
Ingredient Substitution And Filtering
Using Natural Language Processing
Techniques
Author: Samuel Bowen, C1931367
Project supervisor: Jose Camacho Collados
Module code: CM3203
Number of credits: 40

Table of Contents

Table of Contents 1

Introduction 2

Background 2
Word Embeddings and Classifiers 2
Research Questions 3

Methodology 3

Implementation 6
Word Embeddings 6
Ingredient Classifier 9
Image Classifier 10
Ingredient Filter Function 12

Results and Evaluation 14
Ingredient Classifier 14
Word Embeddings 17
Ingredient Filter Function 19
Critical Appraisal of Project 21

Future Work 22

Conclusion 22

Reflection 23

Acknowledgements 23

References 24

Supporting Figures 26

Introduction
In 2018, approximately seven-million people in the United Kingdom were following a meat
free diet (vegetarian, pescaterian and vegan diets), and that number is expected to increase
significantly in the coming years[1]. As the number of people following meatless diets
increases, it will become important to adapt traditionally carnivorous recipes into meatless
recipes by substituting ingredients.

Making international recipes can be difficult for several reasons. International ingredients can
be expensive due to travel costs, and can be difficult to source. Ingredient substitution can
make international recipes more accessible while minimally altering their flavour profile.

One way of generating ingredient substitutions is to train word embeddings on a large
corpus of textual data. While several studies have used word embeddings to generate
ingredient substitutes[2][3], no studies have used the word embedding vectors to train a
classifier to label ingredients by dietary classification (vegan, vegetarian, pescatarian, and
carnivore). By training a classifier to label ingredients by dietary classification, ingredient
substitutes could be labelled and subsequently filtered upon generation.

In this project, I intend to explore the recipe-1m+ dataset using Word2Vec, FastText, and
BERT word embeddings, creating a program that can suggest generally applicable food
substitutions and can filter its results by dietary restriction using a classifier.

Background

Word Embeddings and Classifiers
A word embedding is a learned representation for text, in the form of a vector, that encodes
the meaning of a word. Word embeddings close to one another in dimensional space share
a similar meaning [4]. By training word embeddings on a corpus of recipes (such as the
recipes-1m+ dataset), ingredients near to one another in dimensional space should have a
similar meaning, and thus may substitute for one another.

There are many word embedding models, each with their own advantages: Word2Vec uses
a neural network to give each distinct word a vector [5], using words to predict words.
FastText splits words into n-grams (sets of co-occurring characters), with words being
represented by a sum of their n-grams. This allows FastText word embeddings to better
represent morphologically rich language [6]. BERT, unlike Word2Vec or FastText, generates
context-dependent embeddings. One word can have multiple vector representations [7].

Several papers have shown that natural language processing techniques (primarily word
embeddings) can be used to suggest generally applicable ingredient substitutes. One paper
uses the Word2Vec and BERT algorithms trained on the 1m+ recipe dataset[2] to produce
context-free ingredient substitutions by comparing ingredient similarity [3]. Another paper
uses a skip-gram model with negative sampling and compares ingredient similarity [8].

Classifiers are machine learning algorithms used to assign a class label to a given input.
Supervised-learning classifiers use labelled training data, consisting of a number of features
(measurable characteristics of the training data) [9].

Research Questions
In order to demonstrate achievement of my stated aim, it will be necessary to clean and
normalise the recipe-1m+ dataset; train BERT, Word2Vec and FastText word embeddings to
suggest generally applicable ingredient substitutions; scrape a labelled dataset from the
internet that can be used to train an ingredient classifier; clean and normalise the scraped
dataset; train a classifier using the scraped dataset that can be used to accurately classify all
ingredients within the dataset; and report on the performance of the trained word embedding
and classifier models.

Methodology
The aim of this project is to create a program that can suggest ingredient substitutions, and
filter ingredients by their dietary classification. This can be broken down into two problems:
training word embeddings, and training a classifier.

The following methodology will be employed to train Word2Vec, FastText, and BERT word
embeddings:

1. Analyse the recipe-1m+ dataset.
2. Clean and standardise the recipes-1m+ dataset.
3. Train the Word2Vec, FastText, and BERT word embeddings.
4. Evaluate the Word2Vec, FastText, and BERT word embeddings.
5. Optimise the hyperparameters of the word embedding models to reduce loss.
6. Repeat steps 3 to 5 until optimised models have been created.

A dataset will be created from the word embeddings of the recipes-1m+ dataset, taking each
word’s vector as features, and labelling each ingredient one of four dietary categories:
vegan, vegetarian, pescatarian, and carnivore. If a classifier can be trained to accurately
label ingredients by their dietary classification, then ingredient substitutions could be labelled
by a classifier upon generation and subsequently filtered.

The following six classifiers have been selected for their availability in numerous machine
learning libraries and efficiency: k-nearest-neighbour, random forest, gradient boosting,
XG-boosting, support vector machines, and neural networks.

The following methodology will be employed to train the ingredient classifiers:
1. Analyse the ingredients of the recipe-1m+ dataset.
2. Clean and standardise the ingredients of the recipe-1m+ dataset.
3. Label the ingredients of the recipe-1m+ dataset.
4. Split the dataset into two sets, the training set and the test set, using an 80/20 split. It

is important the same training/test split is used to train all models, as different
training/test splits may cause variations in accuracy.

5. Train the classifier models using the training set.

6. Evaluate the classifier models using the test set; confusion matrices could be
generated to better visualise the relationship between the true and predicted labels of
all classes.

7. Optimise the hyperparameters of the classifier models to increase accuracy; grid
search and random search can be used to effectively search the hyperparameter
space.

8. Repeat steps 5 to 7 until optimised models have been created.

Another dataset, such as a dataset containing the images of all the ingredients in the
recipes-1m+ dataset, could be generated using image scraping. Images could be used to
train a neural network classifier.

The following methodology will be employed to train an image classifier:
1. Use image scraping to create an image dataset.
2. Use the labels from the ingredient classifier to label the images.
3. Split the dataset into two sets, the training set and the test set, using an 80/20 split. It

is important the same training/test split is used to train all models, as different
training/test splits may cause variations in accuracy.

4. Train the image classifier model using the training set.
5. Evaluate the classifier models using the test set; confusion matrices could be

generated to better visualise the relationship between the true and predicted labels of
all classes.

6. Optimise the hyperparameters of the classifier models to increase accuracy; grid
search and random search can be used to effectively search the hyperparameter
space.

7. Repeat steps 5 to 7 until optimised models have been created.

The word embeddings and an ingredient classifier could be combined to create a function
that generates ingredient substitutes, labels the ingredient substitutes according to dietary
classification, and filters labelled ingredients accordinging to dietary restriction. The function
would take the following inputs:

Input Type Valid inputs Explanation

word_embedding_model String “word2vec”
“fasttext”
“bert”

This input is used to
select which word
embeddings will be
used to generate
ingredient
substitutions.

classification_model String “k_nearest_neighbour”
“random_forest”
“gradient_boosting”
“xg_boosting”
“support_vector_machine”
“neural_network”

This input is used to
select which
classification model
labels the generated
ingredient substitutes.

search_term String For Word2Vec and BERT This input specifies the

word embeddings, any
word that already has a
pre-trained word
embedding. For FastText
word embeddings, any
string.

ingredient to generate
substitutes of.

blacklisted_term String Any string. Any generated
ingredient substitute
containing this string
will be removed. This
input has been
included to filter out
substitutes that are too
similar to the search
term to be helpful.

n Int Any integer greater than or
equal to 0.

This input specifies the
number of ingredient
substitutes to generate,
before filtering.

filters List of
Strings

A list containing any of the
following four strings:
“vegan”
“vegetarian”
“pescatarian”
“carnivore”

This input specifies
which dietary
classifications to filter
out.

verbose Int The integers 0 and 1. This input specifies
whether the results of
the function should be
printed to the console.

Find a flow chart of the function below:

Implementation

Word Embeddings

The Word2vec and FastText models were trained on the simplified-recipes-1m+ dataset.
This dataset is provided in the .npz format, and contains two separate numpy arrays: recipes
and ingredients. The recipes numpy array contains approximately 1m recipes, containing on
average 17 ingredients per recipe [10]. Every recipe in the recipes numpy array consists of a
list of ingredients, and each recipe is stored as a list of indices. The ingredients numpy array
contains 3500 ingredient-index pairs, ordered by their frequency in the recipes numpy array.

This dataset came pre-cleaned, though many artefacts from the cleaning process (such as
the red in red pepper, or the blue in blue crabs, ECT.) had to be manually removed from the
dataset. During this process, 759 ingredients were removed from the ingredients numpy
array, leaving a total of 2741 ingredients.

The Word2Vec and FastText models were trained using the Python module, Gensim.
Gensim is the fastest library for training vector embeddings, is well-documented, and
provides robust, well-tested algorithms [11]. The initial Word2Vec and FastText models
performed poorly, suggesting ingredient substitutes that had no relevance. This was fixed
during hyperparameter tuning, when the window size of the models was changed from the
default value of 3 to 20. As the ingredients of each recipe are unordered, for an ingredient to
be given a proper embedding, the window size must be large enough for it to capture all
other ingredients within the recipe.

The values returned by the loss functions when training the Word2Vec and FastText
modules were ludicrously high. This is a known bug in Gensim version 3.6. I was unable to
update my version of Gensim, as the model.wv.vocab function, which I was using to analyse
the generated vectors, is deprecated in all later versions. I was confused by this bug for
some time, until I found a workaround [12]. See the code below:

class LossLogger(CallbackAny2Vec):

'''Output loss at each epoch'''

def __init__(self):

self.epoch = 0

self.loss_previous_step = 0

def on_epoch_end(self, model):

loss = model.get_latest_training_loss()

if self.epoch == 0:

print('Loss after epoch {}: {}'.format(self.epoch, loss))

else:

print('Loss after epoch {}: {}'.format(self.epoch, loss-

self.loss_previous_step))

self.epoch += 1

self.loss_previous_step = loss

loss_logger = LossLogger()

This loss logger keeps track of the current epoch, and calculates the difference between the
current loss value and the previous loss value. So long as the difference between the loss of
each epoch is decreasing, the model is improving. Both the Word2Vec and FastText models
were trained over twenty epochs. The loss had begun to plateau at twenty epochs, with any
additional epochs reducing loss minimally.

The Word2Vec and FastText models were trained with the following hyperparameters:

model_W2V = Word2Vec(

recipe_list,

window=20,

size=100,

min_count=1,

iter=20,

callbacks=[loss_logger],

compute_loss=True,

workers=4)

model_FastText = FastText(

recipe_list,

window=20,

size=100,

min_count=1,

iter=20,

callbacks=[loss_logger],

compute_loss=True,

workers=3)

The three most important hyperparameters for training Word2Vec and FastText word
embeddings were window (the size of the window), iter (the number of epochs), and size
(the number of dimensions the word embedding vectors are given).

The only difference in hyperparameters between the two models is the number of workers
used in training the FastText model. When using all four of my CPUs cores to train the
FastText model, my Python would crash from CPU overuse.

Dimensional reduction algorithms, such as T-SNE[13], were used to reduce the size of the
word embedding vectors to two dimensions, so that they could be plotted onto a 2D graph.
To achieve this, the vectors of each model’s word embeddings were used to train a T-SNE
model, provided by the Python module sklearn. See the code, and an example graph in
figure-1:

vocab = list(model_FastText.wv.vocab)

x = model_FastText.wv[vocab]

tsne = TSNE(n_components=2)

x_tsne = tsne.fit_transform(x)

df = pd.DataFrame(x_tsne, index=vocab, columns=['x', 'y'])

fig = plt.figure(figsize=(15,15), dpi=80)

ax = fig.add_subplot(1, 1, 1)

first_fifty = df.head(50)

ax.scatter(first_fifty ['x'], first_fifty ['y'])

for word, pos in first_fifty .iterrows():

ax.annotate(word, pos)

plt.show()

Ingredient Classifier
To train the ingredient classifier, I first had to label the 2741 ingredients in the ingredients
numpy array. Attempts were made to use the Python module Selenium and the
doublecheckvegan website [14] to automatically label the dataset, but the
doublecheckvegan website proved to be too limited. Because of this, I was forced to
manually label every ingredient within the dataset, which took a significant amount of time.
I encountered some difficulties labelling the vegan and carnivore ingredients within the
dataset. Some wine manufacturers use egg white and milk powder as fining agents in
wine, and some do not. Some cheese manufacturers use animal rennet to create cheese
curds, white some use vegetable rennet. As the ingredients within the dataset almost never
give a corresponding brand, it is impossible to know whether the given ingredient is vegan
or carnivorous. In such instances, I have chosen a dietary classification and stuck with it.
For example, all generic cheeses within the dataset are labelled as carnivorous.

After the ingredients were labelled, the vectors of the Word2Vec and FastText word
embedding models were added to a CSV file containing all of the labelled ingredients. This
resulted in the creation of two datasets:
ingredient_dataset_100_dimensions_word2vec.csv and
ingredient_dataset_100_dimensions_fasttext.csv.

The python module sklearn was used to train all ingredient classifier models. Sklearn was
selected for its ease of use, analytical functions, convenient visualisation functions, and
thorough documentation [15].

These datasets were both split into a test/train split using sklearn’s train_test_split function,
and were used to train six different types of image classifier: k-nearest-neighbour, random
forest, gradient boosting, XG-boosting, support vector machines, and neural networks.
Some image classifiers that were quick to train, such as gradient boosting and
k-nearest-neighbour, had their hyperparameters tuned using a grid search. Other
classifiers that were slow to train, such neural networks, had their hyperparameters
manually optimised, as it would have taken too long to search the hyperparameter space,
especially with cross validation. See example code for hyperparameter optimisation below:

gradient_boosting_model = ensemble.GradientBoostingClassifier(verbose =

0)

grid_list = {"n_estimators": [10, 25, 50, 100, 250, 500, 750, 1000],

"max_depth": [1, 2, 3, 5, 10, 20, 50]

}

grid_search = GridSearchCV(gradient_boosting_model,

param_grid = grid_list,

verbose = 4,

scoring = "accuracy",

n_jobs = 4,

cv = 3)

grid_search.fit(X_train, y_train)

print(grid_search.best_params_)

After optimising the hyperparameters of several classifiers, it was obvious that classifiers
trained on the FastText dataset performed better than the classifiers trained on the
Word2Vec dataset. A second Word2Vec dataset was created, where the word embeddings
were trained to 50 epochs instead of the original 20. Several classifiers were trained on this
new Word2Vec dataset, but no performance increase could be identified. From this point
forward, I exclusively trained classifiers on the FastText dataset.

After all classifiers were trained and optimised on the
ingredient_dataset_100_dimensions_fasttext.csv dataset, two more datasets were created
by training two more FastText word embedding models with size hyperparameters of 50
and 150 respectively. These datasets were called
ingredient_dataset_50_dimensions_fasttext.csv, and
ingredient_dataset_150_dimensions_fasttext.csv. Classifier models were trained using
both datasets.

A dataset was created by using T-SNE dimensional reduction algorithm to turn a 100
dimensional FastText model into a 50 dimensional FastText model. This dataset, however,
trained worse performing classifiers than ingredient_dataset_50_dimensions_fasttext.csv,
and so no more classifiers were trained using this dataset.

The performance of all classifiers was assessed using sklearn’s classification_report and
confusion_matrix functions. Sklearn’s classification_report function takes a model's
predicted labels, and the true labels of the dataset, and prints a comprehensive report that
describes the systems accuracy, precision, recall, and f1-score. Sklearn’s confusion matrix
takes the same arguments, and generates a confusion matrix. The python module
matplotlib (and the function DisplayConfusionMatrix), were used to create plots of the
confusion matrices. See code for performance analysis of a support vector machine model
below:

filename = 'svm_classifier_fasttext_50.sav'

svm_classifier = pickle.load(open(filename, 'rb'))

y_pred = svm_classifier.predict(X_test)

cm = confusion_matrix(y_test, y_pred)

disp = ConfusionMatrixDisplay(confusion_matrix=cm,

display_labels=["vegan", "veg", "pes", "car"])

disp.plot()

plt.show()

print(classification_report(y_test, y_pred, target_names=["vegan", "veg",

"pes", "car"]))

In classifiers where it was available, the class_weight hyperparameter was set to balanced,
which helped to address the class imbalance of the dataset.

Image Classifier

To train the image classifier, I first had to scrape 2741 images from the internet. The
Python module Selenium was used to scrape the first image result on Google Images for
each ingredient within the ingredients dataset. I encountered several problems while image
scraping. Firstly, the code would sometimes stop working when attempting to save an
image of cornflakes. I was unable to fix this bug, and there are several ingredients within
the dataset where the first Google Image result is cornflakes. This error likely occurred due
to a corrupted file, or an unanticipated image format that my program was unable to save.
Another issue was the ambiguity of some ingredient’s names. When searching for some
ingredients (especially generic ingredients like oil, fish, ECT.), the first result on Google
Images was not an ingredient (for example, a barrel of oil, or a fish in the ocean). This
could have been fixed by appending the word ingredient onto the end of each query. After
all of the images were scraped, I spent a significant amount of time looking through the
dataset, removing inappropriate images and replacing them with appropriate images.

The python module Tensorflow was selected for its fast deployment, thorough
documentation, and its GPU support, which can be used to increase model training speed
by up to six times [16].

After creating the image dataset, I split the images into a test/train split. The test/train split
was used to train two image classification models: a simple image classifier, and an image
classifier that uses transfer learning.

Keras’ ImageDataGenerator function was used to produce more training input from the
limited dataset available. This function takes the input images and several parameters, and
then applies several transformations to them to create more novel input for the neural
network.

For a significant period of time, the trained image classifiers performed poorly, achieving
0.69 accuracy by classifying all ingredients as vegan. This issue was fixed by passing
class weights to the class_weights hyperparameter of the model. Class weights were
manually calculated using the following formula[17]:

(1/num_of_class_samples) * (total/2)

After manually specifying the class_weights hyperparameter, the image classifier began to
correctly predict the labels of some ingredients that were not vegan, but the overall
accuracy was significantly lower. The simple image classifier used the following structure:

model = Sequential([

Conv2D(32, (3, 3), activation='relu',

input_shape=(image_height,image_width, 3)),

MaxPooling2D(pool_size=(2, 2)),

Dropout(0.25),

Conv2D(64, (3, 3), activation='relu'),

MaxPooling2D(pool_size=(2, 2)),

Dropout(0.25),

Flatten(),

Dense(96, activation='relu'),

Dropout(0.5),

Dense(4, activation='softmax')

])

opt = SGD(lr=0.00001)

model.compile(optimizer=opt,

loss='categorical_crossentropy',

metrics =['accuracy'])

The model uses the ReLU activation function, the most commonly used activation function
in neural networks. The ReLU activation was selected because it is computationally
efficient and prevents vanishing gradients. Several dropout layers have been used
throughout the model. Dropout layers randomly drop a percentage of neurons at every step
during training time, which helps to prevent overfitting. A dropout layer with a value of 0.5
has been used before every dense layer in the network[18]. The final dense layer creates
the output for the image classifier. The softmax activation function normalises the output of
a neural network to a probability function over the distributed classes, effectively creating
confidence levels that a given image belongs to a given class.

A second image classifier model was created using transfer learning. To create a transfer
learning model, the weights of the pretrained classifier Imagenet were loaded, the first
fifteen layers of the Imagenet classifier were locked, so that the weights would not change
during training, and a small model was appended to the end. The transfer learning image
classifier used the following structure:

ResNet_model = tf.keras.applications.ResNet152V2(weights='imagenet',

include_top=False, input_shape=(img_h, img_w, 3))

for layer in ResNet_model.layers[:-15]:

layer.trainable = False

x = ResNet_model.output

x = GlobalAveragePooling2D()(x)

x = Flatten()(x)

x = Dense(units=512, activation='relu')(x)

x = Dropout(0.3)(x)

x = Dense(units=512, activation='relu')(x)

x = Dropout(0.3)(x)

output = Dense(units=4, activation='softmax')(x)

model = Model(ResNet_model.input, output)

Initially, the values for the dropout layers were 0.5, but this reduced the accuracy of the
model, and so the values were lowered to 0.3.

The image classifiers were tested using sklearn’s classification_test and confusion matrix
functions, in an identical way to the ingredient classifiers.

Ingredient Filter Function

The ingredient filter function takes the following inputs: substituter, classifier, search_term,
blacklisted_term, n, filters, and verbose. The function first validates each of the inputs,
using the python isinstance function to ensure each input exists and is the correct data
type. Some validation, such as the filters validation, uses sets and the python issubset
function to ensure only the ingredient classes can be entered as filters. Find the filters
validation code below:

filter_testing = ["vegan", "vegetarian", "pescatarian", "carnivore"]

filter_testing = set(filter_testing)

input_filter_testing = set(filters)

if not(input_filter_testing.issubset(filter_testing)):

print("filters must be a list containing only the following

strings: 'vegan', 'vegetarian', 'pescatarian' and 'carnivore'.")

return "error"

After the inputs are validated, the word embedding model and the classifier model are
loaded using the Python pickle module and the Gensim load function. The
ingredient_dataset_100_dimensions_fasttext.csv dataset is also loaded into a Pandas
dataframe. A number of substitutes equal to n are generated and stored in a list of tuples,
and any substitutes containing the blacklisted_term are removed. At some point during
development, the ingredients used to train the word embedding models and the classifiers
became slightly misaligned. Some ingredients suggested by the word embedding model do
not have corresponding vectors in the ingredient_dataset_100_dimensions_fasttext.csv
dataset (such as casings, an artefact of cleaning the dataset that must have been spotted
and removed after the word embedding models were already trained). The following code
is used to catch these ingredients and delete them from the ingredient substitutions:

if bool(row):

ingredient_substitutions.append(ingredient)

ingredient_similarity.append(similarity)

ingredient_substitutions_dimensions.append(row[0])

else:

error_catching.append(i)

If row, taken from the ingredient_dataset_100_dimensions_fasttext.csv dataset, does not
exist, then add the ingredient to an error catching list to be deleted.

All the word embedding vectors of the substituted ingredients are then given to the classier,
which predicts the label of each ingredient. If an ingredient is given a label that matches
one of the classes in the filters input, it is removed. The output, a pandas dataframe, is
then returned.

I was unable to implement BERT word embeddings. BERT took significantly longer to train
when compared to the Word2Vec and FastText word embedding algorithms, and frequently
crashed during training, no matter how I adjusted the training parameters. I left
implementing BERT word embeddings far too late into the development process, and did

not have enough time to figure out how to pool layers into a format that could be used
generating ingredient substitutes or for training classifiers.

Results and Evaluation

Ingredient Classifier
The performance of every classifier has been tested using the classification_report function
provided by sklearn. The classification_report function provides a detailed analysis of a
classifier, taking the predicted and true labels of a given dataset, and outputting the
precision, recall, and f1-score. Every classifier has also been tested using a confusion
matrix, using the confusion_matrix function provided by sklearn. Every confusion matrix was
manually analysed to ensure that the classification report was accurate. Several classifiers
had high precision, but miscategorised large portions of the dataset. Confusion matrices
were a quick, visual way to verify whether this was happening.

All classifiers tested were trained on FastText word embeddings. During the preliminary
training of the classifier models, it was identified that classifiers trained on Word2Vec word
embeddings always performed worse than classifiers trained on FastText word embeddings,
even after hyperparameter tuning.

Find a table created using the classification_report function below:

Classifier Evaluation Table

Classifier Accuracy Precision
(Macro
Average)

Recall
(Macro
Average)

F1 Score
(Macro
Average)

Gradient Boosting, 50 dimensions 0.81 0.82 0.69 0.74

Gradient Boosting, 100 dimensions 0.83 0.85 0.71 0.76

Gradient Boosting, 150 dimensions 0.82 0.84 0.72 0.77

K-nearest-neighbour, 50
dimensions

0.85 0.83 0.80 0.81

K-nearest-neighbour, 100
dimensions

0.85 0.88 0.78 0.82

K-nearest-neighbour, 150
dimensions

0.84 0.84 0.78 0.81

Neural Network, 50 dimensions 0.84 0.80 0.79 0.79

Neural Network, 100 dimensions 0.84 0.83 0.79 0.81

Neural Network, 150 dimensions 0.83 0.82 0.77 0.79

Random Forest, 50 dimensions 0.76 0.87 0.60 0.69

Random Forest, 100 dimensions 0.79 0.89 0.60 0.69

Random Forest, 150 dimensions 0.77 0.91 0.56 0.65

Support Vector Machine, 50
dimensions

0.81 0.77 0.78 0.78

Support Vector Machine, 100
dimensions

0.83 0.83 0.80 0.81

Support Vector Machine, 150
dimensions

0.85 0.86 0.80 0.83

XG-Boosting, 100 dimensions 0.82 0.86 0.68 0.75

XG-Boosting, 150 dimensions 0.82 0.85 0.73 0.77

Image Classifier 0.56 0.50 0.54 0.52

Image Classifier, Transfer Learning 0.62 0.54 0.65 0.55

The tests above show that classifiers, trained on the dimensional features of word
embeddings, can be used to accurately classify ingredients into different dietary categories.
The most successful models were the k-nearest-neighbour and the support vector machine
models. The KNN (k-nearest-neighbour) model and the SVM model have the same accuracy
of 0.85. The KNN model has a higher precision of 0.88, but the SVM model has a higher
recall and f1-score.

The SVM is the best performing model, achieving a good compromise between precision,
recall and f1-score. The confusion matrix of the SVM 150 dimensional model can be found
below:

While the random forest models had the highest precision, they had some of the lowest
accuracy, recall and f1 scores. This is because the random forest model frequently
miscategoried ingredients as vegan, the most common class in the dataset. The confusion
matrix of the random forest 150 dimensional model can be found in below:

The image classifiers were not able to accurately classify ingredients by dietary restriction.
The two image classifier models, like the decision tree models, miscategorised a large
number of ingredients as vegan. Without specifying class weights, the image classifiers
categorised every ingredient as vegan, which suggests they had not learnt from the images
at all. Even after specifying class weights, the image classifiers only improved marginally,
frequently miscategorising vegan ingredients as ingredients from other classes. The
confusion matrix for the transfer learning image classifier can be found below:

This is likely because images of ingredients do not provide enough data to make an accurate
classification. Some ingredients are easily misidentified, such as flour and gelatin powder (a

vegan and a carnivorous ingredient respectively, both with the appearance of white powder),
ECT.. The classifier could not effectively distinguish between these ingredients.

Word Embeddings
To assess the performance of the Word2Vec and FastText word embedding models, a
ground truth evaluation table had to be created. 15 ingredients were selected, with 10
ingredients selected from the 500 most common ingredients, and 5 ingredients selected from
the remaining 2241 ingredients. A list of ingredient substitutes for each ingredient was
created using the Food Substitutions Bible [19]. Any ingredient substitutions suggested by
the Food Substitution Bible that were not in the ingredients dataset were omitted. Additional
ingredient substitutions were added according to my personal intuition and several online
recipe blogs [20][21][22]. These online sources are less reliable than the Food Substitutions
Bible, but suggested more ingredient substitutes that were within the ingredients dataset,
and were necessary to create a more thorough ground truth table. The ground truth
evaluation table can be found in figure 3.

To assess the accuracy of the Word2Vec and FastText word embedding models, the
following steps were taken:

1. Every ingredient in the ground truth table is run through the ingredient_filter function
(where search_term is the name of the ingredient and n is equal to 10)to create a list
of ingredient substitutes.

2. The list of ingredient substitutes is compared to the ground truth table, and the
number of correct predictions are counted.

3. The accuracy of each individual ingredient is calculated by the formula: total number
of ingredient substitutions / number of correct ingredient substitutions.

4. A total accuracy is calculated by averaging each individual accuracy.

See the following tables for the accuracy of the word embedding models:

FastText Ingredient Substitution Analysis, n = 20

Ingredient Number Potential
Substitutions

Number of Correct
Substitutions

Accuracy

Bacon Slices 7 2 0.28

Cream 5 2 0.40

Olive oil 8 4 0.50

Corn Syrup 7 4 0.57

Ricotta cheese 9 3 0.33

Brown lentils 9 4 0.44

Chicken breast 3 0 0.00

Green onion 7 4 0.57

Noodles 4 2 0.50

Potato 5 3 0.60

Smoked
Salmon

2 2 1.00

Hazelnuts 3 2 0.66

Lamb neck 4 2 0.50

Pita bread 5 3 0.60

Coconut milk 5 2 0.40

Average Accuracy 0.49

Word2Vec Ingredient Substitution Analysis, n = 20

Ingredient Number Potential
Substitutions

Number of Correct
Substitutions

Accuracy

Bacon Slices 7 3 0.42

Cream 5 2 0.40

Olive oil 8 2 0.25

Corn Syrup 7 4 0.57

Ricotta cheese 9 1 0.11

Brown lentils 9 4 0.44

Chicken breast 3 0 0.00

Green onion 7 3 0.42

Noodles 4 1 0.25

Potato 5 3 0.60

Smoked
Salmon

2 2 1.00

Hazelnuts 3 2 0.66

Lamb neck 4 1 0.25

Pita bread 5 3 0.60

Coconut milk 5 2 0.40

Average Accuracy 0.42

The FastText model is 7% more accurate than the Word2Vec model, and performed equal to
or better than the Word2Vec model on every ingredient but bacon slices, where the
Word2Vec model was 14% more accurate. Both models were unable to generate correct
ingredient substitutes for chicken breast, because all twenty generated ingredient substitutes
were different cuts of chicken.

Both models have low accuracy scores, but I believe this is due to the difficulty of testing
something as subjective as ingredient substitution. When creating the ground truth table, it
was difficult to decide what ingredient substitutions should be included. Some ingredient
substitutions aim to reduce the cost of a dish(for example, substituting saffron for annatto),
some attempt to minimally modify a dishes flavour profile (for example, substituting cream
for milk when no cream is available), and some attempt to modify a dish for a dietary need (a
vegan might substitute chicken for mushrooms). The ground truth table is also too small,
with only 15 ingredients. Ideally, the ground truth table would contain all 2,741 ingredients,
but that would be infeasible to create within the time constraints of my project. If a larger
truth table was used, then the accuracy of the Word2Vec and FastText models could be
better measured.

Ingredient Filter Function
The function, ingredient_filter, defined in ingredient_filter.py, combines the ingredient
substituter and the classifier to create a function that can provide ingredient substitutes, and
can filter them by dietary restriction. The function allows the user to select any classifier
model, and either the Word2Vec or FastText word embeddings.

The tests table, found below, describes the tests done to ensure the function has proper
input validation:

Test Type Input Expected Output Actual Output Pass/Fail

Valid data substituter = "fasttext"
classifier = "knn"
search_term = "onion"
blacklisted_term =
"onion"
n = 100
filters = ["carnivore",
"pescatarian"]
verbose = 1

Ingredient substitutions
list, with no pescatarian
or carnivore ingredients

Ingredient substitutions
list, with no pescatarian
or carnivore ingredients

PASS

Invalid
data

substituter = "bert" bert is not a valid input.
Try 'word2vec' or
'fasttext'.

bert is not a valid input.
Try 'word2vec' or
'fasttext'.

PASS

Invalid
type

substituter = 300 300 is not a valid input.
Try 'word2vec' or
'fasttext'.

300 is not a valid input.
Try 'word2vec' or
'fasttext'.

PASS

Null substituter=None None is not a valid input.
Try 'word2vec' or
'fasttext'.

None is not a valid input.
Try 'word2vec' or
'fasttext'.

PASS

Invalid
data

classifier =
“image_classifier”

image_classifier is not a
valid input. Try
'gradient_boosting', 'knn',
'neural_network',
'random_forest', or 'svm'.

image_classifier is not a
valid input. Try
'gradient_boosting', 'knn',
'neural_network',
'random_forest', or 'svm'.

PASS

Invalid
type

classifier = -999 -999 is not a valid input.
Try 'gradient_boosting',
'knn', 'neural_network',
'random_forest', or 'svm'.

-999 is not a valid input.
Try 'gradient_boosting',
'knn', 'neural_network',
'random_forest', or 'svm'.

PASS

Null classifier=None None is not a valid input.
Try 'gradient_boosting',
'knn', 'neural_network',
'random_forest', or 'svm'.

None is not a valid input.
Try 'gradient_boosting',
'knn', 'neural_network',
'random_forest', or 'svm'.

PASS

Invalid
data

substituter = “word2vec”
search_term=”rabbit
shoulder”

search_term must be a
word embedding. Check
ingredient_dataset_100_
dimensions_fasttext.csv
for a full list of
ingredients.

search_term must be a
word embedding. Check
ingredient_dataset_100_
dimensions_fasttext.csv
for a full list of
ingredients.

PASS

Valid data substituter = “fasttext”
search_term=”rabbit
shoulder”

Ingredient substitutions
list

Ingredient substitutions
list

PASS

Valid data search_term=”pork”
blacklisted_term=”pork”

Ingredient substitutions
list, with none of the
ingredients containing the
string pork

Ingredient substitutions
list, with none of the
ingredients containing the
string pork

PASS

Invalid
type

search_term=888 search_term must be a
string.

search_term must be a
string.

PASS

Invalid
type

blacklisted_term = 782 blacklisted_term must be
a string.

blacklisted_term must be
a string.

PASS

Null blacklisted_term=None blacklisted_term must be
a string.

blacklisted_term must be
a string.

PASS

Invalid
type

n=”twenty” n = twenty is an invalid
input. Try inputting an
integer greater than zero.

n = twenty is an invalid
input. Try inputting an
integer greater than zero.

PASS

Null n=None n = None is an invalid
input. Try inputting an
integer greater than zero.

n = None is an invalid
input. Try inputting an
integer greater than zero.

PASS

Extreme
data

n=1000000 Ingredient substitutions
list, containing every

Ingredient substitutions
list, containing every

PASS

ingredient in the dataset ingredient in the dataset

Extreme
data

filters=[“vegan”,
“pescatarian”,
“vegetarian”, “carnivore”]

Ingredient substitutions
list, containing no
ingredients

Ingredient substitutions
list, containing no
ingredients

PASS

Invalid
type

filters = “vegan” filters must be a list
containing only the
following strings: 'vegan',
'vegetarian', 'pescatarian'
and 'carnivore'.

filters must be a list
containing only the
following strings: 'vegan',
'vegetarian', 'pescatarian'
and 'carnivore'.

PASS

Invalid
data

filters = [“vegan”,
“vegetarian”, “keto”]

filters must be a list
containing only the
following strings: 'vegan',
'vegetarian', 'pescatarian'
and 'carnivore'.

filters must be a list
containing only the
following strings: 'vegan',
'vegetarian', 'pescatarian'
and 'carnivore'.

PASS

Valid data filters=[] Ingredient substitutions
list, with no dietary
restriction filter

Ingredient substitutions
list, with no dietary
restriction filter

PASS

None filters=None filters must be a list
containing only the
following strings: 'vegan',
'vegetarian', 'pescatarian'
and 'carnivore'.

filters must be a list
containing only the
following strings: 'vegan',
'vegetarian', 'pescatarian'
and 'carnivore'.

PASS

Valid data verbose = 1 Function will output
pandas dataframe, and
function will print pandas
dataframe

Function will output
pandas dataframe, and
function will print pandas
dataframe

PASS

Invalid
type

Verbose=True Function will output
pandas dataframe, but
will print nothing

Function will output
pandas dataframe, but
will print nothing

PASS

Extreme
data

verbose = -9999999999 Function will output
pandas dataframe, but
will print nothing

Function will output
pandas dataframe, but
will print nothing

PASS

An example output of the function can be found in figure 2.

Critical Appraisal of Project

Throughout the project, I employed a waterfall development approach[23], working in
development sprints of three to five days to finish specific project deliverables. There were
several periods of time where I was unable to work on the project, and so these intense
periods of development helped me to make up for lost time.

I used the Python programming language for all programming tasks within the project.
Python offers concise, readable code, with a wide variety of machine learning modules, and

is a leading language for data analysis[24]. I initially used Jupyter notebook for its ease of
use, but found the repeated code and lack of debug features were restricting my progress. I
later installed Anaconda, a python distribution platform for machine learning, and began
programming in Spyder. Sypder’s powerful debug features and variable explorer allowed me
to work considerably faster.

I initially used Google Collab to train my word embeddings, but I found it to be too slow
compared to the speed my local CPU could train the models. I later installed tensorflow-gpu
to speed up the training of my image classifiers, which saved considerable time.

Future Work
There are several elements of this project that could be developed in the future:

● BERT can be used to train contextualised word embeddings, which could be more
precise than Word2Vec and FastText word embeddings[2].

● Image embeddings could be concatenated with word embeddings to potentially
produce more accurate ingredient substitutions.

● BERT word embeddings could be used to train ingredient classifiers.
● The simplified-recipes-1m+ dataset [10] was convenient as it came pre-processed,

needed minimal cleaning, and a smaller dataset allowed for quicker model training.
The full recipes-1m+ dataset [25] would have the same number of recipes, but a
significantly larger number of ingredients, which could allow for better ingredient
substitution.

● Both images and word embeddings could be given to a neural network classifier as
input. This would provide both models with more context, which could result in a
model with higher accuracy.

● The performance of the SVM increased as the dimensionality of the dataset
increased. SVMs are effective in high dimensional spaces], and so it is possible that
an even higher dimensional space (such as a 200 dimensional dataset) could
achieve better results.

● Better methods of assessing the performance of word embedding models are
essential to creating better, more accurate ingredient substitutions.

Conclusion
In this project, it is shown that Word2Vec and FastText word embedding models can be
trained to adequately suggest ingredient substitutions, and that the FastText model performs
best.

It is also shown that classifiers can be trained on word embedding vectors, which can
accurately classify ingredients into four dietary categories (vegan, vegetarian, pescatarian
and carnivore). A SVM trained on the word embeddings of the
ingredient_dataset_150_dimensions_fasttext.csv dataset performed best at this task. It was

found that some classifier models perform better in higher dimensional (150 dimensions),
and that no models perform better in lower dimensional space (50 dimensions).

t-SNE dimensionality reduction algorithms were used to create a novel dataset, which
trained classifiers that were less accurate than the Word2Vec and FastText word
embeddings.

An image classifier was also trained using a neural network and transfer learning, but was
unable to classify ingredients accurately. Images do not hold enough information to classify
images by dietary classification, as too many images (such as sugar and gelatin powder)
look identical to one another while having different classifications.

The function, ingredient_filter, can suggest ingredient substitutions using trained Word2Vec
and FastText models, can label ingredients (and subsequently filter them) using trained
classifier models, and provides some advanced searching functions (the ability to blacklist a
specific word, and create custom filters). The function has been tested, and has adequate
input validation.

Reflection
I have learnt many things throughout the course of this project. The importance of thoroughly
analysing all datasets has been highlighted throughout this project. For example, had I more
thoroughly analysed the simplified-recipes-1m+ dataset, I would have cleaned the recipes
dataset sooner, saving me time in the long run. The importance of rigour, in training and
comparing many different models, has been highlighted to me. Initially, I thought that neural
networks would outperform all other classifiers. Had I not trained classifier models on all of
the various datasets (50 dimensions to 150 dimensions), and thoroughly compared the
performance of each, this bias may have been carried through the study. The importance of
cleaning datasets has been highlighted to me. The adage ‘garbage in, garbage out” is true,
especially for my image classifier, which I suspect had poor performance due to the
unsuitability of the input and the need for better, cleaner data. In future projects, I will ensure
that I use better image scraping methods in future projects, which are more robust and
provide cleaner data. I have also learnt the importance of time management. No individual
word embedding model or classifier took longer than a few hours to train, but that time can
quickly add up, especially when comparing so many classifier models. In my initial plan, time
was allocated for learning the theory behind word embedding algorithms, classifiers, ECT.. In
the future, I believe it would be more productive to jump straight into programming, learning
the theory as and when needed, in order to create a minimum viable product faster.

Acknowledgements
This project was supported by Jose Camacho Collados, whose insights and suggestions
were invaluable to the completion of the project. Thank you to Emma Pead, my partner, who
has supported me unconditionally throughout the duration of my project.

https://pats.cs.cf.ac.uk/!user_info?u=scmjc1

References
[1] Benson, A.; Irdam, D.; Bulceag, I. and Barber, T. 2019. The Food and You Survey.
London: Food Standards Agency and NatCen.

[2] Marín, J. Et al. 2019. Recipe1M+: A Dataset for Learning Cross-Modal Embeddings for
Cooking Recipes and Food Images. IEEE Transactions on Pattern Analysis and Machine
Intelligence. DOI: 10.1109/TPAMI.2019.2927476

[3]Pellegrini, C.; Özsoy, E.; Wintergerst, M. and Groh, G. 2021. Exploiting Food Embeddings
for Ingredient Substitution. Proceedings of the 14th International Joint Conference on
Biomedical Engineering Systems and Technologies (BIOSTEC 2021). Vienna, Austria 11-13
February 2021. Setúbal, Portugal: SCITEPRESS. DOI: 10.5220/0010202000670077

[4] Jurafsky, D. and James, M. H. 2021. Speech and language processing : an introduction
to natural language processing, computational linguistics, and speech recognition. 3rd
Edition draft. Upper Saddle River, N.J.: Prentice Hall. ISBN 978-0-13-095069-7.

[5] Mikolov, T.; Chen, K.; Corrado, G. and Dean, J. 2013. Efficient Estimation of Word
Representations in Vector Space. arXiv. arXiv:1301.3781. Version 3. DOI:
https://doi.org/10.48550/arXiv.1301.3781

[6] Bojanowski, P.; Grave, E.; Joulin, A. and Mikolov,T. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Association for Computational Linguistics. 5, pp.
135-146. DOI: https://doi.org/10.1162/tacl_a_00051

[7] Devlin, J.; Chang, M.; Lee, K. and Toutanova, K. 2019. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota June 2019. Association for Computational Linguistics DOI:
10.18653/v1/N19-1423

[8] Pan, Y.; Xu, Q. and Li, Y. 2020. Food Recipe Alternation and Generation with Natural
Language Processing Techniques. Proceedings of the 2020 IEEE 36th International
Conference on Data Engineering Workshops (ICDEW). Dallas, Texas 20-24 April 2020.
New York: IEEE. DOI 10.1109/ICDEW49219.2020.000-1

[9] Bishop, C. 2006. Pattern recognition and machine learning. Berlin: Springer. ISBN
0-387-31073-8.

[10] Schmidt, D. 2019. Simplified-recipes-1M Dataset. dominik schmidt. Available at:
https://dominikschmidt.xyz/simplified-recipes-1M/ [Accessed: 15th January 2022]

[11] Gensim. 2022. Topic Modelling for Humans. Available at:
https://radimrehurek.com/gensim/ [Accessed: 24th February 2022]

https://www.researchgate.net/journal/IEEE-Transactions-on-Pattern-Analysis-and-Machine-Intelligence-0162-8828
https://www.researchgate.net/journal/IEEE-Transactions-on-Pattern-Analysis-and-Machine-Intelligence-0162-8828
http://dx.doi.org/10.1109/TPAMI.2019.2927476
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.1162/tacl_a_00051
https://aclanthology.org/volumes/N19-1/
https://aclanthology.org/volumes/N19-1/
https://aclanthology.org/volumes/N19-1/
https://dominikschmidt.xyz/simplified-recipes-1M/
https://radimrehurek.com/gensim/

[12] Stack overflow. 2020. Loss does not decrease during training (Word2Vec, Gensim).
Available at:
https://stackoverflow.com/questions/52038651/loss-does-not-decrease-during-training-word2
vec-gensim [Accessed: 27th April 2022]

[13] Van der Maaten, L. and Hinton, G. 2008. Visualizing Data using t-SNE. Journal of
Machine Learning Research. 9, pp. 2579-2605.

[14] Double check Vegan. 2021. Vegan Ingredient Checker. Available at:
https://doublecheckvegan.com/ [Accessed: 5th March 2022]

[15] SciKit learn. 2022. Scikit learn: Machine Learning in Python. Available at:
https://scikit-learn.org/stable/ [Accessed: 28th March 2022]

[16] Keras. 2022. Keras. Available at: https://keras.io/ [Accessed: 02 April 2022]

[17] Tensor Flow. 2022. Classification on Imbalanced Data. Available at:
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data [Accessed: 04 April
2022]

[18] Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I. and Salahutdinov, R. R. 2012.
Improving neural networks by preventing co-adaption of feature detectors. arXiv.
arXiv:1207.0580. DOI: https://doi.org/10.48550/arXiv.1207.0580

[19] Joachim, D. The Food Substitutions Bible. Second Edition. Ontario, Canada: Robert
Rose.

[20] Watson-Price, E. 2022. Alternatives to Pita Bread. Available at:
https://www.ehow.com/info_8185877_alternatives-pita-bread.html [Accessed: 17th May
2022]

[21] Dorsey, L. 2022. Substitutes for Hazelnuts- what can I use instead? Available at:
https://www.supperforasteal.com/substitutes-for-hazelnuts/ [Accessed: 17th May 2022]

[22] The Low Carb Grocery. 2022. Replacing Potatoes: Low carb alternatives. Available at:
https://www.thelowcarbgrocery.com/low-carb-lifestyle-blog/general-interest/7-sensational-low
-carb-potato-substitutions [Accessed: 17th May 2022]

[23] Royce, W. W. 1970. Managing the Development of Large Software Systems.
Proceedings of IEEE WESCON 1970. Los Angeles, 25-28 August. New York: IEEE.

[24] Python. 2022. About Python. Available at: https://www.python.org/about/ [Accessed:
20th May 2022]

[25] Salvador, A. Et al. 2019. Recipe1M+: A Dataset for Learning Cross-Modal Embeddings for
Cooking Recipes and Food Images. IEEE Transactions on Pattern Analysis and Machine
Intelligence. DOI: https://doi.org/10.48550/arXiv.1810.06553

https://stackoverflow.com/questions/52038651/loss-does-not-decrease-during-training-word2vec-gensim
https://stackoverflow.com/questions/52038651/loss-does-not-decrease-during-training-word2vec-gensim
https://stackoverflow.com/questions/52038651/loss-does-not-decrease-during-training-word2vec-gensim
https://doublecheckvegan.com/
https://scikit-learn.org/stable/
https://keras.io/
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
https://arxiv.org/abs/1207.0580
https://doi.org/10.48550/arXiv.1207.0580
https://www.ehow.com/info_8185877_alternatives-pita-bread.html
https://www.supperforasteal.com/substitutes-for-hazelnuts/
https://www.thelowcarbgrocery.com/low-carb-lifestyle-blog/general-interest/7-sensational-low-carb-potato-substitutions
https://www.thelowcarbgrocery.com/low-carb-lifestyle-blog/general-interest/7-sensational-low-carb-potato-substitutions
https://www.python.org/about/

Supporting Figures
Figure 1. T-SNE Dimensional Reduction of FastText Model, 50 Most Frequent

Ingredients

Figure 2. Example Output of ingredient_filter Function.

ingredient_filter(substituter = "fasttext",

classifier = "knn",

search_term = "sausage",

blacklisted_term = "",

n = 10,

filters = ["vegan", "vegetarian"],

verbose = 1)

Index Ingredient Similarity Classification

0 mild sausage 0.874383 carnivore

1 sausage links 0.871964 carnivore

2 spicy sausage 0.849921 carnivore

3 sausage meat 0.836955 carnivore

4 sausages 0.826906 carnivore

5 ground sausage 0.807936 carnivore

6 sausage casings 0.804782 carnivore

7 hot sausage 0.794037 carnivore

8 pork sausage 0.790287 carnivore

9 italian turkey sausage 0.774680 carnivore

Figure 3. Ground Truth Evaluation Table

Ingredient Substitutions

Bacon Slices Pancetta, Prosciutto, Salt Pork, Smoked Sausage, Smoked Ham, Black
Forest Ham, Fatback

Cream Yoghurt, Creme Fresh, Sour Cream, Milk, Evaporated Milk

Olive oil Corn Oil, Sesame Seed Oil, Canola Oil, Butter Oil, Rapeseed Oil,
Grapeseed Oil, Safflower Oil, Vegetable Oil

Corn Syrup Golden Syrup, Maple Syrup, Sugar, Brown Sugar, Honey, Agave Syrup,
Cane Syrup

Ricotta
cheese

Cottage Cheese, Cream Cheese, Mascarpone Cheese, Sour Cream,
Goat’s Cheese, Greek Yoghurt, Mozzarella Cheese, Paneer, Parmesan
Cheese

Brown lentils Puy Lentils, Red Lentils, Green Lentils, Chickpeas, Black Beans, Pinto
Beans, Lima Beans, Fava Beans

Chicken Turkey, Rabbit, Quail

breast

Green onion Scallions, Leeks, Shallots, Chives, Red Onions, White Onions, Yellow
Onions

Noodles Linguine, Fettuccine, Pappardelle, Rice

Potato Parsnips, Sweet Potato, Turnips, Celery Root, Radish

Smoked
Salmon

Salmon, Smoked Trout

Hazelnuts Almonds, Cashews, Walnuts

Lamb neck Beef, Pork, Viel, Mutton

Pita bread Lavash, Naan, Focaccia, Flour Tortilla, Pizza Crust

Coconut milk Coconut Cream, Powdered Coconut Cream, Water, Milk, Cream

