
Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Event Detection from Big Data gathered from Social Media

Using tweets collected from Twitter to detect events

Abstract

This report documents and explains the design and the

implementation of a prototype program that will attempt to detect

events using previously collected tweets. This report will also analysis

and evaluate the effectiveness of how well the program can detect

events as well as the scalability of the program. Finally this report will

also look at the problems faced with processing large datasets and

how these problems where resolved.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Table of Contents

Contents
Table of Figures ... 3

Introduction .. 5

Problem ... 5

Solution ... 6

Aims .. 7

Background ... 8

What’s an event? .. 8

How has it been tackled before? .. 8

Tools and libraries the project solution is based on ... 9

Benefactors for this project .. 10

How does my method differ from these previously suggested methods? 10

Design .. 11

User requirements of program ... 11

Basic overview of programs .. 12

TwitterScraper Program .. 12

Database API ... 14

Event Detection Program .. 16

Architecture design ... 23

Twitterscrapper ... 23

Event Detector .. 25

Changes since the last report.. 27

No spell checking implemented .. 27

No Scalability by running additional instances ... 28

Implementation .. 32

Parallelism ... 32

Twitter scraper .. 34

Database ... 35

Event Detection .. 36

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Future considerations ... 41

Results, Evaluation and conclusion ... 43

Results London .. 45

Results Notable events detected in London ... 48

Results Birmingham .. 51

Results notable events detected in Birmingham .. 54

Results Leeds ... 56

Results notable events found in leeds .. 58

Evaluation of results ... 59

How scalable is the program? ... 60

Overall Evaluation of the project and conclusion ... 61

Reflection on learning ... 63

Appendices .. 64

Appendices one ... 64

Appendices 2 ... 65

References .. 67

Table of Figures
Figure 1 ... 12

Figure 2 ... 15

Figure 3 ... 16

Figure 4 ... 17

Figure 5 ... 19

Figure 6 ... 22

Figure 7 ... 23

Figure 8 ... 25

Figure 9 ... 30

Figure 10 ... 30

Figure 11 ... 31

Figure 12 ... 42

Figure 13 ... 45

Figure 14 ... 46

Figure 15 ... 47

Figure 16 ... 48

Figure 17 ... 49

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Figure 18 ... 50

Figure 19 ... 51

Figure 20 ... 52

Figure 21 ... 53

Figure 22 ... 54

Figure 23 ... 55

Figure 24 ... 56

Figure 25 ... 57

Figure 26 ... 57

Figure 27 ... 58

Figure 28 ... 60

Figure 29 ... 61

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Introduction

Problem

In recent years social media sites such as Twitter or Facebook have become the forefront of

discussion for news and events as they break out. Sometimes events are even talked about

on social media sites before mainstream media can report them such as the crash of the US

Airways flight 1549 in which onlookers broke news of the plane crash on social media sites

15 minutes before mainstream media could get on the scene.

Being able to detect events has in recent years become a key area of interest for

researchers for its uses in the semantic web field. Social media sites generate a colossal

amount of data each day (such as Facebook which produces 500 TB of data day[1]). This

would be impossible to manually look through to find events so we need to turn to

automatic event detection to do the job.

Twitter is a microblogging social media site in which people can create and receive tweets

which are messages that can only contain up to 140 characters. Each tweet has some

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

descriptive metadata associated with it which may include information such as where the

tweet was created, what time the tweet was created and hashtags which are short

descriptive words or phrases that are prefixed with a “#” symbol which identify which topics

the tweet is about.

Automatic event detection using datasets collected from Tweets presents a unique problem

due to the sheer amount of tweets that are created each day.

On average 5700 tweets are generated per second. This is around 500 million tweets per

day[2]. Therefore careful consideration needs to be made on how to process this data as

divide and conquer algorithms will lead to data about an event being spread across multiple

partitions which could lead to events being missed as each partition would have less

information on the event then if we only had one partition.

Following on from this the actual detection of events needs to be quick and accurate. The

speed of event detection is important as information about events become out of date as

time passes. For instance if it takes 3 hours to detect events that happen in a one hour

period then the chances are those events are already out dated as new information relating

to that event will have been talked about in the 3 hour period.

A final problem that is present in detecting events from Twitter is that traditional event

detection detects events on document collections such as news articles. The assumption for

this type of event detection is that all the documents in the collection are related to some

kind of event. This is not true for datasets coming from Twitter. In 2009 Pear

Analytics[3]performed a study to find out what Twitter was really used for. Their study

suggested that around 3.75% of all tweets are spam while 5.85% of all tweets are from

corporations trying to self-promote and 40% of all tweets are “pointless babble”.

Solution

To detect events in a given time period using data collected from Twitter in a quick and

efficient manner this report proposes to find events by looking for sudden bursts of

hashtags in the dataset. If a hashtag is being used more than usual then there is a high

chance that an event is going on as generally there is not a high fluctuation in hashtags

describing “pointless babble”.

Once hashtag outliers have been found events can be built up by grouping similar hashtags

together using K means clustering. Finally a tag cloud will be created for each group of

similar hashtags. These tag clouds will visually represent the text data found in all the

tweets that share a hashtag in this group. Words that appear more frequent in the text data

will have a larger typeface then words that appear less frequently. To remove clutter from

the tag clouds stop words will not be included.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Stop words are a term coined by Hans Peter Luhn in 1958 to describe a list of non-
information bearing words such as “the”, “and” or “again”. As these Stop words do not add
any information to the event there is no point including them in the tag clouds. The full list
of words that are ignored can be found in the appendix under appendices 2.

Clustering the data like this however will definitely lead to non-event stories being built up.
Therefore the tag clouds will be returned in order of the likelihood that it is talking about an
event. This measurement will be found by looking at the verb to non-verb ratio of words in
the event as a high frequency of verbs should suggest an event. (You need to mention a
verb to describe an event this is not usually case for other types of tweets which may have
an irregular hashtag frequency such as a company give away).

Aims

Given inputs of a dataset of tweets, a time range a specified boundary box as well as the
number of cluster groups we should expect to derive a list of tag clouds which are ordered
based on the likelihood that the tag cloud is describing an event.

In this project the likelihood of the tag clouds describing an event will be based on the
number of verbs a tag cloud contains as it is impossible to talk about an event without using
a verb. Therefore if a tag cloud contains a low amount of verbs it has a high probability that
it is not talking about an event.

Another aim of the project is to make the program scalable. Scalability measures “how

effective the program will make use of additional processes”. A program is said to be

scalable if “it is possible to keep efficiency constant by increasing the problem size as the

number of processors increases” where efficiency is defined as:

Efficiency =

N is defined as the number of processes

Tseq is defined as time taken for the program to run sequentially on one processor.

Tpar(N) is defined as the time taken for the program to run on N processes of the parallel

machine.

A final aim of the project will be to detect events given a large dataset that could not fit in

memory. To process data of any size this project will make use of two CPython features

Generators and Iterators. Iterators are containers which do not store values in memory.

Instead iterators generate the values for their container on the fly.

As Iterators only know how to generate the next item in the collection once you have

retrieved a value from an iterator you can never retrieve it again. As iterators do not store

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

the entire dataset in memory (they only need to store the current value of the iterator and

the iterator function itself) it means the iterator can contain a dataset of any size.

Generators are CPython functions that behave like an iterator. Both iterators and

generators are explained in detail in the implementation section.

Background

What’s an event?

For this project an event will be defined as a thing that happens or takes places. An event

can be a planned public occasion, a social occasion or something that has occurred to a

place or person.

How has it been tackled before?

There are two major ways in which researches have attempted to detect events in the past.

The first major way that event detection has been approached by is wave analysis. In 2011

HP attempted to detect events from Twitter using Event Detection with Clustering of

Wavelet-based signals (EDCoW). The idea behind this is to build signals for individual words.

Signals were chosen to be used as they can be quickly computed by wavelet analysis and

they require a small amount of storage space.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

By comparing signals from previously built data it becomes possible to filter away trivial

word. Then signals can be clustered together to build up an event. Finally “big events can be

differentiate with trivial ones by looking at the events significant which can be quantitated

by the number of words present and the cross correlation among words relating to the

event.“

EDCoW suffers from the draw back that it treats each word independently. This can lead to

different events becoming clustered together this can be further seen from the results of

the study.

The other major way that events have been automatically detected is to use a topic model

distribution[4]. The idea behind this is that content that talks about global events is often

going to follow a global topic distribution that is time-dependent while this is not true for

personal posts. This means that we can separate events from personal posts through

unsupervised learning and then use a state machine to detect bursts from the discovered

topics to find the events.

A key limitation of detecting events with this method is that the number of topics to detect

is predetermined which does not work well as it’s impossible to know the number of events

to discover before they are all discovered.

Tools and libraries the project solution is based on

CPython3.3 was chosen as the language to implement this project in because of the large

natural language processing community that use CPython. As natural language processing is

a research area in itself this project required a library that could abstraction away from

natural language processing to detect verbs in phrases. By using python I had many choices

in which libraries to use such as textblob or pyntlk.

Python was also chosen for its concise syntax, dynamic typing and readability. These are

important features needed when there is a limited time to implement a prototype as it

reduces technical debt created from “hacking a solution together” while still being quick to

develop with.

CPython3.3 was chosen over CPython3.4 as CPython3.4 came out in March 16th 2014 at

which point project development was well underway.

The key libraries that are used for this project are Twython which is a library for scraping

tweets from Twitter, Textblob which is an abstraction from natural language processing and

Pillow a library for creating pictures. More information about these libraries and their use

can be found in the implementation section of the report.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

For this project the dataset has been gathered exclusively from Twitter. Twitter was chosen

as the social media site to gather data from because of its popularity. Twitter was also

chosen because messages can only be 140 characters or less which means a lot less

processing will need to be done on the text compared to messages from other social media

sites. Finally Twitter was chosen because of its streaming API. This is a public API that

anyone can use which makes it very easy to collect tweets from.

Benefactors for this project

As previously mentioned a key area that automatic event detection is useful for is the

semantic web field as the event detection could turn unstructured social media data into

structured documents which talk about events therefore helping to build a “web of data”.

Other key benefactors for this project would be the media as currently there is too much

information on social media to manually process through. By having automatic event

detection the media will have to look through a lot smaller datasets to report and covering

news as it breaks out.

A final benefactor for this project would be the general public as they could use automatic

event detection to attempt to find events that are going on in their area such as school

fates.

How does my method differ from these previously suggested methods?

In this project I propose a method that is similar in design to EDCoW. However instead of

comparing wave signals pointless words will be filtered by outlier detection. In theory this

should work as long as the assumptions made by the topic model distribution method are

correct (personal tweets follow a distribution that is mostly stable). Like the EDCoW method

events will be built up by clustering similar hashtags together. However unlike EDCoW

events will be differentiated from non-events by looking at the verb to non-verb ratio.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Design

User requirements of program

As there are many areas that can be looked at in this project (natural language processing,

event detection, big data, clustering to name a few) there was a very high risk of not

meeting the imposed deadlines on the project due to feature bloat. To solve this issue clear

user requirements were designed which allowed development to be focused on

implementing the core necessary features. The key user requirements can be summarised

as 5 main points.

1. Given a dataset the program should be able detect events in a given space and time.

Possible events that are detected should be represented as a tag cloud and the tag

clouds should be in ordered in the likelihood that the given tag cloud is an event.

2. The event detection program should make use of parallelism techniques to speed up

the runtime of the program.

3. The event detection program should be able to handle large datasets that could not

fit in memory.

4. Although the example data in this project only uses data collected from Twitter the

event detection program should in theory be able to detect events from a wide

range of social media sites as long as the social media sites incorporate the following

meta data; creation date, geo-location and tagging.

5. Although the example data in this project is stored in Mongo DB the event detection

program should not be coupled to one database implementation.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Basic overview of programs

TwitterScraper Program

Figure 1

The Twitterscrapper’s main functionality can be split into three main tasks and can be

viewed as figure one. The first task that the Twitterscrapper is responsible for is to scrape

tweets from Twitter. To scrape tweets from Twitter this project makes use of Twitters

streaming API which allows us to make a long held HTTP request to the server. Once the

Twitterscrapper has successfully connected to Twitter, Twitter can send the program tweets

as they are posted. More information on using Twitters API can be found in the

implementation section.

Due to the high memory usage of the Twitterscrapper once a tweet was successfully

collected the program slept for around a second. This meant that on average 1.2 tweets

would not be collected per minute due to the sleeping which was a total loss of around

20736 tweets throughout the whole project. This loss was not seen as significant enough for

the sleep in the program to be removed.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

The second task the program is responsible for is remodelling the data that is received from

Twitter. As it should be theoretically possible for us to detect events using data from any

form of social media (as long as the data has tags and where and when it was created) the

tweet data needs to be saved in a format that means that the database is not coupled to

only being able to store tweets. An example format of how a tweet is stored can be seen

below:

{

_id: 12345,

Text: “this is the text of the tweet”,

HashTags: {“spam”, “ham”, “eggs”}

Loc: [latitude, longitude]

Datetime: 13974844.0

}

As seen above the majority of metadata has been stripped from the tweet as it is ether

unnecessary or metadata that only has relevance to Twitter (such as if it has been

retweeted).

The JSON format was chosen to represent the model as it is language agnostic, simple to use

and text based. Finally the mark-up language itself is concise so it will take up minimal

storage. The largest drawback to using the JSON format is that it is not easily read by

humans however this is a non-issue as our datasets are too large for humans to manually go

through anyway.

By remodelling the data and cutting useless information a lot of space was also saved. In a

short experiment 10 tweets were collected. The size of each tweet in bytes as a JSON string

was noted. Finally the size of the remodelled tweet in bytes as a JSON string was noted.

Size of tweet in bytes Size of remodelled tweet in bytes
2785 222

2657 250

3315 294

2811 187

3001 266

3028 284

3001 202

2955 190

3168 311

3078 227

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

From this experiment we can see that on average the JSON of the remodelled tweet is 12.55

times smaller than the JSON of the actual tweet.

The final task of the Twitterscrapper is to save the remodelled tweets to Mongo DB. This is

done through the Database API. More information about the Database API can be found in

the design section.

As writing to Mongo DB is an expensive operation and we want to be spending as much

time in the Twitterscrapper collecting tweets as we can (to collect more tweets per minute)

we write our tweets to Mongo DB in a non-blocking manner (we request to save the tweet

to Mongo DB however we do not make sure the tweet gets saved). Furthermore we do not

save to the database once we receive the tweet. Instead every time we receive a tweet we

store it in a list. Once our list is full enough we write the entire list to Mongo DB. This is a

significant speed increase as Mongo DB is optimized for bulk operations.

The Twitterscrapper program itself has no GUI and needs to be run on the command line.

This is because an interface was not needed for the program and implementing an interface

on top of the program would of lead to increased memory usage.

The Twitterscrapper program looks for its settings in a “settings.yaml” file in the same

directory as were it is run. A configuration file was needed for this program due to the

sensitive nature of some of the arguments required (such as a developer key for Twitter). A

sample configuration file can be found in the appendix under appendices one. YAML was

chosen as the configuration language as it human readable and easy to integrate into

python programs.

Finally as it is not desirable for the Twitterscrapper program to go down the Twitterscrapper

is integrated with Twilio which is a service which allows developers to send texts or calls

from a program. If the program detects that an error has occurred or that the python

interrupter is going to be terminated then the Twitterscrapper will send you a text notifying

you so you can restart the program.

Database API

The database API is a library that is shared between both the Twitterscrapper and the event

detector programs. The benefit of having a Database API rather than programs making

database calls themselves means that if the implementation of the database changes than

the changes only need to be made in one place. Another key benefit of having a Database

API is that it becomes simpler to switch databases if needed as the implementation details

of communicating with the database are only in the Database API.

For this project Mongo DB was chosen to store the datasets. Mongo DB is a document

orientated database system and was chosen for its shard support which would allow data

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

records to be saved across multiple machines. This allows horizontal scalability with the

dataset (if our dataset grows too large we can meet the additional demands by adding

another computer to our cluster. This is in contrast to vertical scalability which would

require us to upgrade the hardware of the machines).

Another key reason Mongo DB was chosen for this project was for its ability to be able to

index geo-location data. As this project requires event detection in a given location fast

access to tweets stored in that region will be needed. This is only possible if we index our

documents by their geolocation which allows us to retrieve the documents in O(log(N))

rather than O(N) time.

The final reason Mongo DB was chosen for this project is because of its querying system

Originally a SQL solution was used to store the datasets and the schema for this database

can be seen in figure 2

Figure 2

Using SQL was eventually scrapped as it became apparent that the main advantages of SQL

could not be utilised. To get the full metadata of a tweet required two joins to the tweet

table which was a performance hit. To solve this problem the database could be un-

normalised however at that point it would make sense to move over to a database that can

make full advantage of not using a Schema.

The final reason a SQL database was not used to store the dataset was because of Brewer’s

theorem which suggests that it is impossible for a distributed computer system to provide

guarantees for “consistency, availability and partition tolerance”. This means we cannot

take full advantage of an ACID database in a distributed environment (which is what a SQL

database is) and so it would make more sense to turn towards a database that uses BASE

such as Mongo DB.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Event Detection Program

Figure 3

The event detection program needs to perform 3 main functions on the dataset to be able

to detect events. A visualization of this can be seen in Figure 3. These functions are

detecting hashtag outliers, clustering similar hashtag outliers together to build an event and

finally to create a world cloud of the event to build a story.

To detect hashtag outliers we need to compare the frequency that the hashtag appears in a

place in the given time period to the average frequency of that hashtag in the given in same

time period.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

To solve this in a scalable way a partial MapReduce implementation has been used to count

the frequency of hashtags for any number of tweets. MapReduce was a programming model

developed by Google[5] that allows for processing of large datasets over a cluster.

The MapReduce model can be broken down into two distinct functions Map() and Reduce().

The Map function’s job is to “transform the targeted dataset into a list of intermediate key

value pairs” while the Reduce() function’s job is to “merge all intermediate key value pairs

that share the same key”.

Figure 4

In MapReduce the dataset is split into chunks over the cluster and each node in the cluster

will perform a Map() function on its dataset. Once a node has finished its work it will save

the intermediate results to a text file. Once all the nodes have finished working the master

node will distribute the dataset from the Map() function to the cluster were each node in

the cluster will perform a Reduce() function on its dataset. Finally these results will be sent

to the master node which will merge the Reduce() results together giving a final output. A

diagram of this explanation can be seen above.

For counting the frequency that Hashtags occur we are only interested in the Hashtag itself

and a list of Id’s of all tweets that share that hashtag. Therefore for each Tweet in our

dataset the Map() function will transform the tweet to a list of tuple represented like so

“Hashtag”: “ID of tweet” examples of this can be seen below:

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Before After reduce function
{

_id: 12345,

Text: “this is the text of the tweet”,

HashTags: {“spam”, “ham”, “eggs”}

Loc: [latitude, longitude]

Datetime: 13974844.0

}

[

 {“spam” :”12345”},

 {“ham”:”12345”},

 {“eggs” : 12345}

]

{

_id: 6789,

Text: “this is the text of the tweet”,

HashTags: {“spam”, “ham”}

Loc: [latitude, longitude]

Datetime: 13974844.0

}

[

 {“spam” :”6789”},

 {“ham”:”6789”}

]

{

_id: 10112,

Text: “this is the text of the tweet”,

HashTags: {“Monty Python”}

Loc: [latitude, longitude]

Datetime: 13974844.0

}

[

 {“Monty Python” :”10112”},

]

For counting the frequency that hashtags occur this would lead to merging all hashtags of

the same name to build up a list of every tweet that has used this hashtag. Using the same

examples as was used above the Reduce() output should look like this:

{

“spam” {

“ids” : [“12345”, “6789”],

“freq” : 2

}

“ham” {

 “ids” : [“12345”, “6789”],

 “freq” : 2

}

“eggs” {

 “ids” : [“12345”]

 “freq” : 1

}

“Monty Python” {

 “ids” : [“10112”]

 “freq” : 1

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

}

}

An alternative way this could have been implemented was to use Mongo DB to query the

dataset using its inbuilt MapReduce implementation. However this would have forced the

implementation of the project to become dependent on Mongo DB which is not ideal.

As briefly mentioned before a partial MapReduce solution has been implemented for this

project as the full feature set outlined in Google’s MapReduce paper was overly excessive

for a prototype program. Some of the features that have not been implemented include

fault tolerance if a node goes down, restoring of state of the program if a bad record causes

a Map() or Reduce() function to error and status information retrieval from the master

node.

Once we have the frequency of every hashtag in our given 3d bounding box and we know

the frequency of every hashtag in the entire data set for that given area we can begin

looking for hashtag outliers. To detect outliers we look for hashtag frequencies that are

greater than 3 times the standard deviation from the mean frequency for that given

hashtag.

The value 2.5 was chosen after much trial and error. Tweets in London were collected from

Sat, 19 Apr 2014 18:02:04 GMT until Sat, 19 Apr 2014 19:02:04 GMT and then the outlier

program was run on this data. The number of outliers for a range of standard deviations was

collected as seen from the data in figure 5.

Figure 5

0

100

200

300

400

500

600

700

800

900

1 1.5 2 2.5 3

n
u

m
b

e
r

o
f

o
u

tl
ie

rs

outliers detected for a given standard
deviation

total amount

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

As we can see from the data above the majority of tweets do not get filtered until after the

standard deviation hits 2.5 it is for this reason that the value 2.5 was chosen.

The next function of the program is to cluster similar hashtags to attempt to form events.

The K Means algorithm was chosen to attempt to cluster hashtags due to its run time of O(K

* N * I) were I is the number of iterations, N is the size of the dataset and K is the number of

starting centroids chosen. This is because clustering is considered a NP hard problem and

one of the key requirements of our project is to detect events in a timely manner and so the

clustering needs to be done quickly. To further speed up the program the K Means

clustering is run over multiple processes.

The K means algorithm works by starting off with K centroids were each centroid will have

its own precomputed distance. Then for each hashtag in our list of outliers that was not

chosen as an initial centroid we assign that hashtag to its closest centroid. Finally we

recomputed the distances of the centroids. If any of the distances of the centroids have

changed then we reassign every hashtag in our list of outliers that was not chosen as an

initial centroid to its closet centroid. We keep doing this until none of our centroids move.

K means clustering requires K starting centroids. In this project the starting hashtags to use

as centroids are selected randomly from the list of all possible outliers. However a hashtag

will never be considered as a starting centroid if it has a frequency of one or less.

This is because if a hashtag is considered an outlier while having a low frequency it often

means that the hashtag is either a misspelling or an irregularly used phrase/word. Hashtags

like this do not make good centroids as there is a high chance that no other hashtag in the

dataset will be seen as similar to that hashtag and so we will be left with an empty cluster.

The clustering in this project also serves as a purpose to get rid of the tweets that Pear

Analytics considered as “Pointless Babble”. This is because if a tweet cannot find a good

enough similarity to a centroid it is discarded. As “Pointless Babble” tweets often have very

specific hashtags such as “#doingLaundry” they will often be discarded.

If K is a low number then K means clustering can often lead to no events being detected.

This is because the starting centroids are selected at random. As previously discussed if 40%

of all tweets are considered “Pointless Babble” than the majority of the starting centroids

would also be considered “Pointless Babble”. This flaw and possible solutions are expanded

upon more in the Results and Conclusion section.

The final function of the program is to turn the clustered data into tag clouds. This is done

by loading the text of all tweets that have a hashtag belonging to the cluster and counting

the frequency of words that appear in the tweets text. Like the hashtag frequency counter

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

this was also done using a partial implementation of MapReduce. As previously mentioned

in the introduction, words that appear in the stop list are not include in the word counting

as they are by definition words that “non-information bearing”.

Once we have the frequency for each word that appears in a cluster we need to tag the

lexical category for each word. This is done by looking at lexical databases such as WordNet.

Finally we can create a tag cloud by creating a new image and placing words on the image in

a way so two words do not overlap. The typeface and colour of the font depends on the

frequency of the word and its lexical category. The larger the words frequency the larger its

Type font will be. A Table of what colour each lexical category represents can be found

below.

Lexical category Colour

Verb phrase White

Noun phrase Grey

Prepositional phrase Yellow

Number Blue

Other Brown

An example word cloud generated from the event detection program can be found in figure

6.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Figure 6

The event detection program runs on the command line console as no interface was

needed. The program requires the following command line arguments to run:

 MinX – the latitude coordinate of the bounding box

 MaxX – the width of the bounding box

 MinY – the longitude coordinate of the bounding box

 MaxY – the height of the bounding box

 minTime – an Unix epoch timestamp of the starting time to detect events from.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

 maxTime – an Unix epoch timestamp of the end time to detect events until.

 poolSize – how many processes to run the code across.

 Database con – A connection to a Mongo DB collection containing the dataset.

Architecture design

In this section of the report the outline of the classes required for the project will be shown

and discussed. Although CPython is an object oriented language it does not support some of

the more traditional object orientated features such as strong encapsulation (python does

not have private, public protected modifiers to hide implementation details away from

other objects). This has effected how the object model of the program looks.

Twitterscrapper

Figure 7

As previously stated the Twitterscrapper’s job is to scrape tweets and store a transformed

model of the tweet metadata into our database. The settings for the Twitterscrapper are

loaded from a YAML configuration file as the settings require sensitive data such as private

keys for Twilio and Twitter. The Config class’s job is to deserialize our YAML mark-up

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

language from the configuration file into manipulable python objects. For instance the

OAuth field in the YAML configuration file looks like this:

 oauth:

 accessToken: removed

 tokenSecret: removed

 consumerKey: removed

 consumerSecret: removed

In CPython it would make sense if the OAuth field was represented as a dictionary object
{accessToken: removed, tokenSecret : removed, consumerKey : removed, consumerSecret: removed}

The TwitterScraper class currently has two main functions. The first function of the

TwitterScraper class is to handle what happens when a tweet is successfully received from

Twitter. The class also needs to be able to handle any errors that are received when talking

to Twitter.

The second function of the TwitterScraper class is to transform the metadata of a tweet

received from Twitter so it is of the appropriate model so it can be stored in the database. In

an ideal environment the TwitterScraper class should not know how to transform the data

instead this should be left up to a brand new class whose job is to transform data.

Unfortunately the implementation details of transforming the data became too coupled to

the TwitterScraper class and attempting to refactor this problem would cause a lot of

breakages in the code.

The on_success method of the TwitterScraper class gets called whenever the Twitter stream

has a new tweet. Once new data has been received it will be transformed and the

transformed data will be saved to a list. If the list gets too full the on_success method will

bulk write these operations to the database. The reason for this has been previously

discussed in the design section sub heading: basic overview Twitterscrapper program. As the

TwitterScraper class needs to be able send data to the database the class needs to know

about the database API. This explains the 1 to 1 dependency as displayed on the UML

diagram.

The on_error/on_disconnect/on_limit methods of the TwitterScrapper class get called

whenever an error happens within the Twitter stream and these methods are in charge of

contacting the user so they can get the Twitterscrapper up and running again. Due to this

the TwitterScrapper class needs to know about Twilio (the service used to send text

messages) and so this is why the TwitterScrapper needs the twilioClient, myPhoneNumber

and twilioPhoneNumber fields.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

The database class is an implementation of querying MongoDB and so the methods found in

there are methods that help abstract away from the Database layer. Instead of the

programs being dependent on the database the programs instead are now dependent on an

API whose implementation detail could be changed to work with any database without

breaking the programs.

Event Detector

Figure 8

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

The TextCounter and HashTagCounter classes have a IS-A relationship with the dictionary

data structure class and so they can be treated as a dictionary as they implement every

method a dictionary would.

The biggest difference between these counter classes and a dictionary class is that these

classes are immutable. Another key difference between these classes and the dictionary

class is that the initial dataset that passed into these classes is MapReduced over multiple

processes to give us a new representation of the data. As these classes will be performing

parallel work they implement a worker method which gets invoked by every process that is

run by the class. Finally both of these classes implement a most_common method which

takes a size as a parameter and returns the X largest frequency words/hashtags from the

dataset.

The detectOutliers class requires two HashTagCounter classes along with two timespans

that represent how long the tweets where collected for in the counter class. Without these

parameters it would not be possible to work out if a given hashtag frequency is larger than

2.5 times the standard deviation of the mean of that frequency. Therefore in the UML

diagram the detectOutliers class has a 1 to 2 relationship with a HashTagCounter class.

The detectOutliers class has two methods the find_all_outliers method which returns for

the given dataset a list of all hashtags that are outliers. The get_biggest_outliers method

returns the X largest frequency hashtags that are outliers. Both of these methods require a

compare_function argument. This should be an anonymous function that tells the methods

how to determine if something is an outlier or not.

The WordCloud class requires a TextCounter class as a parameter to build a tag cloud from.

Therefore there is a 1 to 1 relationship between these classes on the UML diagram. Due to

the low level nature of the class the WordCloud class requires a path to a TrueType Font to

render fonts which is why font is an attribute. The only visible method of this class is the

draw method whose responsibility is to create a .png representation of the tag cloud.

Therefore a path parameter is needed so that the draw method knows were to save the

.png file.

Finally the cluster class is responsible for clustering similar hashtags together using the k

means algorithm. The only exposed method is the cluster method whose job is to cluster

similar hashtags together over multiple processes for performance. This method returns a

list of clustered objects. Just like the TextCounter and the HashTagCounter as work will be

done over multiple processes a worker method needs to be invoked to be run on these

processes.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

The similarity calculator class is responsible for identifying if two given hashtags are similar.

This was refactored into its own class so that the clustering class was not dependent on a

single possible measure to detect if hashtags are similar. Therefore these classes need a 1 to

1 relationship in the UML diagram.

Changes since the last report

No spell checking implemented

In the initial report it was mentioned that a key feature to be implemented

would be the ability to detect and correct spelling errors in hashtags. For

instance the hashtag “Lpndon” should probably be corrected to “London”.

By doing this we can get a greater accuracy when it comes to detecting events

as the miss spelling hashtags and the correct spelling hashtags would be

clustered together. To demonstrate why this was not implemented I have

collected all the hashtags from 10 random tweets in my dataset. The code for

this can be found in the appendix

Tweet Id Hashtags
459626472500895745 Friday, Standard, Skinny, Gingerbread

459626480646230016 EveryCloud

459626482571415552 FF_Special
459626503433904128 MaslowSister

459626503098335232 swollenarm
459626504046264320 Cefnmably

459626511113662464 Newclassic, GKMC

459626536690520065 Wellbetheoldestonesthere, noshame
459626537109950465 ilkley

458237537689944064 Trndnl, HappyEasterSunday

We can clearly see in hashtags such as “Wellbetheoldestonesthere” or

“HappyEasterSunday” we would have a problem as these words would be

detected as misspellings when in fact they are not misspelt the hashtag is

simply a sentenced concatenated together.

Another reason there is no spell checking implemented is that the context of

the tweet is important for determining what the hashtag is. Take the hashtag

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

“ilkley” this could either be talking about a town in West Yorkshire or it could

be a miss spelling of the world likely. If we choose wrong we would make our

results less accurate as tweets with no correlation with each other would be

clustered together. Making the spellchecker context aware is not a feasible

goal given the time limit to develop this project.

It is because of these two reasons I have not implemented this feature. As will

be explained later on in the report most of these spelling errors will not matter

anyway as they have will have a very low frequency and so they will not ever

be chosen to be part of the dataset to be clustered to detect events.

No Scalability by running additional instances

Originally the programs in this project were going to be scalable by launching

additional instances of the program. For instance the FrequencyCounter

program works by performing map reduce on the tweet data to count the

frequency of each hashtag that appeared in the dataset. If two

FrequencyCounter programs were running than half of the work would be

done in each program (whereas in the traditional approach we would simply

perform the work over 2 processes).

This has many advantages over the traditional route. The biggest advantage

that we gain from implementing scalability by running multiple instances

comes from the fact that we can easily implement automatic load balance. This

is because it is very easy to start up or shut down instances of a program

whereas it is harder to get an already running program to use more or less

processes.

Another key advantage that this offers compared to the traditional route is

that we are not dependent on a single program to get our solution. If one of

the FrequencyCounter program crashes then we will still be to get our solution

as there will be some FrequencyCounter programs still running whereas if we

were performing the work over multiple processes in CPython if the main

program crashed then all our processes would die with it.

Despite these key advantages I have decided to scale my programs by running

the work on multiple processes rather than to run the work on multiple

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

programs. The key reason I have done this is because of the extra overhead

caused from dividing the work up on multiple programs. To demonstrate this I

have created some test programs (which can be found in the appendix).

Each program will start with a range of numbers as an input (1 to 100, 1 to

1000 or 1 to 5000). In one program these numbers will be added to a queue. If

a process is not busy it will take a number from the queue multiply it by 2,

sleep for half a second (this is to represent that the program is doing complex

work) and then send the result back to the master program. Once the master

program has received all the results from the processes it will return the sum

of all the returned numbers.

The other program will be split into two sub programs (Program A and Program

B). Program A will take each number it receives as an input and send it to a

series of instances of Program B. Each instance of Program B will multiply the

number it receives by 2, sleep for half a second (this is to represent that the

program is doing complex work) and then send the result back to Program A.

Once Program A has received all the results from the instances of Program B it

will return the sum of all the returned numbers. These programs will

communicate with the AMQP protocol which will allow the sending, queuing

and routing of messages in an asynchronous manner so we are not constantly

waiting to make sure the message has been sent.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Figure 9

Figure 10

0

5

10

15

20

25

30

2 4 8

N
u

m
b

e
r

o
f

se
co

n
d

s

number of processes/programs running

Timings for 100 numbers

rabbitMQ

processes

0

50

100

150

200

250

300

350

2 4 8

N
u

m
b

e
r

o
f

se
co

n
d

s

number of processes/programs running

Timings for 1000 numbers

rabbitMQ

processes

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Figure 11

As we can clearly see from these results in figures 9 till 11 except for when we

are running a high amount of processes (this can be attributed to the hardware

I ran the tests as the laptop I ran the tests on only had two cores) performing

the same tasks using multiple processes is a lot faster than if we performed the

same task using multiple programs coordinated with the AMQP protocol.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 8

N
u

m
b

e
r

o
f

se
co

n
d

s

number of processes/programs running

Timings for 5000 numbers

rabbitMQ

processes

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Implementation

Parallelism

The multiprocessing module was used to parallelise certain tasks performed by the project.

A process object in CPython is an abstraction which allows the use of running another

python process on the underlying operating system while also providing it code to run.

Furthermore process objects allow the new python process to be controlled by the parent

program. However processes on CPython are expensive to create or destroy as each process

runs its own address space.

The key advantage to using the multiprocessing module is that it is a high level abstraction

to multiprocessing in general. With the help of managers sharing objects between processes

can automatically be left to the python interrupter to deal with.

The multiprocessing module was chosen over threading (threads in CPython are lightweight

as all the threads run in a single process) due to the global interrupter lock in CPython[6]. As

memory management is not thread safe in CPython multiple threads cannot be allowed to

execute bytecode at the same time. As event detection is heavily CPU bound it is quite

possible for threading to become a bottleneck on the program. The multiprocessing module

does not suffer from this problem as each process is run in its own address space.

Each task that requires multiprocessing in this project works the same way as every single

task shares the functionality that they wish to manipulate a dataset to create a new dataset

(whether the new dataset is the count of the frequency of hashtags or the grouping of

similar hashtags).

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

The first thing that should happen is that the processes should be initialised and started. The

code to run on each process should be implemented in a method called worker() which

should take no parameters.

 processes = [Process(target=self.worker) for i in range(poolSize)]

 for p in processes:

 p.start()

Once each process has been successfully started we should loop over the dataset that we

wish to manipulate and add each element to a queue. We do this as we are under the

presumption that loading the entire dataset into memory cannot be done. Once items in

our dataset have started to be added to the queue the processes can pop items from the

queue and perform whatever transformation needs to be done on the data. This works

because the multiprocessing queue data structure implements a pipe (the objects

responsible in the multiprocessing module for message passing) so when new data is added

to the queue each processer is in turn notified of this. The multiprocessing queue structure

is processer safe so multiple processes cannot remove data from the queue at the same

time.

 for item in dataset: # loop over dataset and add the items to the queue

 self.queue.put(item)

As we are slowly putting items from our dataset in the queue we need a way signal to the

processes that there is no more data to process. This can be solved by making the last item

in the queue an empty value. If a process receives this value it will terminate. However this

solution is inadequate as it would only lead to one process being closed therefore before

the process terminates it will need to add an empty value to the queue which another

process will eventually read and then eventually terminate. The base code for the worker

method looks like this:

 def worker(self):

 while True: #keep going until we get a value from the queue

 value_from_queue = self.queue.get()

 if value_from_queue is None: #terminate the processor

 self.queue.put(None)

 return

 #perform parallelism here

Each task that requires multiprocessing in this project needs to create some sort of new

dataset. Therefore the results of individual workers need to be merged together. This is

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

done by using proxy data structures such as a proxy list or a proxy dictionary. A proxy data

structure is a data structure that acts like its intended data structure without actually

containing any values.

To create a proxy data structure we need to initialise a manager object. Once initialised the

manager object will spawn its own process. The manager process contains the real data

structure inside of it while the other processes contain fakes.

 Whenever a proxy data structure is updated it will communicate with the manager object

to updates itself. Finally whenever data is retrieved from the proxy data structure the proxy

will ask the manager process for the real data. Unfortunately this means there is latency in

access data from the proxy however this is a small trade off considering the advantages

gained such as the abstraction away from message passing.

Due to a bug in CPython it is not possible to update key value pairs in sub dictionaries inside

a proxy object. To solve this solution a temporary variable is created which contains the sub

dictionary. The temporary dictionary is then modified. Finally the sub dictionary is

overwritten by the temporary dictionary.

fake_dict = real_dict[key]

 fake_dict[dict_key] = new value

 real_dict[key] = fake_dict

Twitter scraper

The core functionality of the Twitter scraper is performed with the help of a library called

Twython. The advantage of using Twython is that it means the scraper can abstract away

from the wire protocol as it is now Twython’s job to handle communicating with Twitter

using REST. This saved countless hours of development as it meant Twitters API did not have

to be learnt or implemented in the project. Twython also deserializes the JSON string

turning it into a python dictionary.

The on_success method of the Twitter scraper is where the data is transformed into the

format required for the database.

timeStamp = datetime.datetime.strptime(data.get('created_at'), '%a %b %d %H:%M:%S %z

%Y').timestamp()

coordinates = data.get('coordinates')['coordinates']

tweet = {

 '_id' : data.get('id_str'), 'hashtags' : data.get('entities')['hashtags'],

 'datetime' : timeStamp, 'text' : data.get('text').split('#')[0],

 'loc' : coordinates

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

 }

Once we have transformed the data we can append it to a list and if the list is big enough we

can perform a bulk write operation to save the contents of the list to Mongo DB. As

previously mentioned by doing this we spend less time performing I/O per minuet which

allows us to spend more time collecting tweets.

The YAML configuration file deserialization is handled by a library called PyYaml. This library

will transform the configuration file into a dictionary object. This dictionary is further

subdivided into the dictionaries oauth, locations and Twilio as previously mentioned when

discussing the Twitter scrapers class diagram in the design section.

Database

The database class makes use of a library called MongoClient to implement communication

between CPython and Mongo DB. One of the many features that are gained from using

MongoClient is that the results from querying the database are returned as iterators created

from a generator function.

Generators are created with the yield keyword in python. When the generator function is

called it is actually never run instead it will return an iterator object. When we begin to run

the iterator the function will execute until it hits the yield statement. Then for every time

the next item in an iterator is requested it can be retrieved by rerunning the part of the

function that contains the yield.

This can actually lead to a performance increase in the program as when we request the

results of a query the generator returns the iterator object instantly. The query itself is

actually never run until we physically require the data in the program.

The other key advantage of this technique as previously discussed in the Introduction is that

we can fit a dataset of any size into our iterator as the values are never loaded into memory.

Having datasets as iterators has been challenge to implement properly as iterators can only

be run once. Therefore iterators cannot physically be used when we need to cluster

hashtags together as K means clustering is an iterative process. To solve this we instead

store the datasets in memory once we have successfully detected outliers. The idea behind

this is that the dataset should be able to fit in memory once we have filtered away the

outlier especially as at that stage we only require the Id’s of tweets and their respected

hashtags.

As Mongo DB implements geospatial queries it becomes trivial to find all tweets in a given

location.

data = self.db.find({"loc": {"$within": {"$box": [[minX, minY], [maxX, maxY]]}}})

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

However one major drawback to using Mongo DB is that the database can only index on 2d

data (X and Y) whereas we need search for data in a 3d area (x, y and time) we can partial

solve this by using two indexes (find a list of all tweets in an area in O(log(N)) time and then

find all tweets in the given time period from that list O(K) time) however this is still not ideal

as it is slower than if we had a 3D data index.

One solution to this might be to move the database to Couch DB which like Mongo DB is a

document based database with similar features such as sharding, map reduce and

replication. However unlike Mongo DB Couch DB has a more detailed feature list for geo-

spatial data querying including being able to index more than 2d data. Unfortunately there

is not a mature python library for communicating with Couch DB which is why the project

currently uses a Mongo DB database for the backend.

Event Detection

As previously mentioned in the design report the Hashtag counter class and the Text

counter classes are extended from the dictionary class. The most important feature

difference between these classes and the dictionary class is that they are immutable once

the MapReduce has been performed on the dataset. This is because of their internal

representation. As an example imagine the internal representation of a HashTag Counter

object:

{

“spam” : {“ids” : [1,2,3], freq : 3},

“ham” : {“ids” : [4,5,6,7], freq : 4},

“eggs” : {“ids” : [8], freq : 1}

}

The data structure for storing the list of tweet ids belonging to the hashtag is actually a hash

set which is immutable. Therefore the entire class needs to be immutable as the internal

representation cannot be changed. Another key reason these objects are immutable is so

that they are thread safe which may become important in the future if improvements to the

Global interrupter lock are ever made (as this is the only thing that is currently forcing the

implementation to use multiprocessing module over the threading module).

The list of Id’s is stored as a hash set as it allows for O(1) set operations such as retrieving a

list of all tweet id’s that two hashtags do not share. This is important as set operations are

needed when we cluster the data to detect how similar hashtags are and as the clustering is

done in O(K * N * I) time it would be wise to make detection of similar hashtags as quickly as

possible.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

The HashTagCounter class performs its MapReduce as one function on the parts of the data

from the data received from the queue.

 for tag in tweet['hashtags']:

 tag = tag['text']

 tag = tag.lower()

 if tag in self.tagFreq:

 counter_dict = self.tagFreq[tag]

 counter_dict["freq"] += 1

 counter_dict["ids"].add(tweet["_id"])

 self.tagFreq[tag] = counter_dict

 else:

 self.tagFreq[tag] = {"freq" : 1, "ids" : {tweet["_id"]}}

The map() section of the code is hit if it is a hashtag we have never come across before. If

this is the case then the Tweet data is transformed into a key value pair of:

Hashtag:{"freq" : 1, "ids" : [tweet id]}

If that hashtag already exists then there is no need to perform a map() operation as we only

need to retrieve the id from the hashtag and we can then simply merge the new id’s with

the list of existing id’s and increment the hashtag’s frequency by 1. The same logic is used by

the WordCounter to count the frequency of words using MapReduce().

This approach is different to the traditional Map Reduce implementation because the

traditional method was designed to work with multiple different Reduce functions() and as

such not all of these functions can be mapped and reduced in one step this however is not

the case for counting.

Both of these objects implement a most_common method which will return X

words/hashtags that have the highest frequency. This method was only implemented for

testing and should not be used in a real implementation. This is because the internal

representation of the objects gets converted to a list so it can be sorted. This however

means that the entire dataset is loaded into memory which could cause errors if the dataset

is larger than the available memory.

The Text counter class also has another function then to count the frequency of words in

the text. The text counter is also responsible for finding a word’s lexical category and

keeping track of the ratio of verbs in the text compared to non-verbs. This is done with help

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

from the textblob library which compares words to a previously collected lexical database to

find the words category.

Using a previously collected lexical database was a fast method on working out the lexical

category for a word. This method however is not ideal as it is dependent on the database

not being wrong or outdated. Furthermore the majority of lexical databases only support

the English language which would mean the event detection program can only detect words

in English. Unfortunately there is no easy solution to this as natural language processing is a

very complex research area additional time would be needed to investigate what the best

option would be to detect verbs.

The detect outliers class works by looping over two Hashtag counter objects (one stores all

the hashtags for the given space and time while the other stores all the hashtags for the

given space). As we know how long the datasets as a time is and we know frequency of the

individual hashtag we can work out the standard deviation with the following formula.

∑ ̅

Originally the standard deviation used N as the sample variance instead of N-1. Friedrich

Bessel[7] proved that by Using N as the sample size we get an increased mean squared error

in the estimation of the standard deviation and therefore to reduce population bias we

should use N-1 instead of N.

Once we know the standard deviation and the mean frequencies for a given hashtag we can

compare the hashtag for our given space time area with these values to see if it is larger

than mean * 2.5 standard deviations. If it is then we have an outlier and we can add it to a

list otherwise we can discard the hashtag.

As previously mentioned the DetectOutliers class returns the outliers as a list rather than an

iterator. This is because clustering is an iterative process and so we would need to loop over

the list of outliers more than once (which is something an iterator is not capable of).

The get_biggest_outliers() method uses CPython’s inbuilt sorted function to automatically

sort the hashtag outliers by how large their frequency was. The list was sorted on frequency

rather than standard deviation as hashtags with a very high outlier are often hashtags that

are used rarely rather than hashtags pointing to an event.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

The clustering implementation uses the K means algorithm to attempt to cluster similar

hashtags together. The degree to which two hashtags are similar is calculated by the

similarityCalculator class. To calculate the similarity we use the Jaccard similarity coefficient

and look at the hashtags Id’s. If two hashtags share Id’s then there is a high chance that the

two hashtags are related. The formula for working out the similarity looks like this

The key reason we use this formula is that we binaries the Id data (a list of two hashtag’s ids

can be represented as a list of 1’s and 0’s where 1’s are matches and 0’s are non-matching).

If we had used a different formula such as the cosine coefficient we would have received

distorted results as the 0’s would have matched tricking the formula into believing that

every single hashtag is 100% similar to any other hashtag. The result from using Jaccard’s

similarity coefficient will give us a number between 0 and 1. The closer the number is to 1

the closer it is that the 2 hashtags match.

K means clustering[8] “is a method used to automatically partition data into k clusters”. The

algorithm psudo code can be found below

Build initial centroid list

While a centroid in the list has moved:

 Start X proccess that listen for work from the queue

For each hashtag that is not a centroid:

 Add to the work queue

 Wait for processors to finish

calculate new positions of the centroids

def worker():

 if no more values in queue terminate

 else retrieve a hashtag from the queue

 For each centroid:

 calculaterJaccardSimilarityCoefficient(centroid’s ids, hashtag’s ids)

compare the coefficients to find closest centroid

if all of the distances are lower than 0.1 discard the hashtag

otherwise add it to the centroid list

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

As previously mentioned the starting centroids for the clustering are chosen at random (as

long as they have a high enough frequency). As outlined in the Parallelism sub heading of

the implementation section the clustering uses a queue system and multiple processes to

attempt to speed the run time of the program up. This works well as the K means clustering

process do not need to communicate with each other (except to notify each process to

finish) which makes the algorithm very scalable.

One large problem with this clustering implementation is that it requires the user to specify

the number of clusters to generate. This does not work well because users will not know

how many events they need to find and so they will not know the number of clusters to

generate.

The final part of the event detection program is the generation of the word cloud. This is

done through a library called Pillow which is an image creation library in python. Creating

the tag clouds is a simple process and can be seen in the algorithm below

For each word in the word counter:

 Create our typeface size by 14 + (2* the words frequency)

 Find the words lexical category and select the font colour based on that

 Loop:

 Attempt to draw the word to the image at a random position using the given

typeface

 If the word is touching any other word move it to a new position

 Else draw it to the screen

Save the image()

In the WordCloud program we detect if two words intersect by using rectangle collision

detection. Two rectangles are considered not touching if one rectangle is either absolutely

left, right, above or below the other rectangle. Therefore we can draw imaginary rectangles

around each word on the screen and check if any of the words rectangles are touching.

Using this brute force method is problematic as there might not be any empty space to put

the word down. If a word cannot find a place after 250 iterations it will be placed in a

random position. In an ideal world this should be handled more elegantly however the

WordCloud is just there to give a visual representation to the event and should not really be

considered a major part of the program.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Future considerations
Although much has been achieved in this project there are a few features that could have

been implemented to make the results more accurate and make the project more scalable.

Furthermore there are some implementation details that could have been changed that

could have increased the performance of the program.

The biggest change that should have been made to the project was to develop the project in

PyPy instead of CPython. PyPy is a Python implementation that makes use of JIT compiler to

transform the byte code of the project into machine code. This means that we no longer

have to wait for all of the byte code to be interpreted before we can start executing

instructions. Instead byte code gets interpreted into machine code when it is needed which

leads to faster runtime performances.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Figure 12

As seen in figure 12[9] which is a benchmark of PyPy programs compared to a python 2.7

program by using a JIT compiler PyPy on average performs 6.3 times faster than CPython on

the benchmark tests.

This project was not originally developed in PyPy as some of its dependencies were not

compatible with PyPy. However this has since been fixed and so there is no reason to not

move to PyPy compared to CPython.

A feature that should be looked into as a future consideration would be to ignore tweets in

the dataset that do not have any likelihood of mentioning an event. This could be done by

looking at the structure of the sentence. If the tweet is talking about an event it will need to

mention a location, a person or a planned public/social occasion. We can use Bing’s

synonyms API (which returns any alternative reference names to a real world entity) to

detect if any words in the sentence match these criteria. As the synonyms API is built up by

Bing’s search engine there would not be a problem of us comparing to outdated synonyms.

However this would need further investigation to see if it is possible to implement while still

maintaining suitable performance.

As discussed in the implementation section this project makes use of CPython’s

multiprocessing module. A large drawback to this approach is that each process has its own

memory space which creates a large overhead for the program. Unfortunately the

multiprocessing module is the only suitable way to perform parallelism in CPython.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

However it is possible to write the performance critical code in C and to then parallelise the

code using OpenMpi or OpenMp. CPython (and PyPy) can then call the C code and treat it as

a CPython extension. This is all possible due to the “Python.h” header file for C which allows

you interface code between CPython and C.

This was not originally implemented to keep the project simple as problems can be caused

when we interface between C and CPython. For instance CPython garbage collector collects

objects by looking at their reference count. When an object is referenced its reference

count is increased and vice versa. However this can lead to a situation in which CPython

clears the object from memory while the C program is still using the object. Edge cases like

these need to be handled but because of the complex nature of the edge cases it would be

impossible to implement them in time given to develop the project.

In an ideal environment users should be able to choose which database to store their

dataset in. Therefore a final future consideration that should be looked into is to decouple

the implementation of communicating to Mongo DB from the database class as currently

users are forced to collect and store their dataset in Mongo DB due to the limits of Mongo

DB and geospatial data. This is further expanded upon in the results and evaluation section.

Results, Evaluation and conclusion
To successfully see if it is possible to detect events with the event detection program 2

weeks’ worth of data was collected over a period of time in the following locations London,

Birmingham, Manchester, Leeds and Liverpool. These places were chosen due to their high

populations.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

This program will attempt to discover events from 19th April 2014 at 17.30 until the 19th of

April 2014 at 20.30 at London, Leeds and Birmingham. These 3 places were selected at

random. The Date and time was chosen as Saturday from that time is traditionally when

Twitter has the most people online and tweeting.

Each run of the program will attempt to find 25 events. The main comparisons of the test

shall be done on what the program recognises as the 3 biggest events. Secondary

comparisons of the program will be performed by manually inspecting the 25 tag clouds and

attempting to find events by hand.

In the first comparison test we are primarily interested in seeing how likely that the top 3

tag cloud suggested are actually events. While In the secondary comparison we are

interested in data such as how many of the 25 clusters are actually events and is there an

overall correlation between high ranking and the tag cloud being about an event.

A final test will be performed to attempt to see how scalable the program is. This will be

done by increasing the number of processes used to work on the data while gradually

increasing the sample sized used.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Results London

Figure 13

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Figure 14

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Figure 15

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Results Notable events detected in London
Britain’s got talent ranked 12th

http://www.dailystar.co.uk/showbiz-tv/britain-s-got-talent/375145/Britain-s-Got-Talent-2014-Simon-Cowell-risks-death-with-knife-throwing-pre-teen

Figure 16

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Sunderland beat Chelsea 2: 1# Ranked 13th

Figure 17

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Channel 4 show Taken Film

#Taken ranked 25

http://www.channel4.com/tv-listings/daily/2014/04/19

Figure 18

http://www.channel4.com/tv-listings/daily/2014/04/19

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Blur Park life 20th anniversary special

Results Birmingham

Figure 19

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Figure 20

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Figure 21

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Results notable events detected in Birmingham

Record store day rank 12

http://www.recordstoreday.co.uk/

Figure 22

http://www.recordstoreday.co.uk/

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Easter Sunday tomorrow Rank 19th

Figure 23

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Results Leeds

Figure 24

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Figure 25

Figure 26

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Results notable events found in leeds
Britain’s got talent Ranked 11

http://www.dailystar.co.uk/showbiz-tv/britain-s-got-talent/375145/Britain-s-Got-Talent-2014-Simon-Cowell-risks-death-with-knife-throwing-pre-teen

Figure 27

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Evaluation of results

As we can clearly see from this data there is no correlation between events and where they

appear on the list of tag clouds. This is suggested by the fact that in 3 cities none of the top

3 spots are occupied by any kind of event. This is further proved by looking at the manually

picked out events which have rankings ranging from 11th all the way to 25th. These two tests

prove that trying to filter the event clusters from the non-event clusters by looking at verb

usage does not work at all.

In the dataset of the 25 tag clouds London had 3 events, Birmingham had 2 events and

Leeds had 1 event detected. According to the study by Pear Analytics at least 49.6% of the

tweets should not be events as 40% are “pointless babble”, 3.75% are spam and 5.85% of

tweets are for self-promotion. That said on average 0.06% of all of the word clouds that

were generated are event based. This suggests that the outlier detection algorithm was not

working very well as none of the “pointless babble” was removed. From these results we

can therefore draw the conclusion that detecting outliers by looking for hashtags that have

a frequency greater than 2.5 standard deviations away from the mean does not work to

suitable remove outliers.

It is highly likely that these results are due to a poor algorithm design rather than their being

bugs in the code as the implementation was programed with Test Driven Development in

mind. For each of the core parts of the project there is suitable unit test coverage and each

unit test checks for edge cases. If there was a major bug in the code that was skewing with

the results it would be unlikely that it would remain hidden while all the unit tests pass.

Although the full dataset has not been provided another key problem we can see is that not

all similar events have been tagged together. A key demonstration of this can be found with

the tag clouds of BGT2014 and Britain’s got Talent. These tag clouds are describing the same

event however they have not been clustered together. This could be attributed to the fact

that people are unlikely to tag a tweet as both #BGT2014 and #Britans got talent as they

mean the same thing.

Although there was an oversight on how the hashtags where clustered together as

previously discussed overall the clustering was a success. This can be seen from the tag

clouds in which the words inside the clouds make sense for that particular topic. This can be

further seen from the more miscellaneous tag clouds such the one in figure 28 in which lots

of different conversations have been merged (we have talks about fishing, daffodils, the

forest, ducks and geese to name a few)to talk about a related topic (in this case its talking

about nature).

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Figure 28

How scalable is the program?

The third program test was all run on the same hardware which can be found below.

Description of Hardware/software environment

Operating System Windows 8

Ram 4GB

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Cpu 3.14GHZ Duo Core

Each program run was run 5 times to attempt to get an accurate timing average. The event

detection was done over 1, 2, 3 hours and the program was run on 1, 2, 3 or 4 processes.

Figure 29

As we can clearly see from the results in figure 29 we can see that the program is highly

scalable. One major point that we can see from these results is that increasing the time

range on the event detection does not have a large impact on the results. This is probably

because we have to load all the data in any way to detect mean and standard deviation

frequencies of the data.

Another trend we can see in the data is that as the number of processes got higher the run

time actually got worst. This is probably due to the law of diminishing returns. As we

increase the number of processes the time spent communicating between the processes

increases while the time to solve the solution hardly changes.

Overall Evaluation of the project and conclusion

One flaw of the event detection program is that currently all clustering is done with K

Means. The problem with this approach is that the starting centroids are selected at random

and some of the outliers that the project will have detected will have nothing to do with

events. If these get selected as centroids then the clusters returned will often not have any

data about events.

0

100

200

300

400

500

1
processes

2
processes

3
processes

4
processes

ti
m

e
 in

 s
e

co
n

d
s

number of proccesses to use

Time taken to detect 25 events

1 hour

2 hours

3 hours

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

To solve this we could implement Agglomerative hierarchal clustering. Agglomerative

Hierarchal clustering starts with each hashtag being in its own centroid. A cluster will then

be merged together with another cluster if it is its closest partner. This process keeps going

until X clusters remain were X is a specified number chosen by the user.

Using Agglomerative hierarchal clustering could be seen as a better choice than K means

clustering as there is no longer any random element involved in the clustering. The major

problem with Agglomerative hierarchal clustering is its runtime which is O(N3) . A runtime

complexity that large would cause major problems for scalability and it probably wouldn’t

be able to handle large datasets. Furthermore the runtime would be even slower than

suggested as the dataset would be split up over multiple processes and each process will

need to communicate with every over process to find the closest centroid to pair with.

A solution to this is to only cluster the top 100 outliers as this is generally enough to build

events. Further testing will need to be done to see if it is suitable to switch over to

agglomerative hierarchal clustering and even more testing will be needed to see if events

can be reliable detected with only 100 outliers.

Another flaw of the event detection program is that the stop word list which is used to filter

out unnecessary words can actually cause more harm than good. This can be seen with

bands such as “The Who” in which both words would be removed the text as they are stop

word even though in this context they mean something.

When it comes to scalability I feel as if this project was mostly a success as it has been

proven to be able to handle large datasets without problem in a timely manner.

Furthermore as previously discussed in the future works section there is a lot of room to

make the program more scalable if needed.

Even thought it was costly to make processes with the multi-processing module I feel as

though using this module was largely a success overall. As seen from the timings it has

proved that the multi-processing module can be to scale a solution. Furthermore due to the

abstractions created by the multi-processing module it will be easy to move from running on

multiple processes to being able to run the program over a cluster of computers.

In conclusion I feel that although it has been proven that the algorithm for detecting events

itself is flawed there has definitely been key areas in which there has been success in this

project such as getting the program to scale and clustering similar hashtags together.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Reflection on learning
This project was the first major project that I have had to complete. Overall the course of

the last term I have learnt a multiple of lessons. The biggest lesson I learnt along the way

was to plan everything out and not attempt to rush into the project to cut corners. This

could be seen with me having to re-implement the database layer and port all the tweets

over as I originally tried to store the tweets into a SQL-LITE database as it was simple to

implement. This caused me a great deal of headaches as it wasn’t until I ran a profiler that I

discovered that it was the database that was being a bottleneck for the program.

Another scenario in which I rushed was that I did not plan how I should model my data. In

the original draft of the program all of the tweet data was serialized into bytes with python’s

pickle library and then stored in the SQL database. This was originally done as I was not sure

what Meta data I would need. Unfortunately it turns out that transforming the byte data

from pickle back into a dictionary was very slow and this became another bottleneck for the

program.

In the future I will make sure to plan out my systems before I begin to develop them

because rushing can lead to large unnecessary setbacks in the project which means that

more time is wasted from an already difficult deadline to achieve.

Another major lesson I have learnt from working on this project is how to work when I

became demotivated with the project. Becoming demotivated with a project this size was

only natural (especially as run times where around 8-9 minutes long before I moved over to

Mongo DB).

To solve my motivational problems I used two methods. The first method that I used was

the chain method. The idea behind the chain method is that every day that you work on the

project you get to mark it with a large cross. After working for a few days straight you

become motivated to work as you now have the mentality that you do not wish to break the

chain of crosses.

The second motivational method I used was to break down my project into very simple

problems. I would then do the easiest and simplest task on the list. Once I had finished that I

would perform the next easiest task. After a while you gain the motivation you need to work

on harder features as you can see all the progress that you have managed to make.

In the future I feel like I will be better able to tackle difficult projects as these methods that I

have learnt will better help me tackle any demotivation issues that arise from working on a

large project.

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

Over the course of this project I have learnt about python best practises for programming.

Before I started implementation I only knew a bit of python from my first year. I feel that my

skills in python have significantly increased and I now have an appreciation for functional

style programming such as using lambdas, maps(), reduce() and filter ().

Learning python has definitely translated into me being able to pick up and learn new

languages in the future. This is especially true as I have learnt new programming paradigms

such as functional programming.

I have also gained a strong appreciation for test driven development. Test driven

development is a programming style in which you write your unit tests first before the code.

By writing your unit tests first it forces you to write your code in an object oriented manner

as you are forced to decouple your classes very early on as unit tests test a single logical

concept and so you cannot depend on outside factors such as databases.

Finally in this project I have gained valuable experience with data mining techniques such as

K means clustering, transforming the dataset and vectorization of data.

I feel that I have also managed to develop some of my personal development skills such as

time management, task management and the ability to balance multiple commitments at

the same time. I feel that it will be a valuable skill to be able to look at a large task and be

able to split it up into smaller chunks. Likewise time management and being able to balance

multiple commitments at the same time will always be viewed as a valuable asset in the

working world.

Appendices

Appendices one
config:

 oauth:

 accessToken: removed

 tokenSecret: removed

 consumerKey: removed

consumerSecret: removed

 twilio:

 sid: removed

auth: removed

 myPhoneNumber: removed"

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

 twilioPhoneNumber: removed "

 locations:

 -0.3952,51.4101,0.1439,51.6069: London

 -2.4204,52.3022,-1.3424,52.6872: Birmingham

 -2.7727,53.2537,-1.6946,53.6304: Manchester

 -2.0840,53.6353,-1.0059,54.0086: Leeds-Bradford

 -3.1881,53.2989,-2.6491,53.4874: Liverpool-Birkenhead

Appendices 2
'b v a', "a's", 'able', 'about', 'above', 'according','accordingly',

 'across', 'actually', 'after', 'afterwards','again', 'against',

 "ain't", 'all', 'allow','allows', 'almost', 'alone', 'along', 'already','also',

 'although', 'always', 'am', 'among','amongst', 'an', 'and', 'another', 'any','anybody',

 'anyhow', 'anyone', 'anything', 'anyway','anyways', 'anywhere', 'apart', 'appear',

 'appreciate','appropriate', 'are', "aren't", 'around', 'as','aside', 'ask', 'asking', 'associated',

 'at','available', 'away', 'awfully', 'be', 'became','because', 'become', 'becomes', 'becoming',

 'been','before', 'beforehand', 'behind', 'being', 'believe','below', 'beside', 'besides', 'best',

 'better','between', 'beyond', 'both', 'brief', 'but','by', "c'mon", "c's", 'came', "can','can't",

 'cannot', 'cant', 'cause', 'causes','certain', 'certainly', 'changes', 'clearly', 'co','com',

 'come', 'comes', 'concerning', 'consequently','consider', 'considering', 'contain',

'containing',

 'contains','corresponding', 'could', "couldn't", 'course', 'currently','definitely', 'described',

 'despite', 'did', "didn't','different", 'do', 'does', "doesn't", "doing','don't", 'done', 'down',

 'downwards', 'during','each', 'edu', 'eg', 'eight', 'either','else', 'elsewhere', 'enough',

 'entirely', 'especially','et', 'etc', 'even', 'ever', 'every','everybody', 'everyone','everything',

 'everywhere', 'ex','exactly', 'example', 'except', 'far', 'few','fifth', 'first', 'five', 'followed',

 'following','follows', 'for', 'former', 'formerly', 'forth','four', 'from', 'further', 'furthermore',

 'get','gets', 'getting', 'given', 'gives', 'go','goes', 'going', 'gone', 'got', 'gotten','greetings',

 'had', "hadn't", 'happens', 'hardly','has', "hasn't", 'have', "haven't", 'having','he', "he's",

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

 'hello', 'help', 'hence','her', 'here', "here's", 'hereafter', 'hereby','herein', 'hereupon', 'hers',

 'herself', 'hi','him', 'himself', 'his', 'hither', 'hopefully','how', 'howbeit', 'however', "i'd",

 "i'll','i'm", "i've", 'ie', 'if', 'ignored','immediate', 'in', 'inasmuch', 'inc', 'indeed','indicate',

 'indicated', 'indicates', 'inner', 'insofar','instead', 'into', 'inward', 'is', "isn't','it", "it'd",

 "it'll", "it's", 'its','itself', 'just', 'keep', 'keeps', 'kept','know', 'known', 'knows', 'last',

 'lately', 'later', 'latter', 'latterly', 'least', 'less','lest', 'let', "let's", 'like', 'liked',

 'likely', 'little', 'look', 'looking', 'looks','ltd', 'mainly', 'many', 'may', 'maybe','me', 'mean',

 'meanwhile', 'merely', 'might','more', 'moreover', 'most', 'mostly', 'much','must', 'my',

'myself',

 'name', 'namely','nd', 'near', 'nearly', 'necessary', 'need','needs', 'neither', 'never',

 'nevertheless', 'new','next', 'nine', 'no', 'nobody', 'non','none', 'noone', 'nor', 'normally',

 'not','nothing', 'novel', 'now', 'nowhere', 'obviously','of', 'off', 'often', 'oh', 'ok','okay',

 'old', 'on', 'once', 'one','ones', 'only', 'onto', 'or', 'other','others', 'otherwise', 'ought', 'our',

 'ours','ourselves', 'out', 'outside', 'over', 'overall','own', 'particular', 'particularly', 'per',

 'perhaps','placed', 'please', 'plus', 'possible', 'presumably','probably', 'provides', 'que',

 'quite', 'qv','rather', 'rd', 're', 'really', 'reasonably','regarding', 'regardless', 'regards',

 'relatively', 'respectively','right', 'said', 'same', 'saw', 'say','saying', 'says', 'second',

 'secondly', 'see','seeing', 'seem', 'seemed', 'seeming', 'seems','seen', 'self', 'selves',

 'sensible', 'sent','serious', 'seriously', 'seven', 'several', 'shall','she', 'should', "shouldn't",

 'since', 'six','so', 'some', 'somebody', 'somehow', 'someone','something', 'sometime',

'sometimes',

 'somewhat', 'somewhere','soon', 'sorry', 'specified', 'specify', 'specifying','still', 'sub', 'such',

 'sup', "sure','t's", 'take', 'taken', 'tell', 'tends','th', 'than', 'thank', 'thanks', 'thanx','that',

 "that's", 'thats', 'the', 'their','theirs', 'them', 'themselves', 'then', 'thence','there',

 "there's", 'thereafter', 'thereby', 'therefore','therein', 'theres', 'thereupon', 'these',

 "they','they'd", "they'll", "they're", "they've", 'think','third', 'this', 'thorough', 'thoroughly',

 'those','though', 'three', 'through', 'throughout', 'thru','thus', 'to', 'together', 'too',

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

 'took','toward', 'towards', 'tried', 'tries', 'truly','try', 'trying', 'twice', 'two', 'un','under',

 'unfortunately', 'unless', 'unlikely', 'until','unto', 'up', 'upon', 'us', 'use','used', 'useful',

 'uses', 'using', 'usually','value', 'various', 'very', 'via', 'viz','vs', 'want', 'wants', 'was',

 "wasn't','way", 'we', "we'd", "we'll", "we're','we've", 'welcome', 'well', 'went',

"were','weren't",

 'what', "what's", 'whatever', 'when','whence', 'whenever', 'where', "where's",

'whereafter','whereas',

 'whereby', 'wherein', 'whereupon', 'wherever','whether', 'which', 'while', 'whither',

"who','who's",

 'whoever', 'whole', 'whom', 'whose','why', 'will', 'willing', 'wish', 'with','within', 'without',

 "won't", 'wonder', "would','wouldn't", 'yes', 'yet', 'you', "you'd','you'll", "you're", "you've",

 'your', 'yours','yourself', 'yourselves', 'zero'

References
1. http://www.cnet.com/uk/news/facebook-processes-more-than-500-tb-of-data-

daily/ published 22/08/12 date last viewed 06/05/14

2. https://blog.twitter.com/2013/new-tweets-per-second-record-and-how

published august 16 2013 date last viewed 06/05/14

3. https://www.pearanalytics.com/wp-content/uploads/2012/12/Twitter-Study-

August-2009.pdf published august 2009 date last viewed 06/05/14

4. http://aclweb.org/anthology/P/P12/P12-1056.pdf published 2010 date last

viewed 06/05/14

5. https://static.googleusercontent.com/media/research.google.com/en//archive/

mapreduce-osdi04.pdf published April 2004 date last viewed 06/05/14

6. https://wiki.python.org/moin/GlobalInterpreterLock published 06/05/14date last

viewed 06/05/14

7. https://en.wikipedia.org/wiki/Bessel%27s_correction published 06/05/14 date

last viewed 06/05/14

8. https://web.cse.msu.edu/~cse802/notes/ConstrainedKmeans.pdf published

march 2001 date last viewed 06/05/14

9. http://speed.pypy.org/ published 06/05/14 date last viewed 06/05/14

http://www.cnet.com/uk/news/facebook-processes-more-than-500-tb-of-data-daily/
http://www.cnet.com/uk/news/facebook-processes-more-than-500-tb-of-data-daily/
https://blog.twitter.com/2013/new-tweets-per-second-record-and-how
https://www.pearanalytics.com/wp-content/uploads/2012/12/Twitter-Study-August-2009.pdf
https://www.pearanalytics.com/wp-content/uploads/2012/12/Twitter-Study-August-2009.pdf
http://aclweb.org/anthology/P/P12/P12-1056.pdf
https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf
https://en.wikipedia.org/wiki/Bessel%27s_correction
https://web.cse.msu.edu/~cse802/notes/ConstrainedKmeans.pdf

Student: Adam Flax Supervisor: Dr Steven Schockaert

Student Number: C1115629 Moderator: Dr David W Walker

Module: CM2303 One Semester Individual Project Module Credits: 40

