
µTunes: Massively Multi-User Collaborative
Composition of Music using Genetic

Algorithms
CM3202 One Semester Individual Project – 40

Credits

Robin Hawkins, 1125589

Supervisor: Dr. K. Sidorov
Moderator: Prof. Martin

May 6, 2014

Contents

I Abstract 7

II Acknowledgements 9

III Body 11

1 Introduction 12
1.1 Music - The Problem Domain 12
1.2 Project Outline . 12
1.3 Interactive Genetic Algorithms 13
1.4 Pair-wise ranking . 14
1.5 Particiption in the project: who and how 15
1.6 Goals and expectations . 16
1.7 Limiting factors, potential pitfalls, and risks 17

2 Background 19

3 Models, Methods and Algorithms 21
3.1 The Genetic Algorithm . 21

3.1.1 Walk-through . 22
3.1.2 Representation . 22
3.1.3 Generation . 24
3.1.4 Operators . 26
3.1.5 Ranking . 29
3.1.6 Generating the next generation 32
3.1.7 Stopping Condition . 32
3.1.8 Summary of parameters 32

1

3.1.9 Limitations of the algorithm 33

4 Implementation 34
4.1 Technologies used . 34
4.2 Front-end and user experience 35

4.2.1 Browser compatibility 36
4.3 Back-end . 37

4.3.1 Admin Pages . 38
4.3.2 Database . 38
4.3.3 The algorithm in practice 42
4.3.4 Rendering the melodies 44
4.3.5 Overview of Code Structure and Responsibilities 45
4.3.6 Coding paradigms, practices and layout 47
4.3.7 Difficulties and Improvements 48

4.4 Testing . 49
4.5 Launch, Progress and Promotion 49

5 Results and Evaluation 55
5.1 Participation . 55

5.1.1 General response to promotion 55
5.1.2 Individual behaviour 58

5.2 Evolution and Increase in Musicality 59
5.2.1 Evolution of Melodies 60
5.2.2 Hierarchy of convergence 60
5.2.3 Examples of Music, Comparison to Other Music, and

My own interpretation 70

6 Future Work 73
6.0.4 Genetic Operators: general improvement 73
6.0.5 More complex music: dynamics, harmony, and beyond! 74
6.0.6 A better website . 76
6.0.7 Interpolation Between Melodies 77

7 Conclusions 78

8 Reflection on Learning 80

9 References 81

2

A Appendices 85
A.1 Predicted Timescale Versus Reality 85

B Paper Published 88

C Deliverables 90
C.1 Paper: µTunes: A Study of Musicality Perception in an Evo-

lutionary Context . 90
C.2 Results . 90
C.3 Analysis . 90
C.4 examples of music . 91
C.5 mutunes . 91

3

List of Figures

3.1 Characters of Different Key Signatures when Played by Violins 24

4.1 Homepage of the µTunessite. 51
4.2 Comparisons page of the µTunessite. 52
4.3 ”Leave details” page of the µTunessite, denying access as no

comparisons have been made in this session. 53
4.4 Frequency of Particiation Over Time 54

5.1 Frequency of Particiation Over Time 56
5.2 Cumulative Frequency of Particiation Over Time 57
5.3 Edit Distance of All Melodies from One Another 61
5.4 Average Entropy in Bits Over 45 Generations (produced by

Dr Sidorov) . 62
5.5 Entropy in the Rhythm of Melodies over 45 Generations (from

Sidorov 2014 [11] . 63
5.6 Comparison of diatonicity between random data and measured

data . 64
5.7 Comparison of diatonicity between random data and measured

data: ascending melodic minor scale 65
5.8 Comparison of diatonicity between random data and measured

data: harmonic minor scale 65
5.9 Comparison of diatonicity between random data and measured

data: pentatonic scale . 66
5.10 Histogram of Interval Classes of Last Generation Compared

with Western Classical and Folk (from Sidorov 2014 [11] . . . 67
5.11 Comparison of frequency of realisation of implications of regis-

tral direction . 69
5.12 Comparison of frequency of realisation of implications of in-

tervallic difference . 69

4

B.1 Paper on µTunes . 89

5

List of Tables

5.1 Common Ancestors of Melodies in the Top 10 71
5.2 The Top 10 Melodies by Number of Descendants, from 10th

to 1st . 72

6

Part I

Abstract

7

In this successful project, I have allowed hundreds of users to contribute
to the composition of music by interactive evolution and analysed the hid-
den preferences which led to the final outcome. High levels of participation
produced interesting and well-developed melodies and allowed for clear and
convincing analysis of the music produced and the decisions which produced
it.

Appreciation of music is a near-universal human characteristic. It is si-
multaneously a basic human activity and a supreme cultural achievement.
Music composition, however, is a process typically restricted to a minority
by two factors:

• it is extremely difficult to include the input of more than a handful of
individuals

• these individuals each require an understanding of the fundamentals of
music theory in order to contribute

Humans have an innate understanding of music which can be leveraged
to surpass these barriers, using an interactive genetic algorithm. By ranking
a population of musical ideas, many people’s wills can sway the evolution of a
collection of melodies. Using standard genetic crossover techniques, popular
melodies and musical ideas can be perpetuated and propagated until we have
a highly musical population, driven and shaped by many people regardless
of their musical knowledge, ability and proximity to one another.

Using a web interface, participants compare pairs of melodies, submitting
a decision as to which they prefer. These pair-wise comparisons will form
the basis of a ranking system for a Genetic Algorithm. New melodies will be
created based on the rankings, and over time the population will evolve to
become more musical.

The evolution of the population will also provide us with insight into
what humans perceive as musical. The user base will consist of musical and
non-musical people alike, allowing us to analyse what is agreed upon as good
music by all.

8

Part II

Acknowledgements

9

• Thanks to the Computer Music“Academy” of Cardiff University. Kirill
Sidorov, Dave Marshall, Andrew Jones and Lawrence Semmens. It has
been a privilege to have been involved!

• Thanks to Robert Evans for responding so quickly to my many and
varied requests for bizarre server set-ups.

• Thanks to Ellen Keld, for trying to be interested, listening even when
you are not, and for letting slide the fact that for the duration of this
project, I have done almost nothing around the flat.

• Thanks to everyone to helped by participating in my project. Without
you, this would be a much shorter report.

10

Part III

Body

11

Chapter 1

Introduction

1.1 Music - The Problem Domain

Many problems are known to have optimum solutions. The problem of cre-
ating great art is not one of them. This may be for lack of understanding of
the problem, but for the purposes of this project, it is safe to assume that
anything involving human taste is subjective; a matter of opinion. With
respect to music, that means that there is no one perfect piece, and no one
perfect genre. However, there are many properties of highly-acclaimed mu-
sic on which human opinion agrees and many features converge to a large
extent. Taking a broad view, people will generally agree that a piece sounds
more musical when it conforms to a musical scale. Scrutinising a piece more
closely, people’s musical intuitions and biases predispose them to expect some
notes more than others to follow particular musical patterns, forming what
in Grachten, 2004 [8] are referred to as “structures”.

1.2 Project Outline

The purpose of this project is to evolve music by a series of pair-wise rankings.
By this means, I have built a system for collaborative composition of music
requiring no musical ability to use, and to analyse human preferences and
perception of musicality in an evolutionary context.

12

1.3 Interactive Genetic Algorithms

Genetic Algorithms comprise a category of heuristic search which mimic nat-
ural selection in order to approximate a solution to a problem. They require
potential solutions to be represented in a way amenable to modification by
operators such as crossover and mutation. Generally, crossover allows good
ideas to propagate through a population, while mutation allows exploration
of the space adjacent to a given solution. A fitness function assesses these
solutions and assigns them a fitness value, by which they may be ranked. For
well-defined problems, where solutions may be assessed objectively against
clear criteria, this standard genetic algorithm as outlined above have proven
to be very effective at finding local and global optima. However, the domain
of music does not allow for clear, objective assessment of what is “good” and
what is “bad”, but rather depends on consensus of human opinion.

Interactive genetic algorithms (IGAs) lend themselves to capturing this
consensus or group leaning, described by Yokohama [23] as Kansei (I will
use this term in this sense throughout). IGAs replace an automated fitness
function with one or more humans, truly allowing evolution to be driven
by human opinion. This incorporates the human strength of being able
to analyse music instinctively and in sophisticated ways, but brings several
human weaknesses with it. The main obstacles here are threefold: time,
consistency (noise) and fatigue.

Time
Humans assess information more slowly than computers. Generally,
this is not a small difference, but one of orders of magnitude, making
human interaction the biggest bottleneck in an IGA. This is a necessary
trade-off in order to effectively capture human preferences, but it was
a highly concerning risk factor which threatened to limit the amount
of data I could collect.

Consistency
When working to well-defined rules, computers can be perfectly con-
sistent. Humans offer no such guarantee, especially when, instead of
assessing information against strict criteria, they are often led by senti-
ment and emotion. This is particularly true for music. For this reason,
we are almost guaranteed to receive noisy data (in the form of con-
tradictory results). This problem is compounded when more than one

13

person is involved. Two completely valid opinions can be in direct op-
position to one another. This necessitates finding a way of capturing
the general Kansei of the users.

Consistency between users is well acknowledged to be unlikely, which
is one of the primary motivations for this project. This did not concern
me greatly as I was seeking a consensus.

Fatigue
People get tired, and only have a finite ability to assess or compare
information, especially when they find it unrewarding. Fatigued people
will not assess things properly and will be less inclined to keep assessing
things, a fact which in turn will worsen the quality and quantity of the
data we receive. Consideration of how to overcome this issue greatly
influences the design of the user interface.

Effective implementation of a massively multi-user interactive genetic al-
gorithm poses some non-trivial challenges. We have observed that many of
these arise solely from the involvement of humans. In particular, fatigue.
This is identified as a problem in IGAs generally, but many of those projects
had an additional level of protection in that they had a captive user base.
This project operates with no such safety net, relying on a voluntary user
base to achieve its goal. The algorithm I designed was heavily shaped by the
way in which I chose to mitigate this fatigue. Additionally, we cannot rule
out noise when relying on humans for assessment, so I had to construct a
system which could withstand some noise.

1.4 Pair-wise ranking

The minimum I felt that I could ask a user to do in order to contribute
usefully to this project was to compare two melodies and choose which they
prefer. For this reason, I chose this as the means by which users can interact
with and influence evolution. I believe it strikes the best balance between
fatigue-mitigation and gaining useful information.

I could have asked for less. I could have asked users simply to state
whether or not they liked a melody. However, assessing melodies in isolation
like this is unproductive, as when ranking we are interested in their relative

14

fitness. This method also helps to minimise noise when compared to an ob-
jective assessment of each melody. For example, if we asked a person to rate
a melody out of ten for musicality, although they may only be presented with
one melody at a time, we are tacitly asking them to compare this melody
with every other melody from our population that they’ve heard (if they
are not doing so, then their assessment is worthless as a means of ranking).
As this would involve another comparison for each additional melody they
ranked, I would effectively be raising the bar to participation as it happened.
Similarly, if we ask them to rank more than two melodies, we are expressly
asking them to remember more melodies. So we see that pair-wise ranking
offers a guaranteed maximum amount to consider, thus minimising effort —
a participant can ignore everything they heard before the two melodies they
are currently considering. Similarly, it is more likely that two people will
prefer melody A over melody B that both award melody A an identical score
in all cases.

So, the results of these pair-wise comparisons are the atomic units of data
which will drive my project forward. They ask little of the user while still
yielding useful information which is likely to be consistent at the level of an
individual user. Noise from inconsistencies (i.e., conflicting opinions) at a
multi-user level can be diminished or mitigated entirely by seeking consensus
in the data and ranking based on that. In comparison to methods of querying
users employed by other projects, such as DarwinTunes [15], which asks users
for five categories of information, this method is extremely straighforward. I
gathered information regarding what different aspects of the melodies were
preferred from an analysis of the evolution.

This technique of pairwise comparison has been used before with suc-
cess in Yokohama/Takenouchi 2012 [23] to extract the user group’s Kansei,
indicating that it is a robust enough method for the µTunes project.

1.5 Particiption in the project: who and how

As part of the remit of this project is to determine generally what people
find musical, it is beneficial to have a user base from as broad a demographic
as possible. Cultural influences as well as general level of musical educa-
tion colour how people perceive music and what they perceive as musical, so

15

ideally I want a user base broad enough that these factors are secondary to
more generic trends. The global, ubiquitous and largely uncensored nature
of the internet makes it an ideal medium through which to involve people.
Computers do not sleep and the project is autonomous, so my time is not a
restricting factor.

A true test of a massively collaborative compositional tool was to have
people who had never met give their input and arrive at a musical outcome
without any other collaboration or even communication. By making the
project available online that test can be undertaken. Thus, my user base is
limited to everyone who can access the internet and play sounds.

This may, to some extent, rule out the elderly as a group. They are
less likely to be internet users. This is disappointing as they have been
conditioned by different kinds of music to younger generations, and their idea
of what is music may not be represented by the end results of the project.

1.6 Goals and expectations

This project aims to do several things:
Provide a means of massively collaborative composition of mu-

sic for which level of musical ability is no bar to entry This project
has the scope to prove that this is possible, at least in principal. The ways
in which I was forced by time constraints to limit it means that the results,
rather than being a complete composition, will be a set of melodies from
which to construct a larger piece.
Demonstrate the Extent to which there is Consensus on what Mu-
sicality is The prevalence of Western music throughout the world colours
people’s perceptions of what music is. Already this narrows down what I
would expect to find. My hypothesis is that the population will converge on
diatonic melodies (those melodies which conform to Western major or minor
scales). This prediction is relatively easy to measure, as it is just the extent to
which a melody belongs to a certain set of notes. Similarly, almost all music
makes heavy use of repetition, which can manifest itself in many forms, such
as rhythm or patterns of differences between notes. It would be unsurprising
to find that the population has converged on melodies with some repetitious
qualities. Beyond these two features of music, there are many more subtle

16

indicators for which I will test.
Test the Robustness of Noisy Pair-wise Comparisons as a Means of
Data Gathering Given that we are looking for preferences that are gener-
ally true, I would expect this method to strike a good balance between ease
of user participation and effective data collection.

1.7 Limiting factors, potential pitfalls, and

risks

The greatest risks to the project lay in the fact that user participation is
voluntary and remote. I cannot predict in advance how many people will take
part, encourage their level of participation, or direct how they participate.
Possible scenarios related to the human aspect that could derail the project
are:

1. Insufficient participation to drive the project

2. Insufficient input from each user

3. Deliberate noise from users (i.e., trolling)

If the massively multi-user aspect of the project were not realised, it would
be very difficult to gain anything other than methodological data from the
project. It may be possible to prove that it works in principle by driving it
myself, but I would certainly not be able to make any broader judgements
about what appeals to people as music and what does not.

The massively multi-user aspect of the project also gives rise to techni-
cal difficulties. It is difficult to predict what bugs or algorithmic flaws may
manifest themselves under the weight of heavy traffic. By considering the
possibilities, I tried to design a system which could cope with heavy loads
and unpredictable behaviour. Subtle problems had the potential to skew the
data. For example, if a user opened a page to compare a pair of melodies, but
did not submit their decision until after a melody had been removed from
the system, how would this affect the system? What would happen if they
did not submit a decision at all?

17

These unknowns necessitated a certain amount of probabilistic behaviour
from the system in order to cope. Balancing reliability and robustness against
accuracy and utility was one of the greater challenges of the project.

Bearing in mind these considerations, I foresaw the following difficulties:

1. Driving participation in the project

2. Encouraging and rewarding user participation in the project

3. Extracting meaningful data from potentially unreliable, inconsistent
user input

4. Ranking melodies with incomplete data

Time constraints are a factor which affected many decisions made during
this project. The density of user responses (i.e., the enthusiasm of partic-
ipants) was so important because the time I had to collect data was finite
and fixed. This led me to narrow the scope of the music that my project was
capable of producing in several ways.

18

Chapter 2

Background

Computer-aided generation of music is not a new idea, and nor is using a
Genetic Algorithm to accomplish this task.

Previous projects fall into two broad categories: those that use the rules
of music and quantifiable data (e.g., Evolutionary Music Composer by Khal-
ifa and GP-Music by Johanson [12, 10]) to rate fitness and direct evolution,
and those which use human feedback to hone compositions towards musi-
cality (e.g., Evolutionary Interactive Music Composition by Wu et al ,[24],
DarwinTunes by MacCallum et al [15]). µTunes joins the latter category.
Wu et al [24] uses small musical ideas as the individuals in its population and
builds melodies from them, and DarwinTunes [15] deals with audio samples,
combining them to produce more pleasing one.

The nearest thing to this project is DarwinTunes [15]. However, that
project seems to be focussed on timbre and textural features of music rather
than melody. µTunes’ focus on melody distinguishes it from DarwinTunes
[15] in both the way it operates and the data we are gathering. µTunes dis-
tinguishes itself by occupying middle ground - exposing participants directly
to the individuals we are manipulating, unlike Wu et al [24], but still treating
the melodic passages as musical instructions rather than rendered audio.

Both µTunes and DarwinTunes rely on public participation, but Darwin-
Tunes focuses more on timbre. I am trying to negate the effects of timbre
entirely in order to focus solely on defined sequences of notes. Also, the
manner of participation in DarwinTunes is by rating the aesthetic qualities

19

of a section of audio, whereas mine is by comparison. Most importantly, the
creators of DarwinTunes are approaching it from a biological background,
with a particular interest in how memes propagate (or rather, how humans
propagate memes). I am approching this project as a novel means of data-
gathering for analyses of features of melody.

Pairwise comparison has been used by Wu et al [24] in Interactive Genetic
Algorithms as a “consensus building method that determines the win-lose re-
sults for the tournament using the votes of multiple people”. Knowing that
it is capable of yielding data which pleases a majority of people indicates
that it is an appropriate method for data collection in the µTunes project.

Although the main elements of my project (a large, decentralised user
base, evolution of melodic pattern, pairwise comparison, use of social media)
are not novel, the combination appears to be.

20

Chapter 3

Models, Methods and
Algorithms

An interactive genetic algorithm is a generic framework which requires be-
spoke components to tailor it to a specific function. These are:

• A solution representation

• A means of generating an initial population

• A means for participants to rank/assess the fitness of the constituent
solutions of the population

• A condition to initiate the creation of a new generation

• A means of creating a new generation (including the tools to do so)

• A means of assessing when the process is finished

These are discussed in detail below.

3.1 The Genetic Algorithm

Here is a brief summary of how the algorithm works, followed by an in-depth
look at the components of the algorithm.

21

3.1.1 Walk-through

This is a conceptual model of my algorithm.

1. Two melodies are selected for comparison. The first is selected in order,
the second at random from the remaining population

2. The two melodies, A and B are presented to the user for comparison.
They listen, and select the one they prefer. For the sake of example,
we will say they preferred A.

3. A’s score is incremented by one, B’s score is decremented by one, to
reflect which was preferred.

4. The population is sorted using the scores of the individual melodies.

5. With some probability, the next generation is generated. Offspring
of the top n% by rank are created by standard genetic operators of
crossover and mutation.

6. The new offspring replace the bottom n% by rank.

7. The process repeats.

3.1.2 Representation

Genotype

As discussed in Li et al, Alfonseca et al [13, 17], the key of a melody does
not affect its recognisability. Likewise, although it is argued that each key
signature has its own character (e.g., melancholic, jubilant, such as the
characterisations of key by Berlioz in his Grand trait d’instrumentation et
d’orchestration modernes, Op.10 (1844) [6], examples in Figure 3.1), key
does not uniquely define a melody. As such, in terms of pitch, a melody can
be considered invariant with respect to key and defined only by the relative
pitches between notes. For this reason, I have elected to represent note se-
quences as a series of offsets. The pitch of the nth note is an offset from the
pitch of the first note, given by:

p(n) = C +
n∑
i=1

O(i) (3.1)

22

where O is an ordered list of offsets, O(i) is the ith offset in semitones,
and C is an arbitrary constant dictating the absolute pitch of the first note.
In the representation, O(1) is always zero, so that C may dictate the key, or
“seed” the list of notes.

The rhythm of the melody is dictated by assigning a duration to each off-
set. Each duration is an integer value, representing a scalar by which some
atomic unit of duration should be multiplied.

The following sequence represents “Mary Had a Little Lamb”, with a
semiquaver (16th note) as the atomic unit of duration:

0:4,-2:4,-2:4,2:4,2:4,0:4,0:8,-2:4,0:4,0:8,2:4,-2:4,-2:8,4:4,-2:4,-2:4,2:4,2:4,0:4,0:8,-
2:4,0:4,2:4,-2:4,-2:8,

Variation on this, such as the **mint representation [1], are fairly com-
mon. It has an intuitive appeal to a musician; I find that I can site-read it
to play these melodies on various instruments. Being human-readable is an
advantage in a genotype representation as it is easier to confirm that it is
being manipulated as it should be.

Phenotype

The melodies are presented to the user as audio files dynamically generated
by MIDI synthesiser. The melodies are played on a piano, with the starting
note set to middle C. I chose to avoid an instrument with strong cultural
associations or connotation of genre, such as a banjo or a sitar, as I wanted
to avoid steering the listener towards an outcome, either consciously or sub-
consciously. The piano, being used in a wide variety of genres of music, is
less likely to colour a listener’s perception of a melody. I chose to start on
middle C for the same reason; that it is in the middle of the typical range of
music and should also help to avoid colouring a listener’s perception.

Other restrictions

Melodies can be dictated, affected, coloured and nuanced by any and all of
the following factors: relative pitch, rhythm, repetition, key, timbre, speed,
dynamics, swing, stress and harmony. I have identified the first two as the
most significant with regard to quality and identifiability of a melody. The

23

Figure 3.1: Characters of Different Key Signatures when Played by Violins

consideration of melodies is limited to these factors within the scope of this
project. This is because all the other factors can change and a melody can
still be recognisable. It is also for simplicity’s sake.

3.1.3 Generation

Each melody within the initial population is generated randomly, with cer-
tain restrictions and biases. Each initial melody is four bars of four crotchets.
This is a small amount of music, but sufficient to express a strong motif. The
repetitive nature of much music means that a concise passage can contribute
multiple times, directly and in variation, to a piece. For these reasons, the
length of a phrase is not proportional to its musicality or level of contribution
to a larger piece. Additionally, the brevity of these passage also helps miti-
gate user fatigue, which, as mentioned previously, is a huge bottleneck and
very real problem in interactive genetic algorithms. Longer melodies would

24

have been more difficult for a user to compare, and would not have offered
a tangible gain in terms of the information offered. Rather the contrary: a
longer passage would have contained more information, and so it would be
harder to determine what in particular a user is selecting for or against.

The offsets, which are integers, are calculated as follows: a discrete Gaus-
sian distribution is generated to an arbitrary distance and variance from the
mean. These values translate to the magnitude of the maximum desired off-
set (the range) and the disjunctness of the melody overall (the likelihood of
a large or small jump between notes; the gradient of the Gaussian curve).
Note: I only generated half a distribution. As I only needed to calculate the
magnitude of the offset. The direction of the offset is decided later. The
distribution D is calculated thusly:

D(x) = e−x
2/2σ2

(3.2)

Then the normalised distribution Dnormalised is calculated.

range
2∑

x=0

D(x) = 1 (3.3)

Dnormalised](x) =
D(x)∑
d∈D

d
(3.4)

For each offset in the melody, a random number n ∈ [0, 1] is generated.
The offset is given as the minimum number of items from Dnormalised such
that their sum exceeds n, minus one. Or:

Offset = min
{y:n<

∑y
x=0D(x)}

(3.5)

So, for a range of 5 and some arbitrary sigma:

Generate and normalise distribution

0.7, 0.2, 0.1 (3.6)

Generate random number N between 0 and 1
0.836275462. . . etc.

25

Work through distribution until cumulative sum exceeds N

• Position 0. Cumulative sum = 0.7 Greater than N? No.

• Position 1. Cumulative sum = 0.9 Greater than N? Yes.

• Return 1.

Our offset from the previous note is 1.
The direction of the offset is decided at random, with equal probability

given to up or down. This is acheived by multiplying the offset by -1 with
P (offset = offset×−1) = 0.5 so melodies can occasionally descend!

There are two constraints placed on these melodies as they are generated.
The use of a Gaussian distribution to generate offsets is one. The other is a
check to make sure that the total melody remains within an octave of where
it starts. This is done by keeping a cumulative sum of the offsets. Should
an offset take the melody further than an 8tve either side of the first note, it
will be discarded and a new one generated.

I put these checks in place after trying generating melodies completely
at random. Melodies generated in this manner were so poor that I felt it
necessary to increase the likelihood of generating something in some way
musically appealing. This was probably useful in decreasing user fatigue, as
more melodies had more redeeming features.

The range was set to 12, ie a maximum jump of an 8tve (twelve semitones,
a doubling or halving of the frequency) up or down, and sigma to 7. I used
a Gaussian distribution rather than the actual probability distributions for
a given form of music as I wanted to avoid stylistic bias.

3.1.4 Operators

Genetic operators are blind. They don’t know whether or not their effects
will improve or damage a given solution. This is their strength and weak-
ness, as they produce solutions a conscious being with intuition into a prob-
lem area may not; these solutions may be surprisingly good or predictably
bad. However, it is not the responsibility of these operators to improve

26

the general quality of a population (this role falls to the selection opera-
tor, I would argue), but to provide options, avenues and opportunities for a
population’s continued growth and evolution. The responsibilities of these
operators should be to forge new information from old, without being too
destructive or restrictive, and to avoid bias. The latter point is particularly
significant within the domain of music and this project. The subjective qual-
ity of music is strongly tied to genre and the traits and motifs of genre; that
is to say, people who prefer country music over rock will probably choose
average country music over good rock 1. I don’t expect musical biases to
manifest themselves in as sophisticated a fashion as obviously belonging to
a particular genre, but I want to avoid restricting the direction of evolution
as much as possible by my choice of operator. That role falls to the human
participants.

Crossover

I chose to use one-point crossover with a uniform distribution over the atomic
duration (as mentioned earlier, this is the chosen shortest note-length for the
project). The effect of this is that melodies are not merely split between
notes (by which I mean my representation’s offset:duration pairs), but can
be split in the middle of notes, down to a granularity of the atomic duration.

For example:

0:4,2:4,1:4,-2:4,0:4

has a length of 20 atomic note-lengths (5 notes of duration 4). This gives
us 19 points at which to split the melody. For example, let’s say that we
split this melody for crossover at point 11. This is what it would look like:

First half: 0:4,2:4,1:3

Second half: ?:1,-2:4,0:4

In this case, the question arises: does the second half of the split note re-
tain the offset of the original, or simply become a repeat of whatever ends up
preceding it (offset of zero)? Neither outcome is more intuitive, nor clearly
better than the other; in some circumstances a repeat is beneficial, in others,
not. In many cases, opinions on this will probably be completely subjective,

1Incorrectly, I might add.

27

or it will be context-dependent. Also, as my representation deals with offsets
rather than fixed pitches, each note affects those succeeding it, altering their
absolute pitch in the audible melody (i.e., the phenotype). Again, we can’t
tell in advance if a melody will be better one way or another. As such, I
decided that either event occurring with P (event) = 0.5 was the fairest way
to proceed, as it ruled out nothing.

From this choice of crossover method, a problem arises. The later the
generation, the higher the chance of a given melody being comprised of short
notes. Stylistic bias in a population should be driven solely by the human
participants in the project, not the recombination operators! To rectify this
situation, I introduced a step where, with P (event) = 0.5 I merged repeats
into the note they are repeating. In this case

0:4,1:4,0:4

would become

0:4,1:8

This allows average note duration to lengthen as well as shorten, thus
counteracting the bias from the previous step. However, I recognise that
a further subtle bias has now been introduced: pitch information is being
retained at the expense of rhythmic information. While this is a bias, I con-
sider pitch information to be more significant to the unique identifiability of
a melody. Also, the effect is not a large one, so I deemed it to be of negligible
risk to the outcome of the project.

The positions before the first note and after the last note are ignored as
points for crossover for the obvious reason that they would simply reproduce
the parent melodies. However, there is often another point which will also
often have this effect. Because the offset of the first note in each melody is
always zero, if two melodies have a first note of the same duration, crossover
between the first and second notes will reproduce the parents exactly, even
though genetic material from different sources has actually been combined.
It seemed to me that this problem is insignificant for two reasons:

1. it is statistically fairly unlikely

28

2. propagation of the genetic material of successful melodies is no bad
thing, even if no new information is gained.

This circumstance will probably not retard the process of evolution in a
noticeable way due to its infrequency.

Mutation

In Genetic Algorithms, mutation allows an exploration of the space around
a given solution. Special consideration needs to given to the fact that in my
representation, any change to a single gene affects the expression of those
following it. As my crossover operator necessitated some extra procedures
that affected rhythm, I have limited mutation to offsets. As offspring are
produced in pairs, I chose one offspring from each pair at random to undergo
mutation. A single mutation pitch-shifts all of the melody that follows it. It
is impossible to know whether this will improve the melody or not, but my
intuition as a musician warns me away from very large pitch shifts, as they
are likely to sound jarring and unmusical. As such, mutation either increases
or decreases an offset by 1, with equal probability.

I could have made mutation a much more subtle effect by counteracting
the pitch-shift. This would have manifested itself as a mutation followed by
a mutation of the next note of the same magnitude in the opposite direction.
As with much in this project, there is no rule as to which way is better; in
some cases one way will result in a net increase in musicality, in others it
won’t. However, I postulated that worse melodies have more to gain from
broad changes than subtle ones. As the initial population had low musicality,
I opted for the method of mutation with more far-reaching effects.

3.1.5 Ranking

The need to mitigate user fatigue led to my decision to rank melodies through
a series of pairwise comparisons. This a non-trivial problem, compounded
by the fact that some noise (i.e., contradictory votes) is almost guaranteed
and that it is hard to ensure that enough data is gathered for an accurate
ranking. I have no guarantees as to how many comparisons a user will make,
and whether or not a user will even send their vote having listened to a pair
of melodies. Another important consideration was that I did not know in

29

advance how many participants I would have and how active they would be.
Therefore speed of ranking was a concern which drove some of these ideas.
I considered several approaches, three of which I will outline now. The one
which I eventually selected was the least exotic of the possibilities.

Sort-style ranking

Here I considered seeding the population with an arbitrary ranking, with
lower ranks (1,2,etc.) corresponding to better melodies. Upon being pre-
sented with a pair of melodies, a user would select the one they think is bet-
ter. If the more preferred melody had a higher rank than the less preferred
melody, they would switch ranks. Eventually, the ranking would broadly
reflect a consensus of user opinions.

Probably the greatest problem with this method is its massive vulnera-
bility to noise. Say we have a population of 10 melodies. Let’s say that every
user so far has rated the 1-ranked melody as the best. Then the last user to
engage in the project compares the 1-ranked melody with the 8-ranked and
prefers the 8-ranked. This outlying opinion supersedes all previous opinions
and misrepresents the group opinion.

In tests, this method did achieve convergence, but slowly. In an environ-
ment where more consistency could be achieved, it could perform quite well
- for example, in a system with only one user.

Points Threshold

This technique relies on the fact that we only need rankings to be roughly
correct to generate the next generation. In this project, where the offspring
of the top x% replaces the bottom x%, as long as melodies in these bounds
are correctly ranked the process of evolution will occur. When two melodies
are compared, the “winner” (preferred melody) is allocated one point, and
the loser has a point taken away. Melodies are ranked by sorting according
to accumulated points, with ties being broken randomly. Although I came
up with this method myself, it has been explored before (Balanced Rank
Estimation, Wauthier [22]). I realised that the most liked and most disliked
individuals in a population would quickly become apparent. Once the dif-
ference between the highest and lowest ranking melodies reached a certain

30

point, the creation of the next generation would be triggered. This method
was attractive to me as it was fairly resistant to noise and the threshold
could be lowered to speed up the process of evolution or raised to increase
the accuracy of the rankings. The threshold should be set so as to strike a
balance between the two. It struck me as an appropriate method for group
composition, as reaching the threshold indicates a certain level of consensus,
based on which a composition can be advanced.

Indeed, it performed quickly (almost five times as quickly) in tests than
sort-style ranking.

Balanced Rank Estimation with Stochastically Triggered Creation
of New Generations

This is the method I finally elected to use. Due to its simplicity and robust-
ness I used Balanced Rank Estimation to rank the melodies, but instead of
waiting for the score spread to reach a certain threshold, the next generation
is created with probability

P (nextgeneration) =
1

γn log γn
(3.7)

after each comparison, where n is the population size and γ is a scaling
factor used to speed up or slow down evolution.

Balanced rank estimation populates the extremes of the rankings first,
which is useful to us. Poorly thought-of melodies will soon end up with a
negative score and be pushed towards the extinction zone at the bottom of
the rankings. Melodies which have not been compared, or only compared
once or twice will remain in the middle of the rankings, to survive into the
next generation. This is positive as it avoids throwing away good ideas by
accident. Retaining bad ideas is not problematic as they will eventually be
ranked enough to be pushed to the bottom of the table and killed off.

It is significant that scores are retained from one generation to the next. I
chose to do this partly because of the stochastic triggering of the generation
of new melodies; in theory there could be a single comparison to rank an
entire generation (although this is quite unlikely). It does, however, create a
legacy effect where previously successful melodies are higher in the rankings.

31

3.1.6 Generating the next generation

With the probability described above, after a comparison is submitted, a
new generation will be created. This is achieved by taking the top 20%
of the population by rank, performing crossover and other procedures as
described above on random pairs of melodies from this selection such that
each melody is crossed over only once. The children of these melodies (i.e.,
those individuals to be introduced in the new generation) replace the bottom
20% by rank, being inserted into the positions previously occupied by the
bottom 20%. Position in this context is used to determine which melodies
are presented for comparison next, and should not be confused with rank.

3.1.7 Stopping Condition

A strict stopping condition has not been defined for the purposes of this
project. Part of the difficulty in doing so for this application of Interactive
Genetic Algorithms is that convergence on just a single idea may rule out
other good material. Conversely, we cannot assume that µTunes will always
produce lots of good ideas. Music being a subjective experience, I consider it
wiser to allow the system controller to monitor the level of convergence (by
analysis such as I have undertaken) and when entropy begins to decrease,
either cherry-pick material they like from the emerging ideas or continue to
run the experiment. As such, the stopping condition is user-defined. If it
runs to a point where diversity amongst melodies has become virtually non-
existent, its utility will have been exhausted and it can be said to have run
its course.

3.1.8 Summary of parameters

Population Size Number of individuals in the population. Set to 100, in
an attempt to balance variety and speed of convergence.

Gamma (γ) Scaling factor affecting the frequency with which the next gen-
eration is created. At γ = 1 then there should be enough comparisons
to accurately sort the population. Reducing gamma represents a trade-
off between accuracy of ranking and speed of evolution. Gamma was
set to 0.5, to expedite evolution.

32

3.1.9 Limitations of the algorithm

Setting up this project as a web application was the obvious choice, given
that ubiquitous, cheap and well-established web technology was well suited
to transfer of media and information. Use of the web presents certain prob-
lems, though. Given the remote nature of the web, I could not monitor users
behaviour. Thus, I could not ensure that they will submit a comparison after
two melodies are presented to them, and this makes it difficult to ensure that
all melodies have equal or nearly equal opportunities to be ranked. Simply
waiting for a preference to be submitted before selecting the next melody(s)
to be compared is no better because, as a web-based system, it could receive
a new request for melodies before a user has finished comparing the previ-
ously issued ones. For this reason, the choice of which melodies to present
for comparison is partly stochastic. The semi-random nature of selection
helps fill in the gaps left by unreturned responses, but does not guarantee
fair selection.

The capacity for the emergence of repeated passages (phrases longer than
two or three notes) in the population is inhibited by the crossover operators.
These are deliberately näıve, picking a single point and then swapping first
half for first half, second half for second half. A passage appearing in the
first half of a parent melody will never appear in the second half of a child
melody, and so for repetition of a passage to occur, it will have to emerge
separately, in a different part of a different parent, and then end up being
selected and crossed over with the right melody at the right point, which
seems unlikely.

The emergence of rhythm is as a side-effect of operations to create children
of a pair of melodies. The näıvety of this process leaves something to be
desired and seems unsophisticated, in retrospect.

33

Chapter 4

Implementation

Many of the decisions in this project were made to try to limit the bottle-
neck created by involving human participants, and limit the extent to which
fatigue effects their ability to participate. I knew from previous studies by
Babbar et al, Llora et al, Manaris et al, and Takagi et al [5, 14, 16, 19, 20])
that the detrimental effects of fatigue are not to be taken lightly. For this
reason it was important to me to make the experience for the user as pleas-
ant, easy and unhindered as possible.

The easiest, most accessible way to make this project available to poten-
tial participants was as a web application. It also expanded the potential
user-base to an international level and allowed people to participate via any
internet-enabled device. The portion of the site accessible to the user con-
sisted of three pages: the homepage, which contained a brief explanation of
the project and the participant’s potential roll in it, also detailing the prizes
I purchased as an incentive to participate. The “compare” page, which al-
lowed the user to listen to two melodies, select which they preferred, then
submit their choice. On clicking submit, they would be given another two
melodies to compare.

4.1 Technologies used

I had planned to use a Common Lisp based web framework called Weblocks
[4]. It seemed to promise tight integration of front end, back end, data struc-
tures and logic, all manipulable programmatically. It may well be a good

34

solution, but I was not able to find out; I found it so poorly documented that
I made almost no progress with it and was forced to abandon it1 in favour
of a more familiar LAMP (Linux, Apache, MySQL, PHP) stack. The “P” in
my stack stood solely for PHP, not Perl or Python. I also made some use of
JavaScript for input checking and altering playback options.

My experiments with a lisp-based system had cost me quite a lot of time,
for which reason I kept the structure and implementation of the site relatively
simple. Beyond considerations of user-friendliness, the aesthetics of the site
were unimportant to the project.

The site was developed on my own set-up, using a Raspberry Pi as a
server. I did this as I did not have administrative privileges on the school’s
server, which was to host the site ultimately, and I wanted to know exactly
what I needed to have installed on there before I asked, to make the process
easier. Having two parallel also allowed me to test changes without affect-
ing the running system and run other experiments (like my primary control
experiment).

For analysis, MATLAB was chosen for friendly syntax and ability to
process large arrays of data in useful ways quickly. It’s ability to produce
figures easily was also a boon.

For backing up and developing the code and this report, I used git version
control and Dropbox, respectively.

4.2 Front-end and user experience

The site is still running at http://ontario.cs.cf.ac.uk/mutunes/ I do not con-
sider myself web designer. For this reason I limited my aesthetic goals for the
look and feel of the website to being unobtrusive, easy to use, and not ugly.
I am reasonably happy that I achieved these goals, and heard no aesthetic
complaints. Each of the three pages of the site share a heading and a menu.
As is evident from figure 4.2, the design of the site is clean and spartan. I

1Lisp’s lack of syntax is often touted as one of its great strengths, and indeed, it can
be a very transparent language in which to implement an algorithm. However, in this
situation, it has been used to develop a set of tools. Some syntax may have given my clues
as to the usage and structure of the framework which were devoid in this case. Of course,
proper documentation would have been equally acceptable.

35

did not want to draw too much focus from what I wanted the user to be doing.

Of more pertinence to the project are several conveniences for the user
which attempt to mitigate fatigue. Listening to four-bar phrases repeatedly
takes time, and can become tiresome. Also, there is no timbral variation be-
tween melodies as they are all played using a piano synthesiser. I introduced
an option to alter the speed of playback, which was remembered for the du-
ration of a session. There is an option for a user to declare themselves to be
a musician or not. This selection was recorded, as it is of interest whether
individuals with musical training made significantly different choices to non-
musicians, and how they differed. This option was remembered by a cookie.

The “leave details” page is a simple two-field form preceded by an expla-
nation of why to leave details (or rather, what incentives there are for the
user). Again, the minimal nature of this form is a deliberate attempt to lower
the bar to participation wherever possible, in keeping with the remit of this
project to facilitate involvement with the minimum of ability. Leaving details
was is not mandatory, but cannot be done unless the user has contributed to
the project with at least one comparison.

4.2.1 Browser compatibility

Modern, up-to-date browsers make playing audio relatively simple, but not
everyone is a modern, up-to-date user. As such, old versions of browsers
which don’t support newer features still abound. A perennial problem en-
countered by web developers everywhere is that Microsoft Internet Explorer
insists on interpreting both HTML and Javascript emphslightly differently
from the other major browsers, Chrome and Firefox. Part of my decision to
keep the front-end design simple was driven by these problems - functionality
is more important to my project than aesthetics, so I dedicated more of my
time to working on it.

Audio in particular is the area of multimedia I wanted to deliver. Ac-
cording to the w3schools website [3], the 〈 audio 〉 tag is supported by all
the major browsers, but support for formats varies. As all of the browsers
support either WAVE or MP3, I elected to serve both and thereby support
all modern browsers. As the audio files will be short, serving the bulkier
WAVE format should not dramatically increase server load, but there is the

36

lighter mp3 option for when it is possible to use it. This allows for “graceful
failure” and covers the vast majority of modern browsers.

Given the vast amount of web browsing now done through tablets and
mobile phones, designing a system which worked well on these devices was as
important as designing for use on a traditional desktop or laptop computer.
The main considerations were lower processing power and smaller screen
size, but neither presented a particularly big challenge. Even lower-powered
devices are designed to support multimedia. As I had kept my interface clean
and simple, and very little processing is done in the browser, all I needed to
do to adapt the experience for mobile was add a style sheet to compensate
for different device orientations.

4.3 Back-end

My project’s site and database were hosted by Cardiff University. The site
and was primarily PHP-driven, with some javascript on the front end to en-
hance the user experience and perform input checks such as validating email
addresses. The algorithm was enacted entirely in PHP with the state being
stored by a MySQL database. I elected not to use a framework for several
reasons, not least of which being that I was not already familiar with one.
I had already lost time and had a frustrating experience using a lisp-based
framework. I was wary of potentially using up a lot more time familiarising
myself with another framework without being able to assess its appropriacy
for the task in hand. The nature of the site required for this project was not
particularly complex on the front end, where as the back end was relatively
esoteric and specialised. As such, it seemed logical to write a lot of it by hand.

For the layout of the site, I wrote generic menus and headings and used
PHP to dynamically construct the pages. I used a pre-existing PHP library
[2] to generate midi files, but apart from this all the code uses either default
PHP5 libraries or is my own work.

For control of the project, I wrote myself a password-protected content
management page from which I could change the algorithm’s parameters
(such as γ, population size). This page also allowed me to view the rankings of
the melodies and the total number of comparisons. There is also an “export”

37

page which allows me to download the current state of the “melodies” and
“battles” database tables in csv format.

4.3.1 Admin Pages

There are two password-protected pages to the site.

cms.php

This allows parameters to be changed, including the population size, γ (which
affects the number of comparisons in between generations) and the percentage
of the population to be replaced each generation. It also displays a table
showing the current ranking of the melodies and other data about them. It
also allows you to reset the system completely, generating new melodies. If
you want to visit the page, email me and I will give them to you. If you
should choose to do this, please don’t modify any of the system or reset it.

export.php

This allows me to retrieve the contents of the “melodies” database and the
“battles” database in csv format. Scripts here write this databases to a pair
of CSV files, then render them available for download.

listen.php

This is not password-protected, nor strictly an admin page. It allows you to
listen to any melody you want by selecting it’s ID from the dropdown box
and clicking“submit”. I only created this page recently to make analysis of
the melodies easier.

4.3.2 Database

I used a MySQL database to hold all information about the project includ-
ing it’s current state, all of the melodies which have been removed from the
population, the results of individual comparisons and general project param-
eters. I tried to record the data in a way that events could be played back
sequentially and evolution scrutinised closely. For this reason a record of all
comparisons is kept.

38

mailto:HawkinsRH@Cardiff.ac.uk

The database contains the following four tables:

Table: generalProperties

Parameters for the project are stored here. I did this to centralise them,
avoid hard-coding the parameters into PHP, and allow them to be more
easily manipulated. This table has 9 fields, many of which are redundant in
the final incarnation of my project:

name Just a field to use as a unique identifier for this set of properties.

popsize The size of the population.

totalComparisons A record of the total number of comparison results re-
ceived. Now redundant, as it is equal to the number of rows in the
’battles’ table.

generation The generation of the current population. Now redundant, as
it is equal to the maximum value of the ’introducedAtPopulation’ field
in the ’melodies’ table.

thresholdForStopping Originally included when I planned to calculate a
termination condition for the project. Now redundant.

threshold Originally included when testing a previous incarnation of this
project,using the ’Points Threshold’ system as mentioned earlier. Now
redundant.

currentPosition Used to determine one of a pair of melodies to be pre-
sented to the user. This attributed is incremented by 1 each time it is
retrieved. One of the next pair of melodies to be presented to the user
is given as

Position = generalProperties.currentPosition mod generalProperties.popsize
(4.1)

percentToReplace The percentage of the population to replace in a new
generation. Also the percentage to become parents to the next gener-
ation.

gamma Scaling factor to change the rate of evolution. A value of 1 should
allow for enough data for accurate ranking.

39

This table only has one row, corresponding to one project. It would likely
be possible, with little adjustment, adapt this database to support multiple
µTunesprojects simultaneously.

Table: battles

A record of comparisons and metadata about those comparisons. This table
has 5 fields:

battleId Integer. A unique, auto-incrementing field which records the order
in which comparisons were received.

winnerId Integer. The unique ID of the favoured melody in this particular
comparison.

loserId Integer. The unique ID of the unfavoured melody in this particular
comparison.

musician Boolean. Indicates whether the comparator identified as a musi-
cian or not. Defaults to ’false’ (stored as either 1 or 0 in the database).

time Integer. The unix time at which the comparison was submitted.

Table: melodies

This table has 11 fields:

id Integer. Unique Id indicating the order in which melodies were generated.
Also, a melody’s generation of introduction can be calculated by

generation(id) =

{
1, if id ≤ popsize

2 + b id−(popsize+1)
percentageToReplace×popsize

c, otherwise

(4.2)

melodyString A string representation of a given melody, written in the for-
mat described in 3.1.2.

wins Integer. This field was originally to hold the number of times this
melody has been favoured in comparisons within a generation, but is
no longer used.

40

defeats Integer. This field was originally to hold the number of times this
melody has not been favoured in comparisons within a generation, but
is no longer used.

totalWins Integer. The total number of times a melody has been favoured
in a comparison since the project began.

totalDefeats Integer. The total number of times a melody has not been
favoured in a comparison since the project began.

introducedAtGeneration Integer. The generation at which a melody was
introduced into the population.

parentAId Integer. The unique ID of the melody which contributed genetic
material to the first part of this melody. Used for tracking heredity of
melodies in analysis.

parentBId Integer. The unique ID of the melody which contributed genetic
material to the latter part of this melody. As above, used for tracking
heredity of melodies in analysis.

position Integer. Dictates the order in which melodies are selected for
presentation to a user.

removedAtGeneration Integer. The last generation in which a given melody
was in the population.

Table: contributors

This table has 3 fields:

name String. The contributor’s name.

email String. Their email address.

contributions Integer. The number of comparisons they have made. Recorded
by means of a cookie.

41

4.3.3 The algorithm in practice

This is a description of what happens when a user visits the “compare” page
of the project’s site. This page is the user’s entry point into the algorithm,
where they can compare pairs of melodies in order to give the system enough
data to rank them.

Upon requesting the “compare” page, a function “go” from the PHP
script “ga-utilities/melodySelector.php” is called. This queries the database,
ensuring that a population of melodies in fact exists, then retrieving the cur-
rent position counter’s value and incrementing it. The position counter is
never reset, but the positions are numbered from 1 to the population size.
For this reason, a modulus operation is performed to find the actual position
of the next melody to be compared. The other is chosen at random from
the remaining population. Note: the position counter gives us the number
of calls made to the “compare” page, meaning we can calculate how often
users did not make a comparison.

Now we have the position of the next two melodies to be compared against
one another (the competitors), we make a database query to get the IDs of
the competitors. These will be returned to the script on the “compare” page,
and written in to the html to return which melody is preferred. Before that,
the “go” function checks that the appropriate sound files exist, and creates
them if not (how is explained later). The sound files are named for the melody
they are expressing. In other words, the melody with ID 1 will be named
“1.mid”, “1.wav”, “1.mp3”. The creation process is quick, and only adds
a few seconds at most to page loading time. It only occurs the first time a
melody is compared, then the audio file(s) are retained in the “music” folder.

When the user has made a submission, a POST request is sent to the
“ga-utilities/melodyChoiceHandler.php” script. On receiving a valid POST
request, the SESSION variable is set to reflect that this user has made a
contribution. This allows them to leave their details, for credit and consider-
ation for a prize. This will be covered later. The speed of melody playback
as specified (or not) by the user is also saved in the SESSION variable. If
the user has left their details, then the number of contributions they have
made is incremented by one. Otherwise, the number of contributions they
have made is stored in the SESSION variable in case they should choose to

42

leave their details later.

The results are submitted as a string in a simple, hyphen-delimited format
“winnerID-LoserID”. This is split at the hyphen into an array. A database
query is then made to ensure that the melodies referred to in the POST are
still in the population. This is to counteract a situation where in the time
between a user loading the compare page and submitting their results, one
or both of the compared melodies has been removed from the population.
This could happen, for example, if a user leaves the page open for a day or
two before returning to it. Finally, the “battles” and “melodies” tables of
the database are updated with the information about the user’s choice, along
with other information including the time of the query. Finally, the function
“checkGenerationThreshold” from “ga-utilities/GenerationFunctions.php” is
called, to determine whether or not to create the next generation.

”checkGenerationThreshold” pulls the project parameters “gamma”, “pop-
size” and “percentageToReplace” from the database, and generates a random
number n such that

n ∈ [1, γ × popsize× ln(γ × popsize)] (4.3)

If n = 1, the next generation is created. This function then calculates the
number of offspring to create and passes it to the “nextGeneration” function.

The “nextGeneration” function in “ga-utilities/GenerationFunctions.php”
is responsible for this. It is in the first database call that balanced rank
estimation actually occurs, relying on the database to return the IDs and
string representation of that fraction of melodies whose scores, given by
totalWins − totalDefeats are in the top n%, where n is the fraction to
cross over. This function pairs off these potential parent melodies at random
and passes the melody strings them to a utility in the class “GeneticFunc-
tions” (ga-utilities/GeneticFunctions.class.php) to produce offspring. These
offspring are initially just the melody string, but there is considerably more
metadata which needs to be assigned before introducing the new melodies
into the population. At this point, the state of the database has not been
updated to reflect the new generation. A database call retrieves the IDs and
positions of the bottom n% by balanced rank estimation, then uses the IDs to
make another database call to set their “inPopulation” attributes to “false”.

43

Their positions will be assigned to the new melodies.

All information about the new melodies (see the description of the “melodies”
table for details) is collated into objects before being written to the database.
These objects are of the “Melody” class (”ga-utilities/Melody.class.php”).
The melodies and their metadata are finally written to the database by a
method of the Melody class. These objects are analogous to rows in the
“melodies” table in the database. These melody-objects are created and
written to the database in pairs which share parent melodies. The reason
for this is to optimise my code; the effect is that adjacent melodies in the
database share parents.

4.3.4 Rendering the melodies

When a melody is required for comparison, a script checks for the existence
of the appropriate melody file in an audible format. Converting the melodies
from a string representation to a wave/mp3 file involved several stages. Upon
determining that audio representations of a melody do not exist, its ID, which
will become its filename, and note representation (in which notes are repre-
sented by fixed pitch values in an arbitrary key rather than offsets from the
previous note) are passed to the “writeMelody” function of the “Melody-
Generator” class (ga-utilities/MelodyGenerator.class.php). To do this, the
string representation of the melody is first converted to a 2-dimensional array.
The inner dimension are arrays of length 2 representing a note’s offset and
duration in that order. The outer dimension is an array consisting of note ar-
rays. Array representations are easier to manipulate programmatically than
strings, hence the conversion. This representation is then converted to a fixed
pitch version by the “getNotes” function of “MelodyGenerator”. I chose not
to abstract this process away behind the “writeMelody” function as “get-
Notes” takes a starting pitch (in midi values) as a parameter for producing
a set of absolute pitch values and I did not want to hide this option.

The “writeMelody” function itself is a wrapper around the Midi package
I used [2], hard-coding certain parameters with which this project is not con-
cerned, such as instrument type and note velocity. It allows the creation of
midi files consisting of a single track where rhythm and pitch are the only
variables. Even speed was an arbitrary choice, as I have provided the user
with facilities to change the speed. As such, this function is not particularly

44

versatile, but simplifies the process to meet this project’s needs. MIDI veloc-
ity for all notes was set to 90. Due to an initial misunderstanding regarding
MIDI timebases, I set the beats per minute (bpm) to 35, and the default
value of a note to be a quarter of a crotchet (quarter note). This gave the
effect of listening to the melodies at 140bpm, which is moderately fast. Using
a moderately fast speed was a deliberate choice aimed at further reducing
the risk of fatigue. After introducing speed controls, the default speed be-
came less important. I chose not to amend the bpm value, as it worked in a
satifactory way as it stood.

After having created and written a midi track named after the ID of the
melody it represents, the function executes a system call which creates the
wav and mp3 format versions of the track for delivery to the user. The
open-source timidity [21] synth creates the former from the midi file, then
the LAME encoder [7] creates an mp3 from the resulting wav file. Between
these two formats, most browsers are able to play the tracks.

Going via MIDI to create a playable track may seem like an unnecessary
step, but midi as a format is much easier to manipulate directly than WAVE,
and is inexpensive to process. Leaving the wave and mp3 rendering to pre-
existing, tested and dedicated software seemed like a sensible idea.

4.3.5 Overview of Code Structure and Responsibilities

The application is structured as a web app. It is driven by PHP and uses
MySQL to store the state and the global parameters of the project.

The root folder, “mutunes/”, contains the user-accessible pages of the
site, and the utilities and scripts which power them are found in the following
directories

Directory: components

The components of the page to be rendered and served by PHP. Items in this
directory include items like the menu and footer. They are unremarkable
components, dynamically inserted into pages to avoid verbose repetition of
code and mark-up.

45

Directory: php utils

For general useful utilities, but now only holds a function for querying the
database (function “query” in “db query.php”.

Directory: ga-utilities

The classes and scripts which power the Genetic Algorithm. The role of
these files was explained in more detail in “The algorithm in practice”, but
in summary, these files are:

Script: convergenceData.php

Script: Gaussian.class.php Contains the “Gaussian” class, responsible
for generating parameterised Gaussian distributions. Originally I had
several purposes for it, but ultimately it was only used for generation
of the initial population. I could not find any pre-existing code which
fit my needs, driving my decision to write to own class for Gaussian
operations.

Script: GenerationFunctions.php Functions involved in and responsible
for creating the next generation.

Script: GeneticFunctions.class.php Utility class. Genetic operators. No
longer used.

Script: GeneticFunctionsWithDuration.class.php Utility class. Ge-
netic operators capable of manipulating a melody representation which
also encoded note durations.

Script: melodyChoiceHandler.php Script to process user’s choice of pre-
ferred melody and metadata about the user and algorithm in general.

Script: melodyChoiceHandlerTest.php Script to process autonomously-
generated data used to test that evolution was actually occurring and
that my implementation was functioning.

Script: Melody.class.php Data class which reflects the way the melodies
are stored in the database.

Script: MelodyGenerator.class.php Utility class for generating random
melodies.

46

Script: MelodyGeneratorWithDuration.class.php Utility class for gen-
erating random melodies, representing pitch and duration.

Script: melodySelector.php Script responsible for selecting and present-
ing a pair of melodies to the user. It also has to make sure the relevant
sound files exist.

Script: midi class v178 Pre-existing midi class [2] found online. Capable
of a great deal more than I used it for, but sufficiently fast and easy to
use.

Script: player.php Function responsible for rendering the audio player in
the “compare” page to play a given melody.

Script: populationGenerator.php Script which generates the initial pop-
ulation according to the specified parameters.

File: testlog.txt

Script: Vector.class.php

Directory: javascript

Scripts containing the javascript functions active on the main page.

Directory: music

Holds the midi, wave and mp3 files after they have been created.

Directory: styles

Stylesheets for the website.

4.3.6 Coding paradigms, practices and layout

The human element in this project was the major bottleneck for speed. The
speed of execution was irrelevant to the success of this project so long as it
did not discourage human participation, so writing extremely fast, efficient
code took second place to clarity and good abstraction. Most of the scripts
are written according to the imperative paradigm, which makes following the
flow of events easy to follow. I tried to follow general good practice such as

47

frequent comments and meaningful variable and class names. Some object
orientation is used to group semantically-related data and methods into util-
ities or useful containers for data which reflect some aspect of the database
structure. The files containing class definitions are indicated by “.class” in
the file name.

General project parameters are not hard-coded, but rather stored in the
database and manipulable by an administrator (me) from the “cms” page.
This offers flexibility were the project to be run again. The state of the
project is completely separate from its implementation, being stored in the
MySQL database. This was necessary in order to be able to analyse the
data fully. As a result, most of the PHP functions involved with the Genetic
Algorithm itself are little more than wrappers for parameterised database
queries.

4.3.7 Difficulties and Improvements

The finite amount of time I had to develop the code which powered both the
site and the algorithm, which began after a period of design, was eaten into
by my attempt to use the ill-supported weblocks [4] framework. This time
was eroded from the other end by the fact that the project needed weeks to
run to maximise the amount of participation, and once the site (and thus
my code) went live, making anything but minor changes was potentially very
dangerous. It would also compromise the validity of the experiment. I learnt
this to my cost after trying to fix a bug. I introduced an error which was
not immediately obvious and accidentally ceased the collection of data for
a few days. While it is impossible to determine precisely how much input
has been lost, figure 5.1 suggests that the time when this occurred was when
participation was relatively low.

Despite time limitations, I believe that my implementation clearly imple-
ments my algorithm in a flexible, well-encapsulated way. Most importantly,
by every means I can measure it, it worked. I believe it will make a strong
basis for future iterations of the project. In future versions, I would prefer to
move to an object-oriented database and object-orient the rest of the code
generally. Although a relational database served perfectly well, the melodies
as well as their metadata (from here: melody-objects) lend themselves to
object orientation. Certain data about them (e.g., their balanced rank es-

48

timation score) is a function of other data, and some data aught to have
access to them protected in the ways that object orientation facilitates and
encourages.

4.4 Testing

In order to test that ranking by pair-wise comparison really did influence
the evolution of the population, I copied the “compare” page of the site and
modified it to select the melody with the higher level of disjunctness. If the
two melodies were equally disjunct, the winner was selected at random. The
disjunctness of a melody was calculated as an average of the magnitude of
offsets between notes such that

disjunctness(offsets) =
1

|offsets|

|offsets|∑
x=1

abs(offsetsx) (4.4)

As the melody representation stores offsets, this was straightforward to
calculate. Note duration was not taken into account. If the evolution was
being swayed as it should, subsequent generations should be increasingly
disjunct. In theory, this function has the mapping disjunctness(offsets) 7→
[0,∞), but the limits placed on the initial generation of melodies means that
this figure will probably not exceed the teens. I ran this experiment with
the same general parameters as the main experiment. Figure 4.4 shows that
the disjunctness did indeed rise, confirming that evolution is being swayed
by the selections made by the “user” (in this case an autonomous script). In
this figure, disjunctness is being measured as the mean offset between notes
in a melody. This measurement of disjunctness is poor. It should take into
account the modal average offset between notes, rather than the mean. How-
ever, the mean was selected for and so the mean I have measured. There is
no reason this measure is not sufficient to show that evolution is occurring
and the system is working as expected.

4.5 Launch, Progress and Promotion

Public promotion of the project began on March 14th of this year. The
project was announced using emails from the school of Computer Science

49

and various other forms of social media. Being freely available on the web,
there was the potential for knowledge of the project to spread virally. Social
media also gave me a platform to communicate with people who expressed
interest in the project. I staggered announcements about the project so I
could measure the receptiveness to the project in different forums. I had
predicted that the time immediately after advertising µtunes would see large
spikes in participation, and by plotting a histogram (Figure 5.1), my predic-
tion was proven correct. The largest spike was on the link sharing site reddit.
Reddit is divided into various special interest “sub-reddits”, identifyable in
URLs by the prefix “/r/”. I submitted links to µtunes to both the /r/music
sub-reddit and the /r/programming sub-reddit. The latter posting preceded
a short period of time during which almost two-thirds of comparisons were
made, making it reasonable to assume that I owe /r/programming a debt of
gratitude!

To incite interest, and encourage people who may only have participated
minimally to participate more, I advertised two prizes for the participants
who undertook the most comparisons. These were a harmonica and a Rasp-
berry Pi. It is not clear the extent to which this made a difference, but I felt
it was a worthwhile investment to try to diminish the risk of low participa-
tion. In general I made an effort to emphasise those aspects of the project
which a non-scientific audience may find interesting, such as being able to
contribute to a piece of music with no musical ability.

In order to maintain interest in the project, I recorded versions of the
(then) top ranked melody in different styles - a heavy metal version and a
simple piano arrangement. It is unclear whether this generated any more
interest in the project, but it does help demonstrate and clarify the fact that
the melodies were improving and of some musical merit. It was also very
enjoyable, and a practical way to remind myself of the point of the project
and keep my own enthusiasm up. The particular melody I picked (ID 127)
was entirely diatonic, conforming to a melodic minor scale, with it’s first note
being the 2nd of the scale.

50

Figure 4.1: Homepage of the µTunessite.

51

Figure 4.2: Comparisons page of the µTunessite.

52

Figure 4.3: ”Leave details” page of the µTunessite, denying access as no
comparisons have been made in this session.

53

Figure 4.4: Frequency of Particiation Over Time

54

Chapter 5

Results and Evaluation

Throughout this chapter I will make reference to melodies by their ID num-
ber. These melodies can be listened to on the µTunes project site at lis-
ten.php.

Analysis was performed in matlab. I have included all data a scripts that
I used with this report. The functions and scripts are commented and named
in a manner which (I think) is self-explanatory.

5.1 Participation

One of the problems I had predicted was lack of interest and minimal partic-
ipation. On the contrary, in total the number of comparisons made exceeded
my estimate by multiple times. People were driven by scientific curiosity and
musical interest, or in some cases, both. In this respect, this project was
a success, a lot of data has been gathered for analysis, and responses were
interested and positive.

I can analyse participation in two ways:

5.1.1 General response to promotion

As I recorded the times at which comparisons were made, accurate to within
a few seconds, I can show that rate of participation increased after advertis-
ing the project in different forums. As I staggered these advertisements, I
can also show which forums provided the most participation, and thus spec-

55

http://ontario.cs.cf.ac.uk/mutunes/listen.php
http://ontario.cs.cf.ac.uk/mutunes/listen.php

ulate why. They are listed chronologically by date I first used the medium to
promote the project. I should note that I added the functionality to record
the time of a comparison three hours after I first promoted the project. Com-
parisons made prior to that time have had their times linearly interpolated
over those three hours. It’s hardly even visible on the graph.

Originally, I did not intent to stagger the promotion across different social
networks by any significant length of time, as I wanted to accrue as much
data as possible as fast as possible. When I saw the rate at which users were
participating after the first two announcements (Facebook and /r/music), I
then made the decision to stagger any remaining promotion to try to asses
what was and was not successful.

Figure 5.1: Frequency of Particiation Over Time

Email March 14th. I was not responsible for sending these emails, so I have
no times for them. I speculate that their reach was not large compared
to some of the social networks used to promote the site.

Facebook March 14th, 3:09pm. This marks the beginning of the first large
spike in participation in the project. Figure 5.1 shows that participation
was strong from the outset.

56

Figure 5.2: Cumulative Frequency of Particiation Over Time

Reddit: /r/music A community interested in sharing good and interest-
ing music. March 14th, 9:21pm. A score of 8 (scoring dictates the
prominence of content and is determined by the number of “upvotes”
minus the number of “downvotes” given by other users), indicates little
interest from here, suggesting we can attribute most of the traffic at
around this time to Facebook.

Twitter First tweet made on March 26th, 12:02pm, to 645 followers.

Reddit: /r/programming A community interested in the practice of and
culture around programming. Post announcing project made March
26th, 12:10pm. The very large spike commencing just before 300 hours
coincides with the time at which this post was made. Although the
spike could also be attributable to traffic from twitter, the lack of re-
sponses from there and the reddit score of 145, compared to 8 in the
music subreddit, suggests that this is the source of the traffic.

Summary of participation

The graph shows two spikes. The first spike - shorter and broader - is
likely due to traffic from Facebook, and the second - taller and thinner -

57

likely due to the reddit’s /r/programming. The latter generated almost dou-
ble the traffic than the former, in a shorter space of time (4000 compar-
isons overnight). This suggests that targetting special interest groups is a
more effective method of driving participation than general social network-
ing amongst friends and peers. Advertising to the latter also runs the risk of
being perceived as spam, which would discourage people from participating.

5.1.2 Individual behaviour

I used cookies to track the level of participation in the project of those peo-
ple who had left their details. This was to decide who to award incentives
too, but it has had the side-effect of allowing some analysis of how much the
typical user participated.

102 participants left details. On average, each of these individuals under-
took 20.3 (1 dp) comparisons. This is misleading, as a small handful of people
actually did most of the comparisons. The total number of comparisons was
2027, but ignoring the top 5%, who comprise these extreme outliers, we are
left with 971 comparisons at a mean rate of 10.1 (1dp) comparisons. Deter-
mining why the top 5% contributed so much would be extremely useful to
people trying to undertake massively crowd-sourced projects. They consti-
tuted more than half the comparisons recorded for this group. Assuming this
information holds true across all participants, we can estimate the number of
unique participants from the number of comparisons. At time of writing, this
figure stands at 6,843. Knowing that the average number of contributions
amongst those who left their details is 20.3137, we can estimate the number
of unique contributors at 6, 843/20.3137 = 336.8663. As using floating-point
numbers to count people does not make sense, let us round this to 337 for
convenience. I suspect that this is an underestimate - those who left their
details seem likely to be more invested in the project than users who didn’t,
and so would have made more comparison. I think there were probably more
individuals making fewer comparisons, so 337 should be treated as a lower
bound.

I will not divulge personal information here as a matter of good practice,
but as I know one of these super-contributors, I was able to ask them what
encouraged them to be so involved. They said that they, as a musician,
used to be interested in improvisational jazz, which many of the generated

58

melodies reminded them of. The individual in question is also interested in
the scientific aspects of the project. I asked for a quote in a Facebook chat:

µTunes: Hi! I was hoping to grab a quick quote from you - what
made you keep coming back to do comparisons on my project?
G: Sure, a couple of things; one the lure of a free harmonica, two
I quite liked the music and it threw up some interesting ’free’
music
G: Very atonal and interesting sounds
µTunes: Cool, thanks
G: no worries
µTunes: So the novelty of the music appealed, rather than think-
ing it was “great”, I suppose?
G: Yeah, though I haven’t listened to it recently so am not sure
how they sound atm (presumably better)
G: I quite like the questions it arises too, is it music? Does music
have to have meaning or can it be generated? Is it art
G: ?
µTunes: It’s got some features of music, that’s for sure.
G: but are features enough? can music be made with no motive
or meaning? It’s quite an interesting thought

Although the sample data is tiny, it is probably not to unreasonable to
suggest that strong enthusiasm to participate in a project is more likely in
an individual the more the project appeals to their existing interests. This
uncontroversial notion is further supported by the response from reddit’s
/r/programming subreddit. However, it is difficult to say whether a few
were contributing repeatedly, or many were contributing a little. I might
go further afield and note that in both cases, an interest in programming is
given, which can suggest an obsessive personality type.

5.2 Evolution and Increase in Musicality

In order to establish a basis for comparison and a baseline against which the
results must be measured, I ran a parallel experiment in which I replaced the
human element with noise. This baseline experiment was seeded with the

59

same 100 melodies which were the original population of the measured re-
sults, and shared the same parameters. However, comparisons were made on
a random basis, with the odds of either melody in a given comparison being
chosen being 0.5. The measured results should demonstrate more musicality
on a generational basis and stronger trends towards musicality intergenera-
tionally. I have devised a number of metrics by which to measure musicality,
and detailed the process of calculating them with the results. Other metrics
were developed by my supervisor, Dr. Kirill Sidorov, for our paper [11] based
on this project. I am reusing some of his analyses with his permission.

There is almost no limit to the ways in which you can analyse a piece of
music, even when it’s representation is restricted just to relative pitch and
relative duration. I show measures that demonstrate the success and inter-
esting features of the project. There are undoubtedly more ways I analyse,
but there are

5.2.1 Evolution of Melodies

By plotting edit (Levenshtein) distance into Euclidean space, we can see
how the melodies diverge over time (figure 5.3). Two distinct evolutionary
directions become apparent. All the melodies along these directions share
common ancestors. The distinct, clear nature of these directions indicates
that just a few melodies are having a disproportionate influence on the evo-
lution of the population as a whole, and are likely considered much better
than most others to be having this influence.

5.2.2 Hierarchy of convergence

I have listed indicators of emerging musicality in order of granularity, from
most obvious to most subtle and sophisticated.

General reduction in entropy

Some reduction in entropy over the generations is expected, as for each gen-
eration, 20% of the information is lost and less is put back in. This is often
the nature of convergence in Genetic Algorithms. To indicate any conver-
gence, we would expect to see a greater reduction in entropy in the measured
results over the control.

60

Figure 5.3: Edit Distance of All Melodies from One Another

61

Figure 5.4: Average Entropy in Bits Over 45 Generations (produced by Dr
Sidorov)

Figure 5.4 shows a measurement of Shannon’s entropy for both the rhythm
and melody of the real and control results, such that

Entropy(X) = −
∑
i

P (xi) log2 P (xi) (5.1)

It is clear to see that something greater than just the loss of information as
a side-effect of creating new generations is going on here. Already we can
conclude that the measured results are being strongly driven by the data
gathered from pair-wise comparisons.

Rhythmic Entropy

Figure 5.5 demonstrates a rise in entropy of the rhythms over the generations.
This would be indicative of strong selection for more interesting rhythms, but
I am unable to rule out the possibility that the genetic operators used have the
side-effect of introducing more rhythmic variation as the generations progress.
The control experiment certainly indicates this. Despite that doubt, there is
a clear rise in the rhythmic entropy in the measured results over the control.
This strongly suggests selection for more complex rhythms. Combined with
the fact that several melodies in the top 10 overall melodies contain short
trills and grace notes, I think this is a reasonable conclusion.

62

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Generation

A
v
g
.
e
n
tr

o
p
y
,
b
it
s

0 5 10 15 20 25 30 35 40 45
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
if
fe

re
n
c
e
 f
ro

m
 c

o
n
tr

o
l,
 b

it
s

Measured

Control

Difference

Figure 5.5: Entropy in the Rhythm of Melodies over 45 Generations (from
Sidorov 2014 [11]

63

Figure 5.6: Comparison of diatonicity between random data and measured
data

Rise in diatonicity

Diatonicity is the adherence of a melody to a traditional Western major or
minor key. Owing to my melody representation, the melodies are divorced
from fixed pitches, so I will be treating key as a pattern of notes. There is
nothing that means that the first note of the melody must be the tonic of
the scale, so I rotated a mod-12 version of the offsets of each melody through
all possibly keys and compared them against a scale. The diatonicity value
at each rotation is the number of notes in the melody which fit the current
scale over the number of notes in the scale. I returned the maximum of this
value. I tested for adherence to major (figure 5.6), harmonic minor (figure
5.8), and melodic ascending (figure 5.7) and descending minor scales (figure
5.6), and took the average over each generation, for all generations. The
results for major and descending melodic minor are identical, as they follow
the same pattern (just starting at different points).

Across all of these measurements, diatonicity increased significantly in
the measured results. The random results did demonstrate a slight trend
away from diatonicity, but were, unsurprisingly, fairly random and without a
clear trend. The distinction between the two is striking, and amply demon-

64

Figure 5.7: Comparison of diatonicity between random data and measured
data: ascending melodic minor scale

Figure 5.8: Comparison of diatonicity between random data and measured
data: harmonic minor scale

65

Figure 5.9: Comparison of diatonicity between random data and measured
data: pentatonic scale

strates a strong movement towards musicality. Of the measurements, the
pentatonic scale stood apart as being less present than the others, but this is
hardly surprising as it constitutes a subset of major and descending melodic
minor scales.

This removes doubt that evolution is being directed by our human par-
ticipants, and towards traditional Western diatonic scales.

It is worth mentioning that microtones such as used in scales prevalent on
the Indian subcontinent were not used in this project. This was a limitation
of using the midi format to render melodies.

Emergence of major and minor keys, frequencies of notes

The measure of how many notes in a melody conform to the same scale is
not as powerful a musicality indicator as how many consecutive note in a
melody conformed to a scale.

Use of the notes of a scale is possible without a melody sounding much
like it belongs to a given key. As such, the above measure does not tell us a

66

0 1/11 2/10 3/9 4/8 5/7 6
0

5

10

15

20

25

30

35

Interval class (with inversions)

F
ra

c
ti
o
n

 o
f
p

it
c
h
e

s
 i
n
 c

la
s
s
,
%

Measured

Control

Western classical music

English folk music

Figure 5.10: Histogram of Interval Classes of Last Generation Compared
with Western Classical and Folk (from Sidorov 2014 [11]

great deal about the musicality of a melody. To emphasize my point, consider
that a cat could easily walk across a piano in the key of C (white notes only).
A melody’s belonging to a certain scale is cemented in our perceptions by
the frequencies of certain notes from that scale, notably the tonic, mediant
and dominant.

Figure 5.10 shows that the melodies of the last generation strongly favour
the tonic and the dominant of the scale, especially compared to classical and
folk. I believe they have been driven this way because we are dealing with
single melody lines, rather than two or more parts which would provide a
richer harmonic context. Because these melodies had to sound musical on
their own, frequent repetition of the tonic and dominant notes replaced other
parts in establishing a harmonic context. This is an effective way to derive
a sense of key from a single melody line. Also, it show analytically that
the melodies have a strong sense of key, rather than the “cat on a piano”
arbitrary collection of notes about which I had speculated.

Narmour’s gestalt principles: registal direction and intervallic dif-
ference

These are two ideas discussed in Gratchen et al, 2004 [8] from Narmour,
1992 [18]. There are, in fact, five principles which constitute the implica-
tion/realisation model, but two are particularly relevant, useful to us and
easy to analyse. The remaining two are based on user’s perceptions, which
I am not privy to, and the other (proximity) is not so easy to implement,
doesn’t give us much useful information and may be skewed by my process
of initial population generation.

67

The principle of registral direction states that a small interval implies
another interval in the same registral direction, but a large interval im-
plies a change of direction. For example, for consecutive notes n1, n2, n3,
pitch(n2) > pitch(n1) implies that pitch(n3) > pitch(n2). The principle
of intervallic difference states that small intervals indicate more intervals of
roughly the same size (plus or minus 2 semitones) if the registral direction
changes, and maybe slightly larger if it doesn’t (plus or minus 3 semitones).
Large intervals imply smaller intervals. In both cases, an interval of 5 or
fewer semitones is considered small, and an interval of 7 or more semitones
is considered large. The principle of registral return describes how archety-
pal a pattern is. An archetypal pattern is one where in a series of 3 notes,
the third note is within two semitones of the first. Registral return is not
really an implication, but is interesting property of the melodies to measure
nonetheless. The extent to which the implications of registral direction and
intervallic difference are realised is testable. I calculated a measure of im-
plication realisation as the percentage of implications which were realised,
calculated the average for each generation and plotted them over the gener-
ations.

Interestingly, I believe I have already demonstrated my own adherence to
these expectations. In particular, the ideas that a change of registral direc-
tion is implied by a large interval, and that a large interval implies a small
one are inherent in my method for generating the initial population; I did not
allow the melody to wander more than one octave from the start note. While
this situation could arise from a series of small intervals in one direction, I
had a series of large intervals in mind.

Both registral direction (figure 5.11) and intervallic difference (figure 5.12)
realisations show increases over the generations, both as a trend and over and
above the randomly generated data. This is particularly exciting as these
measures are much more subtle than the others. As the graph shows, the
extent to which intervallic difference implications are realised is quite high
even in the initial population. This may confirm my suspicion that I have
introduced bias by restricting how far the melody could wander in the initial
population. However, the effect of user influence is still evident and visible
in the graph; intervallic difference in the measured data continues to rise
whereas as the random data falls. It is being positively selected for. Realisa-

68

Figure 5.11: Comparison of frequency of realisation of implications of regis-
tral direction

Figure 5.12: Comparison of frequency of realisation of implications of inter-
vallic difference

69

tion of registral direction implications starts lower but also rises dramatically
while the random data falls off.

The significance of these results is clear: the realisation of these implica-
tions is perceived as highly musical and they have been selected for strongly.
This is significant information. Even as bare as the melodies are, they con-
form strongly to well-defined rules. This suggests that the rules of Narmour’s
implication/realisation model constitute knowledge which could be folded
into future software to aid composition.

5.2.3 Examples of Music, Comparison to Other Music,
and My own interpretation

The top ten highest-scoring melodies of the entire project are 614, 617, 555,
271, 356, 273, 473, 494, 475 and 573 (listed by ID from tenth to first). They
are amongst the materials submitted with this report. Listening through
them, it is immediately clear that they are closely related - common themes
are abundant. Some are so similar that they could be considered theme and
variation. Eight of these share melody 39 as a common ancestor, and nine
share melody 65 (see Figure 5.1). Perhaps unsurprisingly, 39 and 65 have
the most descendants (see figure 5.2. While monitoring the progress of the
project, I noticed aspects of melody 39 in many, many others.

The top ten melodies most selected (as distinct from highest scoring) by
musicians are 494, 220, 170, 175, 92, 475, 208, 39, 125 and 127 (listed by ID
from tenth to first).

The top ten melodies most selected (as distinct from highest scoring) by
non-musicians are (by ID from tenth to first) 170, 192, 271, 573, 473, 356,
392, 151, 194 and 273.

Musicians and non-musicians seem only to agree on melody 170. The
non-musicians’ top 10 has more in common with the top ten by score. Given
that the proportion of contributors who identified as musicians is 47.08%,
this is somewhat surprising.

70

Ancestor Melody Melodies in the Top 10 with this Ancestor
96 1
127 1
153 1
214 1
271 1
273 1
392 1
494 1
95 2
356 2
76 3
175 3
88 5
94 5
103 5
192 5
81 7
119 7
125 7
39 8
65 9

Table 5.1: Common Ancestors of Melodies in the Top 10

71

Melody by ID Descendants
103 296
88 298
23 302
94 302
95 314
125 412
119 526
81 528
65 598
39 640

Table 5.2: The Top 10 Melodies by Number of Descendants, from 10th to
1st

72

Chapter 6

Future Work

6.0.4 Genetic Operators: general improvement

Many of the genetic operators are naive in the way they function. This
was a deliberate choice, as the use of anything more esoteric and specialised
would have been based on speculation and increased the complexity of the
project dramatically. However, feedback from users suggests that more con-
trol over what part of a melody is passed on would be a good thing. One-point
crossover is a tool ill-equipped for such a task. Also, melodies often had sin-
gle dissonant notes weakening their musicality, and these cannot be corrected
in a single operation as the system stands. For these reasons, thought needs
to go into how to further improve and adapt the operators to the task in hand

The rhythmic changes in the melodies arose as a product of one-point
crossover. This rendered rhythm little more than a capricious side-effect of
the process. Rhythm has been treated as secondary to melody in this project.
It is not clear from analysis whether or not rhythmic variation is correlated
to popular melodies.

We have now demonstrated that the populations become increasingly
musical as the generations progress. Thus we can infer that the refinements
required to increase musicality become finer and finer as the generations
progress. In the current system, the mutation operator affects not only one
note, but all the notes after it by effectively pitch-shifting them. This is be-
cause is operates in offset-space rather than pitch-space. When the melodies
have low musicality, this unsubtle approach is useful as we need to search a

73

broader area for solutions. However, it threatens the musicality of quite good
melodies by making broad changes. I propose introducing a second operator
which truly works on a single-note basis. In a manner similar to simulated
annealing, the single-note mutator would be employed increasingly through-
out the project. It could be used with a probability inversely proportional
to the reduction in entropy of the population.

6.0.5 More complex music: dynamics, harmony, and
beyond!

The simplicity of the music that has emerged from this project is an artifi-
cial constraint. Although this was necessary to expedite evolution within the
time available to me, in future efforts should be made to expand to encom-
pass more areas of music.

The melodies produced by µTunes have a strong emphasis on certain
notes of the scale in order to provide their own musical context. This is be-
cause they have had to work well in isolation, which, for melody lines in most
forms of music, is an abnormal situation. It is likely that simple melodies
which sounded insipid or overly repetitive would have been comparable to
much modern pop music with the appropriate chords accompanying them.
Instead they were overlooked and removed from the population. Even by
underpinning a melody with simple root notes, we can change the impact it
has on us dramatically. For this reason, I think a means of evolving chord
patterns (perhaps consisting of only the root notes) to accompany the single-
note melodies should be the next logical step for the project.

Naturally, raising the level of complexity of the music we want to get out
of the system raises the complexity of the information we need to put into
the system. One of the strengths of the system is the ease with which people
can interact with it. This ease should not be sacrificed lightly. Consideration
of how to achieve this merits another project in itself. The simplest option I
can think of is to select the most popular melodies from the current iteration
of the project and evolve harmonies to compliment them. This would con-
siderably lengthen the process of composition, though. Another approach
might be to have a fixed set of harmony parts which do not evolve (or even
if they do evolve, the first generation could be seeded with well-known chord

74

progressions). Originality in harmony parts is not as crucial to a piece as
originality in the melody line; I refer you to “4 Chords”, by Axis Of Awesome
and a story about Pachelbel’s canon as anecdotal evidence. When melodies
are presented, they would be presented accompanied by an arbitrary member
of the harmony set. As the harmony would effect the perceived musical value
of the melody, we could then use the rankings to determine which harmony
part fit a given melody the best. Even if a melody died, the harmony infor-
mation may be somewhat applicable to any living relatives.

The fact that our current representation is as a set of offsets gives twelve
possible harmonic relationships of melody parts to harmony parts. It would
be possible to have the least dissonant relationship automatically detected.
Here we have a trade-off between user autonomy and ease of use. Har-
mony/chords provide a context which may allow knowledge-based corrections
to occur to the melodies. As they often imply a key, it should be abundantly
possible to apply an autotuning algorithm to a melody so it fits better with
the harmony, without disrupting the contours and general pattern of inter-
vals which give it its unique character. The problem here is that we are
prescribing a key. This could be a function which only effects the phenotype
and not the genotype, allowing a more “natural” evolution (this is not an
example of the naturalistic fallacy; I mean “uninterfered with” rather than
natural).

It might be tempting to incorporate the evolution of overall structures of
a piece into the system, and although it is important, I would not prioritise
it. This is because µTunes set out to make composition achievable for almost
anybody, and so it’s focus should first be on simplifying those areas which
require the most skill to engage in. Deciding the number and order of sections
in a piece is easy in comparison to actually writing those sections. If not
easy, then infinitely more accessible to the lay person. Likewise, repetition
is so prevalent in so much music that simply repeating the melodies we have
evolved (perhaps with some small variation, of which we have examples) is
sufficient to begin building a complete piece of music. Similarly to structure,
dynamics are much more accessible to the lay person, and don’t require
urgent attention.

75

https://www.youtube.com/watch?v=oOlDewpCfZQ
https://www.youtube.com/watch?v=JdxkVQy7QLM

6.0.6 A better website

The website was a necessity, and not the primary focus of this project. There-
fore, I prioritised having it work reliably and in a transparent way over so-
phistication. It needed be compatible with as many web-browsing platforms
as possible, which is another reason I prioritised simplicity. It was required at
minimum not to impede the progress of the project. I feel it more than met
this criteria, but there are areas which warrant improvement going forward.
However, the traffic over a longer period of time warrants greater efficiency,
and to maintain interest in the site, more user feedback is necessary.

Reloading the entire page every time a comparison is made generates un-
necessary network traffic and a higher server load, just to re-transmit the
generic template of the page. It would require little effort to alter the page
to an AJAX framework which only transmits choice and melody data, rather
than the entire site every time. The reason I have not already done this
is lack of familiarity with AJAX technologies and the potential difficulties
and risks associated with it. In the limited time I had, I chose not to risk
introducing vulnerabilities and bugs which I was ill-prepared to diagnose and
treat.

Another way network traffic, server load and storage space could be im-
proved would be to serve only the string representation of the melodies rather
than the audio. Javascript could then be used to render it into a playable
melody. In older browsers and on slower machines, the ability to do this well
could be compromised. Also, the objectivity of the experiment may have
been compromised, as there is no guarantee that the resulting audio would
sound the same on different devices. These are probably not insurmoutable
problems, but they were not a priority during this project.

The user experience, as it is, is somewhat basic. I kept it this way de-
liberately. A few users contacted me to ask if there was any way I could
allow them to listen to melodies of their choosing and see the current rank-
ings. I was concerned that users may lose objectivity if they could hear a
relatively good melody then had to compare two mediocre ones. I think that
was the right decision at the time. Now that the project is over, I have built
the listen.php page which allows this, and I might make people aware of it
and the rankings. I think having occasional leaks of information during the
project would constitute a happy middle ground. As with my interpretations

76

http://ontario.cs.cf.ac.uk/mutunes/listen.php

of melody 127, I (or whoever is running any future incarnation of this work)
could produce interpretations of the top melody at various points, in order
to maintain interest. Provoking rivalry between social media sites could also
be an effective way to drive traffic. By recording where people are clicking
through to the site from, it would be possible to record contribution levels
from different sites and encourage a war to see which site can gain most in-
fluence over evolution. This would be combative, rather than collaborative
composition!

6.0.7 Interpolation Between Melodies

As a tool for composition, the present system is a good idea generator. For
those with a musical education of some sort, it is easy of make small correc-
tions, or mix aspects of separate melodies. For those with limited musical
ability, for whom we aim to cater, additional help is needed.

Using edit distance as a measure, we have been able to plot the Euclidean
distance between all melodies. This space provides a convenient and intuitive
abstraction for potential interpolation between melodies. This representation
could be used as an interface to fine-tune favoured melodies. A point in
Euclidean melody space between two melody-points A and B would represent
a certain number of edits from A towards B, with regular rules about the
order in which edits are performed. The rules could be arbitrary, allowing a
greater number of melodies to be interpolated.

77

Chapter 7

Conclusions

I set out to allow people from anywhere in the world to collaborate on music,
regardless of skill, experience or proximity to each other. I also aimed to
garner information about what people found musical; what makes them feel
connected to one set of sounds and not others. In these respects and others
the µTunes project was a success: participation in the experiment vastly
exceeded my expectations; feedback was positive; every measure of musical-
ity increased far beyond the threshold for noise and the control results; and
there were no catastrophes during the project.

It has promise as a composition tool; as my own interpretations and those
of Dr. Sidorov prove, it serves as an excellent jumping-off point, or “inspi-
ration generator” for broader works in many genres. Achieving musicality
with simple operators and an initial population of what amounts to Gaussian
noise is testament to the robustness and versatility of (interactive) genetic
algorithms. Musically, this approach constitutes a double-edged sword: on
the one hand, our computer-generated melodies were devoid of human bi-
ases, predispositions and conditioning, leading to unusual and “imaginative”
(if I may say that of a program) outcomes; on the other hand, the process
is still relatively blind, and could stand to have knowledge of what is more
likely to be good music folded in at almost every stage in order to expedite
the process. Besides this, it has shown itself to be effective in the hands of
untrained individuals. There is significant merit to this.

There was a reason I chose not to include this knowledge beforehand. I
wanted all bias to come from humans, precisely in order to analyse that bias.

78

Analysis of the evolution of the melodies has shown clearly that there are
many factors which humans consider musical and generally like. The anal-
yses relating to the implication/realisation model are of particular interest
here, as they specify simple rules by which to generate music that people
will probably like. These rules could be captured in future versions of the
system. For example, the crossover operator, which currently has no bias,
could be biased towards crossing over at points which would realise musical
implications in the resulting children.

The cornerstone of this project, the prime mover which influenced the
rest of the development, was use of pairwise comparisons in order to gather
data. It has proven to be noise-tolerant and strong enough to give us signif-
icant, useful data on the human perception of music. Its use was adopted
in order to minimise fatigue, but it is difficult to say the extent to which it
achieved this as we have no baseline for comparison. Given the large num-
ber of participants, it is reasonable to say that it was approachable and not
off-putting.

Finally, we have learned that what makes music music in the ears of
human beings may not be as subjective as we thought. This experiment has
shown that we expect melodies to obey rules. It is no secret that formulaic
music like pop and folk has an enduring popularity; but it seems that there
are indeed firm assertions that can be made about what good music is.

79

Chapter 8

Reflection on Learning

Every aspect of the project took longer than anticipated. I am reminded of
Hofstadter’s Law [9]:

It always takes longer than you expect, even when you take into
account Hofstadter’s Law.

I attribute this partly to inexperience with a project on this scale, and the
fact that I was working alone. A project like this involved the intersection
of disciplines which left me spread thin. To see how this compared with
my own (admittedly aspirational) predictions, see the appendix, section A.1.
Although I have had reservations about group work over the course of my
university career, I can see the appeal of working as part of a small, specialised
and motivated team.

Despite the workload and deadlines, this has been enjoyable and a good
opportunity for me to apply my learning in creative ways. One of the most
appealing aspects of this particular project is that it combines two passions
of mine: music and science.

A bird in the hand is worth two in the bush. The grass is always greener
on the other side. Although I have been aware of these maxims since early
childhood, it is not until I had disregarded the tools I was already confi-
dent with for an unknown quantity which appeared to offer the world that
I truly understood their meanings. In future I will be reticent to employ an
unfamiliar tool for an important project.

80

Chapter 9

References

81

Bibliography

[1] Humdrum Toolkit Representation Reference melodic interval. Accessed:
2014-04-6.

[2] Php midi class. Accessed: 2014-04-25.

[3] W3Schools html5 audio. Accessed: 2014-04-25.

[4] Weblocks: made with alien technology. Accessed: 2014-04-23.

[5] Meghna Babbar, Barbara Minsker, and Hideyuki Takagi. Interactive
genetic algorithm framework for long term groundwater monitoring de-
sign. In Proceedings of the Environmental & Water Resources Institute
(EWRI) World Water & Environmental Resources Congress, ASCE,
Salt Lake City, UT, pages 1–10, 2004.

[6] Hector Berlioz. Grand trait d’instrumentation et d’orchestration mod-
ernes, Op.10. Paris: Schonenberger, n.d.[1844]., Plate S. 996., 1844,
enlarged 1855.

[7] Mike Cheng. Lame. http://lame.sourceforge.net/, 2014.

[8] Maarten Grachten, Josep-Lluis Arcos, and Ramon Lopez de Mantaras.
Melodic similarity: Looking for a good abstraction level. In Proc. IS-
MIR, 2004.

[9] D. R. Hofstadter. Gödel, Escher, Bach: an eternal golden braid. Vintage
Books, New York, 1980.

[10] Brad Johanson and Ricardo Poli. Gp-music: An interactive genetic
programming system for music generation with automated fitness raters.
pages 181–186, 1998.

82

http://lame.sourceforge.net/

[11] A. Jones K. Sidorov, R. Hawkins and D. Marshall. µtunes: A study of
musical perception in an evolution context. 2014.

[12] Yaser M. A. Khalifa, Hunter Shi, and Gustavo Abreu. Evolutionary
music composer. Submitted to Genetic and Evolutionary Computation
Conference 2004.

[13] Ming Li and Ronan Sleep. Melody classification using a similarity metric
based on kolmogorov complexity. Sound and Music Computing, pages
126–129, 2004.

[14] Xavier Llor, Kumara Sastry, Francesc Alas, and Arquitectura La Salle.
Analyzing active interactive genetic algorithms using visual analytics.
In In GECCO ’06: Proceedings of the 8th annual conference on Genetic
and evolutionary computation, pages 1417–1418. ACM, 2006.

[15] Robert M. MacCallum, Matthias Mauch, Austin Burt, and Armand M.
Leroi. Evolution of music by public choice. Proceedings of the National
Academy of Sciences, 2012.

[16] Bill Manaris, Dallas Vaughan, Christopher Wagner, Juan Romero, and
Robert B. Davis. Evolutionary music and the zipf-mandelbrot law: De-
veloping fitness functions for pleasant music. In In Lecture Notes in
Computer Science, Applications of Evolutionary Computing Evowork-
shops 2003, LNCS 2611, pages 522–534. SpringerVerlag, 2003.

[17] Manuel Cebrian Manuel Alfonseca and Alfonso Ortega. A simple genetic
algorithm for music generation by means of algorithmic information the-
ory. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on,
pages 3035–3042, September 2007.

[18] Eugene Narmour. The analysis and cognition of melodic complexity:
The implication-realization model. University of Chicago Press, 1992.

[19] H. Takagi. Interactive evolutionary computation: fusion of the capabili-
ties of ec optimization and human evaluation. Proceedings of the IEEE,
89(9):1275–1296, Sep 2001.

[20] Hideyuki Takagi and Denis Pallez. Paired comparisons-based interactive
differential evolution, 2009.

83

[21] Tuukka Toivonen. Timidity++. http://timidity.sourceforge.net/,
2014.

[22] Fabian Wauthier, Michael Jordan, and Nebojsa Jojic. Efficient ranking
from pairwise comparisons. In Proceedings of the 30th International
Conference on Machine Learning, pages 109–117, 2013.

[23] T. Yokoyama, H. Takenouchi, M. Tokumaru, and N. Muranaka. Website
design system based on an interactive genetic algorithm using tourna-
ment evaluation by multiple people. In Proceedings of SCIS-ISIS 2012,
pages 2260–2263, 2012.

[24] Tsu yu Wu, Chin te Chen, Kai chu Wu, Ying ping Chen, and Dao yung
Fu. Evolutionary interactive music composition. 2006.

84

http://timidity.sourceforge.net/

Appendix A

Appendices

A.1 Predicted Timescale Versus Reality

My predicted timescale does not bear much resemblance to the course this
project actually took. The moderator’s comments on my initial report to the
effect that it was unrealistic proved absolutely correct

Week 1 •Complete Initial plan.
•Construct basic website for user participation.
•Research evolutionary algorithm techniques
•Research other evolutionary music projects
Reality
Completing the initial plan was the priority, to the exclusion of much
else. Brainstormed about the evolutionary algorithm.

Week 2 •Finalise aspects of evolutionary algorithm, eg. representation,
crossover/mutation.. •Implement basic algorithm.
•Write code to play string representations as melodies
•Manually run the algorithm to benchmark the number of generations
and rough number of step before something musical appears
Reality
Formulated several ideas about how to construct the evolutionary algo-
rithm and ran some tests on them. Did some general research, discover-
ing the general problems of fatigue. Resolved at this point to minimise
this effect, as I had no idea of how much participation I would be able

85

to muster.

Week 3 •Build a back-end for analysis and testing (i.e. Database. It may
be possible to incorporate this into the algorithm code)
•Refine and test website
•Refine and test algorithm/back end
Reality
Started using the weblocks framework to try to get a site running. It
always seemed like I needed to learn just a little bit more in order to
be able to use it properly. I put other aspects of my project on hold to
focus on this as without the website, there could be no project.

Week 4 •Launch website
•Publicise and drive traffic

• Canvas social media sites

• Contact fan-base from music career

• Ask other students to participate

Reality
It began to sink in that of the meagre information available on we-
blocks, little of it even referred to the same version.

Week 5 •Monitor progress (ongoing from now) Reality
Finally abandoned weblocks and replaced it with a LAMP stack. Be-
gan developing the site which would end up powering the project. From
the time spend with weblocks I had at least made a number of design
decisions which were transferable, including the design of a logo.

Week 6 •Identify and analyse popular melodies (ongoing)
Reality

86

Continued developing the website, database and scripts that powered
the algorithm. I initially implemented one of my more exotic ranking
ideas. I soon replaced this with the algorithm I have today. The site’s
construction reflects the modular nature of the site and replacing com-
ponents is straightforward.

Week 7 •Buffer week, allowing time for the unexpected.
Reality
. This is the week in which I first publicised the website and compar-
isons started happening. That was on the Friday. The rest of the week
was spent testing and tweaking.

Week 8 •Analyse final population (this could be in the next week)
•Analyse popular melodies for common features
Reality
I promoted the site more, generally checked to ensure that it was actu-
ally functioning as it was meant to under the surprisingly high server
load. Some modifications were made to improve performance on mo-
bile.

Week 9 •Write report (ongoing)
Reality
Developed a means to export database contents as CSV files.

Week 10 •Continue writing report.
Reality
Began to analyse results. Created a skeletal report, and began the slow
process of filling it in.

Week 11 Hand in final report..
Reality
The Easter break was spent writing the report and analysing the sur-
prisingly abundant data I had collected.

87

Appendix B

Paper Published

The paper on the findings of my project which I co-authored with Drs.
Sidorov, Jones and Marshall. A complete pdf is also attached in the de-
liverables.

88

µµµTunes: A Study of Musicality Perception in an Evolutionary Context

Kirill Sidorov Robin Hawkins Andrew Jones David Marshall
Cardiff University, UK

K.Sidorov@cs.cardiff.ac.uk ontario.cs.cf.ac.uk/mutunes

ABSTRACT

We have conducted an experiment with the intent to deter-
mine and quantify what properties of monophonic melodies
humans perceive as appealing. This was done in an evolu-
tionary setting: a population of melodies was subjected to
Darwinian selection with popular human vote serving as
the basis for the fitness function. We describe the experi-
mental procedure, measures to avoid or minimise possible
experimental biases, and address the problem of extracting
maximum fitness information from sparse measurements.

We have rigorously analysed the course of the resulting
evolutionary process and identified several important trends.
In particular, we have observed a decline in complexity of
melodies over time, increase in diatonicity, consonance,
and rhythmic variety, well-defined principal directions of
evolution, and even rudimentary evidence of speciation and
genre-forming. We discuss the relevance of these effects to
the question of what is perceived as a pleasant melody.

Such analysis has not been done before and hence the
novel contribution of this paper is the study of the psycho-
logical biases and preferences when popular vote is used
as the fitness function in an evolutionary process.

1. INTRODUCTION

Evolutionary approach to music composition is well de-
scribed in the literature: whether the fitness information is
provided by human evaluation [1, 2] or otherwise [3, 4].

Recently, the importance of consumers’ preference in driv-
ing the evolution of music was demonstrated in [2]. While
their conclusions were criticised (especially as to the role
of biases in selection [5]), the experiment of [2] was the
first large-scale attempt at music evolution with popular
vote serving as the fitness function. Further, [5, 6, 7] argue
that recombination and transformation of information ac-
cording to psychological biases of individuals are the cru-
cial element of cultural evolution.

In contrast to [2], where the process of evolution itself
was examined, this work concentrates on and attempts to
measure the above-mentioned psychological and cultural
biases that guide the evolution of music, and hence at-
tempts to quantify what aspects of music the respondents
find appealing.

Copyright: c©2014 Kirill Sidorov et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

2. EXPERIMENTAL SETUP

In this experiment, we maintain and evolve a population of
melodies. To minimise the model bias, we have adopted
the simplest representation of the population in which the
phenotypes and genotypes of individuals are identically
equivalent. Each individual is represented by two lists: a
list of intervals (in semitones) between successive notes in
the melody, and a list of note durations (as integer multi-
plies of the time quantum, in this case ∆t = 1/16th note).
The total duration of each melody is capped at 64×1/16th,
which is equivalent to four bars in 4/4.

At the start of evolution, the population is initialised with
randomly generated melodies in which the intervals are
drawn from integer Gaussian distribution with µ = 0 and
σ = 7 semitones. This is done to avoid biasing the respon-
dents towards diatonicity. The note durations in the initial
population are chosen equal (crotchets).

The population size is kept constant at every generation
(N = 100 exemplars), with the entire evolutionary history
being recorded for future analysis. The choice of the pop-
ulation size depends on two factors. First, the population
size should ideally be large enough for emergent phenom-
ena, such as speciation, to be observed. Second, too large
a population would not allow us to observe a substantial
number of generations: indeed, if ranking the population
involves O(N logN) comparisons, then given a budget of
C comparisons the number of generations we could ob-
serve is at most bC/O(N logN)c.

To sample popular opinion, we have setup a website 1

which offers the visitors two melodies from the current
population. The visitors are prompted to play back the
melodies and select the one which they prefer. Their re-
sponse is recorded and serves to update the population rank.

After each comparison, with probability Nγ log(Nγ) a
new generation is produced. Above, N = 100 is the popu-
lation size and γ = 0.5 is a parameter controlling the rate
of evolution. This is equivalent to triggering a new genera-
tion on average every O(N logN) comparisons which are
required to rank N individuals.

When a new generation is triggered, the highest ranked
α = 20% of the individuals take part in sexual reproduc-
tion. Pairs are formed by uniform random sampling from
the top α = 20% of the population. Breeding involves
a one-point crossover operation: a time tf in the female
melody is selected uniformly randomly (at any point, in-
cluding in the middle of notes), with tf being quantised
to 1/16th notes; similarly tm is selected for the male in-
dividual. The melodies (intervals and note durations) are

1 http://ontario.cs.cf.ac.uk/mutunes

Figure B.1: Paper on µTunes

89

Appendix C

Deliverables

In the archive submitted with this report, called ”deliverables.zip”, you will
find the following:

C.1 Paper: µTunes: A Study of Musicality

Perception in an Evolutionary Context

This project is the topic of this paper, hence attaching it. It gives a more
concise explanation of the goals and outcomes of this project and is the source
of some of the data I used.

C.2 Results

A folder containing two more folders: “csv” and “sql”. The former contains
6 CSV files: those containing melodies information for the real results, the
control (random) results and those selected for disjunctness; and those con-
taining the comparison information for the real results, the control (random)
results and those selected for disjunctness. The latter contains an “sql” file
from which you can rebuild the entire mutunes database as of May, 6th 2014.

C.3 Analysis

This folder contains the MATLAB scripts used to analyse the CSV data
found in “Results”. It also contains graphs and figures generated by these

90

scripts. I have tried to give the scripts names which explain what they do
and comment liberally.

C.4 examples of music

A folder containing wav files of popular and influencial melodies from the
mutunes project.

C.5 mutunes

All the scripts necessary to set up your own µTunes, and a README file
explaining the few steps necessary to do so.

91

	I Abstract
	II Acknowledgements
	III Body
	Introduction
	Music - The Problem Domain
	Project Outline
	Interactive Genetic Algorithms
	Pair-wise ranking
	Particiption in the project: who and how
	Goals and expectations
	Limiting factors, potential pitfalls, and risks

	Background
	Models, Methods and Algorithms
	The Genetic Algorithm
	Walk-through
	Representation
	Generation
	Operators
	Ranking
	Generating the next generation
	Stopping Condition
	Summary of parameters
	Limitations of the algorithm

	Implementation
	Technologies used
	Front-end and user experience
	Browser compatibility

	Back-end
	Admin Pages
	Database
	The algorithm in practice
	Rendering the melodies
	Overview of Code Structure and Responsibilities
	Coding paradigms, practices and layout
	Difficulties and Improvements

	Testing
	Launch, Progress and Promotion

	Results and Evaluation
	Participation
	General response to promotion
	Individual behaviour

	Evolution and Increase in Musicality
	Evolution of Melodies
	Hierarchy of convergence
	Examples of Music, Comparison to Other Music, and My own interpretation

	Future Work
	Genetic Operators: general improvement
	More complex music: dynamics, harmony, and beyond!
	A better website
	Interpolation Between Melodies

	Conclusions
	Reflection on Learning
	References
	Appendices
	Predicted Timescale Versus Reality

	Paper Published
	Deliverables
	Paper: Tunes: A Study of Musicality Perception in an Evolutionary Context
	Results
	Analysis
	examples of music
	mutunes

