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Abstract 

 

The purpose of this project is to develop a visualisation and planning tool for large scale robot 

warehouses. Allowing the user to change characteristics and see how they can affect the 

efficiency of the warehouse, and in doing so allow users to find optimal characteristics. In 

addition to this it will also act as a visualisation tool for teaching people how robots can be 

used for large scale automation in this style of factories. It would also serve to demonstrate the 

advantages of using artificial intelligence algorithms in these types of scenarios. 
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1. Introduction 
1.1 Project Aims 
 

The aim for this project is to simulate a warehouse using robots to pick and sort grocery items 

into customer orders. The simulation will allow the users to setup starting parameters to be able 

to measure how they affect the efficiency of the warehouse.  

 

1.2 Intended Audience 
 

The intended audience for this project is companies that use these type of robot swarms. It is 

intended to be used by these companies to be able to prototype decisions they will need to make 

about how their swarm operates and see how these decisions impact performance. Other 

beneficiaries of this work would be people looking to get a greater understanding of how swarm 

robots operate. This simulation tool would also work as a visualisation for the education of 

people on how this technology can be implemented. 

 

1.3 Important Outcomes 
 

• Create a working visualisation of a robotic warehouse floor 

o The visualisation should be clear and easy to understand even to people without 

a technical background. 

o The visualisation needs to clearly show how the robots are operating in the grid. 

• Have robots that are able to process customer orders 

o The Robots should be able to fulfil any customer orders generated by the system 

unless the setup parameters make this impossible. 

o There should be at least two modes of operation for the robots with one utilising 

artificial intelligence to better move the robots through the warehouse. 

• Have a way of seeing how the model is running compared to other models 

o The systems should have graphs and logs to be able to easily compare how 

changing settings impact performance of the simulation. 

2. Background 
2.1 Wider project context 
  

In recent years the model that supermarkets use to get business from their customers has 

changed drastically. This started with allowing customers to pick out their shopping orders 

online and then “pickers” working in supermarkets would collect the items off the shop floor 
and pack the customers shopping for them before loading these orders into delivery trucks to 

be delivered to the customer. This is still the case in some areas not located near to dedicated 

fulfilment centres. 

 

This was a massive change to traditional shopping and soon became incredibly popular. This 

left supermarket chains with both massive opportunities and challenges. The idea of having 

local pickers worked well at first due to having low initial setup costs and low traffic, however 

as the number of customers that wanted to use the delivery service increased it became difficult 

to keep up with demand. Human pickers were collecting and packing items too slowly and it 

was duplicating work for the supermarket as products were being loaded onto shelves and then 

taken off minutes later by pickers who took them to load into order totes. 



 

The solution for this was to move from a system that utilised human pickers navigating a human 

environment and instead move towards robots in an environment designed specifically for them 

that would allow much faster picking times and reduce work duplication. What this meant was 

huge warehouse spaces designed primarily for robots to navigate were constructed. Companies 

such as Tesco and Ocado have massive warehouses for this purpose. Doing this meant that 

items could be sent straight to these warehouses for packing instead of to the supermarket to 

be put on shelves then picked. 

 

There have been several different approaches for how to design these robotic facilities for 

example Tesco have a hybrid model that delivers totes of items to a user to hand pick.[1] 

Whereas Ocado have a facility designed to have as little human robot interaction as possible.[2] 

There are pros and cons to each implementation, but this project will focus mostly on the robot-

centric implementation.  

 

2.2 Factors that go into warehouse design 
 

This project is intended as a tool for the use in planning these large-scale picking facilities, and 

so it needs to consider the factors that have impacts on the process’s efficiency. The one with 

the largest impact is the number of robots to be used on the factory floor. Having too many 

robots on the warehouse floor can cause large amounts of congestion within the model as robots 

block each other’s movement and make finding clear paths to their goals very difficult, and on 

the other side having too few robots means that the advantages that come with swarm robotics 

are greatly lessened. What this visualisation can show is the optimum number of agents to use 

in a warehouse of a given size. 

 

The size of the warehouse floor is in itself another consideration, larger sizes mean that more 

items could be stocked, and more robots can be used to ick customer orders. However, a 

consideration of having a large grid is how the items will be dropped off from the robot into 

the customer orders, having a large warehouse with few drop offs could lead to bottlenecks. In 

addition to this in a real-world scenario cost would massively increase with larger spaces, not 

just in building the facility but maintaining it as well.  

 

Restrictions on the types of orders that can be placed is also another factor that would affect 

the speed at which the warehouse is able to process orders. For this visualisation the user has 

control over the number of unique types of items that can be in each order, along with the 

quantity of each that can be ordered. These can have impacts on the optimum warehouse size 

as if you only  have a small number of unique types that can be ordered then having a smaller 

warehouse would be more efficient however if lots of different types of items are required then 

a large space would work better, equally in a real world scenario if item quantity was more 

common than robots might be able to be designed to pick up more than one item however that 

is not the case in this visualisation each robot can only pick one item at a time. 

 

There is also perhaps the biggest factor which is what type of algorithm will be used to control 

the movement of the robots within the warehouse space. Having the robots simply knowing 

their current position and their goal position and moving towards where they need to be is easy 

to implement and can be fast with smaller warehouse sizes and smaller number of robots 

however as the number of agents increase so does the complexity that goes into route planning.  

 



2.3 Existing Solutions 
 

2.3.1 Optimal Solution – Conflict Based Search 

CBS search is a common approach for multi agent pathfinding problems.[6] It works by using 

a path finding algorithm most commonly A* search with an appropriate heuristic then once it 

has the optimal routes for the agents to reach their goals it will evaluate the paths found against 

each other.  

 

Figure 2.1 shows an example of a CBS tree with two agents attempting to path find to their 

goals. In the first node of the tree, Agent 1 and Agent 2 have their optimal paths however they 

have found there would be a collision at the 3rd node B2 which means that the routes are invalid. 

Since the routes are not valid then two new nodes are added each with a different constraint, 

each agent will then find their optimal path whilst obeying the node conditions, in this case 

again collisions are found so each lowest cost node splits again. This continues until the cost 

of the child nodes can’t be reduced meaning a solution has been found. 

 

In practice this CBS search algorithm has several limitations such as: The performance of CBS 

depends on the structure of the problem. Cases with bottlenecks are where CBS performs well, 

whereas in open spaces CBS performs poorly.[6]  Figure 2.2 shows a comparison of different 

path finding algorithms and how their performance compared on different map types. The 

graphs are plotting the success rate of the algorithms against the number of agents used in the 

test. This shows how much the performance of the CBS algorithm was affected by the different 

map types.  

Figure 2.1 Constraint tree for example CBS problem [6] 



 

The conclusions from the paper were that the CBS algorithm performed worst on the first map  

due to the large open spaces with comparatively few bottle necks, then the performance was 

middling on the second map as it still had wide open spaces, but this time had more bottlenecks. 

Finally, the third map is made up largely of narrow corridors and bottlenecks and the CBS 

algorithm outperformed the others by a decent margin. 

 

Since in a warehouse environment there are very few bottle necks the CBS algorithm would 

not be the best to use. Also, it was in looking at how CBS worked finding optimal paths that I 

realised that this solution would not best fit for this project. In all of the examples given the 

agents were started in a randomised location and given a randomised goal to go to. This is 

similar to the needs of this system however a key difference is that in this example is that once 

a goal state is reached the robot has not finished its task. It would need to interact with the goal 

and then would be assigned a new goal to head to. This would mean the entire CBS tree would 

need to be created from scratch anytime a robot reached its goal. Also, with multiple robots 

filling customer orders it’s possible that more than one robot could have the same goal which 

with CBS would mean that the path would never be found as the constraints would include the 

Figure 2.2. Comparison of path finding algorithms, plotting number of agents against success rate.[6] 



goal. Having multiple goals for the robots to navigate to, makes it much harder to solve this 

problem optimally. This means that a non-optimal solution was much more appropriate for this 

implementation. 

 

2.3.2 Non-Optimal Solution A* Search 

 

A* search is one of the most commonly used path finding algorithms using heuristics to find 

optimal paths to goals.[9] “A* is complete and optimal on graphs that are locally finite where 
the heuristics are admissible and monotonic.”[10] An admissible heuristic is where the 

estimated cost will never be greater than the cost of reaching the goal state. Monotonic or 

consistency as it is sometimes referred to, means that the estimated cost of reaching the goal 

from a given node A is no greater than the cost of going from node A to node B plus the 

estimated cost of reaching the goal from B. Example of devising heuristics can be seen in 

Figure 2.3. 
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There are several options for heuristics to use with A* search and they can have effects on the 

solution found. Some of the most widely used are Manhattan Distance, and Euclidean Distance.  

Figure 2.3 Devising Heuristic’s example 

Figure 2.4 Differences between Manhattan 

and Euclidian Heuristics. [13] 



The formula used for finding the Manhattan distance on a 2D grid is ࢙࢈࡭ሺ࢙࢚ࢄ࢚࢘ࢇ − ሻࢄࢊ࢔ࢋ ࢅ࢚࢘ࢇሺ࢙࢚࢙࢈࡭+ −  ሻ. This is the heuristic that will be used for this project as the robots areࢅࢊ࢔ࢋ

not able to move along a diagonal which an exact use case for Manhattan geometry as seen in 

figure 2.4 where the green line shows Euclidian distance, and all others show equal Manhattan 

distances. 

 

Figure 2.5 shows how the agent finds an optimal path to the goal using a Manhattan heuristic. 

 

 

 

Using A* to find optimal paths is easy to do in a single agent environment where this solution 

begins to become non optimal is when other agents are introduced, there is no framework for 

building in cooperative path finding for A* it needs to be used on a route-by-route basis which 

is perfect for this project with each robot having to reset its route every time it reaches a goal. 

Considering how to avoid other robots is a challenge to be solved in the course of this project. 

 

2.4 Methods and Tools used 
 

This project will be written in Python utilising an agent-based simulation library called MESA 

“MESA is a modular framework for building, analysing and visualizing agent-based 

models.”[3] This framework is made up of three component parts: Modelling, Analysis, 

Visualisation.  

 

Figure 2.5 A* Pathfinding finding an optimal solution with Manhattan distance heuristic 



The Modelling section is the base of the library, it contains the model and agent classes as well 

at the sub modules, meas.space and mesa.time, these modules are where the simulation 

environment is defined as well as the schedule that it runs on.[4]  

 

The Analysis section is used for data collection whilst running the model and has built in 

support with the visualisation module for displaying the recorded data.  

 

Finally, the Visualisation section of the module is the main visualization tool uses a small local 

web server to render the model in a browser, using JavaScript.[5] In my project I use all of 

these modules. 

 

3. Specification and Design 
 

3.1 The static architecture of the system 
 

Figure 3.1 shows a UML diagram of part of the system. Figure 3.2 shows an example UML 

diagram of a MESA project [8] and so only the parts that are different to the example model 

are shown in Figure 3.1. The main difference between the example project and the system I 

have created is that multiple different agents are used in this project, these are the Robot 

workers, the Bin agents that control what item is held at which location, the drop off agents 

which are where items are deposited by the robot workers, the label agents which shows the 

dynamic order tracking on the right hand side of the grid, and finally the floor agent which are 

included to make it easier to tell the order tracking and warehouse floor apart.  

 

The model class is initialised when the program starts, it takes two parameters from within the 

code itself, these are the size of the grid and whether to activate the charts for the visualisation. 

These two settings have to be initialised at the start of the program and cannot be changed while 

the program is running. However, all other settings about the model are set using sliders and 

Figure 3.1 UML Diagram showing how the non-MESA classes interact. 



drop-down menus on the visualisation. When started the model uses the MultiGrid class from 

the MESA space module and begins by populating the grid with agents, to start with drop off 

agents are assigned into a specific column of the grid such that marks the furthest right the 

robots are able to go. Then if the visualisation mode is enabled the cells to the right of these 

drop offs will be populated with floor agents and then label agents matching the order currently 

being requested by the drop off cell. After that the model will place a bin agent in each cell of 

the grid with each agent assigned an item to store. Then the robot agents are placed into the 

grid, these are distributed randomly to a start location. Only the robot agents are added to the 

schedular to activate every step, they trigger the activation of other agents when needed, for 

example when the robot drops an item off it the drop off agent will activate to test whether it 

has a completed order. 

 

While running at every step of the program data is being collected by the data collector module 

of the MESA library, three things are collected, the average number of steps taken by the robots 

in the system, the number of items that have been delivered to the drop off agents and the 

percentage of orders that have been successfully filled. This data is then fed to the MESA 

visualisation chart module which in turn feeds into the browser web page to be able to show 

the collected data as a graph on the page in real time. 

 

3.2 The user interface 
 

3.2.1 Model Control 

The MESA visualisation module has built in buttons for controlling the model these are: Start, 

Stop, Step, Reset and About. The Start button starts the simulation and then is replaced with 

the stop button which in turn when clicked stops it. The Step button causes the model to allow 

Figure 3.2 UML Diagram of a simple MESA Model [8] 



all agents to take a single step and the Reset button stops everything and reinitialises the 

simulation, this is required each time the user changes a setting. The About button shows a 

small dialogue box with a description of what the project is doing. Along with the buttons there 

is also a slider to control the speed at which the simulation runs. This is on a scale from 0 – 20, 

however setting the slider to 0 will disable the control and run the simulation as fast as possible. 

 

3.2.1 User Changeable Settings 

 

The user interface is most affected by two different modes, there is the Display mode which is 

shown as a checkbox that the user can toggle on for off while the program is running. And then 

there is also enableCharts, this is a setting inside of server.py and cannot be changed while the 

program is running, this is what controls if the data collected during the running of the 

visualisation is shown to the user or not. 

 

 

 

 

An example of the user interface can be seen in Figure 3.3, this is with both display mode active 

and with charts enabled. In Figure 3.4 you can see the user interaction section, this is where the 

user is able to change the settings that can affect the efficiency of the simulated warehouse.  

 

The first slider is Robot Initial Count, this controls the number of robots that are loaded into 

the system at the start of the simulation. The upper limit is set by taking the height of the grid 

squared minus itself. This means it’s impossible for a robot to be spawned into a drop off cell 
at the start of the visualisation, but the rest of the grid can be completely filled. Next is the 

Unique items per Order slider, this controls how many different types of items can be ordered, 

Figure 3.3 Screenshot of an example visualisation with display and chart mode enabled. 



this does not affect the quantity of items only the shopping list 

length. This slider starts full at the beginning of the program as 

it affects the length of the labels on the right-hand side of the 

grid. Because the grid size cannot be changed whilst the server 

is running the max size available on the slider needs to be used 

to ensure that if the user increased the slider, then the max value 

would fit. Once initialised the slider can be adjusted to any 

length the user would like to use. After that is the last slider, 

this is the maximum stock per order slider, this denotes the 

maximum amount of any one item that can be ordered in a 

single order, which combined with unique items per order give 

the user complete control over the example generated orders. 

 

After the sliders are two toggles, these allow the user to activate 

settings to help understand how the robots work. The first 

setting is example mode. In this mode only one robot is able to 

move, this makes it easier to track its movements across the 

grid. The path that it has found to its next obstacle is also 

highlighted on the grid. The other robots are unable to move 

and act as obstacles, this is to show how the robots are able to 

navigate around the grid. The other toggle is for the display 

mode, this allows the user to deactivate the icons used in the 

visualisation and instead have a much simpler view of the robot movements on the grid. These 

two modes work well with each other to simplify the visualisation and can be seen in Figure 

3.5. 

 

The final setting the user can change is the path finding type they wish for the robots to use. 

There are two options, Blind Goal in which the robot has no real intelligence and will just move 

towards its goal each step with no planning, it has some deadlock detection and so given time 

it will be able to process all orders. The other type is Path Finding, this uses artificial 

intelligence to find routes through the grid. 

Figure 3.4 User Interaction 

3.5 Simplified visualisation view with Display mode and enableCharts off and Example mode on 



3.2.3 Warehouse Floor 

 

The layout of the warehouse floor is based on the Ocado Hive factory an image of which can 

be seen in Figure 3.6 [14]. This factory layout was the main inspiration for this project. In the 

image you can see how each cell has totes loaded with items. This is shown in the visualisation 

by the image loaded onto each cell. Since the system has only a finite number of items with 

larger grid sizes some items will be held in multiple bins clustered together. As the robots move 

around the simulation, they also change colour to indicate what their current task is. Blue robots 

symbolise that they are currently not holding any item. Red robots means that the robot is 

currently carrying an item to a drop off point.  

 

The cells on the grid that are filled in black at the beginning of the simulation are the drop off 

points, this can be seen in figure 3.5. They are the right-hand boundary of the simulated 

warehouse and in my implementation, they function in a similar way to the totes in that the 

robot drive over them and lower the picked-up item down into a tote collecting the order. As 

the order is filled, they begin to fill up like a progress bar to show the percentage of items that 

have been delivered to them. This can be seen in Figure 3.7. This give the viewer a better 

understanding of how far along the order is to being complete as it progresses not according to 

the types of items delivered but the proportion of items delivered. 

 

3.2.4 Order labels   

 

The labels that make up the right hand wide of the 

visualisation detail the outstanding items needed 

to complete the order help in their corresponding 

drop off cell. The labels contain an image of the 

items in the order and also a number indicating 

the amount of that item currently needed in the 

order. This is updated every time an item is 

dropped off by a robot to give a live view on how 

the order is progressing. Sometimes the numbers 

are not clear due to last minute icon changes, they 

appear more clearly on larger grid sizes. 

 

 

 

Figure 3.6 Ocado Hive robot packing facility.[13] 

Figure 3.7. Screenshot of the visualisation label section 



4. Implementation 
 

4.1 Initialising the model 
 

4.1.1 Starting the server and initialising the model. 

The program is started by running the file Server.py, this is where the settings that can’t be 
changed while the simulation is running are set. When the program starts it uses these values 

and the default values from the user settings to create the grid object for the visualisation and 

also the model object. These setting can be seen in Figure 4.1 showing part of the init function 

for the model. If the display mode is enabled will change how the grid for the project is 

generated, to make room for the label agents. 

 

 

Multi Grid 

MultiGrid is an object from the MESA Space module[15], in this case 

it is initialised with the Torus parameter set to False, this means that 

the agents cannot wrap around from one side of the grid to another, 

if enabled this would allow for an agent to move from opposite sides 

of the grid in one move. For example, with a 4 by 4 grid an agent 

would be able to go from (1,1) to (4,1) in a single step. Figure 4.2 

shows an example of how a torus grid works. This is not what is 

needed for this project and so is disabled. Also, the reason that 

MultiGrid is used is because while only one robot can occupy a cell 

at a time, there are also bin agents or drop off agents at every cell, 

so MultiGrid is needed. 

 

Random Activation 

The scheduler used for the model is random activation, every time the model is stepped forward 

the schedular runs and any agents that have been added to the schedule have their step function 

run. For this project only the robot agents are added the schedule and they trigger the activation 

Figure 4.1 Model Class init() function showing the parameters passed to generate the model. 

Figure 4.2 Example of how a Torus grid operates 



of other agents when needed as most steps in the model they don’t need to be activated. The 
reason that random activation is used instead of the alternative simultaneous activation is 

because it is easier for the path finding the robots use to avoid getting into deadlocks. 

Sometimes when using simultaneous activation situations could occur where a robot higher up 

in the schedule hierarchy would trap one that was lower. With random activation being used 

instead deadlock are much reduced as in a situation where one robot is blocking another, they 

are both equally likely to be the one to move first so even if a robot pair blocks each other a 

few times eventually the alternate one will activate first and escape the lock.  

 

4.1.2 Initialising agents 

The agents are created with the model and can be broken down into 3 steps, firstly shown in 

Figure 4.3 is where the drop off agents are created and placed into the grid object, then if 

display mode is activated then label agents and floor agents are created to fill in the area to the 

right of the drop off. Next the bin agents are created, this can be seen in Figure 4.4, this uses a 

function called allocate_items_grid() to create a list of grocery items from a sample list that 

will have one element for each bin agent to be added, as the bin agents are added to the grid, 

they are assigned an item to hold from this list. 

 

Finally, the robot agents are then added to the model, this can be seen in Figure 4.5. To do this, 

random coordinates in the grid are chosen as a potential start location, if it’s confirmed that 
there is currently no agent located in that grid cell then the robot will be placed there and added 

to the schedule. The next part is for when the simulation is used in example mode. For this 

mode all robots except for one are used as static obstacles to show the agent path finding 

Figure 4.3 Drop off, Label and Floor agent creation 

Figure 4.4 Bin Agent creation 



through the grid, however because these robots will be static the cells that they spawn on can 

never be visited by the one working agent so all items that a robot is spawned on needs to be 

removed from any open orders. This is not a perfect solution as with a large number of agents 

in example mode there might be cells that are fully encapsulated by static robots and so can 

never be visited but equally have no robot on them, so their item was not removed. 

 

4.1.4 Starting Data collector 

 

The data collector is setup in the initialisation of the model and so each time the model takes a 

step it will run the countComplete, getItemsDevlivered and getAvgRobotMoves functions to 

get the data it needs then it will add the data point to the charts, plotting the number of items 

delivered and the average steps taken on the same chart and the percentage of orders filled 

separately. All of these data points are plotted against the step the model is currently on. 

Figure 4.5 Robot Agent creation and placement 

Figure 4.6 Data Collector creation 



4.2 Stepping the model 
 

4.2.1 Blind Goal Step 

 

The way the agent operates depends mostly on 

what path finding type they are using. When the 

agent is set to “Blind Goal” the step function will 

run the code seen in figure 4.7 it will use not use 

an intelligent path finding algorithm, it will 

instead just use the function moveTowardsGoal 

seen in Figure 4.8 to “blindly” head towards its 

goal. Before running that function however, it 

will check its deadlock counter.  

 

This is used to detect if the robot has moved since 

its last step. If it hasn’t that could mean that two 
robots are blocking each other which without 

deadlock detection would never end. Every turn 

the robot doesn’t move its counter decreases by one, if the robot’s counter reaches zero then 

instead of using the move towards goal function it will try to move randomly to break the 

deadlock. With this system the blind goal pathfinding will always be able to complete a 

simulation, but it can take an extremely long time due to robots all trying to move the same 

way causing large clumps of robots to form taking a long time for the robots to escape. 

 

In the moveTowardsGoal function first the system checks if the goal has been found if so, 

depending on the agent at the goal location it will either pick up or drop off an item. If not at 

the goal it will run the headRightDirection function also seen in Figure 4.8,  in this the agent 

will find out how far it needs to go along each axis to reach its goal and then it will randomly 

pick a direction to go in, the more movement required in a particular direction the more likely 

it is to choose that direction to go in. 

 

Figure 4.7 Blind Goal Mode 

Figure 4.8 How blind goal movement works. 



4.2.2 Path Finding Step 

 

A typical step for a robot with path finding starts with checking to see if the robot has marked 

itself as busy, if it not busy then it will get a job from a list kept by the model about items that 

are still missing from open orders, it will then plan a route for getting to its goal. If the robot is 

busy but doesn’t have a route that means that something has gone wrong in the path finding 

process, this could be that a previous planned route would have led to a collision and so the 

move was cancelled and instead a new path needs to be planned, or it could be that the goal 

node is not found by the A* search algorithm. This can either be because there is currently a 

robot on or surrounding the goal cell. And so, because a full route cannot be created the robot 

just moves to a neighbour cell with the best heuristic not planning a full path. It then marks that 

route as false so next step it can try to plan a route again. 

 

If the robot is marked busy and the route is empty that means that the robot has reached its 

goal. If the goal is a drop off point, then it will drop the item that it is holding into it and mark 

itself as no longer busy. If it is a bin then it will double check the item is still needed before 

picking it up, getting a new goal and planning a route. 

If none of these apply, then it will simply pop the next node off of its planned route, check if it 

is clear then move to that next cell. If the next cell is not clear however it will cancel the route 

and either wait a step where it is or move the robot to the best next available cell based on the 

heuristics of the cell it’s on as well as the surrounding cells. 

Figure 4.9 Path Finding Control 



4.2.2 Planning a route 

 

The path finding algorithm uses A* to find a route from the robot’s current position to the goal 

cell. It ignores nodes that contain a robot and marks them as non-traversable. It uses Manhattan 

distance as the heuristic for exploring child nodes and will find the optimal path to the goal 

node. 

This one part of the project took by far the longest to implement and right up until the end was 

where most of my focus was placed on. I had multiple different plans or solutions to try and 

make this non optimal solution as efficient as possible. I had one idea of using a booking where 

a robot would find their optimal route and then place a booking into each cell, they would use 

along with the turn they would use it on. Then when the next robot started to path find it would 

not just avoid cells with robots currently on it would instead test to see what turn an unexplored 

node would be reached on and then see another agent had booked it for that turn in which case 

it would mark it as unavailable. This however proved to be much more difficult than I had 

planned and despite a large amount of time working on it I could not get it to function as 

intended. There are a lot of left-over features in the code from working on these 

implementations. Figure 4.92 shows some of my plans for how this implementation would 

work. The mouse over information shows details about the cells, in the figure you can see that 

two different robots have made booking for cell (2, 4) for different turns. The way I had planned 

for this system to work was to use A* search to find the optimal path from the robot’s start to 

Figure 4.91 A* Path finding Algorithm 



its goal then when it had this route place a booking on the cell for the turn it would arrive on 

that cell, on the turn (Model’s current step + the cells position in the route). In the figure you 

can see the model’s current step is at 23 and the robot is at cell (2,5) and so it placed a booking 

on (2,4) for turn 24. As you can see from the figure this was working however the issues arose 

in trying to modify the A* algorithm to work out the route cost for each node that was explored. 

Every time the lowest code node was taken from the open list and its children looked at the 

algorithm would work out the steps taken to get there if this node was used in a route and then 

check for current open bookings for that cell. 

 

While I do think that this algorithm would have worked it proved to be too much for me to 

implement in the time scale remaining for the project. In the end the solution that I ended up 

using is not ideal. When there are clashes in the paths then the route is not followed instead the 

fixPath function is run, this function as seen in Figure 4.93 takes all of the cells around the 

robot that are valid cells to move to and that are unoccupied, it will then work out the heuristic 

value for each cell and then move to the one with the lowest value. 

 

Figure 4.92 Plans for cell booking system 



4.3.3 Picking up and dropping items 

 

Picking up items and dropping them off is very similar with both path finding types, Blind 

Goal’s approach can be seen in Figure 4.8 with the moveTowards function. When it takes a 

step, before moving it checks to see if it is currently at its goal, if the goal is a bin, then it will 

pick an item up out of it and then if it is a drop off cell it will drop whatever it is holding down 

into it. The path finding approach can been seen in Figure 4.9 and acts similarly in that it will 

check what type of agent it is in a cell with and drop its item off, then mark itself as not busy 

and clear its current route. If the cell is a bin cell, then it will peek at the item in the cell, double 

check that the item is still needed by an order then pick it up, then it will update its route to 

head towards its new goal. 

 

4.3.4 Collecting Data 

 

The data that is collected for the graphs is done using in DataCollector object from the MESA 

Library, Figure 4.6 shows the data collector being initialised using the three functions shown 

in Figure 4.94. The countComplete function iterates over the drop-off agents in the system and 

then works out the percentage of them that have all the items they need. The other two functions 

are based on a model variable that is incremented every time a robot drops an item off or moves 

respectively. The number of moves is then averages between all robots before being returned. 

 

Figure 4.94 the functions used by the data collector for the graph visualisation 

Figure 4.93 fixPath Function 



4.3.5 Building the Visualisation 
 

When building the visualisation part of this project there is an established way off setting up 

the appearance of the agents within the MESA library, when the CanvasGrid object is created 

it is passed a portrayal_method parameter, this is a function that takes an agent object and then 

returns a dictionary containing information about how the agent should look in the 

visualisation. This dictionary is then converted to a JSON file and given to the MESA 

visualisation browser page to be displayed. 

 

The portrayal_method in this project is a function called 

Appearance(). With this project there are a large number 

of agents to consider on the grid and each one needs to 

look different. The visualisation browser has a number 

of options for how the agents can appear, from the shape 

and size of the agents, colour, text overlay, whether to 

use an image and some others not used in this project. 

The Appearance function checks to see what type of 

agent is being looked at and then will call another 

appearance function based on the agent type, this is show 

in Figure 4.95. Once the correct appearance function is 

called then it will evaluate the current model settings like 

if the display mode is enabled of if the agent is holding 

an item. In Figure 4.95 the robotAppearance function is 

shown and you can see how based on if the model is in 

displayMode it will either set the robot shape to a 

rectangle or will load the robot avatar image to be 

displayed. 

 

There are some other agents that have further functions 

to determine their appearance. The colour value in the 

dictionary can display gradient colours and so the agent has a routine to work out how many 

items have been delivered to it and how many it is waiting to receive; it will then use this to 

make a gradient colour array for the portrayal to show the order progress. 

 

When gathering the images for the bin and label agents I started by gathering black and white 

images for the icons, then when realising this was not clear enough, I then got colour images. 

However, there was a further issue with this as many of the images had full colour backgrounds 

that when scaled down made it hard to see both the item and also the grid dividing lines. Once 

again, I then gathered images with a white background this was definitely the clearest version 

of the visualisation however I then realised to be used in the project the images would need to 

be from an open-source image repository. Due to the nature of using products as icon I found 

it very hard to find any open-source images that were what I was looking for. Because of this 

I had to revert from using photos to using fair use clipart from[16]. After I had gathered the 

images that I needed I used a batch resizer to change the resolution of all of the images to a 

30x30 pixel size to make it easier for the visualisation to load the images, for this I used the 

website[17]. However, there were still some issues with this implementation and can cause the 

visualisation to flicker when the display mode is enabled, especially with larger grid sizes and 

frame rates. I tried to further reduce the image quality to reduce this, but this didn’t seem to 
improve the issue, so I reverted this leaving the images at their original size. This screen flicker 

is something I mention in the further work section of the report.  

Figure 4.95 Appearance Function and 

robotAppearance function showing how the 

visualisation of agents works. 



5. Results and Evaluation 
 

5.1 Evaluating the import outcomes of the project. 
 

In the introduction of this report, I outlined several key outcomes that the project needed to be 

able to demonstrate.  

 

• Create a working visualisation of a robotic warehouse floor 

o The visualisation should be clear and easy to understand even to people without 

a technical background. 

o The visualisation needs to clearly show how the robots are operating in the grid. 

 

I feel that the project that I have produced meets these required outcomes. The simulation works 

and clearly shows how robot workers can be utilised to pack customer orders. The visualisation 

is easy to follow with appropriate images used to show the items held at each location and also 

what items are needed at each drop off. The added example mode further serves to help users 

understand how the robots work at an individual level managing to move around the 

environment finding routes through obstacles. I think that someone without a technical 

background would be able to understand the visualisation and also be able to understand the 

user parameters to change some of the settings. 

 

To show this I included the example mode on the project to demonstrate how the 

robot is able to path find around the obstacles in the grid. Using an example 8x8 

grid with random seed of 1, with the settings of 16 agents, 8 items per order with 

a stock of 1, I generated this example map of a warehouse floor with the static 

robots acting as obstacles. This is a chosen example due to problems with the 

example mode map generation, if there are any inaccessible nodes without a 

robot on them then this can result in the map being no completable by the robot. 

This is tested and discussed further in this evaluation section. 

 

From this starting state I then run the 

visualisation and in Figure 5.2 you can 

see screenshots of the map’s 

appearance at 10 step intervals to show 

the progress the robot is making. 

Having the example mode really shows 

how the robot is able to plan routes to 

the users and the green line showing 

this route also gives the user a way of 

tracking the current objectives of the 

robot. 

 

The example mode also works with the other path finding mode, Blind 

Goal however since that mode doesn’t have any path finding 
capabilities it will very rarely be able to traverse the map with obstacles. 

In the example shown above, it will be stuck forever in the position 

shown in Figure 5.3. 

 

 

Figure 5.1 Example mode, 

randomly generated grid. 

Figure 5.2 Steps of the Example Mode Path finding mode 

Figure 5.3 Stuck position 



• Have robots that are able to process customer orders 

o The Robots should be able to fulfil any customer orders generated by the system 

unless the setup parameters make this impossible. 

o There should be at least two modes of operation for the robots with one utilising 

artificial intelligence to better move the robots through the warehouse. 

 

The robots in the simulation are able to process customer orders however they are not able to 

fulfil every single variation generated by the system. The are several factors in the setup process 

that can mean that the grid generated by the system is not solvable. This is mostly generating 

a map in the example mode. Example mode works by making all robot agents apart from one 

static, they only exist in the grid to block the other robot’s path. In doing so the bins that they 

are generated on top off can never be reached by the robot. I have made attempts to reduce this 

problem, in example mode when a robot is placed into the grid the 

item that it is placed on is removed from all outstanding orders. 

This can sometimes mean that the simulation starts with some 

orders already filled. The problem however arises with cell that 

while not having a robot on top of them are unreachable for the 

robot that is moving. This happens when the cell is surrounded by 

spawned in robots, either closely or sometimes at a distance. When 

this happens the item that it holds is not removed from the orders 

and so in this case that order is impossible to fill and so the whole 

grid becomes unsolvable. Figure 5.4 shows an example of an 

unsolvable grid. With the problem cell highlighted with a red box. 

This square is empty, but it can never be reached by the robot. 

 

I tested how often the example mode would generate a grid that was unsolvable. Testing first 

on a 10x10 grid with incrementing random seeds and with different values for the unique items 

per order. The data for this test is in table 6 in the appendix and the number of agents at which 

the grid was no longer solvable for each of the random seeds that were used. 

Figure 5.4 Unsolvable Example 

mode grid. 

Figure 5.5 Graph showing the data from table 6, plotting the number of robots that made a grid unsolvable. 



From this graph we can see that for the most part the more unique items per order the less 

agents it takes to make the grid unsolvable. This makes sense as the more unique items that are 

selected across all of the orders, the more likely that it is that one of those items will be in a 

trapped cell. In the process there were many times when using few unique items per order 

trapped cells would appear in the grid but as the item didn’t appear in any order the grid 
remained solvable. 

 

There are other issues that can also affect whether the grid is feasible to be solved. For example, 

grid size and agent number. For larger grid sizes the runtime it takes to solve the grid increases 

quickly and while the grid remains solvable it becomes unreasonable for a user to run the 

simulation for the length of time it would take to solve. In table 6 of the appendix, you can see 

the results for loading up grids of various sizes and testing to see how many steps it took for a 

single agent to solve. This is also shown as a graph in Figure 5.6 

 

The performance of the system is also affected by how many agents are loaded onto the grid; 

the MESA library has a built-in step limit that large numbers of agents can exceed on a large 

grid. I have included a point about this in the future work section of the report about a warning 

to users that a particular setup may take a long time to finish.  

 

The other important outcome here was to have two modes of operation for the robots to traverse 

the map using. I have implemented two different techniques for this Path finding and Blind 

goal, and so to test them against each other and demonstrate their capabilities, robots using 

each type of path finding will fill out the same set of orders, once using the path finding 

algorithm and once using the blind goal approach. This test would then be repeated with 

increasing size grids and increasing number of robots. In the appendix tables 1 to 5 show the 

results for the number of turns taken for the simulation to finish running when packing orders 

on five different grid sizes. These sizes were a 3x3, 4x4, 5x5, 10x10 and 20x20 grid. This is to 

show how the different algorithms can affect the performance of the system as highlights some 

strengths and weaknesses in both. All of these tests were done using the random seed of one 

and all with the same order constraints where the unique items per order was set to ten and but 

the stock per item limit was set to one.  
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Figure 5.6 Graph showing the turns taken for a single agent to 

complete a grid. 



Figure 5.1 shows the performance of increasing number of robots to fulfil outstanding orders, 

the first three graphs have all the values of the number of robots used due to the small map size 

however as the size of the grids increased instead increments of five was used for the number 

of robots. The first key takeaway from the graphs is how the relationship between the two 

techniques acts with a low number of robots, there is a very close relationship between the 

results for both the blind goal and path finding robots. With the low number of robots there are 

fewer “crushes” this is where robots are trying to move but are surrounding on all sides by 

other robots. Another interesting thing shown in these graphs is these crushes take longer to 

form with large sized graphs but also that there is a very immediate change. On the smaller 

grids the two types of robots remain comparable for most numbers of robots however in the 

large sizes the 10x10 and the 20x20 the blind goal implementation becomes much worse 

compared to its path finding counterpart. This really emphasises how much the different types 

of algorithms used to move the robots can affect the performance of the whole system.  

 

Another insight from this was how many steps it took the system to 

approach 100% complete. The way that the system is currently setup 

there are no new orders coming in and so as the simulation begins to 

clear the orders this leaves more and more robots without jobs to be 

completing which in turn can cause crushes as they are not moving 

around the whole grid. This definitely has an impact on performance of 

the system and can be clearly seen in figure 5.2 which is a screenshot of 

the system completing the 20x20 grid test with 60 agents. In the graphs 

you can see that it reached 95% of orders complete by turn 380 and yet 

left running this task will take an additional 2647 turns to complete.  

 

In the lower graph in the figure, you can see that the items delivered 

graph and average robot moves increases at about the same rate when 

the simulation starts however at the same time as the system reaches 95% 

complete the number of items delivered stops increasing at the same rate 

and the values begin to diverge. In the screenshot you can see a crush 

forming in the simulation as robots trying to reach the goal end up 

trapping robots that no longer have a goal to move towards. I have 

several ideas for how to tackle this problem with the system and have 

outlined some of them in the future work section of this report. These 

Figure 5.7 Charts plotting the amount of turns it took the system to finish against 

the number of agents used on different grid sizes. 

Figure 5.8 Screenshot of an existing 

problem with the implementation. 



include introducing bias to non-busy robots to avoid busy areas and also changing the location 

of drop off stations. However, at this stage of the project it is definitely something that could 

make a grid take too long to solve. 

 

The next important outcome was: 

• Have a way of seeing how the model is running compared to other models 

• The systems should have graphs and logs to be able to easily compare how changing 

settings impact performance of the simulation. 

 

Both of these points are present in the project, there are a number of metrics that are used in 

the project to be able to compare the performance of the model when using different start-up 

settings. These include the percentage of orders complete at a given step count, the average 

number of robots moves that have been made and the number of items delivered over the course 

of the simulation. Here are some example graphs generated by running the system with set 

input parameters that can be seen in Table 8 in the appendix.  

Using these example model despite the warehouse models having different size, agent 

numbers, order limitations we can use these graphs to see which models perform the best. For 

example, when looking at Graph 5 we can see that there was a large discrepancy between the 

number of steps the robots took compared to the number or items delivered this means that 

there was a lot of inefficient movement from the robots. This in comparison to example Graph 

2, in this graph despite taking a lot longer to finish the simulation we can see that the robots 

acting more efficiently to pack the orders needed. We can also look out for other inefficiencies, 

in Graph 4 there is a large plateau in the items delivered graph from about 550 to 700. This is 

possibly caused by a deadlock in the simulation resulting in robots not able to get where they 

need to and moving random not delivering items. 

 

 

 

Figure 5.9 Graphs from random models, settings shown in Table 8 in the appendix. 



Evaluating the user interface of the system. 
 

I think that the user interface of the project is an area that is good but still needs work. I had to 

deal with a number of setbacks regarding the types of images to use in the visualisation of the 

project and so it is not as clear as I would have liked with some of the icons being ambiguous 

as to what they actually represent. However, with the label system it is still possible to match 

these images quickly to see where the robot needs to get to without having to know exactly 

what the image is. These is also another larger issue with the visualisation, when the display 

mode is enabled, there can be flickering on the screen in the time it takes the images using is 

the visualisation to be loaded each time the grid is redrawn. 

 

Another issue with the visualisation is with the chart module, is that it can have severe impacts 

on the runtime of the simulation. Table 9 in the Appendix has the run time information about 

several grids that were generated and tested. It shows how the two settings, display mode and 

charts affect the performance of the system. Figure 5.91 shows the graph of that data showing 

the time taken for each of the grid to complete all of their orders. All of these tests were done 

using the same random seed for each test, with the same unique items per order and stock per 

item limit. 

This graph shows that whilst both the display mode and the chart mode have impacts on the 

performance of the system. Having the chart mode enabled has the largest effect. What is also 

interesting is how closely the line graphs for the chart mode follow Figure 5.92 which shows 

the steps taken to solve the grid. This was a result that I was expecting and when trialling the 

chart mode, I noticed how because a data point it added for every step taken the charts don’t 
have much of an impact with small grid sizes as not many steps are taken, but the more steps 

that are taken the more dramatic the slowdown is. This is clear to see as for the two graphs not 

affected by the chart mode, they resemble the steps taken graph much less. 

Figure 5.91 Graph of  Table 9 showing the runtime of the simulation and how different modes affect performance. Time in 

seconds. 



6. Future Work 

 

There are many other features that I wanted to include in this project, some to give the users 

greater control over the simulation and other to improve the performance of the system. 

 

To start with I would have really liked to get a version of the grid cell booking system to work 

to be able to compare it against the existing path finding methods in the system. I put a lot of 

time into trying to get this working and so having to drop the development of it due to time 

constraints was difficult, but it was not feasible to get working in the time frame I had left for 

the project. If I was working more on this project, I would focus on changing the A* path 

finding algorithm to be able to find the distance to a given node when explored and use that for 

the bookings. 

 

Another algorithm if given more time I would have liked to have implemented would be the 

Conflict based search that I discussed in the background section of the project. I mentioned that 

I didn’t think that it was the right solution for this project due to it only being implemented in 
problems that had each robot only needing to find one path in all papers I could find on it. I 

would have liked to have been able to implement this algorithm to test how it performed within 

this environment of having to find multiple paths. I would have tried to implement it in one of 

two ways, either treating the robot going between multiple goal cells as one continuous path to 

find, or more likely to reset the paths of each robot when a goal state to was reached, this 

implementation would have had a very slow run time however the average number of steps 

taken to complete the simulation would have been interesting to see. 

 

I also would have liked to have solved the issue with crushes causing the late stages of the 

program to run much slower than the initial stages. The idea I had for trying to solve this was 

Figure 5.92 Graph showing the number of steps taken to complete the grid also from data in Table 9. 



to introduce bias to the robot’s movement when they had no job to promote bots to move 

towards the left-hand side of the grid thereby reducing the number of agents to crush on the 

right side near the drop off points. I actually did do a test with this theory and had some positive 

results for example against the setup used for Figure 5.2 this new method completed in 434 

turns instead of 3027 however for smaller numbers of agents or smaller grids the difference 

was negligible and bears further testing to see if it is in fact an all-around better solution. 

 

Another idea I had for trying to reduce the number of crushes present in the system was to 

change the position of the drop off cells to be spread out all around the perimeter of the grid. 

This would have reduced the number of robots crushing on the right-hand side of the grid and 

could have led to the simulation completing in fewer steps. This actually feeds into another 

feature that I would have liked to implement, giving the user of the program the ability to drag 

and drop features onto the grid, so they could for example, change the starting position of the 

robots, select the exact cells that they wish to use as drop offs. Also giving the users the ability 

to manually select the contents of an order. Another idea that could have been useful for users 

of the system would be included and non-traversable tile, this would allow for users to test 

different column layouts for planning warehouses. 

 

Another way of improving the performance of the system would be to improve the way in 

which jobs are allocated to robots around the grid. In the current implementation the robots are 

just given a task from a random drop off cell with no regard for their current position, this could 

really affect the performance of the system. Instead of this my idea would be to have the robot 

look at items near it until it found one that was needed by an order.  

 

With thinking about the performance of the system another feature that could be added to the 

system would be a dialogue box to warn users about having a setup that is likely to take a long 

time to run, for example in table 5 you can see that using blind goal pathfinding on the 20x20 

grid size with 30 agents took over 80,000 steps to complete. Giving the user about their start 

up settings would be helpful. 

 

There were also issues I would have liked to have solved with the screen flickering when 

loading many images for the display mode visualisation. This was particularly prevalent with 

the larger sizes of grids. In order to have fixed this issue I was planning on trying to change 

some of the existing code within the mesa library to allow agents to be excluded from being 

updated each frame as the bin agent’s images would only need to be loaded once at the start of 

the visualisation instead of at each step. I think this would have solved the screen flickering 

issue.  

 

Finally I would have liked to have worked on a method to have the simulation run continually, 

so instead of simply completing all of the outstanding orders and then stopping, as the orders 

were completed new orders would replace them, this would help to stop crushes by reducing 

the amount of robots that were not busy working on filling an order and it also would have 

been a more realistic simulation of a real warehouse environment.  

 

7. Conclusions 
 

The aim of this project was to produce a simulator for warehouses utilising robotic workers. I 

feel that I achieved this over the course of the project, my simulator runs well, is clear, easy to 

understand and gives users insight into how decisions made in design can affect the efficiency 



of the warehouse’s operation. I explored some of the existing algorithms used for problems in 
the multi agent path finding space before realising that they were not appropriate for the 

specific implementation I needed.  

 

I worked to develop an algorithm of my own but realised that I wasn’t going to be able to in 
the time scale of the project and so I instead implemented a non-optimal artificial intelligence 

technique that still gave improved results over the non-intelligent method. I am very happy 

with my solution for this and while it definitely has room for improvement it forms a really 

strong foundation for that improvement. With this the agents are able to fulfil customer orders 

and give valuable data about the efficiency of the simulated warehouse, I think that the data 

gathered when running the simulation is reliable and useful, also because of how the robot steps 

are controlled this project also forms a good starting point for someone looking to try and 

implement their own multi agent path finding algorithm as the data gathering and MESA 

integration has been done very flexibly.  

 

Overall, I am happy with the work that I have done over the course of this project but recognise 

that there is a lot more work that could improve this project and I have outlined some of those 

points in the future work section of the report. 

 

8. Reflection on Learning 
 

When reflecting back on the course of the project I can think of many valuable skills that I have 

been able to develop. Planning this kind of project was very daunting, coming up with an initial 

outline for how the system would work took a lot of time, scoping through the Mesa 

documentation and included example projects. This was a skill that I hadn’t ever need to use 
before having previously at more needed to read documentation about how a select number of 

functions worked when using the MESA library because of how the different module work 

together I needed to be able to fully understand how the framework operated as a whole.  

 

After the scoping phase having to put a plan in place for how I was going to go about 

developing this project was another new thing to learn how to do, setting milestones to have 

completed and breaking down what needed to be worked on for the project to proceed was a 

new skill, and so was sticking to the plan. In group work there is shared sense of accountability 

but with this project it was up to me to stick to the plan I had made. Equally as important as 

planning for how the project would go was it was also important at points to change that plan 

and pivot to either a slightly different solution or just realised a section wasn’t working and 
decide to rework it completely. 

 

When looking back at the project and thinking about what I would change if I had to do it 

again, I would allocate more time within the development process to writing the report. As I 

started to write the report after I had completed the project it had been a long time since I had 

completed a lot of the research I did before started and so had to redo a lot of that research from 

my notes and sources I used. If instead I had started to write the problem background while 

researching it, that would have been easier. Equally I would include tests that the system needed 

to pass in my plan for the project to help make the results and evaluation of the report easier to 

write and also to be able to confirm that changes made to the project didn’t affect the function 

of other sections. To finalise, completing this project was really good learning experience, it 

taught me many things that I will carry forward with me into all future projects. 
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10. Appendix 
 

Table 1 

3x3 Path Finding Type 

Number of Agents Path Finding Blind Goal 

1 115 97 

2 79 70 

3 76 94 

4 88 136 

5 122 235 

6 314 472 

 

Table 2 

4x4 Path Finding Type 

Number of Agents Path Finding Blind Goal 

1 230 204 

2 140 138 

3 109 117 

4 125 131 

5 139 181 

6 143 718 

7 113 366 

8 240 1599 

9 366 694 

10 335 3597 

11 2937 1655 

12 2036 1936 
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Table 3 

5x5 Path Finding Type 

Number of Agents Path Finding Blind Goal 

1 447 416 

2 245 261 

3 206 238 

4 228 191 

5 161 285 

6 152 413 

7 178 1182 

8 230 973 

9 226 1298 

10 233 1440 

11 228 2133 

12 1119 2187 

13 391 3697 

14 1046 3042 

15 941 5076 

16 1965 8044 

17 18395 12451 

18 15310 4519 

19 21892 9786 

20 38521 19158 

 

Table 4 

10x10 Path Finding Type 

Number of Agents Path Finding Blind Goal 

1 1809 1766 

5 442 475 

10 308 458 

15 273 1455 

20 266 7274 

25 310 5734 

30 8556 39892 

 

 

 

 

 

 

 

 

 

 



Table 5 

20x20 Path Finding Type 

Number of Agents Path Finding Blind Goal 

1 7152 7049 

5 1610 1643 

10 910 900 

15 669 700 

20 572 576 

25 453 3299 

30 455 85545 

35 401   

40 371   

45 437   

50 384   

55 350   

60 3027   

 

 

Table 6 

Random Seed Used 

One unique item per 

order 

Five unique item per 

order 

Ten unique item per 

order 

1 18 24 26 

2 37 28 31 

3 33 28 27 

4 44 35 23 

5 29 18 20 

6 24 24 23 

7 27 40 23 

8 37 40 31 

9 31 33 7 

10 24 23 23 

Average 30.4 29.3 23.4 

 

 

 

 

 

 

 

 

 

 

 



Table 7 

Grid Size Turns to complete with 1 agent 

5x5 447 

10x10 1810 

15x15 4267 

20x20 7152 

25x25 11012 

30x30 15704 

35x35 21716 

40x40 27958 

 

 

Table 8 

Graph 

Number Grid Size 

Number of 

Agents 

Unique 

items 

Stock per 

order limit 

Path Finding 

Type 

1 10x10 5 10 1 Path Finding 

2 10x10 20 5 14 Path Finding 

3 5x5 4 10 10 Blind Goal 

4 8x8 30 1 1 Path Finding 

5 10x10 9 3 5 Blind Goal 

6 3x3 1 2 2 Blind Goal 

7 12x12 20 10 10 Path Finding 

8 20x20 5 1 7 Blind Goal 

 

 

Table 9 

 

Size of 

Grid 

Number of 

Agents 

Time 

Taken 

with 

nothing 

Time 

taken with 

graphs 

only 

Time 

taken with 

display 

mode only 

Time 

taken with 

both 

Steps 

Taken 

2x2 1 0.53 0.87 0.094 2.08 57 

4x4 1 2.28 37.92 10.75 47.17 474 

4x4 5 1.43 10.16 6.09 15.25 251 

6x6 6 1.85 18.72 11.29 27.94 324 

6x6 12 3.93 63.64 22.07 78.91 606 

8x8 8 2.42 32.4 21.07 47.45 429 

8x8 16 2.92 29.17 20.93 45.73 405 

10x10 5 5.38 92.19 36.03 126.6 738 

10x10 10 3.66 38.38 23.16 60.12 468 

 


