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ABSTRACT 
Surveillance cameras are placed around city centre locations in order to provide a 

method of identifying scenes of undesirable behaviour in real-time, if such behaviour is 

spotted then local law enforcement personnel can be called in to stop it. The job of the 

human observer can be very demanding as they are tasked with monitoring multiple 

live streams, it is inevitable that some instances of disorderly behaviour will not be 

caught. This project proposes the use of computer vision techniques to develop a 

method of action recognition that could be used to aid in the violence detection process.  

The abilities of multiple state-of-the-art action recognition algorithms will be compared 

alongside a newly proposed action descriptor referred to as GEP. Three widely different 

violence datasets are used to gauge the overall performance of each method; different 

datasets represent different types of violence seen within city street environments. 

Once results have been evaluated, efforts are made to increase action recognition 

performance of each implemented method beyond their original capabilities; this is 

accomplished by identifying points of description failure and improving upon them. 

Through the use of empirical testing methods it is shown that multiple action 

recognition algorithms provide great overall performance at detecting scenes of 

disorderly behaviour that are indicative of violence in city centre locations. 

ACKNOWLEDGEMENTS 
I would like to express deep gratitude to both Professor Dave Marshall and Professor Paul Rosin 

for providing advice and guidance throughout this project.  



 Kaelon Lloyd - C1112308 
 

3 
 

TABLE OF CONTENTS 
Abstract ................................................................................................................................................................................ 2 

Acknowledgements ......................................................................................................................................................... 2 

Table of Figures ................................................................................................................................................................. 5 

Introduction ........................................................................................................................................................................ 6 

Background: ........................................................................................................................................................................ 7 

K-Means Clustering ................................................................................................................................................ 7 

Principal Component analysis ........................................................................................................................... 7 

Bag of Words Model ............................................................................................................................................... 8 

Support Vector Machine (SVM)......................................................................................................................... 9 

Random Forests .................................................................................................................................................... 10 

Optical Flow ........................................................................................................................................................... 10 

Histogram of Oriented Flow (HOF) .............................................................................................................. 11 

Histogram of Oriented Gradients (HOG) .................................................................................................... 11 

Grey Level Co-Occurrence Matrix (GLCM) ................................................................................................ 12 

Approach: .......................................................................................................................................................................... 13 

Violence Detection Methods ..................................................................................................................................... 14 

Space Time Interest Point with HOG and HOF ......................................................................................... 14 

Modified Motion Binary Pattern .................................................................................................................... 15 

Violent Flows ......................................................................................................................................................... 16 

Trajectory Histogram of Oriented Flows ................................................................................................... 17 

Grey Level Co-occurrence texture Measures, Edge Cardinality and Pixel Intensity Difference 

(GEP) ......................................................................................................................................................................... 19 

Data Sets ............................................................................................................................................................................ 21 

Testing Methods ............................................................................................................................................................. 24 

Data Sampling........................................................................................................................................................ 24 

Parameter Selection ............................................................................................................................................ 26 

Determining the best solutions ...................................................................................................................... 26 

Initial Testing ......................................................................................................................................................... 28 

Descriptor Method Extension Testing and Comparison ...................................................................... 28 

Combinatorial Testing ....................................................................................................................................... 28 

Overall best solution ........................................................................................................................................... 28 

Results and Evaluation ................................................................................................................................................ 29 

Lucas- Kanade Optical Flow or SIFT Flow ................................................................................................. 29 

Individual Descriptor Method Results and Evaluation ........................................................................ 29 



 Kaelon Lloyd - C1112308 
 

4 
 

Performance Increasing Measures ............................................................................................................... 38 

Results of Extended Description.................................................................................................................... 40 

Combinatorial Testing ....................................................................................................................................... 43 

Conclusions ...................................................................................................................................................................... 46 

Future Improvements .................................................................................................................................................. 47 

Learning Reflection ....................................................................................................................................................... 47 

APPENDIX A ..................................................................................................................................................................... 48 

APPENDIX B ..................................................................................................................................................................... 50 

APPENDIX C ..................................................................................................................................................................... 52 

APPENDIX D ..................................................................................................................................................................... 54 

APPENDIX E ..................................................................................................................................................................... 56 

APPENDIX F ..................................................................................................................................................................... 58 

APPENDIX G ..................................................................................................................................................................... 60 

References ........................................................................................................................................................................ 62 

 

  



 Kaelon Lloyd - C1112308 
 

5 
 

TABLE OF FIGURES 
 

Figure 1: Stage 1: Centroid Selection, Stage 2: Find nearest cluster, Stage 3: Re-align centroids, 

Stage 4: Re-cluster data, Stage 5: Re-align centroids (Again). ....................................................................... 7 

Figure 2: Examples of Good and Bad SVM Boundary Selection .................................................................... 9 

Figure 3: How the C-Parameter effects SVM ......................................................................................................... 9 

Figure 4: GLCM Offset Vector.................................................................................................................................... 12 

Figure 5: How STIP extracts frame volumes ...................................................................................................... 14 

Figure 6: MBP Representation ................................................................................................................................. 15 

Figure 7: Visual representation of MBP time-step ........................................................................................... 16 

Figure 8: Trajectory HOF shape descriptor ........................................................................................................ 18 

Figure 9: Trajectory Histogram of Flow Visual Representation ................................................................ 18 

Figure 10: Spatial Pyramid (Final descriptor is a concatenation of all histograms ........................... 19 

Figure 11: Cardiff dataset examples ...................................................................................................................... 21 

Figure 12: Visualization of the sliding window used to solve sample bias ........................................... 22 

Figure 13: Violent Flows dataset examples ........................................................................................................ 23 

Figure 14: Hockey dataset examples ..................................................................................................................... 24 

Figure 15: Benefit of overlapping windows ....................................................................................................... 25 

Figure 16: Highlighted area of violence shows a low number of detectable edges ........................... 35 

Figure 17: Cardiff Edge Cardinality and Texture Contrast ........................................................................... 39 

Figure 18: Hockey dataset results with and without method extension ................................................ 40 

Figure 19: Violent Flows dataset results with and without method extension ................................... 40 

Figure 20: Cardiff long window dataset results with and without method extension ..................... 41 

Figure 21: Cardiff short window dataset results with and without method extension ................... 41 

 

Table 1: Comparison of optical flow methods using violent flows descriptor ..................................... 29 

Table 2: Comparison of optical flow methods using Trajectory HOF ...................................................... 29 

Table 3: Violent Flows dataset results .................................................................................................................. 30 

Table 4: Violent Flows dataset frontier ................................................................................................................ 31 

Table 5: Hockey dataset results ............................................................................................................................... 31 

Table 6: Hockey dataset frontier ............................................................................................................................. 32 

Table 7: Cardiff long window dataset results .................................................................................................... 34 

Table 8: Cardiff long window dataset frontier .................................................................................................. 35 

Table 9: Cardiff short window dataset results .................................................................................................. 36 

Table 10: Cardiff short window dataset frontier .............................................................................................. 36 

Table 11: Cross dataset results ................................................................................................................................ 37 

Table 12: Average Change in Performance over all datasets using extended descriptors ............. 42 

Table 13: Violent Flows dataset frontier including method combinations ........................................... 43 

Table 14: Hockey dataset frontier including method combinations ........................................................ 44 

Table 15: Cardiff long window dataset frontier including method combinations ............................. 44 

Table 16: Cardiff short window dataset frontier including method combinations ........................... 45 

Table 17: Cross dataset performance frontier including method combinations ................................ 45 

 

file:///C:/Users/kaelon/Downloads/C1112308%20-%20Dissertation.docx%23_Toc387141765
file:///C:/Users/kaelon/Downloads/C1112308%20-%20Dissertation.docx%23_Toc387141765
file:///C:/Users/kaelon/Downloads/C1112308%20-%20Dissertation.docx%23_Toc387141769
file:///C:/Users/kaelon/Downloads/C1112308%20-%20Dissertation.docx%23_Toc387141772
file:///C:/Users/kaelon/Downloads/C1112308%20-%20Dissertation.docx%23_Toc387141777
file:///C:/Users/kaelon/Downloads/C1112308%20-%20Dissertation.docx%23_Toc387141778
file:///C:/Users/kaelon/Downloads/C1112308%20-%20Dissertation.docx%23_Toc387141780
file:///C:/Users/kaelon/Downloads/C1112308%20-%20Dissertation.docx%23_Toc387141781
file:///C:/Users/kaelon/Downloads/C1112308%20-%20Dissertation.docx%23_Toc387141782
file:///C:/Users/kaelon/Downloads/C1112308%20-%20Dissertation.docx%23_Toc387141783
file:///C:/Users/kaelon/Downloads/C1112308%20-%20Dissertation.docx%23_Toc387141784
file:///C:/Users/kaelon/Downloads/C1112308%20-%20Dissertation.docx%23_Toc387141785


 Kaelon Lloyd - C1112308 
 

6 
 

INTRODUCTION 
Around most major city environments a large multitude of closed circuit television (CCTV) 

cameras are placed strategically around city centre locations in order to detect undesirable 

behaviour; one of the main forms of undesirable behaviour in public areas is violence. In many 

cases, acts of violence can be cut short before any major damage is dealt providing that the 

situation is identified within a reasonable time-frame; constant real-time surveillance provides 

an ideal way of identifying such acts. 

A CCTV observer is tasked with watching over a large array of monitors and acting 

appropriately when anything of interest is depicted; each monitor may display multiple video 

streams at once. The real-time surveillance observers must act on visual information alone as no 

audio is recorded. Monitoring a large number of live video streams requires the users’ attention 

be spread out; this inevitably results in the occasional failure to identify scenarios of 

undesirable behaviour caught on camera. It is imperative that identification failure doesn’t 

occur to ensure public safety.  

In the research area of computer vision many methods of action recognition have been 

developed and show great performance at recognizing human actions using popular action 

datasets such as the Weizmann and KTH datasets; the actions depicted in these datasets are 

mostly of comprised of a single human performing one action at a time such as walking or 

waving. To evaluate the true effectiveness of action recognition within the context of this project 

a different set of data that has a heavy focus on violence is required; the hockey violence and 

Violent Flows datasets are available for violence recognition testing. These two datasets have 

previously been classified to a high degree of accuracy using various methods motion 

description methods. South Glamorgan Police has also provided Cardiff University with a 

dataset that contains scenes of violence in and around Cardiff city centre.  

The overall goal of the project is to use computer vision techniques to develop and implement 

methods of action recognition that will be able to distinguish between scenes of violence and 

non-violence found in city centre environments. The purpose for doing so is to aid real-time 

surveillance observation personal in identifying scenes of violence that take place within city 

centre environments. The ultimate purpose for creating such software is to reduce the number 

of unidentified scenes of violence that may be missed by human personal and their limited 

capacity at being attentive at all times.  
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BACKGROUND 

K-MEANS CLUSTERING 
The aim of K-means clustering is to partition a set of vectors into k groups. Each group is 

represented by a centroid vector that is equal to the partition mean; a data point is assigned to 

the cluster which has the shortest data point to centroid distance (Tapas et al, 2002). 

Lloyds K-Means clustering algorithm is outlined as a simple two stage iterative algorithm. The 

first stage assigns each point in the dataset a group; this is accomplished by using the Euclidean 

distance metric to find the closest centroid. The second stage re-assigns each centroid to the 

average of all points within their cluster. This two stage process will repeat until no further 

centroid changes take place or until an arbitrary iteration limit is reached.  

 

The initial centroid positions are selected randomly, this does not guarantee good results; to 

combat this, k-means is executed multiple times and the solution that has the maximal 

difference between each centroid is chosen. 

The implementation of K-means contained within the VL_feat toolbox (Vedaldi et al, 2008) is 

used exclusively for all clustering requirements. VL_feat is coded in C and wrapped in Matlab, it 

was chosen as it provides much faster clustering with a lower memory usage than inbuilt 

Matlab functions. 

PRINCIPAL COMPONENT ANALYSIS 
Principal component analysis is a multivariate analysis method that identifies the Principal 

components of data; this is accomplished by performing a linear transformation that projects a 

set of standardised data points into a new orthogonal co-ordinate system whose axes are placed 

such that the variance in the data is maximized; these new axes are the Principal components. 

                       
 

 
∑   

 

   
 

Mathematically, Principal components are computed by first standardising a set of data, this 

creates a zero mean and centres the data. After standardisation a covariance matrix is created 

by calculating the covariance between each dimensional pair; this will result in an array that 

describes how each dimension changes with respect to another. 

          ∑
      ̅       ̅ 

 

 

   

 

Figure 1: Stage 1: Centroid Selection, Stage 2: Find nearest cluster, Stage 3: Re-align centroids, Stage 4: Re-cluster data, Stage 5: Re-align 

centroids (Again). 



 Kaelon Lloyd - C1112308 
 

8 
 

From the co-variance matrix both the Eigen values and Eigen vectors are calculated; the 

collection of Eigen pairs is sorted in descending order of Eigen value. The Eigen vector with the 

greatest corresponding Eigen value is the most important Principal component; all principal 

components are ranked in descending order of importance. 

Higher ranking Principal components hold more information as they represent greater data 

variance. Using the fact that Eigen vectors are ordered based on the amount of information they 

represent, it is possible to reduce data dimensionality by omitting low ranking principal 

components that describe a very low amount of data. This is achieved by simply removing a set 

of Eigen vectors whose corresponding Eigen value falls below a threshold or doesn’t meet set 

criteria; the criteria used throughout this project is to keep the most important principal 

components that collectively describe at least 90% of data variance. 

Dimension reduction will be used on all descriptor data as it greatly reduces the computation 

time of K-means clustering while inflicting little to no reduction of descriptor effectiveness. 

Reducing data dimensionality also makes it possible to visualize data that would have been 

difficult to plot in Euclidian space otherwise.  

BAG OF WORDS MODEL 
A bag of words model uses a collection of words that can be used to describe the contents of a 

document. The document representation is a histogram of word occurrences based on the 

words available in the model.  

Given the codebook: 

{1| The} {2| Apple} {3| Quick} {4| Lazy} {5| Jumps} {6| Over} {7| Fox} {8| Brown} {9| Dog} 

The document “The Quick Brown Fox Jumps Over The Lazy Dog” can be formulated as the 

following vector of word occurrences: 

{2 0 1 1 1 1 1 1 1} 

The idea of the bag of words model is adapted so that the model is a collection of features rather 

than English words; a scene or document can then be described as a collection of feature 

occurrences.  

A bag of words code book is generated by performing K-means clustering on a subset of all 

features, the centroids returned from clustering will act as the vocabulary. When we wish to use 

the bag of words representation on new features, a search is executed in order to find the word 

in the vocabulary that best matches the new feature. The matching word index is then used to 

increment a counter within a histogram as demonstrated above. At every instance of vocabulary 

generation within this project, 200000 randomly selected features will be used. 

Using word/feature frequency removes all geometric correlation between features within the 

same scene; this is both beneficial and detrimental to the description process. When analysing 

features found in multiple images there is no guarantee that the same feature that exists in 

many images will occur at the same position, in this case reduced spatial information is 

beneficial if we wish to match images based on their contents. Alternatively a bag of words 

approach wouldn’t suit an algorithm that is trying to classify books that contain a specific 

sentence as the sentence structure wouldn’t be captured. 
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SUPPORT VECTOR MACHINE (SVM) 
A Support Vector Machine is a supervised learning method that when provided with a training 

set which is split into two classes will identify the optimal hyperplane of separation between 

them. The class separation hyperplane is obtained by projecting data points into a higher 

(potentially infinite) dimension and then maximizing the margin between support vectors 

(Chang et al, 2010). 

 

FIGURE 2:  EXAMPLES OF GOOD AND BAD SVM BOUNDARY SELECTION  

All methods with be classified using C-Support Vector Machines. C-SVM uses a regularization 

parameter C that dictates the nature of group separation; the aim of the C parameter is to adjust 

boundary to avoid over fitting the data.  

 

FIGURE 3:  HOW THE C-PARAMETER EFFECTS SVM 

The rightmost hyperplane in the above figure, while failing to separate all points from each class, 

may achieve better results in general than a narrow margin boundary that could exist; for this 

These are bad examples of hyperplane 

assignment. 

The margin between support vectors is 

maximized; this is a good boundary assignment 

Decision Boundary 

Large C value, Narrow 

Margin 

Small C value, Wide 

Margin 

 Margin 

Support Vectors 
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reason when performing classification a grid search will be completed in order to find an optical 

regularisation parameter. 

When data cannot be described using a linear hyperplane it is common to apply a Kernel 

function to describe the similarity between points. The Radial Basis Function (RBF) is one of the 

most common kernels for describing non-linear separation: 

 (     )     (  ‖     ‖
 
)      

The kernel parameter   is identified using a grid search on a set of training data. The LibLinear 

and LibSVM libraries are used for support vector machine learning (Chang et al, 2001). 

RANDOM FORESTS 
Decision trees are simple data structures that are “grown” using a recursive method. In order to 

generate a tree, training data with associated class assignments must be provided. Growth is 

completed by partitioning data into two groups; this is accomplished by comparing values from 

a random subset of variables found within the supplied feature vectors. The newly partitioned 

groups are then subject to further partitioning based on a different variable subset extracted 

from feature vectors; each point that dictates data separation is known a “node”, these nodes 

recursively branch off to other nodes. This recursive partitioning continues until all members of 

a partition belong to a single class, once a partition achieves class dominance it will not be 

partitioned again; these final partitions are known as leaf nodes.  

A random forest is an ensemble classification method that is comprised of multiple decision 

trees; a predefined number of trees are grown using a random subset (with replacement) of all 

training data. Classification is achieved by sending new data through all decision trees, each tree 

will output a class that it assigned to the new data; the class assignments from each tree are 

treated as votes, the class with the most votes is the final classification.  

OPTICAL FLOW 
Optical flow describes the appearance of motion between two consecutive images by identifying 

features that exist in the preceding image and matching them to the similar features found 

within the following image; the spatial change of these features are expressed as a vector pair u 

and v. The magnitude signifies motion strength/velocity and vector orientation describes 

perceived motion direction. 

Two methods of optical flow estimation have been implemented for this project; these are SIFT 

Flow and the Lucas-Kanade method. The major difference between these two methods is that 

the Lucas-Kanade method provides sub-pixel motion estimation. 

SIFT Flow generates optical flow fields by matching Scale Invariant Feature Transform (SIFT) 

features across two frames and outputting each features vector of change. SIFT features 

describe image gradients as a histogram of gradient orientations. At every pixel position a 

16x16 neighbourhood of pixels is split into 4x4 cells which are described using an 8 bin SIFT 

feature.  As flow generation is accomplished by comparing detailed descriptors across two 

frames the results should contain less noise than other methods which use less robust features. 

Optical flow can be described as the motion of pixel I(x, y, t) moves a distance of (dx, dt) over dt 

time, this can be expressed as: 
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The optical flow equation is derived from the above equation and is as follows: 

             

Where fx, fy are pixel intensity gradients and ft is the first temporal derivative; solving this 

equation will provide the optical flow vector (u, v).  

The Lucas-Kanade method aims to solve the optical flow equation by making two assumptions, 

the first is that the brightness intensity of moving objects stays constant; this is known as the 

Brightness Constancy Constraint.  

The second assumption is that pixels within a neighbourhood have equal motion vectors; 

because of this the optical flow equation must hold for all neighbouring pixels, using a 3x3 

neighbourhood we can generate a system of linear equation to solve the optical flow equation. 

The system of linear equations can considered over determined as we have more equations (9) 

than unknowns (2), to get around this, the linear least square principle can be applied to obtain 

the final equation (Bradski, 2000) 
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HISTOGRAM OF ORIENTED FLOW (HOF) 
To create a Histogram of Oriented Optical Flow, both u and v optical flow fields must be 

generated for a given area within two consecutive images. Flow orientations are computed and 

rounded into 360/n evenly spaced angular directions where n is the number of histogram bins 

used to represent the Histogram of Oriented Flows. Each histogram bin is incremented by the 

magnitude of respective flow.  

HISTOGRAM OF ORIENTED GRADIENTS (HOG) 
The creation of a Histogram of Oriented Gradients is accomplished by calculating the first x and 

y spatial derivatives Lx and Ly; these derivatives are used to obtain gradient magnitude and 

orientation.  

| |   √  
     

            (
  

  
) 

Gradient orientations are rounded into 360/n directions where n is the number of histogram 

bins. Each histogram bin is incremented by the magnitude of gradient intensity.  

Typically an image is split into evenly sized cells and HOG performed on each segment; each 

HOG vector will then be concatenated together.  

HOG differs from the aforementioned SIFT features in the way gradient magnitude is counted 

towards histogram bin values, SIFT uses weightings to describe edge contents across cell 

boundaries. 
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GREY LEVEL CO-OCCURRENCE MATRIX (GLCM) 
A GLCM is computed by counting the frequency that a pixel with a grey level value i occurs in 

conjunction with a second pixel intensity j given a pre-defined spatial relationship between the 

two. An offset map dictates the spatial relationship between a pixel of interest and its 

neighbours using vectors.

 

FIGURE 4:  GLCM OFFSET VECTOR  

All pixel intensities are scaled to n different grey level values, in my usage of the Matlab in-built 

GLCM method the n parameter is set to 16; this results in a 256 element co-occurrence matrix. 

Once a co-occurrence matrix is created, several statistics can be derived to describe the nature 

of image texture. Throughout the project I use only two texture measures, these are Energy and 

Contrast. Energy is a measure of texture uniformity; the maximum measure value of 1 is 

obtained when each element in the GLCM is equal which means that the image is constant.  

∑       

   

 

Texture Contrast, also known as the sum of square variance, measures the intensity similarity 

between a pixel and its neighbours across the entire image. Soft textures are expected to have a 

low contrast value whereas hard textures will have high contrast values. 

∑|   |        

   

 

  

This figure represents pixel intensity co-occurrence 

using the offset map that is comprised of the following 

vectors. 

(1,1) (2, 0) (-2, -2) (1, -2) 

The correlation between each pixel pair is used to 

generate the correlation matrix. 



 Kaelon Lloyd - C1112308 
 

13 
 

APPROACH 
The ultimate goal of the project is to identify methods of action recognition that allow for 

computer systems to differentiate between scenes of violence and non-violence within city 

centre environments. A discussion shall be made in order to evaluate whether or not the 

developed solutions are suitable for use in real world applications.   

Through research I have found four different action recognition methods that aim to describe a 

wide range of action depicted in visual media.  

 Violent Flows: Motion texture descriptor that uses optical flow fields. 

 Motion Binary Pattern: Motion texture descriptor that estimates motion intensity 

using local changes in pixel intensity. 

 STIP+HOG+HOF: An interest point detector with HOG and HOF descriptors. 

 Trajectory Histogram of Flows: Describes long term temporal description of motion 

trajectories and their surrounding motions. 

Both MBP (Baumann et al, 2014) and STIP (Laptev et al, 2008) have proven to be effective 

action description methods as they both score 91.83% and 91.10% respectively on the popular 

KTH action dataset which contains footage of different people performing a wide variety of 

actions,  one of which is fast punching movements. STIP has also been previously compared 

against other local feature descriptors to determine the best method for violence detection 

between two individuals; it achieved 92 % classification accuracy on the Hockey violence 

dataset in a descriptor comparison paper (Bermejo et al, 2011). Although STIP performs well at 

describing scenes with few participants the local nature of its features will not be suited to more 

crowded environments; because of this, other, more global descriptors have been researched 

and have shown to perform well on violence that occurs in heavily populated situations. Violent 

Flows is an example of one such method and holds 81.30% classification accuracy in a dataset 

dedicated to densely populated scenes (Hassner et al, 2012).  

It is important to investigate different methods as city street violence can form in many 

different ways with such variety; the expectation is that a single method cannot describe them 

all. In order to fully evaluate the performance of above-mentioned action recognition methods I 

must create a set of suitable tests that cover a wide range of violence types. Data used for testing 

must be indicative of scenes found within city centre locations; using scenes of violence from 

action movies for example, wouldn’t suffice. 

Once I have performed testing and evaluated the results I will propose an extension with the 

intention of improving classification performance; the proposed extension method will be 

developed by analysing results from initial testing; the test data will also be analysed so to 

identify any patterns or data measures that clearly describe the difference between violent and 

non-violent scenes. The change in performance between methods in their original form and 

their extended form will be evaluated and a final conclusion discussing whether or not my 

proposed extension improves classification will be made. 

Each action recognition method implemented focuses on describing different types of data; 

because of this no one action recognition method it is expected to dominate all others when 

supplied with a variety of different violence datasets; combining different methods may show 

that a certain combination of descriptors can achieve high performance across all datasets. 
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VIOLENCE DETECTION METHODS 

SPACE TIME INTEREST POINT WITH HOG AND HOF 
A corner is a feature found within an image that holds large intensity changes in multiple 

directions, these points of high pixel intensity variance contain large amounts of information; 

these points are known as spatial interest points and are translation and orientation invariant. 

A Space Time Interest Point (STIP) is an extension of the Harris-Stephens corner detection 

method; alterations have been made so that interest points are identified by analysing spatial 

and temporal variations. STIP features just like the method they are based upon are not scale 

invariant; the original papers (Laptev, 2005) proposes a method of performing automatic scale 

estimation to best describe a point, this is computationally difficult and doesn’t offer much, if 

any advantage over the alternative method of performing STIP detection over multiple scales 

(Bermejo et al, 2011). 

Around each space time interest point a 3 dimensional volume is extracted; the volume shows 

how a 2D image segment evolves over time. The size of the 3D volume is based on the detected 

features scale. The spatial size of the volume is determined by 2kσ where σ is the feature scale 

determined by the STIP detector. The temporal scale is determined using kτ where τ is the 

temporal duration of a feature. The parameter k is assigned the value of 9. (Laptev, 2005)   

 

 

 

 

 

 

 

 

 

 

 

 

The appearance of the 3D cube is identified using a Histogram of Oriented Gradients and the 

motion is described using a Histogram of Oriented Flows. 

As suggested by Laptev (2008), the histogram of gradients is formed by splitting the volume 

into 3x3x2 cells with each section describing edges using a four bin histogram. Generating the 

histogram of oriented flows is also performed on a 3x3x2 volume split but motions are placed 

Top Left: Image, Top Right: STIP points, Bottom 

Left: Extracted Volume around interest point 

The pattern on the X-coordinate edge of the 

volume shows the referees legs moving 

rightward. 

FIGURE 5:  HOW STIP  EXTRACTS FRAME VOLUMES  
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into 5 bins. The final descriptor is therefore a concatenation of both histograms resulting in a 

162 element vector. 

The STIP detection algorithm is a piece of closed source software written in C++, it was obtained 

from the creator’s website (Laptev, 2008). HOG and HOF generation algorithms are included in 

the STIP detection package.  

MODIFIED MOTION BINARY PATTERN 
Motion Binary Pattern is a motion texture descriptor; it starts by making the assumption that 

motion can be detected from the change in pixel intensities. MBP requires three frames to 

describe motion.  

Two difference binary maps are created by comparing frames n with n+1 and n+1 with n+2. At 

each pixel a value of 1 is assigned if the pixel intensity on the first frame is greater than the 

corresponding pixel intensity on the next frame. A 0 (zero) is assigned otherwise. 

An ‘exclusive or’ function is applied to the two binary patterns which produces a third 

combination binary pattern depicting areas of perceived motion across three frames. At each 

pixel in this new binary pattern the L-1 norm is generated using a 3 by 3 grid.  

 

FIGURE 6:  MBP  REPRESENTATION  

The final binary motion pattern is created by assigning 1 where the L-1 Norm of each 3x3 

window is greater than a set threshold and 0(zero) otherwise.  Once the final binary pattern has 

been computed for a set of frames they are added together along the temporal plane to produce 

a single texture. The original MBP paper suggests re-arranging this texture into a 1 dimensional 

vector and performing classification upon it; the problem with this is that it has no spatial 

invariance whatsoever which limits its application.   

The method proposed in the original paper has no spatial invariance whatsoever; this will be 

detrimental as important events within city locations can take place at different areas within the 

camera frame. To solve this problem I proposed splitting the final texture into M by N cells and 



 Kaelon Lloyd - C1112308 
 

16 
 

introducing a bag of words models to quantize each cell; doing so will bring spatial invariance 

which will result in greater performance on dataset with large inter-sample spatial variance. 

The above process will only have the ability to describe micro motions that due to the 3 

consecutive frame description. The MBP paper proposes a method to extend the above 

processes ability to describe features over a longer temporal window through the use of a time 

step. As stated, comparisons are made between 3 adjacent frames; what a time step does is 

introduce an offset between these frames so rather than compare frames n, n+1 and n+2 you 

compare frames n , n + t and n+ 2t where t is the time step. t =1 is equivalent to consecutive 

frames. The final descriptor is a combination of MBP descriptors taken at different time steps 

which are concatenated together. 

 

FIGURE 7:  VISUAL REPRESENTATION OF MBP  TIME-STEP  

VIOLENT FLOWS 
Violent Flows is a motion texture descriptor that uses optical flow for motion estimation. Given 

a sequence of frames, we must first perform optical flow estimation between adjacent frames. 

Optical flow will produce two flow vector maps u and v that dictate perceived motion in both the 

x and y co-ordinate plane; performing the following equation at each pixel will produce a 

magnitude map for each frame.  

      √    
      

  

Using two consecutive magnitude maps a single binary map is generated that describes the 

change in motion between two frames. This is accomplished by taking the difference between 

two magnitude maps at each pixel and assigning a value of 1 if the resultant difference is greater 

than a set threshold.  

{
        |                 |     

           
 

The threshold is assigned to the average of absolute magnitude difference |                 |. 

Using an adaptive threshold requires no parameter tuning and offers an easy method of 

identifying significant motion based on local dynamics; this is useful as all scenes have an 

expected degree of motion variance which a global threshold may not be able to adequately 

capture. 
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A mean magnitude map is computed by summing together a series of binary maps representing 

the change in motion between successive frames and normalizing the result. 

 ̅     
 

 
 ∑      

 

 

The resulting binary map is split into M x N non-overlapping cells. The contents of each cell are 

used to populate a fixed sized histogram; all cell histograms are concatenated to create the final 

ViF descriptor. 

TRAJECTORY HISTOGRAM OF ORIENTED FLOWS 
The aim of Trajectory-HOF descriptor is to provide long term temporal description of motion 

trajectory and its surrounding motion. The descriptor is a combination of a trajectory pattern 

and a Histogram of Oriented Flows describing the re-active motions that exist around the path 

trajectory. This method is derived from the paper “Action Recognition by Dense Trajectories” 

(Wang et al, 2011), with the main change being the method in which trajectories are selected 

and composed. 

Optical flow estimation is used to compute vectors of perceived motion between adjacent 

frames; given a series of flow vectors each point is traced in order to create a set of trajectories 

representing object motion across a sequence of frames. The amount of trajectory data is too 

vast to apply full description to each path and a lot of short trajectories simply represent optical 

flow errors or slight camera shudder; with this stated it is apparent that the trajectory set is too 

large and needed to be reduced.  

First I created a value representing the energy of a trajectory with length T; it is computed as 

the sum of absolute difference between all successive points along a trajectory path: 

        ∑ |       |

   

 

   ∑ |       | 

   

 

 

All trajectories with an energy value less than a set threshold are discarded. The threshold is 

dynamically assigned to the half the average energy of all non-zero energy paths. 

           
 

 
                

It was important not to set the threshold too high as small paths representing small motions can 

be useful in describing certain scenes; the aim of the threshold was set just to remove erroneous 

and zero length trajectories.  Even with the application of a threshold we typically obtained too 

many trajectories, the amount of memory and computation time required meant processing 

them further is not feasible. To reduce the amount of data again I chose a random set of evenly 

distributed paths; an even distribution ensured that both the long and short paths that met the 

threshold requirement were used in scene description. 

A trajectory is represented as two vectors, a series of x co-ordinates and a series of y co-

ordinates that the path covers. A trajectory shape descriptor is formed by measuring the 

difference between adjacent points within each vector; the two resulting difference vectors will 
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be concatenated into a single vector which will be 2 * (T - 1) units long given a trajectory length 

T. 

 

 

 

 

 

 

An N by N area around each point along a trajectory path is extracted and split into σ x σ spatial 

cells and τ temporal cells; the parameters for N = 32, σ =2 and τ =3 resulting in 12 cells. For each 

cell a 9 bin histogram of flows is computed, 8 bins are used to encode vector direction and 

magnitude. The 9th bin is used for zero vectors. 

 

FIGURE 9:  TRAJECTORY HISTOGRAM OF FLOW VISUAL REPRESENTATION  

The trajectory shape and HOF are concatenated to create a trajectory descriptor. Within a 

window of length T frames, a set number of features are extracted and used with a Bag of Words 

model for quantization and then classification. 

A spatial pyramid is created in order to re-introduce spatial information that is otherwise lost 

with the application of a Bag of Words model. A spatial pyramid is a multi-layer data structure 

that at each layer partitions all features into a different number of cells with each layer having 

increasingly more cells (Lazebnik et al, 2006).  

48 49 50 51 52 
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Path trajectory: 

{48,71}{49,68}{49,71}{51,71}{50,70} 

Path Shape:  

{1,3}{0,-3}{2,0}{-1,1} 

Shape Descriptor: 

[1, 0, 2, -1 ,3 ,-3 ,0 ,1 ] 

FIGURE 8:  TRAJECTORY HOF SHAPE DESCRIPTOR  
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FIGURE 10:  SPATIAL PYRAMID (FINAL DESCRIPTOR IS A CONCATENATION OF ALL HISTOGRAMS  

The Trajectory HOF features are assigned cell locations based on their average path location: 

(     )     ̅    ̅  

Choosing a trajectory length is difficult due to the variable nature of motion length, choosing a 

short trajectory length may not capture full motion and a long trajectory may over describe a 

motion; to alleviate this problem a trajectory is sampled at different lengths, and concatenated 

into a single descriptor. 

 

GREY LEVEL CO-OCCURRENCE TEXTURE MEASURES, EDGE CARDINALITY AND PIXEL 

INTENSITY DIFFERENCE (GEP) 
The aim of this action recognition method is to describe a set of actions using global visual 

descriptor methods. The measures highlighted in this method were originally developed in 

order to extend the four other motion based descriptors and increase their performance; all 

measures were chosen to suit the crowded nature of inner city environments. Analysis showed 

that these measures alone held enough discriminatory power to classify actions and so they 

were assigned their own method for comparison purposes. Throughout the remainder of the 

document this method will be known as GEP for ease of writing. 

The method is comprised of four measures, texture energy, texture contrast, edge cardinality 

and pixel difference between adjacent frames. A grey level co-occurrence matrix will describe 

the brightness intensity relationship between pixel pairs within an image; using the grey level 

co-occurrence matrix you can derive multiple statistics that describe the textural nature of an 

image. Contrast and energy are computed by performing two different weighted sums on the 

same grey level co-occurrence matrix.  

An edge cardinality measure is obtained by performing Canny edge detection and simply 

counting the number of edges perceived. The highest number of edges possible would be for 

every pixel to depict an edge therefore to normalize the edge count I divide by the frame 

dimensions. An edge count provides a rough indication as to the number of objects found within 

a scene, this is useful for distinguishing between scenes of different visual population. 
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A potential problem with identifying scenes using global visual descriptors is that the measures 

might be describing background visuals more than the important foreground; to reduce this 

possibility a fourth  measures was introduced. The normalized pixel difference measure 

describes the amount of visual change between two adjacent frames; it is computed by 

calculating the sum of absolute difference between pixel pair intensities across two frames. The 

value is normalized by dividing by the maximum possible rate of change. 

The descriptor is obtained by computing the above mentioned measures on a set of frames in 

sequence. All measures obtained from each frame are averaged and the variance computed 

resulting in an eight element vector that describes the basic visual representation of a frame set 

with an indication of the diversity they exhibit over a period of time. To include some spatial 

description, each frame is partitioned into M by N cells; each cell is described using the above 

method and cell descriptors are concatenated. 
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DATA SETS 
Scenes of violence can be formed in a variety of different ways between variable numbers of 

participants; no dataset at the time of writing this document provides suitable number of 

violence instances that cover a wide spectrum of different fight types; existing datasets only 

focus on specific scenes of violence. South Glamorgan Police provided many video samples 

taken from within Cardiff City centre in order evaluate the possibility of automatic violence 

detection; the dataset contains a small number of fights whose visual variety is lacking, by 

looking at other scenes of violence found on video sharing websites, it was clear that the dataset 

was not fully representative of potential violence in city centre locations. In order to evaluate 

the true potential of each classification method other datasets were acquired, these are the 

Hockey Violence and Violent Flows dataset.  

CARDIFF DATASET 
The Cardiff dataset was provided by South Glamorgan Police so to determine whether or not 

computer vision techniques could be used to automatically detect scenes of violence. The 

dataset is flawed in a few ways; the biggest issue is the lack of violent video samples. Out of 

twenty three hours of footage, only seven fight instances spanning approximately 5 minutes 

total, exist. Three of these fights are heavily occluded by pedestrians, scenery and blurring 

caused by camera movement; these factors make all three scenes of violence unsuitable for use.  

To introduce more information, eight extra fight sequences were obtained from video sharing 

sites and altered to match the frame rate and dimensions of all other video files in the Cardiff 

dataset. Sixty-six samples of non-violent data were extracted across the entire dataset; a 

reduced set was used as it would be too computationally expensive to process the entire dataset. 

In total the modified dataset contains twelve fight sequences and sixty-six non-fight sequences. 

Longest Clip 1:37 

Shortest Clip 0:10 

Average Non-Violence Clip Size 0:51 

Average Violence Clip Length 0:20 

 

 

FIGURE 11:  CARDIFF DATASET EXAMPLES  
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Even with a reduced dataset, the number of non-violence samples greatly numbers the quantity 

of violent samples; an unbalanced dataset may cause a classification bias. To get around this 

issue, videos are sampled using a sliding window, frames k + n through k + n + m are described 

using any of the descriptor methods where m is the window size and k is the frame offset in a 

video sequence.

 

FIGURE 12:  VISUALIZATION OF THE SLIDING WINDOW USED TO S OLVE SAMPLE BIAS  

Scenes that depict violent data will increase the frame offset by ‘1’ between each sample; this 

will result in a large amount of data with a low amount of diversity.  Non-violent data will have a 

larger frame offset increment of ‘15’, which provides a similar number of samples for 

classification but with a larger variety of scene types. 

The fights shown in the Cardiff dataset can be split into three distinct types: 

1) A group of pedestrians (4+) merge together with force and barge each other. They are 

generally too close for effective punching and kicking.  

2) The second fight type consists of 2-3 participants that stay in close proximity to one 

another and attempt to punch and kick without getting too close to their target. 

3) The final fight is composed of 2 or more people that keep a great distance from their 

target, they occasionally move in for a quick swipe and then retreat a great distance. 

The altered dataset contains four Type 1 and eight Types 2 fights. Only a single instance of a 

type 3 fight is available in the original dataset, unfortunately it is not unusable due to extreme 

blurring and occlusions. 

The playback frame rate of the Cardiff dataset is six frames per second; this extremely low 

frame rate results in a lesser amount of available motion information. The high rate of change 

between adjacent frames may be too great for both implemented optical flow methods to 

approximate perceived motion accurately. 

The dataset is split into four, non-overlapping subsets that will be used to perform four fold 

cross validation testing. Typically a larger number of data subsets are used in order to offer a 

better generalization of a classifiers performance on unknown, real world data. The limiting 

factor was the number of violence samples; as stated previously, only four Type 1 fight exist 

meaning that in order to fairly divide data only four folds could be created. 

VIOLENT FLOWS 

The Violent Flows dataset was built to test violence that outbreaks within densely populated 

areas; the set contains 246 samples of both violence and non-violent scenes. The Violent Flows 

dataset primarily focuses on crowd behaviour at sporting events due to the extremely high 

k 

Frame offset Window of length m frames Sequence of frames 
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pedestrian count. The Violent Flows dataset was chosen as a method of evaluating violence 

within city centre locations because scenes depicted have a reasonable chance of occurring in 

and around any city that has a sports stadium; Cardiff is home to the Millennium stadium. 

An apparent flaw with this dataset stems from the fact that all videos are obtained from 

YouTube; the application of video compression required for internet streaming has degraded 

the visual quality of a few samples which makes feature extraction difficult.  

The dimensions of each video vary between samples but they all share the same playback rate 

of 25 frames per second. 

The Violent Flows dataset is divided into five subsets in order to perform five-fold cross 

validation; the original dataset creator had previously split the data so that no two folds contain 

footage from the same camera source. Due to the even number of source videos all folds contain 

a different number of class instances. 

Longest Clip 0:06 
Shortest Clip 0:02 

Average Non-Violence Clip Size 0:03 

Average Violence Clip Length 0:04 

 

 

 

HOCKEY DATASET 

The hockey dataset contains scenes of violence from Ice Hockey matches; the fighting style 

found in the hockey dataset is unlike any fight found in the other two datasets. Violence 

typically involves two players punching each other primarily in the head. The range of motion 

during fights is extremely limited as players are required to keep their balance on ice.  

FIGURE 13:  VIOLENT FLOWS DATASET EXAMPLES  
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The scenes of violence in the hockey data set consists of grappling alongside very pronounced 

punches, this style of fight does mimic one-on-one fights found between two people outside the 

hockey environment. The scenes of non-violence are however not indicative of city street 

behaviour as players tend to move extremely fast and hold themselves in odd positions; because 

of this, results from the hockey dataset tests should be considered less important than both the 

violent flows or Cardiff dataset test results. 

The dataset consists of 1000 samples, 500 violent and 500 non-violent scenes. The contents of 

non-violent scenes are comprised of typical play found in Ice Hockey. The data is shot at 24 

frames per second and has a resolution of 720x576. 

Longest Clip 0:02 

Shortest Clip 0:02 

Average Non-Violence Clip Size 0:02 

Average Violence Clip Length 0:02 
 

The Hockey dataset is split into five, non-overlapping groups so to perform five-fold cross 

validation; each set contains 100 scenes of violence and 100 scenes of non-violence.  

TESTING METHODS 

DATA SAMPLING 
The Cardiff and Violent Flows dataset is comprised of videos with variable frame lengths; 

typically the videos within the Cardiff dataset that depict fights are dramatically smaller (~100-

250 frames smaller). Due to this difference, a descriptor may start to describe videos by their 

length. STIP will easily do this as more frames results in a larger amount of detected features 

which ultimately effects the composition of the final bag of words histogram such that scenes of 

violence will have marginally lower bin counts than non-violent histograms. Even if a descriptor 

normalizes its features temporally (Violent Flows) certain feature compositions are less likely to 

FIGURE 14:  HOCKEY DATASET EXAMPLES  
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occur over few frames than they are over many frames, a method of comparing a constant 

number of frames must be incorporated to ensure fair comparisons. 

All videos will be sampled in blocks, these blocks will constitute of a number of frames that will 

be described using each descriptor method; if each descriptor describes a constant number of 

frames then we the performance between different classification methods can be directly 

compared. Processing videos in this manner also fits the surveillance context of the project. 

Given a live video stream, only the past few frames could be used for classification; the number 

of frames in a real-time environment will be determined by either a set frame buffer or by 

computational limitations. 

Samples are extracted using overlapping windows; the purpose of using them is to capture 

motion dynamics that two non-overlapping adjacent blocks only partially describe. Each 

sampling window will overlap their neighbour by half the window size unless otherwise stated. 

 

FIGURE 15:  BENEFIT OF OVERLAPPING WINDOWS  

A shorter window overlap value could be used to provide more data for training and testing but 

the results wouldn’t see too much change as neighbouring samples would share great 

similarities. Half window overlap provides more information while keeping neighbouring 

sample similarity at a minimum. 

The vast majority of hockey samples have a frame length of 39, with a few having a length of 40. 

To include all samples, each video is processed using a sampling window length of 39. Leaving 

out the final frame of some videos is justifiable as actions depicted in each video occurs midway 

through the scene, the last few frames hold comparably very little descriptive power. The 

hockey dataset does not use overlapping blocks to extract samples as actions performed in each 

video are already very short. 

The Violent Flows dataset will be processed in 40 frame length windows with a 20 frame offset 

between samples. The window of 40 was chosen as it is the equal in length to the smallest 

available sample.  

The Cardiff dataset will be sampled using two different window lengths; the reason for this is 

that short window tests may fail to provide any useful results due to the reduced amount of 

descriptive power caused low frame rate of each video. The first window length is 30 (5 

seconds), this is used to see how well fights are classified given a large amount of data. A short 

A series of 12 frames using a 6 frame sampling 

window will separate data into two distinct 

samples as shown. The change in dynamics 

between these two windows isn’t captured. 

By using an overlapping window the dynamics 

between samples is captured. 
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window length of 8 (1.1 seconds) frames is also used for a second, independent test. A shorter 

window will be used to gauge how well the Cardiff dataset can be classified in a real life scenario. 

Smaller windows allows for a quicker classification response which is important during 

surveillance. 

PARAMETER SELECTION 
Violent Flows: Requires three parameters, values N and M dictate how to split the final 

descriptor in order to re-introduce spatial information, these are assigned the value of 4 across 

all datasets. The third variable is the histogram size used to describe the magnitude of motions 

across a series of frames; this is set to 80 for all datasets. 

Trajectory HOF: Requires two parameter vectors, vector T indicates the number of frames to 

trace a trajectory before applying description; a trajectory can be sampled at multiple lengths; 

in all cases a trajectory is described over the course of the entire sample. The vector T for each 

dataset is as follows: 

 Cardiff Large Window: [10 20 30] 

 Cardiff Short Window: [2 4 6 8] 

 Hockey: [10 20 30 39] 

 Violent Flows: [10 20 30 40]  

The second vector defines the pyramid structure used to introduce spatial information into the 

final descriptor; all datasets use a two layer pyramid with the first layer representing a single 

cell and the second representing a 2 by 2 grid of cells. 

Motion Binary Pattern: Threshold T is used to identify motion with large magnitudes; T is set 

to 7 for all datasets as it has shown to perform well. MBP uses a step vector that defines the 

number of frames to skip when obtaining three frames for motion estimation, this is set to [1 2 3 

4 8] for all datasets.  

STIP: The only parameter available decides whether to extract HOF, HOG or both descriptors 

around each point; this parameter was set to both. 

GEP:  A vector that states the spatial relationship used to form the grey level co-occurrence 

matrix is required. The vector is formed such that each pixel placed 45 degrees apart within a 

radius of 5 pixels are used to generate the GLCM. Using 45 degree steps introduces a limited 

amount of spatial invariance to the GLCM.  Features within GEP are extracted over the entire 

frame as opposed to using cells.  

As I am dealing with three separate datasets the option to tune parameters on a dataset level in 

order to maximize performance was available to me. In a real-life scenario an algorithm would 

not have prior knowledge of the type of data soon to be described; because of this fact, 

parameters that are tuned to perform best on a certain type of violence cannot be applied; 

therefore tuning dataset parameters would not provide a reliable indication of the overall 

performance of a descriptor method.  

DETERMINING THE BEST SOLUTIONS 
During testing each descriptor method will return three different sets of results as they are 

classified using random forests, linear SVM and RBF SVM.  Each set of results is represented by 
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six performance values; these are true positive classification rate, true negative classification 

rate, specificity, sensitivity, overall accuracy and the area under the receiver operator curve 

(ROC AUC). 

When given a list of multivariate vectors it can be difficult to intuitively say that one vector is 

better than the other. As each result is a series of values, a multi-objective optimization method 

is adopted to determine which result sets are objectively better than the others. These 

objectively better results are known as Pareto Optimal solutions and are considered non-

dominated vectors; a vector is dominated if each variable value in one vector is smaller than 

their respective variable in another vector. All Pareto Optimal solutions create a Pareto 

Frontier; all solutions on the frontier are considered equally good. The application of subjective 

reasoning is required in order to evaluate their true effectiveness within context of the project.  

Typically, measuring best descriptor performance is completed by identifying the method that 

provides the greatest overall accuracy or AUC value. However, these measures do not give any 

indication as to the number of correct classifications achieved per class; per class classification 

rates are important factors when deciding which methods are suitable for use in real world 

applications. 

There are two perspectives to take when deciding which descriptor method is the best; the first 

will focus on the system’s general ability to classify scenes of violence and non-violence by 

looking at overall accuracy and/or ROC AUC values, this can be seen as the typical way of 

interpreting results; the greatest accuracy or AUC values indicates the best method. 

The second perspective requires some subjective reasoning to show that overall accuracy isn’t 

as important as true negative classification rate; in the context of this project, the true negative 

rate is the probability that a scene of non-violence will be classified correctly. One of the project 

aims is to develop action recognition methods that aid a human observer at identifying scenes of 

violence. When put into perspective, an extremely high classification rate isn’t necessarily 

required. Based on the samples in the Cardiff dataset, a fight lasts an average of 20 seconds, now 

suppose our classification method achieves a violence detection rate of 50 %; this will result in 

10 seconds of alerts for an observer. Providing adequate attention grabbing power, 10 seconds 

of alerts, whether constant or rapidly intermittent, won’t easily go unnoticed within a small 

timespan.  

Applying the same logic to scenes of non-violence shows that even a high true negative rate will 

result in an absurdly high amount of false alerts due to the greater length of non-violent scenes. 

The average length of a non-violent scene in the Cardiff database is 97 seconds, statistically a 

true negative rate of 75% results in 22 seconds of alerts; depending on how intrusive the alert is 

this may become far too distracting. A highly distracting alert system will skew the observers’ 

attention and make them less efficient at their job, and this would defeat the purpose of project. 

A method that achieves a high overall classification performance may not necessarily be best 

suited for real world application as they may provide too many false alerts; for this reason when 

evaluating results I will identify both the best overall method for classification and the best 

method suited for real world application(if one exists).  

To determine an acceptable threshold of false negatives a study must be completed; 

unfortunately I did not have the enough time to start this when evaluating results I shall state 
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that any methods that achieves a true positive rate greater than 50% and a true negative rate of 

over 90% shall be deemed adequate for use in real-life applications as surveillance observation 

aid. 

INITIAL TESTING 
The initial testing phase sees the five base descriptor methods tested against each of the four 

previously outlined datasets. The main purpose of the first step in testing is to evaluate results 

and explain why certain descriptors behave as they do. 

K-fold cross validation is used in testing; what this means is that a dataset is split into k non-

overlapping subsets. K number of tests will then be performed using k-1 subsets for system 

training with the remaining set is used for testing; the combination of data subsets that make up 

the training set changes on each test and so does the testing set. The reason for performing 

cross validation is to generalise system performance so that all training/testing set bias is 

removed, therefore the output of k-fold will be more representative of results expected in real-

life circumstances.   

DESCRIPTOR METHOD EXTENSION TESTING AND COMPARISON 
As mentioned in my approach, I aim to create some new descriptive measure that when added 

to certain descriptor methods will increase classification performance. This can only be 

completed after the first stage of testing has been performed as the results will give some 

indication as to the areas which can be approved upon. 

Once an extension measure has been created the same testing process as before will be 

undertaken but all results shall be presented as a comparison between non-extended and 

extended descriptors.  

COMBINATORIAL TESTING 
One major issue with action recognition techniques is that a single descriptor method cannot 

describe all possible actions, they are generally suited to one kind of data or another; testing 

will reveal which of the five descriptors can describe which dataset adequately. As the 

expectation is that no one method will shine through on all tests a combinatorial testing method 

has been proposed. 

Combinatorial testing involves merging two or more descriptors vectors together through 

concatenation. There are two reasons for doing this, the first is that two different descriptor 

methods may extract complimentary features that when combined offer a boost in performance. 

The second reason for combinatorial testing is that a merged descriptor may achieve greater 

performance across all datasets than any single method. Cross-dataset performance in 

important as all datasets tests are indicative of violence seen within city street environments 

and so to provide an adequate solution each form of data must be classifiable. 

OVERALL BEST SOLUTION 
The three datasets used within this project were all chosen because the scenes of violence 

depicted within them are indicative of violence found within city centre locations. To determine 

how well a single method or method combination performs overall I will simply be taking the 

average classification rates across all datasets. Once this move has been performed a Pareto 

frontier can be generated and best methods will be identified. 
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RESULTS AND EVALUATION 

LUCAS- KANADE OPTICAL FLOW OR SIFT FLOW 
Before full scale testing took place I needed to determine whether to use SIFT flow or the Lucas-

Kanade optical flow method for motion estimation. Trajectory HOF, Violent Flows and STIP all 

use optical flow vectors for description. I have no control over the method used by the STIP 

algorithm as its closed source software; because of this determining which method was better 

was derived from results output from both Violent Flows and Trajectory HOF algorithms. 

Due to time constraints alongside the insanely large amount of time required to tests all 

descriptor combinations I must identify the performance difference between using SIFT flow or 

Lucas-Kanade as performing each test with both methods will not be time feasible.  To 

determine which method to use I will compare the overall classification accuracy for each 

dataset using both ‘Trajectory Histogram of Flows’ and the ‘Violent Flows’ methods.  

TABLE 1:  COMPARISON OF OPTICAL FLOW METHODS USING VIOLENT FLOWS DESCRIPTOR  

Violent Flows 
Method 

Sift Flow Random 
Forest 

Lucas-Kanade 
Random Forest 

SIFT Flow Linear 
SVM 

Lucas-Kanade  
Linear SVM 

Sift Flow RBF 
SVM 

Lucas-Kanade 
RBF SVM 

Hockey 68.98% 62.07% 65.16% 63.77% 49.70% 47.69% 
Cardiff Short 72.34% 65.43% 71.08% 69.69% 62.81% 60.80% 
Cardiff Long 71.94% 69.03% 69.74% 68.55% 58.32% 56.31% 
Violent Flows 70.70% 68.69% 66.76% 65.43% 59.91% 57.90% 

 

Using the Violent Flows description method across all datasets showed that SIFT Flow 

outperformed Lucas-Kanade optical flow estimation by 4.69%, 1.32% and 2.01% using Random 

Forest, Linear SVM and RBF SVM classification methods respectively. 

TABLE 2:  COMPARISON OF OPTICAL FLOW METHODS USING TRAJECTORY HOF 

 

Using the Trajectory Histogram of Flows description method to classify each dataset has shown 

SIFT Flow to outperform Lucas-Kanade by 1.6%, 0.82% and 1.01% using Random Forest, Linear 

SVM and RBF SVM classification methods respectively. 

SIFT Flow exhibits marginally better results over Lucas-Kanade optical flow and thus will be 

used for all other tests involving optical flow fields. 

INDIVIDUAL DESCRIPTOR METHOD RESULTS AND EVALUATION  
The following section will present the classification results for each dataset using STIP, GEP, VIF 

and MBP descriptors. At this point in the project I was running low on time and so RBF-SVM 

classification had to be omitted as the parameter tuning required takes a considerable amount 

of time.  

Trajectory HOF 
Method 

Sift Flow Random 
Forest 

Lucas-Kanade 
Random Forest 

SIFT Flow Linear 
SVM 

Lucas-Kanade  
Linear SVM 

Sift Flow RBF 
SVM 

Lucas-Kanade 
RBF SVM 

Hockey 74.10% 72.37% 65.66% 65.26% 49.20% 47.64% 
Cardiff Short 78.00% 77.01% 70.45% 69.57% 62.22% 61.36% 
Cardiff Long 77.24% 75.41% 61.52% 59.69% 58.27% 56.91% 
Violent Flows 72.16% 70.33% 62.24% 62.08% 59.91% 59.67% 
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As crowd density 

increases up the image 

so does the number of 

edges. Shapes begin to 

merge and line 

composition can be 

described as noise. 

TABLE 3:  VIOLENT FLOWS DATASET RESULTS  

 

The above results show that in all cases, violence detection achieves a higher classification rate 

than non-violence detection by a difference of 22.95%; this is a substantial inter-class difference 

and implies that features within non-violent data are either too weak or too varied between 

class samples.  Weak motion features are the most likely candidate for this poor non-violent 

scene classification performance due to a combination of camera movement and tight crowd 

behaviour that heavily restricts the motion of pedestrians. Conversely, scenes of violence have 

little to no camera motion because they are focused on the fight and crowds tend to disperse 

from violence giving more room for attackers to make greater, more easily described motions. 

GEP performs the best in terms of non-violence detection because it is describes visual 

information more than motion; the global texture measure describes the appearance of the 

entire crowd, this is marginally more descriptive that the local HOG features used in STIP; local 

HOG features extracted from a dense crowd will appear mostly as noise because edges that 

describe a person’s shape will blend into their neighbours resulting in a descriptor that isn’t 

indicative of any shape. 

 

  

Method Classifier True Positive True Negative Accuracy AUC 

GEP 
 

RF 78.59% 68.73% 74.64% 76.58 
Linear 70.80% 70.18% 70.55% 74.98 

STIP RF 91.97% 50.55% 75.36% 78.75 
 
MBP 

Linear 80.05% 63.27% 73.32% 76.99 
RF 78.10% 38.91% 62.39% 63.38 

 
Violent Flows 

Linear 66.18% 52.73% 60.79% 63.86 
RF 84.67% 49.82% 70.70% 75.73 

 Linear 75.91% 53.09% 66.76% 71.24 
Trajectory 
HOF 

RF 80.29% 60.00% 72.16% 79.03 
Linear 74.21% 44.36% 62.24% 60.73 
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TABLE 4:  VIOLENT FLOWS DATASET FRONTIER  

 

The STIP descriptor provides the 

best violence classification rate and 

overall accuracy but achieves an 

abysmally low non-violence 

detection rate.  

Although GEP using a linear classifier 

offers the best non-violence 

detection rate it is still far too low for 

use in real life surveillance 

observation due to the amount of 

false alerts that would signalled; as 

stated in the testing methods section, 

large numbers of false alerts can be 

distracting and actually distract 

users from identifying undesirable behaviour. 

TABLE 5:  HOCKEY DATASET RESULTS  

Method Classifier True Positive True Negative Accuracy AUC 

GEP RF 76.86% 77.56% 77.21% 83.45 
 Linear 69.42% 81.36% 75.40% 80.42 

STIP RF 92.35% 82.36% 87.35% 95.04 

 Linear 84.10% 87.37% 85.74% 92.24 

MBP RF 78.47% 74.75% 76.61% 83.13 

 Linear 72.84% 75.75% 74.30% 81.22 

Violent Flows RF 75.86% 62.12% 68.98% 75.72 

 Linear 67.00% 63.33% 65.16% 71.68 

Trajectory 
HOF 

RF 77.46% 70.74% 74.10% 82.03 

Linear 66.80% 64.53% 65.66% 70.57 

 

The expectation was that all texture descriptors would see low performance due to their global 

descriptive nature being used to describe sparse actions; contrary to this, both GEP and MBP 

hold good classification results. The fact that both a motion and visual descriptor method 

obtained reasonable results implies that hockey is not only highly classifiable based of motion 

but it can also be classified based on visual appearance separately.  

Method Classifier True Positive True Negative Accuracy AUC 

GEP 
 

RF 78.59% 68.73% 74.64% 76.58 
Linear 70.80% 70.18% 70.55% 74.98 

STIP RF 91.97% 50.55% 75.36% 78.75 
Linear 80.05% 63.27% 73.32% 76.99 

Trajectory 
HOF 

RF 80.29% 60.00% 72.16% 79.03 
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Motion blur is an artefact created by video capturing devices that do not have the capacity to 

record high speed motions. The footage in the Hockey dataset is clearly recorded using 

inadequate capture devices as motion blur can be seen in both scenes of violence and non-

violence. The motion blur has an obvious effect on the chosen method of optical flow generation, 

SIFT Flow. SIFT Flow determines motion by matching SIFT features between frames; these 

features rely on distinct edges that aren’t present during motion blur. The mediocre results seen 

by both Violent Flows and Trajectory HOF can be partially attributed to this fact.  

TABLE 6:  HOCKEY DATASET FRONTIER  

 

 

STIP is objectively better than all others methods, there are a few potential reasons for this. The 

first is due to the mostly plain background that is the ice arena; the surface enables the interest 

point detector to work effectively.  

 

Method Classifier True Positive True Negative Accuracy AUC 

STIP RF 92.35% 82.36% 87.35% 95.04 

 Linear 84.10% 87.37% 85.74% 92.24 
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The plain background provides a huge benefit by giving players distinct edges. As shown by the 

application of Canny edge detection below, little information exists on the ice allowing for 

strong edges to be identified around the player.  

The stance of players during standard play and fights is dramatically different, players tend to 

stand tall during fights and are highly bent over during play; this has an impact on the 

composition of each HOG descriptor as the posture of players will be dictated by the orientation 

of edges. To analyse the statistical difference in edge orientation between classes, all frames in 

each video sample were reduced to a histogram of edge orientation; the edge direction were 

rounded and put into eight bins representing eight directions 45 degrees apart.  

 

Visually you can see that scenes of violence have a lesser amount of up/down oriented edges 

and slightly more left/right edges on average. To show that the edge orientation difference 

between classes is significant a similarity test is performed. The Mantel test is a measure of 

correlation between two populations; it is applicable on populations whose members are 

multivariate. 

Mantel Similarity Test 

R = -0.0204 

The Pearson correlation co-efficient R is a measure of correlation between -1 and +1. Negative 1 

indicates a highly negative correlation while positive 1 indicates a highly positive correlation; a 

value close to zero implies little correlation and so the Mantel test implies almost no correlation 

between the two classes exist suggesting that they are independent.  
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TABLE 7:  CARDIFF LONG WINDOW DATASET RESULTS  

 

GEP is by a large margin, the best overall choice for violence detection on the Cardiff dataset; 

GEP using a linear classifier performs 14.62% better than the best performing motion based 

descriptor. MBP and STIP methods have an almost perfect True Negative classification rate but 

achieve an unsatisfactory rate of violence detection. 

The poor violence detection within motion based methods can be attributed to the low playback 

rate of videos in the Cardiff dataset which is six frames per second. The following image pair 

shows two adjacent frames from a video within the Cardiff dataset; one member performs a 

clear punch to another person. The clenched fist of the attacker has been manually highlighted 

using a red box in both frames.  

 

The distance travelled by the highlighted area between the two frames is just too large for either 

optical flow generation method to estimate; the lack of motion estimation means that this attack 

cannot be described. This problem arises throughout most scenes of violence throughout the 

entire dataset. The classification of non-violent data does not suffer from this problem as 

perceived motion in non-violent scenes has a lower rate of change than violent attacks; non-

violent scenes also contain many examples of non-violent actions due to the magnitude of 

pedestrians in view, violent scenes however only contain a small number of actions indicative of 

a fight due to the generally low number of fight participants.  

Edge composition during fight sequences between groups of people can also result in poor 

classification performance. As fight participants group together and merge closely, the edge 

composition will change. If the clothing of each member is similar then fights may show a lack of 

Method Classifier True Positive True Negative Accuracy AUC 

GEP 
 

RF 72.04% 96.55% 86.33% 96.65 
Linear 98.25% 87.30% 91.86% 96.3 

STIP RF 18.75% 99.53% 65.86% 93.71 
 
MBP 

Linear 21.27% 99.84% 67.09% 76.64 
RF 12.94% 99.06% 63.16% 77.72 

 
Violent Flows 

Linear 22.26% 99.69% 67.41% 84.01 
RF 42.21% 93.18% 71.94% 78.73 

 Linear 35.20% 94.44% 69.74% 72.79 
Trajectory 
HOF 

RF 52.85% 94.67% 77.24% 74.46 
Linear 31.47% 82.99% 61.52% 50.87 



 Kaelon Lloyd - C1112308 
 

35 
 

perceivable edges and therefore be almost impossible to classify using HOG; this also poses a 

problem for the SIFT based optical flow estimation which also relies on pronounced edges. 

When people cluster together closely, even with each person wearing noticeably different 

clothing, the motion estimation will fall apart as each person occludes the movements of other 

people resulting in poor motion description, combine this fact with the effects of low video 

frame rate and it should be clear as to why motion estimation methods fail at identifying 

violence in the Cardiff dataset. 

TABLE 8:  CARDIFF LONG WINDOW DATASET FRONTIER  

 

The Pareto frontier consists of both 

visual and motion descriptors; each of 

the motion descriptors obtain an 

unacceptably low violence detection 

rate but achieve almost perfect non-

violence recognition. GEP using a 

linear classifier is the best method for 

violence recognition in general.  

Even though motion based methods 

score almost perfect results on non-

violent data I cannot recommended 

them for use in real life applications 

due to the low violence recognition 

Method Classifier True Positive True Negative Accuracy AUC 

GEP RF 72.04% 96.55% 86.33% 96.65 
Linear 98.25% 87.30% 91.86% 96.3 

STIP RF 18.75% 99.53% 65.86% 93.71 
 
MBP 

Linear 21.27% 99.84% 67.09% 76.64 
Linear 22.26% 99.69% 67.41% 84.01 

FIGURE 16:  HIGHLIGHTED AREA OF VIOLENCE SHOWS A LOW NUMBER OF DETECTABLE EDGES  



 Kaelon Lloyd - C1112308 
 

36 
 

rates. GEP alongside a random forest classifier is suitable for providing observation aid in real 

life applications as it achieves high classification for both classes but has a stronger emphasis on 

non-violent scene classification.  

TABLE 9:  CARDIFF SHORT WINDOW DATASET RESULTS  

 

The reduced window size test shows an overall improvement of 2.26% over its larger window 

counterpart. Violence detection sees a 12.38% increase at the cost of a 1.90% decrease in true 

negative classification.  When using long action samples, the probability that the descriptor 

describes two separate actions as one single action increases. The joint description of two 

separate actions may not be representative of the scene being described and thus just appear as 

noise; by using a smaller window we reduce this possibility which leads to more concise 

descriptions of individual actions.  

The short window test will still suffer from all issues outlined in the large window Cardiff test as 

the properties of the dataset are unchanged. 

TABLE 10:  CARDIFF SHORT WINDOW DATASET FRONTIER  

 

GEP description is the only method 

found within the Pareto frontier for 

short window classification on the 

Cardiff dataset; this implies that 

visual description of short window 

actions offer greater discrimination 

over motion based description 

methods. 

The Linear SVM classifier produces 

the best overall performance while 

the Random Forest variant manages 

to obtain a higher true negative rate 

Method Classifier True Positive True Negative Accuracy AUC 

GEP 
 

RF 85.97% 97.01% 91.91% 97.31 
Linear 97.11% 93.35% 95.09% 97.58 

STIP RF 46.51% 96.42% 73.36% 92.42 
 
MBP 

Linear 30.10% 96.20% 65.66% 68.52 
RF 28.66% 94.67% 64.17% 75.73 

 
Violent Flows 

Linear 22.87% 96.86% 62.67% 75.38 
RF 56.29% 86.12% 72.34% 74.43 

 Linear 52.98% 86.63% 71.08% 72.63 
Trajectory 
HOF 

RF 71.43% 84.09% 77.36% 87.99 
Linear 61.39% 79.17% 69.72% 78.19 

Method Classifier True Positive True Negative Accuracy AUC 

GEP 
 

RF 85.97% 97.01% 91.91% 97.31 
Linear 97.11% 93.35% 95.09% 97.58 
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at the cost of true positive classification, the increase in non-violence detection outweighs the 

decrease in violence recognition making the random forest method better suited to real life use. 

In conclusion, the first stage of testing has shown that each dataset can be reasonably described 

using one of the implemented methods of action recognition. Unfortunately the Violent Flows 

dataset could not be assigned a method that would prove adequate for use in real life 

applications due to the low, but still respectable true negative classification performance, 

hopefully either descriptor extension or combinatorial testing can resolve this. 

Overall Performance 

The overall average frontier is created using the average performance measures from the 

Hockey, Violent Flows and short window Cardiff dataset tests. Each of the three datasets are 

indicative of violence found within city locations, by looking at the average performance across 

all datasets we can gauge which method offers the best overall description of the various types 

of fight. When using visual computing techniques to automatically classify a live video feed you 

would require short observation windows from which to extract features; shorter windows 

equate to faster potential response times as less frames are needed for description. For this 

reasons when determining overall method suitability the large window Cardiff test is omitted as 

it is not representative of data used in real-life application. 

TABLE 11:  CROSS DATASET RESULTS  

 

Both random forest and linear variants of STIP and GEP populate the Pareto frontier, the three 

other descriptor methods are objectively worse. No single methods offers a high enough true 

negative rate for it to be used as a real-time observation aid; the stated definition of suitability 

requires a greater than 90% true negative rate. 

In conclusion, the results have shown that the Violent Flows dataset is the most difficult to 

describe as most methods don’t see overall performance surpass 70% whereas the other 

datasets see high accuracy by at least one method. All four tests see either GEP or STIP as the 

best overall methods for classifying violence with GEP coming out on top overall. 

It should be noted that global motion descriptors MBP and VIF perform less effectively than the 

the two local feature descriptor methods; this is an unexpected results considering that global 

motion description in theory should have performed better on crowded datasets.  

Method Classifier True Positive True Negative Accuracy AUC 

GEP 
 

RF 78.36% 84.96% 82.52% 88.50 
Linear 83.89% 83.05% 83.23% 87.32 

STIP RF 62.40% 82.22% 75.48% 89.98 
 Linear 53.88% 86.67% 72.95% 78.60 
MBP RF 49.54% 76.85% 66.58% 74.99 

Linear 46.04% 81.26% 66.29% 76.12 
Violent Flows RF 64.76% 72.81% 70.99% 76.15 

Linear 57.77% 74.37% 68.19% 72.08 
Trajectory 
HOF 

RF 68.72% 78.80% 75.37% 78.44 

Linear 54.68% 70.78% 64.97% 62.80 
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PERFORMANCE INCREASING MEASURES 
As mentioned previously in this document, the GEP descriptor wasn’t supposed to be its own 

descriptor method; the intent behind the features contained within GEP was originally used to 

inject general visual information into the other four methods so to improve classification 

performance. 

Ignoring the results output from the GEP descriptor in the previous section, the Cardiff dataset 

has the worst true positive (violence) classification rate; this can be attributed to the low visual 

variety of fight samples alongside the extremely low frame rate. The results show that motion 

description alone isn’t powerful enough to discriminate between classes; from this it is clear 

that in order to create a more effective classification method visual attributes must 

incorporated.  STIP does provide a method of visual appearance description but it still obtains 

some of the worst classification results. This would suggest that the local nature of STIP based 

HOG description isn’t suited to the crowded nature of city street violence. As local features were 

not useful I found myself researching global measures of visual image composition that would 

be able to describe an entire scene as opposed to describing small sub-sections.  

Measures of texture seemed like one of the more obvious choices of visual description as they 

could easily describe the crowd density of an image; crowded scenes would have lots more 

pedestrians which would create an un-even surface and would represent a rough texture 

whereas sparse city street conditions would be smoother as less noise exists within frame. 

GLCM texture energy is the measure used to describe the uniformity of a scene and GLCM 

texture contrast is used to describe the co-occurring pixel intensity variation. 

Edge cardinality was the third measure investigated; it is the normalized edge count when a 

Canny edge detector is applied to an image. Edge cardinality gives a rough indication of the 

number of on-screen objects; scenes with many edges are generally more populated visually. 

The problem with edge cardinality and both texture measures is that they can potentially 

describe the background which may lead to classification by street rather than the pedestrians’ 

configuration within the streets. To provide some non-background describing information I also 

added a measure that is created by taking the normalized absolute difference of pixel intensities 

between adjacent frames. 

Each dataset is comprised of video samples that are made of multiple frames, in order to 

describe each sample, each of the four visual measures is computed for every frame, the average 

and variance is then calculated across all frames in a sample resulting in an eight measure 

vector that describes the global visual composition and diversity shown over a number of 

frames. 

To evaluate the usefulness of the four aforementioned measures I needed to determine whether 

or not the measures extracted from violent data were significantly different from the same 

measures taken from non-violent data; one of two statistical methods was used to do this, either 

Students t-test or the Wilcoxon rank-sum test. Student’s t-test typically provides more accurate 

results than the Wilcoxon rank-sum test but requires that the data population to be normally 

distributed; to test for population normality a Kolmogorov-Smirnov test was performed.  If the 

normality test failed then the non-parametric rank-sum test is performed. 



 Kaelon Lloyd - C1112308 
 

39 
 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 1.7774e-080 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 2.5987e-018 

Looking at the edge cardinality and texture contrast measures across the Cardiff dataset we can 

see that either one of these will provide reasonably high discrimination between scenes of 

violence and non-violence on their own.  

The p-value represents the idea that the difference between populations occurs by chance; if a 

small p-value is returned you can reject the idea that the difference between populations has 

occurred randomly. 

Almost all measures across each dataset showed a significant difference between classes 

(Appendix A, B, C) with the exception of texture energy and contrast variance on the hockey 

dataset (Appendix C5 C8).  

  

FIGURE 17:  CARDIFF EDGE CARDINALITY AND TEXTURE CONTRAST  
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RESULTS OF EXTENDED DESCRIPTION 

All methods show an improvement in classification performance except STIP with a Linear SVM 

classifier which sees a 0.58% and 0.47% decrease in AUC and accuracy respectively. MBP sees 

substantial gains with 13.95% AUC improvement and 9.99% increase in general accuracy. STIP 

is the best method of classification for the Violent Flows dataset before and after the descriptor 

extension. 

 

The change in performance in entirely positive when applied to the hockey dataset. The lowest 

increase is seen when applying GEP extension to the STIP algorithm, an increase of >0.5% is 

shown, this is too small to justify the increased computation time required to generate both 

STIP and GEP. The lack of a justifiable increase in STIP performance probably stems from the 

fact that HOG provides powerful local description of visual elements seen in hockey data, and 

adding less descriptive measures wouldn’t affect performance. Trajectory HOF sees the largest 

FIGURE 19:  VIOLENT FLOWS DATASET RESULTS WITH AND WITHOUT METHOD EXTENSION  

FIGURE 18:  HOCKEY DATASET RESULTS WITH AND WITHOUT METHOD EXTENSION  



 Kaelon Lloyd - C1112308 
 

41 
 

improvement with 8.13% and 7.88% increase in both AUC and accuracy. Although STIP sees 

little performance increase it remains the best method for hockey violence classification. 

STIP using a linear classifier shows a minor decrease in performance but a major fall in AUC 

value, this decrease in AUC indicates that the ability of the linear SVM to discriminate between 

the two classes has fallen so far that the accuracy achieved by the extended STIP with linear 

classifier was essentially by chance. All other methods show an impressive increase in 

performance. The feature extension allows Violent Flows overtake Trajectory HOF as the best 

overall action descriptor for the Cardiff dataset. 

Short window Cardiff tests show a greater increase than its larger window test counterpart but 

once again STIP using a linear classifier is the only source of performance regression where the 

AUC has dropped 2.66%. MBP sees the largest accuracy gain with a 23.31% increase to its linear 

classification variant which elevates it to the best method of motion description for this 

particular test type.  
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FIGURE 20:  CARDIFF LONG WINDOW DATASET RESULTS WITH AND WITHOUT METHOD EXTENSION 
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FIGURE 21:  CARDIFF SHORT WINDOW DATASET RESULTS WITH AND WITHOUT METHOD EXTENSION  
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Across all four datasets a noticeable increase in performance is seen when combining GEP 

features with each motion based descriptor method. The one exception to this is the STIP 

algorithm whose linear classifier variant sees a consistent decrease in performance.  The most 

likely cause of this regression is that when the GEP features are combined with the STIP 

features a non-linear class divide is created which the linear SVM cannot be adequately define.  

The correlation between changes in true positive and true negative classification rates when 

extension is applied are as follows:  

 Hockey VIF Cardiff Long Window Cardiff Short Window 

Pearson’s R  0.831407 0.565433 0.064552 0.004652 

 

The results from the Hockey dataset show a high positive correlation meaning that the extended 

features increased classification rates for both classes by an almost equal amount.  

The results from the Violent Flows dataset show a weaker positive correlation which means 

that at each test one class shows a greater rate of improvement over the other; looking at the 

data we can see that classification rates for non-violent scenes increases a greater amount than 

violent scenes (See Appendix G). Although non-violence detection sees an increase it is not 

enough to bring any method above the currently best true negative rate of 70.18% held by the 

GEP descriptor; this means that the status of identifying a method suitable for describing the 

Violent Flows data within a real life scenario remains unchanged. 

Both Cardiff dataset results show extremely weak positive correlations indicating that both 

classes see classification improvements that are non-linear; based on the fact that true negatives 

had little room for improvement intuitively tells us that most performance increase happens to 

the violence class; this can be backed up by the data (See Appendix D E). 

By taking the average rate of change in classification performance over all four datasets for each 

method we can see how extension effected results overall. 

TABLE 12:  AVERAGE CHANGE IN PERFORMANCE OVER ALL DATASETS USING EXTENDED DESCRIPTORS  

 STIP VIF MBP  Trajectory HOF 

Classifier Random Linear Random Linear Random Linear  Random Linear 

Accuracy 1.35% -0.31% 8.47% 12.38% 7.04% 12.27%  3.09% 9.07% 

ROC AUC 2.32% -7.65% 14.21% 13.25% 13.03% 16.17%  10.76% 14.01% 

  

Based on the noticeable increase in classification rates across VIF, MBP and Trajectory HOF 

methods I can declare that I have fulfilled one of my set project goals by successfully proposing 

a way of extending pre-existing descriptor methods with the intent of producing improvements 

to classification performance.  
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COMBINATORIAL TESTING 
The many different ways violence can occur cannot be easily described by one single method as 

indicated by the results of the four dataset tests. It may be the case that when two different 

descriptor methods are combined a more powerful descriptor is created whose performance 

not only increases, but also extends over to different types of data thus producing a rounded 

solution that fits multiple violence subtypes. 

To evaluate whether or not merged descriptor methods offer greater classification accuracy 

over their standalone sub-parts, every possible combination using the five different descriptor 

methods and their subsets will be computed across all four datasets with both linear SVM and 

random forest variants for a total of 62 different tests per dataset. The results from both merged 

methods and the single method tests will be used to generate a Pareto frontier which dictates 

the objectively best results. 

In all further tables S, V, G, and T represent STIP, VIF, GEP and Trajectory HOF respectively; for 

example, a method labelled “SVG” indicates that it is comprised of STIP, VIF and GEP descriptor 

methods concatenated together. 

TABLE 13:  VIOLENT FLOWS DATASET FRONTIER INCLUDING METHOD COMBINATIONS  

 

The main problem with the Violent Flows dataset was that no single method was suited for real-

life application due to the low true negative rate, unfortunately introducing combinatorial 

descriptors doesn’t help at all; no descriptor combination is able to outperform the previously 

best true negative rate of 70.18% held by GEP.  The combination descriptor GVM does hold the 

greatest overall performance of any method; it outperforms the highest performing single 

method that is STIP, by 2.19%.   

  

Method Classifier True Positive True Negative Accuracy AUC 

G Linear 70.80% 70.18% 70.55% 74.98 

SVTG RF 91.24% 51.27% 75.22% 82.72 

SVGM RF 93.67% 52.00% 76.97% 81.89 

GVTM RF 87.35% 59.64% 76.24% 84.97 

GVT RF 87.59% 60.00% 76.53% 84.23 

SGM RF 90.27% 51.64% 74.78% 82.09 

GVM RF 88.08% 60.36% 76.97% 81.83 

GVM Linear 82.97% 69.45% 77.55% 82.90 

SG RF 91.97% 53.45% 76.53% 81.16 
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TABLE 14:  HOCKEY DATASET FRONTIER INCLUDING METHOD COMBINATIONS  

 

STIP appears to exist within each of the five most dominant method combinations; this suggests 

that STIP features contain extremely high descriptive power when applied to the hockey dataset. 

STIP had previously shown to be the dominant method with 87.35% accuracy; combinatorial 

results do not show much improvement with the next best method offering an overall 

performance increase of 1.1%. The results from the non-combinatorial tests on the hockey data 

shows that no method is suitable for use as an observation aid as they do not meet the 

suitability criteria; the combination of STIP + VIF does however meet them. 

TABLE 15:  CARDIFF LONG WINDOW DATASET FRONTIER INCLUDING METHOD COMBINATIONS  

Method Classifier True Positive True Negative Accuracy AUC 

G RF 72.04% 96.55% 86.33% 96.65 
G Linear 98.25% 87.30% 91.86% 96.30 

SVM RF 21.05% 99.69% 66.91% 92.02 

SVM Linear 30.04% 99.76% 70.70% 89.26 

SVG- RF 26.86% 99.61% 69.29% 94.45 

GVM RF 39.36% 99.53% 74.45% 93.51 

GVM Linear 62.17% 97.96% 83.04% 95.28 

SV RF 22.26% 99.69% 67.41% 89.48 

SV Linear 31.36% 99.61% 71.16% 89.25 

SM Linear 21.93% 100.00% 67.46% 81.63 

SG RF 19.41% 99.69% 66.22% 86.74 

MG Linear 60.96% 98.90% 83.09% 88.15 

 

The STIP+MBP combination achieves a perfect classification rate when identifying non-violent 

data unfortunately the violence detection is lacking greatly. GEP remains the best method for 

detecting violence in the large window Cardiff dataset as it holds the greatest overall accuracy 

against all method combinations.  

One of the requirements needed for a method to be considered for real-life application use was 

that their true positive classification rate was greater than the define threshold of 50%; 

combinatorial testing has provided two of these, MG and GVM. These two methods also hold 

high true negative rates which make them adequate candidates for use as surveillance 

observation aid.  

  

Method Classifier True 
Positive 

True 
Negative 

Accuracy AUC 

SVG RF 92.15% 84.37% 88.25% 94.88 
SGT RF 91.95% 84.37% 88.15% 95.03 

SV RF 92.76% 84.17% 88.45% 94.75 

SV Linear  85.92% 89.58% 87.75% 93.90 

SG RF 92.56% 84.17% 88.35% 95.06 
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TABLE 16:  CARDIFF SHORT WINDOW DATASET FRONTIER INCLUDING METHOD COMBINATIONS  

Method Classifier True Positive True Negative Accuracy AUC 

G RF 85.97% 97.01% 91.91% 97.31 
G Linear 97.11% 93.35% 95.09% 97.58 
SVGM Linear 45.83% 98.54% 74.18% 91.39 
SGM Linear 42.18% 98.54% 72.50% 92.58 
GVM Linear 64.12% 98.17% 82.44% 97.45 
MG Linear 71.60% 98.32% 85.97% 97.32 

 

As with the previous Cardiff dataset test, GEP comes out on top with a near perfect overall 

classification rate. By eliminating all methods on the frontier that obtain a true positive rate that 

falls below the acceptable threshold we are left with only GEP and a two combination 

descriptors, MG and GVM. Each of these three methods obtains a high true negative rate that 

makes them suitable for application as an observation aid. It is not clear which one would 

perform the best without a study on acceptable false negatives. 

TABLE 17:  CROSS DATASET PERFORMANCE FRONTIER INCLUDING METHOD COMBINATIONS  

Method Classifier True Positive True Negative Accuracy AUC 

SVTMG RF 63.92% 82.99% 76.42% 90.66 
G RF 78.36% 84.96% 82.52% 88.50 
G Linear 83.89% 83.05% 83.23% 87.32 
SVGM Linear 61.12% 87.35% 76.54% 87.64 
GVTM RF 70.68% 81.30% 78.05% 89.45 
SVM Linear 58.72% 87.07% 75.37% 85.91 
SVG RF 63.98% 82.95% 76.53% 91.21 
SVG Linear 62.62% 87.02% 77.06% 86.59 
GVT RF 71.33% 80.70% 77.99% 88.51 
GVM Linear 71.63% 86.04% 80.24% 89.98 
TGM RF 71.66% 81.51% 78.28% 89.77 
SV Linear 60.44% 87.51% 76.35% 85.15 
TG RF 72.20% 81.57% 78.46% 89.20 
SG RF 63.84% 83.71% 76.83% 92.30 

 

Before performing combinatorial testing the expectation was that the final average frontier 

would be comprised of only merged methods; as shown above this is not the case. GEP remains 

the best overall classification method across all datasets. The only dataset that shows GEP to not 

fall within the Pareto frontier was the hockey dataset; this implies that global visual descriptive 

nature of the measures held within GEP were not suited to sparse action scenes.  STIP + Violent 

Flows holds the top spot for most suitable candidate for use in real life applications but doesn’t 

quite reach the 90% true negative rate requirement. 
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CONCLUSIONS 
The main goal of the project was to create a method of action recognition that is capable at 

detecting crowd characteristics that are indicative of city centre locations; the intended method 

of identifying classification methods fit for purpose was to take multiple modern action 

recognition and evaluate their performance on suitable datasets. The results from all testing has 

shown that on average, global visual descriptors were better suited for violence detection 

across a wide variety of different violence types than other motion based methods.  

The average cross-set performance showed local motion features descriptors to outperform the 

global motion alternatives; the implication of this is that local descriptors are in fact better 

suited at describing densely populated scenes; this was the opposite of what was expected. The 

greatest cross-dataset classification performance achieved was 83.22%; this value is high 

enough for me to say that I have successfully developed a method for differentiating between 

different scene types depicting instances of violence and non-violence using computer vision 

techniques; this rate of classification was achieved by my own original descriptor design. 

One of my goals was to evaluate the results from the first wave of testing and derive a suitable 

way of improving classification scores by building on the flaws of each method. By analysing 

both the worst obtained results and the composition of each dataset I managed to devise four 

different measures that when combined with the already tested motion descriptor provided a 

sizeable increase in overall performance; these measure went on to form an independent 

method referred to as GEP (GLCM + Edge cardinality + Pixel frame difference) as they held 

significant descriptive power as shown by the overall results. Before these measures became 

their own entity they were first applied to each of the other four methods, three of which 

showed to be very receptive to the new data; VIF, MBP and Trajectory HOF showed increases in 

performance of up to 16%. 

The final phase of testing and evaluation was to determine whether or not merging different 

methods would result in a combination of descriptors that show greater performance than any 

method previously seen up to that point.  The results from this were ultimately negative; no 

combination was able to surpass the standalone performance of GEP.  

Within the document I established a scenario where obtaining the highest overall classification 

rate doesn’t translate to being the best method for use as an assistive piece of software to aid 

human observers identify violence. At each stage of testing and for each dataset I have 

highlighted descriptor methods that hold adequate performance for use in the real world. I 

identified methods suitable for both Hockey and Cardiff datasets. To identify suitable methods I 

state that the non-violence detection rate is more important than any other measure. Although 

results from the Violent Flows dataset show a high violence classification rate, it achieves a true 

negative rate that is too low for real world use; the same can be said about overall performance 

across all three datasets. 
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FUTURE IMPROVEMENTS 
All methods created for the purpose of action recognition hold a high computational cost; none 

of the methods proposed come close to running in real-time due to a combination of poorly 

optimized code and large amounts of numerically complex operations. In order to make any of 

these methods useful for real world applications a speed increase needs to be achieved.  

I use a loose definition of suitability when deciding whether or not a classification method 

provides adequate results for use in assisting surveillance observation. Suitable methods 

require a violence and non-violence detection rate of >50% and >90% respectively. These 

values were picked by applying perspective to the quantity of false alerts that would be 

presented to an observer. The definition may not be fully representative of what is acceptable in 

real workplace environments; therefore this definition can become far more precise by 

undertaking a study of human attention when a person is subject to varying types of visual or 

audio cues.  

LEARNING REFLECTION 
During development I constantly found myself implementing various algorithms required for 

scene description and method testing; typically each algorithm was quite long and would cover 

a wide range of operations. Towards the end of the project I found myself revisiting what I had 

written only to find chunks of completely incorrect logic; because of this I spent a lot of time 

fixing what should never have been broken in the first place. This problem arose because it can 

be quite difficult to notice mistakes when writing somewhat complex code without a set work 

structure; using document outlines and proper development plans I could have avoided this 

issue entirely, instead I found myself fixing errors and re-testing all my data; this is why RBF-

SVM classifications are absent throughout most of the document, there just wasn’t enough time 

to re-calculate them. 

The difficulty in writing this document was vastly underestimated; at the start of the project I 

dedicated the last week and a half to completing this document. The problem with this was that 

methods I had completed earlier in the projects life-cycle were distant memories and required 

that I return to them to fully understand how they work so that I could provide adequate 

documentation; this took a lot more time than I expected. The amount of time I dedicated to 

writing this report was not enough and upon reading it back I find that the standard of work 

produced wasn’t as high as I would have liked. In hindsight it is obvious that I should have been 

developing this document as the project progressed. 

Overall I enjoyed this project immensely and the experience has made me realise that I would 

like to continue studying within the visual computer science topic area. After this project is 

submitted I aim to understand the limitations of the proposed GEP method outside of violence 

detection context.  
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APPENDIX A 
 

 

 

  

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 1.0621e-016 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 0.0209 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 2.0726e-006 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 0.0087 

A.1  A.2 

A.3 A.4 
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Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 3.2535e-012 

Test: Wilcoxon rank-sum 

Difference Type: Not Significant 

P-Value: 1.0560e-005 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 1.4684e-019 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 1.7389e-015 

A.5  A.6 

A.7 A.8 
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Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 1.7774e-080 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 0 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 1.9132e-104 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 2.3587e-089 

APPENDIX B 
 

 

  

B.1  B.2 

B.3 B.4 
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Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 6.4266e-035 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 2.2338e-068 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 2.0751e-321 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 2.5987e-018 

  
B.5 B.6 

B.7 B.8 
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Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: : 8.6291e-048 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 5.6799e-012 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 5.9792e-045 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 3.2461e-045 

APPENDIX C 
 

 

  C.1  C.2 

C.3 C.4 
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Test: Wilcoxon rank-sum 

Difference Type: Not Significant 

P-Value: 0.9393 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 5.0064e-006 

Test: Wilcoxon rank-sum 

Difference Type: Significant 

P-Value: 2.7117e-005 

Test: Wilcoxon rank-sum 

Difference Type: Not Significant 

P-Value: 5.6692e-016 

 

 

 

 

 

 C.7 C.8 

C.5 C.6 
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APPENDIX D 
CARDIFF SHORT WINDOW DATASET RESULTS 

Method True 
Positive 

True 
Negative 

Specificity Sensitivity Accuracy AUC 

'SVTMG-TREE' 47.36% 97.30% 93.77% 68.27% 74.22% 93.49 
'SVTMG-LIN' 52.98% 96.93% 93.68% 70.59% 76.62% 87.01 

'G-TREE' 85.97% 97.01% 96.10% 88.95% 91.91% 97.31 

'G-LIN' 97.11% 93.35% 92.62% 97.41% 95.09% 97.58 

'S-TREE' 46.51% 96.42% 91.78% 67.73% 73.36% 92.42 

'S-LIN' 30.10% 96.20% 87.19% 61.57% 65.66% 68.52 

'M-TREE' 28.66% 94.67% 82.20% 60.70% 64.17% 75.73 

'M-LIN' 22.87% 96.86% 86.22% 59.38% 62.67% 75.38 

'V-TREE' 56.29% 86.12% 77.70% 69.64% 72.34% 74.43 

'V-LIN' 52.98% 86.63% 77.30% 68.20% 71.08% 72.63 

'T-TREE' 71.43% 84.09% 83.58% 72.19% 77.36% 87.99 

'T-LIN' 61.39% 79.17% 76.97% 64.39% 69.72% 78.19 

'SVTM-TREE' 43.79% 96.13% 90.67% 66.57% 71.94% 88.44 

'SVTM-LIN' 47.36% 95.91% 90.86% 67.96% 73.48% 77.59 

'SVTG-TREE' 46.34% 96.71% 92.37% 67.72% 73.44% 93.52 

'SVTG-LIN' 52.89% 96.86% 93.53% 70.53% 76.54% 87.03 

'SVGM-TREE' 42.69% 96.93% 92.28% 66.32% 71.87% 94.49 

'SVGM-LIN' 45.83% 98.54% 96.42% 67.93% 74.18% 91.39 

'SGTM-TREE' 47.70% 96.42% 91.97% 68.22% 73.91% 93.58 

'SGTM-LIN' 54.08% 96.64% 93.26% 71.01% 76.97% 89.04 

'GVTM-TREE' 61.48% 93.13% 88.49% 73.78% 78.51% 91.64 

'GVTM-LIN' 60.29% 95.47% 91.96% 73.68% 79.21% 90.08 

'SVT-TREE' 45.41% 95.76% 90.20% 67.13% 72.50% 88.55 

'SVT-LIN' 47.45% 95.40% 89.86% 67.88% 73.24% 75.46 

'SVM-TREE' 38.10% 96.64% 90.69% 64.51% 69.59% 89.19 

'SVM-LIN' 39.12% 98.54% 95.83% 65.33% 71.08% 83.32 

'STM-TREE' 45.07% 95.11% 88.78% 66.84% 71.98% 90.41 

'STM-LIN' 49.32% 95.76% 90.91% 68.75% 74.30% 79.33 

'VTM-TREE' 57.91% 91.09% 84.81% 71.58% 75.76% 81.80 

'VTM-LIN' 44.98% 89.55% 78.72% 65.46% 68.96% 65.58 

'SVG-TREE' 44.22% 97.30% 93.36% 67.00% 72.77% 94.57 

'SVG-LIN' 51.62% 97.81% 95.29% 70.18% 76.46% 87.75 

'SGT-TREE' 48.72% 96.27% 91.83% 68.61% 74.30% 94.43 

'SGT-LIN' 54.68% 96.64% 93.32% 71.28% 77.25% 89.68 

'GVT-TREE' 63.86% 92.55% 88.04% 74.88% 79.29% 92.84 

'GVT-LIN' 59.01% 95.40% 91.68% 73.04% 78.59% 90.33 

'SGM-TREE' 48.47% 97.59% 94.53% 68.80% 74.89% 95.56 

'SGM-LIN' 42.18% 98.54% 96.12% 66.49% 72.50% 92.58 

'GVM-TREE' 53.49% 97.30% 94.44% 70.89% 77.05% 93.97 

'GVM-LIN' 64.12% 98.17% 96.79% 76.10% 82.44% 97.45 

'TGM-TREE' 67.77% 91.89% 87.78% 76.85% 80.75% 93.65 
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'TGM-LIN' 63.52% 95.98% 93.14% 75.39% 80.98% 92.47 

'SV-TREE' 42.77% 97.30% 93.15% 66.43% 72.10% 89.27 

'SV-LIN' 43.71% 97.95% 94.83% 66.95% 72.89% 79.74 

'ST-TREE' 46.09% 95.40% 89.59% 67.32% 72.61% 90.30 

'ST-LIN' 48.98% 95.84% 91.00% 68.62% 74.18% 80.08 

'SM-TREE' 39.80% 97.01% 91.94% 65.23% 70.57% 91.30 

'SM-LIN' 34.35% 98.32% 94.61% 63.55% 68.76% 83.62 

'VT-TREE' 61.82% 89.04% 82.90% 73.08% 76.46% 80.58 

'VT-LIN' 45.15% 86.19% 73.75% 64.66% 67.23% 64.68 

'VM-TREE' 45.07% 93.21% 85.07% 66.39% 70.96% 75.36 

'VM-LIN' 37.07% 98.54% 95.61% 64.58% 70.14% 73.35 

'TM-TREE' 60.20% 90.50% 84.49% 72.58% 76.50% 82.30 

'TM-LIN' 46.77% 81.88% 68.92% 64.17% 65.66% 64.86 

'TG-TREE' 69.05% 91.53% 87.50% 77.49% 81.14% 93.51 

'TG-LIN' 72.36% 95.91% 93.83% 80.16% 85.03% 94.26 

'VG-TREE' 60.71% 96.71% 94.07% 74.13% 80.08% 96.32 

'VG-LIN' 77.30% 96.49% 94.98% 83.19% 87.62% 97.30 

'SG-TREE' 51.45% 97.52% 94.68% 70.04% 76.23% 96.26 

'SG-LIN' 36.14% 94.96% 86.03% 63.38% 67.78% 65.85 

'MG-TREE' 48.64% 97.37% 94.08% 68.82% 74.85% 95.99 

'MG-LIN' 71.60% 98.32% 97.34% 80.12% 85.97% 97.32 
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APPENDIX E 
 

 CARDIFF LARGE WINDOW DATASET RESULTS  

Method True 
Positive 

True 
Negative 

Specificity Sensitivity Accuracy AUC 

'SVTMG-TREE' 26.21% 99.45% 97.15% 65.35% 68.92% 93.56 

'SVTMG-LIN' 36.84% 99.06% 96.55% 68.70% 73.13% 68.62 

'G-TREE' 72.04% 96.55% 93.72% 82.85% 86.33% 96.65 

'G-LIN' 98.25% 87.30% 84.69% 98.58% 91.86% 96.30 

'S-TREE' 18.75% 99.53% 96.61% 63.15% 65.86% 93.71 

'S-LIN' 21.27% 99.84% 98.98% 63.96% 67.09% 76.64 

'M-TREE' 12.94% 99.06% 90.77% 61.42% 63.16% 77.72 

'M-LIN' 22.26% 99.69% 98.07% 64.21% 67.41% 84.01 

'V-TREE' 42.21% 93.18% 81.57% 69.29% 71.94% 78.73 

'V-LIN' 35.20% 94.44% 81.89% 67.09% 69.74% 72.79 

'T-TREE' 52.85% 94.67% 87.64% 73.75% 77.24% 74.46 

'T-LIN' 31.47% 82.99% 56.94% 62.89% 61.52% 50.87 

'SVTM-TREE' 23.68% 99.53% 97.30% 64.60% 67.92% 91.98 

'SVTM-LIN' 36.18% 99.22% 97.06% 68.51% 72.94% 68.39 

'SVTG-TREE' 23.46% 99.06% 94.69% 64.42% 67.55% 93.79 

'SVTG-LIN' 36.84% 99.06% 96.55% 68.70% 73.13% 68.84 

'SVGM-TREE' 23.57% 99.53% 97.29% 64.57% 67.87% 94.15 

'SVGM-LIN' 32.79% 99.22% 96.76% 67.38% 71.53% 87.56 

'SGTM-TREE' 18.53% 99.53% 96.57% 63.09% 65.77% 94.22 

'SGTM-TREE' 18.53% 99.53% 96.57% 63.09% 65.77% 94.22 

'SGTM-LIN' 38.27% 99.14% 96.94% 69.20% 73.77% 72.96 

'GVTM-TREE' 46.16% 97.88% 93.97% 71.78% 76.33% 91.97 

'GVTM-LIN' 38.27% 97.49% 91.60% 68.84% 72.81% 63.28 

'SVT-TREE' 21.82% 99.45% 96.60% 64.03% 67.09% 91.12 

'SVT-LIN' 36.18% 99.22% 97.06% 68.51% 72.94% 68.42 

'SVM-TREE' 21.05% 99.69% 97.96% 63.86% 66.91% 92.02 

'STM-TREE' 23.79% 99.37% 96.44% 64.60% 67.87% 91.71 

'STM-LIN' 38.05% 99.06% 96.66% 69.11% 73.63% 72.40 

'VTM-TREE' 41.78% 96.08% 88.40% 69.78% 73.45% 83.49 

'VTM-LIN' 30.59% 94.83% 80.87% 65.65% 68.05% 57.64 

'SVG-TREE' 26.86% 99.61% 98.00% 65.58% 69.29% 94.45 

'SVG-LIN' 33.44% 99.14% 96.52% 67.57% 71.76% 87.36 

'SGT-TREE' 17.76% 99.69% 97.59% 62.91% 65.54% 93.02 

'SGT-LIN' 38.49% 99.14% 96.96% 69.28% 73.86% 73.12 

'GVT-TREE' 48.14% 97.49% 93.21% 72.45% 76.92% 88.82 

'GVT-LIN' 38.82% 97.41% 91.47% 69.02% 72.99% 63.81 

'SGM-TREE' 16.67% 99.69% 97.44% 62.60% 65.08% 94.38 

'SGM-LIN' 19.52% 97.81% 86.41% 62.97% 65.17% 61.52 

'GVM-TREE' 39.36% 99.53% 98.36% 69.67% 74.45% 93.51 
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'GVM-LIN' 62.17% 97.96% 95.62% 78.37% 83.04% 95.28 

'TGM-TREE' 51.32% 97.18% 92.86% 73.63% 78.06% 93.27 

'TGM-LIN' 45.07% 97.18% 91.95% 71.22% 75.46% 69.94 

'SV-TREE' 22.26% 99.69% 98.07% 64.21% 67.41% 89.48 

'SV-LIN' 31.36% 99.61% 98.28% 67.00% 71.16% 89.25 

'ST-TREE' 18.86% 99.45% 96.09% 63.17% 65.86% 91.58 

'ST-LIN' 38.05% 99.06% 96.66% 69.11% 73.63% 72.58 

'SM-TREE' 16.78% 99.69% 97.45% 62.63% 65.13% 92.05 

'SM-LIN' 21.93% 100.00% 100.00% 64.19% 67.46% 81.63 

'VT-TREE' 45.61% 94.83% 86.31% 70.93% 74.31% 79.30 

'VT-LIN' 30.92% 93.65% 77.69% 65.48% 67.50% 57.39 

'VM-TREE' 32.35% 98.43% 93.65% 67.06% 70.89% 81.38 

'VM-LIN' 30.26% 99.61% 98.22% 66.65% 70.70% 74.00 

'TM-TREE' 46.60% 95.22% 87.45% 71.39% 74.95% 85.11 

'TM-LIN' 29.17% 95.06% 80.85% 65.25% 67.60% 56.01 
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APPENDIX F 
 

HOCKEY DATA DATASET RESULTS 

Method True 
Positive 

True 
Negative 

Specificity Sensitivity Accuracy AUC 

'SVTMG-TREE' 91.35% 83.57% 84.70% 90.65% 87.45% 94.84 
'SVTMG-LIN' 84.51% 84.57% 84.51% 84.57% 84.54% 90.84 

'G-TREE' 76.86% 77.56% 77.33% 77.09% 77.21% 83.45 

'G-LIN' 69.42% 81.36% 78.77% 72.76% 75.40% 80.42 

'S-TREE' 92.35% 82.36% 83.91% 91.54% 87.35% 95.04 

'S-LIN' 84.10% 87.37% 86.90% 84.66% 85.74% 92.24 

'M-TREE' 78.47% 74.75% 75.58% 77.71% 76.61% 83.13 

'M-LIN' 72.84% 75.75% 74.95% 73.68% 74.30% 81.22 

'V-TREE' 75.86% 62.12% 66.61% 72.09% 68.98% 75.72 

'V-LIN' 67.00% 63.33% 64.53% 65.83% 65.16% 71.68 

'T-TREE' 77.46% 70.74% 72.50% 75.91% 74.10% 82.03 

'T-LIN' 66.80% 64.53% 65.23% 66.12% 65.66% 70.57 

'SVTM-TREE' 92.15% 83.77% 84.97% 91.47% 87.95% 94.86 

'SVTM-LIN' 82.90% 82.77% 82.73% 82.93% 82.83% 89.51 

'SVTG-TREE' 92.15% 82.97% 84.35% 91.39% 87.55% 94.89 

'SVTG-LIN' 84.51% 84.57% 84.51% 84.57% 84.54% 90.94 

'SVGM-TREE' 91.55% 83.17% 84.42% 90.81% 87.35% 94.98 

'SVGM-LIN' 85.31% 88.38% 87.97% 85.80% 86.85% 93.57 

'SGTM-TREE' 91.75% 83.57% 84.76% 91.05% 87.65% 94.95 

'SGTM-LIN' 84.71% 83.37% 83.53% 84.55% 84.04% 90.61 

'GVTM-TREE' 87.73% 74.55% 77.44% 85.91% 81.12% 89.23 

'GVTM-LIN' 75.45% 66.73% 69.32% 73.19% 71.08% 76.78 

'SVT-TREE' 92.15% 83.37% 84.66% 91.43% 87.75% 94.53 

'SVT-LIN' 84.71% 83.37% 83.53% 84.55% 84.04% 90.19 

'SVM-TREE' 91.75% 82.57% 83.98% 90.95% 87.15% 94.41 

'SVM-LIN' 84.71% 87.78% 87.34% 85.21% 86.24% 93.12 

'STM-TREE' 91.35% 82.16% 83.61% 90.51% 86.75% 94.65 

'STM-LIN' 83.70% 81.76% 82.05% 83.44% 82.73% 89.74 

'VTM-TREE' 83.70% 71.94% 74.82% 81.59% 77.81% 84.18 

'VTM-LIN' 68.41% 68.14% 68.14% 68.41% 68.27% 72.35 

'SVG-TREE' 92.15% 84.37% 85.45% 91.52% 88.25% 94.88 

'SVG-LIN' 85.11% 88.58% 88.13% 85.66% 86.85% 93.55 

'SGT-TREE' 91.95% 84.37% 85.42% 91.32% 88.15% 95.03 

'SGT-LIN' 84.10% 83.57% 83.60% 84.07% 83.84% 90.61 

'GVT-TREE' 85.71% 72.75% 75.80% 83.64% 79.22% 88.14 

'GVT-LIN' 71.63% 69.94% 70.36% 71.22% 70.78% 76.05 

'SGM-TREE' 91.95% 83.77% 84.94% 91.27% 87.85% 94.83 

'SGM-LIN' 84.91% 88.58% 88.10% 85.49% 86.75% 93.26 

'GVM-TREE' 83.70% 73.15% 75.64% 81.84% 78.41% 85.57 
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'GVM-LIN' 77.26% 78.56% 78.21% 77.62% 77.91% 84.28 

'TGM-TREE' 86.52% 76.95% 78.90% 85.14% 81.73% 89.70 

'TGM-LIN' 71.83% 69.34% 70.00% 71.19% 70.58% 75.82 

'SV-TREE' 92.76% 84.17% 85.37% 92.11% 88.45% 94.75 

'SV-LIN' 85.92% 89.58% 89.14% 86.46% 87.75% 93.90 

'ST-TREE' 92.15% 83.37% 84.66% 91.43% 87.75% 94.73 

'ST-LIN' 83.30% 82.36% 82.47% 83.20% 82.83% 89.72 

'SM-TREE' 92.15% 82.36% 83.88% 91.33% 87.25% 94.59 

'SM-LIN' 83.70% 87.37% 86.85% 84.33% 85.54% 92.16 

'VT-TREE' 82.09% 68.54% 72.21% 79.35% 75.30% 82.37 

'VT-LIN' 69.82% 67.74% 68.31% 69.26% 68.78% 72.96 

'VM-TREE' 75.86% 65.73% 68.80% 73.21% 70.78% 78.45 

'VM-LIN' 72.84% 71.94% 72.11% 72.67% 72.39% 79.71 

'TM-TREE' 78.47% 73.15% 74.43% 77.33% 75.80% 84.55 

'TM-LIN' 68.61% 64.53% 65.83% 67.36% 66.57% 71.70 

'TG-TREE' 85.51% 75.15% 77.41% 83.89% 80.32% 88.95 

'TG-LIN' 71.83% 67.13% 68.52% 70.53% 69.48% 74.99 

'VG-TREE' 83.70% 69.54% 73.24% 81.07% 76.61% 84.12 

'VG-LIN' 74.25% 72.34% 72.78% 73.82% 73.29% 79.54 

'SG-TREE' 92.56% 84.17% 85.34% 91.90% 88.35% 95.06 

'SG-LIN' 84.31% 88.98% 88.40% 85.06% 86.65% 93.05 

'MG-TREE' 80.68% 77.15% 77.86% 80.04% 78.92% 87.30 

'MG-LIN' 72.84% 76.75% 75.73% 73.94% 74.80% 83.35 
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APPENDIX G 
 

VIOLENT FLOWS DATASET RESULTS 

Method True 
Positive 

True 
Negative 

Specificity Sensitivity Accuracy AUC 

'SVTMG-TREE' 90.75% 51.64% 73.72% 78.89% 75.07% 80.74 
'SVTMG-LIN' 83.45% 58.55% 75.05% 70.31% 73.47% 77.81 

'G-TREE' 78.59% 68.73% 78.97% 68.23% 74.64% 76.58 

'G-LIN' 70.80% 70.18% 78.02% 61.66% 70.55% 74.98 

'S-TREE' 91.97% 50.55% 73.54% 80.81% 75.36% 78.75 

'S-LIN' 80.05% 63.27% 76.51% 67.97% 73.32% 76.99 

'M-TREE' 78.10% 38.91% 65.64% 54.31% 62.39% 63.38 

'M-LIN' 66.18% 52.73% 67.66% 51.06% 60.79% 63.86 

'V-TREE' 84.67% 49.82% 71.60% 68.50% 70.70% 75.73 

'V-LIN' 75.91% 53.09% 70.75% 59.59% 66.76% 71.24 

'T-TREE' 80.29% 60.00% 75.00% 67.07% 72.16% 79.03 

'T-LIN' 74.21% 44.36% 66.59% 53.51% 62.24% 60.73 

'SVTM-TREE' 91.48% 50.55% 73.44% 79.89% 75.07% 80.94 

'SVTM-LIN' 84.43% 57.82% 74.95% 71.30% 73.76% 75.44 

'SVTG-TREE' 91.24% 51.27% 73.67% 79.66% 75.22% 82.72 

'SVTG-LIN' 83.45% 58.55% 75.05% 70.31% 73.47% 77.76 

'SVGM-TREE' 93.67% 52.00% 74.47% 84.62% 76.97% 81.89 

'SVGM-LIN' 80.54% 63.27% 76.62% 68.50% 73.62% 78.03 

'SGTM-TREE' 91.48% 48.73% 72.73% 79.29% 74.34% 81.18 

'SGTM-LIN' 83.21% 57.82% 74.67% 69.74% 73.03% 77.70 

'GVTM-TREE' 87.35% 59.64% 76.38% 75.93% 76.24% 84.97 

'GVTM-LIN' 75.67% 50.91% 69.73% 58.33% 65.74% 66.94 

'SVT-TREE' 92.94% 48.00% 72.76% 81.99% 74.93% 81.05 

'SVT-LIN' 84.43% 57.82% 74.95% 71.30% 73.76% 75.46 

'SVM-TREE' 91.73% 48.73% 72.78% 79.76% 74.49% 79.20 

'SVM-LIN' 81.02% 62.18% 76.20% 68.67% 73.47% 77.94 

'STM-TREE' 91.48% 50.18% 73.29% 79.77% 74.93% 80.34 

'STM-LIN' 84.43% 57.09% 74.62% 71.04% 73.47% 75.33 

'VTM-TREE' 83.94% 56.36% 74.19% 70.14% 72.89% 81.26 

'VTM-LIN' 74.21% 45.45% 67.03% 54.11% 62.68% 62.16 

'SVG-TREE' 92.70% 50.55% 73.69% 82.25% 75.80% 80.94 

'SVG-LIN' 80.29% 62.55% 76.21% 67.98% 73.18% 77.69 

'SGT-TREE' 91.97% 51.27% 73.83% 81.03% 75.66% 81.83 

'SGT-LIN' 83.45% 58.18% 74.89% 70.18% 73.32% 77.73 

'GVT-TREE' 87.59% 60.00% 76.60% 76.39% 76.53% 84.23 

'GVT-LIN' 75.43% 50.18% 69.35% 57.74% 65.31% 66.62 

'SGM-TREE' 90.27% 51.64% 73.61% 78.02% 74.78% 82.09 

'SGM-LIN' 79.81% 62.91% 76.28% 67.58% 73.03% 77.06 

'GVM-TREE' 88.08% 60.36% 76.86% 77.21% 76.97% 81.83 
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'GVM-LIN' 82.97% 69.45% 80.24% 73.18% 77.55% 82.90 

'TGM-TREE' 81.02% 60.00% 75.17% 67.90% 72.59% 82.48 

'TGM-LIN' 75.18% 51.27% 69.75% 58.02% 65.60% 66.44 

'SV-TREE' 92.21% 48.00% 72.61% 80.49% 74.49% 80.55 

'SV-LIN' 80.78% 62.91% 76.50% 68.65% 73.62% 77.70 

'ST-TREE' 91.48% 48.36% 72.59% 79.17% 74.20% 79.40 

'ST-LIN' 84.43% 57.09% 74.62% 71.04% 73.47% 75.34 

'SM-TREE' 90.75% 48.36% 72.43% 77.78% 73.76% 79.46 

'SM-LIN' 80.05% 64.00% 76.87% 68.22% 73.62% 77.42 

'VT-TREE' 83.94% 56.00% 74.03% 70.00% 72.74% 81.46 

'VT-LIN' 74.94% 42.18% 65.95% 52.97% 61.81% 61.24 

'VM-TREE' 82.24% 54.91% 73.16% 67.41% 71.28% 75.27 

'VM-LIN' 73.97% 58.18% 72.55% 59.93% 67.64% 72.90 

'TM-TREE' 79.56% 60.00% 74.83% 66.27% 71.72% 79.92 

'TM-LIN' 73.48% 44.73% 66.52% 53.02% 61.95% 61.14 

'TG-TREE' 81.27% 62.91% 76.61% 69.20% 73.91% 82.84 

'TG-LIN' 75.43% 49.09% 68.89% 57.20% 64.87% 65.49 

'VG-TREE' 87.10% 60.00% 76.50% 75.69% 76.24% 81.92 

'VG-LIN' 81.75% 64.36% 77.42% 70.24% 74.78% 81.54 

'SG-TREE' 91.97% 53.45% 74.70% 81.67% 76.53% 81.16 

'SG-LIN' 80.05% 61.82% 75.81% 67.46% 72.74% 76.51 

'MG-TREE' 82.97% 56.36% 73.97% 68.89% 72.30% 76.50 

'MG-LIN' 77.37% 61.09% 74.82% 64.37% 70.85% 78.65 
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