

MODELLING CYBER-ATTACKS ON

MODBUS TCP PROTOCOL IN

INDUSTRIAL CONTROL SYSTEMS

Final Report

AUTHOR – KALVIN WILLIS C1914891
SUPERVISOR – NEETESH SAXENA MODERATOR – YUHUA LI

School of Computer Science and Informatics 2022

BSc Computer Science with Security and Forensics

One Semester Individual Project (40 Credits)

Acknowledgements
I would like to thank my supervisor Neetesh Saxena for all of his support

throughout this project. I have been kept motivated through our weekly

meetings and the encouragement and enthusiasm I have received around

my ideas has been so helpful.

I would like to thank Abubakar Mohammed for providing me insight into other

Modbus attacks, how they operate and giving me a deeper understanding

of real time scenarios and the true impact of attacking critical systems. It has

made me appreciate the work I am doing more and showing me that it is

relevant to the landscape we live in today.

I would also like to thank my parents for keeping me on track. Working on this

project has been a test to my resolve, and they have made sure to keep me

going even when it got difficult.

Abstract
The Modbus protocol was designed and developed to be used with

Programmable Logic Controllers. Over time, as technology has progressed,

the original protocol has been redeveloped to transmit data across

ethernet/wireless connections rather than serial cables. This led to the

creation of the Modbus TCP protocol, which achieves everything the original

protocol did but across modern infrastructure.

It is now a de-facto standard in communication across Programmable Logic

Controllers, which are commonly used in Industrial Control Systems. However,

a major problem lies in the distinct lack of security within the protocol.

This project looks to demonstrate vulnerabilities in the Modbus protocol

through the creation of an attack that exploits a gap in the current research

into the protocol. Through background research, it became evident that

Man in the Middle attacks hadn’t been looked at in too much detail.

As a part of this project, an automated tool was created to host a man in the

middle attack. Once this tool was created, it was demonstrated against a

python implementation of the Modbus TCP protocol and a discussion into

how the attack would fair against known security measures was opened,

considering the different solutions found through background research. The

main conclusion taken away is that there are solutions available to prevent

Man in the Middle attacks, however in most cases these will only ever detect

an attack and will do little to prevent one.

Table of Contents
1 Introduction .. 1

1.1 What is Modbus TCP? ... 1

1.2 Security issues with Modbus .. 1

1.3 Project Aims and Objectives .. 2

1.4 Project Stakeholders ... 2

1.5 Challenges ... 2

1.6 Motivation .. 3

1.7 Summary .. 3

2 Background and Related Work .. 4

2.1 Overview .. 4

2.2 Industrial Control Systems and SCADA .. 4

2.3 The Modbus TCP Packet ... 4

2.3.1 Vulnerabilities with the Modbus TCP Packet .. 5

2.4 Existing attacks on the Modbus TCP Protocol ... 5

2.4.1 Problem Space ... 7

2.4.2 Existing Tools .. 9

2.4.3 Solutions (outside the market) ... 10

2.5 Research Gap Chosen ... 10

2.6 Project Constraints .. 11

2.7 Methods and Tools to attack the research gap ... 11

2.8 Related Work ... 11

2.8.1 Man in the Middle Attack .. 11

2.8.2 Preventing a MITM Attack .. 12

2.9 Summary .. 12

3 Methodology ... 13

3.1 Overview .. 13

3.2 Research Methodology .. 13

3.3 Attack Method .. 13

3.4 Evaluation and Results .. 14

3.5 Summary .. 15

4 Design ... 16

4.1 Overview .. 16

4.2 Man in the Middle Attack: .. 16

4.2.1 Functional Requirements.. 16

4.2.2 Non-Functional Requirements ... 16

4.3 Automated Tool: ... 16

4.3.1 Functional Requirements.. 16

4.3.2 Non-Functional Requirements ... 16

4.4 User Interface .. 17

4.5 Class Diagram for Tool .. 18

4.6 Flow Chart for Tool and MITM Attack .. 18

4.7 Pseudocode of Tool and MITM Attack .. 19

4.8 Required Hardware and Software ... 21

4.9 Final System Model .. 21

4.10 Summary .. 22

5 Implementation – Attack & Tool ... 23

5.1 Overview .. 23

5.2 Client / Server Combination ... 23

5.3 Automated Tool .. 24

5.4 Man in the Middle Attack ... 24

5.4.1 arp_spoof() .. 24

5.4.2 intercept() ... 25

5.4.3 find_server3() ... 26

5.5 Unforeseen Problems .. 27

5.5.1 Client/Server .. 27

5.5.2 MITM – iptables .. 27

5.6 Summary .. 28

6 Results ... 29

6.1 Overview .. 29

6.2 Real World Scenarios .. 29

6.2.1 Water Treatment Plant ... 29

6.2.2 Centrifuge to create Reactor Fuel .. 29

6.2.3 Manufacturing Machines ... 30

6.3 Demonstration of MITM Attack .. 30

6.3.1 Running the Tool ... 31

6.3.2 ARP Spoof .. 32

6.3.3 Cloning Data to Attack Server .. 34

6.3.4 Client Connected to Attack Server .. 35

6.3.5 Malicious Injection .. 36

6.3.6 Video Demonstration ... 37

6.4 Summary .. 37

7 Evaluation ... 38

7.1 Overview .. 38

7.2 Comparison to Aims and Objectives .. 38

7.3 Testing the Tool .. 38

7.4 Attack Performance ... 39

7.5 MITM vs Existing Tools and Solutions ... 40

7.6 Preventing the MITM Attack ... 42

7.7 Summary .. 43

8 Future Work .. 44

9 Conclusion.. 45

10 Final Reflection ... 46

References .. 47

Table of Figures
Figure 1: Modbus TCP – a TCP frame which has a Modbus data frame embedded into

it. Source [1]…………………………………………………………………………………………..4

Figure 2 – Table used in [7] to present the impact of the different attack taxonomies

tested………………………………………………………………………………………………...14

Figure 3 – Table from [8] that shows what each Hidden Channel pattern can achieve

across a network that uses Modbus TCP………………………………………………………14

Figure 4 - Example UI with example input and output…………………………...………...17

Figure 5 - Example of Hydra using a Command Line Interface as its User

Interface………….…………………………………………………………………………...…….17

Figure 6 – UML Class Diagram showing how the tool should look………………………..18

Figure 7 – Flow chart showing how a user will move through the tool…………………..19

Figure 8 – Pseudocode of Main Tool…………………………………………………………...20

Figure 9 – Pseudocode of Man in the Middle attack………………………………………..20

Figure 10 – System model showing how the Man in the Middle attack will operate.....21

Figure 11 - Code for creating a synchronous pymodbus server hosted on the localhost

port 5020…………………………………………………………………………………………….23

Figure 12 - Code for connecting a synchronous client to the synchronous server…..23

Figure 13 - Synchronous server running with the client connected……………………..23

Figure 14 - Example of Client interacting with Server through modifying coils data

values………………………………………………………………………………………………..24

Figure 15 - Tool running and a port scan across expected Modbus port being run...24

Figure 16 – Empty scapy packet……………………………………………………………….25

Figure 17 – Extract from the intercept() method……………………………………………25

Figure 18 – Extract from the first attempt at finding a modbus server………………….26

Figure 19 – Extract from the second attempt at finding a modbus server……………26

Figure 20 – Extract from find_server3…………………………………………………………..26

Figure 21 – Client and Server combination running. The client is connecting from the

IP 192.168.0.16…………………………………………………………………………………...…30

Figure 22 – Running main.py on the attacking device and choosing option 2 to check

expected Modbus ports………………………………………………………………………....31

Figure 23 – Output showing that iptables is being modified……………………………...32

Figure 24 – ARP Spoof output between Client and Server device………………………32

Figure 25 - ARP Table in the Client Device before and after the ARP spoof starts………33

Figure 26 – ARP Table in the Server device before and after the ARP spoof starts……..34

Figure 27 – Output showing the current values stored in the real server, and

confirmation that the data has been sent to the fake server…………………………….34

Figure 28 – Data being cloned to the fake server using the values pulled from the real

server…………………………………………………………………………………………………35

Figure 29 – Real client connected to the fake server hosted on the attacking

device……………………………………………………………………………………………….35

Figure 30 – Real client losing connection to the real server and reconnecting to the

fake server…………………………………………………………………………………………..36

Figure 31 – Modifying the data in the coils and registers of the real server……………36

Figure 32– Output showing the result of the attack…………………………………………37

Figure 33 – Showing what occurs when invalid options are entered in main.py……..39

Figure 34 – Graph showing network activity during the attack………………………….40

Tables
Table 1 – Problem Space within Modbus TCP, including existing attacks…………..……11

Table 2 – Existing tools on the market that protect devices using Modbus TCP………13

Table 3 – Solutions that are freely available to use………………………………………….14

Table 4 – Solutions compared against the MITM Attack………………………………......44

1

1 Introduction

1.1 What is Modbus TCP?

The Modbus protocol was designed and developed by Modicon in 1979 for

use with Programmable Logic Controllers (PLCs), commonly seen in Industrial

Control Systems (ICS). Since then, it has become a de facto standard

protocol, and is widely used to connect electronic devices in industry [1]. It is

one of hundreds of Supervisory Controls and Data Acquisition (SCADA)

protocols that have been created in the past three decades but is one of the

most common found today due to its simplistic nature and design.

Modbus Transmission Control Protocol (TCP), alongside its predecessor

Modbus, allows for communication between a Modbus Master, and Modbus

Slaves, both of which are traditionally PLCs. It operates at level 7 of the OSI

model [2], with the original Modbus protocol mainly transmitting data and

information through physical serial lines. In the modern world, the original

Modbus protocol has been superseded by Modbus TCP in the majority of

control systems, where being connected with the more up to date systems

will increase efficiency and mean less reliance on older, harder to maintain

hardware.

1.2 Security issues with Modbus

Since the protocol is so common, if an attack is found against it that is difficult

to defend against, most industry that uses PLCs could be impacted. An

example of this is that the Modbus protocol transfers data with no encryption,

meaning everything gets sent in plain text [3]. This has serious concerns for

confidentiality, especially as critical infrastructure could be communicating

using this protocol.

The majority of the hardware that runs both the original Modbus and Modbus

TCP is so out of date that the security solutions present in the modern world

are not compatible with it. For the world to move forward and exist without

the need for insecure protocols, the hardware would have to catch up.

Between January 2021 and September 2021, there was an increase of 2,204%

in Internet scanning of TCP port 502 connections [15], which is the port that

uses Modbus. This shows that attackers are becoming increasingly aware of

the vulnerabilities around the Modbus protocol and are taking the steps to

start abusing them.

This project will attempt to solve a problem that is presented through

background research carried out around currently existing cyber-attacks on

the Modbus TCP Protocol. From this research, a research gap will be chosen

in an area which needs deeper understanding or poses a larger threat within

the protocol. The research gap chosen will then allow me to design and

implement an attack within an automated tool that fills it. This will be done

2

against a python simulation of the protocol in action, specifically pymodbus

[4].

1.3 Project Aims and Objectives

The project has a wide scope that can be met with the resources available,

meaning there will be little extra software, funding or approval needed.

Within the Gantt chart provided in my initial plan, there are three objectives

that will be met at clearly stated intervals, these being the following:

1 – Find a gap in the current research on the Modbus protocol that could

have an attack developed against it.

2 – Implement an attack on the Modbus protocol to attack a simulated ICS.

This should be within the research gap identified in objective one. The

simulation will be a client/server pair, with the main target being the server.

3 – Develop a tool that can automate the attack developed previously and

evaluate how effective it is compared to existing methods. This tool could

include the functionality to produce attack performance statistics such as

time to attack completion, or even comparing the attack to others that are

mounted on the tool.

1.4 Project Stakeholders

The final product is specifically targeted towards researchers, as it should fill a

gap in current research. Along with this, it will be beneficial towards industry,

as the final tool I create will highlight vulnerabilities of the Modbus TCP

protocol that would need to be addressed.

As mentioned previously, where this project will be beneficial for research

and not released as a consumer product, I will not have to engage in ethical

approval as there will be no user-testing or interaction with potential

customers, nor will there be handling of personal data

1.5 Challenges

Within the project, there will be certain challenges that present themselves.

Through the planning stage, it has been identified that Modbus is not a

traditional protocol. It is typically only seen in ICS’ and not in more common

devices that would be more familiar. To complete this project to a

satisfactory level, the protocol will need to be understood to a high degree,

including but not limited to the effects changing a single bit in transmission

can do. Along with this, it will need to be understood how pymodbus

implements the protocol and if there are any major differences in its

operation compared to the real version, as this could affect how the final tool

would be transposed into a real environment.

3

1.6 Motivation

I have chosen this project as I have a deep-rooted interest in cyber security,

specifically penetration testing. This project will improve my skills in this area,

along with taking advantage of my understanding of python and further

pushing me to understand and create more complicated code. I also want

to demonstrate the importance of security around the Modbus protocol. It is

a de-facto standard protocol for communication between PLCs and is used

extensively. Cyber-attacks targeting it would be unstoppable without some

form of security on top of it, and I hope to present that through this project,

both through the research I conduct, and the final tool I develop.

1.7 Summary

This project will be attempting to demonstrate the vulnerabilities present in

the Modbus TCP protocol. Several aims and objectives have been outlined

along with the potential challenges that could hinder progress. The main

motivation behind taking on a project like this has been discussed also.

4

2 Background and Related Work

2.1 Overview

In this chapter, we will look deeper into the underlying problems with the

Modbus protocol, looking closely at its use in Industrial Control Systems (ICS),

the packet structure, existing attacks and more. From this research, we will

identify a research gap that this project will be used to aid.

2.2 Industrial Control Systems and SCADA

Supervisory Control and Data Acquisition (SCADA) systems are commonly

used within ICS’, typically where humans cannot manage them alone as they

are too complex [5]. In recent times, as newer systems have been designed,

security concerns have been addressed which protects the Modbus

protocol.

However, the majority of ICS’ were designed 30 years ago, where the main
goal was simply efficiency. Security issues are a lot more prevalent in these

older systems. Along with this, it is very expensive to replace the existing

systems. This means that legacy systems are still vulnerable, hence the need

to demonstrate vulnerabilities to raise awareness with stakeholders.

2.3 The Modbus TCP Packet

Modbus TCP is the same protocol as Modbus; however, it has been applied

to a TCP interface that works using Ethernet connections.

Figure 1 - Modbus TCP – a TCP frame which has a Modbus data frame

embedded into it. Source [1]

Because the data is stored within a TCP frame, data integrity is guaranteed

because of the checksum used within a TCP packet, meaning that the

standard Modbus checksum is not used in transmission. All of the data being

transmitted within the Modbus data frame is stored in the data section of the

TCP frame.

5

2.3.1 Vulnerabilities with the Modbus TCP Packet

Like traditional Modbus, there is no data security outside of what TCP

provides, which is very little. This means that all of vulnerabilities that exist for

each section of the original Modbus packet will exist for the TCP variant,

along with vulnerabilities that already existed in TCP. A key weakness with TCP

packets lies with the flags that can be set in packets, along with the creation

of new connections.

For instance, new TCP connections will send a SYN segment to the recipient

to initiate the communication, which forces the recipient to respond with

either an SYN-ACK segment, (to acknowledge the connection), or an RST

segment if the port is closed. If a device were to have all open ports flooded

with TCP SYN segments, and the attacking device were to ignore every SYN-

ACK received in response, the ports affected would be stuck in a buffer

waiting for the final ACK segment. This can be used to effectively close

machines from receiving new connections. [30]

If an attacker is able to get a shell open on a device that has TCP

connections, the connection can be forced to close by sending TCP packets

with the FIN flag, which will indicate that the sender has finished transmitting

data, or with the RST flag, which indicates that the device was not expecting

the packets it received. [31]

Within the Modbus section of the packet, the data portion is transmitted in

plaintext. This means that any network sniffing software, like Wireshark, can be

used maliciously to see what typical communication between master and

slave devices in a particular setup would look like. Along with this, Modbus

communications do not have any authorization whatsoever, meaning

connections can be initiated by any device at any time so long as it has a

network connection. [32]

Because of this, the Modbus data itself can be used to hold a malicious

payload, using the TCP packet as its method to be planted within a target

device. The Modbus command carried on the packet could be used to

modify coils and registers within the target slave device, the consequences of

which vary wildly depending on what the PLCs are controlling, be it a power

plant or a turbine.

2.4 Existing attacks on the Modbus TCP Protocol

As a part of this project, background research on existing attacks and

solutions for attacks on the Modbus TCP Protocol has been conducted. From

this research, three main areas of interest appear to be repeated in what

attacks target and what solutions look to prevent.

These are the following:

- Loss of Confidentiality

6

- Loss of Control

- Loss of Awareness

Within the research, three papers stood out for their approach to different

attacks and solutions;

According to the paper Attack taxonomies for the Modbus protocols [7],

some of the possible attacks on Modbus systems include the periodical

disruption of devices attached to the network, along with a complete loss of

control if the Modbus master is spoofed. Primary targets would typically be

the master, field devices and the communication routes for the protocol.

Within this, it is easy to intercept, modify, fabricate and interrupt the protocol

in action.

The experiments were run on the premise of what could be accomplished by

having a Modbus Sniffer and a packet injector available – essentially allowing

the attacker to have the full ability to modify, create their own or completely

block messages. The full collection of attacks found are collated in the

Problem Space table below.

The paper Assessment of Hidden Channel Attacks: Targeting Modbus/TCP [8]

shows that methods of attack that take advantage of the Modbus protocol

can use hidden channels as a means to embed any extra data that would

be necessary to facilitate an attack.

Hidden channels have to be plausible enough to be of any use for an

attacker in the real world, that is to say, it meets two conditions. The first of

these conditions is protocol compliance, where the modification of a packet

does not break the protocol in any noticeable way that the recipient would

be able to identify, or would cause the recipient to be unable to process the

packet. The second condition, warden compliance, can be broke down into

three different levels, which are determined by different probabilities. The first

is that the message is hidden in such a way that a potential warden cannot

suspect there is a hidden message. The second is that a potential warden is

suspicious of a hidden message but has no ability to access it, and the third is

a potential warden is aware of a hidden message, can access it, but cannot

read it.

The experiments within this assessment were carried out using a pattern

based taxonomy for hiding network information [14] which allowed the

authors to identify hidden channels within Modbus TCP, and how easily they

could be exploited. The findings show that the majority of the patterns

examined could be applied to Modbus TCP to embed information that could

be retrieved at a later date, whilst maintaining secrecy from the intended

target. In most cases, the patterns would be protocol compliant, however in

fewer cases they would be warden compliant also. This suggests that attacks

that use hidden channels within Modbus TCP are possible, however if the

7

system being attacked is being monitored by a human rather than an

automated program, chances are it may be detected.

From the first paper, it became clear that flooding attacks were extremely

dangerous to systems that used Modbus, as there was nothing in place to

stop them being overwhelmed by commands. The paper Practical modbus

flooding attack and detection [9] shows how the Modbus protocol is

vulnerable to flooding attacks, which it states are attacks involving the

injection of commands that interrupt the normal running of the system the

Modbus protocol is on.

This paper ran their experiments on the premise that flooding attacks were still

an open area in vulnerability assessment on the Modbus protocol. Through

use of a Java application, the target PLC simulation was quickly overran by

allowing the genuine commands in, alongside many more fake generated

commands that were in place to slow the system down to the point where

only a handful of genuine commands could be executed in-between all of

the illegitimate ones.

Their testing proved this through attacking a simulated water-pump that was

controlled by PLCs – in all cases the flooding attack was more than able to

stop the pump in action through constant state 0 commands. This shows that,

whilst there were methods to prevent the attacks, which are listed below in

the Solutions table, flooding attacks that are unprevented are very powerful

in their offensive capabilities.

Below are summary tables reflecting the research completed as a part of this

project:

2.4.1 Problem Space

Table 1 – Problem Space within Modbus TCP, including existing attacks

Existing Attack Attack Target & Description

Broadcast Message Spoofing [7] Targets slave devices by sending fake

broadcast messages to them. Very

difficult to detect as slaves do not

respond to broadcast messages. Two

variations, one which modifies the

targeted device and one which

interrupts its operation.

Baseline Response Replay [7] Targets a master device by recording

genuine communications, and then

sending the recorded messages back

to the master. This can be used to

create fake slave devices.

Direct Slave Control [7] Targets a master device by locking it

out of the network, then assuming

8

control in its place. It is one of the most

threatening attacks to the Modbus

protocol, as posing as a Master device

in a network gives the attacker full

control.

Modbus Network Scanning [7] Communicates with all possible

addresses on the network, giving the

attacker information about the slave

devices connected.

Passive Reconnaissance [7] Monitor the communications across a

network between the Master and

Slave devices. This is usually used in

tangent with other attacks, such as

Baseline Response Replay.

Response Delay [7] Delays communications from slave

devices, so the master device only

ever receives out of date information.

This is another dangerous attack,

especially towards critical ICS’
Rogue Interloper [7] Works as a ‘Man in the Middle’ attack,

attaching a separate computer to the

network through an unprotected

communication link, such as an

ethernet port. It would be able to

intercept and perform any action to

Modbus messages, for example, it

could simply monitor messages like in

the passive reconnaissance attack, or

it could pose as a master device, like

in direct slave control.

Irregular TCP Framing [7] This attack targets either the master or

slave device by either creating and

then sending or modifying existing

messages to create improperly framed

messages, which can cause the target

device to close the connection.

TCP Fin Flood [7] This attack targets either the master or

slave device by transmitting a fake

TCP packet that has the FIN flag set. A

FIN flag indicated the end of a

transmission, and closes the TCP

connection, meaning it can be used

following a legitimate Modbus

message to kill the connection.

TCP Pool Exhaustion [7] This attack targets either the master or

slave device by exhausting both the

priority and non priority connection

9

2.4.2 Existing Tools

Table 2 – Existing tools on the market that protect devices using Modbus TCP

pools through opening massive

amounts of TCP connections. To further

this attack, if network activity is

preserved, it could be used to execute

a denial of service attack.

TCP RST Flood [7] This attack targets either the master or

slave device by transmitting an

illegitimate TCP packet with the RST

flag set. A RST flag is used to terminate

a connection if the sender believes the

connection should not exist, meaning

it can be used following a legitimate

Modbus message to kill the

connection.

Hidden Channels [8] Rather than being a direct attack,

Hidden Channels can be used to

deliver information to a target covertly,

potentially delivering a malicious

payload alongside a legitimate

packet or transmission.

Tools What does it

solve/protect?

Cost

Tofino Security

Appliance [12]

Acts as a physical

firewall in the network,

with a list of predefined

rules on how the PLCs in

the network can

communicate.

~£900

Using a VPN [23] Prevent access to the

Modbus device from

the internet by adding

extra layers of

encryption and

authentication

Free, up to £100p/a~

[24]

Modbus Transfer

Service (MBTS) [25]

Securely transfers

existing data from the

registers to a data

diode outside of the

existing network

alongside protecting

the existing networks

from cyber attacks

Varies dependant on

existing network.

10

2.4.3 Solutions (outside the market)

Table 3 – Solutions that are freely available to use

2.5 Research Gap Chosen

The research gap chosen is loss of control, as from the sources I have

researched it is clear that whilst attacks exist, loss of control is the least

SolarWinds NetFlow

Analyzer [26]

Performs packet

inspection on a large,

deep scale, allowing

any fraudulent packets

to be detected with

ease.

£812

Solution What does it solve/protect?

Use the Modbus/TCP Security

Protocol [10] instead of the original

Modbus TCP.

The Modbus/TCP Secuity protocol

integrates Transport Layer Security

(TLS) [11], which is a protocol built to

provide security to communications

between applications on a network.

It uses encryption for privacy,

meaning it’s a lot more difficult to
intercept any messages. In the case

of Modbus, the Modbus master and

slave would be authenticated

before communication starts.

Use OPC Unified Architecture [13] OPC Unified Architecture has built-in

security that prevents an attack

from the internet. However, it is still

vulnerable to attacks that are from

within the local network.

Anomaly-based change detection

algorithm [9]

This is an intrusion detection

technique that detects attacks

based on changes to the system by

any unauthorised actions. This is

done through using a technique

called Exponentially Weighted

Moving Average (EWMA), which is a

robust algorithm used for detecting

high intensity attacks, like flooding.

Signature-based detection [9] This is an intrusion detection

technique that captures network

traffic, decodes it and generates

alerts based on detection rules that

have been predefined. Snort is an

example of this. [17]

11

explored research area regarding cyber-attacks towards the Modbus TCP

protocol, along with arguably being the most damaging to those it targets.

2.6 Project Constraints

As I am working with a Python simulation, I am limited by what I can achieve

with code written in Python. Therefore, some attacks may not be possible to

recreate/create myself. Along with this, a Python simulation presents

difficulties in modelling a real-world scenario. The majority of industry PLCs

that use the Modbus protocol will use the version designed for serial

connections, whereas the implementation I am using is designed for ethernet

connections. However, as industry catches up with more modern technology,

my project will then become a lot more prevalent.

2.7 Methods and Tools to attack the research gap

Targeting control means removing the control that the master device has

over the slave device. However, like all cyber-attacks, being covert as the

attack executes is highly important, therefore the best attack to carry out to

exploit this will be a man in the middle attack.

From this, I can effectively cause a loss of control, along with a bonus of loss

of confidentiality, as I could change messages as they are sent between

master and slave.

2.8 Related Work

In this section, we will look at the related work I will need to carry out to

complete a Man in the Middle attack, and look at what preventative

measures exist, along with how these can be circumvented in my attack. In

some cases, due to the lack of security in the Modbus protocol, it may be the

case that preventative measures can be overlooked.

2.8.1 Man in the Middle Attack

A man in the middle attack looks to complete a malicious task completely

covertly, that is to say, anything monitoring the target would be unable to

recognise that a malicious event is happening.

An example of this happening in the real world is in 2017, the credit score

giant Equifax was forced to remove its apps from both the Google Play store

and the Apple App store after the app was revealed to not use HTTPS (the

secure variant of the HTTP protocol) consistently. This meant that attacker

could implement a MITM attack to acquire account data as user’s logged in
to the app, as without HTTPS, the data transmission was not secure.

In any scenario where two devices are communicating, if the transmission is

not secure in any instance it can be targeted by a MITM attack.

In the case of a MITM attack against a Modbus TCP installation, the attacker

would have to place themselves between a slave and master, intercepting

12

communications between the two. The master device would be deceived

into thinking that the slave was not in danger, leaving the attacker free to

modify the slave device.

2.8.2 Preventing a MITM Attack

One of the biggest problems when faced with a MITM attack is detecting it,

as they are designed to be as covert as possible until it is too late to do

anything to stop it. [33]

Since it is so difficult to stop attacks whilst they are happening, the best

approach to take is to stop the attacks before they happen. [34] Good

practices include having strong encryption on wireless access points to

prevent unwanted users gaining access to a network, as if an attacker has

gained access to a network, they can unleash a man in the middle attack

and little can stop them.

On top of using encryption with access points, it is important to make sure a

network’s router’s credentials are secure. Man in the middle attacks can be
launched easily from within a router, as routers contain a network’s primary
routing table which is used to update a computer’s ARP table, which controls
network transmission sources and destination.

A big issue with a man in the middle attack occurring is validating that the

devices communicating on the network are real and haven’t been spoofed.
A method of doing this is through public key-based authentication, such as

RSA, which can be used to ensure that even if a device has been spoofed in

an ARP table or otherwise, the user’s device can still verify whether the
destination device is legitimate.

2.9 Summary

This chapter has looked at the background and related work surrounding

modelling cyber-attacks on the Modbus TCP protocol. Many vulnerabilities

exist which there are a multitude of attacks that target them, however,

security measures and detection techniques do exist which will make

combatting attacks easier.

Man in the middle attacks against the Modbus protocol are rare. Since these

kind of attacks are interesting, covert and powerful, this project will look at

creating one.

13

3 Methodology

3.1 Overview

This chapter will look into the different methodologies used within this project,

including the research methodology, attack method and how the final results

and evaluation will be carried out.

3.2 Research Methodology

For this project, the research that has been carried out is qualitative rather

than quantitative. [36]

This is because qualitative research does not use measurable data, as

quantitative research would. Qualitative research is useful here as it can be

used to aid concepts which I may not have fully understood before taking on

this assignment, such as the problem space around the Modbus TCP

protocol. Where the research I am carrying out has no need to show any

trends or connections, I do not need qualitative research. Qualitative

research is also very flexible, meaning my project scope can change as I

gather more research, and I can also return to the research stage at any

point to collect more information if it is needed.

As shown in section 3.3, I hope to produce results that can be used in

qualitative research also, as again I believe in this area it is more important to

understand why these attacks occur rather than the trends they produce.

3.3 Attack Method

The attack will be made under the assumption that an attacker has already

gained access to a network and gained any and all necessary levels of

access to deploy an attack. This means that we won’t have to consider any

preliminary examination or attack to gain access, and we can use all of the

tools available on Linux and Windows.

Once the attack is built, I will look to produce some statistics that show how

quickly my attack achieved its intended goals. These will include time for the

attack to fully execute, time taken from the main python file being launched

and damage caused, if applicable.

The papers discussed above have used similar methods when conducting

their experiments. All would use tables to present their data, and all would go

through their experiments in a linear fashion, similar to what we would want to

produce. From this, in order to show how the attack created with this paper

performs, we will need to compare it to other existing attacks on similar

characteristics, for example what impact the attacks have and what in

particular is impacted.

14

3.4 Evaluation and Results

Figure 2 – Table used in [7] to present the impact of the different attack

taxonomies tested

Shown above is an example of what results that could be produced after the

attack is implemented. This way, the attack created within this project could

be compared to what previously researched attacks do, or if time allows,

further attacks could be built and compared to the main one created in the

project.

Figure 3 – Table from [8] that shows what each Hidden Channel pattern can

achieve across a network that uses Modbus TCP

15

Another method of displaying the results is shown above, where the author

has compared each pattern used in their experiment by showing what it can

be used against, how it functions and the payload capacity of the attack.

Based on the above, once the attack is designed, created and tested, it will

be evaluated against the different solutions by explaining what would

happen in the hypothetical situation where the attack is deployed against a

Modbus installation with the protection in place. This information will be

displayed in a table similar to Figure 2 and 3. If time permits, we can then

replicate the table for attacks that are already well documented and

compare them to my own, like those found in the problem space shown in

section 2.4.1.

3.5 Summary

The research methodology being used for this project is qualitative, as it will

be more useful to use existing research to aid understanding around the

vulnerabilities of the Modbus protocol. The attack created will be run under

the assumption an attacker has full access to a network, and has carried out

all the pre-required surveillance. Similar to previous studies into the protocol,

the attack’s performance against the existing defences will be recorded in a

table and evaluated.

16

4 Design

4.1 Overview

This chapter will look into designing a man in the middle attack against the

Modbus protocol. Requirements will be covered, along with the user

interface and the route the user will through the system. This will include key

algorithms through pseudocode.

4.2 Man in the Middle Attack:

To perform this attack, I have broken down my approach to it into several

functional and non-functional requirements:

4.2.1 Functional Requirements

- Prevent messages being received by the Slave device.

- Return confirmation messages based off of what commands were

originally sent. This could be achieved through generating messages,

or using a Pymodbus server on the attacking device

- Send user-written commands to the Slave device.

4.2.2 Non-Functional Requirements

- The attack should be simple enough to deploy once it is created and

should not take an unreasonable time to execute

4.3 Automated Tool:

4.3.1 Functional Requirements

- Give the user the option to find the server across all ports, common

Modbus ports (502, 5020, 50200) or a specific port.

- Once a server has been found, allow the user to choose one of the

mounted attacks. (The original version of the tool will only have the

attack created within this project available.)

- Deploy the attack, printing statistics such as time to execution post-

deployment

- Return output from the attack target to the user if any output exists.

4.3.2 Non-Functional Requirements

- The tool should be simple to use, offer help where necessary and

should have a clear route to attack deployment.

17

4.4 User Interface

Figure 4 - Example UI with example input and output

Because the final tool needs to be simple to use, I have decided it would be

best to use a command line interface, as that way there will not be

complicated graphics or anything that could possibly overwhelm the user.

Instead, the user will be confined to the inputs the program would need to be

able to function properly, and at each stage every option available to the

user would be given to them, making it difficult to unintentionally break the

software.

Alongside this, it is very simple to read user input from the command line in

python, making it the ideal choice where there isn’t much input from the user
outside of choosing options. Where user interaction is concerned also, since

this tool is being designed for researchers, it is safe to presume that the

majority of users will be computer-literate, and will have no issue using the

command line.

Furthermore, most attack tools use the command line as their interface of

choice. This can be seen with Hydra [16], which is present in Kali Linux, which

is one of the more popular offensive tools used in vulnerability research.

Figure 5 - Example of Hydra using a Command Line Interface as its User

Interface

Because it appears to be a standard form for offensive tools built for research

to use the command line, and the other reasons mentioned above, I believe

it to be the best choice for the user interface for my tool.

18

4.5 Class Diagram for Tool

Figure 6 – UML Class Diagram showing how the tool should look

The UML diagram above shows how the tool should look once it has been

implemented. There will be a class for finding the server given an IP, there will

be the Man in the Middle attack developed as a part of this project and then

if any other attacks are added to the tool, they have been included.

4.6 Flow Chart for Tool and MITM Attack

19

Figure 7 – Flow chart showing how a user will move through the tool

The two flow charts above show the path the user will navigate to perform

the MITM attack. Once the tool has been launched, it should introduce itself,

and move directly into locating the server. The tool is meant to be used after

gaining access to a network, meaning all IP addresses and MAC address

needed would have already been found, so the tool will not need the

facilities to do this.

When a port is found, it should then list the attacks that are built into it.

Currently, the aim is to have attacks hardcoded as options, but in the future it

would be ideal to expand into using polymorphism to change a generic

attack class into more specific attacks, should there be enough similarities

between attacks created in python.

When the MITM attack is launched, an ARP spoof will start, tricking the server

and client into believing the attacking device is what it is connected to or

receiving connections from. Data from the real server will be cloned into a

fake server to make sure the client is unable to recognise an attack is

occurring. At this point in the attack, malicious commands can be injected

into the real server, following which the connections can be closed and the

ARP spoof can be ended.

4.7 Pseudocode of Tool and MITM Attack

In order to accurately show how the attack and tool will operate,

pseudocode has been produced to demonstrate the functionality of both.

20

Figure 8 – Pseudocode of Main Tool

The main tool will have two stages – finding the Modbus Server on a given IP

address, and then launching an attack against it. There will be several

options available for the user for finding the server, and eventually the tool

could be expanded to also host several other attacks. Once the attack has

been chosen, it will be run, at which point the program will jump to the

attack. When the attack is complete, the user will be informed and the

program will end.

Figure 9 – Pseudocode of Man in the Middle attack

Shown in the figure above is how the man in the middle attack will operate.

A big part of every man in the middle attack is intercepting data during

transmission, which will be achieved here through an ARP spoof. Before the

spoof happens, a copy of the real-time data will be placed in a fake server

21

on the attacking device, which the real client will be connected to during

the attack. Once the spoof happens, the malicious commands can be sent

to the real server. Once the packets are fully sent, the loop will break, the

spoof will end and the fake server will be closed. At this point, the program

will return to the main tool.

4.8 Required Hardware and Software

For the attack planned as a part of this project, there are two options

available to me. Either a virtual implementation of the attack can be used,

hosted on one device, or a physical implementation of the attack can be

used, hosted across three.

To help visualise the attack whilst I make it, I have opted to use three different

physical devices, one to host the Pymodbus client, one to host the Pymodbus

server, and one to run the attack.

Both the client and server device will be running Windows 10 and have

python installed in order to host the Pymodbus installation, and both will have

Wireshark installed to monitor the packets being received.

The attacking device will be running Ubuntu 20.0.4, with python installed to

launch the attack and Wireshark will be installed to monitor the packets

leaving the device.

4.9 Final System Model

Figure 10 – System model showing how the Man in the Middle attack will

operate

Figure 10 above shows how the man in the middle attack will operate.

Originally, the client and server will be communicating with each other, with

the client issuing read requests to the server’s registers and coils.

22

Once the attack starts, the attacker will use ARP spoofing to hijack the

connection the client has to the server and will feed it fake data that is has

cloned from the server. The server will no longer be responding to the client,

which will be unable to tell the connection has been replaced with a fake

server. At this point, the attacker would be free to inject whatever malicious

commands they please.

4.10 Summary

The final attack has been designed with the user in mind, being encased

within an automated tool that does most of the work for the user. All the user

will need to do is enter numbers to pick the options for checking ports and

which attack to load – although within the boundaries of this project the only

attack available will be the man in the middle.

23

5 Implementation – Attack & Tool

5.1 Overview

This chapter covers the implementation of the man in the middle attack and

the automated tool that will be used to deploy it.

5.2 Client / Server Combination

To begin work on an attack, I first had to implement a simulation of Modbus

TCP. For this, as mentioned previously, I will be using pymodbus, which is a full

implementation of the Modbus TCP protocol in python.

Pymodbus has several different implementations of servers and clients, and I

have chosen the synchronous version:

Figure 11 - Code for creating a synchronous pymodbus server hosted on the

localhost port 5020

Figure 12 - Code for connecting a synchronous client to the synchronous

server

Figure 13 - Synchronous server running with the client connected.

24

In practice, the client can stay connected to the server for as long as possible

until it is either out of commands or the user terminates the connection. This

can be seen in the figure below, where the data in the server’s coils has been

modified:

Figure 14 - Example of Client interacting with Server through modifying coils

data values

Figure 14 above shows how the client will terminate the connection when it is

out of commands to run. This can either be achieved by manually ending the

connection using one of the included methods, or by a timeout.

5.3 Automated Tool

This section covers the automated tool produced as part of this project. It

operates through running the user through key questions to determine

whether or not it needs to check ports for the server, what attack the user

would like to run and then finding the server (if it exists within the user’s
defined parameters) and then deploying the chosen attack.

Figure 15 - Tool running and a port scan across expected Modbus port being

run.

5.4 Man in the Middle Attack

This section covers the attack that I have produced as a part of this project.

There are three methods within this file that will carry out the main portion of

the attack.

5.4.1 arp_spoof()

In most man in the middle attacks, arp spoofing [19] is used to forge

connections between devices that are typically meant to communicate with

each other. This is done by modifying the ARP cache on hosts, which store

the different links between the IP addresses and MAC addresses of devices

25

on a network. By modifying this table, it is possible for an attacker to

effectively pretend to be any device on the network.

In the case of the simulation, I want the attacking device to pretend to be

both the server and the client. This means that when the client attempts to

communicate with the server, it will be re-rerouted to a fake server hosted on

the attacking device. Alongside the fake server, I will also have a client on

my device that will take the original client’s place.

The arp_spoof method will, once a simple iptables rule is in place, send ARP

packets to the server and client to change their ARP cache to point towards

the attacking device. This completes the man in the middle attack, and will

allow the attacker to deliver whatever payload they like to the server. It will

run on a continuous loop until the attack is complete, keeping the spoof

running as long as needed.

Figure 16 – Empty scapy packet.

The package scapy [20] has been used here to forge the spoof ARP packets.

This is because it is one of the most well documented packages for packet

creation and decoding available for free. Alongside this, it was very easy to

use and implement into my attack.

A separate method, end_spoof, is used to end the spoof following the attack,

removing any footstep we had on the system.

5.4.2 intercept()

This method is used after arp_spoof has been executed for the first time to

create a running replica of the data that should be expected from the

server.

Figure 17 – Extract from the intercept() method

The fake server that is created and hosted on the attacker’s device will be

constantly populated with real-time data from the real server. If somebody

were to be monitoring the real server, (during the attack the output from the

fake server would be seen, not the real one), there would appear to be

nothing wrong as the coils and registers within the fake server would appear

to be legitimate.

26

5.4.3 find_server3()

This method is the third iteration of a method used to find a Modbus server on

a network device. Because this attack assumes information like IP addresses

for the devices involved is known, there is no functionality to check individual

IP addresses at present, but in the future, this could be included.

Figure 18 – Extract from the first attempt at finding a modbus server

In the first attempt, I wanted to use the socket library to find the service name

from the port number. Originally, this would’ve been done using a loop to
check every port, but during testing it was only necessary to test the port the

server was hosted on. The issue remained where this method didn’t work as
the socket function wouldn’t want to test a port that had something hosted

on it.

Figure 19 – Extract from the second attempt at finding a modbus server

The second attempt involved using the subprocess library to run the

command necessary to find the server. Again, following the same kind of

method as the previous attempt, this would find the process names and list

them. The main issue came from the output from the command, where the

full result would be returned as one string, which would be too long a

complex to pick out the information we need.

Figure 20 – Extract from find_server3

For the final method, I decided to use the pymodbus library itself to check

ports. Whilst this way was more invasive, it would be guaranteed to work if it

found the correct port during its checking. There are three options the user

can pick, as shown in Figure 19 above. The user could either check a port of

27

their choice, typical ports a Modbus TCP server could exist on or every port.

However, due to the invasiveness and the amount of time it would take, it

wouldn’t be ideal checking every port.

This would work by generating a client and then attempting to connect with

the selected port(s). If the port has a modbus server present on it, a message

will be returned to user stating it. For each port that doesn’t have a server on
it, a message is also returned to the user.

This tool would be used after the user has gained access to a system, so at

that point it would most likely be known which port the server was on,

meaning that the option to check every port isn’t necessary, but it has been
included for the sake of covering all bases.

5.5 Unforeseen Problems

During the implementation of this attack, there were several issues

encountered which hindered progress and changed the timeline used.

5.5.1 Client/Server

To test anything that I created both during implementation and in the testing

phase, I would need to have an implementation of the Modbus protocol

available to attack.

Because there is a lack of documentation available around the

implementation of pymodbus, I found it difficult to get the client/server pair

working. This meant that the project faced delays, as I couldn’t begin the
creation of an attack without a working simulation of Modbus TCP. I

attempted to use a different library to accommodate this issue, however I

struggled with that and reverted back to pymodbus, which I eventually got

working. However, the delays in getting the client/server working meant the

rest of the project had less time available to it.

5.5.2 MITM – iptables

In order to pull off the man in the middle attack, I would need to use ARP

spoofing in order to trick the ‘real’ client with authentic responses to
whatever commands are sent across the network for the server. The easiest

method of doing this involves the linux command iptables, which would allow

me to set rules for transmission between ports across the network – in essence

I could reroute all transmissions intended for the port the server is hosted on to

the device the attack is being run on.

Through research, there are several solutions that exist on the Windows 10

operating system, for example netsh interface portproxy [18], however

though my attempts to use them none of them worked. This has meant that I

have had to repurpose old hardware to create a linux workstation in my

network for this project, which added a small delay to the attack’s creation.

28

Once the iptables command has been executed (which reroutes data

across the network heading to the port found in find_server3) the attack can

continue as expected.

5.6 Summary

This chapter has covered all of the code created as a part of this project. It

targets the research gap uncovered during the Background and Related

work stage, and exploits the lack of security in the Modbus TCP protocol.

29

6 Results

6.1 Overview

This chapter looks into the real world impact of the man in the middle attack

created in this project, examining three different scenarios that if targeted

with no preventative measure could have disastrous consequences.

Alongside this, there is a full demonstration of the attack in operation against

the Pymodbus installation of Modbus TCP.

6.2 Real World Scenarios

In order to understand the potential impact of an attack like the one

demonstrated below, it is important to consider the consequences of the

attack when it targets both critical infrastructure and non-essential

infrastructure. The following section looks at what would happen if the attack

as demonstrated above was used in three different scenarios.

6.2.1 Water Treatment Plant

Water treatment plants use different chemicals, like aluminium sulphate

(alum) [27], to clump particles in un-treated water together to form large,

gelatinous particles. These chemicals are often used in very trace amounts to

make sure that the levels present in the water would be non-fatal, and could

easily pass through the body without causing any damage.

If the treatment plant used PLCs to monitor the chemical input to the water,

and control the amount of chemicals being added to clean it, that would

mean the chemical content of the water could be targeted by an attack like

the one created in this project.

The attack demonstrated above changes the contents of the holding

registers of the targeted device – if the device were to measure the

chemicals it adds to the water in micrograms, and the safe amount if 50

micrograms, the attack could change the value stored in the registers to

10000, which would have a dangerous effect to the intestines of any person

who drank the water that was affected [28].

6.2.2 Centrifuge to create Reactor Fuel

A centrifuge can be used to create low-enriched uranium which is suitable

for nuclear reactors [29]. However, an alternative use of a centrifuge is to

produce highly-enriched uranium, which is the kind used in nuclear weapons.

If a centrifuge’s PLCs were to be changed through an attack like the one
above, the uranium created to eventually be used to fuel nuclear reactors

could be the kind which is used within weapons.

This would mean that when the fuel is added to a reactor, it would become

unstable quickly and possibly cause the reactor to melt-down, which would

lead to an event similar to Chernobyl occurring, the effects of which would

be devastating, especially if it were to happen in a densely populated area.

30

6.2.3 Manufacturing Machines

A less lethal target would be factories, or manufacturing centres. The majority

of these system would be ICS’, meaning they would be one of the traditional
targets to be picked when targeting devices that use Modbus. Like above,

the attack would again target the holding registers in the slave devices,

which in the case of a manufacturing centre would most likely control

operating speed. This normally could be safely modified in small amounts to

increase or decrease production speed at different times of year, such as

Christmas. By modifying this value to beyond safe limits, the machines would

most likely break down as they will not work beyond the specified limits.

6.3 Demonstration of MITM Attack

Within this demonstration, it is presumed that the attacker has gained full

access to the system, along with knowing all of the information required to

pull off the attack, like IP addresses and MAC addresses.

31

Figure 21 – Client and Server combination running. The client is connecting from the

IP 192.168.0.16

As mentioned previously, this attack will be focusing on the Pymodbus

implementation of a Modbus installation. The above figure shows the server,

which represents Modbus slaves, and the client, which represents the master

device, running synchronously. In this scenario, the client is running read

requests every five seconds on the coils and registers of the first unit (slave) in

the server. The attack will be targeting the values within the registers and

coils, and modifying them to unrealistic and unexpected values.

6.3.1 Running the Tool

Figure 22 – Running main.py on the attacking device and choosing option 2

to check expected Modbus ports.

On the attacking device, Figure 22 shows what happens when main.py is

running. Because the attacker is assumed to have access to the network and

would have found all the information needed for the attack, there is no

functionality provided for finding IP addresses or MAC addresses within the

tool yet. This information is hardcoded into the program for this

demonstration, but in a real scenario, in the current version of the tool, the

attacker would add this information themselves based on their own

surveillance of the network.

The user is given four options after running the script; they can check all of the

local ports on the IP address suspected to have the server on it, they can

check ports that would typically use Modbus, such as 502, they can check a

single port or they can quit. The more ports checked, however, the more

invasive the attack is, meaning it would be better to use option 2 most of the

time to avoid detection, as the majority of the time Modbus installations will

use port 502.

In this example, the attacker has chosen option 2. In order, port 502, 5020 and

50200 will be checked, and in this scenario, the Modbus server is being

hosted on port 502.

Once the port has been found, the tool will progress to asking which attack

the user would want to launch. Where the tool is meant to be easy to add to,

in the future it could be expanded upon with different attacks. At the

moment, there is only the Man in the Middle attack developed as a part of

this project, so the user can only select that.

32

Figure 23 – Output showing that iptables is being modified

6.3.2 ARP Spoof

For the ARP spoof to work successfully, a rule needs to be added to iptables

which will manage and reroute packets between the client and server

device for the duration of the attack. Figure 22 shows the user confirmation

that this has happened.

Figure 24 – ARP Spoof output between Client and Server device

Once the user starts the MITM attack by pressing 1, ARP packets are created

using Scapy that are sent to both the Client and the Server device. These

packets update the ARP table in the client device, linking the attacking

device’s MAC address to the server’s IP address. This will mean that when

packets are being routed to the server, instead they will be forced to the

attacker’s device, and the client device wouldn’t be able to realise that
what was happening was wrong.

33

Figure 25 - ARP Table in the Client Device before and after the ARP spoof

starts.

The same happens to the server, linking the attacking device’s MAC address
to the client’s IP address. In both cases, unless there was a system in place to

monitor either the network traffic or the ARP tables of both the client and

server device, this would happen undetected.

34

Figure 26 – ARP Table in the Server device before and after the ARP spoof

starts.

In both Figure 25 and 26, the MAC address of the attacking device is

underlined in red and the MAC address of the affected device, be it the

server or client, is underlined in blue. Once the ARP spoof starts, for both the

server and client, the ARP table is updated to show the MAC address of the

attacking device.

6.3.3 Cloning Data to Attack Server

Figure 27 – Output showing the current values stored in the real server, and

confirmation that the data has been sent to the fake server.

Using a pymodbus client, the attacking device is able to connect to the real

server temporarily and copy the real data across to the fake server before it is

modified by the attack. That way, when the real client connects to the fake

server because of the ARP spoof, the data being read will be exactly the

35

same, providing the attacker with cover to perform the rest of the attack.

Figure 28 – Data being cloned to the fake server using the values pulled from

the real server

Figure 28 shows the data that was extracted from the real server previously

being copied into the registers and coils of the fake server. This way, when

the real client is connected to the fake server and begins reading data

again, there will be no discernible difference, which should keep the attack

covert.

Figure 29 – Real client connected to the fake server hosted on the attacking

device.

6.3.4 Client Connected to Attack Server

Once the iptables rule is in place, and the ARP spoof has started, the real

client will suffer a temporary disconnection before reconnecting to the fake

server which has been populated using data taken from the real server. The

client will continue running read requests against the coils and registers from

the fake server, and will continue receiving responses from what is shown to

be the real server containing real data.

36

Figure 30 – Real client losing connection to the real server and reconnecting

to the fake server

The three underlined sections in Figure 30 show what happens in stages when

the ARP spoof takes place. First, the client’s most recent ‘transaction’
(command sent to the server) will fail, since the connection to the real server

has been blocked. It will then attempt to re-establish the connection, which it

does successfully, leading to what is shown in Figure 26 occurring. Once the

connection is re-established and it has confirmed that the connection is

working, it will print a ‘Got response!!!’ message to show that this is the case,
and normal function can resume.

6.3.5 Malicious Injection

Figure 31 – Modifying the data in the coils and registers of the real server.

At this stage of the attack, the attacker is in complete control of the server

and what happens to it. Without external assistance, there would be little the

client could do to realise it has been spoofed.

In this attack, it was important to make sure that the attacker could be in and

out of the server as fast as possible, so it was clear that the way to cause the

most damage quickly was to inject unrealistic values into the registers and

coils. Like mentioned previously, there would be little way of knowing what

would happen by doing this in a real scenario without further knowledge of

the devices under attack, but it is a safe assumption that doing this would

cause catastrophic damage.

In this example, the attack writes the value 10000 to all the registers in the first

slave device, and changes some of the coils to True. However, it is important

to remember that at this stage, this is not the only thing the attacker could

do. The attack could easily be modified to do more

37

Figure 32– Output showing the result of the attack

Following the injection, the tool shows the attacker what values have been

added to the registers and coils. After this, the connections to the fake server

and real server are closed, the iptables rule is deleted and the ARP spoof is

ended. At this stage, the attack is successfully complete. The real client will

then re-establish its connection to the real server, at which point it will start

reading the injected data. At that moment, it would then become clear an

attack has taken place.

6.3.6 Video Demonstration

A full demonstration with an audio commentary of this attack happening

against the same scenario is available at https://youtu.be/BkxGO5zLyhQ

6.4 Summary

The attack created within this project can be deadly if there are no secure

measures in place, especially in critical environments like a centrifuge. It

functions as intended, hijacking a client’s connection to the Modbus server
and injecting whatever malicious commands have been coded into it.

https://youtu.be/BkxGO5zLyhQ

38

7 Evaluation

7.1 Overview

This chapter will evaluate the man in the middle attack, comparing the final

product to the original aims and objectives set. The tool itself will be tested,

and its performance will be evaluated against existing solutions and

protective measures. I will then discuss out of the solutions the most effective

prevention, taking into consideration everything a company would need to

think about when choosing defence options.

7.2 Comparison to Aims and Objectives

The original aims of this project were as follows:

1 – Find a gap in the current research on the Modbus protocol that an attack

could be developed to take advantage of.

2 – Implement an attack on the Modbus protocol to attack a simulated ICS.

This should be within the research gap identified in objective one. The

simulation will be a client/server pair, with the main target being the server.

3 – Develop a tool that can automate the attack developed previously and

evaluate how effective it is compared to existing methods. This tool could

include the functionality to produce attack performance statistics such as

time to attack completion, or even comparing the attack to others that are

mounted on the tool.

Within this project, the deliverables created meet aims one and two, and

partially meet aim 3. Due to time constraints, automatic attack statistics have

not been implemented into the tool, however this is something that could be

added should this project be expanded on in the future.

7.3 Testing the Tool

Through testing the final tool and attack, it does what it intends to do, and

injects whatever commands the attacker would like into a Modbus server

without being detected, assuming that the attacker has already infiltrated

the network and has acquired the necessary information to carry out the

attack prior. From this, I am confident that the final product of this project is a

fully functioning attack, again presuming the same preliminaries I did in the

demonstration. In the future, the tool could be expanded to include the

ability to find IP and MAC addresses to reduce the need for the attacker to

intrude on the network more than necessary. The tool also cannot take

invalid options in the stages of choosing an option for the port checker and

the stage in which the user chooses the attack to mount, so user error should

be very unlikely, and in each stage the user is told exactly what options are

available to them, meaning that the tool should not have errors occur unless

the user manages to input an invalid option at the start.

39

Figure 33 – Showing what occurs when invalid options are entered in main.py

As shown above, entering invalid options at any point will return the user to

the start of the tool.

7.4 Attack Performance

From the video created as a part of this report, the attack itself after the user

has selected options takes fifty seconds. Getting to the attack is as fast as the

user wants it to be. For example if the user were to click 2, and then 1 as fast

as possible, they will have launched the attack within seconds provided the

server is being hosted on an expected Modbus port. On average, attackers

will launch an attack every 39 seconds [21], meaning the attack built as a

part of this project falls short of the execution time required to achieve this.

Even though the attack is not as fast as it could be, the potential damage

caused is limitless. Depending on the system that is using Modbus that is being

attacked, the damage could be irreparable and very deadly. For instance,

there are 153 devices recognised by Modbus.org [22], ranging from data

acquisition devices to centrifuges. Attacks like the one created here that

inject random data would have random, potentially fatal consequences

which could be further amplified if the attack was optimised to damage its

target device as much as possible.

40

Figure 34 – Graph showing network activity during the attack

Figure 34 shows the presence the attacker will have on the network across

the duration of the attack. Preventative measures that monitor the network

would be able to uncover the attack within the first few seconds, due to the

amount of ARP packets being used. However, to guarantee that the ARP

spoof takes place without being interrupted by either the client or server

sending its own ARP requests, a large amount is needed.

7.5 MITM vs Existing Tools and Solutions

The table below shows how my attack would operate against the solutions

found during the Background stage in the project. For each solution, it is

presumed again that the attacker has full access to the network, and all

data needed to perform the attack is available to them. It is also presumed

that the only defensive mechanism present on the network is the solution in

question.

Table 4 – Solutions compared against the MITM Attack

Solution Would the MITM

succeed?

Discussion

Tofino Security

Appliance [12]

No The Tofino Security Appliance

regulates all of the Modbus

messages transmitted across the

network. Because the Man in the

Middle attack sends Modbus

messages in order to inject malicious

data, it would be stopped

immediately.

Using a VPN [23] Yes, under

certain

conditions

If a VPN is only being configured to

prevent attacks from the Internet,

then this attack will still work.

However, if the VPN is being used as

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

P
a

c
k
e

ts
 S

e
n

t

Time

Packets sent to Client and Server devices during

MITM Attack

ARP Packets Modbus Packets

41

a subnet which only authorised

devices can access, this attack will

not succeed.

Modbus Transfer

Service (MBTS)

[25]

No MBTS protects the existing network

from attacks by transmitting all data

into a separate data diode securely.

This connection itself would be

extremely difficult to intercept and

take advantage of through a man

in the middle attack, and makes

attacking the connection between

the master and slave devices futile

as MBTS protects them.

SolarWinds

NetFlow Analyzer

[26]

Yes This tool itself is only a deep packet

analyser, meaning it would need to

be combined with a method of

closing connections when

fraudulent packets are detected.

However, should the ARP spoof be

carried out correctly, the NetFlow

Analyzer should be tricked. This

would need to be tested.

Use the

Modbus/TCP

Security Protocol

[10] instead of

the original

Modbus TCP.

Yes The Modbus TCP Security protocol

only encrypts data. As the Man in

the Middle attack is not concerned

with extracting information, only

replicating the existing server and

then transmitting commands of its

own, the attack would still succeed.

However, if the attacker had a

secondary intention of reading the

real commands as the attack

happened, then the attack would

not meet all of the requirements.

Use OPC Unified

Architecture [13]

Yes, under

certain

conditions

OPC Unified Architecture prevents

attacks from occurring from the

internet. Therefore, if this attack was

launched physically within the

network, it would work, but if any

attempt was made from outside the

network, chances are it would fail.

Anomaly-based

change

detection

algorithm [9]

Yes, but it will be

detected

This method of prevention will not

directly prevent the attack, but

rather alert relevant authorities that

an attack is happening. The ARP

spoof is intensive as it will flood both

the client and server machines with

42

ARP packets, which would be

detected by this algorithm. If the

attacker isn’t concerned by this,
then the attack could proceed as

normal, however staying covert is

essential then another attack should

be used.

Signature-based

detection [9]

Yes, but it will be

detected

Like the above algorithm, the attack

will still work, however it will be

obvious an attack is still happening.

This algorithm monitors network

traffic, which means it would detect

both the ARP spoof and the

malicious Modbus commands being

transmitted. If the attacker is not

concerned by this, then the attack

can happen, but again like the

above algorithm if being covert is

essential then this approach should

not be taken.

7.6 Preventing the MITM Attack

The Tofino Security Appliance by far would be the best solution to prevent the

Man in the Middle attack from occurring, however the biggest issue with it is

the cost. Small companies may not be able to spare the money to use it, in

which case it would be better to use one of the detection algorithms

combined with a method to cut off all network traffic. That way, operations

could temporarily halt until the attacker is located and removed from the

network. Alternatively, using a VPN could also hinder the attack, as if it is

configured correctly, the attacker would not be able to gain access to the

network unless they were using an authorised device – however, if the

attacker had access to an authorised device, they wouldn’t need to perform
a man in the middle attack.

Yet against the majority of the solutions, when they are the only defensive

mechanism on the network, the attack should work. In most cases it will be

detected, but the malicious effect of the attack will still succeed, disrupting

or damaging the target as intended.

Overall, from the above points, the most viable solution, considering all

factors that may affect businesses trying to protect themselves and cost,

would be using the signature detection combined with a method to prevent

network transmissions, like activating a full firewall on both the client and

server and suspending all of their transmissions. Likewise, a correctly

configured VPN would also be a wise decision, if a company was on a low

budget, as that way their entire network would be secure, protecting the

devices from not only a man in the middle attack, but countless others also.

43

7.7 Summary

In summary, the attack created can be stopped should the network it is on

be locked down. However, in most scenarios, the attack would remain

undetected on a network. The recommendation given is that an intrusion

detection technique would be an effective measure to see a man in the

middle attack happening. If it were to be combined with a method of

locking down the network, it would be a strong countermeasure.

44

8 Future Work
This project is fortunate in that it can be expanded in several different

directions in the future. If time allowed, I would have liked to test the attack

against more different installations of the Modbus TCP protocol to see if it is as

effective against more than just a python simulation. The attack itself could

become more modular, being able to tailor itself to cause the most damage

against a server based on whatever kind of information is stored within the

registers.

Furthermore, it would have been useful to create several other attacks and

compare them to the attack created as a part of this project. That way, the

automated tool could transition into a tool that compares the effectiveness

of attacks, rather than just a tool to mount attacks on.

Within the code itself, the attack could have been written more efficiently,

bringing down the attack time to below the 39 seconds referenced earlier.

This would mean the attack itself would have less chance of being detected

in a system without any protective solution, as the attacker would have less of

a presence in the network. Furthermore, the tool could be developed to use

polymorphism and inheritance. This way, a generic attack class could be

used as a basis for all created attacks, meaning there would be less

duplicated code, reducing the overall size of the tool. Another addition to

the tool would be removing the need to have MAC addresses and IP

addresses hardcoded into the attacks and the server finding algorithm. That

way, the tool becomes even more automated, reducing the need for

potentially invasive surveillance on a network in which the attacker may not

even have the time to perform any.

The tool could eventually be recreated with a graphical user interface,

allowing users to interact more freely with the tool, rather than using the

command line as the main source of input and output. Whilst I believe my

reasoning behind using the command line/terminal as my user interface was

justified as it is the more common choice for attack software, I think where

the final product is meant to be a tool for research, a more intuitive and user-

friendly interface might encourage the tool to be used more.

45

9 Conclusion
In the initial plan of this project, I set out to create an automated tool that

could host an attack that filled a research gap. I believe that I have

achieved this. Even though I have not been able to include every feature I

originally intended, I have successfully met every point in the original aims.

The attack itself does what it is meant to do; infiltrate a python simulation of

Modbus TCP undetected, unleash malicious commands into the server and

leave no trace of the attacker ever being on the network. ARP spoofing

achieves all of this for the attack. Both the tool and attack meet all of the

functional and non-functional requirements set out in the design, apart from

the production of attack statistics during execution, but the main attack and

tool itself is complete in requirements and functionality.

Furthermore, it’s clear to see that the attack would be devastating in the real

world, if it targeted a company that hadn’t implemented any security
around its PLCs. In a real-world scenario, the attack could cause life-

threatening damage on a wide scale if it were used correctly, which proves

the need for further investment in preventative measures for companies that

use Modbus.

I did encounter several issues during this project. Now that I know how to

tackle them and I have the hardware I need for a project like this, I am

confident that if I attempted a similar project in the future I should be able to

achieve more.

I think that it is a good overall result that the project is open to be taken in

any direction now by myself or anyone interested in attacking the Modbus

TCP protocol. As cyber-attacks develop over time, so will the capabilities of

this tool, allowing users to compare new and innovative attacks to older

ones, such as the MITM attack created alongside the tool.

My motivation behind taking on this project was to demonstrate the security

vulnerabilities of the Modbus protocol. The attack I created was able to take

advantage of the fact there was no built-in security with the protocol that

would stop me from attacking the server, and through the Results section I

showed that there were solutions that could both detect and prevent my

attack from working. I think I have truly emphasized the importance of

companies that use ICS’ that run using the Modbus protocol applying at the
minimum a detection algorithm, or even investing into security, purely

because of how deadly the consequences of attacking the Modbus

protocol can be.

46

10 Final Reflection
I think that within this project it was very valuable to do a large amount of

background research into solutions against the Modbus protocol. It allowed

me to look at building the attack in a different way to how I would have had I

sat down and gone into it straight away. I can now appreciate how helpful it

is to look at the background of a topic before developing in that area.

It has also helped me appreciate that from the position of an attacker, the

system will rarely be as expected, meaning that I can simulate my attack

against any kind of client/server pair with any amount of defence, but every

system is created differently, with different settings and protection, so nothing

would ever fully prepare me for creating an attack to be used in the real

world as it is impossible to simulate every scenario.

I entered this project with a foundational understanding of cyber-security,

with my specialism being in malicious software. This project has opened my

eyes to the other areas of offensive attacks, like man in the middle, along

with the other attacks I learned about during the research stages of the

project. As somebody who is keen to learn more about the offensive side of

cyber, it has definitely helped me to broaden my understanding of the tools

available to an attacker. It was surprising to me that my normal method of

disruption, which was writing malicious code, could be transferred to an

attack that before this project I wouldn’t have thought could be done in the

same way.

The skills I have built upon will be transferable to future projects I create. I

know now how important it is to prepare as much as possible for a project but

expect to fall at hurdles along the way, as you can’t prepare for everything

during development and certain modules or implementations may not work

as expected.

I also now appreciate defensive solutions more than ever. Creating an attack

like this has shown me just how dangerous cyber-attacks can be, especially

the kind like this one that could target critical systems and create life

threatening situations through modifying a handful of values. By deepening

my understanding of the danger of attacks, I know now that I will be able to

build attacks and tools in the future with defence in mind, essentially building

attacks only to try and find cost-effective solutions. Through this project, I also

am now aware of the possible solutions to preventing man in the middle

attacks, which can also be applied to other attacks, like packet injections.

This knowledge can easily be passed on, which was one of the main focuses

of this project.

I am content knowing that this project has helped me understand and

appreciate cyber security better, and it can hopefully be used to show just

how vulnerable the technology we depend on is and be a driver for change.

47

References
[1] prosoft-technology.com. 2005. INTRODUCTION TO MODBUS TCP/IP. [online]

Available at: <https://www.prosoft-

technology.com/kb/assets/intro_modbustcp.pdf> [Accessed 26 February 2022].

[2] Benbenishti, L., 2017. SCADA MODBUS Protocol Vulnerabilities - Cyberbit. [online]

Available at: <https://www.cyberbit.com/blog/ot-security/scada-modbus-protocol-

vulnerabilities/> [Accessed 6 February 2022].

[3] Zou, C., n.d. Online Digital Forensics Courses and Labs. [online] Cyberforensic.net.

Available at: <http://cyberforensic.net/labs/modbus-attack.html> [Accessed 4

February 2022].

[4] Petrak, H., 2022. PyModbus - A Python Modbus Stack — PyModbus 2.5.0

documentation. [online] Available at:

<https://pymodbus.readthedocs.io/en/latest/readme.html> [Accessed 26 February

2022].

[5] Yadav, G. and Paul, K., 2022 Architecture and security of SCADA systems: A

Review [online] Available at:

<https://www.sciencedirect.com/science/article/abs/pii/S1874548221000251.>

[Accessed 20 February 2022].

[6] Parian, C., Guldimann, T. and Bhatia, S., 2020. Fooling the Master: Exploiting

Weakness in the Modbus Protocol. [online] Available at:

<https://www.sciencedirect.com/science/article/pii/S1877050920312576>

[Accessed 20 February 2022].

[7] Huitsing, P., Chandia, R., Papa, M. and Shenoi, S., 2008. Attack taxonomies for the

Modbus protocols. [online] Available at:

<https://www.sciencedirect.com/science/article/pii/S187454820800005X>

[Accessed 20 February 2022].

[8] Lamshöft, K. and Dittman, J., 2022. Assessment of Hidden Channel Attacks:

Targetting Modbus/TCP. [online] Available at:

<https://www.sciencedirect.com/science/article/pii/S240589632030536X>

[Accessed 21 February 2022].

[9] Bhatia, S., Kush, N., Djamaludin, C., Akande, J. and Foo, E., 2014. Practical

modbus flooding attack and detection. [online] Available at:

<https://dl.acm.org/doi/10.5555/2667510.2667517> [Accessed 22 February 2022].

[10] Modbus.org. 2018. MODBUS/TCP Security Protocol Specification. [online]

Available at: <https://modbus.org/docs/MB-TCP-Security-v21_2018-07-24.pdf>

[Accessed 13 March 2022].

[11] Porter, T. and Gough, M., 2007. How to Cheat at VoIP Security. [online] Available

at:

<https://www.sciencedirect.com/science/article/pii/B9781597491693500049?via%3D

ihub> [Accessed 13 March 2022].

48

[12] Howard, S., 2022. Using Modbus PLC's? Here's How To Protect Them | Tofino

Industrial Security Solution. [online] Available at:

<https://www.tofinosecurity.com/blog/using-modbus-plcs-heres-how-protect-them>

[Accessed 13 March 2022].

[13] Floyd, W., 2022. Security Decisions in Modbus Industrial Systems. [online]

Control.com. Available at: <https://control.com/technical-articles/security-

decisions-in-modbus-systems/> [Accessed 23 March 2022].

[14] Mazurczyk, W., Wendzel, S., and Cabaj, K., 2018. Towards deriving insights into

data hiding methods using pattern-based approach. In Proceedings of the 13th
International Conference on Availability, Reliability and Security, 10. ACM [Accessed

29 March 2022].

[15] Jackson Higgins, K., 2022. Ransomware Trained on Manufacturing Firms Led

Cyberattacks in Industrial Sector. [online] Dark Reading. Available at:

<https://www.darkreading.com/attacks-breaches/ransomware-trained-on-

manufacturing-firms-led-cyberattacks-in-industrial-sector> [Accessed 29 March

2022].

[16] Kali Linux. 2022. hydra | Kali Linux Tools. [online] Available at:

<https://www.kali.org/tools/hydra/> [Accessed 5 April 2022].

[17] Snort. 2022. Modbus Preprocessor | README.modbus. [online] Available at:

<https://www.snort.org/faq/133> [Accessed 6 April 2022].

[18] docs.microsoft.com. 2022. Netsh commands for interface portproxy. [online]

Available at: <https://docs.microsoft.com/en-us/windows-

server/networking/technologies/netsh/netsh-interface-portproxy#delete-v4tov4>

[Accessed 8 April 2022].

[19] Imperva. 2022. What is ARP Spoofing | ARP Cache Poisoning Attack Explained |

Imperva. [online] Available at: <https://www.imperva.com/learn/application-

security/arp-spoofing/> [Accessed 9 April 2022].

[20] Biondi, P., 2022. [online] Scapy. Available at: <https://scapy.net/> [Accessed 11

April 2022].

[21] Yoo, G., 2021. Council Post: The Importance Of Time And Speed In

Cybersecurity. [online] Forbes. Available at:

<https://www.forbes.com/sites/forbestechcouncil/2021/01/22/the-importance-of-

time-and-speed-in-cybersecurity/> [Accessed 2 May 2022].

[22] Modbus.org. 2022. Modbus Device Directory. [online] Available at:

<https://modbus.org/devices.php> [Accessed 2 May 2022].

[23] Accuenergy. 2022. Protecting your Modbus TCP/IP Meter from Security Risks.

[online] Available at: <https://www.accuenergy.com/support/acuvim-ii-user-

guide/protecting-your-modbus-tcp-ip-meter-from-security-risks/> [Accessed 4 May

2022].

[24] Security.org. 2022. How Much Does a VPN Cost? | 2022 Average VPN Pricing.

[online] Available at: <https://www.security.org/vpn/cost/> [Accessed 4 May 2022].

49

[25] Owl Cyber Defense. 2022. Modbus Transfer Service (MBTS) | Owl Cyber Defense.

[online] Available at: <https://owlcyberdefense.com/resource/modbus-transfer-

service-mbts/> [Accessed 4 May 2022].

[26] Solarwinds.com. 2022. NetFlow Analyzer - Analyze Remote Network Bandwidth

Traffic | SolarWinds. [online] Available at: <https://www.solarwinds.com/netflow-

traffic-analyzer> [Accessed 4 May 2022].

[27] Combest, T., 2022. Municipal Water Treatment Processes. [online] Cosatx.us.

Available at:

<https://www.cosatx.us/home/showpublisheddocument/1010/635380914489870000

> [Accessed 5 May 2022].

[28] Aluminummanufacturers.org. 2022. Aluminium Sulphate [online] Available at:

<https://www.aluminummanufacturers.org/aluminum-sulfate/> [Accessed 5 May

2022].

[29] Federation Of American Scientists. 2022. Centrifuges and Nuclear Weapon

Proliferation. [online] Available at: <https://fas.org/issues/nonproliferation-

counterproliferation/nuclear-fuel-cycle/uranium-enrichment-gas-centrifuge-

technology/centrifuges-nuclear-weapon-proliferation/> [Accessed 5 May 2022].

[30] Nyangaresi, V., Ogara, S. and Abeka, S., 2017. TCP IP Header Attack Vectors

and Countermeasures. [online] Article.sciencepublishinggroup.com. Available at:

<https://article.sciencepublishinggroup.com/html/10.11648.j.ajset.20170201.17.html>

[Accessed 6 May 2022].

[31] KeyCDN. 2018. TCP Flags - KeyCDN Support. [online] Available at:

<https://www.keycdn.com/support/tcp-flags> [Accessed 6 May 2022].

[32] APT, Inc. 2022. Modbus Protocol | Security Vulnerabilities - APT, Inc.. [online]

Available at: <https://www.apt4power.com/2021/05/20/modbus-protocol-security-

vulnerabilities/> [Accessed 6 May 2022].

[33] Veracode. 2022. Man in the Middle Attack: Tutorial & Examples | Veracode.

[online] Available at: <https://www.veracode.com/security/man-middle-attack>

[Accessed 6 May 2022].

[34] Rapid7. 2022. Man in the Middle (MITM) Attacks | Types, Techniques, and

Prevention. [online] Available at: <https://www.rapid7.com/fundamentals/man-in-

the-middle-attacks/> [Accessed 6 May 2022].

[35] Hoover, L., 2021. What Is Qualitative vs. Quantitative Study?. [online] GCU.

Available at: <https://www.gcu.edu/blog/doctoral-journey/what-qualitative-vs-

quantitative-study> [Accessed 6 May 2022].

