

Cardiff University
School of Computer Science and Informatics

CM3203 - Individual Project Report

Cyber Security Education Portal

Supervisor: Dr Yulia Cherdantseva

Author: Alexander Jones

13/05/2022

Contents
CM3203 - Individual Project Report .. 1

Table of figures ... 3

1. Introduction .. 6

1.1 Motivation ... 6

1.2 Project scope ... 6

1.3 Project aims and objectives .. 7

Objective 1 – Review relevant services/literature .. 7

Objective 2 – Create and optimize a database suitable for the project ... 7

Objective 3 – Create a user-friendly UI ... 7

Objective 4 – Implement back-end functionality ... 7

Objective 5 – Successfully evaluate the prototype ... 7

Objective 6 – Create an implementation that is secure and complies with most modern security

standards .. 7

Personal objectives ... 8

1.4 Key concepts ... 8

DoS and DDoS Attacks .. 8

DDoS Mitigation .. 9

SQL Injection ... 9

Defending against SQL injection ... 11

Cross-site scripting (XSS) ... 12

Defending against XSS attacks .. 12

Input validation ... 12

Content Security Policy ... 12

1.5 Relevant services and standards ... 12

BBC Bitesize ... 13

Brainpop .. 19

Relevant standards and regulations ... 22

User personas ... 23

Persona 1 .. 24

Persona 2 .. 24

1.6 Approach ... 24

Waterfall methodology ... 25

Agile development methodology.. 26

Evaluation method .. 27

Achieving research aims and objectives ... 28

1.7 System design ... 28

Non-functional User Requirements .. 28

Functional User Requirements ... 29

Use cases ... 32

Low fidelity UI prototype .. 39

System Architecture Diagram ... 45

Frontend technologies .. 45

Backend technologies ... 45

1.8 Implementation .. 48

Role-based login and registration system ... 49

Security configuration and role-based permissions ... 54

Homepage ... 56

Uploading and viewing content .. 59

HTTPS Security .. 61

Overview of security features implemented: ... 61

2.1 Evaluation ... 62

Verifying HTTPS connection .. 72

Ensuring resistance against SQL injection ... 73

Verifying resistance to cross-site scripting (XSS) attacks .. 74

Achievement of deliverables and objectives .. 74

Deviations from the initial plan .. 75

Project limitations ... 76

Future work ... 76

Conclusion ... 77

Reflection .. 77

References .. 78

Table of figures

Figure 1: A diagram showing the basic concept of a DDoS attack [8] .. 8

Figure 2: Example SQL Query .. 10

Figure 3: Example injection statement ... 10

Figure 4: SQL Statement as a result of injection ... 10

Figure 5: Example of parameterized statements [9] .. 11

Figure 6: Explicit construction of SQL statement using string concatenation [9] 11

Figure 7: Homepage of BBC bitesize ... 13

Figure 8: BBC bitesize page displayed after selecting education level ... 14

Figure 9: BBC bitesize subject selection page ... 15

Figure 10: BBC bitesize exam specification selection ... 16

Figure 11: BBC bitesize computer science topic selection .. 17

Figure 12: BBC bitesize sub-topic content .. 18

Figure 13: Brainpop homepage... 19

Figure 14: Page displayed after selecting topic .. 20

Figure 15: Waterfall methodology [15] .. 25

Figure 16: Agile methodology flow [16] .. 26

Figure 17: Prototype login page .. 39

Figure 18: Prototype sign up page .. 40

Figure 19: Homepage prototype ... 40

Figure 20: Admin view homepage prototype ... 41

Figure 21: Add new education level form prototype .. 42

Figure 22: Content selection prototype .. 42

Figure 23: Upload content form prototype .. 43

Figure 24: Content view prototype ... 43

Figure 25: Admin view prototype ... 44

Figure 26: System Architecture Diagram ... 45

Figure 27: Spring boot flow diagram [13] ... 46

Figure 28: Entity relationship diagram .. 48

Figure 29: Database connection in application.properties ... 50

Figure 30: User entity .. 50

Figure 31: Regex used to identify valid email address .. 51

Figure 32: User repository .. 51

Figure 33: User Service interface .. 52

Figure 34: Dependency injection within the UserServiceImpl class ... 52

Figure 35: User save method .. 53

Figure 36: Log in implementation ... 53

Figure 37: Thymeleaf to bind input with object ... 53

Figure 38: UserRegistrationController snippet ... 54

Figure 39: Web security annotation ... 54

Figure 40: HTTP configuration .. 55

Figure 41: Configuring access permissions based on role in SecurityConfiguration.java 55

Figure 42: Homepage .. 56

Figure 43: EducationLevelService.java .. 56

Figure 44: GetEducationLevelById method in EducationLevelServiceImpl.java 56

Figure 45: Delete and save education level methods ... 57

Figure 46: getContent() method within EducationLevelController.java ... 57

Figure 47: Thymeleaf for loop to display education levels ... 57

Figure 48: Controller responsible for displaying the correct content .. 58

Figure 49: Delete method within the education level controller ... 58

Figure 50: Show update form method .. 58

Figure 51: Update education level post method .. 59

Figure 52: Save content controller method .. 59

Figure 53: Thymeleaf snipped displaying content .. 60

Figure 54: Command to generate keystore .. 61

Figure 55: HTTPS configuration in application properties .. 61

Figure 56: PowerShell command used to verify SSL connection .. 72

Figure 57: Confirmation that SSL connection is active ... 73

Figure 58: Browser dev tools showing secure connection ... 73

Figure 59: Log in system rejecting SQL injection attempt .. 74

Figure 60: Script inserted into search box .. 74

1. Introduction
Society as we know it, revolves around technology, the technology industry is set to exceed $5.3

trillion (about $16,000 per person in the US) in 2022 [1]. People of all ages have access to various

technology, whether it be smartphones, laptops or wearable tech such as smartwatches, these are

all common in the average household. A staggering 6.648 billion people (83.89% of the population)

have access to a smartphone. A study in 2019 showed that 49% of children in the UK aged between

8 and 11, owned a tablet with internet access [2]. As technology becomes cheaper, it will become

more accessible and result in more users. Each user will have a different level of understanding of

technology. Some more advanced users may use their increased knowledge of technology to take

advantage of those with less knowledge. Cybercrime is up 600% since COVID [3] and is not showing

any signs of slowing down. The total number of malware infections has been increasing for the last

10 years [3], in 2018 812.67 million devices were infected with malware [3], this is potentially

hundreds of millions of people who suffered as a result of cybercrime. This is not helped by the fact

that the world is currently experiencing a cyber security skill shortage, 64% of cyber firms have faced

problems with technical cyber security skill gaps, either among existing staff or among job applicants

[4].

1.1 Motivation
As technology advances and grows, we will share our data with more services. Attackers want access

to our data and will often break the law and employ unethical techniques in order to gain access to

it. As a result, we rely on cybersecurity professionals to implement secure methods to protect our

data from these attackers. However, the problem lies within the fact that the demand for cyber

security specialists is much higher than the supply. 51% of employers find it difficult to fill cyber roles

[4], and this is in line with the global shortfall of 3.5 million cyber security jobs in 2021 [5]. The lack

of cyber security specialists means that our data is at risk, if current security protocols cannot be

updated and maintained at a fast enough rate to protect against the latest threats then the

consequences would be devasting. For example, one of the most recent and major vulnerabilities

discovered was within a service known as Log4J, the vulnerability meant that attackers could break

into systems, steal passwords and infect other networks with malicious software. Fortunately, this

was patched before any major damage could be done. But with the ever-increasing number of

cyber-attacks and the shortage of cyber security experts, it is only a matter of time before a

vulnerability gets exploited before cyber security specialists are able to patch it. It is therefore

absolutely critical that the cyber security skill shortage is addressed as swiftly as possible. I believe

that an online cyber security education portal would assist in increasing the amount of qualified

cyber security specialists. The portal would contain material suitable for all ages and proficiency

levels, this means even young children could utilize the portal. Being exposed to cybersecurity

material at a young age could spark an interest which would later lead to a potential role in the

cyber security industry. While we may not see an impact on the number of cyber security specialists

immediately, it may still reduce the impact of cybercrimes. For example, phishing is the most

common cybercrime [6] and involves tricking the victim into revealing sensitive information in which

the attacker can then use for malicious purposes. These attacks are usually only successful if the

victim is not cyber aware, therefore with the appropriate cyber education, the victim would be able

to identify that it is a phishing attack.

1.2 Project scope
This project is concerned with creating a cybersecurity education portal that aims to reduce the

cyber security skill gap that is present throughout the world, while also helping to reduce the

effectiveness of cyber-attacks by educating all age groups. The project will also be concerned with

ensuring that all data will be processed in a GDPR compliant manner and that basic security methods

are employed throughout the system. Cyber security material will not be created during this project,

only the foundations of the web application will be implemented, it is up to the users to create and

upload material for others to view. However, there may be cases where I deem it necessary to

create a basic form of example material.

1.3 Project aims and objectives
The overall aim of this project is to implement an online cyber security education portal which will

allow users to upload various types of content with the goal of educating others. The

implementation should prove to be effective in reducing the cyber security skill shortage as well as

decreasing the effectiveness of common cyber security attacks such as phishing. In order to achieve

this, I have broken the project down into smaller goals.

Objective 1 – Review relevant services/literature

- Determine the strengths of relevant services and incorporate them into my own

designs/implementation

- Identify the weaknesses of relevant services and determine how I can improve upon them

- Establish requirements for my own implementation based on relevant literature/services

Objective 2 – Create and optimize a database suitable for the project

- Based on functional requirements, optimize the database to allow the quickest possible

query execution time

Objective 3 – Create a user-friendly UI

- Use inspiration from other services to determine UI design patterns

- Using these design patterns, sketch an initial wireframe of the UI

- Iteratively increase the fidelity of the UI sketches

Objective 4 – Implement back-end functionality

- Link the database with the web framework (hibernate+ spring boot)

- Use java in conjunction with thymeleaf + spring boot to add back-end functionality

Objective 5 – Successfully evaluate the prototype

- Create test cases

- Carry out test cases

- Establish if and why test cases failed

- Implement a fix for the failed test cases

Objective 6 – Create an implementation that is secure and complies with most

modern security standards

- Identify cybersecurity vulnerabilities

- Review how to minimize these vulnerabilities

- Implement methods to mitigate the risk of cyber attacks

Personal objectives

The purpose of this project is to not only develop and implement a web application to combat the

cyber security specialist shortage, but also to develop my own skills and knowledge of computer

science/cyber security. I have compiled a list of personal objectives that I would like to complete

during the course of this project.

- Familiarize myself with the most common cyber-attack methods on websites

- Learn to employ methods to defend against these cyber attacks

- Increase my proficiency in Java

- Improve my knowledge of Java web applications including web frameworks such as spring

boot

- Gain experience developing and optimizing a MySQL database

- Gain a complete understanding of the evaluation procedure

1.4 Key concepts
It is important that this web application is resistant to some of the most common cyber-attacks. I

shall go into detail explaining how these cyber-attacks work, as well as providing potential solutions

to mitigate the risk of a cyber-attack occurring.

DoS and DDoS Attacks

Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks focus on overwhelming a

server with UDP and TCP packets. Due to the huge volume of packets, a server becomes overloaded

and is unable to execute any processes. As a result, all services offered by that server become

unavailable and the impact on the business can be substantial. Security surveys indicate that a DDoS

attack costs a business between $20,000 and $40,000 an hour [7]. A DoS and DDoS attack both

involve overwhelming a server with packets, however during a DoS attack, the packets are sent from

one computer, whereas during a DDoS attack, multiple systems target the network simultaneously.

Figure 1 shows how an attacker can control multiple systems and use these to all flood the same

target device with packets.

 Figure 1: A diagram showing the basic concept of a DDoS attack [8]

There are multiple ways that a DoS attack can be used, the most common being the buffer overflow

attack [8].

Buffer overflow attack – This attack involves overloading a network address with traffic. Each device

has a unique network address, and this is used to determine the target device

ICMP Flood – The ICMP (Internet Control Message Protocol) is a protocol that network devices use

to generate error messages when packets have not been delivered successfully. During an ICMP

flood attack, an attacker uses unconfigured network devices to send spoof packets and pings every

device within the target network.

Teardrop attack – A teardrop attack involves an attacker sending IP packet fragments with an

incorrect offset value to a network. The network then attempts to recompile the fragments,

however due to the incorrect offset values, this task is impossible and the server exhausts itself

during the process.

SYN Flood – An SYN flood exploits the handshake process of a TCP connection, it involves sending a

large volume of SYN packets to a server, the server responds to each connection request by sending

a SYN/ACK packet back to each request. The server leaves an open port ready to receive the ACK

packet (which never arrives). The attacker then continues to send more SYN packets, each arrival

causes the server to open a new port connection, once all available ports have been utilized, the

server is unable to function and the attack is complete.

DDoS Mitigation

Web applications can be protected from DDoS attacks by deploying a DDoS protection service such

as Cloudflare. Cloudflare is a cloud-based provider which acts as a firewall for a web application. To

mitigate a DDoS attack, the process is separated into four distinct stages

Detection – A large part of DDoS mitigation is identifying and distinguishing malicious packets from

legitimate visitors. To identify a DDoS attack, packets are sampled, and this includes data such as

the packet fields (source IP, source port etc), HTTP request metadata and HTTP response metrics

such as error codes. Cloudflare uses rules to determine if a DDoS attack is occurring, if the attributes

of the data collected during sampling matches a specific rule, the rule generates a unique signature.

This signature corresponds to a specific type of DDoS attack and the relevant processes are then

executed.

Response – After the system has detected a DDoS attack, the network drops confirmed bot traffic,

while still allo┘iﾐg the legitiﾏate tヴaffiI to He aHsoヴHed. This is kﾐo┘ﾐ as けout of pathげ, ┘hiIh allo┘s
Cloudflare to asynchronously detect and mitigate attacks without impacting performance.

Routing – Routing the traffic separates traffic into smaller, more manageable portions. This can aid

in preventing denial of service and maintains full functionality.

Adaptation – The network then analyses the traffic for patterns such as IP addresses that are

repeatedly involved in DDoS attacks. The ability to adapt to these attack patterns can help improve

its security against future attacks.

SQL Injection

The main idea behind SQL injections is to execute unauthorised statements on the database. This is

achieved by inserting statements into forms or URLげs. The effects could be devasting, if a DROP

TABLE statement is successfully injected, then a large amount of data could potentially be lost if

there are no up to date backups available. For example, there could be a form that is expected to

take a user ID as an input from a user and then execute the query in figure 2.

 Figure 2: Example SQL Query

This works as intended if the user inputs their ID in the form, however during an SQL injection

attack, a user will input an SQL statement in the form. For example, figure 3 shows a statement that

an attacker could inject.

 Figure 3: Example injection statement

This injected statement, would result in the perfectly valid statement shown in figure 4.

 Figure 4: SQL Statement as a result of injection

Since 1 = 1 is always true, the inputted user ID does not have to be valid, this statement will return

every data field for all users in the database. This is just one example of an SQL injection attack,

different forms will execute different queries, giving the attacker more options when it comes to

injecting SQL statements. There are three main categories of SQL injections, each with sub-types of

their own.

In-band SQL injection:

In an in-band SQL injection attack, the attacker uses the same channel of communication for

both launching attacks and gathering results. There are two sub-types of in-band SQL injection.

- Union-based SQL injection

o The attacker utilizes the UNION SQL operator which combines multiple SELECT

statements to retrieve a single HTTP response. The response can contain data that

the attacker can further utilize for more attacks.

- Error-based SQL injection

o The attack injects statements that cause the database to produce error messages,

these error messages can contain important information about the structure of the

database. This information can be leveraged by the attacker to create more attacks.

Inferential SQL injection:

In inferential SQL injection, to gain an understanding of the structure of the server, an attack will

send data to the server and observe the response and behavior.

- Time-based

o An attacker sends an SQL query to the database using the method above, this makes

the database wait before it can react. An attacker can determine whether a query is

true or false based on the time it took for the database to respond.

- Boolean

o The attacker will inject an SQL query prompting the application to return a result.

The result will depend on whether the query is true or false. The information within

the HTTP response will either be modified or remain unchanged.

Out-of-band SQL injection:

Out-of-band injection can only occur if specific features are enabled on the database server.

This type of attack is usually used as an alternative to the methods listed above. It is the

opposite to the in-band injection in that it occurs if the attacker is unable to use the same

channel to execute the attack and gather information.

Defending against SQL injection

The number one protection against SQL injection is parameterized statements.

Parameterized statements make sure that the inputs passed into SQL statements are

treated in the correct manner. Figure 5 shows parameterized statements that are resistant

to SQL injection attacks.

 Figure 5: Example of parameterized statements [9]

 Figure 6: Explicit construction of SQL statement using string concatenation [9]

Figure 6 shows an unsecure method of using string concatenation to construct the SQL statements,

this is extremely susceptible to SQL injection attacks.

Another approach to protecting against SQL injection is to remove the need to write SQL statements

in the back-end code of the application. This can be done via object relational mapping. It allows you

to manipulate data without the need for SQL statements. If there are no SQL statements present in

the code, then the likelihood of a successful SQL injection attack is substantially reduced.

Cross-site scripting (XSS)

Cross-site scripting attacks involve injecting malicious code into a website, generally in the form of a

browser side script. Since the browser has no way of determining that the script is malicious, the

malicious script can access all cookies, tokens or any sensitive information stored by the browser for

that session. The content of the malicious code will usually send this sensitive information back to

the attacker. There are two main types of XSS attacks, persistent and reflected attacks.

During persistent attacks, the injected code is permanently stored on the target server, this could be

in a comment, forum or even the database. This means that when a user requests the malicious

comment, the script is then executed on the useヴげs machine. Blind cross-site scripting is a

subcategory of persistence attacks, the attackerげs payload is stored on the target server and is then

executed. The attacker would usually input this script into an input field within a form, the form

sends the data to the server where the malicious script is executed.

‘efleIted attaIks ヴel┞ oﾐ the iﾐjeIted sIヴipt Heiﾐg けヴefleItedげ off the ┘eH seヴ┗eヴ, usuall┞ during a

search result. For example, if a user eﾐteヴs a sIヴipt iﾐ a seaヴIh Ho┝, aﾐd the appliIatioﾐ ヴetuヴﾐs けNo
results for: *insert script*げ, then this script is executed, it has been reflected from the URL of the

search query.

Defending against XSS attacks

Input validation

Inputs should be validated to ensure that no malicious scripts are injected. For example, for email

iﾐput fields, it should oﾐl┞ aIIept stヴiﾐgs that Ioﾐtaiﾐ aﾐ け@げ s┞ﾏHol, this dramatically reduces the

number of scripts that can be injected. The same can be said for specifying minimum and maximum

character lengths for inputs.

Content Security Policy

By adding the content-security-policy HTTP header to a web page, server administrators are able to

specify the domains that the browser should consider to be trusted sources. This means that any

scripts, including in-line scripts, will not be executed as the browser will detect that they come from

a source that is not considered to be valid.

1.5 Relevant services and standards
To gain an understanding of both the design and functional requirements of the system I wish to

implement, I reviewed the below relevant services that are currently available. In addition to

reviewing relevant services, I also reviewed the security requirements for modern web applications

as I want to ensure my prototype remains secure against the most common cyber threats.

BBC Bitesize

 Figure 7: Homepage of BBC bitesize

While BBC bitesize is not solely a cyber security education platform, it hosts a wide range of material

spanning multiple age groups and subjects. The concept is the same in that it aims to provide a

centralized form of educational material for a variety of age groups. The homepage above shows a

grid-like layout in which the user is able to select from 3 different age groups. The visual weighting of

each element is appropriate, the eye is naturally drawn to the more important elements of the page

(education level). The top navigation bar features a search and sign in function while also providing

quick access to other services that the BBC provide.

 Figure 8: BBC bitesize page displayed after selecting education level

Afteヴ seleItiﾐg the けseIoﾐdaヴ┞げ le┗el of eduIatioﾐ, the useヴ is pヴeseﾐted ┘ith the aHo┗e page. It is a
similar grid-like layout, displaying information such as the different countries within the UK and the

structure of each countries education system. All text contrasts the background so it is clearly

readable while also being accessible for those with colour blindness. The text is black/grey on a

white background which is visible to all type of colour blindness. The two navigation bars are still

present at the top of the page. So far, it is possible to navigate to this page without creating an

account and signing in.

 Figure 9: BBC bitesize subject selection page

Figuヴe Γ sho┘s the ヴesult of IliIkiﾐg oﾐ けGC“Eげ uﾐdeヴ Eﾐglaﾐd iﾐ the pヴe┗ious page ふfiguヴe Βぶ. Again, a

similar grid-like pattern is shown here, displaying the list of GCSE subject available to select. On this

particular page, the visual weighting of each element is not as appropriate as those initially shown in

figure 7. The centre of the screen is primarily focused on prompting the user to create an account to

access more features. The content that a user originally navigated this page to access is right at the

very bottom and requires the user to scroll down to even see past the second column of content.

However, when signed in, this section is no longer displayed and a higher percentage of the screen is

allocated to displaying the subjects.

 Figure 10: BBC bitesize exam specification selection

Figuヴe ヱヰ sho┘s the page displa┞ed afteヴ seleItiﾐg the suHjeIt けCoﾏputeヴ sIieﾐIeげ. Again, the grid-

like design pattern is continued here. It appears that BBC bitesize is more of an exam revision site,

listing the specific exam specifications that are available throughout the country. The centre of the

page is used to promote the user to register and create an account, but this is no longer displayed if

the user is logged in. The footeヴ titled けHest of the BBCげ displa┞s the ﾏost populaヴ Ioﾐteﾐt that the

BBC offer, however this is not relevant to the content that the user has selected.

 Figure 11: BBC bitesize computer science topic selection

Figuヴe ヱヱ sho┘s the page that is displa┞ed afteヴ seleItiﾐg the e┝aﾏ Hoaヴd けOC‘げ. It breaks the subject

down into topics that are displayed in large, bold text on the left, and these are further broken down

into sub-topics that are displayed on the right. The topics that are displayed here are unique to the

exam board specification that was selected on the previous page.

 Figure 12: BBC bitesize sub-topic content

Figure 12 shows the page displayed after selecting a sub-topic. The main information is displayed

towards the centre of the screen, with navigation buttons present at both the top and bottom of the

display. The navigation buttons feature arrows to enable to the user to go to the next or previous

page, while also providing the ability to instantly navigate to any page. The right-hand side of the

page features quick links to various other sub-topics under computer science. The current selected

sub-topic is highlighted in black.

Overall, BBC bitesize offers a wide range of features, I have summarized what I believe to be the

strengths and weaknesses of this platform.

+ Log in/registration system

+ Content separated into different education levels

+ Search function

+ Ability to take tests

- No ability to upload content

- No file download ability

- Material complexity is limited to A-level

Brainpop

Figure 13: Brainpop homepage

Like BBC Bitesize, Brainpop does not exclusively provide content related to cybersecurity, however

the concept is similar in that it aims to provide education to a wide range of age groups. The

homepage in figure 13 features a card like design which are used to represent each category. A

menu bar is present at the top of the page ┘ith optioﾐs to log iﾐ. The けBヴaiﾐPOPげ iIoﾐ iﾐ the top left
is clickable, returning the user to the homepage. The name of the topic selected is also presented at

the top of the screen. All text is clearly visible as the text is a darker colour on a light background.

Figure 14: Page displayed after selecting topic

Figure 14 shows the page displayed after selecting the topic. It features an educational video in the

centre of the screen, with playback options directly underneath. Again, the grid-like design is

continued underneath, displaying further options such as the ability to take quizzes or make notes

on the video. At this stage, an account is required to watch the videos or complete any of the

activities. Those with teacher accounts are also able to make their own quizzes based on the content

in the video. The design of the website is consistent across multiple pages, the same font and size is

present and the location of elements is where I would expect them to be (log in button top right

etc).

To summarise, Brainpop seems to focus on the younger age groups, this is clear from both the visual

design of the website as well as the material present. Role based access permissions can be seen, for

example only teacher accounts are able to make quizzes. Although, the permissions seem to be

quite limited in that admin functions cannot be seen. However, it may be possible that the admin

functions are not viewable by accounts without administrative permissions.

Summary of strengths and weaknesses:

+ Role based access permissions

+ Ability to create quizzes

+ Content separated into categories

+ Clear and consistent design

+ Variety of material type

- Material lacks variety in complexity

- No admin functionality visible

- No ability to upload new material

The above shows a Venn diagram comparing the features present in the two services are reviewed.

There is only one weakness that they both share, and that is the ability to upload and share material

made by the user. On both websites, there was no clear way to upload or view material uploaded by

others. It appeared that the material on the site was made exclusively by the organisation which

meant that the amount of material on the site was quite limited. Both websites had organised the

material into categories either based on subject or education level. Additionally, they also both

offered a variety of material type, ranging from quizzes to written material and videos. A log in and

registration system was also present on both services. Upon logging in, more features were

accessible.

The outcome from this analysis is that it is important for me to implement the features that they

have in common into my own system. Both services offer these features for a reason, they help

provide the necessary functionality of the website as well as improving ease of use. Separating

content into categories means that users can spend less time searching for content, improving the

usability of the system. From this chapter I was also able to identify the most common weaknesses

of the relevant services, these include the lack of ability to upload content as well as the small

variety in education levels. As a result of this, I have a good understanding of what features I wish to

implement into my own prototype, either features I liked from other services, or improving on areas

which I thought were lacking in the services I reviewed.

Relevant standards and regulations

The California Department of Education has set out some general standards for web applications

[10]. These standards primarily focus on the usability and readability of the application.

- Must be easy and intuitive to use for the target audience.

- Must function in a logical manner for the target audience.

- Must use styles that are consistent throughout the application and within the associated

website, these include:

o The use of capitalization

o The use of punctuation

o Error messages must appear in a consistent location and style (font type, size and

colour)

The above requirements are more general standards; however the Open Web Application Security

Project (OWASP) has set out some more specific guidance related to the security of a web

application [11]. The OWASP top 10 is a list of the most critical web application security risks, it is

constantly evolving in accordance with advancements and changes in the security market. It is

recommended that web applications make clear attempts to protect against these risks. Below are

presented the top 10 list and their explanations [23].

Broken Access Control

- Attackers may be able to get access to user accounts, or use the system as if they were an

administrator

- For example, an attacker may be able to alter the URL to access pages they should not

normally be able to access

Sensitive data exposure

- Data that is sensitive (passwords, credit card information etc) should be encrypted and

passed only over secure methods of communication (HTTPS)

- Sensitive data that is not adequately protected can be easy targets for attackers

- Sensitive data should also be stored in a way that is compliant with the GDPR

Injection

- An attacker injects code iﾐto the appliIatioﾐ H┞ iﾐputtiﾐg iﾐ┗alid data iﾐto foヴﾏs, U‘Lげs etI.

The attacker could alter the way the application functions, as well as access information they

should not be able to access.

- To avoid SQL injection, statements must be parametrized, or object relational mapping

should be used

Broken authentication

- Authentication functions can be exploited if not implemented appropriately, this can allow

attackers to compromise passwords and even hijack user sessions.

- It is important to have a strong authentication method, such as email authentication

XML External Entities

- Web applications that use XML can be vulnerable to attackers uploading hostile commands

within an XML document

- Static application security testing should be used to detect XXE in the code of the application

Security Misconfiguration

- A configuration error could result in a configuration weakness in which attackers are

able to exploit

- All web applications should be configured correctly

Cross-Site Scripting (XSS)

- XSS attacks occur when a web application allows untrusted data to be uploaded, this

untrusted data can include hostile scripts that the attacker has injected

- Tools should be used to detect any critical defects that allow XSS attacks

Insecure Deserialization

- Attackers can remotely execute code as a result of deserialization flaws. Deserialization is

the process of reconstructing a data structure from a series of bytes in order to instantiate it

for consumption.

- Penetration testing can be used to highlight any potential vulnerabilities

Using components with known vulnerabilities

- When developers choose to ignore warnings and use components with known

vulnerabilities, attackers are able to sniff out these vulnerabilities and exploit them

- A web application should always use components with the fewest vulnerabilities possible

Insufficient logging and monitoring

- Logging provides important timelines of events such as failed login attempts, successful

logins and other important events. Events that are not logged could potentially lead to a

vulnerable application

- Logging should be present throughout the application

Reviewing the most common security vulnerabilities has developed my understanding of the need to

ensure that web applications are resistance to security threats. Therefore, I need to develop my

prototype to be secure, taking into account the vulnerabilities discussed above.

User personas

In order to gain a better understanding of the requirements and objectives of this project, I have

created the following personas that I believe demonstrate the primary users of this system.

Persona 1

Name: Jason Smith

Description:

Jason is a 42-year-old computer science teacher from York. He has detailed knowledge of

cybersecurity and wants to share his knowledge to those beyond his classroom. Jason has created a

wealth of cybersecurity resources suitable for all age groups. He currently has no centralized

resource to share his material with those interested in cybersecurity

Needs:

Jason would like a centralized application that allows him to share his educational resources to those

not just in his classroom. He would like the ability to upload a variety of content suitable for different

age groups to the same application, while separating them based on complexity/age group. As his

content varies by type, from word documents to videos, he needs to be able to upload any file type.

Jason wants his content to be consumed by those all over the world, and assist in reducing the

cybersecurity skill gap that is ever increasing. He wishes that his content inspires people of all ages

to learn about cybersecurity and potentially inspire some to pursue a career in cybersecurity.

Persona 2

Name: Ben Greene

Description:

Ben, age 12, has his eyes set on pursuing a career in cybersecurity. He currently struggles with

finding cybersecurity material that is suitable for his age group. He is aware that the older students

in the school are being exposed to cybersecurity material in their lessonげs but Ben is a few years

away from that just yet. Ben asks his teachers if they know of any cybersecurity material available

that he would understand, they tell him that they will send him over some material specifically made

foヴ hiﾏ. Afteヴ Ioﾏpletiﾐg the ﾏateヴial, Beﾐ doesﾐげt ┘aﾐt to pesteヴ the teaIheヴs agaiﾐ aﾐd ヴeケuest
more material.

Needs:

Ben wants to easily be able to find cybersecurity material suitable for his age group. He aims to find

a variety of material, ranging from online games to videos, that he can consume on a regular basis.

He needs to be able to locate said material without asking his teachers. Upon completion of the

material, when he feels ready, he wants to be able to progress to the next education level and

consume more complex cybersecurity material. He feels that this independent learning, especially

learning of content that is not in the school curriculum, will give him an advantage over his peers

when he eventually applies for a job in the cybersecurity sector.

1.6 Approach
This project aims to provide a centralized form of cyber security educational material that can be

used to supplement material taught at all levels throughout the education system while also

remaining secure against some of the most common cyber-attacks. To ensure that these aims are

completed, it is important to choose a suitable software development methodology. There are a

variety of development methodologies available, but the two most common include waterfall and

agile [14]. I shall start by comparing the two, how their structures differ as well as the advantages

and disadvantages of both.

Waterfall methodology

 Figure 15: Waterfall methodology [15]

Figure 13 shows a diagram of the flow of the waterfall development methodology. The waterfall

methodology is very much a linear design, one stage cannot be completed until all the previous

stages have been. During the requirements stage, all requirements are determined ahead, including

functional and non-functional. During this phase, it is important to get as detailed an understanding

of the userげs requirements as possible, this may involve data gathering/analysis or reviewing

competitors' products. During the design phase, the requirements are used to design the system,

what hardware is needed/suitable, specific software technologies required etc. The next phase is the

implementation, this is when the programmers take the requirements and design into consideration

and create the software. As a result of the previous phases, the programmers will have a clear

understand of what is needed. After the software has been successfully implemented, it must be

tested and verified that it meets the requirements, this is achieved in the verification phase. At this

point, the product is released to the customer, and they provide feedback as to how well the

product meets their requirements. The final stage is maintenance, this is an ongoing stage as it will

likel┞ last foヴ the duヴatioﾐ of the soft┘aヴeげs use. It iﾐ┗ol┗es fi┝iﾐg aﾐ┞ Hugs that the customer has

found, implementing features that are missing, and general upkeep such as ensuring the software

functions on the latest OS releases.

Due to its linear approach, the waterfall method has many advantages. As the system is designed

before implementation is started, any design errors that have been caught before implementation

mean that time is saved during implementation. Additionally, the waterfall method has a clear

structure and follows a set of predefined steps. One step cannot be completed if the previous step is

unfinished, this means that any problems encountered are brought to light quickly. As a result of the

requirements phase, testing the product is easier as it can be completed by reference to the

scenarios defined in the requirements phase. Moreover, since the approach is very structured and

follows a set of predefines steps, progress is much easier to measure.

The waterfall methodology is not without its disadvantages, as the development process is very

much separate from the customer, customer satisfaction is generally lower than products developed

with an agile methodology. This can mean that the requirements are not met, resulting in the

application having to be re-engineered. Due to the linear approach, re-engineering the application is

time consuming and expensive, the new requirements simply cannot be added in during the

implementation phase, the project will have to begin at the requirements stage. Moreover, the rigid

structure of the approach means that it does not cater well for the possibility of a change in

requirements during the development cycle.

Agile development methodology

 Figure 16: Agile methodology flow [16]

Figure 16 shows the flow of an agile development methodology approach, it is very much a circular

approach and relies on continuous improvement. It is heavily focused on testing, adjusting and re-

developing the product until release. Unlike the waterfall approach, the customer is heavily involved

in the development process, customer input is welcomed at every stage of the process.

As a result of the heavy customer involvement, customer satisfaction is usually very high. If any

requirements were somehow not met, due to the circular design approach, it is very easy to

implement additional functionality. Again, as the customer is heavily involved in the development

process, it is very difficult for unmet requirements to be released to the market as the customer will

usually spot this during the cycle.

The agile development methodology is a heavily customer focused methodology, and therefore

makes some sacrifices in other areas. For example, as the design is a circular approach, there is no

clear end in sight for a 100% complete project. Therefore, it is very easy to go off track and do more

cycles than required, which can end up being expensive. Again, this can make it difficult to measure

overall progress as there is no finite end in sight. The incremental delivery can result in a fragmented

output, teams work on each component in different cycles. This also makes it only suitable for larger

projects.

Due to the fact that the agile development methodology is more suited to larger projects and relies

on involving customers, I decided to implement the waterfall methodology. For this project, I need a

clear definition of when the implementation is complete, and the disadvantages of the waterfall

methodology are mainly associated with the lack of customer involvement, which does not affect

this project. Due to the relatively limited time scale for this project, measuring progress is vital to

ensure I remain on track to deliver a functioning implementation by the deadline. Measuring

progress during a waterfall approach is significantly easier as it follows a defined structure, allowing

me to identify when I am falling behind and speed up implementation.

Evaluation method

There were two main types of evaluation techniques that I was considering, heuristic and functional

testing. Heuristic evaluation focuses on the usability of the system, paヴtiIulaヴl┞ Nielseﾐげs ヱヰ usaHilit┞
heuristics [17]. The list contains 10 usability characteristics that the product must have.

- Visibility of system status

o The system should always keep the user informed of the system status within a

reasonable time

- Match between system and the real world

o The system should speak the userげs language, with phrases and concepts familiar to

the user

- User control and freedom

o Users will need an exit button to leave an unwanted mistake

- Consistency and standards

o The system should be consistent with other products and standards, red should

signal delete

o Fonts/colours should remain consistent throughout the application

- Recognition rather than recall

o Options should be visible, a user should not have to remember information from

one part of the application to the other

- Flexibility and efficiency of use

o The system should cater to both inexperienced and experienced users

- Aesthetic and minimalist design

o Only relevant information should be displayed to avoid cluttering the display

o The visual weighting of each element should be proportional to that elements

importance

- Help users recognize, diagnose and recover from errors

o Error messages should be expressed in terms that an inexperienced user can

understand

- Help and documentation

o Any additional information to assist the user in operating the system should be easy

to search and list concrete steps to be carried out

Heuristic evaluation mainly focuses on the non-functional requirement that the system should be

easy to use, achieving the desired task with little to no effort.

Functional testing on the other hand focuses on the functional requirements of the system, what the

system can do. It helps determine if the application as met the functional requirements as set out in

the earlier stages of the development methodology. The result of a functional test case is usually a

けpassげ oヴ けfailげ, it geﾐeヴates disIヴete data ヴather than continuous. Discrete data is important when

testing software as you cannot partially meet a functional requirement. Functional testing ensures

the proper functionality of a system, whereas a heuristic evaluation could give a great score despite

the system providing limited functionality. As a result of this, I decided to use functional testing to

evaluate my product. I opted to not use candidates in a study to evaluate my product as the ethical

process can be time consuming and I can perform the functional evaluation myself.

Achieving research aims and objectives

The aims and objectives listed above were achieved by a combination of my own desires and the

requirements specified by my supervisor. I used knowledge from previous modules to establish what

would need to be done to deliver a successful implementation. For example, UX design taught me to

make wireframes to help create a UI with a high usability. I then put this as an objective that needed

to be completed. This was done for each step in the software development process.

1.7 System design
The below requirements have been determined by a combination of reviewing relevant websites,

standards and regulations.

Non-functional User Requirements

Requirement 1 (must):

Requirement:

User friendly

Acceptance criteria:

- Text must be large enough to be easily read

- Text must be an appropriate colour based on the background

- Buttons must be in a consistent style and location

- UI must have the appropriate number of elements

Requirement 2 (must):

Requirement:

Sensitive data such as passwords must be stored in a secure manner (encrypted)

Acceptance criteria:

- Data is salted and hashed before being sent over a network to be stored in the

database

- Plaintext values of passwords must not be visible

Requirement 3 (should):

Requirement:

Be resistant to SQL injection attacks

Acceptance criteria:

- Any SQL code injected must not be executed

Requirement 4 (should):

Requirement:

Be resistant to small scale DDoS attacks

Acceptance criteria:

- Web application remains fully functional when experiencing a DDoS attack

Requirement 4 (could):

Requirement:

Log all events

Acceptance criteria:

- Web application logs every event for every user

Requirement 5 (could):

Requirement:

Be HTTPS encrypted

Acceptance criteria:

- Data is not transmitted in plain text

Requirement 6 (could):

Requirement:

Mitigate XSS attacks

Acceptance criteria:

- Upon entering a script into an input field, or uploading an html file containing a

script, the browser recognizes that it is not from a trusted source and the script is

not executed

Functional User Requirements

Requirement 1 (must):

Requirement:

Have a log in/register system

Acceptance criteria:

- New accounts are created and stored in the database

- Application validates that credentials are correct and logs the user in

Requirement 2 (must):

Requirement:

Access permissions that vary by user role

Acceptance criteria:

- Different user roles

- Each role has different permissions

Requirement 3 (must):

Requirement:

Ability for educators and admins to upload new content to the site

Acceptance criteria:

- File upload ability

- New content can be viewed by all users

Requirement 4 (must):

Requirement:

Ability for all users to download content

Acceptance criteria:

- File upload ability

- New content can be viewed and downloaded by all users

Requirement 5 (must):

Requirement:

Specific content must be downloadable by all users

Acceptance criteria:

- Download button initiates a download of the content to the useヴげs machine

Requirement 6 (must):

Requirement:

Allow users to log out of the session

Acceptance criteria:

- Once log out button clicked, the userげs session is terminated

- User is returned to the log in screen

- User cannot return to a logged in state by pressing the browsers back button

Requirement 7 (must):

Requirement:

Allow filtering of material

Acceptance criteria:

- User can search for terms and relevant material is displayed

Requirement 8 (should):

Requirement:

Allow admins to manage user accounts

Acceptance criteria:

- Admins can disable user accounts

- Account info is no longer stored in the database

Requirement 9 (could):

Requirement:

Allow users to favourite material

Acceptance criteria:

- Users can select to favourite material

- This material will then be displayed in a favourites section that is unique to each user

Requirement 10 (could):

Requirement:

Allow users to create their own content within the site using a rich text editor

Acceptance criteria:

- Users can use a rich text editor to create content

- Content is uploaded to the database and displayed for all users

Use cases

Use case ID: 1

The users can log

in and access the

system (Must)

Goal The user must be able to create an account/log in to the system to be able

to access the resources

Preconditions The user may or may not have an account

Basic flow 1). The user is directed to the login page by default

2). The user enters the email and password associated with the account

3). The user clicks the login button

4). The user is then redirected to the homepage

Alternate flow 1). The user is directed to the login page by default

ヲぶ. The useヴ does ﾐot ha┗e aﾐ aIIouﾐt so IliIks the け“igﾐ upげ Huttoﾐ

3). The user is redirected to a sign up page where they input their first and

last name, email and a password

4). The user clicks the sign up button, a notification is displayed stating that

the registration was successful

5). The user navigates to the login page by pressing the log in button where

they input the email and password

6). After clicking the log in button, they are redirected to the homepage

Basic flow for use case 1:

Alternate flow for use case 1:

Use case ID: 2

The users can

download material

for a specific

education level

(must)

Goal The user must be able to click on an education level, see a selection of

content for that education level, view the content and download any

material attached

Preconditions The user must be logged in as any role (User, Admin, Educator)

Basic flow 1). The user clicks on an education level that is displayed on the homepage

ヲぶ. The useヴ IliIks the け┗ie┘げ Huttoﾐ ﾐe┝t to the Ioﾐteﾐt that the┞ ┘ish to
view

3). After reading the content, the user clicks the file attached and it begins

to download

Alternate flow 1). The useヴ IliIks the けCoﾐteﾐtげ Huttoﾐ ┘ithiﾐ the ﾐa┗igatioﾐ Haヴ at the top
of the page

2). A list of content for all education levels is displayed

3).On the left side of the page, the user filters down the options by clicking

the education level they wish to see content for

4). Only content relevant to the education level is displayed

ヵぶ. The useヴ IliIks the け┗ie┘げ Huttoﾐ ﾐe┝t to the Ioﾐteﾐt that the┞ ┘ish to
view

6). After reading the content, the user clicks the file attached and it begins

to download

Basic flow for use case 2:

Alternate flow for use case 2:

Use case ID: 3

Admins can delete

accounts from the

database (could)

Goal Admins can delete accounts from the database

Preconditions The user must be logged in as an admin

Basic flow ヱぶ. The useヴ IliIks the けAdﾏiﾐげ Huttoﾐ ┘ithiﾐ the ﾐa┗igatioﾐ Haヴ at the top of
the page

2). The user is redirected to the admin page which shows a list of users, as

well as a search bar and a delete button for each user

3). The user types either the first or last name of the account they wish to

delete iﾐto the seaヴIh Ho┝ aﾐd pヴesses けseaヴIhげ
4). Any users that meet the criteria are displayed

ヵぶ. The useヴ theﾐ IliIks the けdeleteげ Huttoﾐ that Ioヴヴespoﾐds to the account

they wish to delete. The account is then deleted from the database

Basic flow for use case 3:

Use case ID: 4

Admins can delete

education levels

from the database

(Should)

Goal Admins can delete education levels from the database

Preconditions The user must be logged in as an admin and on the homepage

Basic flow ヱぶ. The useヴ IliIks the けAdﾏiﾐ ┗ie┘げ Huttoﾐ oﾐ the hoﾏepage

2). More options are displayed, the user clicks the trash icon in the corner of

the education level they wish to delete

3). The education level is removed from the system and the user is

redirected to the homepage

Basic flow for use case 4:

Use case ID: 5

Admins can edit

the title of

education titles

(could)

Goal Admins are able to edit the title of education levels if they make a mistake

when adding a new level

Preconditions The user must be logged in as an admin

Basic flow ヱぶ. The useヴ IliIks the けAdﾏiﾐ ┗ie┘げ Huttoﾐ oﾐ the hoﾏepage

2). More options are displayed, the user clicks the edit icon of the education

level title they wish to edit

3). A form is displayed with the current title of the education level, the user

Iaﾐ edit this title aﾐd pヴess the けIoﾐfiヴﾏげ Huttoﾐ

4). The user is redirected to the homepage where the edit is visible

Basic flow for use case 5:

Use case ID: 6

Admins and

educators can

upload new

content

(must)

Goal Admins and educators are the only roles able to create and upload new

content to the website

Preconditions The user must be logged in as an admin or educator

Basic flow ヱぶ. The useヴ IliIks the けuploadげ Huttoﾐ uﾐdeヴ ┘hiIhe┗eヴ eduIatioﾐ le┗el the┞
wish to upload content to

2). They are redirected to a form and can enter the title, paragraphs as the

body, links to material or upload a file such as a video or a pdf

ンぶ. The useヴ IliIks the けuploadげ Huttoﾐ aﾐd the Ioﾐteﾐt is uploaded. The┞ aヴe
redirected to the homepage

Basic flow for use case 6:

Use case ID: 7

Admins can

remove content

from the system

(should)

Goal Only admins are able to delete content from the system

Preconditions The user must be logged in as an admin

Basic flow 1). The user clicks on any education level

ヲぶ. The useヴ IliIks the けdeleteげ Huttoﾐ oﾐ the content they wish to delete

3). The content is deleted from the database and is no longer displayed on

the website

Alternate flow ヱぶ. The useヴ IliIks oﾐ the けIoﾐteﾐtげ Huttoﾐ loIated iﾐ the ﾐa┗igatioﾐ Haヴ at
the top of the page

2). A list of all the content on the website is displayed, along with a search

box and filters.

ンぶ. The useヴ IliIks the けdeleteげ Huttoﾐ oﾐ the Ioﾐteﾐt the┞ ┘ish to delete

4). The content is deleted from the database and is no longer displayed on

the website

Basic flow for use case 7:

Alternate flow for use case 7:

Use case ID: 8

Users are able to

follow the links

uploaded

(must)

Goal All users are able to follow external links attached to the content

Preconditions The user must be logged in and on the homepage

Basic flow 1). The user clicks on the education level they wish to view content for

ヲぶ. All ヴele┗aﾐt Ioﾐteﾐt is displa┞ed aﾐd the useヴ IliIks the け┗ie┘げ Huttoﾐ

3). The content is displayed, along with any links or files attached

4). The user clicks the link and a pop up is displayed warning them that they

are leaving to an external site and to proceed with caution

ヵぶ. The useヴ IliIks けokげ aﾐd the┞ aヴe ヴediヴeIted to the U‘L
Alternate flow ヱぶ. The useヴ IliIks oﾐ the けIoﾐteﾐtげ Huttoﾐ loIated oﾐ the ﾐa┗igatioﾐ Haヴ at

the top of the page

2). All content is displayed, the user enters a search term into the search bar

aﾐd pヴesses けseaヴIhげ
3). Irrelevant content is removed from the display

ヴぶ. The useヴ IliIks the け┗ie┘げ Huttoﾐ foヴ the Ioﾐteﾐt the┞ ┘ish to ┗ie┘

5). The content is displayed, along with any links or files attached

6). The user clicks the link and a pop up is displayed warning them that they

are leaving to an external site and to proceed with caution

Αぶ. The useヴ IliIks けokげ aﾐd the┞ aヴe ヴediヴeIted to the U‘L

Basic flow for use case 8:

Alternate flow for use case 8:

Basis flow for use case 9:

Use case ID: 9

Users are able to

add content to

their favorites

(could)

Goal Allow users to add content to a list of favorites

Preconditions The user must be logged in and currently viewing content

Basic flow 1). The user clicks on the star in the top right of the content screen

2). The start turns yellow and a notification is displayed stating that the

content has beeﾐ けAdded to fa┗oヴitesげ

Low fidelity UI prototype

While I am using functional testing to evaluate the application, it is still important to consider the

usability of the system and make the UI visually pleasing. Below are the mock-up designs for the UI,

this also helped me visualize the system and aided in development.

 Figure 17: Prototype login page

Figure 17 shows the mock-up design for the log in page. An email input field, along with a password

field is displayed. Below that are the options to login, or navigate to a sign up page if the user does

not have an account. This layout is consistent with the traditional approach to a log in page and is

likely to be familiar with the user, allowing for increased usability.

 Figure 18: Prototype sign up page

Figure 18 shows the prototype for the sign-up page, it features an email, password and confirm

password field. The same two buttons as shown on the previous page remain in the same location

for improved consistency. The title at the top of the page clearly displays that the user is on the sign

up page rather than the login page.

Figure 19: Homepage prototype

Figure 19 shows the prototype for the homepage, it features a grid like design with the education

levels in cards towards the centre of the screen. The education levels take up the majority of the

space on the screen, they have a large visual weighting which is proportional to the importance of

them as an element. In the top right corner, more options are displayed, including an option to log

out, navigate to the favourites page, admin or content page. In the bottom left, there is a button

which switches to the admin view, allowing the user (who must have admin role) to see more

options. On each education level card, there is an upload button that is clearly visible due to the

contrasting colours.

Figure 20: Admin view homepage prototype

Figure 20 sho┘s the ヴesult of IliIkiﾐg the けadﾏiﾐ ┗ie┘げ Huttoﾐ oﾐ the hoﾏepage, ﾏoヴe optioﾐs aヴe
displayed that are exclusively accessible by admins. For example, there is an edit button in the top

right of the cards, once clicked, this redirects the admin to a form for editing the title of the

education level. The plus symbol on the right of the screen is universally recognized as the addition

symbol, indicating that it is responsible for adding a new education level. The arrow pointing to the

left can also be recogﾐized as a けヴetuヴﾐげ oヴ けHaIkげ Huttoﾐ as it is consistent with other applications

available.

 Figure 21: Add new education level form prototype

Figure 21 sho┘s the ヴesult of IliIkiﾐg the け+げ Huttoﾐ oﾐ the adﾏiﾐ ┗ie┘ page. A foヴﾏ is displa┞ed iﾐ
the centre of the screen where the user is able to input an education level name. There is also an

option to cancel, with a button in the bottom left, or an option to add in the bottom right. These

options remain in these positions for the edit form to improve the consistency of the UI and increase

usability.

 Figure 22: Content selection prototype

Figure 22 shows the prototype for the content selection view, this is displayed after selecting an

education level. Only content that falls under the education level is displayed. On each content title,

a けtヴashげ iIoﾐ is pヴeseﾐt, this is ┘ell kﾐo┘ﾐ as the s┞ﾏHol foヴ delete and therefore should easily be

recognizable by users. At the top of the list of content, a search bar is present. This will allow users

to search for the title of specific content they wish to view. Additionally, if the user wishes to display

content that falls under a different education level, they may choose from a list of education levels

on the left side of the screen. The education level that they are currently browsing is clearly

displayed in large text above the list of education levels. Again, the arrow is present in the same

position as in the other displays for consistency and usability reasons.

 Figure 23: Upload content form prototype

Figure 23 sho┘s the upload Ioﾐteﾐt foヴﾏ that is displa┞ed afteヴ IliIkiﾐg the けuploadげ Huttoﾐ that is
featured below each education level on the homepage. The styling is very consistent with the add

and edit education level form, the cancel button remains in the same position. The form features

two input fields for a title and a link. The link is not a required field as an educator may not wish to

upload a link to their content. The けHヴo┘seげ Huttoﾐ opeﾐs the file e┝ploヴeヴ aﾐd allo┘s the useヴ to
attach a file to their content. Again, the arrow is featured in the same position as the previous pages.

 Figure 24: Content view prototype

Figure 24 sho┘s the Ioﾐteﾐt ┗ie┘ page, the ヴesult of IliIkiﾐg け┗ie┘げ oﾐ the Ioﾐteﾐt. The centre of the

page showcases the text area, this is where the text that the educator has inputted is displayed. In

the top left, in large, bold text, is the title of the content. Directly under text area for the content are

buttons for the material attached. One button directs the user to the link that the educator has

attached, while the other starts downloading the file. The file type is viewable before downloading

the file encase the user does not want to download a video file as they are typically much larger than

PDFげs.

 Figure 25: Admin view prototype

Figure 25 shows the admin view page, this page is only accessible by those with the admin role. It

displays the users in a grid-like manor, with the same delete icon as featured on previous pages. A

search bar is also present in the same position as with the other pages, and the title is clearly visible

in large, bold text.

Stores HTML

and CSS files
MySQL

System Architecture Diagram

 Figure 26: System Architecture Diagram

Figure 26 shows the System Architecture Diagram. There are 2 main components within the system

architecture diagram, the frontend and the backend.

Frontend technologies

As this is a web application, HTML was chosen as the primary frontend technology, it is the standard

markup language for web applications, supported by all browsers, is lightweight and the

development process is very simple. Accessibility is a key value in web applications, as HTML is

supported by all browsers, all users will be able to access the website, resulting in increased

accessibility. The development process is fast as a program restart is not required to be able to see

any changes. All it takes is a simple refresh of the browser window, the browser will fetch the

updated HTML file from the web server and the new changes will be displayed. CSS is also a standard

in the modern web, it allows more functionality and freedom in terms of the design of the frontend.

I made the decision to not include JavaScript in this project as I believe the functionality of CSS is

more than enough for the pヴojeItげs requirements. JavaScript may also hinder client-side security, as

JavaScript code is visible to the user, it may be used for malicious purposes. Additionally, I also chose

to not include JavaScript as a means of consistency. Different browsers interpret JavaScript

differently, which may result in unwanted functionality across some browsers. On the other hand,

CSS is interpreted the same across all modern browsers.

Backend technologies

The backend of an application is responsible for the logic of the application, processing data,

responding to the requests of the frontend and providing it with functionality. There were a lot of

options in terms of choosing the primary programming language, PHP, Python or Java are among the

top 5 programming languages used in web applications [12]. Python has various web frameworks

HTML, CSS

Frontend
Backend

Java, Thymeleaf. Contains

the logic of the application

Request

Response

HTTPS

Encrypted

File system

Server
Localhost

Database

HTTPS HTTPS

available, the two options that I considered were Django and flask. I already had experience with

flask after using it for multiple projects in the past, while Django was something new to me, I

ultimately decided to not use python as I wanted to expand my web development skills beyond

python and explore new methods in web development. Java was next in question, it is an object

orientated programming language that I have previously had experience in, however I have never

developed a web application with it. While a pure Java application is possible, a Java web framework

can hugely increase the production speed. A web framework contains pre-written code that act as

templates that can be used to create applications quickly and efficiently. Frameworks eliminate the

need to create everything from scratch, which not only increases production speed, but is also much

safer in terms of cybersecurity. The code snippets in frameworks have usually had years of

development to ensure they are secure, if any vulnerabilities are discovered, a patch will

automatically be rolled out. On the other hand, if I were to develop a pure Java application,

maintenance against exploits would be much more of a manual job, sacrificing efficiency and

ultimately the safety of the system. There are a variety of web frameworks available for Java, one of

which I researched was Struts. Struts follows the Model-View-Controller model and extends the JSP

API. An MVC model separates the application into three distinct components, the model, view and

controller. Each component is responsible for different functions throughout the application. One of

the main advantages of employing an MVC model is that it allows for parallel development. While

this advantage is not as significant since this is an individual project, the MVC model helps to reduce

code duplication, resulting in faster production times. Spring boot is an alternative Java web

framework that is an extension of the popular Spring framework. Like Struts, Spring boot also

implements an MVC model , although ┘hile “tヴutげs ﾏodules aヴe tightl┞ Ioupled, “pヴiﾐg Hoot offeヴs
loosely coupled programming modules. In general, loosely coupled programming modules are better

as they offer more flexibility and re-usability of the code as the modules are only dependent on

interfaces, rather than classes. As a result of this, I came to the conclusion that I would use Spring

boot as the web framework for my project. Additionally, there were more resources available for

Spring boot when compared to those available for Struts.

 Figure 27: Spring boot flow diagram [13]

Figure 27 shows the basic architecture of a spring boot Java application, it consists of six main

components. The model, or entity, defines the objects in the database and application. It sets out

the attributes of the object, as well as its relationship between other objects. The use of the Java

Persistence API (JPA) allows for automatic table generation based on the attributes and relationships

defined within the models. Additionally, column names, data types and constraints can all be

specified in pure Java, with no need to write SQL commands to construct the database. This is one of

the reasons why I chose spring boot. The repository is a mechanism which emulates a collection of

objects, by extending CRUD services or JPA repositories, it allows CRUD operations to be completed

on the objects contained within the repository. The objects can be injected into the service layer

using the @Autowired annotation. This means that any methods defined in the repository class can

then be used within the service layer. The service layer can be further broken down into two sub

layers, the service and the service implementation. Firstly, the service class contains the definitions

for the methods, while the service implementation contains the logic for these methods. The service

implementation class implements the service class, while other dependencies can also be injected.

The next component in the spring boot architecture is the controller layer. The controller layer is

responsible for processing the incoming API requests, adding the appropriate objects to a model,

and then returning this model as an HTML page. It is an intermediatory layer between the client and

service layer and prevents the client from directly interacting with the complex service layer.

Although the majority of the backend was implemented in Java, it was not the only language used.

Thymeleaf played a major role in implementing the logic of the application. Thymeleaf is a Java

template engine that is responsible for serving HTML at the view layer of MVC based projects.

Additionally, it also assists in binding data that the client has inputted into a form, with objects

defined in the model classes. It works in conjunction with the controller layer to output data stored

in the database to the view which is then rendered as HTML on the clients side. JSP is another Java

template eﾐgiﾐe, ho┘e┗eヴ I Ihose to use Th┞ﾏeleaf as it utilizes けﾐatuヴal teﾏplatesげ which look more

like HTML and are easily readable compared to JSP files. While JSP is faster, it has a much steeper

learning curve and does not support natural templates.

The application needs to be able to store data, so a database is required. The two most common

types of databases are SQL and NOSQL. Some examples of SQL databases are MySQL and

PostgreSQL. These are both relational database, they are made up of different tables, each

consisting of rows and columns, the tables are linked via relationships. One of the main advantages

of relational databases is that they can guarantee data accuracy. As all the tables are connected via

primary and foreign keys, they are interrelated to each other, meaning that all the data store is non-

repetitive. NoSQL databases are non-tabular databases and store information in JSON documents.

They offer much higher performance than relational databases and are also much more scalable

when employing techniques such as sharding. However, at the cost of scalability and performance,

they often sacrifice Atomicity. MongoDB is one example of a NoSQL database that I have previously

had experience with. In the end, I ultimately decided to use a relational database, in particular

MySQL. I determined that for my application, atomicity is more important that scalability and

performance. It is important to consider that while NoSQL databases are more easily scalable, it is

not to say that relational databases are not scalable. My technology of choice was MySQL as this was

something I had previous experience with, but also seemed to me the most appropriate choice.

1.8 Implementation

 Figure 28: Entity relationship diagram

Figure 28 shows the entity relationship diagram of the MySQL database that I implemented. Each

table has an integer as a primary key to identify the object in the database. The けuseヴげ taHle featuヴes
an email, first name, last name and password field with the VARCHAR datatype. For the password

field, it was important that the database allowed large values as the password is not stored in plain

text. The hash function converts the plaintext value inputted by the user, into a string of 56

characters. The string can contain any character, ranging from numbers and letters to special

characters, so it was important that the database could handle these. The user table also contains

t┘o ﾏoヴe fields, the けfa┗ouヴite_Ioﾐteﾐtidげ aﾐd けヴeset_tokeﾐげ. Uﾐfoヴtuﾐatel┞, I ┘as ﾐot aHle to
implement the functionality of these fields. The けuseヴげ taHle is joiﾐed to the けuseヴs_ヴolesげ taHle via a

many to one relationship. I used a many to one relationship here to aid future development. In the

future, it could be possible to add more roles than the original 3, perhaps granting educators new

roles based on how much content they upload. This would be easier to implement as with the

current system, a user is able to have more than one role, while roles are also able to be assigned to

more than one user. The けuseヴ_ヴolesげ taHle Ioﾐtaiﾐs a list of all useヴIDげs paiヴed to the ID of the role

they currently have. I chose to join these two tables as one of the main advantages of a join is that it

increases the performance of any queries being executed, instead of having the roles contained

┘ithiﾐ the けuseヴげ taHle, I aﾏ aHle to sepaヴate them into two distinct tables. The けeduIatioﾐ_le┗elげ
table contains two fields, the education level ID and the education level title. The level ID is the

primary key of the table and it of a BIGINT data type. The primary key is automatically generated

using JPA in spring boot and automatically selects the most appropriate data type and constraints.

The education title is a VARCHAR, as the educator is able to choose a title of varying length

containing a variety of different characters. The CHAR data type would not be suitable here as the

character length of the education level title is unknown and varying in length. The けIoﾐteﾐtげ taHle is
made up of 8 attributes. The content_id is very much like the education_level_id in that it is a BIGINT

and is automatically generated using JPA, it is the primary key of the table. The content_title is self-

explanatory, it holds the title of the content. As this value can vary in length, I chose the VARCHAR

datatype over the CHAR datatype. The けIoﾐteﾐtげ table also contains a foreign key, the education

level ID. EaIh Ioﾐteﾐt けHeloﾐgsげ to aﾐ eduIatioﾐ le┗el, the ┗alue of the eduIatioﾐ le┗el ID ┘ithiﾐ the
content table determines which education level the content is displayed under. The けIoﾐteﾐt_Hod┞げ
field contains the main text for the content. When uploading content, an educator is able to enter

text into a text area that is capable of containing several paragraphs of information. The

MEDIUMTEXT data type can store up to 16,777,215 characters. I believe this was a suitable choice as

the TEXT data type can only store 65,545 characters , while this will be sufficient for most cases, I did

not want any educators to be limited in any way. The LONGTEXT data type is capable of storing up to

4,294,967,295 characters, which is much too large of a quantity. If somehow this capacity was

regularly met by educators, then it would have a negative impact on the performance of the system.

I believe the MEDIUMTEXT type is a compromise between the two and is therefore the most

appropriate data type. The けfileﾐaﾏeげ field Ioﾐtaiﾐs the ﾐaﾏe of the file foヴ aﾐ┞ files that the
educator has attached. It has a data type of VARCHAR as with previous fields, the length of the data

as well as the characters, is unknown. Additionally, the けfile_Ioﾐteﾐtげ field, Ioﾐtaiﾐs the H┞tes that
make up the file. Without this field, the filename would exist and the user would be able to

download it, however the file would not contain any content as the bytes that construct the file are

not stored in the database. In order to store the file content, I have chosen a data type of

LONGBLOB. BLOB stands for binary large objects, which is exactly what a file is. The LONG version of

BLOB specifies a larger storage capacity of 4,294,967,295 bytes, whereas MEDIUMBLOB has a

maximum capacity of 16,777,215 bytes. While this would be enough for PDF files etc, I want to allow

educators to upload videos, since these are typically much larger, I decided that LONGBLOB would

be more appropriate. Content is also able to contain a link to material outside of the website, as

links can be very long, I opted for a VARCHAR with a max length of 500. While common search

engines such as internet explorer support a max URL length of 2,083 characters, it is much more

t┞piIal foヴ U‘Lげs to He less than 120 characters long.

The げIoﾐteﾐtげ aﾐd けeduIatioﾐ_le┗elげ taHles aヴe joiﾐed ┗ia theiヴ pヴiﾏaヴ┞ ke┞s to Iヴeate a ﾐe┘ taHle
containing a list of education levels, along with the content that falls under each level.

Role-based login and registration system

In order to create a login and registration system, I first had to set up a connection with the

database, this was done by adding some code to the application.properties file. This file contains the

properties for the application, database connections can be added here, as well as configuring HTTPS

connections etc.

 Figure 29: Database connection in application.properties

Figure 29 shows how the database connection is established, it involves specifying a data source

URL, username and password. The URL is the URL to the database, it features a host name and port

followed by the name of the schema you wish to connect to. Hibernate is used to create the tables

in the database from Java code, it is important to declare a hibernate dialect to use as this will

determine the syntax of the SQL statements it generates. In this case, I am using MySQL 5.1, so I

specify the MySQL5 dialect. Now the connection to the database has been made, it was time to

construct the entities of the system. I staヴted out ┘ith geﾐeヴatiﾐg the けuseヴげ aﾐd け‘oleげ eﾐtities. Each

entity represents a table in the database, the table is automatically created upon execution of the

application, this is achieved by utilizing the JPA. This technique is known as object relational

mapping, each entity in the database is represented by an object in Java. ORM creates a layer

between the programming language and the database, I can then query data in the database using

Java. This is very important from a security point of view as SQL injection is not possible. SQL

injection relies on extending on an SQL statement, but since there are no explicit SQL statements,

the application is much less vulnerable to these types of attacks.

 Figure 30: User entity

Figure 30 shows a snippet of the user entity, I start off by declaring it as an entity by using the

け@Eﾐtit┞げ aﾐﾐotatioﾐ. I am able to define the table name, as well as any unique constraints (primary

ke┞ぶ I ┘aﾐt to e┝ist H┞ usiﾐg the け@TaHleげ aﾐﾐotatioﾐ. Every entity requires an ID, I have set the ID

usiﾐg the け@Idげ aﾐﾐotatioﾐ, by changing the generation type to identity, for each user in the

database, the ID is auto-incremented by 1. Additionally, in the user entity I am able to define the

columns that are created in the database, I am able to set constraints as well as specifying data

types. In this case, I wanted to add some constraints to provide multi-layer input validation. By

addiﾐg the け@Eﾏailげ aﾐﾐotatioﾐ aHo┗e the eﾏail ┗aヴiaHle, hibernate is made aware that this column

should only contain data that matches the structure of an email address. However, by default,

hibernate attempts to match the string with the regex expression of (.*). Regex is typically used to

assist in matching patterns in a string, and with the correct expression, can be used to detect if a

string matches a valid email pattern.

regexp = "(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\.[a-z0-9!#$%&'*+/=?^_`{|}~-
]+)*|\"(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21\\x23-\\x5b\\x5d-
\\x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])*\")@(?:(?:[a-z0-9](?:[a-z0-
9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\\[(?:(?:25[0-5]|2[0-
4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-
z0-9-]*[a-z0-9]:(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21-\\x5a\\x53-
\\x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])+)\\])")
 Figure 31: Regex used to identify valid email address

Figure 31 shows the regex that I used to help validate the email field and ensure only valid email

addresses can be stored in the database. Originally, I did not have regex implemented, instead I

simply relied on front end input validation. However, when penetration testing my application I

discovered a vulnerability. To eﾐsuヴe that the eﾏail eﾐteヴed Ioﾐtaiﾐed aﾐ け@げ s┞ﾏHol, the iﾐput t┞pe
iﾐ the HTML ┘as けeﾏailげ. Although, I discovered that the user could inspect the element using the

de┗elopeヴ tools of the Hヴo┘seヴ aﾐd ﾏaﾐuall┞ Ihaﾐge the iﾐput t┞pe fヴoﾏ けeﾏailげ to けte┝tげ. This ┘ould
remove the email constraint, allowing the user to create an account with an email of any series of

characters provided it did not already exist. While I cannot prevent the user from inspecting the

element, adding input validation on multiple layers means that changing the input type has no effect

on the constraints as the constraints are defined in the back end as well.

Figure 30 also shows how I implemented a relationship between two entities. As for the reasons

explained above, I decided to implement a many to many relationship between the user and role

entities. I specified the fetch type to be eager which means that hibernate will fetch all elements of a

relationship, not just the parent. The alternative, lazy, only fetches elements when needed. While

lazy fetching offers better performance, the JDBC session must remain active when the entities need

to be loaded, however this is not always possible. The session may end before the get() method has

been called. By specifying a cascade type of all, when a user account is deleted from the system, the

role ID that was associated with the user is also deleted. To Iヴeate a taHle that Ioﾐtaiﾐs the useヴ IDげs
┘ith the assoIiated ヴole IDげs, I joiﾐed the ヴole aﾐd useヴ eﾐtities by the ID of each entity. The roles are

then stored in a collection. The remainder of the user entity is made up of the appropriate

constructors, getter, and setter methods.

As explained earlier, a repository emulates a collection of objects, and allows CRUD operations.

 Figure 32: User repository

Figure 32 sho┘s a sﾐippet of the useヴ ヴepositoヴ┞, the け@‘epositoヴ┞げ aﾐﾐotatioﾐ deIlaヴes the
interface as a repository. The interface extends from the Crud repository which allows CRUD

operations to be performed on objects within the repository. I also defiﾐe a ﾏethod, けfiﾐdB┞Eﾏailげ,
this is eケui┗aleﾐt to aﾐ “QL stateﾏeﾐt of け“ELECT u fヴoﾏ Useヴ WHE‘E eﾏail =げげ げ. This is where you

can truly see the functionality of object relational mapping, there is no explicit SQL present for

finding a user by an email, which means the application is much less vulnerable to SQL injection

attacks.

 Figure 33: User Service interface

Figure 31 shows the UserService interface which extends upon the UserDetailsService. The

UserDetailsService is a core interface within spring that retrieves the users authentication and

authorization information. Within the UserService, there are two methods, a save method which is

used to save the user info into the repository, and a list which is used to display a list of users. The

purpose of these methods will become relevant later.

Figure 34: Dependency injection within the UserServiceImpl class

Figure 34 shows a portion of the UserServiceImpl class, this is responsible for implementing the

functionality of the log in and registration system. Here, the userRepository bean is injected, which

allows the class to utilize some of the methods defined in the repository, as well as any CRUD

operations as the repository extends from the CRUD repository. けBCヴ┞ptPass┘oヴdEﾐIodeヴげ is also

injected which is a function that encrypts fields, typically passwords, by generating a random salt

value to calculate the hash. This means that each time this function is called, a different hash value is

generated even if the input is the same. As a result, the hash function is resistant to collision attacks

as identical messages will always have different hash values.

 Figure 35: User save method

Figure 35 shows how a user is saved into the repository and how the password is encoded into a

secure form. I start off by declaring a new instance of user and use the get() methods set out in the

user entity to get the attributes for the user from the input field in the frontend. At this stage, it was

important to utilize the passwordEncoder function to hash the password value that was retrieved. I

also assigﾐ the useヴ the ヴole け‘OLE_U“E‘げ by creating a new Role instance and adding it to the

collection. I then call the userRepository save method and save the new user.

 Figure 36: Log in implementation

Figure 36 shows how the login system is implemented. The user object is returned to spring security

where it validates the user object against the credentials entered by the user. It then fetches the role

of the user as well as the authorities that come with that role.

Figure 37: Thymeleaf to bind input with object

Figure 37 shows how the useヴげs input is bound to the user entity. By creating a thymeleaf field and

specifying which attribute the input field corresponds to, provided the input meets all validation

requirements, the input is added to the correct field in the database.

 Figure 38: UserRegistrationController snippet

Figure 38 shows a portion of the UserRegistrationController. As mentioned earlier, a controller

process incoming HTTP requests, adds objects to a model and then returns the model to the user in

the form of HTML. The け@GetMappiﾐgげ aﾐﾐotatioﾐ haﾐdles the HTTP get ヴeケuests, iﾐ this Iase, ┘heﾐ
the showRegistrationForm method is called, the registration page view is returned. The

け@PostMappiﾐgげ aﾐﾐotatioﾐ haﾐdles the post ヴeケuests, usuall┞ fヴoﾏ iﾐput foヴﾏs suIh as the
registration form. By using @ModelAttribute, I am able to supply the User object to the controller.I

defiﾐe the けeﾏailげ ┗aヴiaHle eケual to the result of the findByEmail method. This method is present in

the user repository , I can get the value from the input field by calling the getEmail method. This sets

the email variable equal to whatever the result of the query of the repository is. Therefore, if email is

not equal to null, then the email was found to already exist in the user repository. This means that

an account already exists with that email so a user should not be able to make a new account with

that same email. To alert the user of this, I return a redirect to an error page which displays the

appropriate error. On the other hand, if the result of the query is null, then the account does not

exist and the data is saved into the repository using the userService. The user is then redirected to a

success page where an alert is displayed stating that they have successfully registered.

Security configuration and role-based permissions

In spring boot projects, it is possible to configure the security of the system by implementing a

security configuration class. Within this class it is possible to permit certain roles to access specific

pages, add HTTP headers and add a host of other security features.

 Figure 39: Web security annotation

The け@EﾐaHleWeH“eIuヴit┞げ aﾐﾐotatioﾐ present in figure 39 automatically enables the web securities

defined by the web security adapter within spring security. By enabling this, it provides protection

against cross site forgery attacks. CSRF attacks work by forcing the user to submit a state-changing

request such as changing a password or sending a message. If a user clicks a malicious URL that

contains an unauthorized request for the target website. The browser of the unsuspecting victim

then sends this request to the target website. While the malicious website does not have direct

access to the target site, it has access to the users session cookies which can contain the credentials

to the website. The target application, if open, will treat this malicious request as legitimate and

respond accordingly. When a web application is vulnerable to CSRF attacks, the browser fails to

distinguish if requests are coming from external websites. Enabling web security means that my

application is able to reject requests coming from external websites. It does this by generating a

synchronizer token pattern. This ensures that every request contains a randomly generated token as

an HTTP parameter. Upon receiving the request, the web server then compares the value to the

expected result and rejects the request if there is no value or the value does not match the expected

value. This means that the application is able to distinguish between legitimate requests by the user,

and malicious requests from external web applications. Since I am using Thymeleaf, this token is

automatically added to the form as a hidden input field.

 Figure 40: HTTP configuration

Figure 40 shows HTTP configuration of the application. I have added some security headers to the

HTTP configuヴatioﾐ. The け.┝ssPヴoteItioﾐげ headeヴ adds a la┞eヴ of protection against cross-site scripting

attacks. It does this by utilising the xss auditor in most modern browsers, adding the ability to tell

the browser to not render any scripts attempted to be injected. However, not all browsers have the

ability to do this as they cannot make use of the xssProtection header. Therefore, I added another

layer of protection by configuring a content security policy header. All browsers can make use of the

content security header, which allocate trusted sources and block any scripts from untrusted

sources. In this case, I define the only trusted source to be the application itself.

 Figure 41: Configuring access permissions based on role in SecurityConfiguration.java

Figure 41 shows how the role-based access permissions are configured. This is done by using the

antMatchers() method under the HttpAuthorizeRequests method. By defining the URL and adding

the name of the role within the hasRole() method, I can permit certain roles to be able to access

Ieヴtaiﾐ U‘Lげs. Iﾐ the Iase ┘heヴe I ┘aﾐt to allo┘ ﾏultiple ヴoles, I used the hasAﾐ┞‘ole ﾏethod aﾐd
inputted a list of the roles I want to be able to access the URL. The use of the anyRequest() and

authenticated() methods restricts the access for any endpoint apart from the public URL, it also

means that the user must be authenticated in order to aIIess the U‘Lげs.

Homepage

Like the user and role entities, I made the education level an entity and created its own repository.

The education level repository extended from the crud repository like with the previous examples.

 Figure 42: Homepage

Figure 42 shows the homepage, it features a list of education levels, as well as other options such as

admin view or upload. I could have simply hard coded each education level into the HTML but since I

wanted the admins to be able to add, edit and delete education levels, this approach would not

work. Instead I would have to read the data from the database and display it. To allow for these

operations, I declared the following methods in the education level service class.

 Figure 43: EducationLevelService.java

The first method defined allows me to search for an education level when given the ID, the second

one deletes an education level by ID, and the final one saves a new instance of the education level

object.

 Figure 44: GetEducationLevelById method in EducationLevelServiceImpl.java

Figure 44 shows how the getEducationLevelById method is implemented. I use the optional type to

convey to spring that the return may be empty, without using null. I use the findById method within

the education level repository to search the repository for the ID that is passed in as a parameter. If

there is no education level that matches the ID passed in as a parameter, then a run time exception

is thrown stating that the education level has not been found. However, if the optional variable is

present and not empty, then it will fetch the education level object and return it.

 Figure 45: Delete and save education level methods

Figure 45 demonstrates how the save and delete education level methods have been implemented.

They simply utilize the save and delete methods featured in the education level repository by

extending the crud repository.

 Figure 46: getContent() method within EducationLevelController.java

Figure 46 shows how the homepage view is returned along with the education levels as objects. It

utilizes the MVC model of spring. B┞ settiﾐg the ┗ie┘ ﾐaﾏe as けiﾐde┝げ it tells spヴiﾐg Hoot to ヴetuヴﾐ
that html page when the model and view is returned. In order for it to display the education levels,

these must be added as objects to the view and this is done by querying the repository and calling

the fiﾐdAllふぶ ﾏethod. This adds all the oHjeIts to a list Ialled けEduIatioﾐLe┗elListげ. Then, in order to

display the education levels in the HTML page, I utilize a thymeleaf for loop to iterate through the list

of education levels.

 Figure 47: Thymeleaf for loop to display education levels

Figure 47 demonstrates the for loop mentioned above, this segment of code is equivalent to the

pseudo Iode of けfoヴ eduIatioﾐ le┗el iﾐ EduIatioﾐLe┗elList:げ. Within the thymeleaf block that I have

defined, I put the remainder of the HTML responsible for creating the grid like layout of education

levels. Once clicked, each education level redirects to the same HTML page, but a different model

Ioﾐtaiﾐiﾐg the appヴopヴiate Ioﾐteﾐt. Foヴ e┝aﾏple, if I ┘eヴe to IliIk けK“ンげ, it ┘ould ヴediヴeIt ﾏe to a
page that only displays content that falls under KS3. Figure 48 shows how this is achieved by using

path variables.

 Figure 48: Controller responsible for displaying the correct content

Once an eduIatioﾐ le┗el has Heeﾐ IliIked, the useヴ is ヴediヴeIted to the U‘L け/iﾐde┝/eduIatioﾐ le┗elげ
where education level is the ID of the education level they have clicked on. I then passed this ID into
the method by utilizing the @PathVariable annotation, and assigning the value to be equal to
けeduIatioﾐ_le┗el_idげ ┘hiIh is aﾐ attヴiHute of the eduIatioﾐ le┗el eﾐtit┞. This variable is passed into
the findAllByEducationLevelID method which in turn searches the content repository for all content
with an education level ID that matches the path variable. All objects that match the ID are added to
the model and view which is then returned. The view name has been assigned to
けIoﾐteﾐtPlaIeholdeヴ.htﾏlげ ┘hiIh ﾏeaﾐs the けIoﾐteﾐtPlaIeholdeヴげ page is ヴetuヴﾐed ┘ith the oHjeIts
that have been added to the view.

 Figure 49: Delete method within the education level controller

Figure 49 shows the delete method present within the education level controller. Like the previous

figure, I utilize the path variable annotation. The ID of the education level that the user wants to

delete will be present in the URL. This value is then passed into the findById method and the

education level repository is searched for an education level with the same ID. If an education level

is not returned with the same ID then an illegal argument exception is thrown. When a matching

education level has been found, the object is passed into the delete method and the instance is

deleted from the repository. After deleting the object, I return the user to the homepage by

ヴediヴeItiﾐg theﾏ to the け/げ U‘L.

 Figure 50: Show update form method

In order to edit the title of an education level, the user is redirected to a form that allows them to

input the new title of the education level. Figure 50 shows how the user is redirected to an update

form for the specific education level that they wish to delete. Again, the path variable annotation is

utilized here. The ID of the education level that the user selects is passed to the URL, which in turn, is

passed to the findById method. The education level that has been returned from this method is then

added as an attribute to the model. Once the attribute has been added to the model, the view is

returned to the user in the form of HTML and the update form is displayed.

 Figure 51: Update education level post method

Once the update form has been displayed, the form must have the required functionality of being

able to save the update title of the education level. Figure 51 demonstrates how this is

implemented. The post mapping annotation is used here because the form will utilize a post

method. The path variable contains the ID of the education level, by using the ID, I can ensure that

any changes made to the title are only reflected in the title of the level that was changed. The new

instance of the education level object is then saved to the repository.

Uploading and viewing content

 Figure 52: Save content controller method

In order to save content to a repository, a form must first be displayed to allow the user to enter the

data. This is achieved using a similar method to the education levels, utilizing the same path variable

technique. Figure 52 shows how the content upload ability is implemented, it provides the backend

functionality for the upload button. The use of けMultipaヴtFileげ allo┘s staﾐdaヴd foヴﾏ data ふIoﾐteﾐt
title etc) to be uploaded with the file attachment data in a single post method. The

getOヴigiﾐalFileﾐaﾏeふぶ ﾏethod is fouﾐd ┘ithiﾐ spヴiﾐgげs MultipaヴtFile Ilass, I set the filename using

this method. The getBytes() method is also found in this class and is used to fetch the bytes of the

file that has been uploaded. The setFileContent() method that is declared within the content entity is

then used to assign it to the result of the getBytes() method. The same is done with the filename,

setting it equal to the filename variable that is the result of the getOriginalFilename() method.

Finally, the last step is to save the object using the saveContent() method set in the service class.

Within the form in the HTML page, it is important to set the enctype to the following:

enctype="multipart/form-data”

In HTML forms, the data that forms the body of the request must be encoded. Specifying the encode

type to be multipart means that the form is able to accept file uploads. It is important to add this

eﾐIode t┞pe ┘heﾐ the foヴﾏ Ioﾐtaiﾐs aﾐ iﾐput of t┞pe けfileげ.

When the file has been uploaded, it needs to be downloadable by all users. In order to display the

unique content, I employ the same technique that was used to display the content titles for each

education level. By taking advantage of springs MVC model, I can search the content repository by

the content ID and add the content that was returned, to a list. This list is then added to the model

which in turn is rendered in the HTML page.

 Figure 53: Thymeleaf snipped displaying content

Figure 53 shows how the content is displayed in a table format. It iterates through the content list

that was defined in the content controller and assigns the table header value to be equal to the title

of the content. To do this, I specified the object along with the object attribute I want to be

displa┞ed, iﾐ this Iase けIoﾐteﾐt_titleげ. I applied the same concept to the content body below.

However, there are still two more attributes that have not been displayed yet, the file and the link.

Displaying the link is a very similar process to displaying any other attribute, but it needs to be made

clickable.

<a th:target="_blank" class="file" th:href="${Content.link}"
th:text="${Content.link}" onclick="return confirm('You are leaving this
website and following an external link, are you sure you want to leave?')">

The above shows how I implemented a clickable link that is read from the database. It is all

Ioﾐtaiﾐed ┘ithiﾐ the <a> tag is it is a liﾐk, the けth:taヴget=げ_Hlaﾐkげ eﾐsuヴes that oﾐIe the liﾐk is IliIked,

the material opens in a new tab while keeping the existing one open. I added the けth:hヴefげ eleﾏeﾐt
to ensure that the link was clickable, to fetch the link I specified the link attribute of the Content

object. To aid in the security of the system, I wanted to implement a warning that would alert if the

user clicked a link that led to an external site. To integrate this, the けoﾐIliIkげ eleﾏeﾐt was used to

return a confirmation box with a custom message. This message box contained two options, one to

continue following the link and accepting the risk, or another to close the message box and remain

on the site.

HTTPS Security

For the purpose of this project, I generated a self-signed certificate. In general, self-assigned

certificates would not be used as they contain both the private and public keys within the same

entity. Self-signed certificates are not trusted by browsers, causing the browser to display a message

stating that the site is not secure. In order to generate an SSL certificate, I used keystore. Java

keystore is a repository of security certificates and allows the creation of keystores.

keytool -genkeypair -alias cyber -keyalg RSA -keysize 4096 -storetype PKCS12 -

keystore cyber.p12 -validity 3650 -storepass password

 Figure 54: Command to generate keystore

Figure 54 shows the command I used to generate the keystore. I chose to generate a keystore in the

PKCS12 format as that is the industry standard. The alternative is a JKS, which is specific to java, by

using a PKCS12 format I can ensure the key can function with any language. The teヴﾏ けgeﾐke┞paiヴげ
sigﾐals to ke┞tool that I ┘aﾐt to geﾐeヴate a ke┞stoヴe. I assigﾐ the alias けI┞Heヴげ H┞ usiﾐg the けaliasげ
command, this is the ﾐaﾏe of the IeヴtifiIate. け-ke┞algげ speIifies the algoヴithﾏ used to geﾐeヴate the
key pair, in this case I am using RSA with a key size of 4096 bits. To ensure I am generating a

certificate in the PKCS12 format, I assign the store type to PKCS12. I am also able to specify how

many days I want the certificate to be valid for, I chose 3650 days although a third party cannot issue

SSL certificates for more than 13 months at a time due to security reasons. After executing the

command and filling in the appropriate data that keytool requests, a file, cyber.p12 is generated.

In order for the application to use the HTTPS connection, spring boot must be configured to utilize it.

 Figure 55: HTTPS configuration in application properties

Figure 55 shows how spring is configured to use the HTTPS connection running on port 8443. The

keystore, cyber.p12, is within the resources of the spring boot file which allows the application to

access it.

Overview of security features implemented:

• Enabled web security

• Spring security to hash the password credentials

• Invalidate HTTP session after logging out

• Content security policy to defend against XSS and CSRF attacks

• Object-relational mapping and parametrized queries to defend against SQL injection

• HTTPS connection

• SSL connection to database

• Multi-layer input validation

2.1 Evaluation

Test Case ID: 1 Test Purpose: Sign up as user

Preconditions: Must be on the cybersecurity portal website with an active internet connection.

Test Case Steps:

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 CliIk the け‘egisteヴ heヴeげ
button on the log in

page

User is directed to the

Sign-Up page.
User is directed to the

Sign-Up page.

2 User fills out the form;

entering their first

name, last name, email

and password and clicks

the け‘egisteヴげ Huttoﾐ.

The details entered are

unique and do not match

any existing account. A

message pops up to

confirm the registration

was successful. Account

details are added to

database

The details entered are

unique and do not match

any existing account. A

message pops up to

confirm the registration

was successful. Account

details are added to

database

Alternate Flow: User enters credentials already associated with an account

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 CliIk the け‘egisteヴ heヴeげ
button on the log in

page

User is directed to the

Sign-Up page.
User is directed to the

Sign Up page.

2 User fills out the form;

entering their first

name, last name, email

and password and clicks

the け‘egisteヴげ Huttoﾐ.
The email will already

be associated with an

existing account

An error message

displays stating that an

account with that email

already exists and the

details are not added to

the database

No error is displayed but

the details are not added

to the database

Test Case ID: 2 Test Purpose: Sign in

Preconditions: Must be on the cybersecurity portal website with an active internet connection.

Test Case Steps:

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 Enters the correct email and

password combination that is

stored in the database and clicks

the けLog iﾐげ Huttoﾐ

User is logged in and

is redirected to the

home page where it

says which role their

account has

User is logged in and

is redirected to the

home page where it

says which role their

account has

Alternate Flow: User enters incorrect credentials

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 User enters details that are not

recognised in the system and

pヴesses the けLog iﾐげ Huttoﾐ

User is directed to

the Sign Up page.
User is directed to

the Sign Up page

2 User fills out the form; entering

their first name, last name,

email and password and clicks

the け‘egisteヴげ Huttoﾐ. The eﾏail
will already be associated with

an existing account

An error message

displays stating that

the email or

password is invalid

An error message

displays stating that

the email or

password is invalid

Test Case ID: 3 Test Purpose: Content only associated with the education level

selected is displayed

Preconditions: Must be logged in and on the homepage

Test Case Steps:

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 Clicks on an

education level, in

this case けK“ヲげ

User is redirected to a page

that displays a list of

content with an education

le┗el of けK“ヲげ

User is redirected to a page

that displays a list of

content with an education

le┗el of けK“ヲげ

Test Case ID: 4 Test Purpose: Admins are able to delete content

Preconditions: Must be logged in as an admin, previously selected an education level and

currently on the content list view

Test Case Steps:

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 Under admin options, clicks

the けdeleteげ Huttoﾐ that
corresponds to the content

they wish to delete

Is redirected to the

homepage and the

content is deleted

from the database

Is redirected to the

homepage and the

content is deleted

from the database

2 Clicks on the education level The content that was

deleted is no longer

displayed in the list of

content

The content that was

deleted is no longer

displayed in the list of

content

Test Case ID: 5 Test Purpose: Search for content

Preconditions: Must logged in

Test Case Steps:

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 CliIks the けIoﾐteﾐtげ
button on the

navigation bar at the

top of the page

Is redirected to a page

that displays all content

on the website

Is redirected to a page

that displays all content

on the website

2 Types in the name of

the content in the

search bar

Text appears in search bar Text appears in search bar

3 Presses the search

button located next

to the search bar

Content that does not

match the search criteria

is filtered out and only

relevant content is

displayed

Content that does not

match the search criteria

is filtered out and only

relevant content is

displayed

Test Case ID: 6 Test Purpose: Viewing content

Preconditions: Must be logged in and on homepage

Test Case Steps:

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 Clicks the

desired

education

level

Is redirected to a page that

displays a list of content

relevant to the education

level previously selected, as

well as various other options

Is redirected to a page that

displays a list of content

relevant to the education

level previously selected, as

well as various other options

2 Clicks on the

けVie┘げ Huttoﾐ
on the desired

content

The title of the content is

displayed at the top of the

page, with the main body

containing any text also being

displayed. At the bottom of

the page, any files that have

been uploaded are displayed

The title of the content is

displayed at the top of the

page, with the main body

containing any text also being

displayed. At the bottom of

the page, any files that have

been uploaded are displayed

Test Case ID: 7 Test Purpose: Downloading file from content view

Preconditions: Must be logged in and on homepage

Test Case Steps:

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 Clicks the

desired

education

level

Is redirected to a page that

displays a list of content

relevant to the education

level previously selected, as

well as various other options

Is redirected to a page that

displays a list of content

relevant to the education

level previously selected, as

well as various other options

2 Clicks on the

けVie┘げ Huttoﾐ
on the desired

content

The title of the content is

displayed at the top of the

page, with the main body

containing any text also being

displayed. At the bottom of

the page, any files that have

been uploaded are displayed

The title of the content is

displayed at the top of the

page, with the main body

containing any text also being

displayed. At the bottom of

the page, any files that have

been uploaded are displayed

3 Locates the

file and clicks

on the name

of the file

File starts to download and

the user can open the file

File starts to download and

the user can open the file

Test Case ID: 8 Test Purpose: Uploading content

Preconditions: Must be logged in as either an admin or an educator

Test Case Steps:

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 Clicks the upload

button on the

education level card

that the user wishes

to upload content to

A form is displayed that

allows the user to enter

the title of the content,

the main body of the

content, and upload a file

A form is displayed that

allows the user to enter

the title of the content,

the main body of the

content, and upload a file

2 Pヴesses the けIhoose
fileげ Huttoﾐ

File browser is opened File browser is opened

3 Selects a file to be

uploaded

File name is displayed in

the form

File name is displayed in

the form

4 CliIks the けUploadげ
button

Content is uploaded and

is redirected to the home

page

Content is uploaded and

is redirected to the home

page

5 Selects the education

level that the content

was uploaded to

A list of relevant content

is displayed, the content

that was just uploaded is

also displayed

A list of relevant content

is displayed, the content

that was just uploaded is

also displayed

Test Case ID: 9 Test Purpose: Adding new education level

Preconditions: Must be logged in as an admin and on homepage

Test Case Steps:

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 CliIks the けadﾏiﾐげ
button on the bottom

left of the screen

Redirected to an admin

view of the homepage

with additional options

Redirected to an admin

view of the homepage

with additional options

2 Pヴesses the けadd ﾐe┘
le┗elげ Huttoﾐ

A form is displayed where

the user can enter the

education title

A form is displayed where

the user can enter the

education title

3 Enters the title and

seleIts the けaddげ
button

Returned to the

homepage where the

new level is visible

Returned to the

homepage where the

new level is visible

Test Case ID: 10 Test Purpose: Admin deleting accounts

Preconditions: Must be logged in as an admin

Test Case Steps:

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 CliIks the けadﾏiﾐげ
button on the

navigation bar at

the top of the

screen

Redirected to an admin

view page that displays a

list of accounts

Redirected to an admin

view page that displays a

list of accounts

2 Enters a name in

the search bar and

clicks the search

button

Users not matching the

criteria are filtered out and

the name searched is

displayed

Users not matching the

criteria are filtered out and

the name searched is

displayed

3 CliIks the けdeleteげ
button on the

account details

Returned to the homepage

and the account is deleted

from the database. The

user credentials cannot be

used to log in to the

website

Returned to the homepage

and the account is deleted

from the database. The

user credentials cannot be

used to log in to the

website

Test Case ID: 11 Test Purpose: Only admins can access services that require an

admin account

Preconditions: Must be logged in as either an educator or a user

Test Case Steps:

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 CliIks the けadﾏiﾐげ
button on the

navigation bar at the

top of the screen

An error message displays

statiﾐg that the┞ けdo ﾐot
have the necessary

privileges to access this

Ioﾐteﾐtげ

An error message displays

statiﾐg that the┞ けdo ﾐot
have the necessary

privileges to access this

Ioﾐteﾐtげ

Alternate flow 1: Attempts to access admin view on homepage

Step

No.

Procedure Expected Output Actual Output Pass/Fail

1 CliIks oﾐ the けadﾏiﾐげ
button on the

bottom left of the

homepage

An error message displays

statiﾐg that the┞ けdo ﾐot
have the necessary

privileges to access this

Ioﾐteﾐtげ

An error message displays

statiﾐg that the┞ けdo ﾐot
have the necessary

privileges to access this

Ioﾐteﾐtげ

Alternate flow 2: Attempts to delete content

Step

No.

Procedure Expected Output Actual Output Pass/Fail

1 CliIks けIoﾐteﾐtげ iﾐ the
navigation bar

All content is displayed as

well as various other

options such as view and

delete

All content is displayed as

well as various other

options such as view and

delete

2 CliIks the けdeleteげ
button under admin

options in the table

An error message displays

statiﾐg that the┞ けdo ﾐot
have the necessary

privileges to access this

Ioﾐteﾐtげ

An error message displays

statiﾐg that the┞ けdo ﾐot
have the necessary

privileges to access this

Ioﾐteﾐtげ

Test Case ID: 12 Test Purpose: Only admins and educators can upload content

Preconditions: Must be logged in as a user

Test Case Steps:

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 Clicks the

けuploadげ Huttoﾐ
on an education

level card

An error message displays

statiﾐg that the┞ けdo ﾐot ha┗e
the necessary privileges to

aIIess this Ioﾐteﾐtげ

An error

message

displays stating

that the┞ けdo ﾐot
have the

necessary

privileges to

access this

Ioﾐteﾐtげ

Alternate flow 1: Logged in as educator

Step

No.

Procedure Expected Output Actual Output Pass/Fail

1 Clicks the

けuploadげ Huttoﾐ
on an education

level card

A form is displayed that

allows the user to enter the

title of the content, the main

body of the content, and

upload a file

A form is

displayed that

allows the user

to enter the title

of the content,

the main body

of the content,

and upload a file

2 “eleIts けIhoose
fileげ

File browser is opened File browser is

opened

3 Selects a file to

upload

File name is displayed on form File name is

displayed on

form

4 Clicks the

けuploadげ Huttoﾐ

Content is uploaded to the

database and is redirected to

the homepage

Content is

uploaded and is

redirected to

the homepage

Test Case ID: 13 Test Purpose: Logging out

Preconditions: Must be logged in

Test Case Steps:

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 Clicks the けlog outげ
button on the

navigation bar

Is logged out of the

session and redirected to

the log in screen. A

message is displayed

stating that the log out

was successful

Is logged out of the

session and redirected to

the log in screen. A

message is displayed

stating that the log out

was successful

2 Uses back button in

browser to attempt

to return to

application in a

logged in state

Remains on log in screen Remains on log in screen

Test Case ID: 14 Test Purpose: Editing education level

Preconditions: Must be logged in as an admin

Test Case Steps:

Step

No.
Procedure Expected Output Actual Output Pass/Fail

1 CliIks the けAdﾏiﾐ ┗ie┘げ
button on the bottom

left of the homepage

Is navigated to an admin

view of the home page

with additional options

visible

Is navigated to an admin

view of the home page

with additional options

visible

2 Clicks the edit symbol

below the trash icon on

the education level to be

deleted

A form is displayed with

the name of the current

education level

A form is displayed with

the name of the current

education level

3 Enters new name and

clicks the けCoﾐfiヴﾏ
Ihaﾐgesげ Huttoﾐ

Redirected to homepage

and any changes are

visible

Redirected to homepage

and any changes are

visible

Test Case ID: 15 Test Purpose: Adding content to favourites

Preconditions: Must be logged in and on the content display page

Test Case Steps:

Step

No.
Procedure Expected Output Actual

Output
Pass/Fail

1 Clicks the star in the

top right of the

display

Star turns yellow and notification is

displayed stating that the content has

Heeﾐ けadded to fa┗ouヴitesげ

No change

in system

state

Verifying HTTPS connection

 Figure 56: PowerShell command used to verify SSL connection

In order to check that the connection to the SQL server is secure, I used windows PowerShell. Figure

56 shows the command I used. Upon execution of the command, a window is displayed which allows

me to enter the name and port of the SQL server.

 Figure 57: Confirmation that SSL connection is active

Afteヴ iﾐputtiﾐg the “QL seヴ┗eヴ ﾐaﾏe aﾐd pヴessiﾐg the けIheIkげ Huttoﾐ, confirmation is received that

the SSL connection is active, as shown in figure 57.

 Figure 58: Browser dev tools showing secure connection

Figure 58 shows that chrome verifies that the connection is secure, proving that the HTTPS

connection is active.

Ensuring resistance against SQL injection

In order to verify that my application is secure against SQL injection attacks, I must perform them

myself. I will simulate an attack which will involve attempting to gain access to an admin account

when the admin email is known but the password is not. Below is the SQL injection command I used.

“ ' or 1=1 -- “

I then entered the admin email address into the email field and inputted the above command into

the password field. If my application was vulnerable to SQL injection attacks, this would bypass the

authentication system and allow me to log in as an admin without knowing the password. SQL

injection can bypass the authentication system by extending on the explicit SQL statements present

in the application. Sometimes the log in system may contain a similar SQL statement to the one

below.

け“ELECT U F‘OM Useヴs WHE‘E eﾏail = けadﾏiﾐ@gﾏail.Io.ukげ AND pass┘oヴd = けadﾏiﾐヱヲンげ け

If the SQL injection was successful, the application would perform the following query.

 け“ELECT U F‘OM Useヴs WHE‘E eﾏail = けadﾏiﾐ@gﾏail.Io.ukげ O‘ ヱ=ヱ--け AND pass┘oヴd = けadﾏiﾐヱヲンげ け

However, due to the sequence of hyphens (--), the remainder of the statement is ignored. As 1=1 is

always true, the statement does not check if the password entered is correct, resulting in the

attacker bypassing the log in system.

 Figure 59: Log in system rejecting SQL injection attempt

Fortunately, this is not the case with my application. As it utilizes object-relational mapping, there is

no explicit SQL statement to extent upon, meaning the password is identified to be invalid and

prevents the attacker from entering the system. Figure 59 shows the error message that is displayed

after attempting to log in with incorrect credentials.

Verifying resistance to cross-site scripting (XSS) attacks

Like with SQL attacks, in order to test my applications resistance to XSS attacks, I must conduct my

own. XSS attacks can vary in complexity, if an application is vulnerable to a simple XSS script, it is also

vulnerable to the most complex script. So for the sake of evaluation, I will conduct a simple,

reflected XSS attack.

 Figure 60: Script inserted into search box

Figure 60 shows the script inserted into the search box. Upon completion of a successful XSS attack,

an alert would pop up in the centre of the sIヴeeﾐ, ┘ith the te┝t けX““げ. Fortunately, due to the

content security policy and the web security annotation, the XSS attack was unsuccessful.

Achievement of deliverables and objectives

Based on the test cases above, I believe that the implementation fully satisfies the deliverables and

requirements set out in the previous sections/initial plan. The majority of test cases have passed,

with the only failures being additional features that were not deemed to be necessary. However, the

success of the project cannot only be measured on the functionality that has been successfully

implemented. It is important to assess whether the objectives have been met.

Objective 1 - Review relevant services/literature

I believe this objective has been met, I reviewed relevant services which involved describing the

features that the service offers, as well as the downfalls of the service. I did this for multiple services

and used this information to better define the requirements of my application. I incorporated the

most common features of the services I reviewed but also improved upon areas where I think they

were lacking. However, due to the niche nature of the project, I struggled to find many relevant

services and as a result the sample size for the services I reviewed was quite limited. Although I

believe that with a larger sample size, I do not think the requirements of the application would have

been wildly different. During the course of this project, I also reviewed the relevant web application

regulations and standards. This process was extremely important as it helped me set out distinct

protocols that I had to follow.

Objective 2 - Create and optimize a database suitable for the project

I believe this objective has partially been met as a database has been created, although I think it

could be further optimized to improve both efficiency and scalability. Specifically, the relationships

between tables as well as the constraints could be altered to improve the performance of the

database.

Objective 3 – Create a user-friendly UI

By reviewing the general design standards and analysis relevant services, I believe I was able to

implement a user-friendly UI. The use of wireframes allowed me to incorporate the design standards

before implementing them in HTML/CSS. However, in order to properly assess whether the UI is

easy to use, heuristic evaluation should be used.

Objective 4 – Implement back-end functionality that meets the さﾏustざ requirements

This success of this objective can be solely based on the result of the test cases. The results of the

test Iases sho┘ that the iﾏpleﾏeﾐtatioﾐ has suIIessfull┞ ﾏet ヱヰヰ% of the さﾏustざ ヴeケuiヴeﾏeﾐts, as
┘ell as the さshouldざ ヴeケuiヴeﾏeﾐts. Some of the additional, but not necessary, requirements have

also been met, such as the ability for admins to manage accounts. Therefore, I believe this objective

has been sufficiently met.

Objective 5 – Successfully evaluate the prototype

Test cases have been written that contain both the primary flow and alternate flows. The have also

been completed and any fails have been highlighted. In order to assess the prototype in more detail,

I performed cyber-attacks on the web application to identify any vulnerabilities and verify that the

application is resistant to specific attacks. Overall, I believe this objective has also been met as the

prototype was evaluated through test cases and more detailed methods such as performing cyber-

attacks to exploit/identify any vulnerabilities.

Objective 6 - Create an implementation that is secure and complies with most modern security

standards

By reviewing the OWASP top 10 security threats, as well as additional research into web application

vulnerably, I believe I have developed a prototype that meets this objective. Having utilized the

wealth of security features spring security offers, implementing an HTTPS connection as well as a

variety of other security protocols and evaluating the effectiveness of these techniques, it is evident

that the prototype is secure.

Deviations from the initial plan

In the initial plan, I highlighted that this application would be developed using vaadin, a component

based web framework for Java. Developing with vaadin eliminates the need to use HTML, but at a

cost. By using vaadin, I would have been limited to specific components and would not have been

able to make my own elements using HTML. While vaadin can be more efficient, there are limited

components available for use, and some of them require a pro subscription which is very costly. I

therefore decided to not use vaadin and to develop the front end with HTML and CSS.

Another deviation from the initial plan is how I developed the database. In the initial plan, I specified

that the database would be implemented after designing a UML class diagram. However, the use of

hibernate meant that the database would develop as the web application developed. I simply had to

create the entity classes and hibernate would execute the corresponding SQL statements. The use of

object-relational mapping and JPA meant that creating the database was straightforward and was

directly based off the Java code I had written.

Project limitations

As with most projects, the primary limitation that I experienced was time based. The amount of time

allocated for the project had limited the amount of functionality I initially planned to implement. The

amount of time not only limited the functionality of the prototype, but also limited the

thoroughness of the testing and evaluation phase. Ideally, if I had more time, I would have recruited

participants to help perform a heuristic evaluation and generate SUS scores to calculate the overall

usability of the system. Additionally, I would have also interviewed participants to gather the

requirements for the application. The time constraint also meant that I failed to implement some

features I originally planned on implementing, such as the ability to add content to favourites.

Moreover, the small sample size of services I reviewed to determine the requirements is also a

limitation. A small sample size means the features present in the services I reviewed might not be

representative of the whole market. Although I believe that the requirements would not be vastly

different, it is still important to consider that some additional services may have slightly different

features.

The time constraint also meant that I could not deploy my application as originally planned. I wanted

to deploy my application and employ DDoS mitigation efforts to protect against DoS attacks however

the time constraint meant that I could not do so.

Future work

In the future, I would plan on implementing any unfinished functionality that I originally planned on

including. Specifically, finishing the adding to favourites functionality. I would want users to be able

to add any content they like to a list of favourites that is saved to the database. This list would only

be accessible by the user who in turn would be able to access it from any device provided that they

are able to log in to the system. Furthermore, I would like to pair user accounts to their content. This

would allow a user to see the name of the educator who created the content, click on the name and

then see a list of all content made by that educator.

I would also like to find a way to optimize the file reading from the database. This could be done by

storing the files on a separate file server rather than in the MySQL database. This would improve the

performance and scalability of the system and offer better data redundancy.

As I briefly mentioned earlier, I would like to recruit participants to assist in a heuristic evaluation of

the prototype. I would set out specific tasks for the user to complete using the prototype, and then

they would be required to fill out a survey based on their experience. The answer to these questions

would then be used to determine the SUS (system usability score) for each user. After calculating the

SUS for each user, I could calculate a mean average to get the SUS for the entire prototype.

Another objective that I would like to achieve in the future is the incorporation of a rich text editor.

Currently, educators are able to upload material, and create very basic material within the site. I

would like to implement the ability to create more detailed content within the site. This would be

done by adding a rich text editor, allowing educators to choose different font sizes, insert images

and format the text.

Finally, I would also like to deploy the web application and integrate DDoS protection. This is inline

with the OSWAP top 10 security vulnerabilities and I feel this would be a great step towards

improving the accessibility and security of the web application.

Conclusion
To conclude, the purpose of this project was to create an online cybersecurity education portal that

would allow sharing of material that is suitable for all age groups in order to reduce the cyber skills

gap. To achieve this, I reviewed relevant services and regulations to determine the requirements for

the prototype. I feel that I have successfully implemented a solution, albeit with some less features

than I originally intended. I believe that the evaluation successfully reinforces my verdict as the

majority of the test cases passed. The research into cyber-attacks and security vulnerabilities proved

to be exceptionally useful when developing my web application. I was able to implement a number

of security features into the application which is again verified by the evaluation. However, without

a large number of users and a long-time frame, it is difficult to identify if the prototype created will

have any impact on the general cyber-security awareness of the population as well as on the cyber

skills gap. The security of a system is often overlooked, but during this project I demonstrated a

heavy focus on the security of the application. The wireframes of the UI that were created toward

the beginning of the project proved to be useful in ensuring the UI abided by the design principles I

reviewed during the literature review. Additionally, the wireframes also assisted in creating the flow

of use cases. Having a detailed vision of what the prototype was going to look like very much

assisted in the development process as I had a clear vision of what to implement on each page.

Following the structure set out in the initial plan was a success, however I had underestimated how

long it would take to implement specific features. One feature that took much longer to implement

than I thought was the ability to upload content to a specific education level. Fortunately, some

other features required less time to implement than allocated so the overall time to complete the

project was the same. Overall, I believe my project was a success in that it met the objectives set out

earlier in the report. It also sets out the foundations for more functionality to be incorporated, such

as adding the ability to favourite content, which was something I had originally planned on including.

While the objectives had been met, it is clear that additional functionality as well as quality of life

improvements could be implemented.

Reflection
One of the primary skills that I have further developed during this project is my ability to manage

time and workloads. By far, this is the single largest project I have undertaken individually in my life

and required extensive time management skills. For example, having to balance workloads between

this project and another module proved challenging. I had to work at a pace that meant the project

would be finished before the deadline but without overworking myself. This was achieved by

effective time management while also following the structure I set out in the initial plan. Time

management is a priceless skill that will be transferrable to any projects I undertake in the future.

Another core skill that I developed during this project was my ability to communicate. At first, this

may seem like a strange skill to develop considering this was an individual project. However,

communication with my supervisor was essential in ensuring that the project delivered on their

requirements. The regular supervisor meetings with other students were crucial in ensuring my

project remained on track and was headed in the correct direction. My ability to listen to feedback

and act accordingly was tested as I wanted to ensure I had addressed the feedback given from my

supervisor before our next meeting. A specific example of this was that my supervisor suggested to

implement an HTTPS connection and I did so before our next meeting. It was also important to

communicate to my supervisor any difficulties I was experiencing during the development of the

prototype. Having good communication skills was essential in ensuring that my supervisor was able

to understand my difficulty and assist in providing a solution. One example of this is when I was

unsure of what data type to store the encrypted password values as in the database. At this time I

was using a hashing algorithm from the digestutils class. My supervisor suggested to use spring

securities own algorithm within the Bcrypt password encoder. This proved to be a more efficient and

secure solution to what I had previously implemented. I believe this also showcases how my ability

to adapt has developed throughout the course of this project. I was able to change my

implementation relatively quickly to accommodate the changes recommended by my supervisor.

On top of the wide range of soft skills I developed, I have also improved my technical skills. Using

spring boot extensively for several months has drastically increased my competency in Java. While I

have used Java for previous projects, I have never used Java to build a web application. Using spring

boot introduced me to a new concept, the MVC model. Having spent a lot of time using spring boot,

I am now familiar with the MVC model. I believe my increased competency in Java and improved

knowledge around web frameworks will benefit me in my future career. I found researching cyber-

attack methods and vulnerabilities particularly interesting as this is a subject I wish to pursue

further. Before I undertook this project, I had limited knowledge on cyber-attacks, but this project

has developed my understanding of some of the most common attack methods such as SQL

injection and XSS attacks. Overall, I am impressed with my ability to follow the work structure I set

out in the initial plan, albeit with some minor deviations. I originally planned to make the homepage

fully functional before implementing the admin page, but at one point I was encountering a bug on

the homepage. I therefore decided that I did not want to slow my progress, so I began implementing

the admin page. After the implementation of the admin page was complete, I was able to resume

working on the homepage with a clear mind, this allowed me to fix the bug in a timely manner.

To conclude my reflection on learning, this project has allowed me to develop a wide range of core

skills such as time management, communication, adaptation, and introduced me to new technical

skills such as executing and protecting against cyber-attacks. This project also allowed me to build

upon my Java, HTML and CSS skills.

References
[1] Watters, A., 2022. 25 Crucial Information Technology Statistics & Facts to Know. [online] Default.

Available at: <https://connect.comptia.org/blog/information-technology-stats-

facts#:~:text=Projections%20show%20the%20technology%20industry,CAGR%20of%2017.5%25%20b

y%202025.> [Accessed 7 February 2022].

[2] Half of UK 10-year-olds own a smartphone, BBC News, 2022. [Online]. Available:

https://www.bbc.co.uk/news/technology-51358192. [Accessed: 07- Feb- 2022].

[3] 2021 Cyber Security Statistics Trends & Data, PurpleSec, 2022. [Online]. Available:

https://purplesec.us/resources/cyber-security-statistics/. [Accessed: 07- Feb- 2022].

[4] Cyber security skills in the UK labour market 2020, GOV.UK, 2022. [Online]. Available:

https://www.gov.uk/government/publications/cyber-security-skills-in-the-uk-labour-market-

2020/cyber-security-skills-in-the-uk-labour-market-2020. [Accessed: 07- Feb- 2022].

[5] The cyber security skills shortage is getting worse | OneFile, 2022. [Online]. Available:

https://onefile.co.uk/explore/the-cyber-security-skills-gap-is-getting-

worse/#:~:text=The%20UK%20is%20suffering%20from,hitting%20cyber%20security%20the%20hard

est.&text=And%20by%202021%2C%20it's%20predicted,affecting%20companies%20large%20and%2

0small. [Accessed: 07- Feb- 2022].

[6] The 7 Most Common Types of Cybersecurity Attacks in 2021, Auth0 - Blog, 2022. [Online].

Available: https://auth0.com/blog/the-7-most-common-types-of-cybersecurity-attacks-in-2021/.

[Accessed: 08- Feb- 2022].

[8] DDoS Protection – understanding the complexity of multi-vector threats, Xantaro, 2022. [Online].

Available: https://www.xantaro.net/en/tech-blogs/complexity-of-multi-vector-ddos-threats/.

[Accessed: 11- Feb- 2022].

[9] Protecting Against SQL Injection, Hacksplaining, 2022. [Online]. Available:

https://www.hacksplaining.com/prevention/sql-injection. [Accessed: 11 Feb 2022].

[10] Web Application Development Standards - Web Site Information (CA Dept of Education),

Cde.ca.gov, 2022. [Online]. Available: https://www.cde.ca.gov/re/di/ws/appdevstandards.asp.

[Accessed: 13 Feb 2022].

[11] Web Application Security Standards | Veracode, 2022. [Online]. Available:

https://www.veracode.com/security/web-application-security-standards. [Accessed: 14 Feb 2022].

[12] 2022. Best backend programming languages. [online] Available at:

<https://blog.back4app.com/backend-programming-languages-list/> [Accessed 15 April 2022].

[13] Mkoshops.com. 2022. Spring Boot Architecture - Tutorial And. [online] Available at:

<https://www.mkoshops.com/?product_id=131575206_72> [Accessed 16 April 2022].

[14] Team, S., Team, S., Freeman, C., Cipot, B. and Rana, A., 2022. Top 4 software development

methodologies | Synopsys. [online] Software Integrity Blog. Available at:

<https://www.synopsys.com/blogs/software-security/top-4-software-development-

methodologies/> [Accessed 18 April 2022].

[15] Umsl.edu. 2022. The Traditional Waterfall Approach. [online] Available at:

<https://www.umsl.edu/~hugheyd/is6840/waterfall.html> [Accessed 18 April 2022].

[16] Mezquita, T., 2022. Agile Development Methodology - CyberHoot. [online] CyberHoot. Available

at: <https://cyberhoot.com/cybrary/agile-method/> [Accessed 18 April 2022].

[17] Heurio.co. 2022. Nielsen's 10 Usability Heuristics - Heurio. [online] Available at:

<https://www.heurio.co/nielsens-10-usability-heuristics> [Accessed 18 April 2022].

[18] Fadatare, R., 2018. Spring Boot User Registration and Login Module Tutorial. Available at: <

https://www.javaguides.net/2018/10/user-registration-module-using-springboot-springmvc-

springsecurity-hibernate5-thymeleaf-mysql.html >[Accessed 1 March 2022].

[19] Almost Perfect Email Regex. 2022. Email Address Regular Expression That 99.99% Works.

[online] Available at: <http://emailregex.com/> [Accessed 15 April 2022].

[20] Codebun.com. 2022. Spring Boot Upload and Download File Example using Thymeleaf. [online]

Available at: <https://codebun.com/spring-boot-upload-and-download-file-example-using-

thymeleaf/> [Accessed 8 April 2022].

[21] BBC Bitesize. 1998. Home - BBC Bitesize. [online] Available at: <https://www.bbc.co.uk/bitesize>

[Accessed 22 February 2022].

[22] Jr.brainpop.com. 1999. [online] Available at: <https://jr.brainpop.com/> [Accessed 12 May

2022].

[23] Synopsys.com. n.d. What Is the OWASP Top 10 2021 and How Does It Work? | Synopsys.

[online] Available at: <https://www.synopsys.com/glossary/what-is-owasp-top-10.html> [Accessed

14 February 2022].

