within the setup block, as well as starting the audio sampling process. Then as 



could be seen on Figure 4.5, within the loop block a buffer with audio is collected, which is 

inferenced using the model and results are printed, whilst ensuring that tasks are ready to 

run and errors are handled appropriately. Inference process is run in parallel to audio 

collection process, both being run as separate threads ensuring that sound is still being 

collected during the inference. The iﾐfeヴeﾐIe pヴoIess Ialls さヴuﾐ_Ilassifieヴ_Ioﾐtiﾐuousざ 
fuﾐItioﾐ fヴoﾏ Edge Iﾏpulse’s C++ SDK (Edge Impulse, 2021) to extract features and do the 

inference, passing on audio slices to it. The function has its own time sequential FIFO (First 

In First Out) buffer which is filled with audio slices. After each iteration the oldest audio slice 

is removed from the buffer and new one is inserted at the beginning, resulting in audio slice 

being inferenced multiple times improving the accuracy. This introduces moving average 

filter, filtering out false positives. 

 

 
Figure 4.5 Loop Block in Edge Framework 

Within this framework, the audio collection is done manually. Two buffers are going to be 

used to store audio data, one is used by the inference process to extract features and run 

inference on, and another one used by audio sampling process for filling the buffer with 

new audio data. Both buffers will be switched between. When the sampling buffer becomes 



full of audio slices, the process will pass full buffer to the inference process and then will 

clear and fill up the old buffer with new audio. This can be seen on Figure 4.6, when buffer 

becomes full after enough of audio collection, the buffers are switched by 

さiﾐfeヴeﾐIe.Huf_seleItざ and marks the old buffer as ready to inference by 

さiﾐfeヴeﾐIe.Huf_ヴead┞ざ. 
 

 
Figure 4.6 Function to switch buffers in Edge Framework 

Afterwards, the inference process selects that full of audio buffer before doing the 

inference, this could be seen on Figure 4.7. 

 
Figure 4.7 Select Inference Buffer Function in Edge Framework 

There has been some difficulty at sending results over LoRa using LoRa transceiver on 

Arduino edge framework. The manufacturer of LoRa transceiver does provide a library to 

send LoRa messages, however it does not support the chosen Arduino device. As well, there 

are a few general use libraries that supports common data radio protocols including LoRa on 

a range of microprocessors. However, because of Nano 33 BLE Sense being relatively new 

device with a completely different approach to other Arduino boards using Mbed OS, 

neither of libraries work on the device. Due to time constraints, it has been decided to drop 

the ability to send LoRa messages on Arduino edge framework for the time being. 

 

4.2.2 Gateway Framework 

Gateway framework has a few interesting implementations. Firstly, listen to results function 

(can be seen on Figure 4.8) which is used to listen to LoRa messages. The function starts off 

by initialising LoRa transceiver at 433 MHz and address 0 using the same sx126x library, 

meaning that it will only read messages sent at that frequency and to that address. Next, in 



the infinite while loop, the framework will continuously listen to LoRa messages and on 

receiving, it will decode the message from binary to utf-8 format and insert it into the 

database. The function also handles exceptions by ignoring broken messages received from 

the edge device, which could have happened due to packet loss or for any other reasons. 

 

 
Figure 4.8 Listen to results Function in Gateway Framework 

As for the rest of the functions, they all use SQL to manipulate data in the database. As an 

example, さe┝poヴt/1ざ fuﾐItioﾐ that e┝poヴts data ┘ithiﾐ the dataHase iﾐto C“V file (can be 

seen on Figure 4.9), it first creates a database connection and then selects all data from the 

table using a cursor. After the function is done working with data, it closes the connection 

with the database. 

 

 
Figure 4.9 Export Function in Gateway Framework 



In terms of the initialisation, it works the same as edge framework for Raspberry Pi, 

executing the framework as Python script during boot up, calling fヴaﾏe┘oヴk’s listeﾐ to 
results function. 

 

4.2.3 Microsoft Framework 

For this framework, two external files are required to run the framework which are the 

feature model that extracts features and SVM classifier that performs the classifications, 

both ﾐeed to He e┝poヴted fヴoﾏ the MiIヴosoft’s aIoustiI ヴepositoヴ┞. As the framework is for 

evaluation purposes, the tasks will be run synchronously meaning it will not start inference 

whilst recording audio. For audio recording part of the framework, a wav file is created or 

overwritten with the captured audio. The feature extraction function as seen on Figure 4.10, 

then reads the audio file and splits the audio in two second clips. After, the framework pads 

clips that are less than 2 seconds with zeros, making sure that model gets features with the 

correct dimensions. Lastly, for each clip Mel-frequency spectrograms are generated which 

are then returned as features by the function. 

 

 
Figure 4.10 Feature Extraction Function in Microsoft Framework 

The features are then passed to the inference function (is shown on Figure 4.11), which first 

normalizes input to be in line with what the pre-trained model expects by scaling the 

features and dropping the final frequency bin. Afterwards, feature model and SVM classifier 

are loaded and utilised to return classifications results, the former being used to decompose 

audio spectrograms into feature vector and the latter being used to carry out the inference. 



 
Figure 4.11 Inference Function in Microsoft Framework 

4.3 Training Machine Learning Model 

Edge Impulse development platform was used to develop and train the machine learning 

model. For data collection, Xeno-Canto was used to accumulate bird samples and BBC 

Sound Effects was used to collect environment sounds. For the model we chose to have only 

one target bird called Araripe Manakin, this is because the project aims to demonstrate 

proof-of-concept model that can be trained further if required. Araripe Manakin is one of 

the rarest birds in the world found in Brazil, with only a handful of audio samples available. 

Due to taヴget Hiヴd’s soﾐg aﾐd call duration being slightly longer than a second, the two 

second window size for the model was chosen. 

 

The training procedure in Edge Impulse consisted of first importing all of the audio samples 

into the repository. Then, split and crop tools provided by Edge Impulse were used to split 

the imported audio into two second samples. Afterwards, we generated features for all 

collected audio, right before which the audio was up or down sampled to the chosen audio 

frequency. After feature generation, we trained the model and viewed results. Before next 

training iteration, we changed ﾏodel’s h┞peヴpaヴaﾏeteヴs to tヴ┞ to iﾏpヴo┗e ﾏodel’s 
performance. 

 

The very first dataset for the model consisted of two classes. First, さararipe_manakinざ which 

contained the whole 6 minutes of all Hiヴd’s souﾐd saﾏples available on Xeno-Canto. The 

second class called さ_noiseざ which consisted of 6 minutes of random environment sounds 

found in the wild; 1 minute of stream/waterfall, 2 minutes of forest, 1 minute of wind, 1 

minute of village and 1 minute of people talking. In terms of input parameters, the highest 

audio frequency 44100 Hz was chosen to ensure that no audio would be down sampled and 

lose quality before feature extraction. For feature extraction, MFE was selected just for the 

first iteration. As for the model, 1D Convolutional Neural Network model was chosen due to 

having small number of classes within the dataset and to start off with the simplest model 

as possible. The training results returned 100% accuracy with 0 loss, which is a clear 



indication of overfitting. On deploying and testing in real world, model could not distinguish 

any birds from Araripe Manakin, classifying all birds as the target class. 

 

The ﾐe┝t iteヴatioﾐ iﾐtヴoduIed a ﾐe┘ Ilass to the dataset Ialled さ_uﾐkﾐo┘ﾐざ ┘hiIh included 

6 minutes of many random birds singing together. However, that still resulted in the same 

performance and was classifying silence as the Araripe Manakin class. The model was 

overfitting this time due to the issue within the dataset, the unknown and sound classes 

were busy and had sounds playing constantly, whereas the target class had a lot of breaks 

with silence. 

 

For the next iteration, it was decided to increase the dataset by 50% and add more varied 

and quieter data to the unknown and noise classes. For the noise class, 2 minutes of silence 

and static noises were collected from BBC Sound Effects and additional 1 minute of random 

crackles and bangs sounds were collected manually. For unknown class, six random birds 

were selected that made calls and songs on their own just like in Araripe Manakin class, 

these were; Boat-tailed Grackle, Mute Swan, Song Sparrow, Tricolored Heron, Common 

Blackbird and Ocellated Crake, each 30 seconds long. Due to limited available data for 

Araripe Manakin class, we had to perform oversampling to ensure the dataset is kept 

balanced. Using random oversampling technique, we duplicated half of the Araripe Manakin 

class. The training performance dropped to 95.7% and 0.33 loss which had less signs of 

overfitting. 

 

For the next few iterations, we have experimented with feature extraction methods, 

changing between MFE, Spectrogram and MFCC. MFCC performed best, with training 

performance being slightly lower 93% accuracy but with a way better loss 0.18. As well, 

visually features were a lot more separated when plotting them on a 3D graph, making it 

easier for the model to classify audio. 

 

The next iteration experimented with input audio frequency. We chose to change the 

frequency down to 16000 Hz because most bird sounds have frequency ranges between 

1000 Hz and 8000 Hz (All About Birds, 2009) and considering Nyquist-Shannon sampling 

theorem, 16000 Hz should be just enough to capture all relative data in the audio sample. 

This has ﾐot Ihaﾐged ﾏodel’s training performance; however, it has simplified feature 

extraction process making it faster and cheaper to compute features. 

 

The oﾐe afteヴ iteヴatioﾐ aiﾏed to iﾏpヴo┗e ﾏodel’s geﾐeヴalisatioﾐ peヴfoヴﾏaﾐIe. The 

previously duplicated 3 minutes of Araripe Manakin audio samples were replaced by 

randomly augmented data. Once again, 50% of data from original Araripe Manakin class 

were randomly duplicated and then augmented with one of the following techniques 

randomly selected; change pitch by 1 step higher/lower, change speed by 0.2 faster/slower, 

inject static background noise with 0.001 noise factor or shift time forward/backward by a 

maximum of 0.2 seconds. For time shift and speed change, data is zero padded to ensure 

the length of the sample stays the same. This has increased the performance of the model 

drastically to 97.7% accuracy and 0.09 loss. 

 

 



For the last lot of iterations, we were experimenting with changing hyperparameters to see 

┘hat ┘ould iﾐIヴease ﾏodel’s peヴfoヴﾏaﾐIe. This iﾐIluded Ihaﾐgiﾐg to ヲD Coﾐ┗olutioﾐal 
Neural Network, applying various data augmentation techniques provided by Edge Impulse 

such as masking random blocks from the frequency axis, modifying number of epochs and 

changing learning rate. Oﾐl┞ oﾐe h┞peヴpaヴaﾏeteヴ ┘as aHle to iﾏpヴo┗e ﾏodel’s 
performance, which was low masking of random blocks from the time axis. Model’s tヴaiﾐiﾐg 
performance has changed to a lower loss of 0.06 and the accuracy stayed the same. 

 

The final version of model’s pヴopeヴties Iaﾐ He seeﾐ oﾐ Figure 4.12 aﾐd ﾏodel’s ﾐeuヴal 
network settings on Figure 4.13. Then the Figure 4.14 shows how ﾏodel’s MFCC features 

generated from training dataset are visually separated when plotted on a 3D graph. As well, 

Figure 4.15 shows ﾏodel’s Ioﾐfusioﾐ matrix that was done on validation set, with overall 

training performance of 97.7% accuracy and 0.06 loss. Lastly, Figure 4.16 shows the whole 

dataset for the final version of the model that can be previewed using audio sample palette 

on Figure 4.17. 

 

Property Value 

Window Size 2000 ms 

Window Increase 500 ms 

Frequency 16000 Hz 

Feature Extraction Block MFCC 

Learning Block Classification Keras 

Output Features _noise, _unknown and araripe_manakin 

Dataset Split (Training:Validation:Test) 60:20:20 
Figure 4.12 Machine Learning Model's Properties Overview 

Property Value 

Number of Training Cycles 100 

Learning Rate 0.005 

Further Data Augmentation Techniques Mask time bands (low) 

Neural Network Architecture 1D Convolutional 
Figure 4.13 Machine Learning Model's Neural Network Settings 



 
Figure 4.14 Machine Learning Model's MFCC features plotted on 3D Visual Graph 

 _noise _unknown araripe_manakin 

_noise 97.8% 2.2% 0% 

_unknown 0% 97.4% 2.6% 

araripe_manakin 0% 2.2% 97.8% 

F1 Score 0.99 0.96 0.98 
Figure 4.15 Machine Learning Model's Confusion Matrix (validation set) 

 
Figure 4.16 Machine Learning Model's Dataset 



Class Sound Sample Audio 

araripe_manakin Raw Araripe Manakin  
araripe_manakin Augmented Araripe Manakin (speed changed) 

 
_noise Random crackle/bang 

 
_noise Stream/waterfall 

 
_noise Forest 

 
_noise Wind 

 
_noise Village 

 
_noise People Talking 

 
_noise Silence and static noise 

 
_unknown Many random birds singing together 

 
_unknown Boat-tailed Grackle 

 
_unknown Mute Swan 

 
_unknown Song Sparrow 

 
_unknown Tricolored Heron 

 
_unknown Common Blackbird 

 
_unknown Ocellated Crake 

 
Figure 4.17 Audio Sample Palette of Machine Learning Model's Dataset 

4.4 Designing 3D Case Solutions 

We used Fusion 360 (Autodesk, 2013) a 3D modelling platform to create all of the designs. 

Before creating case models, it was required to prototype all the physical hardware that will 

be going inside the case as CAD models. CAD models for Raspberry Pi and Arduino devices 

have been retrieved from GrabCAD. However, for the rest of the hardware we were not able 

to find both 3D CAD models and blueprints, having to produce physical hardware as CAD 

models. We used a ruler to measure the dimensions of hardware which were then used in 

CAD software to create 3D models. Afterwards, all models were assembled within Fusion 

360 as they would be in real life and then both Raspberry Pi and Arduino case solutions 

were created around them (see Appendix B – 3D Case Solution for Raspberry Pi and 

Appendix C – 3D Case Solution for Arduino). 

 

Throughout the whole case development, most of the good principles outlined by Hubs 

(Wall, 2021) were followed, these include; a minimum 2mm wall thickness to ensure the 

wall does not break due to being too thin, adding fillets to corners to help reduce stress at 

corners, having 0.5mm component clearance around all of the internal hardware to 

compensate for printer tolerances, uniform wall thickness as good design practice, 2mm 

port clearance to ensure cables fit through the opening and lastly subtracting 0.25mm from 

the screw hole diameter to allow the screw to make its own thread during installation. 

 

 

 

 

 

 

https://drive.google.com/file/d/1jtuAqlVm6tXPDiVXfDs3n3Rcr6lDw3Kx/view?usp=sharing
https://drive.google.com/file/d/1JM573T2c9_eW6RzlF60OwfvfZzNAvwKu/view?usp=sharing
https://drive.google.com/file/d/1mRSzkehBJR9YdjLIq7NqfQgi70EalUCW/view?usp=sharing
https://drive.google.com/file/d/108cnXe0ixC1m1eKDxqXlLppO2AtNAabH/view?usp=sharing
https://drive.google.com/file/d/1tN9U8hF4zEYXrWBxs0v37w_piGOyrvI0/view?usp=sharing
https://drive.google.com/file/d/1XyFKFEe99bLKuLGmLBEaNPq_SbmE_jZJ/view?usp=sharing
https://drive.google.com/file/d/1WLke6Cea1kMdVutwvHk-f-kEodneLCe9/view?usp=sharing
https://drive.google.com/file/d/1Pad2HMLE_oMacJ-3vb-JJPN3GZqTY0Q2/view?usp=sharing
https://drive.google.com/file/d/1npoUT4-FEMWe4d0WCuuIkzYFAL40nJ5M/view?usp=sharing
https://drive.google.com/file/d/1GiSND4RxXCD-DOWcRrXOv3XqirKiIEPs/view?usp=sharing
https://drive.google.com/file/d/1B83sKKuFJq6HEjdQAtfabZR-HFaRm6EW/view?usp=sharing
https://drive.google.com/file/d/1pOTBd8pUOh40DwUdMZ3rD3LEBdZ60oju/view?usp=sharing
https://drive.google.com/file/d/10in7gF8xLW_hUkqn62KuSiag9gk9XUwv/view?usp=sharing
https://drive.google.com/file/d/1dsmYUDuDD5L2rdFlkEwzXX5XhJwhqgr4/view?usp=sharing
https://drive.google.com/file/d/10Xzfqz7qQ3_qBTuAFmztC05jEdekAjOQ/view?usp=sharing
https://drive.google.com/file/d/1FrlRZKOtzlz7xr-14dmpo0HqNhUcD0bO/view?usp=sharing


5 Results and Evaluation 
This section covers aﾐ e┗aluatioﾐ of the s┞steﾏs Iヴeated to aIhie┗e the outliﾐed pヴojeIt’s 
goals. Before carrying out any evaluation, a well-defined evaluation plan was created that 

included information about what will be captured and how the evaluation will be done. 

 

5.1 Model Evaluation using metrics 

Iﾐ this seItioﾐ, the pヴojeIt’s de┗eloped ﾏodel is compared to the MiIヴosoft’s oﾐe usiﾐg 
purely metrics. As both models have been trained with balanced datasets, the following 

metrics were captured to evaluate the models; accuracy, precision, recall and F1 score. To 

obtain metrics, both models were evaluated against test data which consisted of 20% of 

unseen data from the dataset. The results showed that the overall accuracy of the 

MiIヴosoft’s ﾏodel rounded up to the nearest whole percentage is 96% compared to the 

fiﾐal ┞eaヴ pヴojeIt’s ﾏodel 97% being slightly ahead. This implies that both models are really 

good at identifying patterns in test data. Microsoft’s ﾏodel can only classify two classes 

being araripe_manakin and everything else, therefore the latter class will be compared to 

final year project’s ﾏodel’s both _noise and _unknown classes when comparing confusion 

matrices of both models because both classes also capture all of the noises outside of the 

target bird. 

 

As could be seen on Figure 5.1, the final year project’s ﾏodel’s precision for target class is 

Hetteヴ H┞ ヰ.ヰヵ, ﾏeaﾐiﾐg that it Iaptuヴes less false positi┗es thaﾐ the MiIヴosoft’s ﾏodel, 
capturing more relevant Araripe Manakins than irrelevant sounds. In terms of non-target 

classifications, the precision is pretty much the same for both models being around 0.97, 

having the same number of false positives. Foヴ ヴeIall, MiIヴosoft’s ﾏodel has IoﾐsideヴaHl┞ 
lower score for target class than the final year pヴojeIt’s ﾏodel, less by 0.07. This implies that 

MiIヴosoft’s ﾏodel classifies more false negatives for the target class, capturing less of actual 

Araripe Manakins. For non-target classes, final year project captures all of the true positives 

from _noise class and only 0.93 for _unknown class, however roughly on average having the 

saﾏe ヰ.9Α ヴeIall sIoヴe as the MiIヴosoft’s ﾏodel. Having combined both previous metrics 

using F1 Score, final year pヴojeIt’s ﾏodel outpeヴfoヴﾏs the MiIヴosoft’s ﾏodel oﾐ taヴget Ilass 
by 0.06, capturing the target class more accurately and precisely. As for the non-target class, 

on average final year pヴojeIt’s ﾏodel has slightl┞ less sIoヴe H┞ ヰ.ヰヰヵ ┘hiIh is not significant, 

having about the same performance as the Microsoft’s model. 

 

In conclusion, on paper final year project’ model has a better performance than the 

Microsoft’s model in both capturing less false negatives and false positives for the target 

class. As for the identifying non-target sounds, both models perform nearly identical. 

 

Model _noise Precision _unknown Precision araripe_manakin 

Precision 

Microsoft’s Model 0.97 0.97 0.91 

Final Year Project’s 

Model 

0.95 1 0.96 

Figure 5.1 Precision Metric of Microsoft's and Final Year Project's Model 

 



Model _noise Recall _unknown Recall araripe_manakin 

Recall 

Microsoft’s Model 0.97 0.97 0.91 

Final Year Project’s 

Model 

1 0.93 0.98 

Figure 5.2 Recall Metric of Microsoft's and Final Year Project's Model 

Model _noise F1 Score _unknown F1 Score araripe_manakin F1 

Score 

Microsoft’s Model 0.97 0.97 0.91 

Final Year Project’s 

Model 

0.97 0.96 0.97 

Figure 5.3 F1 Score Metric of Microsoft's and Final Year Project's Model 

5.2 Model Evaluation in real world 

In this section, both final year project’s model and Microsoft’s model are compared to each 

other after running them in real world, seeing how they perform under realistic 

circumstances. Both models were run on two different architectures Raspberry Pi and 

Arduino with the exception of Microsoft’s Model running on Arduino due to the absence of 

suppoヴt foヴ P┞thoﾐ’s “VM Ilassifieヴ ﾏodule iﾐ C++ ┘hiIh is used H┞ the ﾏodel. This was 

done to see if the performance changes depending on the hardware and the framework. 

Two different evaluations were carried out, which were doﾐe ﾏaﾐuall┞ ┘ith ﾏoHile phoﾐe’s 
speakers used as source of audio. These tests were subjected to various environments and 

conditions, simulating the real habitat. 

 

5.2.1 False Negative Test 

For this evaluation, models were tested to see how well they classify target class in different 

conditions. The test involved playing five different sounds of the target class for each 

condition variation and measuring how many times did the model classify the bird correctly, 

with confidence threshold of 0.8. 

 

There were four different test categories for the controlled environment per architecture 

and model combination where tests were carried out in a silent room. These tests involved 

background noise being played using mobile phone device, to see how well the model can 

classify target sounds whilst having various noises playing at the same time in the 

background. For each test category, four tests with the same background noise playing at 70 

dB volume were carried out, playing the target sound starting at 70 dB all the way down to 

40 dB, both sounds being played at constant 1 metre distance away from the device running 

the model. The results showed that Microsoft’s model could classify target sound 0.75 times 

on average for tests with people talking sound as the background noise. Comparing to a lot 

higher 3.25 times on average for final year project’s model running on Raspberry Pi and 2 

times on average when running on Arduino. For tests with water stream in the background, 

once again Microsoft’s model’s 0.75 average was a lot lower than final year project’s 

ﾏodel’s ヲ.ヵ tiﾏes oﾐ RaspHeヴヴ┞ Pi aﾐd ヱ.Αヵ times on Arduino. For tests with wind whistling 

as background noise, both models performed really well at all ranges of target volume, 

Microsoft’s ﾏodel’s 3.75 average compared to final year project’s ﾏodel’s slightl┞ higheヴ ヴ.ヵ 
average on Raspberry Pi and slightly lower 3 average on Arduino. This happened most likely 

because of background sound being much quieter than previous ones, being able to hear 



the target sound over it much easily. Lastly, tests with many random birds singing as the 

background noise, Microsoft’s model did not perform that well with 2.3 times on average 

compared to final year project’s ﾏodel’s ン.ヵ tiﾏes oﾐ RaspHeヴヴ┞ Pi aﾐd ヲ.ヵ tiﾏes oﾐ 
Arduino. 

 

For the tests carried out in the wild environment which was done in one of the forests North 

of Cardiff, tests were only subjected to the natural habitat noise with no additional 

background noise added. Five different tests were carried out per platform and model, with 

target sound being played at consistent 50 dB volume and distance ranging from 1 to 20 

metres. The results revealed that up to 15 metres, both models performed very well, final 

year project’s model running on Raspberry Pi classifying every sound and when running on 

Arduino classifying 80% of sounds compared to Microsoft’s model classifying 87% of sounds. 

Then between 15 and 20 metres, performance of final year project’s model running on 

Raspberry Pi dropped to 50% and running on Arduino down to 20% compared to 40% for 

Microsoft’s model. 

 

In conclusion, final year project’s model running on Raspberry Pi had the best performance 

out of all in both types of tests, considerably outperforming Microsoft’s model and having 

an upper edge over the same model being ran on Arduino. Microsoft’s model comparing to 

final year project’s model running on Arduino, on average performed worse in controlled 

environment tests but performed better in the wild environment. The reason for final year 

project’s ﾏodel’s peヴfoヴﾏaﾐIe oﾐ Aヴduiﾐo is due to the appヴoaIh of the fヴaﾏe┘oヴk. The 
framework filters out true positives with the implemented moving average filter, which was 

supposed to help filter out false positives. On choosing which architecture should the final 

year project’s model be run on, choosing Arduino when requiring to classify birds within 

short distance is fine as the difference between Raspberry Pi architecture is not that 

significant. However, if accuracy of identifying true positives is of high importance or if 

classifying birds on longer distances is required, then Raspberry Pi architecture should be 

chosen. 

 

5.2.2 False Positive Test 

For this evaluation, models were tested against all kinds of sounds not including the target 

class sounds, to see if the model classifies them incorrectly as target. The test played five 

different variations of the sound, measuring how many times did the model classify them 

incorrectly as target class with the same 0.8 confidence threshold. All of the sounds were 

evaluated under the same conditions of being in controlled environment with sound being 

played 1 metre away from the device and at the volume of 60 dB. 

 

Two different categories of sounds were played during this evaluation. The first one includes 

sounds that can be found in the habitat but do not include sounds of birds, they are: people 

having conversations, environmental sounds (water stream, wind and forest) and random 

mammal animal sounds. The second category of sounds includes sounds of specific birds. 

The category has sounds of three randomly picked birds which are Ivory-billed 

Woodcreeper, Olivaceous Saltator and Prairie Warbler. The category also includes Helmeted 

Manakin which is a bird from the same family and another bird called Caroline Wren which 

has similar pitch and call to the targeted bird, to see how models perform on similarly 

sounding birds. 



The results for this evaluation showed that both models performed very well on non-bird 

sounds from the former class, not classifying any as the target sound apart from the final 

year project’s model running on Arduino classified random mammal animal sound once as 

the target. For the randomly selected birds, the final year project’s model running on both 

architectures classified birds as target class 2.3 times on average compared to 1 for 

Microsoft’s Model, more than twice less accurate at filtering out random birds. When it 

came down to birds with similar sounds, both models could not differentiate the bird from 

the same family due to having a nearly identical call to the target. For the bird with similar 

pitch and call, final year project’s model was twice more accurate than Microsoft’s model, 

identifying incorrectly twice on both platforms compared to four times for the latter model. 

 

In conclusion, both models performed well on not identifying random sounds as the target 

bird. Microsoft’s model performs best with random birds, whereas final year project’s 
model performs best with similar sounding birds. The reason for Microsoft’s ﾏodel’s 
performance most likely lies within the approach, being very good at identifying non-target 

sounds due to being far apart in the vector space of SVM, but not so good on similar 

sounding audios due to them being close to the target in space. For the final year project’s 

model, it performs nearly identical on both Raspberry Pi and Arduino platforms, so neither 

of the frameworks affected ﾏodel’s performance on identifying non-target sounds 

incorrectly. This proves that the moving average filter technique used by edge framework 

for Arduino has not worked as intended, having the same performance on filtering out false 

positives as edge framework for Raspberry Pi that does not use such technique. 

 

5.3 Architecture Evaluation 

In this evaluation, the final year project’s model was evaluated running on both Raspberry Pi 

and Arduino architectures, to see which architecture has better performance and efficiency. 

When measuring ﾏodel’s performance on the device, Edge Iﾏpulse’s pヴo┗ided さOﾐ-device 

peヴfoヴﾏaﾐIeざ estiﾏates were used which were further confirmed by manually running the 

model on both architectures and taking an average over 10 classifications. For measuring 

energy and RAM usage, PowerTOP (Ven, 2010) diagnostic tool was used on Raspberry Pi. 

However, due to lack of Arduino libraries that measure power consumption, Aヴduiﾐo’s 
official datasheet for Arduino Nano 33 BLE Sense (Arduino, 2021) was used to calculate 

estimates. 

 

In terms of efficiency, as could be seen on Figure 5.4 Raspberry Pi has 50% less battery 

capacity and significantly more energy usage than the Arduino architecture. This makes the 

opeヴatiﾐg tiﾏe of RaspHeヴヴ┞ Pi to oﾐl┞ ン houヴs Ioﾏpaヴed to Aヴduiﾐo’s ﾐeaヴl┞ ヱヰ da┞s. This 

makes the Arduino architecture way more practical for long term deployments, being able 

to deploy the device for longer amount of time. Raspberry Pi in comparison will have a lot 

more downtimes due to the need for frequent recharging, during which missing potential 

classifications. 

 

Platform Battery 

Capacity 

Energy Usage Operating Time 

Raspberry Pi 3000 mAh 967 mA 3 hours and 6 min 

Arduino 4500 mAh 19 mA 236 hours and 50 min 
Figure 5.4 Energy Metrics of Raspberry Pi and Arduino Architectures 



As for the performance, model running on Arduino architecture in total takes 24 times 

longer classifying sounds than model running on Raspberry Pi, most of the time taken 

extracting features. Ho┘e┗eヴ, Aヴduiﾐo’s RAM usage is IoﾐsideヴaHl┞ lo┘eヴ Heiﾐg ヲヶ KB 
Ioﾏpaヴed to RaspHeヴヴ┞ Pi’s ンヰヴ MB. This implies that Raspberry Pi has way better 

performance than Arduino architecture even through it uses more resources, which explains 

the bad energy efficiency. Raspberry Pi is substantially quicker at classifying than Arduino, 

allowing for results being received faster. As well, this means that Raspberry Pi architecture 

is more scalable compared to Arduino, allowing for more complex models to be deployed 

with greater amount of target classes. 

 

Platform Processing time 

for feature 

extraction 

Processing time 

for inference 

Total 

processing time 

RAM usage 

average 

Raspberry Pi 8 ms 1 ms 9 ms 304 MB 

Arduino 206 ms 10 ms 216 ms 26 KB 
Figure 5.5 Performance Metrics of Raspberry Pi and Arduino Architectures 

In conclusion, each architecture has its own advantages and disadvantages that need to be 

considered when choosing which architecture to deploy. For long term deployments, 

Arduino architecture is the one to choose due to its long operating time. If performance is a 

concern, deploying a new version of the model with more target classes and higher 

complexity, then Raspberry Pi architecture should be chosen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 Future Work 
Within this section, we talk about what can be done next that would improve the project 

and solve any of the previously outlined issues. 

 

6.1 Exhaustive Evaluation of Model Performance 

The evaluation of both models was not fully exhaustive especially the real-world tests and 

quite likely did ﾐot gi┗e a full piItuヴe of the ﾏodels’ peヴfoヴﾏaﾐIes. Therefore, it is 

recommended to perform more exhaustive tests of both models running on both 

architectures, this time including Microsoft’s model running on Arduino by finding a way to 

import SVM library over to C++. The test should include more conditions and combinations 

of these conditions that would be more representative of the environment within the real 

habitat. As well, both models should be evaluated within the actual habitat where the target 

birds can be found, testing the models against real birds in real environments. This will 

solidify the findings by having a more accurate evaluation of models against real data, as 

this is what the model will be working against when it will be deployed in the future. 

 

To take the evaluation further, tests can be automated through a list of exhaustive unit 

tests. A range of conditions can be collected as audio samples which can be then combined 

with samples of target birds, that would pass the model through different environments and 

see how it performs. This way, evaluation will be done a lot faster and will require less of 

manual work. 

 

6.2 Arduino Library for LoRa Transceiver 

As outlined previously by the implementation section, there were difficulties finding a 

library for Arduino Nano 33 BLE Sense that would be able to send radio messages using LoRa 

transceiver. Due to this difficulty, the project currently does not send Arduino edge device’s 

results over to the gateway device. It is encouraged to write a specialised library from 

scratch or fork and adapt one of the libraries out there such as RadioHead (Crespo, 2018) for 

Arduino Nano 33 BLE Sense to enable usage of LoRa transceiver for sending classification 

results over to the gateway device. An alternative to this would be finding another Arduino 

device that is capable of running machine learning model and that already has support for 

using LoRa transceiver by one of the libraries online. However, this would then require 

rewriting edge framework for Arduino and modifying 3D case design, to support then new 

Arduino device. 

 

6.3 Power Optimise Raspberry Pi Edge Architecture 

The biggest issue with Raspberry Pi edge architecture currently is that it uses a lot of power 

to run the framework, having a very small operating time compared to Arduino architecture. 

Currently, the Raspberry Pi boots up into normal mode with GUI present, using that extra 

energy to load the graphics when it is not required to. This could be avoided by running the 

device in the headless mode, which would load only terminal and disable GUI access to the 

device. 

 

Additionally, according to article on blues wireless (Lauer, 2021), power can be saved by 

disabling Wi-Fi and Bluetooth interfaces as they will not be used by the edge framework, 

saving up to 40 mA. Furthermore, all onboard LEDs can be disabled which will not be seen 



by anyone after the deployment, that could save around 10 mA. As well, a few mA can be 

sa┗ed H┞ uﾐdeヴIloIkiﾐg RaspHeヴヴ┞ Pi’s CPU. As with the current model, the device utilises 

only 19.6% of the CPU on average, so slowing down the CPU ﾏight ﾐot ヴeduIe ﾏodel’s 
performance on the device. However, this should be evaluated and tested before deploying 

the architecture. 

 

Reviewing all of the running processes during bootup could also help with power 

consumption by finding irrelevant background processes that are not used by the 

framework during deployment. Another way to increase operating time on remote 

deployments is by introducing supplemental power. A small solar panel such as PiJuice Solar 

(Pi Supply, 2020) can be added on top of the Raspberry Pi as a HAT that would extend 

battery life of the edge architecture. However, this would then require revising the case for 

Raspberry Pi as it will need another waterproof opening for the solar panel. 

 

6.4 Send Audio over LoRa 

As was mentioned previously, it was not possible to send audio from edge framework over 

to the gateway using LoRa due to the maximum LoRa message size of 256 bytes. Measuring 

the size of the 2 second raw audio returned by the model, the average size of the audio is 

110 kilobytes which is considerably larger than the LoRa’s ﾏa┝iﾏuﾏ ﾏessage size. To send 

audio over LoRa, the audio can be split up into smaller segments and sent in multiple goes. 

This could work by having a queue on edge framework which would be filled with audio and 

results when there is a new classification. When there is something in the queue, a process 

could be spawned which would work parallelly to the inference and data collection process, 

that sends the classification results with the first LoRa message as done currently. Then for 

the audio, the process could start off with a simple handshake to ensure that the gateway 

device is turned on and is ready to listen. The handshake would work by having edge device 

calculate how big the audio is and how many parts the audio is split into, which would send 

that information to the gateway device, waiting for the confirmation response. After 

receiving confirmation from the gateway device, the edge device would sequentially send 

the audio in parts of 256 bytes, until the full audio is sent. The gateway framework would 

then re-assemble the audio and save locally. To combat packet loss, TCP’s fast ヴetヴaﾐsﾏit 
(Medhi & Ramasamy, 2018) technique could be used, which introduces acknowledge 

mechanism to the receiver (i.e. gateway device) used on each received packet. Each packet 

will be numbered and on receiving out of order packet, the receiver will send the 

acknowledgment for the last packet it has successfully received once again. The sender (i.e. 

edge device) would get a duplicate acknowledgement and would know to send the lost 

packets again. This feature could be implemented to both architectures, so there will be no 

need for retrieving edge devices to extract audio stored on them. 

 

6.5 Integration with Helium Network 

Currently, the project is limited by the LoRa’s ヴaﾐge, allowing for edge devices to be 

deployed only within 10 miles of the gateway device. This can be improved by integrating 

with Helium network (Helium, 2022) which provides secure, robust and affordable network 

powered by the Helium blockchain. Helium network is made up of devices called hotspots 

which can be purchased by anyone and installed anywhere. Hotspots relay data over long 

distances using the same LoRa protocol. Helium hotspot providers get rewarded by the 

users of the network in cryptocurrency called HNT and are constantly verified with Proof of 



Coverage consensus (Helium, 2022) to ensure the validity of the nodes. The project can use 

Helium network to relay edge de┗iIes’ LoRa messages over to the gateway device, allowing 

to be deployed over longer distances without previously mentioned restrictions. The 

integration will also require additional funding to pay for the network usage, paying for each 

relayed message. However, before integrating with the network, an analysis must be made 

to ensure that Helium network is physically present within the deployment location, 

otherwise the network will not be able to receive the messages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 Conclusions 
The project’s ﾏodel o┗eヴall has Heeﾐ very successful, being able to confidently classify 

target birds within real world environments. Model’s peヴfoヴﾏaﾐIe oﾐ Hoth aヴIhiteItuヴes is 

as good or better than an already existent Microsoft’s model which is currently used for bird 

conservations. On paper, final year pヴojeIt’s ﾏodel aIhie┗es the saﾏe aIIuヴaI┞ as the 
Microsoft’s model and has a better F1 score, outperforming the competition at both 

detecting less of irrelevant data and capturing more of the real data. In practice, it has been 

discovered that actually the final year pヴojeIt’s model captures more false positives than the 

Microsoft’s model. However, it is at the trade of having a lot less false negatives, being able 

to detect birds in noisy environments and differentiate similar sounding birds better than 

the Microsoft’s model. Coﾏpaヴiﾐg fiﾐal ┞eaヴ pヴojeIt’s model running on both architectures, 

Raspberry Pi proved to have a better performance over Arduino in all kinds of tests. Model 

running on Raspberry Pi was able to capture more of actual bird sounds than model running 

on Arduino device. As well, Raspberry Pi performed equal to Arduino in terms of filtering out 

false positives, which Arduino was supposed to have an upper edge on. Overall, the final 

┞eaヴ pヴojeIt’s model is ready to be retrained for other types of birds if needed and then 

deployed to see how it performs against real data. 

 

As for the frameworks, the project has not achieved all of the outlined aims. The edge 

framework for Arduino was not able to transmit results over the wireless network due to 

difficulties with the hardware, making it not ready for deployment. Although, the edge 

framework for Raspberry Pi was able to satisfy all requirements which are taking audio 

input, facilitating model to carry out inference and finally transmit results wirelessly over 

LoRa. Due to unforeseen issues with receiving LoRa signals, the project has been extended 

to implement another framework for the gateway device, which listens to the results and 

saves them locally. 

 

In terms of the architectures, both Arduino and Raspberry Pi solutions have achieved all 

projeIt’s oHjeIti┗es. The design of the architectures has been successful, making it 

theoretically possible to transmit results wirelessly, take audio inputs, run machine learning 

model and be battery powered. On comparing both architectures, the Arduino architecture 

is a lot more power efficient, being able to be deployed for longer periods of time compared 

to Raspberry Pi. Nevertheless, Raspberry Pi framework proved to have a better 

performance, making it a lot more scalable for the future models. 

 

For 3D case solutions, Hoth desigﾐs ha┗e aIhie┗ed all of the pヴojeIt’s ヴeケuiヴeﾏents of being 

weather resistant, provide openings for the microphone, support various installation 

methods and capture all of the hardware securely within itself. 

 

Overall, the project was considered a success. All of the main aims of the project have been 

achieved to a sufficient degree, being able to be deployed in real habitats and used for 

conservation activities. A quick demo of the project can be found at Appendix D – Final Year 

Project Demo. 

 

 



8 Reflection 
The project has challenged me a lot, requiring to do a lot of research and learning a lot of 

concepts prior starting working on the project. Before the project, I only had general 

knowledge about machine learning. To start working on the model, I had to learn basic 

concepts of machine learning and understand ﾏaIhiﾐe leaヴﾐiﾐg’s more in-depth mechanics 

relating to my problem which includes feature extraction techniques for bird audio, over 

sampling due to small dataset, audio data augmentation and more. I was also required to 

gain an understanding on bird vocalisation and certain vocal features that could 

differentiate birds from one another. As well, learning about possible issues with bird 

vocalisation that could impair the model’s peヴfoヴﾏaﾐIe such as inter-species variance and 

bird calls compared to songs. Learning about how sounds work was required too, making 

suヴe that all of the Hiヴd’s ┗oIal details aヴe Iaptuヴed during audio collection and feature 

extraction. Before starting to work on 3D case solutions, I had to understand general design 

principles for 3D printing to ensure that the case after being printed would be structurally 

stable. I also had to research common engineering designs for creating a snap fit joint and 

making casing waterproof, from which I unexpectedly learnt a lot about 3D modelling. 

 

As for the skills that I have developed throughout the project development, I was able to 

learn new to me programming language C++. Programming at lower level was unusual to 

me, from which I was able to gain knowledge on how to do memory management by 

implementing buffers. As well, I have developed knowledge in source control, database, 

data structures and algorithms, radio networking, testing and architecture design by 

implementing the frameworks for IoT architectures. I had little experience in 3D modelling 

prior to the project. During the project, I was able to learn how to read schematics, how and 

what tools to use in CAD software, how to take proper references from real life objects to 

remodel them virtually and understanding geometry concepts such as curvature and 

projection by creating 3D models of hardware and cases within CAD software. 

 

If I was to redo this project from scratch, I would spend a lot more time researching about 

the technologies that will be used in the project. As mentioned previously, the project had 

to be extended to support LoRa signals due to my incorrect assumption that regular 

personal devices can read radio signals. If I had spent more time understanding LoRa 

technology, I would have been able to take actions early, whether to continue with this 

technology or not. However, due to being late with the realisation of the issue, I was forced 

to extend my project’s sIope to suit this technology. Also, choosing LoRa protocol was 

another mistake I would like to avoid next time when working with long range wireless 

transmissions. Due to limited size of LoRa’s ﾏessages, I ┘as uﾐaHle to seﾐd full ヴesults o┗eヴ 
to the gateway device, being forced to work around by saving audio locally and retrieving it 

physically. This problem occurred once again due to not fully understanding the LoRa 

teIhﾐolog┞ at the tiﾏe of desigﾐiﾐg the aヴIhiteItuヴe, kﾐo┘iﾐg LoRa’s ﾏa┝iﾏuﾏ paIket size I 

would have redesigned the architecture or accounted for during early stages of the project. 

Another issue that I had with the project was having trouble with finding a library for LoRa 

transceiver that would support the chosen Arduino microcontroller. Next time, I would carry 

out more thorough research and ensure that all of the components including libraries for 

them are compatible. At the very least, I would include developing a specialised library 

within my initial plan, having some arranged time to make the hardware compatible which I 

did not have previously. 



 

During the project, there were many things that went well which I would like to reuse when 

working on something similar in the future. Firstly, the creation of machine learning model 

was very successful as proved by the evaluation. Data augmentation techniques have played 

a Hig paヴt at iﾐIヴeasiﾐg ﾏodel’s aIIuヴaI┞, helping to generate more data which did not 

overfit the model and instead brought more variation to the class. In the future, data 

augmentation will definitely be of use when working with small datasets. As well, creating 

two extra classes for the model, one being generic environment noises and another for non-

target birds have really helped the model to differentiate target birds from all other sounds. 

Giving context to the model of the outside world has played a tremendous part in making 

the model competitive against other models, which I will consider when working on 

machine learning models in the future. Another task that went well was designing 3D case 

solutions for the architectures. All of the applied design principles for 3D printing have 

successfully helped these cases become sturdy, which I will reuse next time I will be doing 

3D modelling. Also, learning how to create cantilever snap fit joint allowed to enclose casing 

without requiring extra tools, accelerating the prototyping and development processes. 

Cantilever snap fit joint proved to be an easy and rapid way of assembling and 

disassembling cases, which I will also reuse in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 References 
All About Birds, 2009. Do Bird Songs Have Frequencies Higher Than Humans Can Hear?. 

[Online]  

Available at: https://www.allaboutbirds.org/news/do-bird-songs-have-frequencies-higher-

than-humans-can-hear 

[Accessed 02 04 2022]. 

 

Analog, 2022. Moving Average Filters. [Online]  

Available at: https://www.analog.com/media/en/technical-documentation/dsp-

book/dsp_book_ch15.pdf 

[Accessed 02 04 2022]. 

 

Arduino, 2021. Arduino Nano 33 BLE Sense datasheet. [Online]  

Available at: 

https://docs.arduino.cc/static/702c3afe4d443ad7fc171d434ba0ee4a/ABX00031-

datasheet.pdf 

[Accessed 13 03 2022]. 

 

Arduino, 2022. About Nano boards with disabled 5 V pins. [Online]  

Available at: https://support.arduino.cc/hc/en-us/articles/360014779679-About-Nano-

boards-with-disabled-5-V-pins 

[Accessed 12 04 2022]. 

 

Autodesk, 2013. Fusion 360. [Online]  

Available at: https://www.autodesk.com/products/fusion-360/overview 

[Accessed 20 03 2022]. 

 

Bayer, 2020. Snap-Fit Joints for Plastics. [Online]  

Available at: 

http://fab.cba.mit.edu/classes/S62.12/people/vernelle.noel/Plastic_Snap_fit_design.pdf 

[Accessed 02 03 2022]. 

 

Brownlee, J., 2019. A Gentle Introduction to Imbalanced Classification. [Online]  

Available at: https://machinelearningmastery.com/what-is-imbalanced-classification/ 

[Accessed 25 02 2022]. 

 

Colarusso, P., Kidder, L., Levin, I. & Lewis, N., 1999. Raman and Infrared Microspectroscopy. 

[Online]  

Available at: https://www.sciencedirect.com/science/article/pii/B0122266803004026 

[Accessed 05 03 2022]. 

 

Crespo, E., 2018. RadioHead. [Online]  

Available at: https://github.com/jecrespo/RadioHead 

[Accessed 06 04 2022]. 

 

 



DCASE, 2021. Few-shot Bioacoustic Event Detection Challenge Results. [Online]  

Available at: https://dcase.community/challenge2021/task-few-shot-bioacoustic-event-

detection-results 

[Accessed 01 04 2022]. 

 

DSM&T, 2015. IP Rating Chart. [Online]  

Available at: https://www.dsmt.com/resources/ip-rating-chart/ 

[Accessed 20 02 2022]. 

 

Edge Impulse, 2021. Documentation. [Online]  

Available at: https://docs.edgeimpulse.com/docs 

[Accessed 02 04 2022]. 

 

Edge Impulse, 2021. Edge Impulse DSP and Inferencing SDK. [Online]  

Available at: https://github.com/edgeimpulse/inferencing-sdk-cpp 

[Accessed 04 04 2022]. 

 

Edge Impulse, 2021. Edge Impulse Linux SDK for Python. [Online]  

Available at: https://github.com/edgeimpulse/linux-sdk-python 

[Accessed 20 03 2022]. 

 

Edge Impulse, 2022. Audio MFCC. [Online]  

Available at: https://docs.edgeimpulse.com/docs/tutorials/processing-blocks/audio-mfcc 

[Accessed 21 04 2022]. 

 

Edge Impulse, 2022. Audio MFE. [Online]  

Available at: https://docs.edgeimpulse.com/docs/tutorials/processing-blocks/audio-mfe 

[Accessed 21 04 2022]. 

 

Edge Impulse, 2022. Spectrogram. [Online]  

Available at: https://docs.edgeimpulse.com/docs/tutorials/processing-blocks/spectrogram 

[Accessed 21 04 2022]. 

 

Helium, 2022. Proof of Coverage. [Online]  

Available at: https://docs.helium.com/blockchain/proof-of-coverage/ 

[Accessed 04 30 2022]. 

 

Helium, 2022. Use the Network. The People's Network delivers secure, ubiquitos, and 

affordable wireless connectivity.. [Online]  

Available at: https://www.helium.com/enterprise 

[Accessed 04 30 2022]. 

 

Hont, 2022. Complete Plastic Cable Ties Sizes (in MM) Summary Chart. [Online]  

Available at: https://hont-electric.com/what-are-the-plastic-cable-ties-sizes-in-mm/ 

[Accessed 13 03 2022]. 

 



IBM Cloud Education, 2020. Convolutional Neural Networks. [Online]  

Available at: https://www.ibm.com/cloud/learn/convolutional-neural-networks 

[Accessed 10 04 2022]. 

 

ISO, 2022. ISO 8601 Date and Time Format. [Online]  

Available at: https://www.iso.org/iso-8601-date-and-time-format.html 

[Accessed 25 03 2022]. 

 

Jolliffe, I. & Cadima, J., 2016. Principal component analysis: a review and recent 

developments. [Online]  

Available at: https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0202 

[Accessed 18 03 2022]. 

 

Jongboom, J., 2020. Introducing EON: Neural Networks in Up to 55% Less RAM and 35% Less 

ROM. [Online]  

Available at: https://www.edgeimpulse.com/blog/introducing-eon 

[Accessed 04 04 2022]. 

 

Kahl, S. et al., 2021. Overview of BirdCLEF 2021: Bird call identification in soundscape 

recordings. [Online]  

Available at: http://ceur-ws.org/Vol-2936/paper-123.pdf 

[Accessed 20 04 2022]. 

 

Kaparykha, S., 2021. Raspberry Pi 4 Model B. [Online]  

Available at: https://grabcad.com/library/raspberry-pi-4-model-b-03-1 

[Accessed 10 04 2022]. 

 

Lauer, R., 2021. Optimizing Raspberry Pi Power Consumption. [Online]  

Available at: https://blues.io/blog/tips-tricks-optimizing-raspberry-pi-power/ 

[Accessed 22 03 2022]. 

 

LoRa, 2019. What are LoRa and LoRaWAN?. [Online]  

Available at: https://lora-developers.semtech.com/documentation/tech-papers-and-

guides/lora-and-lorawan/ 

[Accessed 07 04 2022]. 

 

Medhi, D. & Ramasamy, K., 2018. Packet Queueing and Scheduling. [Online]  

Available at: https://www.sciencedirect.com/science/article/pii/B978012800737200020X 

[Accessed 21 04 2022]. 

 

Microsoft AI for Earth, 2020. Tutorial: Accurate Bioacoustic Species Detection from Small 

Numbers of Training Clips Using the Biophony Model. [Online]  

Available at: https://github.com/microsoft/acoustic-bird-detection 

[Accessed 24 03 2022]. 

 

 



Moreno-Barea, F., Jerez, J. & Franco, L., 2020. Improving classification accuracy using data 

augmentation on small data sets. [Online]  

Available at: https://www.sciencedirect.com/science/article/abs/pii/S0957417420305200 

[Accessed 20 02 2022]. 

 

Peterson, A., 2021. Arduino Nano 33 BLE. [Online]  

Available at: https://grabcad.com/library/arduino-nano-33-ble-1 

[Accessed 10 04 2022]. 

 

Pham, C., Bounceur, A., Clavier, L. & Noreen, U., 2020. Radio channel access challenges in 

LoRa low-power wide-area networks. [Online]  

Available at: 

https://www.sciencedirect.com/science/article/pii/B9780128188804000041#f0025 

[Accessed 02 04 2022]. 

 

Pi Supply, 2020. PiJuice Solar. [Online]  

Available at: https://uk.pi-supply.com/products/pijuice-solar 

[Accessed 28 03 2022]. 

 

Rahman, S., 2021. Undersampling and oversampling: An old and a new approach. [Online]  

Available at: https://medium.com/analytics-vidhya/undersampling-and-oversampling-an-

old-and-a-new-approach-4f984a0e8392 

[Accessed 05 04 2022]. 

 

Seeed Studio, 2021. Grove System. [Online]  

Available at: https://wiki.seeedstudio.com/Grove_System/ 

[Accessed 22 03 2022]. 

 

Semtech, 2022. What Is LoRa?. [Online]  

Available at: https://www.semtech.com/lora/what-is-lora 

[Accessed 04 03 2022]. 

 

Sonix, 2021. A short history of speech recognition. [Online]  

Available at: https://sonix.ai/history-of-speech-recognition 

[Accessed 04 04 2022]. 

 

Sprengel, E., Jaggi, M., Kilcher, Y. & Hofmann, T., 2016. Audio Based Bird Species 

Identification using Deep Learning Techniques. [Online]  

Available at: http://ceur-ws.org/Vol-1609/16090547.pdf 

[Accessed 03 03 2022]. 

 

Ven, A. v. d., 2010. PowerTOP. [Online]  

Available at: https://github.com/fenrus75/powertop 

[Accessed 05 04 2022]. 

 

 



Wall, J., 2021. Enclosure design for 3D printing. [Online]  

Available at: https://www.hubs.com/knowledge-base/enclosure-design-3d-printing-step-

step-guide/ 

[Accessed 03 03 2022]. 

 

Waveshare, 2020. SX1268 433M LoRa HAT. [Online]  

Available at: https://www.waveshare.com/wiki/SX1268_433M_LoRa_HAT 

[Accessed 06 04 2022]. 

 

Wildlife Acoustics, 2020. Kaleidoscope Pro Pro Analysis Software. [Online]  

Available at: https://www.wildlifeacoustics.com/products/kaleidoscope-pro 

[Accessed 24 4 2022]. 

 

Wildlife Acoustics, 2022. Song Meter Comparison. [Online]  

Available at: https://www.wildlifeacoustics.com/products/song-meter-sm4-vs-mini-vs-micro 

[Accessed 05 03 2022]. 

 

WWF, 2020. 68% Average Decline in Species Population Sizes Since 1970, Says New WWF 

Report. [Online]  

Available at: https://www.worldwildlife.org/press-releases/68-average-decline-in-species-

population-sizes-since-1970-says-new-wwf-report 

[Accessed 05 04 2022]. 

 

YR Architecture Design, 2020. Design Techniques to Control Water Movement. [Online]  

Available at: https://yr-architecture.com/keeping-water-out-7-design-techniques-to-

control-water-movement/ 

[Accessed 22 03 2022]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 Appendix 

10.1 Appendix A – GitHub Repository for Final Year Project 

• https://github.com/RuslanLevond/final-year-project 

 

10.2 Appendix B – 3D Case Solution for Raspberry Pi 

 

https://github.com/RuslanLevond/final-year-project


10.3 Appendix C – 3D Case Solution for Arduino 

 
 

10.4 Appendix D – Final Year Project Demo 

• https://www.youtube.com/watch?v=M5sv8-thzCE 

 

https://www.youtube.com/watch?v=M5sv8-thzCE

