
1

Security Analysis in SMS-based

Applications

Individual Project

CM3203 – 40 Credits

School of Computer Science and Informatics

Cardiff University 2022

Author: Finn Milliner

Supervisor: Neetesh Saxena

Moderator: Bailin Deng

2

Contents
1. Introduction ... 5

1.1. Project Scope ... 6

1.2. Project Approach .. 7

1.3. Aims & Objectives ... 7

2. Background ... 8

2.1. SMS as a Service .. 8

2.2. Structural Security Issues ... 9

2.3. SMS Misuse .. 10

2.4. Existing Solutions & Constraints ... 10

2.5. Existing Analysis Works .. 12

3. Approach .. 14

3.1. Development Methodology ... 14

3.2. Project Timeline .. 14

3.3. Research Approach ... 15

3.4. Data Collection ... 16

4. Implementation ... 18

4.1. Tools Used .. 19

4.1.1. Platform ... 19

4.1.2. Python .. 19

4.2. Risk Assessment .. 21

4.3. Flowchart and UML ... 22

4.4. SMS Analysis Tool .. 24

4.4.1. GUI ... 25

4.4.2. Key Functions ... 26

4.4.2.1. Get_file Function .. 26

5. Results and Evaluation .. 34

5.1. Exhibits ... 34

5.1.1. Collected Dataset ... 35

5.1.2. Analysis Tool .. 35

5.2. Test Cases .. 37

5.2.1. Complex Cases .. 38

5.3. Results tables ... 41

5.3.1. Dataset Analysis Results .. 41

3

5.3.2. URL Analysis Results .. 42

5.4. Evaluation ... 43

5.4.1. OTP Analysis .. 43

5.4.2. URL Analysis .. 44

5.4.3. Keyword Analysis ... 44

5.4.4. URL Health Check Analysis ... 45

5.5. Recommendations based on results ... 45

6. Future Work ... 46

7. Conclusions .. 47

7.1. Aims & objectives Reflection ... 47

7.1.1 Objective 1: Outline Key Security Flaw or Exploits in SMS Services and Applications

 .. 47

7.1.2 Objective 2: Identify and Explain Both the Advantages and Limitations of SMS as a

Service, Providing Quantitative Data to Show Relevance to Security 48

7.1.3 Objective 3: Reflection on SMS Analysis and Results Recommendations 48

7.2 What Has Been Learned and Achieved ... 48

8. Reflection .. 49

References .. 51

Figures Contents
Figure 1 [19] (SMS ecosystem, its carriers, gateways, and services) ... 8

Figure 2 (Project Gantt Chart) .. 15

Figure 3 (Scrapy spider example) .. 17

Figure 4 (Received messages from public SMS gateway) .. 18

Figure 5 (implementation of regular expressions to find numbers) ... 20

Figure 6 (Flowchart for analysis tool) ... 22

Figure 7 (UML diagram for analysis tool) ... 23

Figure 8 (Tkinter text input box) .. 25

Figure 9 (Tkinter button) .. 26

Figure 10 (Tkinter label) ... 26

Figure 11 - [36] (Tkinter TopLevel window) ... 26

Figure 12 - [37] (get_file function) .. 26

Figure 13 - [38] (collect_data function) ... 27

Figure 14 (Outdated Version 3 of the multi_finder function) [39] ... 27

Figure 15 (else statement eliminating OTP recognition) ... 29

Figure 16 (Final Version of multi_finder) ... 30

Figure 17 (regular expression) ... 30

Figure 18 (nested for loop) .. 30

file:///C:/Users/Finnm/Desktop/Report%20Draft%20V.2.docx%23_Toc104568586
file:///C:/Users/Finnm/Desktop/Report%20Draft%20V.2.docx%23_Toc104568587
file:///C:/Users/Finnm/Desktop/Report%20Draft%20V.2.docx%23_Toc104568590
file:///C:/Users/Finnm/Desktop/Report%20Draft%20V.2.docx%23_Toc104568591
file:///C:/Users/Finnm/Desktop/Report%20Draft%20V.2.docx%23_Toc104568598
file:///C:/Users/Finnm/Desktop/Report%20Draft%20V.2.docx%23_Toc104568599

4

Figure 19 (Get URL Occurrences button command) .. 30

Figure 20 (collector functions for writing data to files) ... 31

Figure 21 (keyword finder function) .. 32

Figure 22 (URL health checker) ... 33

Figure 23 (URL Health Check Result) .. 34

Figure 24 (Dataset Example) ... 35

Figure 25 (GUI Main Body) ... 36

Figure 26 (Both possible output files) ... 36

Figure 27(Results window from URL occurrences) .. 36

Figure 28 (OTP finder with issue) .. 39

Figure 29 (OTP finder with issue fixed) ... 39

Figure 30 (Problematic Logic) ... 40

Figure 31(Fixed Logic) .. 40

Tables Contents
Table 1 - Test Cases ... 37

Table 2 - Dataset Analysis Results .. 41

Table 3 - URL Analysis Results .. 42

file:///C:/Users/Finnm/Desktop/Report%20Draft%20V.2.docx%23_Toc104568609

5

Abstract
SMS is one of the most widely used platforms for communication over the world and

has been so for many decades now. With such widespread use brings an element of

attention to the system, especially from those who seek to abuse it. With an aging

infrastructure and lack of information on behalf of users, text messages are an open

vector for attack and the actual level of security users have when sending and

receiving texts is not something most are aware of. This paper serves as research

into how SMS is used, how its flaws are repurposed to cause damage, and as a

method to conduct analysis on sample SMS data in an attempt to draw information

from its findings which can benefit the security of the stakeholders in the platform.

Ultimately, we are looking to provide quantitative evidence on the security of current

SMS usage for the benefit of everyday users.

1. Introduction
With growing reliance on digital devices in our society, especially smartphones, it is

more important than ever to be aware of how secure our data and our devices are.

SMS (short message service) is a critical component of the security infrastructure

for many applications and the usage stats for the service are extremely high; recent

research found that mobile subscribers in the UK alone sent over 65 billion SMS and

MMS (multimedia messaging service) messages in 2019 [1] and over 350 billion text

messages are sent each month globally as of 2014 [2].

With its popularity, attention is drawn to exploiting the wide number of users the

service can reach for scammers, hackers and more who can use the service in a few

different ways to gain data, access or money from unsuspecting victims. ヱBecause
the messages are stored on these systems longer than necessary, it increases the

window of vulnerability through which the hacker can attack. Rather than having to

defend a system for a few seconds to prevent a hacker from stealing a message, it

needs to be protected for days, weeks, months.ヮ [3] says Wickr CTO Cristopher
Howell in reference to the virtual path our SMS messages take between sender and

receiver, highlighting the potential weak points in a system that is used by so many

but understood by very few.

Analysing just how secure it is to use and finding countermeasures to exploits could

potentially save many companies and individuals from having data stolen or

compromised, or even just raise awareness to everyday users who are unaware of

the associated risks.

This project aims to analyse the nature of security when it comes to the use of SMS

and its applications, how and what they are used for and the ways in which the

service is used to provide a threat to the key users. Said analysis includes

researching how the structure of SMS could be exploited, identifying any known

6

security flaws, and breaking down the content of example SMS data to contextualise

how secure the current use of SMS is.

My approach will be managed by following my Gantt chart detailing key stages of the

project and will involve both research and developmental aspects. For my research I

will be investigating the structure of SMS; its limitations and advantages, discuss

how it is used and present findings on solutions to its issues or alternatives.

Development will include the short software development life cycle of a Python

based programme used to collect and analyse SMS data as a representation of what

is commonly found throughout the SMS network.

Beneficiaries of the work done encompasses the companies which employ SMS

messaging as a part of their service; a huge number of companies, with 39% of

businesses opting to use text messaging in some way to reach their customers as of

2020 [4]. It also covers the everyday user who owns and uses their mobile phone and

its SMS capabilities, as in today's world there is never a guarantee that you are only

going to be reached by those in your contact list. Spam is widespread, malicious

links hide in fraudulent texts and valuable data is left vulnerable save for the one-

time passcodes we use so frequently.

The outcome will reflect research-based advantages and limitations with

quantitative information about the security level of SMS as a service and its

applications. From this data I will also recommend countermeasures or alternatives

to address the existing/found security issues to provide a better understanding of

the ways in which we can safely use SMS.

1.1. Project Scope

As touched on above, the end product for the project is quantitative data concerning

the composition of SMS messages and thus the derived quality of security in the

ecosystem. Following these results, I will recommend how issues could be remedied

or alternatives could be used. Obstacles experienced could relate to the collection of

the data as there are many sources and methods for collecting SMS data but due to

project timeline constrictions and ease of access whilst ensuring a varied dataset

could mean some methods may be rendered impossible, or data size may be

restricted. In continuation of this, I will require resources in the form of a source for

the data to be collected from and a computer as a system on which to design and

run the algorithm for data collection. Stakeholders will include all users of SMS

messaging as well as any company using SMS as a vehicle to deliver information to

customers, whether that be advertisements or one-time passcodes. Those who push

messages containing spam en masse or utilise the platform in order to maliciously

attack others may also be negatively affected by the study.

7

1.2. Project Approach

For the development of the analytical tool, an agile methodology could suit the

requirements very well; the tool to be developed is one of no certain definitions other

than collecting and analysing SMS data, so there is a level of flexibility in the features

to be programmed. Furthermore, the time to deadline is accelerated, the focus is on

producing a project rather than planning due to the small project size in this regard,

although one consideration is despite using agile as a template, I will be using

documentation as it is crucial in the characteristics of the project itself [5]. Although

a waterfall methodology does fit the fixed timeline delivery criteria, the increased

creativity allowed from agile is something I think could provide a valuable

opportunity for the outcome.

In terms of the approach to research, I will be delving into the structure of SMS and

breaking down the issues present in the system, how the structure is abused and

breaking down existing solutions and their constraints. SMS related works,

especially those which are related directly to security concerns or SMS content will

be critically reviewed and used as inspiration in the work I plan to do and the

conclusions to be drawn.

1.3. Aims & Objectives

1. Outline key security flaws or exploits in SMS services and applications.

a. Identify and detail the structure of the SMS System

b. Detail the use and structure of SMS based applications and services

c. Research into any large-scale events of security compromise relating

to SMS

d. Outline related security flaws and exploits.

2. Identify and explain both the advantages and limitations of using SMS in providing

a service, providing quantitative data to show relevance to security.

a. Research limitations and advantages of SMS as a service and evaluate

existing solutions.

b. Provide SMS dataset ready for analysis

c. Analyse and document the provided data and how it is applied to real

world context.

d. Present findings as quantitative data on the use of SMS with relevance

to security.

3. Reflection on SMS analysis and results recommendations.

a. Reflect on whether SMS is indeed secure enough for use or if an

alternative must be found with justification.

b. Offer recommendations to address results from my analysis

8

2. Background

2.1. SMS as a Service

SMS, or Short Messaging Service is the most popular text messaging service in use

today, using standardised communication protocols defined in GSM (Global System

for Mobile Communications) standards; a digital mobile phone standard used

extensively all over the world. SMS messages are sent over an SMS clientﾟs network
or other front ends such as web-based services which allow SMS clients to run on

computers that are not directly connected to a SMS supported network [5].

Short Messaging Service Centres (SMSCs) are the heart of the modern SMS system,

routing messages through carrier networks, receiving inbound messages and

handling the delivery of these messages to mobile users in the network using a

store-and-forward regime [6]. SMS messages are encrypted on the journey between

the senderﾟs device and the base station serving the phone, but once the message is

past that point and inside the network the message is no longer encrypted. Here lies

the crux of the problem.

Not only are messages exchanged between individuals but in todayﾟs world there are
a wide variety of non-traditional carriers and External Short Messaging Entities

(ESMEs) are widespread, facilitating the bulk sending and receiving process of SMS

messages for large scale businesses looking to deliver push notifications, one-time

passcodes and general information updates as shown in fig 1. Despite the

emergence of alternatives, like those in the form of MMS applications such as

WhatsApp and iMessage, SMS remains the most popular option for business use.

Sectors of use include healthcare for appointment reminders, travel for

communication between tourists and

Figure 1 [19] (SMS ecosystem, its carriers, gateways, and services)

9

airlines, retail for digitised receipts and finance for correspondence with banks

among many others [7]. For all these ventures, security is surely a primary concern.

2.2. Structural Security Issues

With this SMS traffic spending most of its existence in the SMS system unencrypted,

there is surely a massive risk to all the data contained in the messages. Further

adding to this, ESMEs communicating with SMSCs using the Short Message Peer to

Peer Protocol (SMPP), which does not encrypt its content meaning SMS messages

originating from ESMEs are susceptible to a man in the middle attack [8], and the

Signalling System No. 7, (SS7) standard which facilitates SMS sending and receiving

as well as other mobile functionalities has a huge vulnerability where malicious

actors can use a Linux PC with a SS7 SDK to emulate a Mobile Switching Centre

(MSC), gaining access to all messages travelling through it [9].

Furthermore, the GSM System has similar flaws of its own; as detailed in a paper on

the ability to perform a similar attack as detailed above, impersonating a base

station whereby the malicious actor can take control of communications and abuse

the one-way authentication and key agreement protocol as standard in GSM to

disable encryption for devices interacting with the ヱhijackedヮ station [10]. Fortunately,

these attacks are unlikely to reach large numbers of people, but when they do, they

are devastating with a full data compromise taking place, for example, any OTP the

user might happen to receive is instantly accessible to the attacker.

A study in 2012 investigated another exploit of SMS structure via the setup and

delivery of ﾞSilent SMS or Stealth SMSﾟ, whereby, in exploiting the SS7 protocol as
above, SMS messages can be delivered to a recipient without their notification and

without any actual message being readable. However, because on a network level

the device has still technically received a message, subscriber location information

is forced to update and can be used to track the victim. Not only this, but the silent

messages can be spammed en masse to create a denial-of-service attack on the

userﾟs device [11]. An attack such as this poses a clear threat to targeted individuals,
most likely victims being politicians, business executives, celebrities etc.

From these examples it is evident there are several ways in which the security of the

SMS system can be compromised by hackers or criminals and there are several

points of weakness in the journey that each message takes from sender to receiver,

leaving many stakeholders in the operation vulnerable.

10

2.3. SMS Misuse

Aside from the ways the structural integrity of the SMS system is abused to

compromise security and take advantage of the stakeholders in the operation, SMS

misuse is far more likely to occur and far more relevant to the everyday user. This

encompasses activities such as smishing, a form of phishing exclusively used over

SMS [12], using links to sites housing malware, general spam and 2FA (two-factor

authentication) code theft among many others.

There are several instances of high profile incidents occurring worldwide which fall

under this misuse umbrella such as the 2020 EMOTET case where cybercriminals

tricked customers into credential theft using malware infection via an SMS posing as

trusted US banks in urgent sounding text messages [13], as well as the September

2020 ヱRampant Kittenヮ operation whereby victims were social engineered by
criminals to install a specific app which required permission to read SMS content,

allowing them to read and use the 2FA codes received by the victim.

Links embedded in SMS messages are often a sign of malicious activity. In the

ﾞFilecoderﾟ case, a piece of ransomware was disguised in a link to an image or
document which was sent to victims posing as something alluring. Once the file was

downloaded, the malware infects the phone, encrypting all files and locking it,

presenting only a screen informing the user that their data has been encrypted and

the only way to decrypt it was to pay a certain amount to a bitcoin address. However,

it doesnﾟt end here; when the device is initially infected and locked from use, the
malware sends the same messages with the malicious link to every contact in the

victim's phone.

Plenty more incidents have occurred, especially in the last few years where OTPs

(one-time passcodes) have become the default in second-line defence for account

security. Although the objectives of cyber criminals in the acts above lie beyond

simply gaining access to victimﾟs OTPs, it is a common theme throughout most SMS
related crime seen in recent years and present times due to the sheer popularity of

the infrastructure choice, causing trouble for both the companies which employ the

technique and the customers whose accounts are vulnerable.

2.4. Existing Solutions & Constraints

SMS phishing or ﾞsmishingﾟ is a prevalent form of misuse as previously mentioned
and being able to identify exactly what falls under that category could be very

beneficial for improving automatic phishing recognition systems. DSmishSMS is a

system prototyped by Sandhya Mishra et al. [14], which detects Smishing SMS by

11

evaluating the legitimacy of the URL (uniform resource locator) in given messages

using two phases; domain checking phase and SMS classification phase, which

could be key in preventing the loss of user personal data and accounts which

contributes to so much of the crime committed. Results from this development

achieved an accuracy of 97.3%, proof of an efficient method and something which I

could build upon in my project in conjunction with a wider identification of SMS

content in relation to other possible methods aside from smishing which could

compromise security when SMS is used.

As described earlier in my description of SMS as a system, I talked about the lack of

encryption of text messages past the initial routing from the sender's device to the

base station. After this, the message is completely unencrypted and can remain

stored in the system for far longer than is necessary, leaving the data completely

open to an attack. In a 2015 paper written by Ali M Sagheer et al. [15], a hybrid

cryptographic scheme for SMS which combines both AES (advanced encryption

standard) [16] and RC4 (Rivest cipher 4) [17] algorithms to achieve more reliable

security for the function of SMS. Their findings discovered the algorithm was

feasibly run on multiple tested mobile phones, smartphones, and non-smartphones

alike; examples include the Nokia 5233 which encrypted one whole block in 34

milliseconds and decrypted the same block in 9 milliseconds. Unfortunately, the

mobile device using the algorithm must be java compatible and have equal or more

RAM (random access memory) than the tested phones, therefore ruling out iPhones

which do not have a compatible JVM (Java Virtual Machine) to run Java programs.

However, it is proof that there are a large number of mobile phone models which

could feasibly use encryption in everyday texting, at least in theory.

Another version of SMS cryptographic security was theorised in the research

conducted by Ikechukwu Ibekwe et al. [18], whereby end-to-end encryption was used

with a single point of decryption at the receiving node. The method would implement

both symmetric and asymmetric encryption; symmetric for the actual encryption and

decryption of the data, and asymmetric methods to distribute the keys, deploying the

use of a pair of public and private keys for each subscriber to the interaction. They

also theorise that message integrity could be verified by using a hash in the message

data itself. Regrettably, the theory remained just that and was never implemented by

the team so the practicality of such an endeavour cannot be fully analysed. It is

however noted that key distribution would be an issue with this method because the

number of keys needed for communication is approximate to the square of the

number of senders, so it is a further challenge to provide efficient and lightweight

encryption as well as distributing these keys efficiently.

In the paper written by Mohammed Shafiul Alam Khan and Chris J Mitchell [19], the

structure of the SMS network is discussed as well as the vulnerability of one-way

12

authentication between the mobile device and network. Building on from their

discussion of the security weakness they propose the utilisation of RAND hijacking

to enable the network-to-phone authentication within the GSM system in a way that

is compatible with the current network infrastructure. Also covered is the modern

relevance of such a solution, as despite the use of 3G (UMTS) and 4G (LTE) systems

which do provide mutual authentication, GSM is still used so widely that the security

flaw has not become irrelevant at all. Findings concluded that it was indeed an

improvement over non-mutual authentication and does not affect the SIM-to-network

authentication negatively. One stipulation is that the mobile device would need to

support ﾞclass eﾟ STK (SIM application toolkit) commands.

From what I have covered it is clear that there are plenty of solutions which aim to

combat SMS security issues; mainly in adding additional steps, actions, or

procedures to the communication infrastructure in place.

2.5. Existing Analysis Works

So, it becomes clear from the background surrounding the security of SMS that there

needs to be some clarification for the sake of both the everyday SMS user and the

big businesses which use it. Arguments exist internet wide on whether SMS is

secure, if OTP is enough protection for your account and how to avoid smishing

attempts and more than a few scientific papers have approached the problem from

several perspectives and attempted provide answers but there is nothing precisely

covering the precise insecurities of SMS and how it is used in a way that can present

a threat to users.

One of the similar works of note would be the two successive papers from Bradley

Reeves et al. on ヱCharacterising the Security of the SMS ecosystem with Public
Gatewaysヮ [6], two successive studies which investigated the messaging

infrastructure as a whole, by collecting SMS data from public gateways; one of the

most effective methods of data collection as I will discuss later. In their two papers,

both with the same goals and the latter with a larger dataset, the researchers

identified the content of said messages in an attempt to label the use of this

ecosystem and provide material to combat phone-verified account fraud. Similarly to

my study, the aims included attempting to identify the malicious behaviour occurring

within the present using SMS messages.

Another project which was also written by Bradley Reeves, Logan Blue, Dave Tian

and more, described the detection and analysis of spam traffic in the SMS system

with a focus on the use and performance of specifically purposed spam detectors

and their classification success rate [19]. Again, similarly to my own work, the part

13

that spam plays in the current SMS system is in focus and cannot be ignored and

reading their paper it is clear that the role spam plays in its composition as part of

the ecosystem and therefore the way it can permeate a feeling of uncertainty and

fear within users is vital as this creates a knock on effect as to how these same

users interact with other truthfully malicious texts.

With spam being such an issue in being so abundant as a message type in the SMS

ecosystem, having a way to easily recognise and automatically filter out spam text

messages could help many everyday users to avoid potentially harmful messages,

allow for better recognition of genuinely malicious messages and waste less time

worrying about what is real and what is not. M. Hassan Shirali-Shahreza et al. wrote

their paper discussing the idea of using CAPTCHA to recognise and filter these

messages [20]. The idea described how a CAPTCHA test would be sent in receipt of

an SMS message. This test was in the form of an SMS message including a small

image of an object, and 3 named options. If the correct name to identify the object is

selected and sent back in a text, then the CAPTCHA is passed, and the initial sender

is marked as non-spam. In terms of the viability of the solution, the method can be

used on any SMS capable device as the image quality, size and colour befits those

capabilities and it is also usable on other SMS capable devices. On the other hand,

the logistics of applying such a method is not entirely efficient, given that in order for

the test to be conducted there needs to be a whole sequence of messages,

consuming both time and resources as sending each message has a cost.

End to end asymmetric encryption is another approach which could highly improve

the security of SMS. It is one of the greatest benefits of some alternatives to SMS,

services such as WhatsApp and Facebook Messenger, and make the risk of using

OTPs far less daunting for users. Mary Agoyi and Devrim Seral explored the

possibility of implementing this type of encryption using several methods,

documenting their test results. Out of the tested RSA, ELGamal and Elliptic Curve

algorithms, they concluded that Elliptic Curve was the most ideal due to its smaller

key size when used in a limited resource device such as a mobile phone. Another key

point which was noted is that encrypted messages usually end up larger than the

original messages which can lead to additional charges when sending the message,

but they believe data compression could be used to reduce the data size and remove

this downside.

In the approach to solve this problem, the underlying objective of my work will be to

provide clarity, quantitative evidence, and structured reasoning to exhibit and explain

exactly what SMS is currently being used for and what exactly the everyday users

must watch out for regarding safely using the platform.

14

3. Approach
The problem I need to solve is making clear the composition of current SMS content,

analysing how secure this content in circulation is and providing a solution in the

form of presenting statistics, analysis, and conclusions, reflecting on how safe the

platform is for the average user. This solution will be provided in the form of the

collection of a series of SMS messages, aiming to be representative of the type of

SMS content present within the system, and the analysis of this data via a developed

tool which breaks down specific characteristics within the dataset. This analysis will

then be summarised and concluded with a documentation of results and how this

affects the security of such a system.

3.1. Development Methodology

For the development of the analytical tool, an agile methodology could suit the

requirements very well; the tool to be developed is one of no certain definitions other

than collecting and analysing SMS data, so there is a level of flexibility in the features

to be programmed. Furthermore, the time to deadline is accelerated, the focus is on

producing a project rather than planning due to the small project size in this regard,

although one consideration is despite using agile as a template, I will be using

documentation as it is crucial in the characteristics of the project itself [21].

Although a waterfall methodology does fit the fixed timeline delivery criteria, the

increased creativity allowed from agile is something I think could provide a valuable

opportunity for the outcome. From a 2012 paper by Gaurav Kumar and Pradeep

Kumar Bhatia, there were conclusions drawn which included the following:

ヱRefactoring leads to higher code reuse and better quality. All aspects of software
are improved, from design and architecture to performance of the products of each

sprint.ヮ [22] as well as the recognition of agile not being very well fitted to a

development with many teams or a large-scale project, both characteristics not seen

in this work and reinforcing my decision to follow it.

3.2. Project Timeline

To guide the completion of the project and map critical steps to be taken and their

ideal completion dates a Gantt chart was used. This was mapped against the aims

and objectives outlined in the introduction so I could segment the work against a

15

weekly schedule, giving me an idea of when tasks should aim to be completed by, to

manage the project effectively. The Gantt chart can be seen below in fig. 2.

3.3. Research Approach

In terms of the approach to research, I will be delving into the structure of SMS and

breaking down the issues present in the system, how the structure is abused and

breaking down existing solutions and their constraints. SMS related works,

especially those which are related directly to security concerns or SMS content will

be critically reviewed and used as inspiration in the work I plan to do and the

conclusions to be drawn. A quantitative research methodology is what I will be

following for the scope of the entire project; due to the collection and statistical

analysis of concrete data in the form of SMS content in order to define how the SMS

system is being used and the inferred security of that use. This data will be

Figure 2 (Project Gantt Chart)

16

presented in the form of numbers, tables, and potentially graphs as is conventional

to qualitative work, in aid of measuring the aforementioned security [23]. Another

conventional feature of this kind of research is testing theories or hypotheses and in

this project that will take the form of the question how secure the current use of SMS

is, the answer to which will be provided with the completion of the SMS analysis tool

and the following results when used on the SMS dataset, which is part of the final

objectives of the work.

3.4. Data Collection

Discuss how the data was collected, talk about using the web scrapers, the public

gateways, the issues I had with connections and then manually collecting a sizable

dataset with enough variation to prove useful in the study. Talk about if I had more

time then I may be able to find a workaround for the web scraper issues and collect

data automatically and in much larger quantities but for this project a manual

dataset of around 300 messages should be just fine.

As evident from my background research, one of the best ways of collecting a

diverse and well-represented SMS dataset is by using the data fed through public

SMS gateways [6] as it contains a variety of message types from unique phone

numbers, making the figures from the product of analysis far more meaningful to the

outcome of the project. It is also by far the most efficient way of collecting data;

picking several individuals and scraping their personal text data would both bring

ethical considerations into play and create a far less interesting and well featured

dataset. By using the public gateways, we can filter through a lot of the personal

texts you might receive such as from friend to friend, the contents of which we are

not concerned about.

In terms of collecting the dataset from the public gateways, there are plenty of

options to choose from, including Octoparse, a cloud-based web scraper [24],

Parsehub, an advanced scraping tool [25] and Scrapy, a Python based library

allowing for scalable automated web crawlers [26]. Scrapy was my tool of choice as

it allows the most control and the deployment is simple and reliable, being

implemented with Python which is a language I am very familiar with. After reading

through the scrapy documentation and gaining a basic understanding of the

concepts such as spiders, selectors and the scrapy shell. Using the documentation

material as guidance I managed to build a basic spider which would scrape just one

or two pages of material from their provided example website, allowing you to test

simple text collection from a basic formatted layout. The result can be seen below in

fig.3

17

Essentially, this spider would be run from the command line tool and search the

given URLs in the list ヱstart_urlsヮ for the data within the ヱ<quote>ヮ HTML elements.
To make this applicable to the data I wanted to collect I first had to find public

gateways which had reliable connections and plenty of data to source. I referred to

one of the papers I read whilst researching the background of the project [6] where

Bradley Reaves et al. compiled a list of all the gateways they were able to collect

data from. Given the study being relatively recent I hoped some of the gateways

might still be available. Investigation revealed that there were two websites hosting

these public gateways which were still functional and active:

1. https://www.receivesmsonline.net

2. https://receive-sms-online.info

The way the sites work is by organising collected messages via each gateway

number; each site has several numbers for varying country codes, and you can sort

via each number and see the contents of the message and when it was logged

through the gateway as seen below.

Figure 3 (Scrapy spider example)

18

Figure 4 (Received messages from public SMS gateway)

With the webpage data now accessible we can go ahead and fit the specific URL and

containers needed into my web spider algorithm. Unfortunately, straight away with

gateway 1, I encountered issues; where I was usually getting a quick connection to

the desired site and the desired data returned, when I used my SMS gateway URL, I

was getting a 403-connection error every time, meaning the website was rejecting

my connection based on the request headers. After doing some research I found a

potential solution in changing my request headers to match a common user agent

string [27]. Although this did not fix the 403-error encountered on gateway site

number 1, number 2 allowed the connection, but it was temperamental, restarting the

spider when testing different HTML element tags to try and capture the correct data

caused the website to react badly and start refusing my connection. Given the

formatting of the website was extremely confusing and the required data being held

within multi-layered tags meaning it was extremely difficult to capture this data using

scrapy. Given that these endeavours were only to capture the data on which the

analysis was to be performed, and the construction of the actual analysis tool was

yet to come, the most sensible decision seemed to be collecting some data

manually, so I had something for my tool to be tested on throughout the project. With

this manual method, a dataset of 200 messages from both gateway sites, using just

UK based numbers was collected and stored line by line into a text file.

4. Implementation
SMS analysis describes the process of going through the dataset which I have

collected and verifying the type of content that can be found in it as well as picking

out a specific criterion such as keywords denoting a specific type of SMS usage,

vulnerabilities that could be exploited, or sensitive information such as one-time

19

passcodes which could lead to account compromise. Breaking down the statistics of

this type of content is key in explaining how SMS is being used in the current day and

how safe this use is; whether there are precautions or changes that need to take

place for the system to be used safely. This is the source of the quantitative data

which is the crux of the project and will be able to provide the required insight on

how the results affect SMS use in the real world.

4.1. Tools Used

During this chapter the planning, platform and implementation of the project

development will be detailed, including screenshots of code, flowcharts, and a UML

diagram to represent code structure.

4.1.1. Platform

For all of the development process the same hardware, software and OS were used.

Hardware required to develop the analysis tool, collect the dataset, and run all the

code will remain the same throughout and be able to run on a variety of systems.

Specifications used can be seen below:

- Processor: i5-8300H @ 2.30GHz 8 core

- Memory - 16GB 2800 MHz DDR4

- Operating System - Windows 10 Home 64-bit

- Graphics Device: NVIDIA GeForce GTX 1060 6GB

It is worth noting that despite these specifications, a machine with far less memory

and processor speeds could easily handle the development and a variety of different

operating systems are also capable of running python.

4.1.2. Python

Python is the most fitting language for use in the entirety of the project for several

reasons. Firstly, the degree of personal experience is extremely beneficial as it

allows for a smoother development process and ease of use when it comes to more

complex libraries for example. Coincidentally, the python libraries are also another

great reason to pick the language, there is a huge array of different libraries all

helping to perform specific functions as will be covered later in this chapter [28].

Furthermore, for a smaller tool such as my SMS analysis program, using object-

oriented programming is not as beneficial because there is far less utilisation of

classes, inheritance and other OOP properties; the ease-of-use python presents fits

well with the project timeline and the scale of the project as a whole.

20

4.1.2.1. Python Libraries

Tkinter
The output data from the SMS analysis needed to be presented to the user in one

way or another. One of the most straightforward ways of doing this, which merges

well with user interaction is developing a user interface to act as the medium

between user and tool. Tkinter is a standard GUI library for python which allows

developers to easily build a GUI for their programs. Although there are several python

libraries which facilitate building a graphical user interface, my personal familiarity

with the library as well as its detailed documentation made it a clear choice for use in

the project.

Re
Re is the python library which provides access to regular expression matching. For

earlier versions of my project this saw a lot more use, but this changed due to

circumstances explained later in this chapter [30].

Figure 5 (implementation of regular expressions to find numbers)

Above is pictured one of the uses of the ﾞreﾟ library, where it is used to find any
sequence of numbers when located within a message. In terms of finding substrings

within strings in python there are a few different techniques which can be used but

regular expression matching is the most straightforward and reliable method for

capturing OTPs as there is such a variation between formatting and content which

methods such as the native python ﾞinﾟ operator could not handle as well.

Requests
Part of the SMS analysis is connecting to a third-party site which can perform a full

URL health check. For this to be possible, we need the requests library to allow the

tool to send HTTP requests, sourcing the necessary information for URL details [31].

Urllib
Similarly to the requests package, the urllib package is one made of several models

designed to assist working with URLs [32]. Specifically, the parsing module is the one

which is required to take the specific section of the URL we want to check with the

HTTP request in order for it to be valid. Again, this is a simple to implement and use

library.

Json
The data returned from the HTTP needs to be formatted correctly and neatly in the

command line and as the data is being taken from an HTTP response the JSON

21

encoder and decoder acts as an interchange format to allow for this to happen. It is

used in conjunction with requests and urllib.

4.2. Risk Assessment

To maintain the development process as well as the project journey from collecting

the dataset to providing the analysis results, risk assessments on various aspects of

the system and project process had to be considered and accounted for.

Issue - 1
Although Python is an extremely well documented language and very popular, there

are some niche issues encountered which will not have online solutions.

Resolution - 1
This issue is not entirely solvable but by making sure to read official documentation

of used libraries and searching extensively for problems encountered it is likely to be

avoided. In the case where this is not possible, changing the approach may be ideal.

Issue - 2

Some of the libraries used in development will be unfamiliar during development

which may lengthen the developmental section of the project planning and take

more time than expected.

Resolution - 2
Read at least basic documentation before reading, if necessary, push back the time

schedule.

Issue - 3

Additionally, using several complex libraries in conjunction with one another has the

potential to create unexpected issues where they do not interact as planned.

Resolution - 3
Research beforehand to ensure that libraries do not have conflicts, make sure to be

aware of common issues or flaws found by other users.

Issue - 4

There is a risk for loss of progress if the device being used for development, a single

windows laptop, encounters issues with data corruption in storage.

Resolution - 4

To combat this, copies of all project contents including the python files and dataset

were stored in the cloud using google drive, with regular updates occurring to ensure

minimal data loss given a storage failure.

22

4.3. Flowchart and UML

Figure 6 (Flowchart for analysis tool)

23

Above in figure 6 is the flowchart designed to map out all the possible user

interactions made by a user based on the type of analysis we were planning to

perform. This was based on some basic planning which included the type of analysis

to perform and how that can be implemented into the python tool. It is representative

of the flow of the final product which evolved gradually throughout the development

stage, so was used for the template of how the program would work in its final

iteration. The development stages and changes of the tool itself will be covered later

in this chapter.

Creating a visualisation of my analysis tool is a crucial step in design and lays out

the structure and requirements of the program in a relatively standardised way

allowing the smooth transfer from idea to code. As my tool is a relatively small

project using Python as the chosen programming language, I did not use a class-

based UML diagram but a more generalised one based on the main concepts of the

tool which includes the interface, and the analysis functions as can be seen above.

Figure 7 (UML diagram for analysis tool)

24

Whilst it is possible to use Python as an object-oriented language and implement

user defined classes, for my smaller scale project I deemed it unnecessary. Usually

for object-oriented programming to be justified, the program would need to be larger,

and classes would be useful as they make the code reusable [33].

In the UML diagram I made sure the scope and model of the GUI would be captured

correctly, helping to map out how the user interacts with the interface and how that

connects on the back end to the functions. The plan is for the interface to remain

simple and readable, presenting a series of buttons and a couple of text boxes for

the user to interact with to analyse their dataset. Each operation that I am aiming for

as a part of my analysis is atomised into individual buttons which are assigned

commands to call a function when pressed by the user, as seen by the ヱcallsヮ
keyword outgoing from each button in the diagram.

All elements which the user can interact directly with are within the ヱwindowヮ
container, representing the GUI the user must navigate to analyse their dataset. To

run the main content analysis functions, they would first need to use one of the text

entry boxes, confirming the file name which is then used by the rest of the buttons to

make sure any called functions are acting upon the correct filename. Once the user

has done this, they have free choice to select the type of analysis they want, all

selected via the buttons on the interface which call the functions required. Where

possible, functions will be reused to make the code less complex and more readable.

For example, if we look at ヱurlButton1ヮ and ヱotpButton1ヮ in the diagram, we can see
they both call the same function, but the parameters can change so the popup

produced by said function outputs the correct data. Furthermore, we can see that

there are four total buttons which lead towards the same function ヱmulti-
finder(lines)ヮ but return different results.

ヱurlButton1ヮ and ヱurlButton2ヮ are the two descriptors for the buttons which allow
users to collect URL specific analyses from the dataset, their OTP counterparts being

ヱotpButton1ヮ and ヱotpButton2ヮ, each having their own command for when pressed.
Both ヱotpButton2ヮ and ヱurlButton2ヮ directly call an intermediary function which acts
as a middleman between the ヱmulti_finderヮ function, allowing for the correct data
being retrieved.

4.4. SMS Analysis Tool

Of all the elements which comprise this project, the largest individual element is the

development of the SMS analysis tool. To achieve the objective of providing

quantitative data in relation to the level of SMS security, we need this tool to go over

the collected dataset and produce a variety of values and statistics which can

explain exactly what is contained in current day messages and what users should be

aware of.

25

4.4.1. GUI

As represented by the UML diagram in figure 6, a large portion of the analysis tool is

the GUI. In terms of user interaction, a graphical user interface is one of the most

ideal options as it provides an intuitive and simple to grasp understanding of system

use in most applications, when designed correctly [34].

Not overcomplicating things is very important in this position; the focus still needs to

be on the code working behind the scenes, so the aim is to build up a simple but

effective graphical user interface that makes getting the required outputs as easy as

possible. Therefore, I decided on a window of short width and longer length in order

to display the required buttons in a vertical arrangement. To make sure I was

designing an efficient user interface, I made sure to adhere to Jakob Nielsenﾟs 10
usability heuristics for UI design [35]. Principles such as number 3, user control and

freedom, is matched by the ability to exit the application at any time through use of

the commonly seen ﾞXﾟ button on each interface window, as well as the fact that at
no time is the user prevented from interacting with the window. Furthermore,

principle number 8, aesthetic and minimalist design was kept in mind when

arranging the layout of the user interface; it is why I used colour coded text for each

analysis feature and used simple button designs arranged in a vertical layout as to

not confuse the user or add unnecessary elements to the window.

It is however important to note that some design decisions are limited by the

capabilities of the tkinter library.

Text Input Box

One of the first things that needs to happen is for the user to select the file they want

to read text data from, in this case the pre-collected data is stored in a text file. The

simplest way of the user selecting this data, whilst also having the option to select

different text files in anticipation of future application, is a text box entry widget from

the tkinter module. There was another option, where the system could be simplified

by having the dataset collected during the project hard coded into the program but

making the code more reusable seemed to be the best way to take things.

Figure 8 (Tkinter text input box)

Button

This user input is then confirmed by pressing a button placed below the entry box as

shown in fig. 9. Tkinter buttons work as an object which can be assigned properties

such as text and command, where command allows us to assign a function to the

action of the user pressing the button. In the given example, the ﾞfileSelectﾟ button
calls the ヱget_fileヮ function.

26

Figure 9 (Tkinter button)

Label

The label is a convenient and simple way of presenting pre-defined text towards the

user, in this case as shown in figure 10, directing the user on how to interact with the

text entry box. This is used several times throughout to inform the user using short

and important statements.

Figure 10 (Tkinter label)

Popup Window (Toplevel)

Below is an example of another way the program delivers output to the user, via the

ﾞToplevelﾟ popup window. The code from figure 11 is inside a function which is called

upon a specific button being pressed. Once the function has calculated what it

needs to, output data is shown to the user like this in a way that grabs their attention

and makes sure they are aware of what exactly has just happened.

Figure 11 - [36] (Tkinter TopLevel window)

4.4.2. Key Functions

4.4.2.1. Get_file Function

Figure 12 - [37] (get_file function)

Figure 12 shows the function responsible for grabbing the user input from the text

box and assigning that as the value for the file to draw data from. The variable

ヱfileNameヮ must be declared as a global variable to allow for the local variable to be

used outside the function as well and the value to remain. Before making this

change, I struggled with a file not found error, as the value of the ヱfileNameヮ was
being reset. This is a section of code which came later in development as hard

coding the dataset and figuring out exact analysis techniques was my priority.

27

4.4.2.2. Collect_data Function

Figure 13 - [38] (collect_data function)

After the file name has been confirmed it can be used as a parameter for the

collect_data function which opens and reads the specific file into a local list ヱlinesヮ
which is used to house the message data for the rest of the analysis. In order to

handle the use case where an incorrect file name is entered, we can use ヱexcept
OSErrorヮ which means we can catch the exception where the file name is not

recognised within the assigned directory, and inform the user of this error and let

them enter a new file name.

4.4.2.3. Multi_finder Function

The centrepiece of the tool is the function shown above in figure 14, ヱmulti_finderヮ.
Throughout development, the exact details of analysis changed into many different

iterations. Initially, I investigated the content of the dataset I was using to get an idea

of what would return valuable statistics and made a list of these key elements that

were featured. The first two of these were finding URLs and OTPs. Frequently I could

see these were appearing in the dataset and they are very relevant to security as

URLs in messages are frequently used to perform phishing or hide malware and

OTPs are the final line of defence for so many users in securing their account and if

Figure 14 (Outdated Version 3 of the multi_finder function) [39]

28

this gets compromised there is a possibility for account compromise and personal

data being leaked.

Aside from collecting the data itself, counting the occurrences within the dataset

gives us a simple figure which can tell us about the overall context of how secure the

messages from the dataset are likely to be. A higher number of URL occurrences

obviously means that a message from the dataset is more likely to, on average,

contain a malicious URL or a phishing link, before we even take into consideration

the ability of the tool to analyse individual URLs. ヱcontains_urlヮ as seen above is a
simple integer counter which is used to keep track of this value, where the counter

value is increased by one after every URL match is confirmed. Its passcode

counterpart can also be seen in both figure 14 and 16, ヱcontains_otpヮ.

Finding OTPs and URLs in the dataset is a difficult task meaning that there were

several options for how the problem could be addressed, with confusion stemming

from the idea that I ultimately wanted to keep both URL and OTP analysis within the

same function. In figure 14, the third iteration of an approach can be seen, where

regular expressions were used to identify both data types, however this caused

some issues with repeat values and numbers within URLs being recognised as OTPs,

as will be detailed below.

As for OTP values, much the same steps were taken as for the URLs, except a much

simpler regular expression was used to find any digits in the messages. Only when

these digits were within the required length of 3 to 6 digits are the numbers

validated, stored, and added to the tally of total OTP occurrences. This is because in

my research looking through hundreds and hundreds of messages, consecutive

numbers between these lengths were the most used in OTPs by far. Straying outside

this range has the possibility of picking up various other digits in messages which

are unwanted, such as mobile numbers.

Several versions were developed, with the task of counting and collecting OTPs and

URLs taking many different shapes. Initially without the use of functions, there was a

single for loop iterating over each message, and for OTPs and URLs an individual if

statement which checked for their respective values and matches. Of course,

running the program procedurally like this does not work when we need to adapt to a

different dataset or map specific code to a GUI as required, hence the use of

functions.

In my second version, I had implemented functions, but struggled with returning the

correct values and making sure that there was no redundant code for each step of

the analysis. For this, I had two separate functions, one for handling OTPs and one

for handling URLs as I was of the mindset that they were not mutually exclusive. This

29

is not entirely wrong as there are cases where an OTP is in a message alongside a

URL, but these are a real minority. However, to make these analyses more reusable, I

combined them into an individual function.

This led to the opposite problem where if the tool was analysing a message which

contained both a OTP and a URL, the URL would be recognised and collected but the

OTP would not, due to the else statement being used, as we can see in figure 15.

In order to remedy this the way in which we check for OTPs had to change. Whilst

regular expressions were very compact code-wise, splitting the message string into a

list of strings using the ヱ.split()ヮ method would allow for a more accurate reading of
message contents and identification of properties. With this there is no risk of

picking up a sequence of numbers which are within criteria length but are part of a

URL for example.

Along with this there are a few edge cases where a single OTP is split with a

whitespace between. To pick up these cases in the occurrence counter, we can

check the list of substrings in the message and if two integers are adjacent, it could

denote a single OTP.

Whilst amending these details it also came to my attention that when looking at the

collected OTP data, the message context is important. Instead of collecting the OTP

itself and storing this in a text file for the user, the entire message which contains the

OTP can be filtered into the file instead, allowing for more understanding of where

the OTP has come from and general details.

Both regular expressions and ヱsplit()ヮ have drawbacks and inaccuracies which are
due in part to the random formatting of the text data, but ultimately regular

expressions proved most accurate when capturing the numerical passcodes. The

formatting of the message data is so erratic that capturing all of the OTPs using the

ヱsplit()ヮ and ヱisnumeric()ヮ methods is impossible. After experimenting with several

different techniques, I found the most effective to be using the regular expression to

search for a number of length 3, 4, 5 or 6 but also one that is not found within a URL

which had already been identified. It is worth noting that there are a very small

number of edge cases where a single OTP is split into 2 numbers separated by

whitespace. Due to time constraints and low impact, I did not spend the time

handling these.

Figure 15 (else statement eliminating OTP recognition)

30

Figure 16 (Final Version of multi_finder)

Furthermore, whilst changing how passcodes were collected, I experimented the

time to completion for using both the ヱsplit()ヮ and ヱinヮ methods compared to regular
expression for finding URLs. The results as seen below show that even if time

efficiency was a key concern, there is not much difference between the methods so

either are acceptable.

Figure 17 (regular expression)

Figure 18 (nested for loop)

Outputs from this function include a list of messages which contain at least one

OTP, a list of URLs, and individual counters for the occurrences of OTPs and URLs.

As seen below in figure 19, the ヱcollectorsヮ, or the lists which collect URLs and
messages containing OTPs are called from within these functions. On the other

hand, the ヱcontains_linkヮ and ヱcontains_otpヮ occurrence values are returned from
calling the ヱmulti_finderヮ function when it is used directly in the command parameter
of the specific button in the GUI, shown below.

Figure 19 (Get URL Occurrences button command)

31

4.4.2.4. Url_collector and otp_collector functions

Figure 20 (collector functions for writing data to files)

In the explanation above I covered how the calculations for both OTP and URL

finders work and we can see given figure 16 the values the function returns. In order

to actually make use of these returned values, there are separate functions

ヱurl_collectorヮ and ヱotp_collectorヮ, are each assigned to a graphical interface button
and call the ヱmulti_finderヮ function with the chosen return value being the relevant
list. Once this data is fetched they can write to their assigned output files in order to

present the data neatly for the user. As touched on earlier, for the ヱotp_collectorヮ
function, the entire message which contains an OTP is written to the file in order to

allow for message context.

4.4.2.5. Keyword_finder function

Another analysis function which was a desired objective was identifying keywords

which could connote specific behaviour or likely malicious intent. In order to do this

there had to be a dictionary of relevant keywords which could point us towards

specific circumstances or type of text message use. I split these into two categories,

ヱvulnerableヮ and ヱdangerousヮ, where vulnerable keywords point toward SMS
messages which potentially contain very sensitive personal data and dangerous

keywords are likely to be found in malicious messages.

32

Figure 21 (keyword finder function)

Similarly to the ヱmulti_finderヮ function, the keyword finder setups up the capture
variables of ヱv_foundヮ and ヱd_foundヮ which hold messages containing an associated
keyword, before going through the dataset line by line and using the ヱinヮ operator
again to check if each of the words in the keyword lists can be found in the message.

Messages meeting the criteria are then written to a new text file, allowing the user to

look at the messages as a whole and see why they have been flagged. This proves

very useful as when used in conjunction with the URL health checker, we can pick up

on messages which may be attempts at phishing or spreading malware without

having to do a case-by-case manual analysis. Furthermore, additional keywords can

easily be added to the list, with more experience using the analysis tool and looking

through messages, a better idea of what keywords are best for finding malicious

behaviours can be built up. For collecting initial keywords research was conducted

into the most frequently used words for phishing and malicious messaging, with a

paper by Gaston LﾟHuillier et al. proving very useful in showing proven examples [38].

4.4.2.6. URL Health Check

The final quantifiable analysis performed on the dataset is the analysis of the URLs

themselves. Whilst there are other types of analyses that could be performed, most

are demanding time wise and require a far more in-depth analysis. This includes

such aspects as sentiment analysis, where the exact contents of each message

could be broken down word by word and the presumed sentiment of the message

derived into a series of pre-selected categories to define exactly what the message

is being used for. This unfortunately is something which lies outside the scope of

this project.

However, verifying what exactly is behind each URL contained within a message can

provide great insight into how likely an unknown link received in a phone inbox is to

be malicious in any way. Malactors are continually using links to try and deceive

unsuspecting victims, as their very nature means to have any clue of what is behind

33

it, you must click. Here lies the issue, as in many cases, once that is done, it is

already too late. Following a link can start a download directly onto your handheld

device, provide its owner with the device information of anyone who is accessing it

or simply be acting as a familiar website in a ruse to collect sensitive information

such as names, addresses and passwords. To combat this, my application has the

ability to use an API to access a third-party URL checker which provides detailed

information on given URLs based on blacklist data and deep machine learning by

IPQS [40]. This ensures an accurate analysis as the scanning algorithms utilise latest

threat data and content analysis whilst minimising false positives. Below is the

implementation of this in my code.

Figure 22 (URL health checker)

Starting off with fetching the given URL input into the text box by the user, the

function then proceeds to format the URL into a valid URL string ready to be

combined with the ヱapi_urlヮ for the request action. The variable ヱapi_urlヮ also
contains a specific key as part of the request, the long string of characters at the end

of the link. This is generated by creating an account on the site, in this case I signed

up for a free account which allows for 5000 uses of the API per month, more than

enough than required for this project, especially given this specific analysis is

performed manually on an individual basis. ヱDataヮ is the returned analysis results
which are printed, after another round of formatting, to the console. Below in figure

23 can be seen the results after an example analysis using a URL extracted from the

dataset.

34

Figure 23 (URL Health Check Result)

5. Results and Evaluation

Overall, the project was a success, with the aims and objectives being met at least to

a certain degree. Research into the security flaws and exploits currently seen in the

SMS ecosystem was conducted and successful, with the analysis of previous works

also being carried out well. These critical reviews covered previous attempts at

remedying security issues and any other research done relating to the content or

security of SMS use. Although the dataset was not collected remotely as anticipated

and a larger dataset could have been more beneficial in providing a varied dataset,

manual collection for a dataset of 200 messages proved to be adequate in showing

the application of the analysis tool itself. Another success, the tool does provide

quantitative data based on the security of SMS messages by analysing several

features within those messages accurately and efficiently. This section will cover a

more in-depth evaluation of the project outcome.

5.1. Exhibits

Two of the quantifiable outputs from this project have been the dataset and the

analysis tool. Although the dataset is not entirely the focus, it was a crucial step in

the specification and design of the project and required a large amount of time to

collect, especially due to attempted methods. In the end the dataset was 200

messages large, formatted into a text file with messages being separated by a new

line. Aside from this the entirety of the analysis tool was able to be developed and fit

the project objectives, alongside a GUI which was somewhat beyond initial aims.

35

5.1.1. Collected Dataset

Figure 24 (Dataset Example)

Collecting the dataset from a public SMS gateway ensured there was a variety of

different types of texts, from one-time passcodes to plain text messages to phishing

links. This is perfect for use with my analysis tool as it exhibits all the different

functions and produces quantitative results which help answer the ultimate question

posed by this project; how secure is the use of SMS?

5.1.2. Analysis Tool

Initially there was not a concrete idea for the form the analysis tool needed to take,

but after developing the basic structures for dataset analysis within python it

became apparent that running a command line program would only complicate the

use of the application and make it more difficult to present the actual findings to the

user. Hence, during the development journey, a GUI approach was adopted and

eventually integrated into the code which was written and reformatted in order to

map directly to the features of this user interface, proving for a simple and seamless

solution which output results cleanly and efficiently.

36

Figure 26 (Both possible output files)

Figure 27(Results window from URL occurrences)

All shown figures are representative of the project results, alongside fig. 23 which

can be seen in section 4.4.2.6 showing the results of a URL health check. Included in

the URL health check are such categories as ヱunsafeヮ which is an overall

assessment judging whether the URL is malicious or not. Other returned values

include whether the site performs any phishing activity, spamming, or adult activity

as well as providing a ヱrisk scoreヮ which is an integer from 0 to 100 based on the

Figure 25 (GUI Main Body)

37

overall assessment of how likely the linked site is to cause any damage or malicious

behaviour.

5.2. Test Cases

To ensure the working condition and results from use of the application, use cases

have been designed to cover various aspects of use and types of interaction.

Table 1 - Test Cases

Test
Case
Number

Test Title Description Expected
Outcome

Actual
Outcome

Comments Status

1 Attempt to
load text data
from non-
existent file.

When entering a filename to
draw SMS data from, enter
the name of a file that does
not exist then confirm file
name and load text data to
see how the program
handles it.

ヱFile not foundヮ
printed to console,
program still runs
allows for another
attempt

Matched
expected
outcome

Although loading
text data does not
work, confirming
the file name does
even if the file does
not exist

Pass

2 Load data
successfully
from a file

Input a legitimate file
name with data in and
confirm file name and
load text data

Program will load
the data and
output popup
confirming data
was collected
successfully.

Matched
expected
outcome

N/A Pass

3 Count URL
occurrences

From a dataset with
exactly 5 URLs make sure
the program also detects
5 URLs

Program will find
and declare all 5
URLs found

Matched
expected
outcome

N/A Pass

4 Count OTP
occurrences

From a dataset with
exactly 5 OTPs make
sure the program also
detects 5 OTPs

Program will find
and declare all 5
OTPs

Matched
expected
outcome

N/A Pass

5 Collect the
messages
containing
OTPs

Collect all 5 messages
which contain a OTP from a
reduced dataset consisting
of total 5 messages all
containing a OTP

Program will find
all 5 OTPs and
write the
associated
messages to an
output file correctly

Matched
expected
outcome

N/A Pass

6 Collect the
URLs from
messages

Collect all 5 URLs from a
reduced dataset consisting
of 5 total messages all
containing a URL

Program will find
all 5 URLs and write
the URLs to an
output file correctly

Matched
expected
outcome

N/A Pass

7 Check OTP
collection

range

From a reduced dataset
consisting of messages
containing various length
numerical codes all outside
the OTP pickup range check
whether they are ignored or
not

Program will not
recognise any of
the codes not
fitting the correct
criteria and return a
counter of 0.

Matched
expected
outcome

N/A Pass

38

8 Test URL
Health Check

From three unique extracted
URLs perform a URL health
check in the analysis tool
and ensure the analysis
output is as expected.

All three URLs will
have a detailed and
complete analysis

Matched
expected
outcome

All 3 URLs returned
a 200 code so
analysis was
successful, and
details were full
and complete

Pass

9 Test URL
Health Check
for Known
Safe URL

Using a reliable and safe
URL:
https://www.amazon.co.uk/
Check that the URL analysis
is accurate.

The analysis will be
complete and show
that the URL is very
safe and not
showing flags for
any malicious
activities.

Matched
expected
outcome

Risk score was
zero, no negative
flags were shown.

Pass

10 Test URL
Health Check
for known
Unsafe URL

Using a URL from a fake
site database [41], perform
a URL health check and
make sure it is flagged as
unsafe.

The analysis will
have a high risk
score above 80 and
will flag as unsafe
overall

Matched
expected
outcome

Risk score = 97 and
the site was
flagged as overall
unsafe

Pass

11 Test for
Messages
Containing
Vulnerable
Keywords

Using a reduced dataset
with 5 messages all
containing at least one
ヱvulnerableヮ keyword, check
the keyword finder picks up
all 5 messages

All 5 keywords will
be identified, and
their related
messages written
to a file

Matched
expected
outcome

N/A Pass

12 Test for
Messages
Containing
Dangerous
Keywords

Using a reduced dataset
with 5 messages all
containing at least one
ヱdangerousヮ keyword, check
the keyword finder picks up
all 5 messages

All 5 keywords will
be identified, and
their related
messages written
to a file

Only 4
keywords
were
identified

Refer to ヱComplex
Test Case 3ヮ

Fail

13 Test for OTP
edge cases

Using a reduced dataset of
5 messages all containing
numbers in various formats
which are not OTPs but
match some of the OTP
recognition criteria see how
many are detected as a
false positive

At least 3 out of 5
of the messages
will be flagged for
containing an OTP

4
messages
out of 5
were
flagged as
containing
an OTP

There is no way for
the tool to
differentiate from
phone numbers,
dates and other
numerical data as
well as OTPs,
hence the false
positives

Fail

14 Test for URL
edge cases

Using a reduced dataset of
incomplete URLs, see if they
are flagged as URLs

All 5 URLs will be
identified if they
contain ヱhttpヮ

All 5
messages
were
flagged as
URLs

Although result is
as expected, this is
a negative
outcome. Adding
the ability to
confirm a URL is
complete before
flagging would be
ideal but is quite
complex

Pass

5.2.1. Complex Cases

Complex Test Case 1

39

When recognising elements within messages, especially OTPs, there is a difficulty

due to such varied formatting. Some messages contain OTPs within brackets, others

split one number, so it is separated by whitespace and others are just formatted

poorly with no whitespace being left between a passcode and the next word in the

message. To test this, I built a specific use case where I created a test dataset

consisting of a small number of messages containing all of these examples so the

accuracy of OTP recognition could be tested on a measured scale.

Title: OTP Recognition Fringe Case 1

Description: 10 messages with varying types of formatting and structure are the test

dataset to see if the analysis tool can correctly identify how many OTPs are

contained within them.

Expected Outcome: Manually identified OTPs match the number of tool-identified

OTPs, which is a total of 9.

Actual Outcome: 11 OTPs recognised

Comments: The analysis tool is picking up two additional OTPs incorrectly. This is

due to two reasons. Firstly, one of the messages contains a single OTP split into two

separate numbers. Secondly, another of the messages contains some incoherent

characters in the message alongside a legitimate OTP. Within these characters is a

3-digit number which is being incorrectly identified. Both these cases could be easily

remedied by limiting the number of OTPs found per message to 1 by amending the

following section of code in the ヱmulti_finderヮ function:

Figure 28 (OTP finder with issue)

Figure 29 (OTP finder with issue fixed)

This solution is applicable because there is only ever going to be one total legitimate

OTP per message.

Status: Failed (Fix applied)

Complex Test Case 2

In various tests where the keyword analysis is used, many more messages than

expected are flagged as ヱdangerousヮ. This test case is an attempt to identify why.

40

Title: Dangerous keyword oversaturation test

Description: 50 messages picked at random from the dataset will be tested for the

dangerous keyword analysis to check the rate of detection

Expected Outcome: 10 or less messages will be confirmed as dangerous

Actual Outcome: 11 total messages recognised and flagged as dangerous

Comments: In this test all 11 messages were flagged as dangerous due to the

keyword ヱaccountヮ. The ヱDangerousヮ keywords list contains ヱaccountヮ, which is a

frequently used message found in many messages which are not malicious.

Although the word itself is also used in some malicious messages, the number of

false positives mean that ultimately the word should be removed from the dataset as

it is doing more harm than good to the analysis results, and it is a very quick fix. After

the fix has been completed, only 2 out of 50 messages are flagged as dangerous, a

far more realistic statistic.

Status: Failed (Fix applied)

Complex Test Case 3

As seen in test case 12, there was an unexpected result when dealing with testing

the effectiveness of the ヱdangerousヮ keywords. A message containing the

dangerous keyword ヱcardヮ was not recognised and this test case is designed to find

out why and how this can be fixed.

Title: Dangerous keyword missed identification test

Description: Using a dataset which contains use of every single dangerous keyword

exactly once and performing a keyword analysis should show us where the issue lies
Expected Outcome: No messages will be flagged as dangerous because of flawed

logic

Actual Outcome: 11 total messages recognised and flagged as dangerous

Comments: The operation logic prioritises the words in the ヱvulnerableヮ keyword list
incorrectly, this will be corrected by changing the ヱelifヮ statement to an ヱifヮ
statement.

Figure 30 (Problematic Logic)

Figure 31(Fixed Logic)

Status: Failed (Fix applied)

41

5.3. Results tables

In this section the overall results of a full analysis performed on the 200-message

dataset collected during the project timeline will be documented with comments on

accuracy and overall effectiveness in relation to the project aims.

5.3.1. Dataset Analysis Results

Table 2 - Dataset Analysis Results

Analysis Type Results (out of 200) Comments
OTP Occurrences 132 OTPs identified OTPs do make up a large quantity of the texts available

through public SMS gateways, so this is to be expected,
but given the popularity of OTP use regarding account
security it is not entirely a surprise.

URL Occurrences 46 URLs identified Every single URL was correctly identified and collected
from the dataset, there is an interesting variety of types
of links here. There are 7 links which redirect to PayPal
settings, 10 links which redirect to gambling websites of
various varieties and plenty of other types besides.

ヱDangerousヮ Messages 30 Messages A good number of messages are flagged correctly for
containing buzzwords like ヱfreeヮ and in these cases even
if the message itself is not inherently harmful or
malicious, the type of behaviour is, and users associating
this vocabulary with messages they perceive to be safe
is part of the problem why SMS is so widely used as an
attack vector. On the other hand, due to PayPal being
used so widely to make victims feel comfortable clicking
a link, there are several legitimate messages from PayPal
which are being wrongfully flagged as dangerous.

ヱVulnerableヮ Messages 26 Messages For this case, most captured cases are correctly
identified as most of them are messages containing a
direct link to reset a password. Having this message be
interrupted can instantly mean the loss of account and
personal data to a malicious actor.

Extracted OTP Message Examples

1. ヱWeChat code (396018) may only be used once for account recovery.ヮ
2. ヱYour Proton verification code is: 341777ヮ

Extracted URL Examples

1. ヱhttps://www.hooyu.com/s/oK6tヮ
2. ヱhttps://verification.sandbox.meonly.co/verification/46b8c135-0866-403d-ad70-

bbe44e3d6719 ヱ

Extracted Dangerous Message Examples

42

1. ヱCongratulations! Your Tide account is now up and running. Your card will be

delivered to the company trading address you provided. Welcome to Tide!ヮ
2. ヱThank you for ordering with Sit Web 3 UK -Papa's Coupon for £18.10. You can

also pay quickly and securely by card using the below link. https://sit-web-3ヮ

Extracted Vulnerable Message Examples:

1. ヮThank you for requesting a new password. Your pass code is 6883 Alternatively,

click this link to reset your password: https://www.casino2020.co.ukヮ
2. ヱTap to reset your Instagram password: https://ig.me/27pnMJeGWFLmIrwヮ

5.3.2. URL Analysis Results

Due to the sophisticated nature of the URL analysis within the tool, to demonstrate

the results, ten total URLs will be extracted from the pre-collected dataset and a full

analysis report will be run, the results documented in this table. Because of the

nature of this analysis being run on a case by case basis, testing all URLs present

within the dataset is relatively redundant, because although it would provide

complete insight as to whether any truly malicious URLs are found and the average

makeup of a URL found within SMS messages, the point of the URL health analysis is

to be able to use it on a specific URL of your choice to verify itﾟs safety. Using 10

URLs for these test results means we can get an idea of what the results are likely to

be like for most cases without having to perform the analysis on every single URL

from the dataset.

Table 3 - URL Analysis Results

URL
Number

Full URL Analysis
Success

Unsafe Spam Malware Phishing Suspicious Adult Risk
Score

1 https://bbh.d
ashadmit123.
com

True False False False False True False 61

2 http://jmmky.
com/39fa8

True False False False False False False 0

3 https://py.pl/
895gdsEq2nb

True False False False False False False 0

4 https://www.
staytouch.co
m/how-to-
stayt

True False False False False True False 75

5 http://mrspin
.co.uk/c/a/A
3HgBd

True False False False False False False 0

6 http://bb0ss.
uk/ee8

True False False False False True False 77

7 http://drslot.
mobi/2a81c

True False False False False False False 0

43

8 https://cv2de
v.med

True False True False False True False 92

9 https://www.
hooyu.com/s
/oK6t

True False False False False True False 75

10 https://rwdzu
k.com/3a308

b81

True False False False False True False 55

5.4. Evaluation

This section will detail a critical evaluation of the above test cases and results tables,

an explanation of how suitable the program is in fitting the requirements for the

project and the reasoning behind the tests conducted.

5.4.1. OTP Analysis

The OTP analysis is a crucial section of the analysis toolﾟs implementation given how

common OTPs are within the SMS ecosystem. I knew from the start when collecting

the data how common they were and knew their specific analysis aspect would have

to be accurate and sophisticated to well represent the true frequency. Overall, I feel

like the implementation worked very well and is as very accurate. After encountering

an issue like the one detailed in the complex test case 1, the small problems with

accuracy were totally ironed out and in the final test carried out on the entire 200-

word dataset, the results align and are exactly as expected. From the 200 total

messages, 132 messages were identified as OTP messages, and this is confirmed

by the outputted file containing all messages containing an OTP as this is also a

total of 132 messages.

However, there are a handful of anomalies, whereby false positives are being

flagged, in one case due to a message containing a business telephone number and

in another case a date in the format DD/MM/YYYY was flagged as the year was

identified as an OTP. Despite these edge cases, most are correctly identified and

flagged which is important given the amount of use OTP sees in the dataset and the

overall use of SMS messaging, and this aspect fits the requirements well as it gives

us a plain figure telling us exactly how many messages OTPs are, a technique used

to secure accounts. With many messages containing a passcode used to change

passwords, secure accounts, or gain access to a login, the risk of security being

compromised is clearly high; if one of the messages from the dataset was

intercepted at random, statistics tell us that it is likely an OTP message meaning the

listener could theoretically gain access instead. Ensuring users are aware of this risk

is part of the desired project outcome.

44

There is room for improvement in the accuracy of the detection; the code detection

is slightly broad hence the pickup of such data as phone numbers, so being able to

remedy this by categorising numerical data which is found would be beneficial.

5.4.2. URL Analysis

Every time a URL is part of a text message it is an instant risk in a few different ways.

Whether it is receiving one from an unknown number, as part of a push notification,

or a link to reset your password it is an inherent risk due to the inherent quality of the

URL being that the only way for most people to verify what it is, they must follow it.

Doing so can instantly put a device at risk from malicious software being

downloaded onto a device or it can mean an unsuspecting victim handing over

account access through a cleverly disguised phishing site.

Given the dataset results showing that 46 unique URLs were identified, we can

determine there is a roughly 25% chance of a URL being contained within a received

text. This statistic is worryingly high, as although through testing none of the

randomly selected URLS were flagged as specifically unsafe, each individual URL

provides a new risk opportunity. Furthermore, most of the URL types found were

password reset links, an extreme risk as it provides direct access to an account if

intercepted by a malicious actor. Hence, in terms of providing insight into how

secure SMS is, this project tool has shown there is a surprisingly high risk when

dealing with messages containing URLs and that users should be very conscious of

only following links they are expecting to receive when they can verify the identity of

the sender is as expected. This aspect of the program also fit the requirements well

as there were no URLs which were missed in identification and the quantitative

output from testing shows there is a risk to security.

Accuracy with picking up URLs in the data is on point, every single possible link was

found and extracted neatly into an output file ready to be used in the health check

analysis, exactly in line with the aims of this aspect of analysis. Using third party

resources to allow for this check is extremely useful as providing a thorough report

like this requires sophisticated and widely tested algorithms.

5.4.3. Keyword Analysis

One of the trickier aspects of the tool, keyword analysis still worked relatively well in

terms of identifying likely dangerous or vulnerable messages. The trouble with

accuracy is to be expected when the entire sentiment of the message is not

considered, so the context cannot be figured out meaning there are always going to

be false positive results. However, it does provide valuable information because out

of the 30 dangerous and 26 vulnerable declared messages, users would be able to

see the type of behaviours and word usage in genuinely threatening messages.

45

Using this as a teaching mechanism would be greatly beneficial and work towards

project aims of informing potential victims of threatening behaviour patterns

meaning these scenarios can be stopped before ever encountered.

The dictionary of words used to identify the dangerous and vulnerable keywords

would benefit from further research, due to the current lists not being extensive or

exhaustive.

5.4.4. URL Health Check Analysis

The URL Health Check analysis utilising a third-party API is one of the most robust

sections of the developed program. Providing a reliable and thorough result output

assessing multiple aspects of URL safety means this element is extremely helpful to

users. It completely removes the risk of receiving a message containing a URL as it

could be copied directly into this tool and a full check can either warn of a potential

danger or reassure users.

In terms of what it tells us of the collected data, from the ten sampled URLs we can

see six of the ten showed risk ratings of above 50, but none were ruled as overall

unsafe. There were no analyses which failed and again six URLs were flagged as

suspicious showing that although there was no proven malicious activity picked up

there is reason to be cautious with these websites. These statistics indicate that

links found in text messages should be treated with precaution. Of the tested links,

none showed positive for malware or phishing directly, but this does not mean they

are not capable of such behaviours. Relying on AI algorithms and proprietary data

[40] means that such an in-depth analysis would not be possible within this project

scope, so the service is extremely beneficial in reaching the project goal of

presenting quantitative data and showing how secure SMS is.

5.5. Recommendations based on results

Due to the aim of this project being proving what SMS is currently being used for and

what exactly the everyday users must watch out for regarding safely using the

platform, recommendations will be provided based on the results and evaluation as

to what users should be aware of and how to remain secure whist still using SMS.

As shown by the URL collection and count, there is a relatively high chance (around

25%) that they will be encountered in everyday text messages. The associated

security risk proved to be surprisingly high with over 50% of a small test sample

proving to be deemed suspicious so recommendations should be to click a link only

ever when you know the sender and are expecting the message to contain a link.

However, the other element of risk is using services which provide a password reset

46

link over SMS; enabling these services puts your data and accounts at clear risk of

compromise and should be avoided whenever possible.

In terms of one-time passcodes, these are proven as a very popular option all round

for securing and accessing account logins and setups. Although this is a far better

solution than the password reset links for example, a malicious actor with enough

information and access could feasibly attempt to access an account and eavesdrop

text messages to receive and use the passcode for their own access. Using an

authentication app such as Microsoft Authenticator [42] which prevents this kind of

risk.

Keyword analysis is a great tool which can provide awareness to users based on

words which are commonly associated with malicious behaviours as well as making

sure that users are aware of information they should not be spreading over text. As

SMS is inherently insecure, sending texts with information such as addresses,

contact details, card numbers and more is an extremely risky move and all it takes is

for someone to attempt to view your texts to have access to all this data. Any

company sending personal data back to you via text is a security risk and when

messaging family and friends make sure you are conscious of not sending

information you wouldnﾟt want to fall in the hands of a stranger if it can be avoided.

6. Future Work
One idea given more time would be to implement sentiment analysis by looking at

syntax, but the complexity of this particular issue means it was something that could

not be added within the original project scope. This kind of feature would mean

gaining a far more developed understanding of message context on a case-by-case

basis and in theory at least would improve the accuracy of the analysis by

eliminating several false positives.

Another more detailed feature which was theorised is the ability to extract personally

identifiable details such as names, addresses and more. Researching into the

application of such a task revealed that a complex classification algorithm would be

required and in the case of Rui Zhang et al. research, it was shown that a complex

Co-guided Neural Network to be used for name recognition [43]. Such development

is far too complex and outside the scope of the project in terms of time and subject

as neural networks and syntax recognition are large fields of research besides.

Given the opportunity I would have also liked to do more in depth research based on

the ヱvulnerable and ヱdangerous keyword ideas, where I could spend more time
looking for research and documentation based on syntax related to phishing and

malicious messages.

47

Added functionality, which would improve the programﾟs accuracy with identification,

is also something that I would have liked to do.

One of the issues discussed earlier is the false positive identification of some OTPs

which are phone numbers or specifically formatted dates. Having the ability to

recognise specifically formatted numbers and categorise them would greatly

improve the accuracy of this specific analysis element and is something I believe

could be done quite feasibly with the given resources if there were more time to

develop it.

A more complex idea which would be interesting to pursue is collecting a dataset of

known malicious messages from various sources to use as example data. Having

this as a source would mean building a far more accurate series of keywords to use

in the analysis stage as the number of messages used in the programﾟs keyword
dictionary is something that could be improved. This would not only reduce false

positive results but would mean keeping up with current trends as they inevitably

change, adding longevity to the project.

As a part of the test cases for analysis, incomplete URLs were tested to see if they

were picked up and flagged. They were, but obviously these URLs are not really of

use if they are incomplete because they cannot be health tested by the program nor

stored to make a record of it, so adding in a feature which means the tool only picks

up complete functional URLs would be a nice addition even though it would not

make much of a difference to the overall performance of the tool.

7. Conclusions

7.1. Aims & objectives Reflection

For this section I will be referring to the Aims & Objectives outlined in chapter 1.3.

7.1.1 Objective 1: Outline Key Security Flaw or Exploits in SMS Services

and Applications

The entirety of objective 1, parts a, b, c and d were all related to researching into

SMS, the system implementation and how it is used as a service, including research

into large-impact incidents regarding SMS security being breached, as well as

inherent flaws and available exploits. This was achieved clearly through the thorough

research spanning the entirety of chapter 2.

48

7.1.2 Objective 2: Identify and Explain Both the Advantages and

Limitations of SMS as a Service, Providing Quantitative Data to Show

Relevance to Security

Related works and SMS limitations is covered in detail also in chapter 2, with the

SMS dataset being collected as per part ﾞbﾟ. Admittedly, the collection of the data did

not go as planned and manual collection had to be resorted to, meaning the dataset

was not as extensive as it could be, therefore this aim was not met to its initially

desired specification. Analysis and documentation were covered completely during

the main bodies of sections 4 and 5, with real world context being applied, and the

results of analysis on the dataset were also presented, meaning the remaining

objectives were successfully met.

7.1.3 Objective 3: Reflection on SMS Analysis and Results

Recommendations

A full reflection and results evaluation was fully covered in this chapter 5, with

extensive discussion on SMS use with relevance to security. Full recommendations

were also covered in section 5.5, meeting all the sub-objectives in this case.

Overall, all objectives were met at least to some degree, with the majority being met

completely and some even exceeded. There are some more particular areas of the

project such as dataset collection and quantity of results output where I would have

liked to produce more.

7.2 What Has Been Learned and Achieved

During the entire project lifetime, I have learned a wide breadth of different things, all

of which will help me greatly moving forward, including soft skills and more niche

subject specific knowledge.

Due to the process of data collection and programming the data analysis itself being

a longer than anticipated process, there was less time to implement some desired

additions to the analysis checklist which were part of possible additions to features.

A more forgiving time plan would have perhaps allowed for a more linear and

thorough development.

Following this I can say time management is a key aspect in creating a project of this

scale and sticking to the originally planned schedule as shown in the project Gantt

chart was extremely difficult. In reality I found that workflow is not predictable, nor is

it linear. Following the projection for time expectation in each task meant some other

tasks which ended up taking more time than expected left the project outside of the

49

planned timescale. Furthermore, dealing with problems and changes in project goals

requires a lot of ingenuity; thinking of a different way to approach a particular task

whilst staying as aligned as possible to the initial planning is very difficult and

sometimes you must make compromises, sacrificing aspects of the project which

can most likely be afforded to be sacrificed. Ultimately in experiencing this I learned

that prioritising tasks when behind schedule is important, as otherwise it is easy to

get snowed under with work that keeps creeping up on you and pressure mounting

makes it harder to focus on individual tasks.

During the research section of the project, I learned a lot of subject specific

knowledge especially surrounding cellular network infrastructure and the way in

which I had to conduct research into related topics gave me a better understanding

of the way in which to approach a project of this scale. This can be applied in the

future to both professional and personal projects to ensure that they are planned,

developed, and concluded to the same high standard, using the same techniques

used here.

Another positive I can draw from the experience is the problem-solving element.

Trying to create a piece of software using various programming libraries and

techniques required a lot of forethought and planning. Sometimes the best decision I

could make was just putting time into reading information from official sources such

as documentation pages, as getting an understanding of how a particular feature

functions can be a lot more valuable than simply looking for the solution to a specific

problem scenario. In doing this myself, I was able to adopt this habit into my skillset

and it meant I am concluding this project having more practically applicable skills

when it comes to programming.

One aspect which I can appreciate in hindsight was not done as well as possible is

the application testing. Though my test cases were well thought out, there were at

least 2 cases where undocumented fiddling with the tool brought to light issues that

I did not even expect to encounter. Making a more thorough plan for testing all

possible flaws and features is a crucial aspect to project development and in my

next endeavour I will make sure to apply this.

8. Reflection
At first the scale of this project was somewhat overwhelming as there was so much

to consider, from planning, to research, to development and more. The first thing to

draw me to this project was the focus on security, a passionate topic of mine and I

was determined to undertake a project which I cared for and for that I am very glad.

50

Having that level of drive when part of me was feeling project burnout kept me going

and determined to achieve a solid final product and ensure the aims and objectives

were going to be met. This has taught me that having genuine passion for a topic

can take you far and even when you hit patches where it seems so much harder to

get work done you are able to find a way to carry on.

For the subject of SMS, it is so much more in depth than I could have imagined. From

doing background research and finding how complex the infrastructure system is, to

looking into all the weaknesses, and reading over other projects which also try and

solve the issue of SMS security in some way. Almost an overload of information, I

tried hard to stay focused on the main objective, another difficult issue where I was

finding myself checking back with my supervisor for clarification very often in our

weekly meetings. Keeping meeting notes helped enormously as the tips and advice I

was receiving was invaluable, so being able to load up the notes document and refer

to this was reassuring and allowed me to not get carried away with ideas which

strayed from the project goals and scope.

Taking this forward, I will make sure to keep placing high value on the advice of

those with experience, without this resource I am sure I would have lost my way on

the project more than a few times and produced a far less sophisticated result.

Documenting my own progress as I went is also something I will continue to do in

future projects, as when looking back on my notes during report writing stages I

realised without the notes, I had no idea of specific details or trains of thought or

smaller timescales which the note-keeping retained. Producing these documents

was another key factor to keeping the project on track and helping with the report

writeup, as it is easy to miss sections of implementation if you are not careful.

This plays into the transferrable skill of autonomy, whereby I had to make sure I was

responsible for my own work. Keeping track of the time and being the one to make

recalculations when I ran out of it is an important factor to enabling large projects

like this to be completed. It is also a skill which can be applied to plenty of different

scenarios where there is any degree of personal management in play and is

something I will make sure to only improve in moving onwards.

Overall, I am pleased with the outcome of the project and can confidently say the

planned aimed and objectives have been met, creating a strong overall piece of

work. From this experience I will take many lessons and learned skills and keep

applying them to every task I consider in my future.

51

References
[1] Aaryaman Aashind, Jan 2022. Texting Statistics UK [2022 Edition]. Available:

https://cybercrew.uk/blog/texting-statistics-uk/ [accessed 03/02/22]

[2] The Open University, 2014. Text Messaging Usage Statistics. Available:

https://www.openuniversity.edu/news/news/2014-text-messaging-usage-statistics

[accessed 03/02/22]

[3] Wickr CTO Cristopher Howell, Nov 2019. How SMS Works and Why You Shouldnﾟt Use It
Anymore. Available:

https://www.popularmechanics.com/technology/security/a29789903/what-is-sms/

[accessed 03/02/22]

[4] Postscript. November 2020. Text Messaging Marketing Statistics 2020. Available:

https://postscript.io/blog/text-messaging-statistics [accessed 05/02/22]

[5] E. Wilde et al., January 2010. URI Scheme for Global System for Mobile Communications

(GSM) Short Message Service (SMS). Available:

https://www.ietf.org/rfc/rfc5724.txt#:~:text=GSM%20SMS%20 messages%20are%20

alphanumeric,CHAR%5D

[6] Bradley Reaves et al., December 2018. Characterizing the Security of the SMS Ecosystem
with Public Gateways. Available: https://dl.acm.org/doi/10.1145/3268932

[7] Clickatell, Unknown. 6 Industries using SMS Messaging. Available:

https://www.clickatell.com/articles/digital-marketing/6-industries-using-sms-messaging/

[accessed 10/02/22]

[8] Ikechukwu Ibekwe, Salem Aljareh. June 2012. SMS Security: Highlighting its
vulnerabilities & techniques towards developing a solution. Available:

https://cybercrew.uk/blog/texting-statistics-uk/
https://www.openuniversity.edu/news/news/2014-text-messaging-usage-statistics
https://www.popularmechanics.com/technology/security/a29789903/what-is-sms/
https://postscript.io/blog/text-messaging-statistics
https://www.ietf.org/rfc/rfc5724.txt#:~:text=GSM%20SMS%20messages%20are%20alphanumeric,CHAR%5D
https://www.ietf.org/rfc/rfc5724.txt#:~:text=GSM%20SMS%20messages%20are%20alphanumeric,CHAR%5D
https://dl.acm.org/doi/10.1145/3268932
https://www.clickatell.com/articles/digital-marketing/6-industries-using-sms-messaging/

52

https://researchportal.port.ac.uk/en/publications/sms-security-highlighting-its-

vulnerabilities-amp-techniques-towa

[9] UnboundSecurity. August 17th, 2021. Why SMS OTP Is Not Enough Security for
Authentication. Available: https://www.unboundsecurity.com/blog/sms-based-otp-is-just-

not-good-enough/ [accessed 01/03/22]

[10] Mohammed Shafiul Alam Khan, Chris J Mitchell. September 2016. Retrofitting Mutual
Authentication to GSM Using RAND Hijacking. Available:

https://www.researchgate.net/publication/308193943_Retrofitting_Mutual_Authentication_t

o_GSM_Using_RAND_Hijacking

[11] Neil Croft. October 2012. On Forensics: A Silent SMS Attack. Available:

https://ieeexplore.ieee.org/document/6320454

[12] Norton LifeLock Employee. January 2018. What Is Smishing?. Available:

https://us.norton.com/internetsecurity-emerging-threats-what-is-smishing.html [accessed

10/02/22]

[13] Lindsey OﾟDonnell. February 19th, 2020. SMS Attack Spreads EMOTET, Steals Bank
Credentials. Available: https://threatpost.com/sms-attack-spreads-emotet-bank-

credentials/153015/ [accessed 15/02/22]

[14] Sandhya Mishra. July 2021. DSmishSMS - A System to Detect Smishing. Available:

https://www.researchgate.net/publication/353531607_DSmishSMS-

A_System_to_Detect_Smishing_SMS

[15] Ali M. Sagheer. February 2015. SMS Security For Smartphones. Available:

https://www.researchgate.net/publication/283594319_SMS_Security_for_Smartphone#read

[16] Rūta Rimkienė. December 2020. What is AES encryption and how does it work?

Available: https://cybernews.com/resources/what-is-aes-encryption/ [accessed 14/03/22]

[17] GeeksForGeeks. December 2021. What is RC4 Encryption? Available:

https://www.geeksforgeeks.org/what-is-rc4-encryption/ [accessed 14/03/22]

[18] Ikechukwu Ibekwe, Salem Aljareh. June 2012. SMS Security: Highlighting its
vulnerabilities & techniques towards developing a solution. Available:

https://researchportal.port.ac.uk/en/publications/sms-security-highlighting-its-

vulnerabilities-amp-techniques-towa

[19] Bradley Reeves, Logan Blue et al., July 2016. Detecting SMS Spam in the Age of

Legitimate Bulk Messaging. Available: https://dl.acm.org/doi/10.1145/2939918.2939937

[20] M. Hassan Shirali-Shahreza et al., August 2008. An Anti-SMS-Spam Using CAPTCHA.

Available: https://ieeexplore.ieee.org/abstract/document/4609698

https://researchportal.port.ac.uk/en/publications/sms-security-highlighting-its-vulnerabilities-amp-techniques-towa
https://researchportal.port.ac.uk/en/publications/sms-security-highlighting-its-vulnerabilities-amp-techniques-towa
https://www.unboundsecurity.com/blog/sms-based-otp-is-just-not-good-enough/
https://www.unboundsecurity.com/blog/sms-based-otp-is-just-not-good-enough/
https://www.researchgate.net/publication/308193943_Retrofitting_Mutual_Authentication_to_GSM_Using_RAND_Hijacking
https://www.researchgate.net/publication/308193943_Retrofitting_Mutual_Authentication_to_GSM_Using_RAND_Hijacking
https://ieeexplore.ieee.org/document/6320454
https://us.norton.com/internetsecurity-emerging-threats-what-is-smishing.html
https://threatpost.com/sms-attack-spreads-emotet-bank-credentials/153015/
https://threatpost.com/sms-attack-spreads-emotet-bank-credentials/153015/
https://www.researchgate.net/publication/353531607_DSmishSMS-A_System_to_Detect_Smishing_SMS
https://www.researchgate.net/publication/353531607_DSmishSMS-A_System_to_Detect_Smishing_SMS
https://www.researchgate.net/publication/283594319_SMS_Security_for_Smartphone#read
https://cybernews.com/resources/what-is-aes-encryption/
https://www.geeksforgeeks.org/what-is-rc4-encryption/
https://researchportal.port.ac.uk/en/publications/sms-security-highlighting-its-vulnerabilities-amp-techniques-towa
https://researchportal.port.ac.uk/en/publications/sms-security-highlighting-its-vulnerabilities-amp-techniques-towa
https://dl.acm.org/doi/10.1145/2939918.2939937
https://ieeexplore.ieee.org/author/38277419800
https://ieeexplore.ieee.org/abstract/document/4609698

53

[21] Tim Parsons. May 2019. When to Use Waterfall vs. Agile. Available:

https://www.macadamian.com/learn/when-to-use-waterfall-vs-agile/ [accessed 02/04/22]

[22] Gaurav Kumar, Pradeep Kumar Bhatia. August 2012. Impact of Agile Methodology on

Software Development Process. Available: https://www.researchgate.net/profile/Gaurav-

Kumar-

175/publication/255707851_Impact_of_Agile_Methodology_on_Software_Development_Pro

cess/links/00b49520489442e12d000000/Impact-of-Agile-Methodology-on-Software-

Development-Process.pdf

[23] Raimo Streefkerk. April 2019. Qualitative vs. Quantitative Research | Differences,
Examples & Methods. Available: https://www.scribbr.com/methodology/qualitative-

quantitative-research/#:~:text=and%20qualitative%20methods%3F-

,Quantitative%20research%20 deals%20with%20numbers%20and%20

statistics%2C%20while%20qualitative%20research,and%20experiences%20in%20more%20d

etail. [accessed 04/04/22]

[24] Octoparse. March 2022. V8.5.2. Available:

https://www.octoparse.com/download/windows [accessed 12/04/22]

[25] Parsehub. Available: https://www.parsehub.com/

[accessed 12/04/22]

[26] Zyte, Scrapy. March 2022. V2.6.2. Available: https://scrapy.org/

[27] JT28, Stackoverflow. August 2016. How to solve 403 error in scrapy. Available:

https://stackoverflow.com/questions/39202058/how-to-solve-403-error-in-scrapy [accessed

08/04/22]

[28] A Bogdanchikov et al. 2013. Python to learn programming. Available:

https://iopscience.iop.org/article/10.1088/1742-6596/423/1/012027/meta

[29] Tkinter. v3.10.4. Available: https://docs.python.org/3/library/tkinter.html [accessed

02/05/22]

[30] Re - Regular Expression Operations. v3.10.4. Available:

https://docs.python.org/3/library/re.html [accessed 19/04/22]

[31] Requests. v2.27.1. Available: https://docs.python-requests.org/en/latest/ [accessed

23/04/22]

[32] Urllib. V3.10. Available: https://docs.python.org/3/library/urllib.html [accessed

23/04/22]

[33] Ryan Thelin. September 2020. How to use Object-Oriented Programming in Python.

Available: https://www.educative.io/blog/how-to-use-oop-in-python [27/04/22]

https://www.macadamian.com/learn/when-to-use-waterfall-vs-agile/
https://www.researchgate.net/profile/Gaurav-Kumar-175/publication/255707851_Impact_of_Agile_Methodology_on_Software_Development_Process/links/00b49520489442e12d000000/Impact-of-Agile-Methodology-on-Software-Development-Process.pdf
https://www.researchgate.net/profile/Gaurav-Kumar-175/publication/255707851_Impact_of_Agile_Methodology_on_Software_Development_Process/links/00b49520489442e12d000000/Impact-of-Agile-Methodology-on-Software-Development-Process.pdf
https://www.researchgate.net/profile/Gaurav-Kumar-175/publication/255707851_Impact_of_Agile_Methodology_on_Software_Development_Process/links/00b49520489442e12d000000/Impact-of-Agile-Methodology-on-Software-Development-Process.pdf
https://www.researchgate.net/profile/Gaurav-Kumar-175/publication/255707851_Impact_of_Agile_Methodology_on_Software_Development_Process/links/00b49520489442e12d000000/Impact-of-Agile-Methodology-on-Software-Development-Process.pdf
https://www.researchgate.net/profile/Gaurav-Kumar-175/publication/255707851_Impact_of_Agile_Methodology_on_Software_Development_Process/links/00b49520489442e12d000000/Impact-of-Agile-Methodology-on-Software-Development-Process.pdf
https://www.scribbr.com/methodology/qualitative-quantitative-research/#:~:text=and%20qualitative%20methods%3F-,Quantitative%20research%20deals%20with%20numbers%20and%20statistics%2C%20while%20qualitative%20research,and%20experiences%20in%20more%20detail
https://www.scribbr.com/methodology/qualitative-quantitative-research/#:~:text=and%20qualitative%20methods%3F-,Quantitative%20research%20deals%20with%20numbers%20and%20statistics%2C%20while%20qualitative%20research,and%20experiences%20in%20more%20detail
https://www.scribbr.com/methodology/qualitative-quantitative-research/#:~:text=and%20qualitative%20methods%3F-,Quantitative%20research%20deals%20with%20numbers%20and%20statistics%2C%20while%20qualitative%20research,and%20experiences%20in%20more%20detail
https://www.scribbr.com/methodology/qualitative-quantitative-research/#:~:text=and%20qualitative%20methods%3F-,Quantitative%20research%20deals%20with%20numbers%20and%20statistics%2C%20while%20qualitative%20research,and%20experiences%20in%20more%20detail
https://www.scribbr.com/methodology/qualitative-quantitative-research/#:~:text=and%20qualitative%20methods%3F-,Quantitative%20research%20deals%20with%20numbers%20and%20statistics%2C%20while%20qualitative%20research,and%20experiences%20in%20more%20detail
https://www.octoparse.com/download/windows
https://www.parsehub.com/
https://scrapy.org/
https://stackoverflow.com/questions/39202058/how-to-solve-403-error-in-scrapy
https://iopscience.iop.org/article/10.1088/1742-6596/423/1/012027/meta
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/re.html
https://docs.python-requests.org/en/latest/
https://docs.python.org/3/library/urllib.html
https://www.educative.io/blog/how-to-use-oop-in-python

54

[34] Tom Fellmann et al. March 2007. A command line interface versus a graphical user
interface in coding VR systems. Available:

https://www.researchgate.net/publication/234818436_A_command_line_interface_versus_a

_graphical_user_interface_in_coding_VR_systems

[35] Jakob Nielsen. April 1994. 10 Usability Heuristics for User Interface Design. Available:

https://www.nngroup.com/articles/ten-usability-heuristics/

[36] Geeksforgeeks. August 2021. Python Tkinter - Toplevel Widget. Available:

https://www.geeksforgeeks.org/python-tkinter-toplevel-widget/ [accessed 04/04/22]

[37] StackOverflow - Paul Stephenson. January 2009. Using global variables in a function.

Available: https://stackoverflow.com/questions/423379/using-global-variables-in-a-function

[accessed 27/04/22]

[38] StackOverflow - Thomas Wagenaar. February 2015. How to handle FileNotFoundError

when ヱtry… except IOErrorヮ does not catch it?ヮ Available:

https://stackoverflow.com/questions/28633555/how-to-handle-filenotfounderror-when-try-

except-ioerror-does-not-catch-it [accessed 06/05/22]

[39] Gaston LﾟHuillier et al. May 2010. Latent semantic analysis and keyword extraction for
phishing classification. Available:

https://ieeexplore.ieee.org/abstract/document/5484762?casa_token=BJCImdSCD6MAAAA

A:9X-bR7D7S4FDhynrKlXFSSLN2-

uc8DEEN53NXYN342O5jmf7pbcm6wZvbukHgurn9kpEUHf0EA [accessed 20/04/22]

[40] Ipqualityscore - [used API]. Available: https://www.ipqualityscore.com/threat-

feeds/malicious-url-scanner [accessed 24/04/22]

[41] Artists Against 419. Updated – May 2022. Fake Sites Database. Available:

https://db.aa419.org/fakebankslist.php [accessed 21/05/22]

[42] Microsoft Authenticator – Available now on Google Play and App Store.

https://www.microsoft.com/en-us/security/mobile-authenticator-app [accessed 24/05/22]

[43] Rui Zhang et al. March 2021. NameRec*: Highly Accurate and Fine-grained Person
Name Recognition. Available: https://www.semanticscholar.org/paper/NameRec*%3A-

Highly-Accurate-and-Fine-grained-Person-Zhang-

Dai/da25df7fc6480fa3f17f9f1624fa25cb2461edd3

https://www.researchgate.net/publication/234818436_A_command_line_interface_versus_a_graphical_user_interface_in_coding_VR_systems
https://www.researchgate.net/publication/234818436_A_command_line_interface_versus_a_graphical_user_interface_in_coding_VR_systems
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.geeksforgeeks.org/python-tkinter-toplevel-widget/
https://stackoverflow.com/questions/423379/using-global-variables-in-a-function
https://stackoverflow.com/questions/28633555/how-to-handle-filenotfounderror-when-try-except-ioerror-does-not-catch-it
https://stackoverflow.com/questions/28633555/how-to-handle-filenotfounderror-when-try-except-ioerror-does-not-catch-it
https://ieeexplore.ieee.org/abstract/document/5484762?casa_token=BJCImdSCD6MAAAAA:9X-bR7D7S4FDhynrKlXFSSLN2-uc8DEEN53NXYN342O5jmf7pbcm6wZvbukHgurn9kpEUHf0EA
https://ieeexplore.ieee.org/abstract/document/5484762?casa_token=BJCImdSCD6MAAAAA:9X-bR7D7S4FDhynrKlXFSSLN2-uc8DEEN53NXYN342O5jmf7pbcm6wZvbukHgurn9kpEUHf0EA
https://ieeexplore.ieee.org/abstract/document/5484762?casa_token=BJCImdSCD6MAAAAA:9X-bR7D7S4FDhynrKlXFSSLN2-uc8DEEN53NXYN342O5jmf7pbcm6wZvbukHgurn9kpEUHf0EA
https://www.ipqualityscore.com/threat-feeds/malicious-url-scanner
https://www.ipqualityscore.com/threat-feeds/malicious-url-scanner
https://db.aa419.org/fakebankslist.php
https://www.microsoft.com/en-us/security/mobile-authenticator-app
https://www.semanticscholar.org/paper/NameRec*%3A-Highly-Accurate-and-Fine-grained-Person-Zhang-Dai/da25df7fc6480fa3f17f9f1624fa25cb2461edd3
https://www.semanticscholar.org/paper/NameRec*%3A-Highly-Accurate-and-Fine-grained-Person-Zhang-Dai/da25df7fc6480fa3f17f9f1624fa25cb2461edd3
https://www.semanticscholar.org/paper/NameRec*%3A-Highly-Accurate-and-Fine-grained-Person-Zhang-Dai/da25df7fc6480fa3f17f9f1624fa25cb2461edd3

