
Cardiff University

School of Computer Science and Informatics

CM3203 - Individual Project Report

Creating Cyber Security Training

Exercises for Developers

Author: Alexander Hayman

supervised by

Dr. Yulia Cherdantseva

May 27, 2022

Abstract

Web applications are often a point of interest for cyber criminals as they are publicly available
online and contain personal data, user credentials and financial information. Once the applica-
tion is compromised, hackers can pivot around the network where the website is being hosted
and target more machines. It is essential for developers to have good security practices when
developing websites. There is also a growing market in gamification of cyber security learning.
Websites such as HackTheBox and TryHackMe provide real life scenarios for ethical hackers
to test their enumeration and exploitation of systems including web applications and provide a
leaderboard system. However these resources are catered towards people in the cyber security
field. This project will aim to teach developers how to improve their secure development skills
with interactive cyber security training exercises.

Acknowledgement

I would like to give a huge thanks to Dr. Yulia Cherdantseva for facilitating the group supervisor
meetings and giving a great deal of guidance throughout the project.

1

Contents

1 Introduction 5
1.1 Project Motivation . 5
1.2 Project Aims And Objectives . 5
1.3 Project Scope . 6

2 Background 7
2.1 Overview . 7
2.2 Vulnerabilities Classification . 7
2.3 Security Compliances . 9
2.4 Cyber Security Training Platforms . 10
2.5 Website Attacks and Vulnerabilities . 13

3 Approach 14
3.1 Programming Languages and Frameworks . 14
3.2 Local Deployment . 15
3.3 Types of Websites . 16
3.4 Google Code Labs . 16
3.5 Requirements . 16

4 Design 18
4.1 User Interface Design . 18
4.2 Database Schema . 20
4.3 Docker Container Design . 21
4.4 Vulnerability Design . 21

5 Implementation 23
5.1 Vulnerable Web Application . 23

5.1.1 Local Development and Testing . 23
5.1.2 User Interface Design . 23
5.1.3 Directory Structure . 24
5.1.4 Linking Files Together . 24
5.1.5 Database Connection . 25
5.1.6 Account Sessions . 25
5.1.7 Storing Images . 26
5.1.8 Sending Data After a Post Request . 27
5.1.9 Configuring Directory Access . 28
5.1.10 Login and Registration . 29
5.1.11 Shopping Items . 30
5.1.12 Other Website Features . 32

5.2 Local Deployment using Docker . 32
5.3 Vulnerabilities Implementation and Remediations 33

5.3.1 Cross Site Scripting (XSS) . 33
5.3.2 SQL Injection . 34
5.3.3 Insecure File Upload . 35
5.3.4 Relative Path Traversal . 35

5.4 Training Exercises . 36

6 Evaluation 39

2

6.1 Verifying Attack Methods and Remediations . 39
6.1.1 SQL Injection . 39
6.1.2 Cross-site Scripting . 39
6.1.3 Relative Path Traversal . 40
6.1.4 Testing Unrestricted file upload . 41

6.2 Login and Registration . 42
6.3 Testing Docker Deployment . 42

7 Conclusion 43
7.1 Project Summary . 43
7.2 Limitation and Future Work . 43
7.3 Reflection On Learning . 43

List of Figures

2.1 CVE Example . 7
2.2 CVSS Metric Groups . 8
2.3 CVSS Score Example . 8
2.4 CWE Example . 9
2.5 OWASP Top 10 . 10
2.6 NCSC 8 Principals Secure Development and Deployment 10
2.7 TryHackMe Activities Selection Page . 11
2.8 HackTheBox Machine Selection Page . 12
2.9 OWASP Juice Box Pages . 12
4.1 Colour Palette . 18
4.2 Concept Theme . 19
4.3 Navigation Bar . 19
4.4 Main Page Design . 20
4.5 Database Schema . 20
4.6 Docker Container Design . 21
4.7 Attack Path Design . 22
5.1 Importing and using Bootstrap . 23
5.2 Responsive Design . 24
5.3 Directory Structure . 24
5.4 Requesting Files . 25
5.5 config/database.php . 25
5.6 Account Sessions . 26
5.7 Uploading User Photo . 26
5.8 Helper Functions . 27
5.9 Outputting Data From POST Request . 28
5.10 .htaccess files . 28
5.11 Login and Registration Query . 29
5.12 Registration Check . 30
5.13 Requesting Files . 31
5.14 Fetching Detailed Item . 31
5.15 Docker Configuration Files . 32
5.16 Requesting Files . 33
5.17 XSS Vulnerability and Remediation . 33
5.18 SQL Injection Vulnerability and Remediation . 34

3

5.19 Insecure File Upload Vulnerability and Remediation 35
5.20 Relative Path Traversal Vulnerability and Remediation 35
5.21 Exercise Layout . 36
5.22 Docker Deployment Guide . 36
5.23 Exercise Challenges . 37
5.24 Exercise Challenges Solutions . 37
5.25 Exercise Patching Solutions . 38
6.1 Testing SQL Injection Attack . 39
6.2 Testing XSS Attack . 39
6.3 XSS Remediation Evidence . 40
6.4 Testing Relative Path Traversal . 40
6.5 Relative Path Traversal Remediation . 40
6.6 Testing Unrestricted File Upload . 41
6.7 Uploading a Non-Image File . 41
6.8 Possible Login and Registration Attempts . 42
6.9 Docker Setup Test . 42

4

1 Introduction

1.1 Project Motivation

Cyber Security breaches has been an ongoing concern for companies. In 2021, 39% of UK
businesses in identified a cyber attack [1]. Out of the 39% reported attacks, around 1/5 businesses
identified a more sophisticated attack type such as denial of service, malware and ransomware
attacks. The rest of the identified attacks were phishing attempts. Research conducted by
Imperva showed that 50% of data breaches begin in the web application, either through SQL
Injection or Remote Code Execution [2]. Risk management is also being neglected with 52% of
businesses in 2021 to have acted in identifying cyber security risks [1]. Almost all organisation
have some form of digital exposure so it’s essential for companies to assess the security of their
websites.

Developers are often responsible for the security of companies’ websites. A survey conducted
by Secure Code Warrior surveyed 1,200 active software developers [3]. The results showed that
only 14% of developers put secure code as their top priority and 92% of developers said they
needed at least some training in security frameworks. A solution needs to be implementated for
developers to learn and practice writing secure code.

Accessible Cyber Security Training has been on the rise for years with 15 different platforms [4]
being analysed from a case study. The learning landscape has also changed with a greater
emphasis on applied learning from a theory-first to practical approach. However, these platforms
are more focused on the exploitation than the remediation of systems. There are an abundance of
guides online that help developers with secure development but the guides lack technical solutions
and do not use applied learning or challenges to motivate developers [5]. The proposal is to merge
the two approaches together to create an interactive learning experience for developers to learn
and apply the testing and development of secure code.

1.2 Project Aims And Objectives

The project will have two main aims of creating an educational training exercises and a vulnerable
web application to facilitate the learning experience. Users will use the platform to learn different
security risk and then apply that knowledge to the vulnerable web application where they will
test and fix vulnerabilities.

Project Aims

• Develop a vulnerable web application
– Implement vulnerable features that are susceptible to attacks (Login System, User

Profile).
– Vulnerabilities implementated should be possible to patch.
– Provide an accessible solution and documentation for users to locally deploy the ap-

plication.

• Create an educational training exercises
– Create a learning exercise for each vulnerability implemented.
– Each exercise should include provide a description of the challenge and a solution.
– Provide a challenge exercise including hints and solutions for users to test and patch

vulnerabilities on the website.

5

Project Objectives

1. Research
• Analyse and compare existing cyber security training platform solutions.
• Study web related vulnerabilities and how to implement and fix them.
• Examine current security practice standards for developers.
• Explore and establish programming languages and frameworks that is best suited for
the project.

2. Design
• Design the main layout for the website (Home, Login and Registration).
• Model any databases schemas and file structures.
• Create a set of functional and non functional requirements for the project.
• Choose and embed vulnerabilities including a diagram showing the attack methods.

3. Implementation
• Develop the web application.
• Implement vulnerabilities within the web application.
• Create training exercises for each vulnerability.

4. Testing
• Test all requirements implemented in the project.
• Test each vulnerability by following the training exercises.
• Checks the deployment works on different machines and operating systems (Linux,
macOS, Windows).

5. Evaluation and Conclusion
• Evaluate the requirements from the test results.
• Conclude the learning process and solution of the project.

1.3 Project Scope

The ensure the project can be completed within the time period, there needs to be a constraint
on the number of vulnerabilities to implement. Vulnerabilities relating to web applications are
inexhaustible with 60 categories being listed in the OWASP project [6] so research needs to
be conducted to choose vulnerabilities that have the most impact and occur frequently. Each
vulnerability implemented also requires additional time for the creation of its related training
exercise as well as its associated feature. For example, creating a login and registration system
in order to implement an SQL Injection vulnerability. The main development focus will be on
the vulnerable web application and so a framework should be used for the educational platform.
Google Codelabs could be a suitable tool as it offers the creation of a tutorials in a responsive
web application that can be generated with markdown text [7].

6

2 Background

2.1 Overview

This chapter discusses an overview on how cyber security vulnerabilities are classified and an
analysis on current cyber security compliances that are covered. It reviews and compares existing
solutions for cyber security education. And finally, provides information on vulnerabilities that
will implemented for the project.

2.2 Vulnerabilities Classification

Understanding how vulnerabilities are reported provides a greater understanding of how vul-
nerabilities are determined including the impact and severity of them. The available records of
security vulnerabilities and weaknesses can be useful information for developers to determine
if their software is vulnerable to attacks or any bad security coding practices they may have
developed. Security compliances such as the OWASP TOP 10 [8] also considers these metrics
when ranking the categories on its list.

Common Vulnerabilities and Exposures Program

The mission of the Common Vulnerabilities and Exposures (CVE) Program is to identify, define,
and catalogue publicly disclosed cyber security vulnerabilities [9]. It is community driven where
a person or organisation discovers a new vulnerability and request for a CVE identifier associated
with that vulnerability [10]. Each CVE record needs to provide the following minimum infor-
mation of vulnerability type, vendor or developer of the product, affected product and version
information [11].

Figure 2.1: CVE Example

The one concern with CVEs is how hackers can use this information to attack organisations
with outdated software. However, the benefits outweighs the risks as this information also
allows organisations to protect themselves from all publicly known vulnerabilities and exposures.
Reviewing CVE records has provided important knowledge on how vulnerabilities are classified
including where they were discovered and the attack methods used.

Common Vulnerability Scoring System

The common vulnerability scoring system (CVSS) is an open framework for communicating the
characteristic and severity of software vulnerabilities [12]. This review will focus on CVSS v3.1
which is the current standard for generating vulnerability severity scores.

7

Figure 2.2: CVSS Metric Groups

Figure 2.2 shows the three metric groups used to generate the score [13]. The base metric group
represents the characteristic of the vulnerability that are constant over time. The exploitability
metrics reflects the ease and technical means by which the vulnerability can be exploited and
the impact metrics reflects the direct consequence of a successful exploit. Temporal metric group
reflects the characteristics of the vulnerability over time. For example, the presence of a simple
to use exploit kit would increase the score. The environmental metric group enables analyst
to customise the CVSS score depending on the importance of their affected IT systems. Only
the base metric group is mandatory to complete. These metrics are then processed through an
equation generating a score ranging from 0 to 10, with 10 being the most severe.

Figure 2.3: CVSS Score Example

8

Figure 2.3 [14] displays the score generated for the MySQL Stored SQL Injection (CVE-2013-
0375) vulnerability that could allow a remote, authenticated user to inject SQL that runs with
high privileges on a remote MYSQL server database. Each metric is assigned a value from the
specification document [13] that closely resembles the vulnerability.

Understanding how CVSS scores are generated has shown that there are numerous metrics to
consider for a vulnerability. A vulnerability could be severe if exploited correctly but could have
a high attack complexity or require situational prerequisites such as administrative access or local
access to the system. It is important to consider these metrics for the deciding the vulnerabilities
to implement for the project.

Common Weakness Enumeration

The Common Weakness Enumeration (CWE) list includes both software and hardware weakness
types [15]. Unlike CVEs, it display a more generalised detail and does not specify any products
that are exposed to the weakness.

(a) Description
(b) Categories

Figure 2.4: CWE Example

Figure 2.4 shows the in depth detail of a CWE record [16]. A few categories that could be useful
for developers is the demonstrative examples and potential mitigations. These categories lists
code snippets of what not to do and mitigations to consider during the design and implementation
phase. Reviewing the CWE database has provided insightful and detailed information of security
weaknesses that can be referenced when creating the learning materials.

2.3 Security Compliances

Reviewing relevant web security compliances shows the current standards developers should
follow to write secure code. It is too ambitious for the project to teach developers all of the
security risks so this review covers the security risks that are considered for implementation.

OWASP Top 10

The OWASP Top 10 is a standard awareness documents for developers and web application
security [8]. It represents the most critical security risks to web applications. The instalment of
Top 10 is mostly data driven but with survey data also being considered [17]. This is because
the nature of some vulnerabilities being hard to develop testing methodologies such as Server-
Side Request Forgery. The names of the risks have changed to focus on the root cause over the
technical symptom. The risks are ranked by how likely they are to occur and the impact they

9

carry by analysing their CVSS scores. These risks will be considered when building the web
application as developers will get more benefits learning risks that are likely to occur and are
critical to fix.

Figure 2.5: OWASP Top 10

Secure Development and Deployment guidance

This guide written by the National Cyber Security Centre provide high level principals intended
to establish working practices that foster security as well as making code more stable and easy
to maintain [5]. The principals focus on other aspects other than code such as providing a secure
development and deployment environments. Despite it not being as technical as the OWASP
top 10, it shows that secure coding is only one aspect for maintaining good secure development
practices.

Figure 2.6: NCSC 8 Principals Secure Development and Deployment

2.4 Cyber Security Training Platforms

Training Platforms are the modern solution for the education of Cyber Security by providing
environments where users can exploit systems reinforcing their knowledge and understanding.

10

They also use the concept of ”Gamification” where users are encouraged to learn by providing a
ranking system and a leaderboard where users can compete with each other.

TryHackMe

Figure 2.7: TryHackMe Activities Selection Page

TryHackMe [18] is a platform for users to improve and test their skills in Cyber Security. It is
recommended for beginners as it offers guided, objective-based tasks and challenges based on
real world scenarios. The application is community driven where users can create exercises for
other users to complete. The platform facilities a wide range of cyber security topics such as
web, reverse engineering, and forensics. Users are required to connect to the platform’s VPN in
order to deploy and access servers from the exercises. There is also a leaderboard and a ranking
system that motivates users to complete exercises for points in order to climb the leaderboard
or to improve their rank.

11

HackTheBox

Figure 2.8: HackTheBox Machine Selection Page

HackTheBox [19] is a similar platform to TryHackMe in terms of being community driven and
providing a wide range of cyber security topic. The only difference is that HackTheBox main
focus is providing challenges instead of guided tasks. It is advisable for users to learn the
fundamental skills before approaching the platform. The main content it offers is an abundance
of community created challenges and vulnerable machines. Challenges are comparable to the
TryHackMe challenges. For vulnerable machines, only the IP address of the machine is given
with no guided help provided to simulate real life penetration testing of systems. Users need to
develop the mindset of enumerating, researching and successfully exploiting machines in order
to gain full control. It encourages users to think outside the box, improve researching skills
and acquire mastery of cyber security techniques. There is also a leaderboard where points are
also awarded for successfully compromising machines with more points being received for more
difficult machines

OWASP Juice Box

(a) Home Page (b) Task Page

Figure 2.9: OWASP Juice Box Pages

OWASP juice box is an insecure e-commerce web application encompassing vulnerabilities from
OWASP Top Ten along with many other security flaws found in real-world applications [20]. It
can detect when users successfully exploit the underlying vulnerabilities which is then tracked
on a score board. Users are expected to install and deploy the application unlike the previous

12

applications where users are only required to have a VPN connection. Documentation [21] is
provided for different deployment methods for the vulnerable website. A few methods used are
docker [22] and vagrant [23] as a straightforward way to deploy the website.

2.5 Website Attacks and Vulnerabilities

This section will provide a brief overview of vulnerabilities that will be implemented. After
factoring in current security weaknesses and ease of configuration, the vulnerabilities listed in
this section will be implemented.

SQL Injection

SQL Injection allows attackers to interfere with queries that a web application make to the
database [24]. A successful SQL injection attack could result in unauthorised access to sensitive
data. There are other cases where an attacker can bypass the admin login leading to access to
organisation’s systems. In order to prevent SQL, you can use parameterised queries.

Cross-Site Scripting

Cross-site scripting can allow attackers to inject malicious JavaScript code [25]. There are differ-
ent types of XSS attacks but this project will focus on stored XSS. The most common attack is
impersonation where they can steal important cookies such as the admin cookie and impersonate
them. To prevent XSS, sanitise any outputs that are generated by the user so that the script
tags do not get executed.

Relative Path Traversal

Relative path traversal allows attackers to traverse the file system to access files or directories
that our outside the restricted directory [26]. This could lead to the attacker reading sensitive
files stored outside the web directory on the server. To prevent relative path traversal, create
a validation system for the input. Generate a list of acceptable inputs that conform to the
requirements and reject any inputs that does not conform with the list.

Unrestricted File Upload

Unrestricted file upload is when there is no safety mechanisms when users upload files to the web
server [27]. This allows attackers to upload malicious files to the server possibly compromising
the whole application. To mitigate these risk, ensure there is a whitelist for the type of files that
are allowed.

13

3 Approach

The Approach chapter provides justification for the choice of programming languages or frame-
work used for the project. It covers the research on local deployment methods and type of website
to implement. Finally, a set of functional requirements is listed before designing the required
infrastructure.

3.1 Programming Languages and Frameworks

There are a few factors to consider when choosing a programming language or framework for the
vulnerable web application. The first factor is the difficulty in developing vulnerable code as there
are a few frameworks later discussed that automatically implement security features. It could
prove a challenge to force the framework to be insecure and for users to patch the weaknesses.
Another factor is the popularity of the programming language or framework as developers would
receive the most benefits of learning how to test and patch environments that are more popular
and therefore more likely to develop in. The last factor is past experience with framework or
language as familiarity will reduce time spent developing.

Programming

Language

or Framework

Description and Experience Security

PHP PHP [28] is a scripting language that is
especially suited for web development and
can be embedded into HTML. It is simple
to use for a newcomer requiring minimal
setup to get started. Past experience in-
cludes reading PHP code but not develop-
ing with it

PHP is a pure scripting language enabling
full control of how web request should be
handled. This flexibility has the conse-
quence of developing insecure code. Patch-
ing insecure code requires direct change of
the code instead of importing additional
modules of frameworks to help with the
process

Flask Flask [29] is a lightweight web applica-
tion framework written in python and re-
lies on the Jinja template engine and the
Werkzeug WSGI toolkit. The framework
is designed to make developing websites
quick and easy. It uses Jinja2 for its tem-
plate engine providing an easy process of
outputting data generated from the back-
end. Competent with python and expe-
rience with Flask includes building an e-
commerce website

Flask has a few security features by de-
fault so it could be a challenge to pro-
duce an insecure application. Flask au-
tomatically configures Jinja2 to automat-
ically escape all values [29]. This would
rule out all XSS problems caused in tem-
plates unless turned off. Flask can also use
the flask-security framework [30] to add se-
curity mechanisms to the website. A few
examples include a user registration view,
role based access and session based authen-
tication.

Spring Boot Spring Boot is a Java-based framework
similar to flask where it is used to get a
website up and running quickly [31] . Fa-
miliar with Java but not familiar with the
framework

Spring Boot can use Spring Security [32]
focusing on both the authentication and
authorisation to Java applications¿ It pro-
tects against attacks like session fixation.

=

14

By reviewing some of the most popular programming languages and framework, the top choice
to use would be PHP. Despite having the least experience with the language, it is popular,
easy to learn and has the flexibility to produce insecure code. Also, developers can see the
direct result for fixing the insecure code PHP such as using prepared statements to patch SQL
injection. In the other two frameworks, producing secure code involves importing additional
security related frameworks to handle most of the security. This could consequently impact
developers full understanding of why their fixes have made the website more secure. Another
framework to consider is a CSS framework to reduce the time spent configuring the layout of the
website. Bootstrap v5 [33] will be used as with its prebuilt grid system and components to allow
quick creation of layouts.

3.2 Local Deployment

The web application will be vulnerable to attacks so can not be hosted publicly. Users will need
to install and deploy the website locally in order to complete the challenges. This section will
cover a few different deployment methods and how accessible it is for the users to configure the
deployment.

Docker

Docker is an open platform for developing, shipping, and running applications [22]. It offers
the creation of images which are a templates used to create a docker containers. Images are
normally based off a parent image and can be modified to best suit the deployment environment.
An example application could be a php Apache container linked with an SQL container. Users
only need to install the Docker command line interface to run the containers for the application.

Virtual Machine Image

Virtual machines images allow the package and distribution of machines [34]. In this case, a
Ubuntu server image with PHP, MySQL and an Apache server installed and configured. Once
all setup, the machine can be exported to a single file. Users then install the recommended
virtualisation software (VBox, Vmware) and import the file to run the machine. They can then
access the web server with the virtual machine’s local IP address.

Vagrant

Vagrant [23] is a tool for building and managing virtual machines. It is similar to docker as
it provides a reproducible and portable virtual work environment. The only difference is that
vagrant creates virtual machines. This is great for users who would want to install the virtual
machine locally instead of retrieving the exported format online. Users only need to install the
vagrant binary package and a virtualisation software in order to locally deploy the application.

The choice of deployment method to implement will be Docker. This is because it is the most
straightforward process to deploy as a user but could be a challenge to configure. It also requires
the least software only requiring the docker command line interface to run the containers. Users
can also modify the code locally in their preferred development environment with Docker whereas
the other two methods would require modification inside the virtual machine where development
tools are limited.

15

3.3 Types of Websites

There are various types of websites that can be considered for the project. The main interest
would be the amount of features the website contains. First would be a business website but
most of them only contain information about the business [35] [36]. Another idea would be a
e-commerce website as they are rich with features such as user profile, shopping basket, payment
system and login and register [37]. The last idea would be a blog website although these types
of websites also lack features that are susceptible to attacks. The websites discussed would likely
contain an administrative account for managing and maintaining the website.

After reviewing the three main types of website types, it is clear that an e-commerce type
website would be the most suitable to implement. The various features that are normally seen
in an e-commerce website share allows the flexibility of implementing the attack weaknesses.

3.4 Google Code Labs

As the vulnerable web application will be main development focus. A framework that offers
minimal development time and can easily upload content for the tutorials should be considered.
As discussed in the introduction, Google Codelabs tools would be the suitable for providing a
interactive web tutorials without writing any code. It also provides sufficient documentation on
how to format the exercises [38] and a tutorial to help the deployment of the web tutorials. [39]

3.5 Requirements

A set of requirements will be required to ensure the implementation of the project is kept in
scope. Once these requirements are achieved, the main focus of the project will shift to the
writing section.

Vulnerable Web Application

• FR1: Users must be able to locally deploy the application and access through a browser

• FR2: The website must have the four vulnerabilities implemented (Cross-site Scripting,
SQL Injection, Insecure File Upload, Relative Path Traversal)

• FR3: Each vulnerability implemented must be possible to patch

• FR4: The website must implement a login and registration system

• FR5: The website must have a home page

• FR6: The website must have a profile page

• FR7: The website must have a list of shopping items

• FR8: The website must have an administration panel

Training Exercises

• FR1: Users must be able to navigate each exercise

• FR2: There must be an exercise to guide users through the local deployment process

• FR3: There must be an exercise for each vulnerability

• FR4: The exercise must consist of a challenge to test and patch each vulnerability

16

• FR5: Each exercise must contain solutions for the attack/testing method used and how to
mitigate the security risk

17

4 Design

The design chapter gives an insight in the design process of the vulnerable web application and
the structure of the learning content for Google CodeLabs. Designs covers the database scheme,
user interface and the implementation of vulnerabilities. As the main focus for the website
is vulnerabilities, some features that are normally seen in an e-commerce website will not be
implemented for instance the shopping basket.

4.1 User Interface Design

For the vulnerable web application, the layout of the website has to be similar to E-commerce
website. That includes a design for the navigation and the main page to show the overall design
standards to follow for rest of the web pages. A user interface design will not be required for for
the training platform as Google Codelabs Tool provides the templates.

Colour Scheme

The design of the website should be engaging in order to create a fun learning experience for
users and therefore should be vibrant with its colour palette. The choice of colour was blue due
to a preference for that colour. The ColorSpace website [40] helped generate colours that could
compliment the primary colours. The number of colours will be scarce so that the website looks
clean and professional as well as not being too fatiguing on the eyes.

Figure 4.1: Colour Palette

Website Theme

E-commerce website has to have their own design when it comes their products and web layout.
The choice of theme will be pixel art to create a fun and exciting design for the website. Items
being sold will also follow the pixel art theme. The use of pixels also means unique creation of
items instead of using images from other sources on the internet.

18

(a) Pixeloid Font Set
(b) Shopping Item

Figure 4.2: Concept Theme

The Pixeloid [41] font set is suitable choice of being stylistic but also readable. Each item will
be drawn on a 32 x 32 bit canvas and will use around five colours for shading and decoration.
This is to ensure consistent artwork for each item.

Navigation Bar and Footer

Figure 4.3: Navigation Bar

Two different navigation bars will have different displays whether the user has logged in or not.
The shop and the account management links are purposely separated as they both serve different
purposes.

19

Example Page Layout

Figure 4.4: Main Page Design

This will be the general design for each page. Navigation bar and footer are at the usual place.
The cards will have information about the website and the image will have a photo of a shopping
trolley. Buttons and links will mostly have the primary blue colour with the white text. The
colour scheme will be consistent for the other pages.

4.2 Database Schema

Figure 4.5: Database Schema

20

The website will require two tables to store user’s information and the list of items that are on
sale. Passwords will be hashed using the MD5 algorithm resulting in a fixed character length of
32 bits. For storing files, both tables stores the name of the images and the program will use
that name to fetch the respective image. Username also has a max character length so input
validation for registration is required so users can not enter a username above 30 characters.

4.3 Docker Container Design

Docker Compose will be used in order to define and run multi-container Docker applications. It
can be complex to configure requiring two configuration files. The first is a Dockerfile so that
the application can be reproduced anywhere. The second is a docker-compose.yml to define
the containers environment for the application. Once the configuration files are defined, users
can run the containers with the ”Docker Compose Up” command and then access the website
through localhost. Defining how the containers will interact with each other will be helpful to
refer to when creating the Docker application.

Figure 4.6: Docker Container Design

Figure 4.6 shows a model of the containers that will be used for local deployment. It will first get
the base images php-Apache [42] and MySQL image [43] from docker hub. It will then modify
the images to create the required containers for the application to run.

4.4 Vulnerability Design

A flow chart of how the user will attack each weakness in the website will give a concrete idea
of the vulnerabilities to implement. Each attack weakness has to be realistic in terms of where
they are embedded.

21

Figure 4.7: Attack Path Design

Figure 4.7 shows the steps the user has to take in order to attack a security weakness. The arrow
represents the action the user does. The rectangles represents the pages on the website. Lastly,
the circle shoes what the user can do once they exploit the weakness. The end goal is for the
user to patch each attack path so that the system can not be exploited.

22

5 Implementation

5.1 Vulnerable Web Application

The section shows the development process for the vulnerable web application. It includes setting
up the development environment for implementation and testing. An overview of the responsive
front end design using Bootstrap. It also covers a list of important features implemented and
solutions to challenges faced during development. The section also gives an insight into how
docker was configured. And finally lists the sections of code that were made to be vulnerable on
purpose and the solution to remediate the vulnerabilities.

5.1.1 Local Development and Testing

Before developing the application, software has to be installed to facilitate the PHP development
environment. XAMPP is a good option providing a local Apache web server containing MariaDB,
PHP and a graphical interface for SQL (phpMyAdmin) [44]. PhpMyAdmin allows the creation
and modification of tables and adding or deleting data from the tables. This is good to aid the
process of modifying the table structure or data that needs to be edited.

5.1.2 User Interface Design

Bootstrap and CSS was used to handle the design, layout and responsiveness of the website.

(a) src/inc/header.php

(b) public/index.php

Figure 5.1: Importing and using Bootstrap

Here is an example of how Bootstrap was used to create a responsive main page. Bootstrap is
installed locally on the machine in case the user has no internet access. Bootstrap allows the use

23

of columns and rows inside a container class. Each row is made up of 12 columns. For example,
col-md-6 tells the contents within the class to take up half the page unless the browser window
shrinks to a smaller size where it will take up the whole row. Another feature of Bootstrap is
being able to specify padding and margins within the class instead of within CSS file. This allows
quick adjustments to how content should be spaced and aligned with each other.

(a) Full Size Browser Window
(b) Smaller Browser Window

Figure 5.2: Responsive Design

5.1.3 Directory Structure

(a) Base Directory

(b) Config, Data and Public Di-
rectory

(c) Src Directory

Figure 5.3: Directory Structure

Figure 5.3 shows the structure of the application’s code to maintain an organised code base.
Config and data folder contains credentials for the database and SQL code are used to create the
required tables. Public folder holds files responsible for the front end and the src folder contains
code responsible for the back end. The src folder also includes reoccurring web elements for
example the navigation bar and a helper php file containing functions that deal with repeated
logic.

5.1.4 Linking Files Together

All the pages on the application need to fetch additional php files to achieve full functionality.

24

(a) src/bootstrap.php (b) src/libs/helper.php

(c) public/index.php

Figure 5.4: Requesting Files

The bootstrap file allows every php file to access the credentials for the database and helpful
functions for repeated logic. The view function allows the retrieval of php files and the added
functionality of supplying data to the file. Figure 5.4c supplies a associative array to the header
template to change the content of the <title> tags within the header file.

5.1.5 Database Connection

For the website to connect to the database, a configuration file was used specifying the required
details to allow a successful connection. If the user credentials for the database changed, only
the configuration file has to be edited.

Figure 5.5: config/database.php

This does mean users can connect to the database by the command line potentially ruining the
exercises created. Encryption can not be an option as the decryption algorithm would need to
be added to the source code.

5.1.6 Account Sessions

An account session system has to be implemented so that the user stays logged in.

25

(a) src/login.php

(b) public/logout.php

Figure 5.6: Account Sessions

Every session is tied to the user’s username as each username is unique on the system. The
logout file unsets and clears any data tied to the session variable. Sessions are linked with the
PHPSESSID cookie so if the user deletes the cookie, they are automatically logged out.

5.1.7 Storing Images

As mentioned in the design phase, the best solution to store images is to reference the image
name in the database. However, there could be a scenario where a person uploads an image that
shares a name with an existing image in the database therefore replacing the original image.

(a) src/login.php

(b) src/updateProfile

Figure 5.7: Uploading User Photo

Figure 5.7a shows how user’s profile photos are uploaded to the website. It uses PHP’s uniqid
function to generate a unique identifier for that image as well as adding the file extension to
specify the type of file. The files go to the uploads directory which is restricted from the browser.
It then uses an SQL query to update the reference for the new image uploaded. Figure 5.7b shows
how the program fetches and eventually display the photo. If the user has not uploaded a photo,
it will display the deafaultprofile.

26

5.1.8 Sending Data After a Post Request

One of challenges was sending data generate from a POST request to the browser. A scenario
where this will be useful would be for the login page where you want to keep the username in
its field and send the appropriate error message if the user entered the wrong password. This is
the solution for these types of scenarios.

(a) src/libs/helper.php

(b) src/libs/helper.php

Figure 5.8: Helper Functions

Both functions uses the $ SESSION which persists unless the session is cleared. The redirect with

function takes in two arguments, the page to redirect the user and the array of keys mapped
to values. It loops through the array appending each key entry to the $ SESSION array so that
the data persists on the website. The flash session function retrieves and remove data and its
associated key from the $ SESSION array by specifying the array of keys that want be removed.

27

(a) src/login.php

(b) public/login.php

Figure 5.9: Outputting Data From POST Request

Figure 5.9a shows how the functions are used to send error messages and to keep the username
in the form value. When a user submits the login form, the browser does a POST request for
processing the values and then a GET request to display the data. The POST request stores
the $errors and $login array in the $ SESSION array since the arrays reset after each request.
The GET request uses $flash session to retrieve and delete the arrays from the $ SESSION
variable so that they can be outputted to the website.

5.1.9 Configuring Directory Access

The public directory should be only directory that users can access from the browser. A .htaccess
file can be used to tell Apache the specified configuration changes on a per directory basis.

(a) .htaccess

(b) public/.htaccess

Figure 5.10: .htaccess files

28

Figure 5.10 tells Apache server that any directory or files specified in the browser URL are to
be fetched from the public directory only. This essentially makes the public directory the base
directory for the website with no direct access to files outside unless exploited.

5.1.10 Login and Registration

Implementing a login and registration system in php was relatively simple. For registration, the
system needs to ask the user for the required information and then insert that information to the
database. The login system works by checking if the username and hashed password matches
the entry in a database.

(a) src/login.php

(b) src/register.php

Figure 5.11: Login and Registration Query

The register uses a prepared SQL statement whereas the login uses a normal SQL statement.
A prepared statement is used to execute statements at high efficiency and protect against SQL
injections. A normal SQL statement has no input validation or character escapes and therefore
is susceptible to SQL injection. The reason why only the login page is vulnerable to SQL
injection is because only one key feature should be assigned for each attack method. Users might
be overwhelmed if there are numerous vulnerabilities for the same attack method. Additional
checks are also done for the login query in to make sure any SQL injection login bypass attempts
are logging in as an actual user. If registration is valid, the user is redirected to the login page.
And if login is successful, the code ties the username to the session and then redirects them to
the home page.

29

Figure 5.12: Registration Check

Figure 5.12 shows how to program handles server side form validation for the register page. It
first makes a query to the database to check if there is not an existing user. Next, it checks if
the password and confirmation password matches up with each other and also determines if the
username and password length is less than 30 characters. If the validation does not pass, the
appropriate message is then added to the $errors array to be displayed on the website. The
same validation format is also used for the login system.

5.1.11 Shopping Items

The shopping items are stored on the database so there needs to be a solution to fetch and
display the items from the database as well as use the include function so that it is vulnerable
to relative path traversal.

30

(a) public/shop.php

(b) public/shop.php

Figure 5.13: Requesting Files

Shop.php in figure 5.13a has two separate functionality depending on the browser URL. If the
browser does not specify an item, the code will fetch all the items in the database and display
them as cards. If it does specify an item (http://127.0.0.1/shop.php?item=hat.php), it will
fetch the items unique page. Figure 5.13b shows the template used to display the list of items.

(a) public/items/hat.php
(b) src/getitem.php

(c) src/itemtemplate.php

Figure 5.14: Fetching Detailed Item

Figure 5.14 shows how an item is displayed when specified by the browser. The program receives

31

an id depending on what page was specified and then sues that id to get all the information for
that particular product. The template is then used to format the layout of the data.

5.1.12 Other Website Features

There are two main features not discussed in this section as they follow similar logic to the
features mentioned. The first is the admin panel which displays a list of users as a table. The
panel uses the $ SESSION variable to see if the user is an admin otherwise the user is denied
access. The other feature is the user profile which allows users to update their profile picture or
description.

5.2 Local Deployment using Docker

The configurations files specifies how the containers are configured and how they interact with
each other. Users only need to install docker and run the docker-compose up command within
the directory to access the application.

(a) docker-compose.yml

(b) dockerfile

Figure 5.15: Docker Configuration Files

32

(a) data/item.sql (b) data/user.sql

Figure 5.16: Requesting Files

Figure 5.15a shows how the containers are setup. It uses the php:8.1-Apache and MySQL image
from DockerHub. It then configures the images such as mounting the code base to the Apache’s
web directory and supplying a database environment for the MySQL Server. The volume section
in the db services specifies the files from figure 5.16 used to build and populate the tables for
the web application. The dockerfile in figure 5.15b installs any dependencies and configuration
changes before the container is deployed. The base Apache image does not contain the mysqli
extension for php so it needs to be installed. The a2enmod rewrite enables the mod rewrite

extension and sed command changes a line in the Apache’s configuration file to allow the use of
.htaccess files.

5.3 Vulnerabilities Implementation and Remediations

This section will show the snippet of code responsible for the vulnerability and the solution to
patch the vulnerability.

5.3.1 Cross Site Scripting (XSS)

(a) public/admin.php

(b) public/admin.php

Figure 5.17: XSS Vulnerability and Remediation

33

A stored XSS vulnerability has been implemented in the admin panel section where it outputs
data from user input without being converted to an HTML entity. Figure 5.17b shows the use
of the htmlspecialchars functions to convert and output the description in a safe manner.

5.3.2 SQL Injection

(a) src/login.php

(b) src/login.php

Figure 5.18: SQL Injection Vulnerability and Remediation

The SQL Injection weakness has been implementated on the login form to allow users to login to
admin without any credentials. Figure 5.18a shows how the login system does not use prepared
statements to verify the user’s credentials. Whereas figure 5.18b uses prepared statements to
prevent user input from affecting the queries.

34

5.3.3 Insecure File Upload

(a) src/updateProfile.php

(b) src/updateProfile.php

Figure 5.19: Insecure File Upload Vulnerability and Remediation

Allowing files to be upload with no validation system in places allows users to upload any type
of files including malicious payloads. One solution is to create a whitelist of allowed file types
and check if the uploaded file types matches with the ones in the list. If it does not match, do
not upload the file.

5.3.4 Relative Path Traversal

(a) src/shop.php

(b) src/shop.php

Figure 5.20: Relative Path Traversal Vulnerability and Remediation

35

Using the include function where the argument can be modified by the user creates the relative
path traversal weakness. The include function fetches any file including files outside the web
folder. In order to mitigate this risk, deny access for retrieving files outside the specified directory.
This can be done by comparing the absolute paths of the user’s input and allowed path. If the
user’s path does not match with the allowed path, output an error message.

5.4 Training Exercises

This section covers the content written for the training exercises. The exercises has been gener-
ated as a html file from exporting the markdown template with the claat tool [45].

Figure 5.21: Exercise Layout

Figure 5.22: Docker Deployment Guide

36

Figure 5.23: Exercise Challenges

Figure 5.24: Exercise Challenges Solutions

37

Figure 5.25: Exercise Patching Solutions

38

6 Evaluation

This chapter provides an overview of the main tests conducted to determine the completeness of
the project. Tests for the vulnerabilities shows expected output following the attack methods and
fixes provided in the training exercises. The tests also cover cases such as registering an account
with a username that has been taken to ensure minimal disturbance on the system other than
the vulnerabilities. The tests lastly see if the application can be locally deployed with docker.
All tests for the web applications are done on macOS Montery with the Opera browser.

6.1 Verifying Attack Methods and Remediations

6.1.1 SQL Injection

Attack

(a) SQL Injection for admin
(b) SQL Injection for an non-existing user

Figure 6.1: Testing SQL Injection Attack

Logging in with this payload Username:admin’ or ’’=’ and Password:’ or ’’=’ success-
fully logs in as admin. The website also does not allow the use of SQL Injection with a non-
existing user.

Remediation

The same payload is used but the login in unsuccessful therefore the SQL Injection vulnerability
has been patched.

6.1.2 Cross-site Scripting

Attack

(a) XSS Payload
(b) XSS Pop-Up Window

Figure 6.2: Testing XSS Attack

39

Successfully outputs an alert box when visiting the admin panel.

Remediation

Figure 6.3: XSS Remediation Evidence

The XSS payload does not get executed by the browser.

6.1.3 Relative Path Traversal

Attack

Figure 6.4: Testing Relative Path Traversal

Successfully displays the content of files outside the web directory.

Remediation

Figure 6.5: Relative Path Traversal Remediation

Successfully display an error message if you try to access files outside the specified directory.

40

6.1.4 Testing Unrestricted file upload

Attack

(a) PHP Command Execution Payload
(b) PHP Payload Output

Figure 6.6: Testing Unrestricted File Upload

Successfully executes commands on the system by using the payload file from figure 6.6a.

Remediation

Figure 6.7: Uploading a Non-Image File

Successfully denies access to any file types that are not images. Cannot upload a command
execution payload in order to do the attack.

41

6.2 Login and Registration

(a) Existing User (b) Not the Same Password

(c) Long Username (d) Long Username and Password

(e) Long Password (f) Login with Incorrect Credentials

Figure 6.8: Possible Login and Registration Attempts

The login and registration form give the correct error messages for the unique scenarios.

6.3 Testing Docker Deployment

(a) Docker Compose Command

(b) Listed Container

Figure 6.9: Docker Setup Test

Docker compose successfully creates the application.

42

7 Conclusion

7.1 Project Summary

To conclude, the project gave an outline of why developers struggle to write secure code. It then
provided background information on how vulnerabilities are classified and a review of current
security compliances. From that, four vulnerabilities were chosen to be implemented. The
project then reviewed the various framework or programming language that would be suitable
for the project. It also reviewed the preferred deployment method and then generated a list of
requirements for training exercises and web application. The design chapter covered the necessary
front end design and system architecture to aid with implementation. The implementation
section covered how features and vulnerabilities were implemented in the project and solutions
to challenges faced during development. Testing was conducted in the evaluation section to
show how each vulnerability can be exploited and patched by following the training exercises.
This was to show that both the training exercises tasks and vulnerability successfully met the
requirements. Furthermore, testing was conducted on form validation and local deployment to
evaluate the stability of the application.

7.2 Limitation and Future Work

Time was the main limiting factor for the project. The time meant the project scope could not
be too ambitious in order to complete all the deliverables on time. For the web application,
this meant reducing the number and complexity of vulnerabilities requiring at most two steps
to exploit. For the training exercises, only the challenges and solutions were created instead of
an extensive tutorial for each vulnerability. Future work would focus on the training exercise
aspect of the project by creating a ”gamified” experience similar to the existing solutions that
were reviewed. Users would be able to see which exercises they completed and receive points for
successfully patching of systems. The deployment method for the vulnerable application would
also change from being locally deployed to being able to deploy it online and access the machine
with a VPN.

7.3 Reflection On Learning

There were a few main learning points I have learnt by completing the project. The first is
underestimating the amount of time it takes to write a report. I gave myself too much time for
programming and only a few weeks to write the report. Especially when it came to the literature
review where a lot of time was spent researching and reading through sources. It would have
been a better idea to write whilst programming so that the workload did not spike up during the
last few weeks. There is only so much quality writing or programming a person can do in a day.
For the programming, I am happy that I have created a completed product for the project. It
was a challenge learning how to use PHP and Docker effectively for the project. It has definitely
improved my self-teaching skills by looking at documentation, online threads and tutorials online.
I appreciated how the team meetings were done as a group instead of individually. It was great
talking about my project to other people improving my communication skills and being inspired
by other student’s work. Overall, this project has been a great learning experience at knowing
the importance of good planning and keeping the project in scope as well as developing my
research skills by using unfamiliar technologies.

43

References

[1] E. Maddy and G. Robbie, “Cyber security breaches survey,” UK Government, 2022,
accessed: 5 May 2022. [Online]. Available: https://www.gov.uk/government/statistics/
cyber-security-breaches-survey-2022/cyber-security-breaches-survey-2022

[2] O. Shaty, “Lessons learned from analyzing 100 data breaches,” Imperva, 2021, accessed:
5 May 2022. [Online]. Available: https://www.imperva.com/resources/whitepapers/
Lessons-learned-from-analyzing-100-data-breaches-Report-210603-v3.pdf

[3] “The challenges (and opportunities) to improve software security,” Secure Code
Warrior, Evans Data Corp, 2021, accessed: 6 May 2022. [Online]. Avail-
able: https://discover.securecodewarrior.com/rs/126-FZY-662/images/WHITEPAPER
The challenges and opportunities to improve software security FINAL.pdf

[4] M. Swann, J. Rose, G. Bendiab, S. Shiaeles, and F. Li, “Open source and commercial
capture the flag cyber security learning platforms - a case study,” in 2021 IEEE International
Conference on Cyber Security and Resilience (CSR), 2021, pp. 198–205.

[5] “Secure development and deployment guidance,” accessed: 7 May 2022. [Online]. Available:
https://www.ncsc.gov.uk/collection/developers-collection

[6] “Vulnerabilities,” The OWASP® Foundation, accessed: 7 May 2022. [Online]. Available:
https://owasp.org/www-community/vulnerabilities/

[7] “Tools for authoring and serving codelabs,” Google, accessed: 7 May 2022. [Online].
Available: https://github.com/googlecodelabs/tools

[8] A. van der Stock, B. Glas, N. Smithline, and T. Gigler, “Owasp top 10,”
The OWASP® Foundation, accessed: 6 May 2022. [Online]. Available: https:
//owasp.org/www-project-top-ten/

[9] “Cve,” CVE Program, accessed: 10 May 2022. [Online]. Available: https://cve.mitre.org

[10] “Cve record lifecycle,” CVE Program, accessed: 11 May 2022. [Online]. Available:
https://www.cve.org/About/Process#CVERecordLifecycle

[11] “Cve ids and how to get them,” The MITRE Corporation, accessed: 16 May 2022. [Online].
Available: https://cve.mitre.org/CVEIDsAndHowToGetThem.pdf

[12] “Cvss,” National Institute of Standards and Technology, accessed: 12 May 2022. [Online].
Available: https://nvd.nist.gov/vuln-metrics/cvss

[13] “Common vulnerability scoring system version 3.1: Specification document,”
FIRST, accessed: 16 May 2022. [Online]. Available: https://www.first.org/cvss/
specification-document

[14] “Common vulnerability scoring system v3.1: Examples,” FIRST, accessed: 16 May 2022.
[Online]. Available: https://www.first.org/cvss/v3.1/examples

[15] “Common weakness enumeration,” Mitre, accessed: 13 May 2022. [Online]. Available:
https://cwe.mitre.org/index.html

[16] “We-79: Improper neutralization of input during web page generation (’cross-
site scripting’),” Mitre, accessed: 20 May 2022. [Online]. Available: https:
//cwe.mitre.org/data/definitions/79.html

44

https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2022/cyber-security-breaches-survey-2022
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2022/cyber-security-breaches-survey-2022
https://www.imperva.com/resources/whitepapers/Lessons-learned-from-analyzing-100-data-breaches-Report-210603-v3.pdf
https://www.imperva.com/resources/whitepapers/Lessons-learned-from-analyzing-100-data-breaches-Report-210603-v3.pdf
https://discover.securecodewarrior.com/rs/126-FZY-662/images/WHITEPAPER_The_challenges_and_opportunities_to_improve_software_security_FINAL.pdf
https://discover.securecodewarrior.com/rs/126-FZY-662/images/WHITEPAPER_The_challenges_and_opportunities_to_improve_software_security_FINAL.pdf
https://www.ncsc.gov.uk/collection/developers-collection
https://owasp.org/www-community/vulnerabilities/
https://github.com/googlecodelabs/tools
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://cve.mitre.org
https://www.cve.org/About/Process#CVERecordLifecycle
https://cve.mitre.org/CVEIDsAndHowToGetThem.pdf
https://nvd.nist.gov/vuln-metrics/cvss
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/v3.1/examples
https://cwe.mitre.org/index.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html

[17] “Owasp top 10:2021,” The OWASP® Foundation, accessed: 7 May 2022. [Online].
Available: https://owasp.org/Top10/

[18] “Tryhackme website,” TryHackMe, accessed: 13 May 2022. [Online]. Available:
https://tryhackme.com

[19] “Hack the box: Hacking training for the best,” Hack The Box, accessed: 16 May 2022.
[Online]. Available: https://www.hackthebox.com

[20] “Owasp juice shop,” OWASP, accessed: 17 May 2022. [Online]. Available: https:
//owasp.org/www-project-juice-shop/

[21] “Owasp juice shop github repository,” OWASP, accessed: 17 May 2022. [Online]. Available:
https://github.com/juice-shop/juice-shop

[22] “Docker overview,” Docker Inc, accessed: 19 May 2022. [Online]. Available:
https://docs.docker.com/get-started/overview/

[23] “Introduction to vagrant,” accessed: 22 May 2022. [Online]. Available: https:
//www.vagrantup.com/intro

[24] “Sql injection,” PortSwigger, accessed: 13 May 2022. [Online]. Available: https:
//portswigger.net/web-security/sql-injection

[25] “Cwe-79: Improper neutralization of input during web page generation (’cross-
site scripting’),” Mitre, accessed: 22 May 2022. [Online]. Available: https:
//cwe.mitre.org/data/definitions/79.html

[26] “Cwe-23: Relative path traversal,” Mitre, accessed: 22 May 2022. [Online]. Available:
https://cwe.mitre.org/data/definitions/23.html

[27] “Cwe-434: Unrestricted upload of file with dangerous type,” Mitre, accessed: 22 May 2022.
[Online]. Available: https://cwe.mitre.org/data/definitions/434.html

[28] “Php: Hypertext preprocessor,” The PHP Group, accessed: 16 May 2022. [Online].
Available: https://www.php.net

[29] “Welcome to flask - flask documentation (2.1.x),” Pallets Projects, accessed: 22 May 2022.
[Online]. Available: https://flask.palletsprojects.com/en/2.1.x/

[30] M. Wright, “Flask-security - flask-security 3.0.0 documentation,” accessed: 22 May 2022.
[Online]. Available: https://pythonhosted.org/Flask-Security/

[31] “Spring — web applications,” VMware, accessed: 21 May 2022. [Online]. Available:
https://spring.io/web-applications

[32] “Spring security,” VMware, accessed: 21 May 2022. [Online]. Available: https:
//spring.io/projects/spring-security

[33] “Bootstrap · the most popular html, css, and js library in the world.” Boostrap, accessed:
16 May 2022. [Online]. Available: https://getbootstrap.com

[34] “Vmware workstation pro,” VMware. [Online]. Available: https://www.vmware.com/uk/
products/workstation-pro.html

[35] “Pwc uk - building relationships, creating value,” PWC, accessed: 21 May 2022. [Online].
Available: https://www.pwc.co.uk

45

https://owasp.org/Top10/
https://tryhackme.com
https://www.hackthebox.com
https://owasp.org/www-project-juice-shop/
https://owasp.org/www-project-juice-shop/
https://github.com/juice-shop/juice-shop
https://docs.docker.com/get-started/overview/
https://www.vagrantup.com/intro
https://www.vagrantup.com/intro
https://portswigger.net/web-security/sql-injection
https://portswigger.net/web-security/sql-injection
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/434.html
https://www.php.net
https://flask.palletsprojects.com/en/2.1.x/
https://pythonhosted.org/Flask-Security/
https://spring.io/web-applications
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://getbootstrap.com
https://www.vmware.com/uk/products/workstation-pro.html
https://www.vmware.com/uk/products/workstation-pro.html
https://www.pwc.co.uk

[36] “Qinetiq security defence contractors,” QinetiQ, accessed: 23 May 2022. [Online].
Available: https://www.qinetiq.com/en/

[37] “Amazon.co.uk: Low prices in electronics, books, sports equipment more,” Amazon,
accessed 23 May 2022. [Online]. Available: https://www.amazon.co.uk

[38] Z. L. L. W. Marc, Nicolas Garnier, “Codelab formatting guide,” accessed: 25
May 2022. [Online]. Available: https://github.com/googlecodelabs/tools/blob/main/
FORMAT-GUIDE.md

[39] Z. Lokhandwala, “Publish technical tutorials in google codelab format,” ac-
cessed: 24 May 2022. [Online]. Available: https://medium.com/@zarinlo/
publish-technical-tutorials-in-google-codelab-format-b07ef76972cd

[40] “Colorspace - color palettes generator and color gradient tool,” ColorSpace, accessed 24
May 2022. [Online]. Available: https://mycolor.space

[41] GGBot, “Pixeloid font,” accessed 20 May 2022. [Online]. Available: https://fontesk.com/
pixeloid-font/

[42] “Php - official image — docker hub,” Docker, accessed 25 May 2022. [Online]. Available:
https://hub.docker.com/ /php

[43] “Mysql - official image - — docker hub,” accessed 25 May 2022. [Online]. Available:
https://hub.docker.com/ /mysql

[44] “https://www.apachefriends.org/index.html,” VMware, accessed 24 May 2022. [Online].
Available: https://www.apachefriends.org/index.html

[45] “Codelabs command line tool,” accessed 26 May 2022. [Online]. Available: https:
//github.com/googlecodelabs/tools/tree/main/claat

46

https://www.qinetiq.com/en/
https://www.amazon.co.uk
https://github.com/googlecodelabs/tools/blob/main/FORMAT-GUIDE.md
https://github.com/googlecodelabs/tools/blob/main/FORMAT-GUIDE.md
https://medium.com/@zarinlo/publish-technical-tutorials-in-google-codelab-format-b07ef76972cd
https://medium.com/@zarinlo/publish-technical-tutorials-in-google-codelab-format-b07ef76972cd
https://mycolor.space
https://fontesk.com/pixeloid-font/
https://fontesk.com/pixeloid-font/
https://hub.docker.com/_/php
https://hub.docker.com/_/mysql
https://www.apachefriends.org/index.html
https://github.com/googlecodelabs/tools/tree/main/claat
https://github.com/googlecodelabs/tools/tree/main/claat

