
1

Automatic Code Analysis for real time feedback to

support Student Development

Author: Thomas Lea-Redmond

Supervisor: Stuart M Allen

Moderator: Xianfang Sun

Module Number: CM3203

Module Name: One Semester Individual Project

Credits: 40

2

Abstract

This ƌeseaƌĐh papeƌ aiŵed to test the hypothesis ͞studeŶts usiŶg ƌeal tiŵe feedďaĐk fƌoŵ aŶ
automatic code analysis tool during development will make less errors compared to a control

gƌoup͟. A pƌogƌaŵ ǁas deǀeloped Đapaďle of pƌoviding immediate feedback to developers working

on a bespoke project, against a set of pre-programmed rules.

An experiment was conducted, comparing the students who used this software, against a control

group that did not. In addition, those who used the software took part in a usability survey. The

results indicated that there was no discernible difference between the results of the students who

used the software, and those who did not. This can be explained by the low usability score of the

program, and the low number of participants used in the study.

3

Acknowledgements

I would like to thank Stuart Allen for supervising this research project.

I would also like to thank Ben Graves for attempting the experiment brief to make sure it was clear

and coherent.

4

Table of Contents
Abstract ... 2

Acknowledgements ... 3

Table of Contents .. 4

1 Introduction .. 5

2 Background ... 6

2.1 Jupyter Nbgrader .. 6

2.2 BlaĐkďoaƌd͛s LeaƌŶiŶg CeŶtƌal Quizzes ... 7

2.3 Flake 8 ... 8

2.4 PyTest .. 9

2.5 Cardiff Coursework Support Flake8 Plugin (CCS) .. 10

2.6 Summary of Findings ... 12

3 Specification and Design ... 13

3.1 Specification for experiment ... 13

3.2 Design for Experiment Brief – Numerical Extractor Program ... 14

3.3 Design for Computer Automated Feedback (for) Students - CAFS 15

3.4 Design for System Usability Survey ... 16

3.5 Ethics ... 17

3.6 Results ... 18

4 Implementation .. 19

4.1 Programming Numerical Extractor ... 19

4.2 Implementing Automatic Code Analysis CAFS software ... 22

4.3 System Usability Survey .. 27

4.4 Conducting The Experiment .. 28

4.5 Marking Results ... 28

5 Results, Analysis and Evaluation ... 29

5.1 Results ... 29

5.2 Analysis ... 30

5.3 Evaluation ... 30

5.4 System Usability Score Evaluation .. 31

6 Future Work .. 32

7 Conclusions ... 33

8 Reflection on Learning .. 34

9 Appendices .. 36

9.1 Appendix A .. 36

9.2 Appendix B – Research Study Brief ... 37

9.3 Appendix C – Mark Scheme for evaluating Code .. 39

10 References .. 44

5

1 Introduction

This project aims to test the hypothesis that students using real time feedback from an automatic

code analysis tool during development will make less errors compared to a control group.

This research will benefit students and educators, as it will explore a method of providing immediate

feedback directly to students, which can be automatically applied to their work. Immediate feedback

has been shown to ͞promote retention and correction of inaccurate response strategies͟ (Epstein et

al., 2002) and allow recipients ͞better opportunity to correct their understanding and guide

subsequent learning͟ (Brown, Peterson, and Yao, 2016). This is in direct comparison with the current

method of feedback, where feedback is received with marking, and according to (Mensink and King,

2019) 42% of students do not even access.

To investigate this hypothesis an experiment will be conducted on two groups of students. One

group using an automatic code analysis tool, and the other not. Their results will be compared, to

see if using the tool has helped the active group make less errors.

To do this, a bespoke method of providing automatic code analysis will be developed which will be

deployed in the experiment. Secondly, a usability study will also be conducted to judge the designed

tool, which will inform future research and the trustworthiness of the results.

This work will be conducted over 3 months.

Research will be conducted into existing methods students receive feedback. This will inform the

design and specification of the automatic code analysis tool. This tool will be implemented and made

capable of providing code analysis for a brief which will be used during the experiment. The

experiment will be conducted, and a conclusion to the hypothesis will be formed based on the

results.

To summarise the important outcomes are:

• Conduct an experiment to test the hypothesis

• Produce an automatic code analysis tool to be used in the experiment

• Produce a conclusion based on the results of the experiment

6

2 Background

As part of this project, I have conducted research into the existing technologies designed to provide

automated marking on student projects. I looked at a range of approaches, to draw inspiration for

my own solution, which I am calling CAFS. As this investigation concerns student programming

exercises, I looked at technologies designed to provide feedback to students, and technologies on

providing feedback on programming in general. I evaluated these technologies based on their

approach to marking student feedback, how flexible this approach is, how helpful the feedback is,

and how usable the solution is.

2.1 Jupyter Nbgrader
Nbgrader (nbgrader — nbgrader 0.6.2 documentation, 2022) is a solution designed to work with

Jupyter notebooks, a web based interactive computing platform (Project Jupyter, 2022). Nbgrader is

a tool for creating and grading assignments in Jupyter. An assignment can be created using a GUI,

complete with answers. This would be for the instructors use only. Then Nbgrader would generate a

student specific version (with only the questions) that can be distributed to and back from students

using Jupyter or other methods.

The Nbgrader tool will evaluate the returned projects using Unit Tests. Optionally, there is the

potential for manual grading. Feedback is also automatically generated by the tool.

As a web based, open-source approach Notebooks and Nbgrader are easily accessible to students.

The GUI makes creating, and then fulfilling the tests intuitive for the instructor. The option for

manual grading is good, and compensates for Unit Tests typically requiring character perfect

responses.

This system is designed for examinations rather than providing ongoing feedback. I like how test

generation is simplified to writing a form; meaning many tests can be written very quickly, and it

Jupyter Development Team, 2017. Example of Nbgrader's auto grading feedback for student 'bitdiddle'. [image] Available

at: <https://nbgrader.readthedocs.io/en/stable/_images/autograde_assignment.png> [Accessed 13 May 2022].

7

takes little training to learn to use. If I can implement a system like this, it would make writing tests

much easier.

The feedback produced by the tool is dense, with the detected warnings surrounded by redundant

information. Interpreting the feedback warnings is also difficult, as the description is brief and

technical. When making my feedback descriptions I should aim to be as clear as possible, and

remove ambiguity in the statements.

2.2 BlaĐkďoard’s Learning Central Quizzes
BlaĐkďoaƌd͛s LeaƌŶiŶg Central is a web-based platform for students and instructors. Part of its

capabilities allows instructors to write and distribute quizzes to students of a particular course or

module. Students are only allowed to access the quiz in a specific time frame, and may be given the

option to repeat tests to retake if allowed. The tests can be marked automatically, and / or manually.

The student will participate in the test using a web browser, and their attempt can be timed. If the

timer runs out the test is automatically submitted. Feedback is given as soon as the results are

finalised. The feedback can either be exhaustive, or exclusively the overall mark. The latter is used to

prevent student collaboration, and is the typical option selected.

This approach is very similar to Nbgrader, with the noted exception of the timer. The differing level

of feedback is interesting, but too binary at present. For when selecting the option for feedback to

be given, all the content such as suggestions for improvement or the correct answers are released.

A better solution would allow for limited feedback under certain circumstances – and the otherwise

lack of feedback should only indicate no possible room for improvement. This would prevent the

user becoming overwhelmed from the amount of feedback provided, and make it much easier for

the user to see what they need to change. When making my solution, I should aim to provide only

the feedback relevant to the user.

An example of the limited feedback provided by Learning Central. Only the mark is revealed, and there is ambiguity of what

needed to be improved

8

2.3 Flake 8

Flake8 (Stapleton Cordasco, 2016) is a Python module designed for style improvement of Python

code. It can be extended with plugins to expand its capabilities and configured to provide

enforcement on specific rules.

It is a command line module, and is run by the user, who passes a set of Python files to evaluate to

the program. It typically works by evaluating the Abstract syntax tree1 of a given file according to the

rules it has been configured to use. AŶy ƌules Flakeϴ fiŶds to haǀe ďeeŶ ͚ďƌokeŶ͛ aƌe ƌeported to the

user in the command line, along with their location in the code.

Flake8 is modular and can be configured with plugins, and simple to install, and can be integrated

into IDEs. These are all points in its favour. In addition, it analyses the abstract syntax tree of the

code to analyse code structure rather than merely comparing the expected and actual outputs.

Configuration is not simple, as a custom plugin must be created. The pre-programmed stylistic

checks need to be disabled if unwanted. Error reporting is basic, due to it being a plain console

output.

Analysing the Abstract Syntax Tree is useful for identifying the causes of errors. This tool can provide

feedback on how a program is coded. For example, a Flake8 error F401 alerts the user if an imported

module is unused (Stapleton Cordasco, 2016).

This approach is very similar to my intended aim in producing CAFS. However, this approach does

not allow it to check Unit Tests, as they are runtime specific.

1 Abstract Syntax Tree (AST)

A tree representation of the source code of a computer program that conveys the structure of the

source code. Each node in the tree represents a construct occurring in the source code (DeepSource

Learn, 2022).

Example of the feedback given when using Flake8. It has identified an E701 error on line 44 in column 9,

relating to multiple statements on one line

An example of Flake8 being run on the local directory. Each file is checked against all Flake8 rules

9

2.4 PyTest

PyTest (Krekel, 2022) is a framework designed to write small Unit Tests within code. It uses Python

͚asseƌt͛2 statements to implement Unit Tests (Krekel, 2022). Tests are designed to be written in the

file that will be tested. Below is an example of an assertation in use in Python Idle.

>>> a = 4
>>> b = 2
>>> assert a == b
Traceback (most recent call last):
 File "<pyshell#5>", line 1, in <module>
 assert a == b
AssertionError

The PyTest feedback given is detailed, giving the number of failures, and which part of the test was

failed. In addition, there are some statistics for many tests such as percentage of tests succeeded.

The console output is colour coded. A single PyTest session can be run in the command line, and

used to test many files at once. These results are collated and returned together.

PyTest works fantastically for producing small Unit Tests with Test driven development in mind. A

developer would write the assertation tests, and then produce the code. The tests verify that the

written code works as specified. However, it is up to the developer to implement the test. It is also

possible for the tests to be written in an empty Python file and given to someone else to produce the

code; but the test code would be visible throughout.

I like how the output is colour coded, and how summary data is given. That makes checking the

multiple programs simultaneously much easier, as with a glance it can be seen how many tests have

failed. I would like to implement a similar summary in my CAFS program.

2 Assert Statement

Let a developer test if a condition is true, and if not, trigger an AssertationError (Python assert

Keyword, 2022).

10

2.5 Cardiff Coursework Support Flake8 Plugin (CCS)

A Flake8 Linter plugin designed to test against specific criteria, and capable of implementing Unit

Testing. This is a proof-of-concept prototype that the author has previously developed. It was

commissioned by Cardiff University and developed over 2 months in 2021. It was designed to be

used with a specific Python exercise for first year students. The students would write the program,

and use the linter as ongoing testing. It is capable of abstract syntax analysis of the code, and Unit

Testing. All failed results are returned to the user, upon the completion of the tests. This program

has not yet been tested with end users.

The user installs flake8 in a virtual environment, and installs the plugin immediately after. Each time

flake8 is run, the flake8 plugin manager activates this plugin with the entry point of the Linter Class.

Flake8 passes an abstract syntax tree of the file parameter to the plugin. Due to configuration

problems using a relative file address3, CCS determines that the file parameter given is absolute4. If

not, the program terminates at this stage. It must be absolute as otherwise the address would not

work for Unit Tests later due to pathing problems when using Flake8.

Linter creates an instance of a reporter class. This class handles all the recording for the errors. Linter

also creates instances of AST Router and Unit Testing which handle the AST errors and Unit Testing

respectively.

The Unit Tester has a list of the tests that need to be run. Each test is a separate class which is

imported and run in order on the absolute address of the file parameter. Any errors are recorded in

the single error reporter instance.

The AST Router is more complicated. It uses AST traversal to navigate between the nodes of the

Abstract Syntax Tree. Each node is evaluated to determine its AST node type. Functions for those

specific AST nodes are then activated. For example, when a global AST node is visited the

‘visit_global’ function is activated. This can be used to target general instances such as the

aforementioned example, or function specific. Using the ‘visit_FunctionDef’ node tests can

be activated to run when named functions are defined in the users͛ code. That tree node is then

passed to a bespoke test for that function which continues the node traversal inside the local

function scope (ast — Abstract Syntax Trees — Python 3.10.4 documentation, 2022).

3 Relative File Address

A hierarchical address that located a file or folder on a file system starting from the current directory (Relative

Path - Network Encyclopedia, 2022).

4 Absolute Path

Hierarchical path that locates a file or folder in a file system starting from the root. Enables the location of file

to be precisely specified, independent of the where user͛s current directory is located (Absolute Path (and how

is different from Relative Path), 2022)

11

Python File Cardiff Coursework Support src/Errors/P702.py

import ast
from src.Errors.errorType import astError

class P702(astError):

 def __init__(self, reportHere, node):
 super().__init__(reportHere, node)
 self.errorCode = "P702"
 self.errorText = "Call the function 'game' for 1a"

 self.failByDefaultVar = True # Guilty-until-proven-innocent
 self.failByDefault(node) # Add Error to record

 self.generic_visit(node) # Begin traversing child nodes

 def visit_Call(self, node):
 """
 Run test when encounters a function call ie question1(parameters)
 Test checks whether function call is to function named game
 Passes if so, removing error from location in self._reportHere
 """
 if isinstance(node.func, ast.Attribute):
 pass # ignore ast.Attribute nodes that are here by mistake
 else:
 if node.func.id == "game":
 self.success()
 else:
 pass
 self.generic_visit(node)

The above example test is used to check the function call for ͚game͛ is used in the code. If so, the

test is passed. This is a fail-by-default test as it is easier to implement the test having presumed the

useƌ͛s fault and retroactively remove the record when proven faultless. This prevents problems such

as the game being used, but a second function call begins this test after, and as that function call is

not to ͚game͛ this triggers the error message. Fail-by-Default is handled by a simple binary toggle in

the specific class for tests.

When all tests have been finished, the Linter program yields all elements in the error record. This is

caught by Flake8 and added to the list of errors it will report to the user. Normal Flake8 errors are

suppressed in the configuration file, so only the errors relevant to the project are revealed.

As I have written this software, I am very familiar with how it works. Whilst the current tests are not

applicable to my use case, the software can be modified to run different tests. A core part of this

solution is the framework for conducting AST and Unit Tests. Based on my research, no other

solution combines Abstract Syntax Tests and Unit Testing in one package.

12

This solution does have problems. As I wrote the system, there is no resource to help if unexpected

problems occur save for the general flake8 documentation (ast — Abstract Syntax Trees — Python

3.10.4 documentation, 2022). It requires extensive installation and use of a Virtual Machine to run. It

is still untested by end users, as it is a proof-of-concept prototype. Writing individual classes for each

test is time consuming and difficult. Unit Tests are comparatively straightforward, but testing for

Abstract Syntax Trees is not.

2.6 Summary of Findings
Having investigated the existing technologies for student feedback, trends emerge. In approaches

designed for students, feedback is only given after marking, if at all. In addition, whilst they can be

used to mark student development – such as syntax analysis, this would be in the form of an exam

rather than when creating coursework. The student feedback market seems tailor made for

examinations, which means that no indication of correctness will be given before the results are

submitted – as otherwise the students could change their answers. This is antithetical to my

intended approach.

Conversely any of the approaches of giving immediate feedback on programming could be viable for

the study. The existing technologies, seem focused on either Unit Tests, or syntax analysis. Either

type could give informative feedback. However, for the best result, one system should run both

types of tests. Currently, this can only be implemented using two different systems which is hardly

usable. Or using the CCS5 tool. This provides the widest range of feedback options, and already exists

as a framework to build upon.

For the continuation of the project, I will use Cardiff Coursework Support as a framework for

designing my solution.

5 Cardiff Coursework Support program

A simplified UML diagram of the class relationships in CCS.

13

3 Specification and Design

In this section I focused on the specification and design for the project. In each aspect I first created

the specification and the used that specification to produce an appropriate design. The experiment

was designed first, as that informed the design requirements for the Computer Automated Feedback

for Students system.

3.1 Specification for experiment

As the hypothesis focussed on students, it was decided that the experiment participants should be

students of Computer Science at Cardiff. The latter also simplified the ethical review process.

Data from the students would need to be gathered to prove the hypothesis. Comparative data

would be required to perceive the improvement between using and not using the software. Hence,

the experiment requires an active and control group. For the best comparison, both groups should

receive the same task, and the same knowledge to complete that task. Code produced by the

students should be marked and the results compared to see if there is a statistically substantiated

improvement for the active group.

A problem anticipated at this stage is if the program is difficult to use. That could lead to results

where the active group is worse than the control group. A system usability score is a good way of

measuring this. Participants in the active group can partake in the short survey after using the

software.

The task should be limited to a single programming language, known to students for simplicity. It

was decided that Python should be used. As all students learn to use that language in the first year,

and it is simple to program in. Another benefit is programming in Python means the linter can be

made easily in Python therefore making use of my experience producing the Cardiff Coursework

Support program.

Additionally, to allow for as much interest as possible from the recruitment pool, the experience was

heavily time limited. It would be unreasonable for ask for large amounts of time from the

participants as it could interfere with their studies. Even asking for such a time commitment could

put potential participants off from taking part. An hour time limit was the conclusion as it required a

low commitment from the participants, but still long enough for a task to be completed.

To summarise, the experiment must fulfil this criteria:

1. Participants must be students of Computer Science at Cardiff University

2. There must be an active, and a control group

3. The task given to both groups must be the same

4. The information given to both groups must be the same

5. The program should be written using python

6. The task must not take too long – no more than about an hour

7. Results should be marked using the same criteria

8. Method of verifying the usability of the program

14

3.2 Design for Experiment Brief – Numerical Extractor Program

The first consideration for the experiment task was a basic API for converting variable types. For

example, a function to convert an integer into a string. Each function would be independent, so the

performance and hence evaluation of each function are independent.

This consideration was discarded as the participants are self-promoting, they would typically be

more experienced than the average student and a task of this difficulty would be simply too easy. In

addition, upon testing this took well under an hour.

An existing question from an online repository was also considered. But it is possible that the

students would have already completed any such question. A novel question must therefore be

devised.

It was eventually decided that this brief was the best.

͞

Your task is to write a Python script capable of taking a single parameter as a variable. The

script should return any numerical digits in that parameter as a discrete list. Any inputs that

do not include these values should return the integer -1.

The script should be written with inputs of type integer, string, and lists of integers and

strings in mind. Input type, where applicable, should be maintained.

Code maintainability should be considered.

The function that takes the parameter should be called ͞program͟. You may use other

functions should you deem it appropriate.

͞

For the full brief, see Appendix B.

This brief clearly laid out the requirements for the participants. It is novel, but does not require new

concepts that require teaching. The final product would explore functions, testing variable types,

and iterating over elements in a list. When tested, this code took under the hour limit. I confirmed

this myself, and another person did too. In addition, it has the option to be expanded to other

variable types and how the participants decided to design their solution will influence this heavily.

A participant should be able to make the described system. Where the distinction between a good

and a working system is made, is the efficiency improvements, and maintainability of the design.

Participants following best practises will be scored higher than those that do not. The marking

criteria for this question will be made after I have implemented the Example Program in the

implementation stage.

The brief was further modified after implementation to include all the test data used in the CFAS

program. Thus, ensuring that all participants had access to the same information. Otherwise, the test

would not have been fair. This test data was included as an image on the first page of the brief,

which showed how the program was going to be used, and the expected output for all the test data.

15

3.3 Design for Computer Automated Feedback (for) Students - CAFS

CAFS will be based on the existing Cardiff Coursework Support framework. Which is already capable

of analysing the AST of a program and performing Unit Tests, with results are returned in the

command line. The CCS program requires significant changes to be suitable for use with this brief.

1. Removing all obsolete tests

2. Adding new tests needs to be made easier

3. All new Test Cases must be created

4. General stability improvements

The first task is to remove all the previous test cases. They were designed and built for a different

program, and such will not be usable for this task. Some more general ones, such as not using global

variables can remain as that is always true. AST Test cases can be used as a reference to build the

new ones, as similar concepts will be explored. However, the Unit Tests will all need to be removed.

As there are many new tests that need to be created, it would be best to make adding new tests

simpler. CCS tests are written in a distinct class, and whilst that is necessary for AST tests, the Unit

Tests all effectively do the same thing. Rather than having multiple files for Unit Tests, it would be

best to have only a single document with the Unit Test data stored inside. This data would be read,

and comparisons made by a testing file – adapting the existing Unit Tester file to do this would be

best.

New tests bespoke for providing feedback during the experiment will be needed. During the first

implementation stage, the list of feedback was created. These were based on the specific

implementation I designed, and are chosen to encourage users to stick to best practises and avoid

common mistakes.

The AST tests are the following:

• Checking if global used.

Using global variables is against best practises. This will detect the use of the ͚global͛ term, and

provide feedback corrective feedback.

• Check if a WHILE loop has been used

When iterating over the elements in a list or characters in a string it is best practise to use a for loop.

This is relevant to a specific function.

• Has the FuŶĐtioŶ ͚append͛ ďeeŶ used in parseList?

In this context append is the wrong choice. The user will want to perform list concatenation but

append inserts the given element as the last element into a list. When joining two lists this will mean

the desired [] + [] = [] is actually [].append([]) = [[]].

• Test if there exist are some arguments for a given function

The brief requires the input to be taken as a parameter. In addition, for code maintainability the

parser functions should take the inputs as parameters. This further discourages the use of global

keywords as per best practise.

• Test that there is no more than one argument for function ͚program͛

16

The Unit Tests only pass a single parameter to the function. All Unit Tests will immediately fail if

there are not the correct number of parameters for the program function. This would cause

confusion so a specific error should avoid that issue. This is a separate test for the above, to make

the descriptive text easier to understand.

• Checks that the correct function name(s) has been used

Similarly, to the above if the function names are not in use the testing environment will not function

correctly. The Unit Tests will immediately fail at run time, and the function specific AST tests will not

run. To avoid the confusion that will cause, this error should notify the user of the problem.

The Unit Tests are the following, these compare the desired output with the runtime output of the

function:

1. Test good iŶput ͚9J4B72q͛ ƌetuƌŶs [9, 4, 7, 2]

2. Tests good input ͚ϵJϰBϳϮƋ͛ ƌetuƌŶs type list

3. Tests bad input [] returns type int

4. Tests bad input [] returns -1

5. Check bad output returns -1

3.4 Design for System Usability Survey

The System Usability Survey will be made available in an online form for the participants in the

active group, as they are the only ones to have experienced the software. I will use Microsoft Forms

as that allows the results to be available immediately. I will follow the industry recommended SUS

questions in Likert form (System Usability Scale (SUS) | Usability.gov, n.d.). There are ten questions,

with 5 possible responses. The user can only select one of those options.

The questions are:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

The responses range from Strongly agree to Strongly disagree. With each option having an assigned

value, which can be used to produce the System Usability Score.

17

3.5 Ethics

The designed experiment will collect human data on the participants. For this reason, an ethical

review by the School Research Ethics Committee is necessary. This is to ensure the data collected is

appropriate for this experiment, all participants are fully informed and consent for their data to be

used, and relevant laws are complied with.

To make the ethical review as simple as possible I limited the amount of data collected from the

participants. The study only requires the code produced, and the survey results from the active

group. Any additional data would not impact the findings of the study relevant to its aims.

The ethical review was conditionally approved. The conditions were to correct a version number,

and to make clear to the participants in the Participant Information Sheet that the programming

assignment did not constitute any part of a formal assessment. These adjustments were made

before participant recruitment began.

Conditional opinion as granted by the School of Computer Science and Informatics Research Ethics Committee

18

3.6 Results

To evaluate the marks to see if there was a significant difference I will use a T-test. To first check that

this was suitable for this type of data, I conducted the T-test on dummy data.

Raw dummy Data results. 30 Participants and their scores.

Active 6 6 7 8 9 10 22

12 13 14 15 16 17 18 19

Control 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Group Active Control

Mean 12.8 8

Standard Deviation 5.05 4.47

Variance 25.5 20

T-Value 2.75

Degree of Freedom 28

P Value 0.05

Critical Value 2.05

This dummy data T-test rejected the null hypothesis because the critical value was exceeded by the

T-value, for p = 0.05.

Therefore, there is a mathematically significant difference between the results. As the mean of the

active group is greater than the mean of the control group, I would surmise that the active group

had better results because they used the CAFS program. I would trust these results, as due to the

number of participants and them being randomly assigned to groups, it is unlikely to be the random

variation in ability of the individuals tested.

Given this data I would conclude the hypothesis to be true.

19

4 Implementation

This section of the report will go through the process of implementing the Numerical Extractor

program and CAFS system, the choices I made, and why I made them. It also covers the

implementation of the experiment I designed.

4.1 Programming Numerical Extractor

To finalise the design of the automatic code analysis tool, I had to create the solution to the brief.

This would allow me to consider all approaches to completing this solution, how best to test those

solutions and provide feedback. It allowed me to work out both the time required, and the difficulty

of the task to make sure it was suitable for the participants. It also allowed me to critically analyse

the existing brief and remove potential ambiguity.

The initial solutions I implemented failed due to brief ambiguity. I had not made it clear that the type

of an input must be retained; however, that was my intended aim. Otherwise, the program was

much too simple. Another such problem I encountered was not considering that Python treats an

integer character as distinct to a string character. Yet another problem was encountered when an

input of [3, 4, ͚5y3͛] returned [3, 4] rather than [3, 4, ͚5͛, ͚3͛]. Each element of a list was being

compared to against a single character. As ͚5y3͛ is not the same as ͚5͛ it was treated as not

containing any numerical values.

Based on this, I modified the existing brief to remove the ambiguity, and make clear the intended

results. I then implemented the following solution.

This solution breaks down the problem into several parts.

As the input type can either be a list, string, or integer, a function to parse each of these is created.

This is listed in the brief with given function names, to make the approach I want to the participants

to use more obvious. It saves them planning time, and means the participants will follow best

practises rather than their own novel approach. Additionally, this helps with the CAFS system as

tests can be run on named functions.

Diagram depicting the approach to solve the solution, the individual components, the connections,

and the flow of data.

20

The main function ‘program’ will take the input and depending on its type will pass it the relevant

function or abort the program due to an unexpected input. This approach is modular, and easily

modifiable. Again, following best practises. It would be very easy for the program to introduce a new

acceptable type such as a float variable. All that would be required is a check in the main function for

that type, and a bespoke parser function.

These parser functions also allow optimisation. For example, as the brief specifies searching for all

numerical digits, the integer parser can immediately return any input given to it as a list. As by

definition, all integers are entirely numerical digits.

This modular design also allows lists to be handled recursively. As any input list would feature either

another list, or strings or integers. Each element of that list can be type tested and sent to the

relevant parser function. This reuses the code, and again can be easily changed to allow for more

acceptable inputs.

Finally, program then returns the array of found characters, or a -1 if none were found.

As mentioned, this approach follows best practises as much as possible. There is a high level of code

maintainability, and code is reused rather than repeated. Admittedly checking the input types could

be moved to a separate function to make this solution even better in those regards, but as this is for

testing purposes this solution is sufficient.

The solution uses basic principles such as code reuse, deconstructing problems, and recursion. All

these principles should be well understood by the participants given the recruitment pool.

This solution should be reproducible by the participants. I do not expect an identical standard of

programming from all participants. But all should be capable of producing something that

approaches this solution. This will be the distinction between a working solution and good solution is

made. This was very difficult to devise, because getting the ideal blend of simplicity and difficulty

was very hard to judge.

The Numerical Extractor in use with the examples being the Unit Test data. This image was on the first

page of the brief, as mentioned in 3.2 so the control group would have the same test data as the

active group. It also demonstrates how I expected the program to be used, so the participants would

stick to the required function names given on the brief.

21

Python File NumericalExtractor.py

def program(para):
 listOfDigits = ["0","1","2","3","4","5","6","7","8","9"] # noqa

 if isinstance(para, int):
 result = parseInt(para)
 elif isinstance(para, str):
 result = parseStr(para, listOfDigits)
 elif isinstance(para, list):
 result = parseList(para, listOfDigits)
 else:
 result = None

 if result is None:
 return -1
 else:
 return result

def parseInt(para): return([int(x) for x in str(para)])

def parseStr(para, listOfDigits):
 found = []
 for x in para:
 if x in listOfDigits:
 found.append(x)

 if len(found) != 0:
 return found

def parseList(para, listOfDigits):
 found = []
 for x in para:
 if isinstance(x, int):
 found = found + parseInt(x)
 elif isinstance(x, str):
 result = parseStr(x, listOfDigits)
 if result != -1:
 found = found + result

 if len(found) != 0:
 return found
 else: return -1

My full implementation of NumericalExtractor.py, as dictated by the brief. This features the

correction noted in part 9.2 of this report. As my solution is only an example solution for testing, I

did not feel it necessary to follow best practises regarding code documentation.

22

4.2 Implementing Automatic Code Analysis CAFS software

The first task was to reduce the CCS program to the basic framework I could build the CAFS tool

from. This reduces the code bloat, and makes installation and error checking much faster. This

process removed all the existing tests from the software as they were redundant. The tool still ran at

this point, but had nothing to do and would terminate immediately.

Rather than creating a new way of making tests first, I implemented the tests I had already designed.

This may seem backward, but it means the minimum requirements were fulfilled first. Afterall, the

program participants would not notice the difference.

AST tests were implemented by converting my Numerical Extractor solution into AST form using the

ast Python module (ast — Abstract Syntax Trees — Python 3.10.4 documentation, 2022) as

demonstrated below.

Command Prompt

E:\Thomas\Desktop\FYP>Python
Python 3.9.5 (tags/v3.9.5:0a7dcbd, May 3 2021, 17:27:52) [MSC v.1928
64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more
information.
>>> import ast
>>> with open('ExampleProgram.py', "r") as source:
... tree = ast.parse(source.read())
...
>>> ast.dump(tree)

This allowed me to perceive the node hierarchy, and using console output navigate through the

nodes to find the specific node relationship to facilitate the desired tests.

23

Python File src/Errors/RP01a03.py

import ast
from src.Errors.errorType import astError

class RP01a03(astError):

 def __init__(self, reportHere, node):
 super().__init__(reportHere, node)
 self.errorCode = "RP01a03"
 self.errorText = "Function program should take an argument"

 self.run(node) # No need to traverse node further

 def run(self, node):
 """
 Fail if there is no arguments for the function
 """
 try:
 if len(node.args.args) >= 1: # testing number of
parameters is at least 1
 self.success()
 else:
 self.fail(node)
 except Exception as e:
 print(e)
 #self.fail(node)
 return

The above code extract is from the test file RP01a03.py. It is an abstract syntax test, capable of

detecting the number of parameters in a function. In this instance, the test will fail if there are no

parameters detected. At which point the error code and error text, with the node information will

be given to the error reporter.

This follows the framework provided by the CCS test, and complies with the best practises of Flake8

(Stapleton Cordasco, 2016). In addition, the AST tests are designed modularly, so can be replaced or

modified without affecting the rest of the application. Code maintainability was an important factor

in this design, as testing requires lots of minor modifications to the test file to make sure it works

exactly as expected.

The Unit Tests were implemented by logically comparing the expected output, with the run time

output.

At this stage all the tests were implemented but the ACA was not working. I checked the various

tests, and even checked the original CCS to see if that was working. It wasn͛t. So, I reinstalled

everything into a fresh Virtual Environment and it worked. It seems like some testing artifacts were

left over in the VE which interfered with Flake8 running.

I continuously tested the ACA on the solution I had created. This was to make sure all the tests

worked, and that they were suitable for the context of the solution. I eventually decided that there

was insufficient test data for the program to use. For example, there were no tests for an invalid

string being input. As comprehensive test data is one of the best ways to detect errors, I

implemented the new tests I devised.

1. Input ͚pidgeon͛ returns -1

2. Input ͚alpha͛ returns -1

24

Incidentally, when tested this revealed a flaw in my existing solution for the brief. It was possible

that a NoneType could be returned by the parser functions which was not accounted for by the main

function. Hence the program could output a NoneType when a -1 was the expected result. I fixed

flaw, and it demonstrated the usefulness of this type of application.

As I anticipated making more tests later, I began to implement reading Unit Tests from an external

file. This was much harder than expected, as I needed to distinguish between the various input types

which Python would automatically process in undesirable ways. After much research, the best

solution seemed to be using a special character (Data Analysis in the Geosciences, 2022) and

processing this in the Python file to give the desired type.

This is because the csv file type already uses quotes for a specific purpose. When imported using the

Python csv module it automatically accounted this. As I was required to distinguish between the

various input types, this was much harder than anticipated. For example, a seemingly simple

approach would be to specify the input in a new column but that did not work for lists of various

lengths, as each element could be a different type. The only solution around that was to have

multiple files for any given test which was counter to the aims.

As backticks were not used in either Python nor csv using them does not interfere with either and

they are an unlikely character to be used in the input. I also wanted to keep the test data as Pythonic

as possible for ease of reading, hence backticks. Similarly, I used quotes for lists to keep them in a

single column as csv is typically comma deiminated, and the Pythonic style for lists also uses commas

between elements.

The final test data used for all the Unit Tests. Each row is a separate test, with the

unique Test ID, type (value comparison or type comparison), the function it acts on,

the input value, and the expected output

CAFS system being run on the Numerical Extractor program after fixing the problem. The tests have run, but no

errors have been reported due to there being no errors discovered. This prevents the user being saturated in

irrelevant information.

25

The final implementation of the CAFS tool followed this model. It relies heavily on the existing

framework provided by the CCS software, and follows Flake8 best practises as much as possible.

The implementation is modular as possible with the testing. Formerly, changing Errors required

modification of many files, but I reduced the number of files concerning test cases and crucially

moved them all to the same place. All files integral for running the tests are now located in the

src/Errors subfolder.

Now it is as simple as replacing this subfolder with a different version to change all the test cases

used in the CAFS system. The system can now be easily adapted to test a completely different

program. I chose to do this to reflect a real-world implementation of the program, where test cases

would need to be swapped out depending on the work the users were programming. The new

version could then be installed into a different virtual environment, allowing the user to easily access

different test suites. This would be useful if they were programming two different projects at the

same time.

Admittedly the test cases would still need to be built by someone, presumably the educator.

However, given that Unit Tests can be produced using something as simple as a spreadsheet, it͛s an

improvement.

Students could then conceivably be given the Errors subfolder, with a brief, and be able to use the

CAFS system to provide feedback on their work.

UML diagram modelling the CAFS system – the error handling components have been ignored for the sake of simplicity.

Example of the program running and outputting a RP01u07 Error. The system has detected that the output using the

input '9J4B72q' does match the expected output

26

Changes were made to some tests to better suit the user. The test requiring all the function names

to be in use, is enacted before any other. This test acts as a control. Without the required function

names in use, none of the function specific test will be usable. The User Tests will fail to run and

crash; and the AST tests will be skipped. Hence, this test is run first. Then the rest of the tests can be

skipped to feedback this to the user as soon as possible. It also prevents the Unit Test results to be

output as they will have all failed, and that could be overwhelming for the user.

 This image demonstrates the capabilities of the CAFS software. Flake8 has detected a compilation

error where ͞parseStr() takes 1 positional argument but 2 were given͟. This would be enough to stop

an instance of Python compiling – which is why no Unit Tests are visible. It has also detected that

test RP01a06 has failed, due to parseStr not having two parameters. This is for complying with

best practise with passing parameters – in this case the string version of the numerical values, and

the input.

The default Flake8 errors for style are also present on this iteration. As you can see there are 2

errors displayed relating to making the program better, and 6 errors from Flake8 about

programming style. I suppressed all Flake8 errors in the final product, as I did not want the

participants to be overwhelmed. Nor waste their time counting spaces before an inline comment

(E261).

The final product for comparison working on the same version of Numerical Extractor.py. It is much easier to see the problems as its not

surrounded by style complaints.

CAFS being run on an empty file. It detects the expected function names are not in use, alerts the user, and ends program

CAFS being run on the almost perfect Numerical Extractor with an empty parseStr function

27

4.3 System Usability Survey

The System Usability Survey was created as an online form on Microsoft Forms. This handled

collecting the data for me.

No further questions were asked, other requesting the participants reupload their Consent Forms –

as this was requested by the Ethics Approval Board.

A copy of this form is accessible online (Lea-Redmond, 2022). This duplicate does not include the

data provided by the participants.

The Likert Survey Questions as implemented on the questionnaire. Link to duplicate:

28

4.4 Conducting The Experiment
Participants were recruited by email. Potential participants were the year 1 students of computer

science. They were emailed with a financial incentive to take part. On the day, 4 participants

participated in the experiment.

Students were given the required amount of time. 2 used the system, and 2 did not. The produced

code was saved and anonymised, and the students that used the system filled in the usability form.

There were some problems encountered.

• Participant 4 quit after 40 minutes due to finding the work too difficult.

• Participant 1 encountered difficulties installing the software, so I installed the software on

behalf of both participants 1, and 2 for consistency.

• Participant 2 encountered a problem where an Indentation Error detected during code

compilation aborted the code evaluation with no report. Flake8 is supposed to handle all

compilation errors by reporting them to the user.

• Participants 2, 3, and 4 significantly misinterpreted the brief; for example, Participant 3

thought all every non-numerical value had to return a -1 in that position. For example, an

input of ‘1a2’ should return [‘1’, ‘2’] but it returned [‘1’, ‘-1’, ‘2’]

• Participant 2, and 4 ignored the helper functions and attempted to program everything in a

single function

• As it was April 1st, Stack Overflow, a widely used development resource, applied a distortion

filter to their website making it unreadable. This made research much more difficult. I

resorted to answering the participants programming related questions directly to save time.

• The participants had much less experience in Python than anticipated.

4.5 Marking Results

To evaluate the code I received, I created a mark scheme. This scheme considered maintainability of

the code – so how well written it was; and the function of the code – how well it fulfils the desired

objective. Each topic had a series of questions, and every partiĐipaŶt͛s Đode ǁas eǀaluated against

that document.

See Appendix C for the full mark breakdown.

29

5 Results, Analysis and Evaluation

Having marked the participants code they produced, this section will cover the results, the analysis,

and my interpretation of the data.

5.1 Results
System Usability Survey Raw Data

Question Best Possible

Score

Participant 1

score

Participant 2

score

Average

Score

Difference

Between

Best and

Average

1 5 4 2 3 2

2 1 1 3 2 1

3 5 4 4 4 1

4 1 3 5 4 3

5 5 4 2 3 2

6 1 2 1 1.5 0.5

7 5 4 1 2.5 2.5

8 1 3 3 3 2

9 5 3 2 2.5 2.5

10 1 5 2 3.5 2.5

Participant Code Marks

Participant number Group Results

1 Active 7

2 Active 8.5

3 Control 14.5

4 Control 3

30

5.2 Analysis
Participant Code Data

Group Active Control

Mean 8.75 7.75

Standard Deviation 8.13 1.06

Variance 66.1 1.12

T-Value 0.172452

Degree of Freedom 2

P Value 0.05

Critical Value 4.3

I performed a T-test using the control and active group marks array. As there are only 4 total

participants, 2 degrees of freedom were selected. At a p value of 0.05, the critical value was 4.3.

The T-value produced was 0.172452.

Hence it ĐaŶŶot ďe ĐoŶĐluded that ͞students using real time feedback from an automatic code

analysis tool during development will make less errors compared to a control group͟. There is

insufficient evidence that the difference between the groups was not due to random chance.

The system usability score was calculated at 52.5. According to this scale (Bangor, Kortum and Miller,

2022), this “U“ sĐoƌe is ĐoŶsideƌed ͚okay͛.

5.3 Evaluation

The inconclusive results were to be expected given the low numbers of participants. Having more

participants would have significantly lowered the critical value. However, even having a degree of

freedom of 100 (ie 102 participants) this would only have lowered the threshold to 1.660. The

critical value would remain not exceeded.

Closer evaluation of the groups comparatively reveals the mean for the control and active group are

very close with a difference of 1. In addition, the control group had an exceptionally high standard

deviation and therefore variance in the results. In fact, the control group had both the highest

scored, and lowest scored participants respectively.

This extreme variance in scores in the control group has a significant impact in the t-test score. As

evidenced by the T-Test formula.

ሺ݉݁ܽ݊ሺܽሻ݀݋݉ − ݉݁ܽ݊ሺܾሻሻ√�ܽ�ሺܽሻ݊ + �ܽ�ሺܾሻ݊

The small difference between the means results in small numerator, and the large variance

contributes to a large denominator. Thus, resulting in small results unlikely to exceed the critical

value.

The high variance in the groups was in part due to the large variety in participants ability and the

lack of participants. Using more participants would have reduced the variance in the scores, and

reduced the denominator as n would be larger. The test would also be fairer as with more people,

individual ability would have impacted less on the results, culminating in groups composed of

approaching equivalent ability with sufficient participants.

31

5.4 System Usability Score Evaluation

The system usability score is poor at 52.5. This puts the system just above the 15th percentile – so

worse than almost 85% of all SUS scores (Sauro, 2022). This is obviously undesirable and would have

significant impact on the results. As the participants would have needed to learn, and utilise the

system, in addition to completing the task a low SUS score would require more effort that could

have been spent working on the brief. This is reflected in the mean of the results, as the active group

had a worse result than the control. Although, as stated above, the lack of participants means that

individual ability had a significant impact and thus this conclusion is tentative at best.

Similarly, the SUS survey had 2 participants. The participants individual experience of using or not

using similar software will have a significant impact on the score outcome.

Some responses were more impactful than others. Both participants rated the system very poorly in

respect to requiring a technical person to be able to use the system. This may be because during the

study, I was there to deal with any problems they experienced with the system. Therefore, rather

than reading the provided documentation they felt it simpler and easier to ask me. Resulting in them

feeling the need for a technical person to use the system – because they had no experience of using

the other options available for them (question 4).

Other points of note are the equally poor response to how fast people would learn to use the

system, the useƌ͛s confidence using the system, and the need to learn lots of things before using the

system (question 7, 9, 10). Again, having a technical person nearby to help, rather than using the

documentation, may have contributed to this. Additionally, as the system was installed by me – it

may have reduced the useƌ͛s confidence in their own abilities to do the same as I removed their

agency to save time.

The system was rated highly regarding its consistency (question 6) – unsurprising for a command line

tool, with one function. Similarly positive responses were given for the system being unnecessarily

complex and the system being easy to use (questions 2, 3). Lending further credence to the above

suggestion, as those descriptions seem oxymoronic to the previously discussed problems.

This of course presumes the survey was filled in with adequate consideration.

It should also be noted that question 7, and question 10 had large discrepancies between the two

participants. The opposing viewpoints will have contributed to the poor mark in those categories.

Due to the low number of participants, I cannot make an adequate judgement on these anomalies.

32

6 Future Work

Future work should include another attempt at this study. The biggest limitations of the study were

the lack of participants, the ability of the participants, and the usability of the software. Recruiting

from a larger audience of participants should result in more participants being recruited. This should

also reduce the significant variance in participant ability.

A repeat of the study should run multiple experiments rather than relying on one. This could be

performed on student lab work rather than dedicated coursework. This has the benefit of not relying

overtly on one brief – preventing an especially difficult, or easy brief interfering with the data

collection. The study could also be changed to measure learning over multiple sessions to see if the

information on corrected mistakes is retained by the students. Although this does require a much

larger time commitment from the students, and more work developing specific feedback for each

brief individually.

Improving the usability of the software would also limit its impact on the study. This could be done

by making the participants use a familiar IDE with flake8 integrated rather than relying on command

line tools. IDEs such as Visual Studio Code have configurable Flake8 support natively, and retain the

customisability (Linting Python in Visual Studio Code, 2022).

However, this requires even more set-up by the user which could counter-productively impair

usability. This option also does not fix any problems native to Flake8 such as the non-reporting of

some compilation errors.

Another option is to move away from using Flake8. This would require significant modification of the

program. Whilst other Python Linters exist such as PyFlakes (pyflakes, 2022), they do not allow easy

plugin integration. A custom solution therefore must be devised, capable of taking a Python file as a

parameter, testing the abstract syntax tree against a list of rules, and testing the file against a list of

expected inputs against their actual outputs. This would simplify the installation process, reduce the

complexity of configuring the desired tests, and allow for superior flexibility in swapping tests. This

would also allow for a custom GUI solution to be used, or a bespoke IDE plugin which would

significantly aid usability.

33

7 Conclusions

This research paper aimed to test the hypothesis ͞students using real time feedback from an

automatic code analysis tool during development will make less errors compared to a control

group͟.

Research into modern solutions for providing automated student feedback, revealed that most

purpose-built applications favour examinations, and so only provide feedback with the results. In

direct contrast, Linting software provides feedback continuously but often requires set-up by the

developer(s) before use. The two main approaches for such software make use of either Unit Testing

or test the abstract syntax tree of a program. These tests focus on what has been implemented, and

how it has been implemented respectively. I concluded the best method was to make use of both

approaches.

To test the hypothesis a bespoke method of automatic code analysis was developed using the

existing framework provided by the Cardiff Coursework Support Flake8 Plugin. The software could

run a variety of pre-determined tests that were deemed best suited to provide helpful feedback on

the code the participants were tasked to produce. It implemented Unit Tests, and abstract syntax

tree tests to provide the widest possible range of feedback.

A study was conducted with 4 total participants, with two using the developed program, and the

remaining two as a control. They were assigned a novel brief, and tasked to complete that brief

within a given time frame. The hope was that the active group using the software would provide

better code than the control group – which could be used to validate the hypothesis.

When conducting the study, the participants experienced more difficulty than anticipated. The

overall results were therefore poor. Due in large part to the low number of participants, there was

insufficient difference between the results to validate the hypothesis.

The software produced for the study achieved its desired aims, but was considered to have low

usability by the participants who used it. A user-centric design, with ongoing feedback from end-

users, would have led to a more usable solution for the participants.

The task assigned to the participants was ill suited to their experiences. Either different participants

could have been recruited or initial research should have included a fact-finding study on the

participants which would have alerted me of this discrepancy much earlier.

This research study was conducted over 3 months, by a single student. It had no additional funding,

save for a 50 pound voucher raffle to compensate participants provided by the university. Despite

the flaws discussed, the approach is reproducible, and with more participants a valid conclusion on

the hypothesis would have been produced.

Further research is warranted. It should be focused on re-running this experiment with more

participants, and over multiple sessions for more comparative data. The usability of the software

used by the active group should also be improved before reattempting the study.

34

8 Reflection on Learning

This research paper required me to collect primary research on participants to evaluate the

hypothesis. Participants had to be recruited fully informed of what they were going to do to comply

with research ethics. I was very conscious of the need to recruit participants, and I was aware that

recruiting participants would be easier if they were expected to do less. For example, a shorter

survey would look more attractive to a potential participant rather than a longer survey. I was very

conscious that the participants would have other commitments, and this would be low priority for

them.

Therefore, I chose to limit the experiment to only running for an hour. In doing so I made the

presumption that this would result in more participants hence more data. This requirement was a

large contribution to the difficulty experienced by the participants during the study. It also had very

little impact on the number of participants.

I should not have allowed that presumption to affect the brief. I allowed an external influence to

dictate how best to run the experiment and it negatively impacted the results I collected, as with

more time I could have had multiple questions – thereby reducing the impact of a difficult question.

Without such time constraints the participants could have a less stressful experience and their

results better reflect their abilities. The active group would have had more time to familiarise

themselves with the software, and understand how it worked. I should have designed the

experiment, and not allowed the participant recruitment to have such a large impact. Participant

recruitment should be a secondary concern rather than primary when designing an experiment.

Similarly, in the design phase I anticipated the problems a product with low usability could have on

the conclusion of the results. A low usability program could have negatively impacted the active

group and therefore, the results could show the active group were worse off using immediate

feedback. To forestall this possibility, I decided to run a usability study on the active group when

running the experiment. However, I neglected to take the decision of conducting a usability study

during the development stage when its impacts could have contributed to improving the program.

Not only this, but the usability study I conducted only evaluated an SUS score. In of itself, the score is

not especially useful because it can only be used comparatively. The usability questionnaire should

have included additional questions to allow the users to elaborate on the points they liked and

disliked. It could have also requested suggestions for improvement.

Whilst it would have been difficult to recruit additional participants, and requiring even more ethical

approval, the end-user focused development would have helped produce a more usable product.

Potentially preventing the problems, I encountered during the experiment.

An initial decision I made for this project was to use my existing CCS technology as the basis of the

software I would be running the experiment with. This decision occurred before conducting any

background research, or research into what would be best for the participants. I assumed it would

be fine, based on my own understanding and experiences of my first year in university. I had learnt

to use Python and had experienced using linting software to evaluate code. I also wanted to

capitalise on my experience with the CCS technology, as it would make developing the program

much easier.

Rather than using the background research to examine the possible approaches, I instead used it to

justify my decision. Rather than exploring other options, I lauded the merits of the approach I

wanted to select, and picked other options which were unsuitable for my hypothesis for comparison.

When conducting the experiment, one of the participants began to write Java code in Python Idle.

When I pointed this out, the participants all confirmed that they had much more experience using

Java, and the university teaching had moved on to focus more on that language rather than Python.

35

In my background research, if I had clarified the assumption, I would have realised that picking the

CCS tool was a mistake. It cannot evaluate the programming language preferred by my participants.

As I already knew my participants were going to be students of Cardiff Computer Science – as this

made the Ethics more manageable – I should have evaluated the software with their preferences in

mind. That would have led me to review software such as JUnit, a Unit Testing framework for Java

Code (JUnit 5, 2022). That, whilst it has limitations, would have better suited the knowledge base of

my participants. I could then have performed a direct comparison between the approaches, and

from there chosen the best option. I may have still chosen the CCS tool, but by making the decision

prior to research, I denied myself the opportunity. Background research should have been

conducted prior to making decisions, as it should be used to inform choices, rather than retroactive

justification.

All the above are perfect examples of problems encountered when doing something for the first

time. I made some bad choices because I based my assumptions and decisions exclusively on my

own knowledge. In the future, when doing any task, I could always ask for help.

36

9 Appendices

9.1 Appendix A

Background

Flake8.pycqa.org. 2022. Writing Plugins for Flake8 — flake8 4.0.1 documentation. [online] Available

at: <https://flake8.pycqa.org/en/latest/plugin-development/index.html> [Accessed 24 April 2022].

Flake8.pycqa.org. 2022. Error / Violation Codes — flake8 4.0.1 documentation. [online] Available at:

<https://flake8.pycqa.org/en/latest/user/error-codes.html> [Accessed 24 April 2022].

Method

Bangor, A., Kortum, P. and Miller, J., 2008. An Empirical Evaluation of the System Usability Scale.

International Journal of Human-Computer Interaction, 24(6), pp.574-594.

Gerald, B., 2018. A Brief Review of Independent, Dependent and One Sample t-test. International

Journal of Applied Mathematics and Theoretical Physics, 4(2), p.50.

Thomas, N., 2022. [online] Usabilitygeek.com. Available at: <https://usabilitygeek.com/how-to-use-

the-system-usability-scale-sus-to-evaluate-the-usability-of-your-website/> [Accessed 24 April 2022].

37

9.2 Appendix B – Research Study Brief
Final Brief

Your task is to write a Python script capable of taking a single parameter as a variable. The script

should return any numerical digits in that parameter as a discrete list. Any inputs that do not include

these values should return the integer -1.

The script should be written with inputs of type integer, string, and lists of integers and strings in

mind. Other inputs will have been

Input type, where applicable, should be maintained.

Failure to use these functions will cause major problems when testing your solution.

You may use other functions, whether custom or native Python, should you deem it appropriate.

Your task is to write a Python Script capable of taking a single parameter and returning any character

from a list of characters, found in that parameter as a discrete list. Any inputs that do not include

these values should return the integer -1.

You should aim to write this code from the perspective of a professional programmer. Best practises

such as documentation (comments), and code maintainability should be used.

Your task is to write a Python Script capable of taking a single parameter and returning any

characters that match those found in a list of stored

An example of the desired program in use

38

Requirements

Use the following functions for:

 program Function that takes parameter and returns the list of digits or -1

 parseList Function that handles lists

 parseInt Function that handles integers

 parseStr Function that handles strings

Failure to use these functions will be seen as a serious deviation from the brief.

You may use other functions, whether custom or native to Python should you deem it appropriate.

Input type must be maintained. If a character is a string, that element in the output should be a

string. If the character is an integer, that element should be an integer.

Flake8 Linter

flake8 absolute/address/to/file –enable-extension=RP

For those testing the Linting Software, it has already been installed on your machines.

In case

Using the command line environment:

Step 1 (skip if this has already been done before):

Set up a virtual environment

[In your working folder, will create a new folder containing VE contents called env]

pip -m env venv

Step 2:

Activate the virtual environment

[In your working folder]

cd env/Scripts

activate

cd ..

cd ..

Step 3:

Install the pre-requisites in the requirements.txt file

[When in folder research-project-y-3 folder]

Python -m pip install -r requirements.txt

Step 4:

Install the Linter program

[When in folder research-project-y-3]

Python setup.py install

Virtual Environment has the software installed

If deactivated, restarting reactivate the virtual environment and it should have everything installed

still.

39

9.3 Appendix C – Mark Scheme for evaluating Code

Mark Scheme

Maintainability

M1 Is there commented out code?

0 – Lots of commented out code

1 – Some commented out code

2 – No commented out code

M2 Is there redundant lines and / or redundant modules imported?

0 – Lots of redundant code / imported modules unused

1 – some redundant lines

2 – Very little redundancy

M3 Is the global keyword, or global scope used?

0 – Uses global keyword

1 – Uses global scope instead of global keyword

2 – All variables inside functions

M4 Are there descriptive and informative comments?

0 – No comments

1 – Comments are not descriptive and/ or informative

2 – Comments are helpful with understanding the code

M5 Are the variable names descriptive and informative?

0 – Variable names assigned very poorly

1 – Some structure / logic to most variable names

2 – Logical names used

M6 Can it be easily modified at a later date to include more input data types?

0 – Would require complete restart of project to adjust

1 – Would require significant reworking

2 – Some elements / functions could be retained

3 – Easy expansion by adding functions / modifying variables

Use

U1 Will it compile?

0 – No

1 – Yes, but error warning

2 – Yes

40

Mark designation for tests:

0 – Does not match spec

1 – Matches expected result

Question Test Input Expected Output

Value

Expected Output

Type

Notes

U2 [] -1 Integer

U3 ͚alpha͛ -1 Integer

U4 1 [1] List(Int)

U5 ͚ϭ͛ [͚ϭ͛] List(String)

U6 ͚ϭϮalphaϰfouƌ͛ [͚ϭ͛, ͚Ϯ͛, ͚ϰ͛] List(String)

U7 1234 [1,2,3,4] List(Integer)

U8 [ϭ, Ϯ, ϯ, ͚ϭ͛, ͚Ϯ͛, ͚ϯ͛] Error handling /

input

U9 2.0 Error handling /

[2, 0]

U10 -1 [-1]

U11 ͚-ϭ͛ [͚ϭ͛]

Participant 1 – Used Software

Question Mark Justification

M1 0 4 lines commented out in two different functions

M2 0 Sys module imported, unused. ParseInt returns parameter immediately.

M3 1 Sys module imported, otherwise no global scope

M4 0 No

M5 1 Vaƌ Ŷaŵes ĐaŶ ďe uŶdeƌstood ďut aƌe a ďit ǀague ie ͚testCoŶǀeƌsioŶ͛ ƌatheƌ
thaŶ soŵethiŶg like ͚iŶputToIŶtCheĐk͛

M6 1 No documentation, and a really weird approach. Would need significant

work around but some is salvagable

Use

U1 2

U2 1 Returns -1

U3 0 Returns -ϭ aŶd deďuggiŶg aƌtifaĐt ͚This is Ŷot a Ŷuŵďeƌ͛
U4 1 Returns -1

U5 0 Returns -ϭ aŶd deďuggiŶg aƌtifaĐt ͚This is Ŷot a Ŷuŵďeƌ͛
U6 0 Returns -1 and debugging artifaĐt ͚This is Ŷot a Ŷuŵďeƌ͛
U7 0 Returns -ϭ aŶd deďuggiŶg aƌtifaĐt ͚This is Ŷot a Ŷuŵďeƌ͛
U8 0 Returns -ϭ aŶd deďuggiŶg aƌtifaĐt ͚This is Ŷot a Ŷuŵďeƌ͛
U9 0 Returns -ϭ aŶd deďuggiŶg aƌtifaĐt ͚This is Ŷot a Ŷuŵďeƌ͛
U10 0 Returns -1 and debugging artifaĐt ͚This is Ŷot a Ŷuŵďeƌ͛
U11 0 Returns -ϭ aŶd deďuggiŶg aƌtifaĐt ͚This is Ŷot a Ŷuŵďeƌ͛
Notes Limited understanding of question. Naïve try / catch exception use, to test

for integers rather than using type(var). Program will only ever return -1,

and potential debugging artifact of ͚This is Ŷot a Ŷuŵďeƌ͛ ǁhiĐh is ofteŶ
wrong. ParseInt does not infact parseInt.

Total: 7

41

Participant 2 – Used Software

Question Mark Justification

M1 2 No commented out code

M2 1 Parse functions created but unused

M3 2 No global scope

M4 0 No comments

M5 1 Vaƌ ͚oŶe͛ is uŶiŶfoƌŵatiǀe ďut ǀaƌ ͚output͛ is ǁell Ŷaŵed

M6 0 No

Use

U1 2 Compiles

U2 0 Returns []

U3 0 Returns [-1, -1, -1, -1, -1]

U4 0 Error

U5 0 Returns [-1]

U6 0 Returns [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]

U7 0 Error

U8 0.5 Returns [1, 2, 3, 1, 2, 3]

U9 0 Error

U10 0 Error

U11 0 Returns [-1, -1]

Notes Software takes input and presumes it is a string, before checking each

character in the string. Forces an integer conversion to either append the

integer value or a -1 if not a number. Returns this list.

Does not retain type, does not use divide and conquer methods. Naïve use

of try, catch blocks. Could be made to handle some integers with minor

changes.

Overall works in a small number of cases. Minor opportunity for expansion.

Demonstrates misunderstanding of brief.

Total: 8.5

42

Participant 3

Question Mark Justification

M1 2 No commented out code

M2 0 Imported unused split script, and renaming parameter immediately after

assigning name in parseList

M3 1 Imported split script

M4 1 1 good comment in program, others are a bit redundant due to function

names

M5 2 Good use of variable names

M6 3 Easy to add further code to handle different input types

Use

U1 2 Compiles error free in Idle

U2 0 Returns []

U3 0 Returns [-1, -1, -1, -1, -1]

U4 0 ‘etuƌŶs [͚ϭ͛]
U5 1 ‘etuƌŶs [͚ϭ͛]
U6 0 Returns ['1', '2', -1, -1, -1, -1, -1, '4', -1, -1, -1, -1]

U7 1 Returns ['1', '2', '3', '4']

U8 0.5 Returns [1, 2, 3, -1, -1, -1]

U9 1 Prints ͞Error, no known input type͟

U10 0 Returns ['-', '1']

U11 0 Returns [-1, '1']

Notes Divide and conquer approach is used to make the problems smaller. Good

error handling of user inputs by detecting types. Did not use parseList to

feed elements into parseStr or parseInt. Does use program to pass variables

accordingly. parseInt is unoptimized to account for every int being only

made of numerical digits; and type is not maintained. Noted problems could

be fixed with some effort.

Overall good logic, but significant deviation from brief.

Total: 14.5

43

Participant 4

Question Mark Justification

M1 1 2 commented out function names

M2 1 ParseList does not do anything

M3 1 Global scope used for MyList

M4 0 No comments

M5 0 Only used var myList – even though input could be different types

M6 0 Would require full rewrite

Use

U1 0 Expected indented block (will correct for testing by commenting out

problem code function parseList)

U2 0 No return

U3 0 -1 printed on 4 different lines

U4 0 Error

U5 0 Returned 1

U6 0 No return

U7 0 Error

U8 0 Error

U9 0 Error

U10 0 Error

U11 0 No Return

Notes No understanding of question shown

Total: 3

44

10 References

Bangor, A., Kortum, P. and Miller, J., 2022. Determining What Individual SUS Scores Mean: Adding an

Adjective Rating Scale. Journal of Usability Studies, 4(3), pp.114-123.

Brown, G., Peterson, E. and Yao, E., 2016. Student conceptions of feedback: Impact on self-

regulation, self-efficacy, and academic achievement. British Journal of Educational Psychology, 86(4),

pp.606-629.

Code.visualstudio.com. 2022. Linting Python in Visual Studio Code. [online] Available at:

<https://code.visualstudio.com/docs/python/linting> [Accessed 20 April 2022].

Czerwinski, L., 2022. cornflakes-linter (flake8 in VSCode) reports issues in Python files in ~/.vscode/....

directories (VSCode extensions). [online] Stack Overflow. Available at:

<https://stackoverflow.com/questions/66374934/cornflakes-linter-flake8-in-vscode-reports-issues-

in-python-files-in-vscode> [Accessed 24 April 2022].

DeepSource. 2022. DeepSource Learn. [online] Available at: <https://deepsource.io/glossary/ast/>

[Accessed 7 May 2022].

Docs.python.org. 2022. ast — Abstract Syntax Trees — Python 3.10.4 documentation. [online]

Available at: <https://docs.python.org/3/library/ast.html> [Accessed 9 May 2022].

Epstein, M., Lazarus, A., Calvano, T., Matthews, K., Hendel, R., Epstein, B. and Brosvic, G., 2002.

Immediate Feedback Assessment Technique Promotes Learning and Corrects Inaccurate first

Responses. The Psychological Record, 52(2), pp.187-201.

George, B. and Williams, L., 2004. A structured experiment of test-driven development. Information

and Software Technology, 46(5), pp.337-342.

Jupyter.org. 2022. Project Jupyter. [online] Available at: <https://jupyter.org/> [Accessed 4 May

2022].

Junit.org. 2022. JUnit 5. [online] Available at: <https://junit.org/junit5/> [Accessed 12 May 2022].

Krekel, H., 2022. pytest: helps you write better programs — pytest documentation. [online]

Docs.pytest.org. Available at: <https://docs.pytest.org/en/7.1.x/> [Accessed 5 May 2022].

Krekel, H., 2022. Anatomy of a test — pytest documentation. [online] Docs.pytest.org. Available at:

<https://docs.pytest.org/en/7.1.x/explanation/anatomy.html> [Accessed 5 May 2022].

Lea-Redmond, T., 2022. Microsoft Forms. [online] Forms.office.com. Available at:

<https://forms.office.com/Pages/ShareFormPage.aspx?id=MEu3vWiVVki9vwZ1l3j8vKSZONW1hCRIr

PUOLlcTzhxURExLVFZWTlFKN0kyVjJETVU4M1lDNU5RMi4u&sharetoken=IaiGicaCv3IxSBGvNykR>

[Accessed 12 May 2022].

Marketplace.visualstudio.com. 2022. cornflakes-linter - Visual Studio Marketplace. [online] Available

at: <https://marketplace.visualstudio.com/items?itemName=kevinglasson.cornflakes-linter>

[Accessed 24 April 2022].

45

Mensink, P. and King, K., 2019. Student access of online feedback is modified by the availability of

assessment marks, gender and academic performance. British Journal of Educational Technology,

51(1), pp.10-22.

Nbgrader.readthedocs.io. 2022. nbgrader — nbgrader 0.6.2 documentation. [online] Available at:

<https://nbgrader.readthedocs.io/en/stable/> [Accessed 4 May 2022].

Network Encyclopedia. 2022. Absolute Path (and how is different from Relative Path). [online]

Available at: <https://networkencyclopedia.com/absolute-path/> [Accessed 12 May 2022].

Poulos, A. and Mahony, M., 2008. Effectiveness of feedback: the studeŶts͛ peƌspective. Assessment

& Evaluation in Higher Education, 33(2), pp.143-154.

PyPI. 2022. pyflakes. [online] Available at: <https://pypi.org/project/pyflakes/> [Accessed 21 April

2022].

Sauro, J., 2022. 5 Ways to Interpret a SUS Score – MeasuringU. [online] Measuringu.com. Available

at: <https://measuringu.com/interpret-sus-score/> [Accessed 6 May 2022].

Stapleton Cordasco, I., 2016. Flake8: Your Tool For Style Guide Enforcement — flake8 4.0.1

documentation. [online] Flake8.pycqa.org. Available at: <https://flake8.pycqa.org/en/latest/>

[Accessed 4 May 2022].

Stapleton Cordasco, I., 2016. Writing Plugins for Flake8 — flake8 4.0.1 documentation. [online]

Flake8.pycqa.org. Available at: <https://flake8.pycqa.org/en/latest/plugin-development/index.html>

[Accessed 12 May 2022].

Stapleton Cordasco, I., 2016. Error / Violation Codes — flake8 4.0.1 documentation. [online]

Flake8.pycqa.org. Available at: <https://flake8.pycqa.org/en/latest/user/error-codes.html>

[Accessed 13 May 2022].

W3schools.com. 2022. Python assert Keyword. [online] Available at:

<https://www.w3schools.com/python/ref_keyword_assert.asp> [Accessed 12 May 2022].

Usability.gov. n.d. System Usability Scale (SUS) | Usability.gov. [online] Available at:

<https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html> [Accessed 13

May 2022].

