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Abstract

The method of using SAT solvers to find human readable proofs for theorems in
social choice and argumentation theory is evaluated. Four key limitations are
identified and possible future work is suggested remedying these. The method
was applied to four theorems - three in social choice and one in argumentation
theory. A novel approach of generating human readable text description of
proofs is introduced and evaluated.
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1 Introduction

1.1 Motivation

Computer generated proofs have a lot of potential. As early as 1970s an un-
solved problem in mathematics was proven by a computer [2]. Since then,
tremendous progress has been made to improving existing proof techniques and
the computing power has grown exponentially. This might make one think that
human mathematicians only have to come up with theorems and that these can
be then verified by computers. However, this is clearly not the case. Hard-
est solved problems of today such as Fermat’s Last Theorem [44] or Pioncre
Conjecture [38] were not proven by computers. They were proven by human
mathematicians.

This project aims to explore the limitations of current state of the art (SoTA)
systems as well as how to adapt existing proof techniques such that they become
more accessible to everyone. In particular, in the context of social choice and
argumentation theory. While a lot of work has gone into creating systems of
mathematics which lend themselves to easy automation, it is only recently that
the research community has taken a closer look at how to adequately explain the
results these systems produce. For example usage of the word XAI (Explainable
AI) has exponentially increased in popularity over the last decade 1.

Figure 1: This illustration was taken from [7]. It shows the ”Evolution of the
number of total publications whose title, abstract and/or keywords refer to the
field of XAI during the last years.”

1.2 Project Outline

At first glance, it may seem that this project is trying to tackle four indepen-
dent fields, namely, social choice which concerns itself with how to aggregate
preferences of a group, argumentation theory which tries to answer which
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argument are good or bad, computer assisted proofs and proof explain-
ability.

The main aim of the project is to study ways computer generated proofs can
be explained. However, there exist numerous techniques for using computers to
assist humans in proving theorems. Thus the scope was narrowed to theorems
in social choice since the field lends itself nicely to computer assistance. This is
because it uses axiomatic method, combinatorial structures and can be defined
using elementary mathematical notions [21]. A more specific description of the
problems concerning social choice is given in Section 2.1. Famous impossibility
results in social choice will be tackled using SAT solvers. A method eloquently
described in [21].

It turns out that argumentation theory shares many commonalities with
social choice. Furthermore, a sub-field of argumentation theory is judgement
aggregation (JA), which concerns itself with how to aggregate different agent
arguments so an overall verdict can be passed. This overlaps with social choice.
For a more elaborate description see Section 2.3 on bridging the gap between the
two fields. This means that JA is a logical next step for evaluating the versatility
of using SAT solvers to aid in finding proofs. In other words, we would like to
explain proof techniques which are versatile and applicable to many fields.

Finally, computer generated proofs and their explainability will be intimately
connected because the way that the proof is generated will also be the reason
why it is correct. One of the major challenges that this project will tackle is
how to resolve the communication barrier between computers which can work
through thousands of very well specified cases simultaneously and humans who
think of theorems in a very abstract way. Removing the communication barrier
by automatically finding the most compact proof and then translating it into
natural language should allow for greater accessibility and more trust in the
output of the algorithms.

1.2.1 Overview of Sections

In background, motivation behind some of the problems in social choice and ar-
gumentation theory is provided. Properties encoding the motivation are defined.
Notation is introduced which will be used throughout the report.

In approach, I will describe the high-level process of translating the proper-
ties defined in background into SAT. I will also discuss the two approaches to
explain the results produced by SAT solvers.

In implementation, I go over how this high-level description of the problems
translates into pseudo-code. I also briefly discuss how the two explanations of
SAT results were implemented.

In Results and Evaluation section I report and discuss the performance of
SAT solvers, visualisation of the approach and evaluation of the method overall.
I discuss some of the strengths and limitations which this method faced.

In future work, I discuss some potential remedies for the issues which became
apparent in results and evaluation section.
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The conclusion will provide a short summary of the main takeaways of this
project and summarise my findings in a larger context.

In reflection on learning section, I provide an evaluation of decisions made
throughout the report.

2 Background

2.1 Social Choice

Social choice is a sub-field of computer science which studies how to combine
individual preferences into preferences of a group. For example, it studies how
to decide a winner of an election based on voter’s ballots.

At first glance, it might seem that representing a group’s opinion is as simple
as taking the majority vote. Indeed, this intuition holds for elections with
only two candidates (or alternatives); however, as soon as a third candidate is
introduced, problems begin to arise.

Motivating Example In the 2000 American presidential election, George W.
Bush, Al Gore and Ralph Nader were running for president. Ralph Nader was
a third party candidate and was not expected to win. The predictions came
true and he received a small, but not insignificant, 2.7% of all votes. George W.
Bush ended up winning the election by a much slimmer margin.

The poll on Nader’s website indicates that majority of people who voted for
Nader would have voted for Bush instead if Nader was not running. This means
that Gore would have won had Nader not ran. This means that Nader “spoiled”
the election.

Thought Exercise Imagine that you could decide the format of how the elec-
tion is ran to prevent situations where removing a candidate spoils an election.
What is the best way to do that? Is it even possible?

Before we answer that question, we need to define what the format of the
ballot is. In other words, how do voters represent their preferences and what it
means to aggregate them.

2.1.1 Ballots or Preferences

A voter’s ballot is represented as a weak linear order over candidates. A possible
ballot for candidates A, B, and C might be presented as A ≺ B ≃ C.

This ballot states that candidate A is the most preferred and B and C are
tied for second.

Sometimes ties might be undesirable in which case the ballot is a strict
linear order over the candidates. For example, A ≺ B ≺ C. In this report, I
will mostly be using strict linear orders to represent ballots.
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A profile is a tuple of ballots or preferences. For example, if voter 1 has
preference of A ≺ B and voter 2 has preferences of B ≺ A, then a profile which
represents both of their preferences is (A ≺ B, B ≺ A).

2.1.2 Voting Rule or Social Welfare Function

A voting rule otherwise known as social welfare function will map a profile to
a winning candidate(s) (or alternative(s)). Intuitively, a voting rule is just an
aggregation procedure.

Given a profile, a voting rule may output a single candidate as the winner.
For example candidate A. It may also output multiple candidates as winners.
For example “A and B”. Finally, it could output a ranking of the candidates.
For example A ≺ B ≺ C.

An example of a voting rule is “majority rule” which states that if a can-
didate has received a majority of the votes, then that candidate should win.
Majority rule, is not defined for all profiles. What if no candidate reaches a
Majority? Majority rule also cannot produce a ranking of participants. An
intuitive generalisation of majority rule is Borda count. Voters assign n points
to their top choice, n-1 points to their second choice and so on. The winner of
the election is then the candidate which scores the most points.

There are certain properties which are desirable for all voting rules. I provide
brief descriptions below, but cover their specific meaning more in Approach 3.4.
For more elaborate descriptions and importance of the properties visit The
Stanford Encyclopedia of Philosophy for Arrow’s theorem [34].

• Non-Dictatorship

This property states that there should not exist a voter whose ballot always
decides the winner of the election. It could be that other voter preferences
are considered, but this is only in cases when the dictator is indifferent
between the alternatives (I.E. there is a tie between them).

• Pareto Efficiency

If every voter prefers candidate A over B, then A should rank higher than
B in the election.

In the case of single winner elections, Pareto Efficiency is obeyed if there
does not exist candidate A which is preferred by everyone to candidate B,
but the voting rule has assigned candidate B as the winner.

• Unrestricted Domain

Every voter should be able to submit any set of preferences. In other
words, they may rank the candidates in any order they choose with the
ability to indicate ties.

• Social Ordering

Is a property stating that there can be no cycles for the winner of the
election. This means that the voting rule should only produce linear orders
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with each candidate only being listed once. For example, the aggregation
procedure cannot produce this linear order A ≺ B ≺ A since it contains a
cycle.

• Independence of Irrelevant Alternatives (IoIA).

This property states that the voting function should only consider the rel-
ative position between any two candidates to decide their relative position
in the election.

For example, given 3 candidates A, B, and C and a single voter who
considers two strong linear orders o1 = A ≺ B ≺ C and o2 = B ≺ A ≺ C.

Notice, that in both linear orders candidate A is preferred to candidate
C. IoIA tells us that for winning ranking, the relative position of A and
C should stay the same. I.E. either A ≺ C or C ≺ A for both elections.
It rules out the possibility of o1 having a different relative ranking of
candidates A and C to o2 in the election.

For example, if the voter would use o1 and the winning ranking of that
election would be A ≺ C and then use o2 to and obtain a ranking where
B ≺ C then IoIIA would not hold.

Similarly, if there are many voters in the election and some voter changes
his ballot from o1 to o2, then the relative ranking between A and C should
stay the same.

• Manipulable and Strategy-Proof

A voting rule is said to be manipulable if some voter can misrepresent
her preferences and change the outcome of the election in such a way that
the new winner of the election is more preferred by her than what it was
under her original set of preferences. A voting rule is strategy-proof if it
is not manipulable.

This property was not obeyed by the American election system, since
candidates who voted for Ralph Nader would have been better off voting
for Al Gore.

Ideally, a voting rule such as “Borda count” will obey all axioms presented.
However, in 1950 Arrow Published his famous PhD thesis [3], in which he
presents Arrow’s impossibility theorem. It states that any voting rule cannot
simultaneously obey Non-dictatorship, Pareto Efficiency, Unrestricted Domain,
Social Ordering and Independence of Irrelevant Alternatives.

Indeed, Borda count obeys all properties except Independence of Irrelevant
Alternatives.

Later in 1973, Gibbard and Satterhwaite proved that all voting rules in which
a single winner is produced, must be either a dictatorship, limit the possible
outcomes to only two alternatives or be manipulable [23]. This is known as the
Gibbard and Satterhwaite Theorem (GST).
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Finally, a weaker version of GST (referred to as simplified GST in this report)
was used as an introductory example in [21]. It states that no voting rules which
assign a single winner may obey strategy-proofness and majority rule.

In summary, we have identified three theorems, namely, simplified GST, full
GST, and Arrow’s impossibility theorem for which we will verify the base-cases
using a SAT solver.

2.2 Abstract Argumentation

2.2.1 Monotonic and Non-Monotonic Logic

Abstract Argumentation is mainly built on Dung’s model of argumentation [20].
Dung’s paper describes how to model non-monotonic logic. In non-monotonic
logic, a conclusion may be retracted in light of further evidence [37].

For example, if Anna is a person we can reasonably infer that she can walk.
However, if we learn that Anna is only a 6 months old baby, then we can retract
the conclusion that she can walk.

Traditional logic does not capture such relationships very well. I.e.

p1 All human can walk.

p2 Anna is a human.

c1 Anna can walk.

p3 All babies cannot walk.

p4 Anna is a baby.

c2 Anna cannot walk.

It is easy to see that the set of premises produce a contradiction. Since
anything may be derived from a contradiction we have a problem.

2.2.2 Argument Framework

Dung’s main contribution is that of an Argument Framework (AF ). The idea
is to represent arguments as nodes in a graph. These are statements which are
typically true. Directed edges are added denoting an attack relation between
arguments.

In our example, one argument would consist of p1, p2 and c1 and would be
represented as a single node. The other node would correspond to p3, p4 and
c2. We may denote the set of arguments as Args. In the example Args = {A,
B}.

Argument A rules out the possibility of argument B being true and vice
versa. Therefore, A attacks B and B attacks A. More formally, the set of all
attack relations may be denoted as a set consisting of tuples Args x Args. Let
⇀ denote the set of tuples. In our example ⇀ = {(A,B), (B,A)}

An argument framework or (AF) is then a set {Args, ⇀}
Each argument or node may have three labels.
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Figure 2: This image shows the AF consisting of nodes A and B attacking each
other. Any AF where there are only two nodes attacking each other is known
as two loop AF.

• In - corresponds to accepted.

• Out - corresponds to rejected.

• Undecided - means that there is not enough information to decide.

It is possible to label the two arguments in 9 ways; however, we would also
like them to respect the attack relation. In our example, it doesn’t make sense
to accept both c1 and c2.

Dung’s proposed method uses the complete and admissible semantics to en-
force the constraints. Multiple formulations exist which are logically equivalent,
but I will use Caminada’s et. al. formulation in this report [6].

1. If an argument is labelled in, then all arguments which are attacked by it
are labelled out.

2. If an argument is labelled out, then there exists at least one argument that
attacks it which is in.

3. If an argument is undecided, then at least one of its attackers is also
undecided and none of the attackers are in.

A complete semantic is one which obeys all three of the axioms. An admissi-
ble semantic is one which obeys only the first two, but not necessarily the third.
All complete labellings are admissible, but not vice versa.

In this case the there exist three complete and three admissible labellings of
the aforementioned scenario: A is in and B is out. A is out and B is in. And
finally A is undec and B is undec.

Each complete labelling of the arguments corresponds to a coherent inter-
pretation of the facts. Either we reject the argument which states that Anna
is a baby, and conclude that Anna can walk. Or we reject the argument which
states that all humans can walk and conclude that Anna cannot walk. Finally,
we have the option of saying that there is not enough information to tell, and
we can label both arguments as being undecided.
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We can divide the complete labellings even further into grounded and pre-
ferred semantics. Grounded semantics only accepts arguments which we are
required to accept. In this case, the grounded semantic is that both nodes
are labelled as undec. Preferred semantics on the other hand is a complete la-
belling which accepts as many arguments as possible. In this case, there are two
preferred semantic labellings A is in and B is out and A is out and B is in.

In summary, we have introduced the notion of an argument framework (AF)
which is widely used in argumentation theory and defined the complete semantic.
We are now ready to see how argumentation theory overlaps with social choice.

2.3 Bridging the Gap Between Social Choice, Argumen-
tation Theory, and Judgment Aggregation

Social Choice comes up in Abstract Argumentation as soon as we have multiple
agents. For example, imagine that in a court of law there are multiple arguments
presented and that each juror (or agent) will form a coherent view of what
happened. In other words, they will assign a complete labelling to all arguments
presented so far.

At the end of a trial, the jurors need to come to a decision as a group
of whether the suspect is guilty. In other words, they need a procedure to
aggregate their reasoning so a verdict can be reached. Judgement Aggregation
is a sub-field of Social Choice which tries to solve the issue of how to aggregate
reasoning.

In judgement aggregation, agents submit their labellings of an AF and then
an aggregation procedure is used to decide the group’s labelling of the AF. A
helpful analogy connecting social choice to argumentation theory is to think of
the agents as voters, the labellings of AFs provided by the agents as ballots and
the aggregation procedure as a voting rule.

2.4 Judgement Aggregation

Similarly to social choice, we have certain properties which we would like our
aggregation procedure to obey. The ones which will be used in this report
are Isomorphism, Anonymity, Unanimity, AF-Independence and Collective Ra-
tionality. Only very basic, intuitive descriptions are provided here. For more
elaborate descriptions see [11].

• Anonymity is a property which states that the aggregated result should
not consider who submitted each preferences. For example, if agent 1
submits labelling A and agent 2 submits labelling B then the aggregated
labelling C should be the same as if agent 1 submitted labelling B and
agent 2 submitted labelling A.

• Unanimity is a property which states that if an argument in the AF
is labelled the same by everyone then that argument’s aggregated label
should be what everyone assigned it. For example, if everyone votes that
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the argument a in an AF is in, then the aggregated label of argument a
should be in. Using the analogy to social choice, this loosely corresponds
to Pareto Efficiency.

• Isomorphism is a property which states that two argument frameworks
which are isomorphic to one another should be labelled the same way. In
other words, if the “structure” of two argument frameworks is the same,
then they should be aggregated in the same way.

For example, suppose you have a two-loop AF and one of the arguments
(or nodes in graphical representation) is named p1 and the other is p2.
You also have two agents ag1 and ag2 both of which label p1 as in and
p2 as out. Finally, suppose the aggregation procedure labels p1 to be in
and p2 to be out. What isomorphic property says, is that had the agents
submitted a labelling in which they both label p2 as in and p1 as out, the
aggregation procedure must produce the same labelling except with the
new node names. I.E. p2 as in and p1 as out.

• AF-Independence is a property that is related to Independence of Irrele-
vant Alternatives in social choice. It states that the aggregation procedure
should only “decide” what to label each argument solely based on the la-
bels given by participants to that argument. For example, suppose you
have a two-loop AF with two nodes p1 and p2. The voting rule should be
able to decide what label p1 is without knowing how people labelled p2.

• Collective Rationality is a property that states that the produced la-
belling after aggregation should be a complete labelling. For example,
suppose you have a two-loop AF with two nodes p1 and p2, then it should
never be the case that the aggregation procedure labels both nodes as out.

Theorem in Argumentation Theory Whilst there are many impossibility
results in JA, in this report I chose to focus on Theorem 3 in [11]. This is because
it uses many properties that typically a voting rule does and it was easy to
adapt the SAT solving approach developed for Social choice. The theorem states
that: There is no aggregation method satisfying all of Isomorphism, Anonymity,
Unanimity, AF-Independence and Collective Rationality where there are two or
more agents.

Summary So far, we have covered the relationship between social choice and
argumentation theory through the view of judgement aggregation. We have also
defined three theorems in social choice as well as a theorem in argumentation
theory. Our goal will be to use a computer to verify the base-cases for all of
these theorems. Exactly how to go about using them will be introduced in the
next section.
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2.5 Computer Aided Proofs

Computer aided proofs have been used since the invention of computers. Per-
haps the most famous such proof is that of the 4-colour theorem found by K.
Appel and W. Haken. in 1976 [2].

Many automatic theorem provers and proof assistants exist nowadays. They
are typically based on a zeroth (or propositional, first or higher order logic.
Propositional logic is the least expressive, but is decidable, complete and sound.
Whereas higher order logic is undecidable, and incomplete or unsound [43].

The book chapter which served as inspiration for this project uses proposi-
tional logic to encode base cases of theorems in social choice thus it will be the
main focus of my work.

2.5.1 Propositional Logic

Propositional Logic uses propositions which are made out of atoms and logical
connectives. Each atom may be either true or false. Logical connectives such as
“and” and “or” may be used to join up individual atoms into a function. Atoms
are sometimes referred to as literals in the literature.

A function in porpositional logic takes boolean variables as input and returns
a boolean output.

For example: f(A, B, C) = (A or B) and not C.
In this case, A, B, and C are atoms. f(A, B, C) is a formula which takes in

a truth assignment of A, B, and C and returns either true or false.
I.E. f(false, false, true) = false.

2.5.2 SAT and CNF

SAT is short for SATisfiability. In propositional logic, SAT refers to checking
whether there exists an assignment of atoms which makes a propositional func-
tion true. If no such assignment exists, the formula is a contradiction and we
call it unsatisfiable.

There are multiple ways of checking for SAT. The simplest way would be to
try every assignment of variable and see if any of them satisfy the formula. It
is easy to see that this would take O(2n ∗m) time. Where n corresponds to the
number of atoms and m corresponds to time spent computing the output of the
function.

Checking for SATisfiability is an NP-complete problem [17]. This means that
we can check solutions in polynomial time, but there are no known algorithms
which can find a solution in polynomial time. This means, that the worst
case time complexity for any algorithm so far will be xn where n is some real
number > 1 and x is a positive integer denoting the number of atoms in a
formula.

CNF Most modern algorithms work on functions which are in CNF. CNF is
short for Conjunction Normal Form. CNF is conjunction of clauses where each
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clause is a disjunction of atoms. Any propositional logic formula can be
converted into CNF. CNF of a formula is equivalent to the original formula
in terms of satisfiability. Intuitively, one can think of conjunction as denoting
“and” and disjunction as denoting “or”.

For example, instead of defining f(A, B, C) = “(if A then B) and C”. One
could turn it into CNF f(A, B, C) = “(not A or B) and C” and preserve the
meaning of the original formula. I.E. when the original f(A, B, C) is satisfied so
is the CNF version and vice versa.

The procedure for converting into CNF is not widely important, but is used
throughout the report. See lecture slides by Dillig [19] for how to convert into
CNF.

DIMACS Finally, a CNF formula can be turned into a DIMACS format.
This is the standard way to store CNF formulas and is the format expected by
most SAT solvers. Each atom is assigned a number beginning at one. Then, all
clauses all disjunctive clauses are put on the same line and zero is concatenated
at the end. The zero indicates the end of a disjunctive clause. All conjunctive
clauses appear on a new line.

For example, suppose your CNF formula is “(A or B) and (C or A)”. To con-
vert into DIMACS, all atoms (A, B, C) are replaced with (1, 2, 3) respectively.
Resulting in a formula “(1 or 2) and (3 or 1)”. We can replace all “or”s with
spaces and all “and”s with newlines. Finally, a clause at the top that indicates
the number of atoms (3) and number of clauses (2) is inserted resulting in the
DIMACS file:

1. p cnf 3 2

2. 1 2 0

3. 3 1 0

Better SAT Solving Procedures Many approaches to solving SAT have
been developed. While most do not provide significantly better worst-case time
compolexity, they are often very powerful. “modern SAT solvers can often
handle problems with millions of constraints and hundreds of thousands of vari-
ables” [36].

Among the most popular are Davis–Putnam–Logemann–Loveland algorithm
(DPLL) [18] and conflict-driven clause learning (CDCL) [33]. Only DPLL will
be explained because CDCL is almost entirely based on DPLL and is not needed
to understand the report.

DPLL recursively assigns a truth value to an atom and splits the formula
into 2 (one where the atom is true and another where the atom is false). It then
makes trivial assignments. For example, if a clause consists of a single literal
then we may assign this literal and eliminate the clauses which use it. This is
known as unit propagation. Pure literal elimination assigns an atom if it
only appears in one polarity I.E. it is always positive or always negated. If a
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contradiction is encountered, the algorithm backtracks to last truth assignment
it made. The process is then repeated until all possible assignments have been
exhaustively checked or a valid truth assignment is found.

In the end, one ends up with a tree graph whose leaves correspond to an as-
signment of all variables. The non-leaf nodes represent decisions and the edges
represent the implications of the previously made decisions I.e. unit propaga-
tions and pure literal eliminations. An amazing interactive resource to use is [1]
with the help of which figure 3 was generated.

Figure 3: This image was taken from [1]. It illustrates the decision tree produced
by the DPLL algorithm. You can see that a valid assignment was eventually
found by the process.

2.6 Proof Extraction

While the diagram produced in figure 3 is very visually clear, it is not so straight
forward to extract the logical proof in a rigorous manner. The general idea is
that you can represent the assumptions you have made which lead to a contra-
diction as an additional clause. For example, suppose that assigning x1 = true,
x2 = false leads you to a contradiction. This means that not(x1 and not(x2))
is true.

This can be re-written in CNF as (not x1) or x2 and then added as a new
clause. In the literature, this is known as a conflict clause because its negation
creates a conflict. If required, we can always provide a justification for why it
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creates a contradiction since DPLL only uses unit propagation or pure literal
elimination. Thus the derived clause will result from applying one of these
operations. Eventually, if the provided formula is unsatisfiable, the empty clause
will be derived and added.

The main challenge with this approach to make it human readable is that
the derivation can be hundreads of lines long. While it may be too tedious to
check for a human, a simple small proof-checker program whose source code is
easier to verify by a human is used. The checking procedure is known as Reverse
Unit Propagation (RUP) [24].

It works backwards, starting at the final derived clause. It takes the negation
of the whole clause and then substitutes negative atoms into all of the formulas
above it. This should make one of the formulas false. The process is then at-
tractively repeated. It is straight forward to see that this has a time complexity
O(n2) where n is the number of original clauses + number of conflict clauses
which means it is reasonably fast.

2.6.1 Proof Formats: RUP, DRUP and FRAT

RUP proofs were first introduced in 2003 [24]. One issue with this approach is
that it is slower to check, since for each new clause one must check all previous
clauses.

A DRUP proof first introduced in 2013 [26] remedies the issue by adding
deletion clauses no longer used by the solver. This offers a significant speedup
to checking the proof using a small proof-checker. However, one of the goals is
of this project is to allow for easy verification of proofs to humans. As such, we
would like to know the specific reason why a clause was derived not just that it
can be derived from all previous clauses.

A recent proof format called FRAT [5] offers exactly this functionality with-
out compromising on the performance. Whenever a conflict clause is added, a
justification is provided in terms of which specific clauses were used to derive
it. See figure 4 for a FRAT style proof.

2.6.2 Minimum Unsatisfiable Subset (MUS)

Why Use MUS? After a formula has been converted into CNF and a SAT
Solver has deemed it unsatsfiable, one might like to know why it is unsatisfiable.
In 2.6, we saw an approach which is guaranteed to lead us to a proof for un-
satisfiability. However, the proofs produced by the approach outlined in 2.6 are
usually too long to verify by humans. Indeed, this was the case for this project.

Another way to answer this is by looking at the minimum set of disjunctive
clauses which create a contradiction. Since our formula has been converted into
conjunction of disjunctions, if a subset of disjunctions is unsatsfiable, then the
whole formula is unsatsfiable. Since “false and c1 and c2 and ...” will evaluate
to false. Where, c1 and c2 are disjunctive clauses.
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Figure 4: This image was taken from [5]. It illustrates the FRAT proof format.
Lines beginning with o means that the clause was in the original CNF file. Lines
beginning with a means that the clause was added by the sat solver. Importantly,
“l” provides the clauses which were used to derive it. I.E. Line 9 adds “-3 or
-4” and is derived by conjoining clauses with indexes 5,1,8 I.E.: “-1 or -3 or -4”,
“1 or 2 or -3”, “1 or -2 or -4”. combining 1 & 8 we get “1 or -4”, combining (1
& 8) with 5, we get “-3 or -4”. As required. This can It also has deletion and
finalising clauses, but these are not useful for this project’s use-case.

For example, suppose your CNF formula has the following form:

1. A or B

2. not A

3. not B

4. C

5. A or C

Note: the actual formula would be “(A or B) and (not A) and (not B) and (C)
and (A or C)”. The MUS for the formula would be clauses 1-3. I.E. (A or B)
and (not A) and (not B) since no matter what you assign to A or B, at least
one clause from clauses 1-3 will evaluate to false.

Calculating MUS A naive approach to find the MUS would be to itera-
tively add clauses until they create a contradiction. The time complexity of
this approach is astonishingly high: O((c ∗ k)!) where c denotes the number of
disjunctive clauses, and k denotes the time taken to check each subset for SAT.
We know from before that k is exponential with respect to number of atoms.

This approach can therefore only be used on MUSes which contain very few
clauses. Modern MUS solvers include this as an option [8], but they mostly
rely on heuristics to find an “approximate” MUS. I.E. they find a small set of
clauses which is unsatsfiable, but they do not guarantee that it is the smallest
set of unsatisfiable clauses.
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Summary In summary, we have introduced two key techniques for showing
that a SAT formula is unsatisfiable: extracting the MUS and using a proof-
logger to verify the impossibility result produced.

2.7 Current Approaches

Now that we have gathered the required background knowledge on what are
some of the problems in social choice, argumentation theory, and in explaining
computer aided proofs we are now ready to discuss some of the more recent
techniques in these fields.

2.7.1 SAT Solving in Social Choice

The method of using SAT solvers to verify the base case for famous theorems in
social choice was first applied by Tang and Lin (2008) [32]. They discovered new
proofs for Arrow’s Impossibility and Sen’s and Muller-Satterthwaite’s Theorems.
Using SAT solvers in social choice is quite widely adopted. Several works using
them have been proposed such as [12] where SAT solvers were used to study
the no-show paradox (when voters are better off not voting at all), or [14] to
prove that “There is no majoritarian and Pareto optimal set-valued voting rule
that satisfies Fishburn-strategyproofness when m ≥ 5, and n ≥ 7.” Quote taken
from [21].

2.7.2 Explainability of SAT proofs

The method of using SAT solvers was later adapted by Felix Brandt and Chris-
tian Geist [13] to use MUS as the key way to explain the unsatisfiability result.
This allowed for proofs to become more human readable.

The MUS may still be difficult to read thus a visual aid of a graph diagram
of the impossibility result was introduced by Brandt et. al.[4]. The diagram’s
edges represent inter-profile axiom’s. I.E. axioms which connect the outcomes
of more than one profile for example, strategy-proofness. The nodes in the
diagram represent a profile. To interpret the diagram, one starts at the bottom
and works their way up the diagram iteratively eliminating possible winners of
the elections until none are left. See 5 for what a proof diagram of a MUS might
look like.

Intuitively, providing a MUS diagram only gives a brief overview of the proof.
Much of the reasoning behind why the proof works is left to the reader. This
approach works well for relatively small muses, but as we will see in section 5.2.3
it quickly becomes impractical when considering complicated theorems whose
MUS contains hundreds of nodes.

Finally, in a 2018 paper Brandt et. al. [15] introduce the idea of extracting
the stack trace to provide further explainability for each step of the proof.
In terms of SAT, each step of the proof is a new clause that consists of a
combinations of previous clauses. For example, combining the two clauses (not
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Figure 5: This image was taken from [21]. It illustrates Brandt’s proposed
approach of translating MUS into a proof diagram. On the left, we see voter
profiles. On the right we see a a directed graph. For example, the graph
tells us that profile γ can be manipulated by voter 1. to produce profile ǫ.
Therefore, we can conclude that γ cannot be won by candidate b because this
would mean that the election does not obey strategy-proofness. For a more
elaborate description see [21]. This shows as illustration of what we are seeking
to generate automatically.

A or not C) and (C) will result in a new clause of (not A). The procedure for
this has been discussed in more detail in 2.6.

2.7.3 SAT Solving in Argumentation Theory

SAT Solving in Argumentation Theory mostly focuses on finding various se-
mantics. Since 2015, the International Competition on Computational Models
of Argumentation (ICCMA) has been running a bi-yearly competition which
seeks to find the fastest way of calculating or counting preferred, complete,
grounded and stable semantics.

Various approaches have been developed over the years many of which in-
corporate SAT solving. Either directly, by translating the problem into SAT
[29], or by using a dynamic programming SAT solving technique [22]. In fact,
the last approach won the 2021 competition.

3 Approach

In this section I will outline and justify the approach that was taken to encode
three social choice theorems into SAT as well as why they were encoded into
SAT.

This section will serve as a pre-requisite to explaining how a similar encoding
strategy can be applied to a theorem in argumentation theory. This will show
that the proposed method is versatile; however, we still need a way to evaluate its
performance which is what will be covered next. After performance is evaluated,
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the key finding of this report will be discussed. Namely, the approach taken to
turn SAT proofs into human readable format.

3.1 Translating Theorems in Social Choice to SAT

3.1.1 Aim

This section closely follows [21] where an approach of using SAT solvers to
verify the base case of theorems in social choice was used in combination with
an inductive argument to complete the proofs of the theorem.

The aim is to verify whether a possible voting rule exists which obeys some
subset of the properties outlined in 2.1.2. It is important to note that we
are only interested to show whether such voting rule exists for a specific case.
For example, for three voter elections. This means we cannot prove theorems
entirely using this method. We can only disprove them by finding a counter-
example. This limitation is further discussed in 5.4.1.

3.2 Why use SAT?

A naive approach would be to generate all possible voting rules and check one-
by-one whether each voting rule satisfies all of the properties. This approach
would not work because of the very large search-space. To give an estimate of
just have large the search space is, consider an election with only three voter
v1, v2, v3 and three alternatives - A, B, C. Furthermore, assume that only strict
linear orders are valid ballots and that only a single alternative is declared the
winner of any election.

There are 3! = 6 possible ballots for every voter. Since there are three
voters each of which can choose from 6 possible ballots, there are 63 = 216
profiles that need to be assigned a winning alternative. One such assignment
would be assigning all profile to be won by candidate A. Another, would be to
assign profile 1 be won by candidate B, and rest by A. It is then easy to see
that we would need to check 3216 voting rules! This number has 104 digits.

SAT allows us to encode the constraints and uses clever algorithms such as
DPLL and CDCL (covered in section 2.5.2) to efficiently check the search space.

3.3 Encoding Into SAT

This subsection will outline the general approach taken to turn checking for
an existence of a voting rule into a SAT formula. Each of the subsections will
outline how to encode the properties required for each of the three social choice
theorems.

To choose the base case Before we the theories, we need to make a design
decision regarding the base-case. We want the base case to have enough “free-
dom” to allow for a contradiction, but not too much freedom because of the
exploding search space even when using SAT solvers. A reasonable base-case
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is to choose 3 voters V = v1, v2, v3 and 3 alternatives A = {A, B, C}. This
implies 216 possible profiles P = {(A ≺ B ≺ C, A ≺ B ≺ C, A ≺ B ≺ C),
(B ≺ A ≺ C, A ≺ B ≺ C, A ≺ B ≺ C) ...}. This base case will be used
throughout this project unless specified otherwise.

For single winner elections, a voting rule F will take a profile p ∈ P and
assign it an alternative a ∈ A. For multi-winner elections, the voting rule would
assign a subset of A or a linear order from A depending on what the theorem
states.

In this work, I will use the single-winner encoding for simplified GST and
full GST. For Arrow’s impossibility theorem the voting rule will assign a strict
linear order.

For simplified and full GST, we can represent the voting rule F in SAT by
creating three atoms per profile. Each atom corresponds to a profile being won
by an alternative. So if we had four alternatives, then we would create four
atoms per profile.

This can be written as Fp,a = l where p is some linear profile, a is some
winning alternative and l denotes the atomic variable corresponding to assigning
profile p the winning candidate a. It is easy to see that there will be 216*3 =
648 atomic variables in total. When l is true, it means that profile p was won
by candidate a.

Next, we need to introduce constraints which correspond to voting rule prop-
erties on those variables. This process is explained in the following sections.
Once we have encoded all of the properties for our theorem we can use conjunc-
tion to join them all together into the final theorem. Seeing as we want our
voting rule to obey all properties.

3.4 Simplified GST

Simplified GST states that there is no resolute voting rule F which satisfies
strategy-proofness and majority criterion. Full GST directly implies simplified
GST, but simplified GST serves as an illustrative example of the technique.
See section 2.1.2 for the definition of strategy-proofness and other properties of
voting rules.

AIM: We seek a set of rules which can be written in CNF which forbid
assignments of F which do not satisfy the Simplified GST properties. This will
allow us to run a SAT solver which will either return a voting rule which obeys
all these properties or inform us that no such rule exists by returning “Unsat”.

Encoding Resoluteness A voting rule is said to be resolute if there exists
at most one winner given a profile. Remember, each profile is encoded as three
atoms - one for each alternative. For example, if p = (A ≺ B ≺ C, A ≺ B ≺ C,
A ≺ B ≺ C) it is encoded as atoms: lp,A, lp,B , lp,C . One way to think about
it is that we never want any pair of atoms to both be true. To forbid a pair
of atoms from being true in CNF, a disjunctive clause such as: (not(lp,A) or
not(lp,B)) can be introduced. The clause will be false only if both lp,A and
lp,B are true. We now need two more clauses forbidding lp,A & lp,C from both
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being true and lp,B & lp,C from both being true. We can connect all three of
the disnjunctive clauses using a conjunction. I.E. (not(lp,A) or not(lp,B)) and
(not(lp,A) or not(lp,C)) and (not(lp,B) or not(lp,C)).

Finally, we need to repeat this procedure for all profiles p. In total, we will
generate 216*3 = 648 clauses.

Encoding At Least One While this rule is not mentioned in the definition
of Simplified GST, it is implied. We want our elections to have at least one
winner given any profile p. This is much easier to encode: a clause like lp,A or
lp,B or lp,C is sufficient to encode it for profile p. It now needs to be repeated
for all other profiles generating a total of 216 disjunctive clauses.

Encoding Majority Majority criterion is satisfied if when at least two voters
place some candidate A as their first choice in their ballots. Further suppose that
SA, SB , SC are sets of profiles where a majority of people voted for alternative
A, B, and C respectively. For example when p = (A ≺ B ≺ C, A ≺ B ≺ C,
B ≺ A ≺ C), p ∈ SA. The majority criterion can be encoded into logic by
looping through all profiles which are in S and setting each one to the winning
candidate. I.e.

• ∀p ∈ SA, lp,A = ture and

• ∀p ∈ SB , lp,B = ture and

• ∀p ∈ SC , lp,C = ture

Encoding Strategy-Proofness Remember strategy-proofness refers to the
inability of some voter to manipulate the election by misrepresenting their true
preferences. It is useful to think in terms of original election where the voter
does not misrepresent their views and a manipulated election where they do.

We want to select all pairs of profiles, which only differ by a single voter’s
ballot. For example, (p1,p2) would be a valid pair, where p1 = (A ≺ B ≺ C,
A ≺ B ≺ C, A ≺ B ≺ C), p2 = (A ≺ B ≺ C, A ≺ B ≺ C, B ≺ A ≺ C). In
this case it is v3 who attempts to manipulate the election by misrepresenting
his true preference of A ≺ B ≺ C as B ≺ A ≺ C. In general, we can denote the
profile with ith voter’s true preferences as porgi and the profile with ith voter’s
manipulated preferences as pmanipi

If the original election was won by candidate C (Fp1,C = true), and the
manipulated election was won by candidate A (Fp1,A = true), then the manip-
ulation would be successful since v3’s original ballot ranks A higher than C. In
general, we want “if porgi,N then not(pmanipi,M ) ” where N and M are both
alternatives and N is more preferred by voter i ’s original ballot than M. To
convert the if rule into CNF, we can use law of implication. I.E. “not(porgi,N )
or not(pmanipi,M ) ”. Once we have generated all clauses of the form not(porgi,N )
or not(pmanipi,M ) we need to use conjuntion to join them all together.
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Summary In summary, we have seen how to encode Resoluteness, At least
one, Majority, and Strategy-proofness into SAT for the case of 3 voters and 3
candidates. All that’s left to do is to apply a SAT solver and see whether the
formula is satisfiable.

3.5 Full GST

Full GST will borrow strategy-proofness, resolutness and at least one properties
from simplified GST, but will do away with majority criterion. It will introduce
two new criterion, namely, non-imposition and non-dictatorship.

Non-imposition or citizen sovereignty simply states that all candidates should
have a chance of winning the election. By chance I mean that there should be
some profile (set of ballots) that allows that candidate to win.

Luckily, this is very easy to encode in SAT. If the property holds, then at
least one of the atoms corresponding to candidate A winning must be true. I.E.
Fp1,a or Fp2,a or Fp3,a...∀p, p ∈ P . Where P denotes the set of profiles and a is
alternative A. We can add additional two clauses for candidate B and C. Finally,
we can join the three clauses together using conjunction because we want all
candidates to win at least one profile.

Non-dictatorship This property states that some special voter should not
be a dictator. In other words, their most preferred candidate should not always
win.

To encode this we need to collect all atoms corresponding to v1’s most pre-
ferred candidate winning and ensure that at least one of the atoms is false. Let
K1 denote the set of atoms for which the first voter’s most preferred candidate
wins. Then to encode this property into SAT, we can add a clause “not(k1) or
not(k2) or not(k3) ...”∀k, k ∈ K1. We then repeat the procedure for voter 2 and
voter 3 and join the three disjunctive clauses using conjunction.

Summary This section has outline how to encode the full GST theorem’s base
case into SAT. Full GST consists of 5 properties which are non-dictatorship,
non-imposition, strategy-proofness, at least one and resoluteness.

3.6 Arrow’s Impossiblity Theorem Encoding

This is arguably the most famous theorem in social choice. It states that no
voting rule can obey all five properties. These are non-dictatorship, Pareto
efficiency, Independence of Irrelevant Alternatives (IoIA), unrestricted domain
and social ordering.

The good news is that unrestricted domain (ability for all participants to
submit any preference) and social ordering (ensuring that the output of the
voting rule is acyclic) are encoded already by the way we have set up the SAT
approach.
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Note: for Arrow’s Impossibility theorem the encoding is slightly changed.
Instead of the voting rule providing a single winner, it provides a strict linear
order of winners. I.E. It tries to aggregate the voter ballots in such a way that
there is a first place, second place and third place candidates. For example, the
voting rule could map the profile p = (A ≺ B ≺ C, A ≺ B ≺ C, B ≺ A ≺ C),
to A ≺ B ≺ C. Meaning candidate A came first, B second and C third. This
means, every profile now has 6 atoms each corresponding to a permutation of
{A, B, C}.

Pareto efficiency states that if everyone prefers candidate A over B, then B
should rank higher than A. We can check whether each atom obeys this prop-
erty by checking whether there exists a candidate who is more preferred than
some other candidate in the corresponding atom’s profile. If such a pair of can-
didates exists, and the atom has assigned the unanimously preferred candidate
a lower rank than the less preferred candidate, we want to forbid this atom from
becoming true. I.E. we add the negation of the atom as one of the CNF clauses.
This procedure needs to be repeated for all atoms.

IoIA states that the ranking produced by a voting rule for any two alternatives
A and B should only depend on their relative ranking given by the voters. This
is somewhat challenging to encode. We can collect all profiles p for which all
voters rank alternative A higher than alternative B. If the voting rule decides
that A wins in any of the profiles, then A must win all of the profiles. I.e. “if
a1 then (a2 and a3 ...)” where an corresponds to all atoms which relate profiles
where all voters preferred candidate A over B and candidate A won the election.

Note, this does not encode that candidate A must win the election if all
candidates prefer A over B.

Similarly, all profiles where v1 prefers B over A, but v2 and v3 both prefer
A over B must also have the same winner. We can use the same procedure for
all 8 combinations of the 3 voter relative preferences between A and B.

To finish encoding, we need to ensure that we have encoded it for all pairs
of candidates, not just A and B. (We need to encode this for (A and C), and (B
and C) and then join the clauses together using conjunction.

3.6.1 Extracting and Visualising the MUS

At this point, we have seen how to encode theorems into social choice into CNF
which can be understood by modern SAT solvers. The SAT solver will either
produce a valid assignment of atoms or return “UNSAT” meaning there is no
assignment of atoms which can satisfy all the constraints. This means we have
verified a base-case to one of the theorems from the above section.

The aim of this section is to visualise the contradiction. To do that we
will take the output of the MUS extractor and put it into a graph that looks
something like figure 5.

The key “ingredients” of the graph are a labelled set of profiles and labelled
set of arrows connecting the profiles.
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Each profile is labelled according to the property the clause is a part of
encoding. For example, the clause “lp,A or lp,B or lp,C” is encoding the property
of majority rule.

Each arrow is labelled by voter who can manipulate the outcome of the
election. The starting point of the arrow is a profile which contains the person’s
true or original ballot, and the end point of the arrow is the profile containing
the manipulated ballot.

Extracting the MUS Modern MUS extractors such as MUSER2 [8] will
return a set of indexes of disjunctive clauses which form the MUS. We can then
use those indexes to look up the clauses. Finally, we can check what type of
clause it was and which profiles were referred to by the clause by looking at the
atoms in the clause.

For example, the MUS output might be “2 5 8 0”. 0 indicates end of output,
so we only need to look at clauses on lines 2, 5 and 8. Suppose clause on line
2 is “4 5 6 0”. This clause states that atom “4 or 5 or 6” must be true. You
might recognise this clause from the “at least one” property. The atoms 4, 5, 6
all refer to the same profile which needs to be assigned at least one winner.

This gives us enough information to make the required plot.

3.7 Translating Theorem 3 in Argumentation Theory to
SAT

We have seen how to encode theorems in social choice into SAT. As a part of
evaluating just how widely applicable using SAT solvers to verify base-cases of
theorems is, it was decided to apply it to Theorem 3 in argumentation theory. It
may help the reader to refer to Section 2.3 for a reminder of what each property
in Theorem 3 means.

To verify the theorem’s base case, I will be using 3 agents ag1, ag2 and ag3.
I will also be fixing the AF to the one in the figure 6:

Figure 6: AF that serves as base-case for Theorem 3 in argumentation theory.

We will be using a similar general strategy to look for a contradiction in
the outlined base-case as we did for argumentation theory. First, we need to
generate all labellings agents can give. Remember, agents may only provide
complete labellings. Secondly, we need to generate all possible aggregated la-
bellings. I chose to only generate complete aggregated labelligns because it is
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one of the properties of Theorem 3. The alternative, less efficient approach
would have been to generate all aggregated labellings and then add in CNF
clauses forbidding the atoms corresponding to incomplete labellings from being
true.

Finally, we are ready to represent an aggregation procedure (equivalent to
a voting rule in social choice) explicitly. The aggregation procedure will take
in a 3-tuple of agent labellings (a profile) and assign it a labelling. Each pair
(profile, aggregated preferences) is assigned an atom. When an atom is true, it
means that our “voting rule” will aggregate the agent preferences to aggregated
preferences.

Note, since we are fixing the AF, there is no need to encode Isomorphism
because AF-independence already implies it. Collective rationality was implicitly
when generating the voting rule by not generating any atoms which correspond
to the aggregation rule assigning an incomplete labelling.

We are now ready to encode the properties into CNF.

At Least One & Resolute Similarly to Social choice, although not stated
explicitly we would like our aggregation procedure to output exactly one la-
belling. Encoding at most one and at least one is done in the same way that it
was done in social choice.

Anonymity To encode anonymity, I find all atoms corresponding to a permu-
tation of a profile which assign the same winner. I then add a rule saying that if
any one of the atoms is true, then all atoms are true. For example, suppose you
have a profile p1=(A, B, C) where A, B, and C are complete labellings given by
agents 1, 2 and 3 respectively. Suppose you have an atom which corresponds to
p1 being aggregated to have the labelling D. We then find all atoms (a1,a2,a3...)
corresponding to a permutation of p1 (for example (B, A, C)) being assigned
label D. Finally, we can encode the anonymity constraint by encoding the con-
straint if an then ab where an, ab ∈ atoms. In CNF, this would be translated
as “not an or ab”.

Unanimity loosely translates to Pareto efficiency in social choice. To encode
it, we go through all atoms and check if the profile referred to by the atom
contains any argument that is unanimously labelled. If so, we check if the
aggregated winner referred to by the atom has the same label for that argument.
If it does not, we can exclude this atom by adding a CNF clause “not atom”
for all such atoms.

AF-Independence This states that each argument can be aggregated indi-
vidually. Similarly, to IoIA in social choice, we may split all atoms into groups.
More specifically, each node in the AF will have several sub-groups. Each sub-
group corresponds to one of 27 different ways of labelling that node by each
agent. For example, one group will correspond to node A. Node A can be la-
belled by each agent as being in, out, or undec. Since we have 3 agents, there are
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27 ways of labelling the argument. Any atom will fit into one of the subgroups
and thus we can associate a subgroup with a set of atoms.

What AF-independence tells us is that if any one of the atoms belonging to
the subgroup is true, then the entire subgroup must also be true. To encode
this into CNF, suppose S is the set of atoms for subgroup one. For all pairs
(s1,s2), where s1,s2 ∈ S we can write a CNF clause stating “not s1 or not s2”.

3.8 Solving the SAT and Evaluating the Performance

In previous sections, we have seen how to translate numerous theorems into
SAT. However, a practical consideration one needs to make is to choose a SAT
solver that is fast for their use case. Modern SAT solvers often have variable
performance on different tasks.

Most standard tasks such as performance on the pigeonhole principle are
covered in the proceedings papers of SAT competitions [39]; however, they do
not include the performance for finding impossibility theorems in social choice.
This will be the main motivation for this section. Although, interestingly, one
of their benchmarks is calculating preferred extensions in argumentation theory.

I have chosen three SAT solvers which I will evaluate on the three theorems
in social choice. All tests will be repeated 10 times and mean time to solve as
well as the standard deviation will be recorded.

Due to strict time limitations, more challenging base-cases which have more
voters and alternatives will not be checked.

3.9 Translating SAT Proofs to Natural Language

3.9.1 Motivation and Limitations of Previous Approaches

In the previous sections we have seen different ways of making SAT proof human
readable. Either by proof extraction in section 2.6 or via using MUS 2.6.2 or
by turning that MUS into a diagram 3.6.1.

It can be very difficult to interpret the extracted MUS because it is using
clauses which refer to atoms. Each atom corresponds to a voting rule, but this
information is not embedded into the MUS. To give meaning to atoms from
clauses in the MUS one has to look them up. This is not very practical. Note:
it is also possible to use grouped CNF (GCNF clauses) where each group refers
to a different property. However, this still does not solve the problem of knowing
which specific profile the clause is referring to.

This issue is remedied by the tree graph representation since it looks up the
meaning of the clauses and displays them in a visual way. However, it is very
difficult to make sense of large graphs. Verifying the large graphs is not trivial
because it is hard to verify a small part of the graph independently.

3.9.2 Solution

Ideally, we are looking for a description similar to what is outlined in most
papers as explanation of their proof. See figure 7 to get a sense of what we
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would like our proof to look like.

Figure 7: This proof was taken from [21]. It is a natural language description
of the proof in figure 5. This is something we would like to generate alongside
our proof diagram.

To do this one can use a SAT solver with proof logging on the MUS. While the
proof produced could be quite lengthy, it will be shorter than the one produced
by using all clauses.

Secondly, it has a very nice property. Each part of the proof can be verified
“independently”. Suppose the proof is 1000 clauses long. We can ask a person
to verify clauses 1 to 100, another to verify 101 to 200 ... etc.

Verifying “raw” clauses is not intuitive and requires that the user has a good
understanding of logic. Furthermore, each atom of the clause needs to be looked
up for it to have meaning (which profile it refers to and what property is the
clause encoding).

Each step of the SAT proof will be a derived clause followed by clauses
which were used to derive it. The proof will stop when the empty clause is
derived indicating a contradiction. By translating all of the clauses into natural
language, the proof step should become much more intuitive.

See figure 8 for a high level overview of the approach.
Suppose your SAT solver derives a clause “4 5 0” by combining clauses “4 5

6 0” and “-6 0”. It may seem difficult to understand at first especially for those
unfamiliar with SAT or logic.

However, we can mechanically translate this into natural language. A pos-
sible tranlation might look something like this: “Let p1 = (A ≺ B ≺ C,
A ≺ B ≺ C, B ≺ A ≺ C). Using at least one property, we know that p1
must be won by either candidate A or candidate B or candidate C. We have
previously derived on step 131 of the proof that p1 cannot be won by candidate
C. Therefore, we can conclude that p1 must be won by either candidate A or
candidate B”. Note: step 131 is just used as an example here.
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Figure 8: This figure shows the proposed solution. At step 1 a social choice re-
searcher encodes the properties for which he would like to check the existence of
a voting rule. The script translates the high-level specification of the properties
into CNF formula (Step 2 a) It also saves what the meaning of each atom is and
what property each clause is trying to encode in Variable Meaning file (step 2
b). After the theorem is turned into CNF, it is given to a MUS extractor which
extracts the MUS (Step 3). Note in practice, often the MUS extractor returns
the line numbers of clauses and not the clauses themselves so an additional step
between 3 and 4 is sometimes needed. We now need to prove that the MUS is
unsatisfiable using a SAT solver with proof logging (Step 4). This proof will be
de-coded by the a proof-decoder script which takes variable meaning and SAT
proof-logs as inputs and returns a natural language proof of the theorem (Step
5).

This is done by looking up all of the profiles which are used in the justifying
clauses. Followed by looking up all of the candidates used in each clause. Then
we can wrap it in natural language.

Summary A simple mechanical way of translating SAT proofs into natural
language to verify impossibility result base-cases for theorems in social choice
has been proposed. Special attention has been paid to ease of checking and
allowing people unfamiliar with propositional logic to still be able to understand
the impossibility result produced.
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4 Implementation

So far, an approach to finding proofs for impossibility theorems in social choice
and argumentation theory has been outlined. The approach glosses over specific
implementation details which are covered in this section. It may help to refer
to figure 8 for a high-level outline of what we are trying to do.

Prerequisites subsection will cover the “workspace” needed to get started
using SAT solving and extracting MUSes. The workspace loosely translates to
Steps (3 and 4) in figure 8. Encoding the Theorems section will cover the
specific implementation of each axiom used in social choice. This corresponds
to Step 2 a and Step 2 b in figure 8. Finally, the Human Readable Proofs
section will cover the implementation for making proofs human readable either
by creating a graph from the MUS or by generating justification of a proof in
English. This corresponds to Step 5 in figure 8.

4.1 Prerequisites (OS)

Cutting edge SAT solvers are usually developed to run on Linux. Indeed, all
SAT solvers which were evaluated, namely, MiniSAT [35], lingeling [10], sat4j [9]
only contain build instructions for Linux systems. Finally, the MUS extraction
tool MUSER2 [8] also only provided instructions to be built on Linux. This
means the first step is to install Linux OS.

Installing Ubuntu I chose to install Ubuntu which is a beginner friendly
Linux distribution. Since I only have access to a Windows machine, I took
advantage of the new subsystem for Linux feature built into Windows. Finally,
I installed Ubuntu application from Microsoft Windows Store [31]. This gave
me access to a Linux terminal while allowing me to continue to use Windows.

Optional - Using a GUI While installing Ubuntu is sufficient for installing
the SAT solvers, I took advantage of LXDE [30] which is a desktop environment.
To actually see the desktop, you need to connect to it like you would to a remote
PC. XLaunch is a Windows application which allows you to do this easily. By
the end of this step, I had access to a desktop environment so I could issue
commands such as copy using the mouse instead of using the terminal. This
step adds convenience and saves time.

Note: during initial stages of implementation I was not aware of a Python
library called PySAT [28] which integrates MiniSAT and a couple of other solvers
directly into Python. This allows them to run directly on Windows, Mac or
Linux. It is missing a MUS extractor so this section is still required.

4.1.1 SAT solvers & MUS extractor

Once we have setup a working Linux environment, installing the SAT and MUS
solvers was straight forward.
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• To install MiniSAT, it was sufficient to run “sudo apt install minisat”.

After this, you can use the minisat solver by typing “minisat” inside your
terminal.

• To install lingeling, I used “git pull https://github.com/arminbiere/lingeling”
followed by “./configure.sh && make” command.

This builds the lingeling solver. To use it, simply navigate to where it was
installed and type “./lingeling”.

• To install sat4j solver, source code was downloaded from https://gitlab.

ow2.org/sat4j/sat4j/-/releases/.

Then, “cd ../dist/CUSTOM” where .. is the install directory. Finally, to
run the solver one can issue the command “java -jar sat4j-sat.jar”

• To install MUSER2, I used “git pull https://github.com/meelgroup/muser”
followed by “cd ./src/tools/muser2 && make”.

Now MUSER2 is available to run inside the install directory via the com-
mand “./muser2”

4.1.2 Python & Libraries

Now that we have access to SAT solvers, we need a way to encode the theorems
into CNF. We do not want to manually write out all properties for each theorem
by hand. Python will be used to visualise output of the MUS and to generate
natural language proof descriptions.

I chose to use Python because it the programming language I was the most
familiar with and it is one of the most popular high-level programming lan-
guages. While Python is an interpreted language which means that it will be
slower than something like C++, it is not important for our use-case because
encoding the axioms takes polynomial time, but solving the SAT takes expo-
nential. This means performance for encoding does not play a large role and
thus we can afford the conveniences of a higher-level language.

Python 3.9.6 [42] was used with two external libraries. Namely, matplotlib
[27] which is a standard library to generate plots and networkx [25] which is a
library specifically made to display graphs. Both were used to generate and plot
graphs from the MUS.

To install Matplotlib, the command “pip install matplotlib” was used. To
install networkx, the command “pip install networkx” was used.

Other libraries such as pickle [41] (used for storing the variables) and itertools
[40] (used for generating permutations of preferences) which come pre-installed
with Python were also used.

Summary This section has provided us with relevant tools to translate a high-
level description of properties into CNF, make plots from MUS and interpret
the proofs produced by SAT solvers.
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4.2 Encoding the Theorems

Now that we have set up all of the necessary tools, we can begin work on
creating a script which encodes relevant properties for theorems in social choice
or argumentation theory.

An important consideration is to keep in mind our target audience, namely,
social choice and argumentation theory researchers. One of the more common
use-cases is to check whether some subset of properties allows for an existence
of a voting rule or whether there exists an aggregation procedure for an AF.
Therefore, instead of encoding a specific theorem, it might be more reasonable
to provide the user with the ability to specify the axioms which they wish to
use.

4.2.1 Social Choice

In my current implementation, I assume very little programming knowledge
required to use the script. All the social choice researcher has to do, is to set
variables to true or false for the properties they want to use to check an existence
of a voting rule. See figure 9.

Figure 9: This figure shows all of the properties which can be encoded by the
Encoder Script. To change which properties to use, simply set the corresponding
variables to true/false. The properties which encode the base case for Arrow’s
impossibility theorem are selected.

The second thing which social choice researchers may wish to adjust is the
number of alternatives and number of voters. Due to strict time constraints,
this was not implemented, but is relatively simple to do.

I have shown how properties can be specified by social choice researchers.
The next thing to do, is to show how they are implemented. It may help the
reader to refer to Sections 3.4, 3.5 and 3.6 for a reminder of what each property
encodes.

Before we do that, we need to define how to represent the voting rule which
will be used to encode all properties. Finally, I will be using the DIMACS
encoding covered Section 2.5.2 in my implementation.

• possible voting rules: this is a list which contains 648 2-tuples. The
first element of the tuple is a profile and the second is the alternative
who won. For example, running possible voting rules[0] will return ((A ≺
B ≺ C, A ≺ B ≺ C, A ≺ B ≺ C), A) where (A ≺ B ≺ C, A ≺ B ≺ C,
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A ≺ B ≺ C) is the profile alternative and A is the winning alternative. For
multi-winner elections possible voting rules[0][1] would return A ≺ B ≺ C

instead of just A.

Each possible voting rule will correspond directly to an atom when en-
coded into SAT. Note that unique profiles are next to each other, so voting
rules possible voting rules[0], possible voting rules[1] and possible voting rules[2]
would return the same profile as their first element, but would return al-
ternatives A, B, and C respectively as their second element.

Lastly, to get voter 2’s ballot for atom 237 we can run:

possible voting rules[237-1][0][2-1] and this would return A ≺ B ≺ C.

237-1 accesses the 237th atom. 0 indicates we want to look at the voter
ballots, and finally 2-1 indicates we want to look at the ballot submitted
by voter 2 (we subtract one because 0 indexing is used). To get the top
choice of voter 2 for atom 237, we would issue:

possible voting rules[237-1][0][2-1][0]

and this would return: A

Note: I use pseudo-code instead of providing the actual code because I think
that pseudo-code will be more informative than the specific implementation which
will probably be confusing for the reader. If the reader so chooses, they can check
the source files for the specific implementation.
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At Least One Since there are three alternatives for every profile, we would
like to generate a conjunctive clause for every profile by using disjunction on
all alternatives. The algorithm below loops through all possible voting rules
and uses the fact that the same profiles are located next to each other in pos-
sible voting rules to ensure that there is at least one winner per each profile.
It returns a list of “all clauses” where each element of the list is clause is a
disjunction of atoms. It is assumed that later all clauses is concatenated using
conjunction and encoded and saved using DIMCAS encoding.

Algorithm 1 At Least One - Social Choice

Require: possible voting rules
Current profile ← possible voting rules[0][0]
Current clause ← “”
all clauses ← [ ]
for i ≤ length(possible voting rules) do

if Current profile = possible voting rules[i][0] then
Current clause ← Current clause + i + “ ”

else
all clauses.append(Current clause)
Current clause ← i
Current profile ← possible voting rules[i][0]

end if
end for
return all clauses
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Resolute This states that two alternatives cannot both win the same profile.
This is a bit more tricky to encode since we cannot rely on the order like we
did to encode At Least One property. The simplest implementation is to use
two nested for loops and check if both profiles are the same and have a different
winner. If this is the case, then we want to ensure that both of these cannot be
true simultaneously.

Algorithm 2 Resolute - Social Choice

Require: possible voting rules
all clauses ← [ ]
for i ≤ length(possible voting rules) do

for j ≤ length(possible voting rules) do
if possible voting rules[i][0] = possible voting rules[j][0] &

possible voting rules[i][1] 6= possible voting rules[j][1] then
all clauses.append(“-i -j”)

end if
end for

end for
return all clauses
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Majority To check for a majority we simply need to verify that at least two
voters have put the same alternative in the top position. If this is the case we,
can check if the atom corresponds to the most preferred alternative. If it does,
we need to add this as a clause to the set of clauses. I assume that we have
a function called “most liked(profile)” which takes in a profile as an argument
and returns the candidate who has the majority vote. If no candidate has the
majority vote, the function returns “”.

Algorithm 3 Majority - Social Choice

Require: possible voting rules
all clauses ← [ ]
for i ≤ length(possible voting rules) do

Current profile ← possible voting rules[i][0]
Majority Alternative ← most liked(Current profile)
if Majority Alternative = possible voting rules[i][1] then

all clauses.append(“i”)
end if

end for
return all clauses

Imposition Imposition states that it is possible that every alternative can
win. This is encoded as a conjunction of all atoms corresponding to alternative
A, B and C respectively. We can simply encode this as three lists of numbers
separated by 3. I.E. [[1,4,7..646],[2,5,8..647],[3,6,9..648]] and then turn each one
into a clause by replacing the commas with spaces. I.E. list referring to alter-
native A winning would become “1 4 7 ... 646”. This is possible because every
3rd atom corresponds to every 3rd possible voting rule which were generated
such that every 3rd index corresponds to a unique alternative.
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Dictatorship For single winner elections, dictatorship states that a candi-
date’s preferred choice must lose in some profile. For multi-winner elections, it
states that any candidate’s most preferred linear order must sometimes not be
the linear order of the group.

In the below algorithm, I only implement multi-winner case because it bor-
rows a lot of similarities from the single winner case. Covering both is redundant.

The general strategy is to split all atoms into 3 categories - Category where
voter 1’s, voter 2’s and voter 3’s linear orders match the aggregated linear order
of the group. Most atoms will not belong to any of the categories. Out of these
3 categories, we want at least one atom to be false. Thus we can use negated
disjunction on all atoms in each category.

Algorithm 4 Dictatorship - Social Choice

Require: possible voting rules
all clauses ← [“”,“”,“”]
for i ≤ length(possible voting rules) do

for v ≤ length(nr of voters) do
if possible voting rules[i][v][0] = possible voting rules[i][1] then

all clauses[v] = all clauses[v] + “-i ”
end if

end for
end for
all clauses.append(all clauses[0],all clauses[1],all clauses[2])
return all clauses
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Pareto Efficiency This property only makes sense when thinking about vot-
ing rules which produce a linear order instead of a single winner. It is trivial
that no single winner voting rule can satisfy it the way it has been defined in
this report because there could be two candidates more preferred by everyone
but only a single winner can be assigned.

Therefore, for this property I assume that the second element of all possible
voting rules is a strict linear order. I.E. possible voting rules[0][1] = (A ≺ B ≺
C).

The general strategy is to loop through every voting rule and check if that
rule has some candidate that is more proffered than some other candidate. If
so and if the less preferred candidate wins, then forbid this voting rule.

I introduce a function called “is dominated(profile)” which returns a list of
tuples of candidates who are dominated by some other candidate in the profile.
For example, is dominated( (A ≺ B ≺ C,A ≺ B ≺ C,A ≺ B ≺ C) ) will return
a list [(A,B),(A,C),(B,C)] since every voter prefers A to B, A to C and B to C.

I also introduce a function called “ranks higher(linear order, candidate tuple)”
which takes in a linear order and a tuple of two alternatives and returns true
if in the profile candidate in the first position of the tuple ranks higher than
candidate in the second position of tuple. For example ranks higher(A ≺ B ≺
C, (C,A) ) returns false, because C was less preferred than A.

Algorithm 5 Pareto efficiency - Social Choice

Require: possible voting rules
all clauses ← [ ]
for i ≤ length(possible voting rules) do

dominated candidates← is dominated(possible voting rules[i][0])
for j ≤ length(dominated candidates) do

if ranks higher(possible voting rules[i][1],dominated candidates[j])
then

all clauses.append(-i)
end if

end for
end for
return all clauses
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Independence of Irrelevant Alternatives This is probably the hardest
rule to encode. It states that if everyone’s preferences between candidates A
and B remain unchanged then the group’s preference between candidates A and
B should also remain unchanged. For similar reasons to Pareto efficiency, it only
makes sense to discuss this property in context of voting rules which produce
strict linear orders.

This property can be broken down into 3 categories - relative preference
between alternatives A and B, A and C, B and C. Since we are dealing with
strict voting rules, if voter 1 does not rank A higher than B, then they have
ranked B higher than A.

We can break down each category further by splitting it into (23) = 8 sub-
categories. Where 3 comes from the fact we have 3 voters. We can fit every
atom inside one of these 8 subcategories. To see which subcategory an atom
belongs to, we start at 1 and add 4 if in the atom refers to a profile in which
voter 1 prefers A over B. We add 2 if voter 2 prefers A over B. We add 1 if voter
3 prefers A over B. All voting rules only belong to one of the 8 subcategories.

For each subcategory, we can further break down the atoms into two cases
ones where the voting rule assigned alternative A as the winner and others where
the voting rule assigned B as the winner.

IoIA in this context then means that if any atom of a case is true, then all
atoms of the other case must be false. The last thing to note before looking at
the pseudo-code is that we can translate “if a then not b” into CNF by “not a
or not b” and into DIMACS by “-1 -2”.

I introduce two functions - get case(profile, alternative tuple) which returns
the subcategory which the alternative tuple belongs to in the given profile. For
example, get case( (B ≺ A ≺ C, A ≺ B ≺ C, A ≺ B ≺ C), (A,B)) will return 4 (1
+ 0 + 2 + 1) since we start at 1, voter 1 doesn’t prefer A over B so we add zero.
Voter 2 does prefer A over B so we add 2. And voter 3 also prefers A over B so
we add 1. The second function get subcase(linear order,alternative tuple) will
take in a linear order corresponding to the group’s linear ranking and alternative
tuple. It will return a true when alternative tuple is ranked the same in linear
order. For example get subcase(A ≺ B ≺ C, (B,A)) returns false because B is
not ranked above A in the linear order.
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Algorithm 6 Independence of Irrelevant Alternatives - Social Choice

Require: possible voting rules
all clauses ← [ ]
alternative tuples ← [(A,B),(A,C),(B,C)]
for i ≤ length(possible voting rules) do

for j ≤ length(alternative tuples) do
case = get case(possible voting rules[i][0], alternative tuples[j])
subcase = get subcase(possible voting rules[i][1],alternative tuples[j])
for ii ≤ length(possible voting rules) do

for jj ≤ length(alternative tuples) do
case other = get case(possible voting rules[ii][0], alterna-

tive tuples[jj])
subcase other = get subcase(possible voting rules[ii][1],alternative tuples[jj])
if case = case other & subcase 6= subcase other then

all clauses.append(“-i -ii”)
end if

end for
end for

end for
end for
return all clauses

Strategy-proofness I decided to only implement strategy-proofness for single
winner elections. This is because of the difficulty defining whether a linear order
is better or worse for a voter and thus defining whether a manipulation was
successful. Multiple definitions could exist for multi-winner elections such as
using Borda count of the voting rule’s linear ranking or counting manipulations
as successful only if all of voter’s preferences align with the ranking produced
by voting rule.

To encode strategy-proofness one needs to forbid all pairs of atoms which
are incompatible with each other due to breaking strategy-proofness. Let p1
be the profile referred to by atom 1 and contain the voter’s true preferences.
Let p2 be the profile referred to by atom 2 and contain the voter’s manipulated
preferences. Two atoms are then incompatible with each other, if some voter
can change their preferences in p1 and thus turn p1 into p2 and atom 2’s winner
is better for the voter who manipulates than atom 1’s winner. For example

atom 1 could be: ((A ≺ B ≺ C, A ≺ B ≺ C, B ≺ C ≺ A), A) and
atom 2 could be: ((A ≺ B ≺ C, A ≺ B ≺ C, C ≺ B ≺ A), B). In this case

voter 3 has successfully manipulated the election because he prefers alternative
B over A and by switching his preferences to C ≺ B ≺ A he has produced a
desierable outcome and thus both atoms cannot be true.

Finally, I define a function is better(linear order,alternative tuple) which re-
turns true when the first alternative in alternative tuple is ranked higher in
the linear order than second alternative. This functions the same way that
the get subcase function does, but I thought the name of is better was more
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appropriate.

Algorithm 7 strategy-proofness - Social Choice

Require: possible voting rules
all clauses ← [ ]
for i ≤ length(possible voting rules) do

for j ≤ number of voters do
original profile ← possible voting rules[i][0]
voter true prefs ← original profile[j]
winner true prefs ← possible voting rules[i][1]
for ii ≤ length(possible voting rules) do

manip profile ← possible voting rules[ii][0]
voter manip prefs ← manip profile[j]
winner manip prefs ← possible voting rules[ii][1]
profile differ one ← true
for l ≤ length(number of voters) do

if l 6= j & original profile[l] 6= manip profile[l] then
profile differ one ← false

end if
end for
if profile differ one & is better(voter true prefs,(winner manip prefs,winner true prefs)

) then
all clauses.append(“-i -ii”)

end if
end for

end for
end for
return all clauses

45



4.2.2 Summary

We have seen how to encode 8 properties used by the three theorems in social
choice. It was noted that properties like independence of irrelevant alterna-
tives only applies to linear orders and does not apply to single winner elections.
Therefore, I decide to split the encoding into 2 scripts: GSTencoder.py and
ArrowEncoder.py since simplified and full GST use a single winner election
method and Arrow impossibility theorem uses strict linear orders. See figure
10 for which properties were used to generate the three impossibility results.
A better implementation may have been to provide both encodings in a sin-
gle script and letting the user choose between linear orders and single-winner
elections. This is discussed further in Section 6 on future work.

Figure 10: This figure shows the configuration used for the three theorem and
from which file they are.

4.2.3 Preserving the Meaning (Step 2 b)

We have now seen how to encode all relevant properties for theorems in social
choice. For the decoder script to work as intended, we do need to save the
meaning of all literals and meaning of what property each clause is trying to
encode.

Meaning of the atoms is stored by saving the possible voting rules variable.
Atom with number i will correspond to ith element in the list.

Finally, a dictionary is saved to preserve the meaning of all clauses. The
dictionary’s key is a CNF clause and the value is which property is encoded by
the clause. See figure 11 for how this was implemented.

4.2.4 Argumentation Theory

Argumentation theory implementation details were not much different from so-
cial choice and thus were not covered as a part of this report. I believe that
the approach section covers enough high-level detail for the reader to be able to
understand the source-code.

4.3 Human Readable Proofs

There are two approaches covered in section 2.6 which have been discussed to
make proofs human readable. Approach one was to generate a diagram from
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Figure 11: This figure shows how the dictionary for step 2 b is generated and
saved as a pickle file.

MUS and approach two was to generate a natural language description of the
proof found using a SAT solver with proof logging.

4.3.1 MUS diagram

Generating a MUS diagram requires two things: the MUS produced by MUSER2
(Step 3) and meaning of clauses saved in (Step 2 b). Only a very basic imple-
mentation of visualising the MUS was done due to limitations of what could
be displayed in the MUS diagram becoming apparent and the advantages of a
solution integrating natural language directly becoming clear.

To create a MUS diagram we go through all of the clauses produced by the
MUS extractor. We gather a list of profiles that the clauses in the MUS use by
looking up every atom in the MUS. Each profile will be a node in our graph.

To encode strategy-proofness we get the two profiles associated with each
strategy-proofness clause and add a directed edge going from voter’s true pref-
erence to manipulated preference.

4.3.2 Natural Language (Step 5)

This section of implementation corresponds to the final step of my proposed
solution. This means that all of the meanings of clauses and atoms have been
saved and that we have now generated a FRAT proof. It may help the viewer
to refer to figure 4 to remind them of the format that FRAT proofs produce
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Figure 12: This figure shows how the labels and edges were generated for the
MUS diagram. MUS list is a list containing all clauses generated by the MUS
extractor.

and to section 3.9 to see the approach taken to translate the proof into natural
language.

The general strategy is to go through the FRAT proof line by line, whenever
a conflict clause is added, retrieve the associated profiles (both of the derived
clause and the clauses used as justification), also retrieve their winners and
wrap it all in natural language. Finally, I format all profiles used in the proof
by adding a table which makes the proof generated easier to read and more
visually appealing. See figure 13 for the outline of the code that was used to
generate it.
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Figure 13: This figure shows the outline of the function which turns the FRAT
proof into English. You can see that the proof begins by confirming that the
FRAT line is a newly derived clause then it lists the step number, followed by
displaying a table of all profiles used to derive the clause. It concludes by saving
the newly derived clause so that it can be referred to by other clauses later in
the proof.

5 Results and Evaluation

We have now seen how to encode proofs into SAT and how to turn those proofs
into natural language or MUS diagrams. All that’s left to do, is to choose the
best SAT solver by comparing different SAT solver performance. Then we
will take a look at the two current approaches to explain SAT proofs, namely,
using a visual MUS diagram and using a natural language description. Finally,
we will take a look at the Strengths and Weaknesses of both approaches.
This will serve as an introduction into future work.

5.1 Performance Comparison of SAT Solvers

The goal of this section is determine whether the type of SAT solver used when
trying to find an impossibility results in social choice has a big impact on the
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time taken to find it. This evaluation is by no means extensive since only three
theorems and three different solvers were used, but it if there is a big difference
then finding the best SAT solver for finding impossibility theorems in social
choice could be a future topic to research.

Hypothesis I have chosen three SAT solvers to use to benchmark perfor-
mance. MiniSat is a lightweight solver which was first released in 1997 and has
received only slight modifications over the years. I expect it to perform the slow-
est and it should highlight all of the progress that has been made over the last 20
years in SAT solving. Sat4j is a state of the art SAT solving library implemented
in Java and thus runs on a virtual machine. I expect it to perform better than
MiniSat, but worse than lingeling. Lingeling was chosen as a relatively recent
solver (first released in 2010) which has been continuously developed. It won
the silver medal in 2016 and a modified version called tree-lingeling won the
gold medal that year. I expect it to outperform all other solvers.

Setup All SAT solvers came with an in-built timing function which was used
to record the time taken to solve each theorem. I ran every theorem through
each SAT solver 10 times to examine the variability and get a more accurate
picture of how long it takes to solve each SAT formula.

I tested the time taken to find impossibilities on 3 theorems in social choice,
namely, simplified GST, GST, and Arrow’s impossibility theorem. In figure 10
I provide the configuration of axioms which were used to generate the CNF file.
Note, I do not run the SAT solvers on the MUS, I run the SAT solvers on the
fully encoded theorems.

Whilst testing, I alternate between different SAT solvers to clear the cache.
Not clearing the cache between runs offers a speedup, but is not realistic for our
use-case.

Note, lingeling solver only offers to measure performance rounded to the
nearest tenth of a second. Since all formulas were solved very quickly, this
makes the comparison somewhat inaccurate, but it still should give a rough idea
of the performance.

Results The timing of each run is available in the Appendix 24. The results
only partially matched my hypothesis. Indeed, there has been lots of progress
made on solving difficult SAT problems with many clauses. The most difficult
theorem to solve turned out to be Arrow’s impossibility theorem because it uses
the most atoms (1296) and has the highest number of clauses (322,113).

For Arrow’s impossibility theorem, MiniSat averaged 369 ms, Sat4j came it
at respectable 182ms, but lingeling completed it in 100ms.

Both simplified GST and full GST produced the opposite results. MiniSat
and Sat4j outperformed the newer lingeling solver with MiniSat being the fastest
averaging 18ms over the two theorems, Sat4j being the second fastest averaging
62ms and lingeling averaging 150ms over the two theorems.

50



My guess is that java virtual machine takes time to set up; however, MiniSat
takes no time thus for smaller formulas it is faster. However, as the number of
clauses and variables increases, the modern advances in SAT solving become
apparent as seen when looking at Arrow’s impossibility theorem.

In summary, the results indicate that the choice of the SAT solver is not
widely important for the base-cases discussed here. I leave the evaluation of
performance for base-cases with more voters and alternatives as future work.

5.2 Explainable SAT Proofs for Social Choice

We have found that the formulas corresponding to base-cases for simplified GST,
full GST, and Arrow’s Impossibility theorem are all unsatisfiable. This is to be
expected.

We now turn our attention to explaining why they are unsatisfiable. In so
doing, we should be able to tell if the proof found is valid and we have not made
any mistakes in the encoding. A helpful exercise is to imagine that we do not
know whether a formula is unsatisfiable and whether our encoding is correct.

The two approaches considered are MUS diagrams and generating natural
language description from the SAT proof logger. After reporting the results,
both methods are evaluated.

Note: the full versions of all of the proofs discussed can be found inside
“proofs” folder inside my submission.

5.2.1 MUS Diagrams

MUS diagrams were generated to visualise the constraints in the MUS. Each
node is a profile and each arrow is a constraint concerning two profiles. For
example, strategy-proofness. CNF clauses which contain more than two profiles
(such as non-dictatorship) were not visualised at all because it was unclear how
they should be visualised.

Simplified GST Everything for simplified GST went right in terms of find-
ing and visualising the MUS. The MUS found was only 7 clauses long and is
relatively easy to understand. It marks an improvement over the one reported
in [21] which was 9 clauses long and was used as inspiration for this work.

This is the smallest possible MUS because the MUS extractor MUSER2 was
ran in insertion mode without refinement meaning that clauses were iteratively
added until an unsatisfiable subset was formed.
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Figure 14: This figure shows a visualisation of the smallest possible MUS for
simplified GST. It shows that profile A (the one in the middle) cannot be as-
signed any alternative as a winner. Suppose a voting rule assigns profile A to
have the winner of alternative a. Voter 1’s true preferences for profile A are
c≺b≺a which means that he really does not want alternative a to win. He
can misrepresent his preferences as being b≺c≺a and thus achieve a majority
for alternative b. According to his true preferences b winning the election is
better than a winning the election thus this has been a successful manipulation.
Similar reasoning can be applied to exclude assigning alternatives b or c thus
leaving profile A without a winner.

Full GST For Full GST, visualising the smallest MUS does not offer much
insight into whether the proof is correct. This is because the MUS found used
all 216 profiles. This meant that the MUS had 216 nodes which makes it very
difficult to visualise. See figure 15 for “visualisation” of the MUS. To make
matters worse, there are no “root” nodes. I.E. all nodes have outgoing edges
meaning there is no clear place to start. Furthermore, I do not display the
dictatorship rules because it states that one of 72 profiles must be false. This
is not exactly easy to display in a visual diagram.

Whilst visualising the MUS seems hopeless we can still get a sense about
whether the MUS found is correct by checking the summary statistics of what
each clause in the MUS encodes. See figure 16 for the summary statistics of the
full GST MUS as well as the decoding of some of the profiles.
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Figure 15: The smallest MUS found for full GST contains 216 profiles and uses
1230 clauses. I provide the meaning of some node label into figure 16. The full
decoding of all profiles is provided in results folder of the submission.

The summary statistics tell us that the MUS uses four types of clauses
- at least one, strategy proof, imposition and dictatorship. This sounds similar
to the simplified GST proof in which it was found that it is impossible for some
profile to be assigned a winner.

We should take anything we might imply from the summary statistics with
a pinch of salt because the MUS extractor was ran in approximate mode due
to time-complexity of finding the smallest MUS. (I.e. it finds a small set of
unsatisfiable clauses, but there might exist a smaller set). Secondly, just because
the smallest subset uses clauses from a certain property does not imply that the
type of clause is required to make the CNF formula unsatisfiable. I.E. CNF
formula might still contain a contradiction if some “at least one” clauses are
excluded.

This might make one wonder if that really is the case. I.e. does excluding
one of these properties would imply that CNF encoding becomes satisfiable.
This intuition is confirmed when the encoder script is configured to not use one
of the four properties which were used in the MUS. For all four properties the
CNF formula became satisfiable.

The second thing to note about the MUS is that it uses all of the clauses in
at least one, imposition and dictatorship. This suggests that all of those clauses
are needed for a contradiction. Indeed, this hypothesis was also confirmed. For
example, excluding the clause forbidding voter 3 from becoming a dictator and
running this through a SAT solver generates a valid assignment of atoms where
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Figure 16: This figure shows the profiles of first couple of nodes used in figure
15. More importantly, it also displays the summary statics of what each clause
in the MUS encodes.

voter 3 is a dictator.
I am unable to see why specifically 1008 clauses of strategy-proofness were

needed. it is only approximate and therefore slightly fewer strategy-proof clauses
might have been needed to produce a contradiction.

Arrow’s impossibility theorem Similarly to Full GST, the MUS contains
far too many clauses (2,189 to be exact) to be understandable only using the
MUS diagram. Nevertheless, I provide the diagram generated in figure 17. Sim-
ilarly to full GST, a better insight might be found using the summary statistics
on the next page.
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Figure 17: The smallest MUS found for Arrow’s impossibility theorem contains
216 profiles and uses 2,189 clauses. I provide the meaning of some node label
into figure 18. The full decoding of all profiles is provided in results folder of
the submission.

The summary statistics are similar to full GST’s summary statistics in
that all clauses relating to dictatorship property and at least one property were
required to make the formula unsatisfiable. Again, this was verified by removing
one clause relating to either property and finding that the new CNF formula
was satisfiable.

I am not sure why specifically 1,718 (out of 314,928) clauses were needed
for IoIA or why exactly 252 (out of 486) were required for Pareto efficiency.
This does imply that there is some redundancy and that not all IoIA or Pareto
efficiency clauses are needed to produce a contradiction.
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Figure 18: This figure shows the profiles of first couple of nodes used in figure
17. More importantly, it also displays the summary statics of what each clause
in the MUS encodes.

5.2.2 Natural Language Proofs

We have seen how to visualise the smallest set of clauses using MUS diagrams.
In this section, I show the natural language descriptions generated for simplified
GST, full GST and Arrow’s impossibility theorems and provide brief descrip-
tions. For evaluation and further discussion of the natural language descriptions
see Section 5.2.3 on evaluation of MUS and natural language.

Simplified GST The description generated for simplified GST was relatively
straight forward to understand although it was a little bit lengthy. The proof
starts by listing all original CNF clauses and providing what meaning is encoded
by each.

Then, the proof proceeds to derive conflict clauses until finally, the empty
clause is derived indicating an impossibility result. I display the output of the
proof as two figures 19, 20. Please note that the profile names are re-assigned
at every step. I.E. Profile A in step 1 is not the same as profile A in step 2!
Also note that whenever a profile must be won by candidate “not c”, where c is
some candidate the step is saying that the profile cannot be won by candidate
c. In other words, candidate c being assigned as the winner would lead to a
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contradiction.
The second thing to note is that while it may be difficult to see how all of

the steps of the proof fit together, so long as each step can be checked indepen-
dently we can gain confidence in the derived proof. For further discussion, see
evaluation section.

Figure 19: This figure shows the first part of the impossibility result derived for
simplified GST. It shows how the FRAT style proof was converted into natural
language. For each of the original clauses, the script states what axiom it is
encoding and which profiles it is referring to. In step 1 of the proof we derive
that profile B cannot be won by candidate a. You might remember profile B as
being the centre node in the MUS diagram in figure 14.
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Figure 20: This figure shows the final part of the impossibility result derived
for simplified GST. It shows the steps 2-4. In step 2, we derive that profile B
cannot be won by candidate c. Step 3 shows that profile A must be won by
candidate b. Step 4 concludes the proof by showing that profile A must be won
by candidate b and candidate c, but also cannot be won by candidate b or c.
Clearly a contradiction.

Full GST I do not provide the full proof for the full GST in this report
(instead it is uploaded under results) because it contains 711 steps and is 45,691
lines long. The majority of it is printing out all of the profiles in table format.

What is interesting, is that the proof ends in a similar way to the simplified
GST MUS in that there is a profile where one of the alternatives must win the
election, but it has been shown that no individual candidate can win because
this would imply a contradiction. See figure 21.
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Figure 21: This figure shows the final part of the impossibility result derived for
full GST. The interesting part is the final step 711 where an alternative must be
assigned as a winner to profile A, but assigning any candidate has been shown
to lead to a contradiction.

Arrow’s Impossibility Theorem Unfortunately, there exists a bug in the
official FRAT proof logging system developed for MiniSat. Thus a full proof of
the impossibility of the base-case was not generated. The bug is that one of the
conflict clauses uses a clause with an id that has not been specified.

The partial proof leading upon that point was recovered and saved. In figure
22, I provide a small part of the proof. Important to note is that every atom
corresponds to a strict linear order instead of just a single candidate. This is
automatically detected and changed accordingly by the script.

The partial proof is 21,211 lines long which means that it is too long to read
and understand by a single person.
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Figure 22: This figure shows the last steps of the impossibility result for Arrow’s
impossibility theorem before a clause derivation requires an index that has not
been assigned. The clause with id 2 is not one of the original clauses, is not
added in any step and there have been no index reallocation steps which means
that the justification provided by the proof-logger is faulty.

5.2.3 Evaluation of MUS Diagrams and Natural Language Proofs

This section will discuss the benefits and limitations of both MUS diagrams
and natural language proofs. Both of the approaches performed well on the
simplified GST, but did poorly on the full GST and Arrow’s theorems.

This is to be expected because they are both attempting to explain the same
subset of clauses which are unsatisfiable. If the subset of clauses is too large,
then either method will not be easily understandable.

MUS visualisation The MUS visualisation is easier to understand when the
number of clauses is very small. It gives a nice, visual way of seeing the con-
tradiction. For example, I think that figure 14 illustrates the simplified GSTs
impossibility result very clearly.

Whilst MUS visualisation worked great on the simplified GST, it is somewhat
of a toy example. The key challenges to visualising the more complicated MUSes
are: readability, representation power, reducibility, and mental strain.

Readability suffers greatly when the MUS produced contains many profiles
and many nodes. This was the case for full GST and Arrow’s impossibility
theorems. Secondly, having to look up what letter each profile corresponds to
was inconvenient, but representing them on a diagram (which was initially done)
made the diagram very overloaded.

Representation Power is somewhat limited. In the implementation sec-
tion, I briefly discuss that I do not visualise clauses which refer to more than 2
profiles. Indeed this seems to be an open challenge. A potential solution could
be to encode such clauses using a different colour.

Reducibility and Mental Strain. The MUS diagram only functions as
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a whole unit. You cannot break it down into small pieces. Understand each
piece individually and then move on to another part of the graph. Secondly,
you need to keep in mind all of the deductions you have inferred since then.
Even in figure 14, the user is asked to remember the possible winners of each
profile which causes mental strain. For more complicated cases, this is quite
challenging to do.

Natural Language Proofs The natural language proofs solve some of the
problems faced by simply visualising the MUS. Firstly, it is reducible into
discrete steps each of which can be checked individually. Secondly, the user
does not need to use a lot of mental strain to verify each step. Although in
the current implementation long clauses may require significant mental effort (a
possible solution is provided to this in future work Section 6). Thirdly, It does
not struggle with representation power. Clauses referring to more than two
profiles are easily represented.

However, the proposed solution struggles with readability. Reducing the
mental burden on the human means explicitly explaining every step. This pro-
duced proofs which are far longer than practically useful for most circumstances.
Potential remedies to this are outlined in future work Section 6.

5.3 Explainable SAT Proof for Argumentation Theory

The impossibility result for argumentation theory was exactly the same which
was found in the paper by Booth et al. [11]. Due to time constraints, I did not
adapt the script which translates the proof into natural language; however, the
MUS of the proof was very short and only referred to a single profile thus was
easy to understand and visualise.

The profile for which no aggregate winner can be assigned is displayed in
figure 23.

Figure 23: This figure shows the only profile referred to by the MUS which
formed a contradiction for Theorem 3 in argumentation theory. Nodes which
are in are coloured green. Nodes which are out are coloured red. Nodes which
are undec are coloured grey. Node E is labelled out by all participants. All
other nodes have 1 vote for in, 1 for out and 1 for undec.
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The MUS found consisted of 10 clauses. 1 - at least one, 1 - unanimous and 8
AF-independence clauses. The at least one clause states that the profile shown
in figure 23 must be assigned a winner. The unanimous clause states that node
E must be aggregated to “out”. Finally, the 8 AF-independence clauses state
that nodes A, B, C, and D must have the same labels since they belong to the
same subgroup (1 vote for in, 1 vote for out and 1 vote for undec). However,
there is no complete labelling where node E is out, and nodes A, B, C and D
have the same label. Thus we have verified a Theorem 3’s base case for 3 voters.

5.4 Evaluation of Using SAT for Social Choice and Argu-
mentation Theory

The technique of using SAT solving for theorems in social choice and argumen-
tation theory has been very successful overall. We have derived some of the
most famous results in social choice and shown that this technique is universal
enough that it can be applied in other domains such as argumentation theory.
We have found that this technique can sometimes even produce results which
are explainable and easily understandable by humans.

However, this technique does have some serious limitations which prevents it
from being universally applicable. I have split the limitations of this technique
into two sections: issues with SAT solving where I discuss inherent problems
with the technique and user friendliness, where I discuss issues related to how
easy to use it is.

5.4.1 Issues with SAT Solving

Inefficient Encoding One of the hopes was to apply this technique to an
unsolved conjecture in argumentation theory. Unlike all theorems tested in
this paper, the conjecture only stated that a single property always holds. This
property very loosely translated to saying that a certain voting rule is “strategy-
proof”.

The way to encode this property into SAT was to generate all winners for
all profiles according to the voting rule and then check that all pairs of profiles
obeyed the property. However, by generating the encoding, we will have already
checked whether the property holds. Since if we find a pair of profiles which can
be manipulated, we will have found a contradiction without needing to use the
SAT solver. This means that the technique is only applicable to cases where
you solve the problem by encoding it. Typically, the more properties you have
the higher the chance that using a SAT solver is the right approach.

In practice, this means that the technique’s applicability is limited in cases
when generating the encoding is difficult.

Not Expressive After writing the script to check the base-cases and being
unable to find a contradiction, I began to hypothesize that the conjecture was
true.
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Unfortunately, you cannot use SAT solving to prove theorems. This is not
surprising because it is not using an expressive logic, but at the same time, it
further limits its applicability.

Furthermore, even when a counter-example is found, we may want to prove
the impossibility for any number of voters, not just the number used in the
base-cases which were verified by the solver. The only silver lining is that the
counter-example may provide us with intuition about how to prove the general
theorem and serve as a base-case for an inductive argument.

5.4.2 Not User Friendly

Whilst criticisms about how user-friendly a technique is does not limit its power,
it is a major hurdle preventing a wider adoption and more research. Overall, it
is time-consuming to set-up and difficult to verify.

The setup requires familiarity with SAT and a strategy to express the prob-
lem one is trying to solve as a SAT problem. Once you have a strategy (similar
to what was discussed in the approach section), generating the CNF encoding
is usually straight forward.

The second problem is that it is difficult to verify both solution and encoding.
Most of this report focused on verifying and explaining the solution found. In
practice, you also need to verify that the code used for encoding aligns with
your mental model of what it should be encoding. Especially in cases where you
do find a valid assignment.

6 Future work

I have split this section into two parts - immediate future work and distant
future work. Immediate future work will focus on small things which could
have been done had there been a little bit more time for the project (about a
week’s worth of time). Distant future work will focus on potential ways to solve
shortcomings identified in evaluation of using SAT for Social Choice section 5.4,
but these would take significantly more time (each could be a final year project
in itself).

6.1 Immediate Future Work

6.1.1 Improvements to Encoder Script

There are several small improvements to the Encoder script for theorems in
social choice I did not have time to make. These are allowing the user to specify
the number of voters, the number of alternatives, what the voting rule should
output (single winner, strict linear order or weak linear order). Finally, the
encoder script could have a little-bit more documentation.
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6.1.2 Improvements to Proof Explainer Script

I think that for long clauses with many justifying clauses it is not enough to
just say that you can “combine these clauses” to derive the new clause. The
step should be broken down even further.

A relatively simple solution would be to break large steps which use many
clauses into multiple smaller steps using resolution to justify each sub-step. For
example, instead of saying that clause c can be derived by combining clauses x,
y, and z. Instead, it would combine x and y, then y and z to produce clause c.

6.2 Distant Future Work

This section aims to tackle some of the “deeper” issues with using and explaining
SAT proofs.

6.2.1 Encoding Theorems Made Easy

One of the challenges is verifying that the encoding states what you think it
does. It might be better to use First Order Logic which allows quantifiers and
predicates for example “There exists a winner for all profiles”. In fact, with
some restrictions you can use First Order Logic as syntactic sugar for SAT thus
getting best of both worlds in terms of readability and the good performance
offered by SAT.

Another promising approach might be to train an AI like GitHub Copilot [16]
which is able to generate a function implementation given a natural language
description. You could provide a natural language description of a property and
train it to generate a CNF encoding or you could train it to generate a function
which generates the CNF encoding.

6.2.2 Improvements to Showing Impossibility for SAT

The biggest improvement needed for explainability of sat proofs is reducing their
length. It is very impractical to have to spend days going through them and
the natural language description proofs are often so specific that insights are
buried into the details.

Shortest Derivation of Clause To remedy the first issue, I propose a search
procedure which uses the least number of steps of resolution to derive every
clause. The current implementation retrieves what the SAT solver used; how-
ever, it is not necessarily the case that some other set of clauses wouldn’t be
able to derive a contradiction in fewer steps.

Abstract Pattern Matching This is a more general idea and I am not
exactly sure how one would specifically approach this. The goal is to look for
patterns in the proof-log. For example, it may be the case that you can eliminate
alternative a for all profiles. Using the current setup, this would take 216 steps
each corresponding to combining two clauses related to a profile.
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Instead, it would be really useful if we could detect such a pattern (or a
similar patterns) and automatically generate an explanation of all 216 steps.
The explaination would look something like this “For all profiles we may combine
a strategy-proofness clause with a majority clause and arrive at a successful
manipulation where alternative a wins. Therefore, we may exclude alternative
a as being the winner of any profile.”

The problem one would have is that they would not really know what pat-
terns to look for. I guess one possible idea could be to use compression or encode
some patterns which appear in multiple theorems.

Generating or finding such patterns may be very useful when trying to gen-
eralise the impossibility result to an arbitrary number of alternatives and voters.

Animation The best possible explaination of an impossibility result, in my
opinion, would be to have a visual diagram and a natural language description.
In each step of the proof, the part of the MUS diagram which encodes the
profiles in question would be highlighted and along with the natural language
description, would assist the user in verifying the validity of the step.

One of the challenges is how to display long clauses where some of the atoms
are negated. For example, a clause saying “profile 1 is won by alternative b or
profile 2 is won by alternative not a” is not easy to convey in the MUS diagram
format.

6.2.3 Argumentation Theory SAT Proofs Natural Language Expla-
nation

Due to time-constraints I was unable to adapt the natural language description
code to argumentation theory. It is possible to use the same approach I used
for social choice except to apply it to argumentation theory.

One of the challenges that needs resolving is how to display the labelled AF
for all voters. (For social choice an ascii-table display each voter’s preference
was sufficient, but AFs are typically displayed as graphs).

MUS of a proof in argumentation theory would typically contain more than
one profile. This means that to visualise the MUS you would have two graphs
- one displaying the constraints between profiles and one displaying the actual
profiles. This may be challenging to understand.

7 Conclusions

Using SAT solvers to find impossibility results in social choice and argumenta-
tion theory works well when the hardest part about the impossibility result is
verifying the base-case due to the very large search space.

This approach provides little help in cases where the main difficulty is prov-
ing the inductive step of the theory or in cases where a satisfying assignment of
atoms exists for all cases you check.
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Providing a concise, human-readable explanation of why a formula is unsat-
isfiable is sometimes easier than others. For example, both natural language
and MUS explanations provided insight for Simplified GST and Theorem 3
from argumentation theory, but did not provide a lot of insight for full GST
and Arrow’s theorems. I think that this is partly because full GST and Arrow’s
theorems are more difficult to prove.

In summary, we have explored a relatively new approach for generating
proofs and in the process, learnt some of the limitations keeping them from
wider applicability such as limited use-cases and difficulty of explaining the
results generated.

8 Reflection on Learning

8.1 Good Decisions

Overall, I think many things went right for this project. I had set up an elaborate
initial plan where I had assigned specific goals and specific deadlines which I
followed consistently throughout the report.

The regular supervisory meetings provided me with a sense of direction and
did not allow me to indefinitely explore a rabbit-hole no matter how interesting
I thought it was.

I chose a topic which was something I wanted to learn more about and
explore which kept me motivated throughout the final year project. I could
have chosen a topic where I would have had an easy time because I knew a lot
about it already, but I am glad I did not.

8.2 Bad Decisions

One of the miscalculations I made is how much content I had to write about.
My intuition was guided by the length of the book-chapter which I was basing
my work on. As it turns out, the report goes into much more detail and thus
takes longer to write and appear as more content than it really is.

The second miscalculation was starting to write the report too late. I was
unable to start at the planned time (3 weeks before the deadline) due to unfore-
seen circumstances. This lead to significant stress and a lower quality report.
Perhaps, it would have been better to focus on a smaller field and write a higher
quality report.

8.3 Unsure Decisions

Finally, there are some decisions which I am not sure whether to classify as
good or bad. For example, I spent a significant amount of time (about 3 weeks)
trying to prove a conjecture in argumentation theory. This was some of the
most difficult, satisfying, and insightful experiences for the whole project. It
was something I was not sure I could do and thus it provided me with a fantastic
opportunity to learn. However, not much came out of it in terms of results. In
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fact, it is not talked about at all in the report. I would probably have gotten a
higher mark had I only focused on the parts I knew I could do.

In a similar vain, I was asked to help write a conference proceedings paper
by my work supervisor during the final weeks before submission. I could have
declined, but with my help the paper had a higher chance of being accepted
and thus I complied. Again, I probably could have gotten a higher mark by
declining. Only time will tell whether I did the right thing.
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Appendix

Figure 24: This figure shows all SAT solvers performance on the 10 runs on
each of the 3 theorems.
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