

Automated Testing of Web

Applications Coursework

Author: Matthew Herman

Supervisor: Dr Martin Caminada

Moderator: Dr Bailin Deng

CM3203 – Individual Project

Academic Year: 2021/22

Word Count: 13,330

 1

Abstract
One of the modules studied in the first year of Computer Science is the module Web

Applications. For this one of the first assignments that students are to complete is a task

where they have to build two sites. Firstly, students are to build a static site that must

satisfy various requirements such as having a certain number of paragraphs, external CSS,

and a navigation menu. The other site is a dynamic site that allows for the input of a year

and a format, and the site should return the date that Easter is or was on the given year.

As Student numbers are rising, the University is interested in making the marking of these

two tasks as automated as possible, to assist the marker so they won’t have to look through

every element of the site to make sure it meets the requirements. The focus of the report

will be the creation of a tool that will assist markers by making the process more

automated.

Acknowledgements
I would like to thank my supervisor Dr Martin Caminada for the opportunity to undertake

the completion of this project, and for their support and feedback throughout its

development. As well as this I would like to thank my family and friends who helped and

supported me throughout the completion, as well as kept me motivated to complete it

 2

Table of Contents

Abstract... 1

Acknowledgements ... 1

Table of Figures ... 4

Introduction .. 5

Project Aims .. 5

Background ... 5

Current System .. 5

Previous Solutions ... 7

Proposed Solution ... 7

Stakeholders .. 7

Approach and Methodology .. 8

Software Development Approaches ... 8

Tools and Programming Languages .. 8

Specification & Design ... 10

Functional Requirements .. 10

Non – Functional Requirements .. 12

Use Cases .. 13

Implementation ... 15

Tool File Structure ... 15

Part 1 Testing – Static Site ... 16
Main Program ... 16
Part 1 Tests ... 18

Part 2 Test - Dynamic Site ... 22
Main Program ... 22
Part 2 Tests ... 23

Common Tests .. 26

Reading from Console and Config File ... 28

Results and Evaluation .. 29

Testing Strategy .. 29

Testing Full System with Previous Submissions – Site 1 ... 29

Testing Full System with Previous Submissions – Site 2 ... 33

Testing based on Requirements .. 36

Testing of Non-Functional Requirements .. 43

Future Work .. 44

Conclusion ... 45

 3

Reflection .. 46

References ... 47

 4

Table of Figures

Figure 1 - File structure .. 15

Figure 2 - main program site 1 ... 16

Figure 3 - runCheck function .. 17

Figure 4 - returnResults function .. 18

Figure 5 - initialSiteHtmlPages function ... 18

Figure 6 - checkForTable function .. 19

Figure 7 - checkNavMenu function .. 20

Figure 8 - checkClickPicture function ... 20

Figure 9 - checkThreeParagraphs function ... 21

Figure 10 - main program site 2 ... 22

Figure 11 - outputOptions dictionary ... 23

Figure 12 - getEasterResponses .. 23

Figure 13 - getEasterOutput function ... 24

Figure 14 - getCorrectEasterOut function .. 25

Figure 15 - checkOutput function ... 26

Figure 16 - checkURL function .. 26

Figure 17 - getParsedHTML function .. 27

Figure 18 - checkLastModified function ... 27

Figure 19 – checkValidHTML function .. 28

Figure 20 - checForCSS function ... 28

Figure 21 - config.json file .. 28

 5

Introduction
All first-year students at the School of Computer Science at Cardiff University are required to

complete the Web Applications Module, which takes them through various internet and

web technologies used around the world, these include things such as Front – End

development, like HTML, CSS, and JavaScript as well as Backend and Server frameworks,

such as Linux Webservers as well as Django. As part of the assessment for this module,

students are required to complete a coursework assessment which involves building two

different sites. One is a static site which should be about an aspect of technology and meet

various requirements such as having a navigation menu, having a certain number of pages,

and containing an external CSS document. The second site should take a year as an input

and dynamically show the date that Easter is on that year, based on the year inputted into

the form.

Currently, the project is marked by manually opening the website in a web browser and

checking that the website meets each of the requirements. As the coursework has several

requirements for each site, this can take some time, especially as for some this involves

going into the inspector and looking at the code as well as doing the front-end checks. With

the rising number of students starting at university and a possible need to add more

requirements, this process is becoming very awkward and time-consuming. As a result,

there is a need to move this to a more automated process. The goal of my project is to build

a tool for a marker to use to test many aspects of the coursework automatically without the

need to go through the web browser.

Project Aims

The project aims are to create a tool to assist the marker, this tool would likely be a console

/ terminal application that can easily be run and will take input which will be the URL of

each student's website and return results on whether the given requirements have been

met or not. It should provide feedback on what has been passed or not passed and in

certain cases what has caused the test to fail. The tool also may be given to students, so

they can use it to be able to test their code to check it passes all tests before submitting

their work. As the tool will most likely be run in a terminal window, there will not have to be

a consideration for user Interface, however, the tool should be easy enough and at least

well laid out to be able to use and figure out without much training or work.

Background

Current System

Currently, both websites for the students are marked by the marker, the process for

marking is currently about 5-10 minutes for each student and requires the students to be

 6

either in a call or in-person with the marker. For the first site (the static site about an aspect

of technology), the required processes for each part of the marking criteria are:

1. “At Least 3 pages of HTML Code” – The marker must check the site manually to see if

there are at least 3 pages. It also needs to check each page for any errors using the

source code viewer (Control + U).

2. “Navigation with a menu on each page that provides access to each other page" –

The marker should check every page is accessible from the menu, as well as if the

menu is visible on each page.

3. “A table that has at least two columns and three rows, containing information

relevant to the website” – Again the marker should check each page to see if there is

a table, making sure there are 3 rows and 2 columns.

4. An external style sheet that includes rules that at least set the font family, size, and

colour of text" – Again the marker needs to open the inspector in the browser to get

the HTML source, find the CSS most likely in the header, open the CSS and check the

font family, size, and colour selectors.

5. "Informative content about a key person or a technology, including a clickable

picture” – Again the marker should check each page to ascertain that there is

enough informative content about the aspect as well as check each page if there is a

clickable picture, to be able to get the full marks for this section.

For the second site (dynamic site to find easter) the required processes are:

1. “An HTML page with a form that accepts user input of both the year and the option”

– The marker should check the form to make sure the form contains an input for the

year as well as check the form contains radio buttons for options (being verbose,

numeric and both), as well as make sure the radio buttons are not broken.

2. "The above page is styled with an external CSS style sheet for formatting the output"

– The marker should view the source using the inspector, check there is a link to

external CSS and then check if at least one property is set by the given CSS

document.

3. “Python + CGI program at least echoes (prints out) the year that the user has input

into the form, as an HTML/CSS web page” – This involves the marker checking

whether the form works, the user should at least check if the output echoes the

year, as well as check if it uses an external CSS stylesheet

4. "Python + CGI processing of user input to generate and output (in HTML/CSS) the

date of Easter for the year that the user has entered" – The marker has to check

whether the script gets the date of easter. This has to be checked for multiple dates

and make sure the correct date is given for each date.

5. "Correct implementation of the user options for formatting the date as both

'dd/mm/year' and 'day named_month year'" – The marker has to check the output is

the correct output based on the input on the form, this only has to be for one date

for each output

 7

6. “The superscript for the day (st, nd, rd, or th) is correctly computed and displayed" –

The marker should check if the correct subscript has been used, and used correctly

based on the date, for the verbose output.

Previous Solutions

A previously implemented system for this task was using a web driver. This is an interface

that interacts with a web browser and can control it in the same way that a user would. This

system used a web driver to interact with the student’s site to be able to get the outputs.

The issue with web drivers, however, is that they have dependencies on certain web

browsers and depend on the setup that the user of the tool has on their specific computer.

Also, if the browser setup changes this may be enough to cause the tool to not work as the

dependencies are no longer there. This was the case with this solution; the tool ceased to

work as it relied on dependencies in the Firefox Web Browser which didn’t exist.

Proposed Solution

As seen above in the current system is currently the process that is being used to mark the

coursework, as well as a solution that has been tried before. This in combination with the

fact that it must be combined with the marker being in the room with the student creates a

very complicated way of marking the coursework. With a tool that could automatically

check most of these elements, this process would be easier. The proposed solution of the

project would be a tool that would take in a URL of the student website and run the checks

on it automatically, instead of the marker having to check each criterion manually. The

proposed solution would be able to take each URL of the student, check the site against the

marking criteria and return the results of whether each criterion is met or not

Stakeholders

The stakeholders for this project include several groups of people. The main group of people

who will benefit from an automated marking tool are the markers of the coursework, as this

group of people will be able to mark the coursework more efficiently, and as the number of

students being marked is large, the tool will allow them to get through the process faster.

Another stakeholder will be the module leader, as this again will enable the marking process

to be faster whilst allowing module leader to release marks quicker along with making the

process of marking students a lot smoother. Finally, the last group of stakeholders will be

the students themselves as the tool has the potential to be released to the students as the

marking team. The tool being released to the students would allow them to test their work

with the tool. This would mean that they could see if their sites meet the marking criteria

and if all the elements are working correctly. This would mean students are more likely to

get better marks as they have a way of checking if their work is correct before they submit

their code.

 8

Approach and Methodology

Software Development Approaches

Waterfall Method

This method is generally considered to be the traditional software development method. It

involves a model that has linear steps that each have distinct goals, for example –

requirements, design, implementation, verification, and maintenance. Each step is

sequential and leads to the next. Before moving on to the next step the current step must

be fully completed. There is usually no way to go back on each step if the whole step must

be undone first before being allowed to go backwards. The fact that each step goes into

each other makes this very easy to understand and manage, however, it is generally quite

slow as well as inflexible if any changes need to be made when through the development

cycle.

Agile Methods

There are many agile methods to decide between when developing software. They mainly

consist of various steps; however, they are iterated over again and again. This allows the

user to receive feedback from their clients and make any changes to the code before

iterating the process again with the new changes. This is a good method to use as it allows

any issues, fixes, and changes to be sorted constantly and not just to be found out at the

end and then have to change the whole system then. However, when using this there needs

to be regular communication between the developer and the customer. It also can take

more time if there are always changes to be made, as there would need to be a new

iteration every time that this happens.

My Chosen Solution

My solution to develop the tool was to use an Agile methodology. As the tool would require

constant improvement and would need to be viewed by the client as they know the marking

criteria as well as what was needed best, it would be best to be able to use a method that

can make use of feedback given from the client (in this case my supervisor). As it is only me

that would be developing this tool, I would need a method that would allow me to test and

check for issues during the development, as the waterfall method only allows for this at the

end of the development process, I know that would also not be ideal.

Tools and Programming Languages

Python

I will be writing this tool using the programming language Python. I have decided to use

Python as it contains the libraries and modules that can capture various webpages and

parse and analyse the HTML and CSS so that I can check the HTML against the marking

criteria that it is met. Python code is also able to be run on all operating systems and on

 9

most devices, that have a desktop operating system, which would be needed as markers will

most likely be using a variety of operating systems and devices. This is unlike some other

programming languages that do not have the support for some of these libraries or some of

them are not compatible on all platforms, so therefore I have decided to use Python.

HTTP Requests (Python Requests Library)

I have decided to use HTTP requests to capture any web pages. This is opposed to the

previous use of a Web Driver to do this. Using a web driver as discussed above would

depend on the markers/students' web browser setup and could cause future issues if the

web browser were to change. As the web pages can be directly accessed without having to

use a university login screen when on the university network, there is no need to have to

use a web driver to get past this section, therefore it is better to use direct HTTP requests as

it will always get the HTML, as it is just requesting from the server and does not depend on

the setup that the marker has.

To perform HTTP requests, I have decided to use the Python requests module. This module

allows one to send HTTP requests in Python. Once sent it will return the results of the HTTP

request. The module allows for various requests including POST, GET, DELETE, and PUT,

however for this I will mainly be using POST and GET. I have chosen to use this module

instead of the urllib module on which the requests module is based as the requests module

is easier to understand and does not require as much code to perform the same action,

which means less code would be needed. Also, I am only using the requests part of the

requests library and would not need any of the features of urllib.

Beautiful Soup

To check the HTML of a students site, I will need to be able to parse the HTML from the

HTTP requests. Beautiful Soup is a python library that parses any HTML and organises it into

its relevant tags and makes it easily traversable. This would make my code better as without

this I would have to use string matching, which would not be as efficient or as ideal as it may

not work as intended. This tool also allows me to search any given HTML for specific tags

within. This is great for the tool as I will have to check for specific tags to check the marking

criteria, such as img, a, and table.

Visual Studio Code

This is a graphical code editor that will be used to create and edit the code for this project. I

have used this as it supports Python and its libraries quite well. It is quite helpful as it

highlights any errors and can show developers what needs to be changed based on the error

in the code. It also supports auto-filling commands, which makes developing code much

easier. This is better than using a text-based editor, or IDLE as these functions are not

available and thus would make this harder to develop.

 10

Specification & Design

Functional Requirements

1. The tool should allow for user input in the console for the URL of the site to be

inputted

Acceptance Criteria:

- The user will run the script from the console with the URL as an argument

- The code will run with that site as the one being checked

2. The tool should allow users the option to opt for a verbose mode which shows more

options

Acceptance Criteria:

- The user will be able to add a verbose argument after the URL when running the

script to add verbose mode when running.

- When added the verbose mode will show a more detailed output than when just

running the script without

3. The tool should check if the URL is valid and actually returns an HTTP response

Acceptance Criteria:

- The tool should run if a valid URL is given.

- If no URL is given or if the URL does not return anything an error should be

shown

4. Site 1 - The tool should check Marking Criterion 1 – Whether there are at least 3

pages of HTML code.

Acceptance Criteria:

- The tool should show the marker whether there are or are at least 3 pages and

whether the test has been passed, and failed if not

- In verbose mode, the marker should be shown whether the test has been passed

as well as what URL’s have been seen.

5. Site 1 - The tool should check Marking Criterion 2 – Whether there is a Navigation

menu that points to each page of the site

Acceptance Criteria:

- The tool should show the marker whether there is a navigation menu on the site

and whether the test has been passed, and failed if not

- In Verbose mode, the marker should be shown whether the test has been passed

or not.

6. Site 1 - The tool should check Marking Criterion 3 – Whether there is a table and

whether the table has at least two columns and three rows

 11

Acceptance Criteria:

- The tool should show whether it has found a table and whether the test has been

passed or whether it has failed.

- When in verbose mode the tool should show whether the table has been found,

and on what page the table has been found.

7. Site 1 - The tool should check Marking Criterion 4 – Whether the site contains an

external CSS that sets the font family, font size and colour.

Acceptance Criteria:

- The tool should show whether the site contains the external CSS sheet and

whether the test has passed or failed

- The verbose should show whether the site contains the external CSS and should

show a link to the CSS document

8. The site should read the submission date from a config file

Acceptance Criteria:

- The tool should check the site against the submission date given in the config file

9. The site should read the chosen test years from a config file

Acceptance Criteria:

- The tool should check the easter dates with the years given in the test file

10. Site 2 – The tool should check Marking Criterion 1 – Whether the site contains a form

that accepts both the year as well as the format of the output.

Acceptance Criteria:

- The tool should show whether the form and format inputs exist on the site and

whether the test has passed or failed

11. Site 2 – The tool should check Marking Criterion 2 – Whether the site contains an

external CSS stylesheet.

Acceptance Criteria:

- The tool should show whether the site contains an external CSS stylesheet

- In the verbose mode, the tool should show whether the CSS stylesheet has been

found as well as a link to the CSS stylesheet

12. Site 2 – The tool should check Marking Criterion 3 – Whether the site at least echoes

the year, that has been inputted into the form

Acceptance Criteria:

- The tool should check whether the year given is outputted in the site output and

should show how many years passed

- The tool should check this for all years in the config file

 12

13. Site 2 – The tool should check Marking Criterion 4 – Whether the site has correctly

processed the date for Easter of the given year.

Acceptance Criteria:

- The tool should check whether the correct date has been processed and should

show how many years this has passed.

- The tool should check this for all years in the config file

14. Site 2 – The tool should check Marking Criterion 5 - Whether the site has correctly

outputted for both format options, this being dd/mm/year, and day named month

year.

Acceptance Criteria:

- The tool should check whether the output is correct for all options and should

show how many years passed this has passed.

- The tool should check this for all years in the config file

15. Site 2 – The tool should check Marking criterion 6 – Whether the site has correctly

outputted the correct superscript for the date.

Acceptance Criteria:

- The tool should check if the correct superscript has been used and should show

how many years this has passed.

- The tool should check this for all years in the config file

16. The tool should check the Modification date, to make sure that the site has not been

modified after the submission date.

Acceptance Criteria:

- The tool should check if the modification is not after the given submission date.

- The verbose mode should show the last modified date and if this is after the

submission date or not

17. The tool should check the site for any errors as well, and present them to the user

Acceptance Criteria:

- The tool should check if there are any errors on the site and show them to the

user when using the verbose mode.

Non – Functional Requirements

1. When checking the sites, the tool should not have any false positives

Acceptance Criteria:

- The tool should be checked against various sites and should always show a failed

test if does not meet the marking criteria.

- The tool can show a failed test if it is actually passed, as this can always be looked

into further

 13

2. The tool should be able to check the sites and load data in a reasonable amount of

time

Acceptance Criteria:

- The tool should not take longer than a few seconds to perform testing on each

site in the case of a reasonable internet connection.

3. The interface while being a console app, should be relatively easy for the user to

understand what is going on

Acceptance Criteria:

- All users should be able to use the tool once shown how to use it and shouldn’t

have to struggle with understanding the output of the tool.

Use Cases

Use Case 1 – Test Site 1 with Verbose

Flow:

- The user opens the command line in the folder for the tool

- The user runs the command for site 1 with the URL for site 1 and the Verbose

mode flag, as arguments

- The user is presented with the verbose output, for each marking criterion

- The user is presented with the results for each criterion saying whether each test

has been passed or failed

Use Case 2 – Test Site 1 without Verbose

Flow:

- The user opens the command line in the folder for the tool

- The user runs the command for site 1 with the URL for site 1, as an argument

- The user is presented with the results for each criterion saying whether each test

has been passed or failed

Use Case 3 – Test Site 2 with Verbose

Flow:

- The user opens the command line in the folder for the tool

- The user runs the command for site 2 with the URL for site 2 and the Verbose

mode flag as arguments

- The user is presented with the verbose output, for each marking criterion

- The user is presented with the results for each criterion saying whether each test

has been passed or failed

User Case 4 – Test Site 3 without Verbose

Flow:

- The user opens the command line in the folder for the tool

- The user runs the command for site 2 with the URL for site 2 as

 14

- The user is presented with the results for each criterion saying whether each test

has been passed or failed

 15

Implementation

Tool File Structure

This is the file structure for the tool. The “mainProgramPart1.py” contains all the functions

that involve the outputs for verbose mode and normal output for the testing of site 1 This

file will get the input from the command line as well as from the config file, as well as run

the functions that will test the site. At the end of this file, the results of the tests will be

shown to the user. Similarly, the file “mainProgramPart2.py” performs the same tasks for

site 2.

The files “part1Tests.py” and “part2Tests.py contain all the functions that perform the tests

for site 1 and site 2 respectively. These are all imported and run in mainProgramPart1 and

mainProgramPart2 when they are needed. I have the tests in a separate file as it means the

main part can be kept shorter. Also, a lot of tests are used more than once in the main

program so calling them from another file. Similarly, “commonTests.py” contain any tests

that are common to both sites, such as testing for submission dates and any HTML errors.

This is again so they don’t have to be in both files for site 1 and the site 2 tests and can be

reused in each site, which makes the code more concise again, and prevents unnecessary

duplicate code.

The file “otherMethods.py” contain any code that is not related directly to testing of the

site, but the code needs to run, and “checkEaster.py” contains the methods used to

calculate the actual date of Easter so the easter site can be checked against this.

Figure 1 - File structure

 16

Finally, the “config.json” file contains the config data for testing. This is in a JSON format and

contains any config data, such as the list of years for Easter to be tested as well as the

Submission date, this will be able to be edited by the user to be changed for each marking

session.

Part 1 Testing – Static Site

Main Program

The program for site 1 is run using the main function in the mainProgramPart1.py. It uses

sys.argv to get any arguments from the command line. It first checks if the length is more

than 2 to make sure there are at least 2 arguments when running. It then gets the site URL

from the first argument and the verbose mode flag from the second argument. It then

checks the URL to make sure that it returns a valid response, and that there are no

connection errors when connecting to the URL. If there are any connection errors or if the

URL doesn’t exist, then the program will exit and return an error to the user. This is checked

before the rest of the program, because if the URL is not correct then the rest of the tool

cannot run at all as it would not have a valid URL to test hence this is done at the start. The

verbose mode is also set here if the second argument exists and is equal to a “-v” then the

Figure 2 - main program site 1

 17

program will set the verbose mode on, again this is set at the start as any outputs that just

relate to the verbose mode will need to be disabled if it is not enabled. If verbose mode is

set to off, it will use the HiddenPrints function, which disables the print function inside the

runChecks function. This means that any print statements inside the runChecks will not run,

which means no outputs will be shown when running, if it is set to on then it will not use the

function so no statement will be hidden. I chose to do it this way as it means I would not

have to write the same code without the print statements which makes the code more

concise and will take less time to run.

The runChecks function is the function that runs all the checks on the site. I have used a

dictionary that will store whether each check has passed or failed or not. This is in the form

of False if failed and True if passed. The table entry has both the Boolean variable and

another variable which contains the link to the site where the table is found. The External

CSS value also contains two variables, the Boolean value for whether the test has passed,

and another Boolean for whether it is the same CSS document for the whole site. All these

values are set to false initially to make sure that they are all false, and all tests fail unless

they are found to have met the criteria. I have used a dictionary for all these values as it can

easily be updated, for each value.

The program then runs all the test functions for each of the marking criteria. It starts with

running the test for the first marking criteria, which is that there are at least 3 pages of

HTML. This is the first test to run as it involves adding the found sites to a list which is saved

in a variable. If this list is larger than 3 elements the dictionary value is marked as True. This

Figure 3 - runCheck function

 18

list is then used throughout the rest of the tests as they mostly involve checking all the

pages. For the rest of the marking criteria, this being the table, Clickable picture, External

CSS, Nav Menu, and the Submission date. Each of the sites in this list is iterated through to

make sure each site meets the test. The submission date is received from the getSubmission

function which loads the submission date from the JSON configuration file.

Finally, the returnResults function is run, which takes the checks dictionary as a parameter.

For each value in the dictionary, the user is shown a message for each marking criterion and

other tests, and whether it has passed or not. This is based on the Boolean value of the

dictionary value. I have also used the string colour library in Python which allows me to

change the colour of the output, which allows the user to distinguish between the different

types of output, such as a failed test in red, and a passed test in green.

Part 1 Tests

All the tests are stored in the file “Part1Tests.py”, the individual functions for each test will

be discussed below.

The function getInitialHtmlPages takes a parameter of the link to the site. It starts by taking

this link to the site and using a get request using the python request library and then using

Figure 4 - returnResults function

Figure 5 - initialSiteHtmlPages function

 19

the Beautiful Soup module to parse the HTML from the get request. Using the Beautiful

Soup find_all function, which finds all of the ‘a’ tags in the HTML document. It then iterates

through all the ‘a’ tags found and finds the href attribute which is the link for the given ‘a’

tag. It then checks performs a get request with the link of the given ‘a’ tag and checks if the

status code is 200. This has been done as if the site returns a code of 200, then the site is

valid and not broken. If all these passes, then the site is added to the list of pages list. As

only these are added to the list there will only be links that return this status code, and no

other links should be added making sure that all links are not broken.

After this, the list of pages is iterated over and removed if they do not contain the project

server URL, as this would mean that no links are included that are not part of the student’s

project. Any duplicates are then removed from this list, and it is returned by the function.

The checkForTable function takes a parameter of the URL of the page that is being checked.

Using a get request and the Beautiful Soup library to parse the HTML, it is then checked for

any table tags, on the site. The check variable is initialised and set to false, as there is

currently no table found with the required criteria. Each table in the list of table tags is

iterated over, and checked for ‘tr’ tags, if this list is more than 3 then the row is checked for

any ‘th’ or ‘td’ tags and if is more than 2. If both are true, then the check is set to True and is

returned by the function if any of these are false then the next Table tag is iterated over. If

none is found, then the function will return False as no table with 3 rows and 2 columns has

been found.

Figure 6 - checkForTable function

 20

The checkNavMenu function takes a link to the page as a parameter and then like the other

functions, it parses the HTML from the get request using the link. It then checks the page to

find any ol or ul tags. It then merges the list of ol and ul tags. Using the Beautiful soup

library, it checks the list of tags for any li tags, which contain ‘a’ tags. It then increments a

counter by 1 the ‘li’ tag contains an ‘a’ tag with a link. When this is done it checks if the

counter is equal to the length of the li tags. If this is true, then the function returns True as

the test is passed as well as the list of ‘ul’ or ‘ol’ tag, which is returned so that the main

program can check against the other pages if the same nav menu is used. ‘ol’ and ‘ul’ tags

are checked for as they are how a nav menu is constructed, and if they contain links it is

likely to be a nav menu so if this is true then the test is passed.

Figure 7 - checkNavMenu function

Figure 8 - checkClickPicture function

 21

The checkClickPicture function again takes a URL of the page to be checked as a parameter

and then uses a get request and beautiful soup to parse the HTML of the page. It then uses

the find_all function to look for any ‘a’ tags within the HTML document. It then iterates over

the list of ‘a‘ tags and uses the find_all function to find any ‘img’ tags within the ‘a’ tag. It

then checks the href of the ‘a’ tag and performs a get request using the requests library to

return a status code and checks if the status code is 200. If the status code is 200, then it

means the link is not broken and the link is valid. If this is the case, then the function returns

true. If nothing is returned here the function performs the same thing but iterates over all

the ‘img’ tags and checks for any ‘a’ tags inside them. This function works as if there is an ‘a’

tag that contains an image or an image that contains an ‘a’ tag then the picture will be

clickable. If the link returns a valid HTTP response, then the test is valid and can be passed.

Figure 9 - checkThreeParagraphs function

The final test in this python file is the function checkThreeParagraphs, which also takes a link

to a page, which is used in a get request HTML in the response is pared in beautiful soup.

This HTML document is then checked for any ‘p’ tags. The list of ‘p’ tags is then iterated

over, and the text of the ‘p’ tag is then split into words. If the word count of this ‘p’ tag is

more than 40 then it increases a counter by 1. After all, ‘p’ tags have been checked then the

counter is checked if it is at least 3 then the function returns True, else it will return False.

The word count is set to 40 as this is an average size of a paragraph in the sample of

students who passed this test. If the count is greater than 3 then there are at least 3 ‘p’ tags

with a word count greater than 40 so this means that the test can be passed. There is no

feasible way to check the contents of these paragraphs so this would be something markers

would need to be aware of, as it could be paragraphs irrelevant.

 22

Part 2 Test - Dynamic Site

Main Program

The program for site 2 is run from the similarly named mainProgramPart2.py. This uses the

same method to get the arguments for verbose mode and the URL of the site. It also gets

the list of years from the config.json file and stores them in a variable. The runChecks

method in this section is also similar to the part 1 program. It initialises a checks dictionary

which also contains a Boolean value for each of the tests. However, the format input

contains a Boolean value for each of the format inputs (Verbose, Numeric, and Both). The

Correct Output value contains a list of Boolean values for each year. The first is for correct

numeric output, the second two values are for both verbose and correct superscript for the

verbose, the third is for correct output for both and the final is for processing the correct

year. A dictionary is again used here as each value can be accessed easily with the key and

updated and changed individually.

Similarly, to the site 1 code, each test is run from this function, including testing the easter

outputs. The easter outputs are checked with each year given in the configuration file and

are checked for each output (verbose, Numeric and Both). The Boolean value for each of

these tests is stored in their respective dictionary value.

Again, similar to the site 1 testing, the returnResults function takes the checks dictionary as

a parameter and then outputs whether each test has passed or failed. When outputting for

the years, for each marking criterion, (Verbose, numeric, superscript, and both), a counter is

initialised. Each year is iterated over and if the counter is iterated for each true value. The

user is shown how many times each criterion is passed, out of the given years. Again the

strung colour library was used throughout to make the messages easier to distinguish, for

example, the tests that were passed in green and the failed tests in red.

Figure 10 - main program site 2

 23

Part 2 Tests

The outputOptions dictionary contains a list of all the names that previous students have

used for their radio button values for the numeric, verbose and both outputs. This will be

used to compare any options that future students will use and allow the tool to work out

what each radio button should be used for. I have used this method as it can be added I

have checked against many student submissions in the last year and most of the

submissions use a variant of these options. Likely, a student using an option that is not on

this list would be an infrequent occurrence and if so, their test would not pass, however,

this could easily be checked by a marker manually. Also, there is another option name used

it can easily be added to the dictionary which will improve the tool in future. I decided to

use the output of the radio buttons to determine the function as this could is not as

accurate as students could map a button to the wrong output which would make the test

inaccurate.

The function is the getEasterResoponses function which takes the site URL and parses using

the Beautiful Soup library. It then finds any form tags in the HTML document using the find

Figure 11 - outputOptions dictionary

Figure 12 - getEasterResponses

 24

function. This is used to get the form that the user would input the year and format options

into. For this form, I have used Beautiful Soup again to find the method attribute, which

returns the link to the action for the form. Using the urljoin function in the requests library I

have combined this with the relative URL to get the link for the action to get the student's

Easter output. Then again, I have used the Beautiful Soup library to find any input tags. Each

input tag is checked for whether it contains a “type” attribute which is either text or

number. If it is either of them then it is stored in the year input variable and the loop is

broken as the program has found the input for the year.

The select options list is initialised as an array of three values. The first is for the ‘numeric’

input variable, the second is for the ‘Verbose’ input variable and the third is for the ‘both’

input option. I have used this as a simple way to store the output options for each of the

required outputs and if one isn’t there it can easily be recognised.

The program then loops through all the inputs found and makes sure that they are of type

radio, meaning they are radio buttons. It also makes sure the name of the radio button is

the same as the previous one checked. Using multiple if statements it checks if the input

value attribute matches any of the outputOptions dictionary mentioned earlier. If it matches

or contains one of the values, the input attribute name is placed in the relevant index in the

select options array, so for example, if it contains one of the values in the numeric dictionary

value then it would be placed in the first position in the select options list. This means that if

all input options are found, the list should contain a list of all the format options. If any are

not found, then it will be a blank element in the list.

The function then returns a dictionary containing the action link, the request method, the

name of the year input variable, the select options list, and the name of the radio buttons.

Figure 13 - getEasterOutput function

 25

The getEasterOutput function takes the parameters for the action, the request method, the

year being tested, the format option variable and the format option name. Depending on

whether a POST or GET request is being used the tool will construct the string for the GET

request or create a dictionary for a POST request. It will then perform the relevant request

and return the text data for this. This data will be used to pass on to the function that will

compare the HTML to the correct HTML, which will include superscript. Therefore, it is not

parsed as it would be easier to compare the strings directly as they both will have

superscript HTML tags. If there is no method or it is not GET or POST then the code will

return None, as there is no relevant method to use.

The getCorrectEasterOut function takes a parameter of the year being tested. It calls the

findEaster function with that year, which returns a DateTime value for the date of Easter for

that given year. The correctDates dictionary contains the correct values for Easter for the

Numeric option, the Verbose option as well as the Verbose option with no superscript. The

code then sets the correct Numeric output to the string which is dd/mm/yy. Based on what

number day of the month is given, the correct output with superscript is stored in the

Verbose value. For the non-superscript verbose output, the DateTime value is stored here.

This is because the student output just needs to contain the relevant numbers and month

names so this will be processed in a different function. In the case of the Numeric and

Verbose with superscript, the output just needs to be compared and checked if the output

contains the correct output. The function then returns the dictionary of the correct outputs.

Figure 14 - getCorrectEasterOut function

 26

The function check output takes the correct output and the student output data. It creates a

dictionary called ’check’. It is a Boolean value for Numeric, Two Boolean values for Verbose

– one for superscript and one for correct verbose values, and A Boolean value for Both

output, one for Year only. It first checks the easter output with the numeric format. To

check this, it checks if the Student Easter output, which is retrieved by running the

getEasterOutput function, contains the correct output for the numeric format given in the

correctOutput dictionary. I have chosen this approach as it means the data can be anywhere

in the student’s response, if it contains the correctOuput then the test will pass. The same is

done for the Verbose mode, however, an additional if statement is used to check if there is

the correct superscript, again this is done by checking if the student output contains the

correct output. For the ‘both’ output option it is checked that the student output contains

both the verbose and numeric correct outputs and will only pass if both are present in the

output

Common Tests

Figure 16 - checkURL function

Figure 15 - checkOutput function

 27

This checkURL function takes a URL as a parameter and checks it returns a status code of

200. This means that the URL is valid. If the URL does not return any response or doesn’t

connect a connection error will be shown. This code is to check any URLs that are entered

are valid before using the code.

Figure 17 - getParsedHTML function

The getParsedHTML function takes a request and a method and returns the HTML for that

URL. As this happens a lot in the tests, I have decided to write this as a separate function so

it can be easily reused in the code.

Figure 18 - checkLastModified function

The checkLastModified function takes a list of pages as well as the submission date. It

iterates over each page and gets the last modified date and time from the header, using the

requests library which can view the headers of a response. It then converts this into a date-

time value. It adds the page to a dictionary, with each page having a Boolean value and a

last modified value. The Boolean value represents whether the page has been modified

after the submission date or not. The dictionary of all pages is then returned by the

function.

 28

Figure 19 – checkValidHTML function

The checkValidHTML function takes the site URL as a parameter and then sends the text

returned by the request through a library called tidylib, which lists any errors in the

document. This list of errors is then returned by the function.

Figure 20 - checForCSS function

The final function checkForCSS contains a link to the page, and again using a get request and

Beautiful Soup checks the head tag for any link attributes which would contain the CSS

stylesheet. It then performs a get request on the link for the stylesheet and checks if the

text contains the font family, font size and colour attributes, which makes sure that the CSS

sets these values.

Reading from Console and Config File

Figure 21 - config.json file

The two pieces of data that is needed to be retrieved from a config file are the Submission

date and the list of years that need to be tested. To implement this, I have used a JSON file. I

have used a format of a list to store the years to be tested as well as the submission date

after that. This is easily editable by the user and is also easily read in python. They can also

be in any order if the title of the data is correct. Therefore, JSON was preferable to using

another form of storage. It can also be adapted to add more config data in future if more

were to be needed.

 29

Results and Evaluation

Testing Strategy

Testing was mostly performed during the implementation of the project, unlike most

traditional methods where testing is performed at the end of the implementation. This

allowed me to see any errors that were present at the time of implementing them and then

be able to fix them when they came up. Each function for each test of the site, for example,

the check for the table, was tested to make sure it passed with a valid site as well as failed

for an invalid site. This made sure each of the functions worked properly when written, as

well as performed the task they were supposed to without errors.

I performed dedicated testing after the implementation, to make sure the entire program

worked as expected. Even though the individual functions may have worked for each test, it

was important to check the program works as intended. I built my version of the sites and

installed them on the University Project server. This allowed me to change the site to allow

the test to fail or pass. This allowed me to check if the testing failed when the site did not

meet the marking criteria. I also had access to the previous years’ student sites, which

allowed me to test on various other projects that may have been in a different format or

taken a different approach. It also allowed the system to be tested in an environment that is

similar to the way it would be used when actually deployed.

Testing Full System with Previous Submissions – Site 1

For each site tested I used the tool to test the site and used then also checked the site

manually, by opening the site and checking in the way the marker currently does without

the tool. I checked whether it passed/failed for the automated test for each site and did the

same for the manual test.

There were some inconsistencies when testing on different submissions, this was mainly

down to the approach that the students used for the various marking criteria. Importantly,

there were no False-positive tests, if the test wasn’t supposed to pass and didn’t pass the

manual test just by looking over it, then the test never passed. There were, however, some

false negatives where, which in these circumstances the marker would have to look over

that specific section manually. Mostly, the reason for false-negative tests was when a

student used a different approach to the one that was used by the automated tool. These

were:

- Using Nav instead of ol, ul for the nav menu

- Using a different approach for creating a table

- Using smaller paragraphs than the 40-word count set by the tool.

Below are the results for each of the sites.

Site 1 - Test 1

Test URL: https://project.cs.cf.ac.uk/BeavisJ1/static/index.html

 30

Marking Criterion Automated Test Manual Test

At least 3 pages of

code

Passed Passed

Nav menu on each

page

Failed – Couldn’t find nav menu Passed

Table with at least 3

rows and 2 columns

Failed – Couldn’t find table Passed

External Style Sheet

that sets font-family

etc.

Passed Passed

Number of

paragraphs of content

Failed Failed

Submission Date Passed Passed

Site 1 - Test 2

Test URL: https://project.cs.cf.ac.uk/DaviesJ164/home.html

Marking Criterion Automated Test Manual Test

At least 3 pages of

code

Passed Passed

Nav menu on each

page

Passed Passed

Table with at least 3

rows and 2 columns

Passed Passed

External Style Sheet

that sets font-family

etc.

Passed Passed

Number of

paragraphs of content

Failed – only one site with

adequate paragraphs

Failed

Submission Date Passed Passed

Site 1 – Test 3

Test URL: https://project.cs.cf.ac.uk/GreerC1/part1/index.html

Marking Criterion Automated Test Manual Test

At least 3 pages of

code

Passed Passed

 31

Nav menu on each

page

Passed Passed

Table with at least 3

rows and 2 columns

Failed – no table found Failed – no table seen

External Style Sheet

that sets font-family

etc.

Passed Passed

Number of

paragraphs of content

Failed Failed

Submission Date Passed Passed

Site 1 – Test 4

Test URL: https://project.cs.cf.ac.uk/HowarthA1/part1/Home.html

Marking Criterion Automated Test Manual Test

At least 3 pages of

code

Passed Passed

Nav menu on each

page

Failed Passed

Table with at least 3

rows and 2 columns

Passed Passed

External Style Sheet

that sets font-family

etc.

Passed Passed

Number of

paragraphs of content

Failed - Couldn’t find enough sites

with adequate paragraphs

Passed

Submission Date Passed Passed

Site 1 – Test 5

Test URL: https://project.cs.cf.ac.uk/ThakrarA/Part1/

Marking Criterion Automated Test Manual Test

At least 3 pages of

code

Passed Passed

Nav menu on each

page

Passed Passed

Table with at least 3

rows and 2 columns

Passed Passed

External Style Sheet

that sets font-family

etc.

Passed Passed

Number of

paragraphs of content

Failed - Couldn’t find enough sites

with adequate paragraphs

Passed

 32

Submission Date Passed Passed

Site 1 – Test 6

Test URL: https://project.cs.cf.ac.uk/SwarbrickAO/CM1102/part%201/index.html

Marking Criterion Automated Test Manual Test

At least 3 pages of

code

Passed Passed

Nav menu on each

page

Passed Passed

Table with at least 3

rows and 2 columns

Passed Passed

External Style Sheet

that sets font-family

etc.

Passed Passed

Number of

paragraphs of content

Passed Passed

Submission Date Passed Passed

Site 1 – Test 7

Test URL: https://project.cs.cf.ac.uk/StodolnicB/INDEX-PT-1.html

Marking Criterion Automated Test Manual Test

At least 3 pages of

code

Passed Passed

Nav menu on each

page

Passed Passed

Table with at least 3

rows and 2 columns

Passed Passed

External Style Sheet

that sets font-family

etc.

Passed Passed

Number of

paragraphs of content

Passed Passed

Submission Date Passed Passed

Site 1 – Test 8

Test URL: https://project.cs.cf.ac.uk/PhillipsA36/Part%201/

Marking Criterion Automated Test Manual Test

 33

At least 3 pages of

code

Passed Passed

Nav menu on each

page

Passed Passed

Table with at least 3

rows and 2 columns

Passed Passed

External Style Sheet

that sets font-family

etc.

Passed Passed

Number of

paragraphs of content

Passed Passed

Submission Date Passed Passed

Testing Full System with Previous Submissions – Site 2

Similar to testing site 1 I also used the tool to check the easter output and performed a

manual check to make sure the tests passed correctly and failed correctly.

During the testing of Site 2, I found that once again there were no false-positive tests. Even

though there were some inconsistencies between the manual test and the automated test.

These again would have to be checked manually by the marker in the case of a false-

negative test.

I found that most of the failed tests were in the checks for the numeric output for the Easter

output. I found that this was because some students outputted as “12/4/2020” where the

program is looking for “12/04/2020”. As Python doesn’t have a way to format this, I would

have to look into this more thoroughly to make sure this is fixed in the final release. The

other reason was mostly the Superscript which was failing because some students used a

different format to the way the tool was looking for. For example, the code needed the “of”

in-between the date so it wouldn’t mark as passed. This would also need to be fixed in the

final release. Below are the tests performed on each of the sites

Site 2 – Test 1

Test URL: https://project.cs.cf.ac.uk/BeavisJ1/dynamic/cgi-bin/Easter.py

Marking Criterion Automated Test Manual Test – input of

2020

HTML page that

accepts user input

Passed Passed

Page is styled with

external CSS

Passed Passed

Program that prints

year based on input

Passed Passed

Correctly outputs

date of easter

Passed – For Verbose and

Numeric, however Failed for both

Passed

 34

Verbose output

contains correct

superscript

Failed Passed

Submission Date Passed Passed

Site 2 – Test 2

Test URL: https://project.cs.cf.ac.uk/DaviesJ164/easter_calc.html

Marking Criterion Automated Test Manual Test – input of 2020

HTML page that

accepts user input

Failed – no both option Failed – no both option

Page is styled with

external CSS

Passed Passed

Program that prints

year based on input

Passed Passed

Correctly outputs

date of easter

Passed – For Verbose mode, but

not numeric or both (as there was

no both option)

Passed – Failed for both

option as there was none

Verbose output

contains correct

superscript

Failed Passed

Submission Date Passed Passed

Site 2 – Test 3

Test URL: https://project.cs.cf.ac.uk/GreerC1/part2/html/easter_numbers.html

Marking Criterion Automated Test Manual Test – input of 2020

HTML page that

accepts user input

Failed – no both option Failed – no both option

Page is styled with

external CSS

Passed Passed

Program that prints

year based on input

Passed Passed

Correctly outputs

date of easter

Passed – For Verbose mode, but

not numeric or both (as there was

no both option)

Passed – Failed for both

option as there was none

Verbose output

contains correct

superscript

Failed Passed

Submission Date Passed Passed

Site 2 – Test 4

 35

Test URL: https://project.cs.cf.ac.uk/HowarthA1/part2/form.html

Marking Criterion Automated Test Manual Test – input of 2020

HTML page that

accepts user input

Passed Passed

Page is styled with

external CSS

Passed Passed

Program that prints

year based on input

Passed Passed

Correctly outputs

date of easter

Passed – For Verbose mode, but

not numeric or both

Passed

Verbose output

contains correct

superscript

Passed Passed

Submission Date Passed Passed

Site 2 – Test 5

Test URL: https://project.cs.cf.ac.uk/PhillipsA36/Part%202/index.html

Marking Criterion Automated Test Manual Test – input of 2020

HTML page that

accepts user input

Passed Passed

Page is styled with

external CSS

Passed Passed

Program that prints

year based on input

Passed Passed

Correctly outputs

date of easter

Passed – For Verbose mode,

numeric but not both

Passed all

Verbose output

contains correct

superscript

Passed Passed

Submission Date Passed Passed

 36

Testing based on Requirements

I have also tested the tool based on each of the requirements. For each of the Requirements

relating to the marking criteria, I edited the site for each marking criterion that I had created

to make sure to include a case for a test that should fail and a test that should pass. The

requirements would only be fully satisfied if this was the case. As seen in the tests

performed below, all the requirements were at least partially satisfied, with most of them

fully meeting the requirements.

FR1: The tool should allow for user input in the console for the URL of the site to be

inputted

Acceptance Criteria:

- The user will run the script from the console with the URL as an argument

- The code will run with that site as the one being checked

Screenshot Comments Satisfied

The users

runs the

script in the

terminal with

a URL in the

arguments

and the code

is run with

the URL

Yes

FR2: The tool should allow users the option to opt for a verbose mode which shows more

options

Acceptance Criteria:

- The user will run the script from the console with the URL as an argument

- The code will run with that site as the one being checked

Screenshot Comments Satisfied

 The tool

shows more

output when

the flag “-v”

is added as

an argument

Yes

FR2: The tool should allow users the option to opt for a verbose mode which shows more

options

Acceptance Criteria

- The user will be able to add a verbose argument after the URL when running

the script to add verbose mode when running.

 37

- When added the verbose mode will show a more detailed output than when

just running the script without

Screenshot Comments Satisfied

 The tool

shows more

output when

the flag “-v”

is added as

an argument

Yes

FR3: The tool should check if the URL is valid and actually returns an HTTP response

Acceptance Criteria

- The tool should run if a valid URL is given.

- If no URL is given or if the URL does not return anything an error should be

shown

Screenshot Comment

s

Satisfie

d

The tool

runs if the

URL is

valid and

if not then

will show

an error. If

no site is

given it

will also

present

an error

Yes

FR4: Site 1 - The tool should check Marking Criterion 1 – Whether there are at least 3

pages of HTML code.

Acceptance Criteria

- The tool should show the marker whether there are or are at least 3 pages and

whether the test has been passed, and failed if not

- In verbose mode, the marker should be shown whether the test has been

passed as well as what sites have been seen.

Screenshot Comments Satisfied

 The tool

checks the

site to see

if there

Yes

 38

are at

least 4

pages of

HTML

FR5: Site 1 - The tool should check Marking Criterion 2 – Whether there is a Navigation

menu that points to each page of the site

Acceptance Criteria

- The tool should show the marker whether there is a navigation menu on the

site and whether the test has been passed, and failed if not

- In Verbose mode, the marker should be shown whether the test has been

passed or not.

Screenshot Comments Satisfied

The tool

checks the

site to see

if there

are at

least 4

pages of

HTML

Yes

FR6: Site 1 - The tool should check Marking Criterion 3 – Whether there is a table and

whether the table has at least two columns and three rows

Acceptance Criteria

- The tool should show whether it has found a table and whether the test has

been passed or whether it has failed.

- When in verbose mode the tool should show whether the table has been

found, and on what page the table has been found.

Screenshot Comments Satisfied

The tool

checks the

site for a

table and

returns

the page it

has been

found

Yes

FR7: Site 1 - The tool should check Marking Criterion 4 – Whether the site contains an

external CSS that sets the font family, font size and colour.

Acceptance Criteria

 39

- The tool should show whether the site contains the external CSS sheet and

whether the test has passed or failed

- The verbose should show whether the site contains the external CSS and

should show a link to the CSS document

Screenshot Comments Satisfied

The tool

checks the

site for an

External style

sheet

Partially

– as the

style

sheet is

required

to be

the

same

and

should

be

flagged

if not.

FR8: The site should read the submission date from a config file

Acceptance Criteria

- The tool should check the site against the submission date given in the config

file

Screenshot Comments Satisfied

The tool retrieves the submission

date from a JSON file – config.json

Yes

FR9: The site should read the chosen test years from a config file

Acceptance Criteria

- The tool should check the easter dates with the years given in the test file

Screenshot Comments Satisfied

The tool retrieves the list of years

from a JSON file – config.json

Yes

FR10: Site 2 – The tool should check Marking Criterion 1 – Whether the site contains a

form that accepts both the year as well as the format of the output.

Acceptance Criteria

- The tool should show whether the form and format inputs exist on the site and

whether the test has passed or failed

Screenshot Comments Satisfied

 40

The tool

checks the site

for an input

box that sets

the year.

Yes

FR11: Site 2 – The tool should check Marking Criterion 2 – Whether the site contains

an external CSS stylesheet.

Acceptance Criteria

- The tool should show whether the site contains an external CSS stylesheet

- In the verbose mode, the tool should show whether the CSS stylesheet has

been found as well as a link to the CSS stylesheet

Screenshot Comments Satisfied

The tool checks the site contains a

CSS externally, in verbose mode

the link to the file is shown.

Yes

FR12: Site 2 – The tool should check Marking Criterion 3 – Whether the site at least

echoes the year, that has been inputted into the form

Acceptance Criteria

- The tool should check whether the year given is outputted in the site output

and should show how many years passed

- The tool should check this for all years in the config file

Screenshot Comments Satisfied

The tool

checks the site

echoes the

year that is

given, it

checks this for

all of the

years. These

are the years

from the

config file

Yes

1. FR13: Site 2 – The tool should check Marking Criterion 4 – Whether the site has

correctly processed the date for Easter of the given year.

 41

Acceptance Criteria

- The tool should check whether the correct date has been processed and

should show how many years this has passed.

- The tool should check this for all years in the config file

Screenshot Comments Satisfied

The tool checks the

date of easter, and

compares it to the

student’s

calculation and

output to make

sure the date is the

same

Yes

FR14: The tool should check Marking Criterion 5 - Whether the site has correctly

outputted for both format options, this being dd/mm/year, and day named month year.

Acceptance Criteria

- The tool should check whether the output is correct for all options and should

show how many years passed this has passed.

- The tool should check this for all years in the config file

Screenshot Comments Satisfied

The tool checks all the

output formats and

makes sure it is valid

for both the Verbose

and Numeric outputs,

however, sometimes

fails the test due to

the student

outputting slightly

differently from the

way the tool uses

Partially – The

tool

sometimes

fails the test if

the student

uses a

different valid

output

FR14: The tool should check Marking Criterion 5 - Whether the site has correctly

outputted for both format options, this being dd/mm/year, and day named month year.

Acceptance Criteria

- The tool should check whether the output is correct for all options and should

show how many years passed this has passed.

- The tool should check this for all years in the config file

Screenshot Comments Satisfied

 42

The tool checks all the

output formats and

makes sure it is valid

for both the Verbose

and Numeric outputs,

however, sometimes

fails the test due to

the student

outputting slightly

differently from the

way the tool uses

Partially – The

tool

sometimes

fails the test if

the student

uses a

different valid

output

FR15: Site 2 – The tool should check Marking criterion 6 – Whether the site has

correctly outputted the correct superscript for the date.

Acceptance Criteria

- The tool should check if the correct superscript has been used and should

show how many years this has passed.

- The tool should check this for all years in the config file

Screenshot Comments Satisfied

The tool checks the

verbose mode for the

correct superscript. It

checks this for all the

years from the config

file. Similarly, it

sometimes fails if the

test if the student

input is very different

from the output the

tool requires

Partially – The

tool

sometimes

fails the test if

the student

uses a

different valid

output.

FR16: The tool should check the Modification date, to make sure that the site has not

been modified after the submission date.

Acceptance Criteria

- The tool should check if the modification is not after the given submission

date.

- The verbose mode should show the last modified date and if this is after the

submission date or not

Screenshot Comments Satisfied

 43

Testing of Non-Functional Requirements

NFR1: When checking the sites, the tool should not have any false positives

- As seen above when checking with the student submissions, there were no false-

positive tests, if a test was supposed to fail and did not meet the marking criteria

the tool always marked it as failed, based on this the likelihood of the tool

causing a failed test to pass is very small. Based on this this requirement has

been met.

NFR2: The tool should be able to check the sites and load data in a reasonable amount of

time

- When checking the sites, and running the tests on them, the code has not taken

an excessively long time, the larger sites with more pages to check have

understandably taken longer however they do not take more than 10 seconds to

run so this requirement has also been met

NFR3: The interface while being a console app, should be relatively easy for the user to

understand what is going on

- The tool uses various colours as well as is clearly laid out when returning results

so it should be easy for a user to figure out what is being tested and at what

time. When using the verbose mode, there is a lot of text and scrolls very quickly

so it may be hard for users to miss a section. Based on this the requirement has

been partially met.

The tool checks the

site’s last modified

date, and makes sure

it is not after the

submission date given

in the config file

Yes

FR17: The tool should check the site for any errors as well, and present them to the

user

Acceptance Criteria

- The tool should check if there are any errors on the site and show them to the

user when using the verbose mode.

Screenshot Comments Satisfied

The tool checks

the code for any

HTML errors and

returns these in

the verbose mode

Yes

 44

Future Work

More Testing and Fixing of Issues

I have performed a lot of testing on the tool with various student approaches to the two

sites. However still when testing the site there are several issues that while do not stop the

tool from working still cause inconsistencies based on what approach a student has used.

So, more testing needs to be performed with more sites to better improve the tool. Also,

this needs to be constantly tested as the requirements of the student coursework change

and the tool would need to be updated accordingly to fix any issues if the requirements and

marking criteria of the task were to change, as if they were not changed this could cause the

test to fail unnecessarily

Improvement of Checking Easter Outputs

In the testing of the student submissions, I found that it can fail if the student uses a valid

approach to the solution but is just not recognised by the tool yet. An example of this was

the tool not recognising the numerical output when the number for the month was a single

digit (“12/4/2020” instead of “12/04/2020”), so this was marked as a failed test. Another

example was using a nav class instead of an ordered or unordered list to create a navigation

menu. As the tool didn’t recognise this, it was marked as a failed test. As more students

complete the coursework the dictionary of valid names for the format options also should

be expanded, allowing more format options to be recognised and marked as passed if used

by other students. By doing this, the tool will be able to detect valid tests more accurately

and will hopefully result in fewer false-negative tests.

Possible Allowance for User changing the marking Criteria

To improve the usability of the Tool, there could be allowance made for the marking criteria

that need to be tested to be changed by the user or the marker. This would mean greater

flexibility when the marking criteria are changed or updated to include new sections or

changes. This would mean that the tool would not have to be re-written to include the

change it would be able to be used again and more quickly without having to go to the

developer to change it. However, this may not be feasible in the short term.

Easier Setup and Running of Tool

Currently, the user must have Python installed and be able to navigate the command line to

run the tool. In future the tool could be developed to have a Graphical Interface and be able

to run from anywhere, this would again improve the usability of the tool and allow more

people to be able to use and access it if needed.

 45

Conclusion

The aim of the project was to create a tool that the markers of the Web Applications

Coursework can use to automatically test certain elements of the coursework. Overall, I

have managed to successfully create this system and based on the requirements set out in

the specification initially. Most of the requirements have been met. I have tried to use good

programming principles throughout such as the use of reusable code as well as using

methods and functions that are more concise and use less resources to complete this task. I

was able to recreate a new version of this tool that was previously based on using a web

driver and improve on it using a different approach, through using HTTP requests and

parsing HTML which hopefully should improve the reliability and make sure the tool

continues to work regardless of any change in dependencies. As this tool is currently

working and depends only on having Python the requests library, this tool is likely to

continue working in future.

However, to improve the project in future, there are still some errors and fixes that need to

be made to the tool in order to make it better. Even though there was plenty of testing

performed on the tool to make sure it met the requirements, there are still more that could

have been done to make sure some of the smaller bugs were found as well as to decrease

the likelihood of false negatives, which can still come up a lot. I would also have liked to get

more feedback from the project client on what else can be added to make the tool more

useful to the markers of the project. It would also have been great to be able to test this

with actual users of the tool, so markers and students etc, to be able to see how the tool

would perform in the real world and get feedback and improvements from actual users.

Overall, I think even though I didn’t get to test more thoroughly than I had hoped and better

recognition of outputs, would have been beneficial to the project, I believe the tool is still

successful in meeting the requirements and working to a degree that will improve the

marking of Web Applications Coursework in future. The improvements I have suggested

could also be completed afterwards with little work needed to change this.

 46

Reflection

Initially, when taking this project, I looked back on taking the module, Web Applications in

my first year, and remember the steps I took to complete the project such as building the

sites on Easter and a technology. I was interested in making the marking procedure for this

module faster and more efficient which was what this project was designed to do. While this

is not fully complete and still needs some work to fix errors and expand some of the data

used to check, I believe I have created a tool that will be able to be used in future.

Over the course of completing this project, I was able to use many skills gained in my degree

such as software development including the use of good programming principles and

improving code reusability. I was also able to follow a software development method to be

able to build this tool which gave me more experience in doing this on top of that which my

degree has already given me, which while this has been a lot, I haven’t had the opportunity

to do a full project to completion such as this project has done. On top of this I have been

able to use some modules, approaches, and tools that I have never been involved with or

used before. These are things such as the use of HTTP requests, as well as parsing and

matching HTML in the way that this project has and applying it in a practical and useful way

that can be used by real users. The skills and tools I have used are a great addition to my

skillset and I feel I will be able to use these approaches in various other projects in future as

well as in possible career paths.

In future if I were to do this project again there are a few things that I would improve on.

Firstly, I would want to improve my communication with clients. I would work on improving

the way I explain the code and what still needs to be done when performing demonstrations

of code, as well as when answering any questions. I felt like I could have received more

feedback and more input on what was needed in the tool, which would have made the

development more effective. While this didn’t affect the result it would have made it better.

I also would improve on testing and taking more time to fully test and improve the project,

as I felt I could have made the product better this way and also improved my skills and

knowledge in testing.

To conclude, I found that this project has provided me with many skills and things I can use

in future projects, the rest of my degree and in my career path, as these are many things I

would need in jobs which involve software development, and when working with

developers

 47

References

1. Top 4 software development methodologies

https://www.synopsys.com/blogs/software-security/top-4-software-development-

methodologies/

2. Beautiful Soup Documentation

https://beautiful-soup-4.readthedocs.io/en/latest/

3. Python Requests Module

https://www.w3schools.com/python/module_requests.asp

4. Automated Testing of Web Applications Coursework

Author – William Bailey

