
Smart Home Activity Inference using Network Data

A supervised methodology for IoT device activity inference,
annotation, and logging for Smart Homes

MARY ZACHARIAS

School of Computer Science and Informatics,
Cardiff University

This dissertation is submitted for the degree of
MSc Computing

ABSTRACT

T
his dissertation seeks to infer physical events in real time, from an ensemble of off-the-shelf

smart home devices, using only encrypted network data.

To develop the proposed system, a “smart-home style network” is set up within the university’s

laboratory environment. A multi-stage classification process is then used — a set of classifiers are

trained to first, ’fingerprint’ connected devices using passive techniques, and then to detect binary

and more specific differences in the states of these connected devices.

To validate the system, these classifiers are then deployed within a smart home ’diagnostics’

application. This layman-friendly solution offers users real-time visibility and correlated insights

into the current and historic physical activities of their smart home devices —without any manual

set-up or device integration necessary.

This paper achieves a 99.3% f1 score in detecting a connected device as ’IoT’, 96.0% f1 score

in fingerprinting the device, and 90.1% f1 score in identifying the state of the targeted smart home

device. Through these results, this paper seeks to demonstrate that network data could be used to

supplant more complex device data collection techniques within diagnostics or even simple Human

Activity Recognition tools in smart home settings.

To the best knowledge of the author, the contributions of this project include:

1. A demonstration that device activities in smart homes can be successfully inferred from

encrypted network traffic data.

2. A survey of current use-cases and methodologies in activity recognition for smart homes.

3. A methodology to (a) sniff network data and stream it in real-time, (b) pre-process data online

to serve real-time predictions using pre-trained models, (c) to re-train machine learning

models online based on user input.

4. An analysis of performance metrics from various machine learning models with a recommen-

dation for the top-performing model.

5. A standalone interactive tool with opportunity to add-on to an existing open-source home

automation platform.

i

ACKNOWLEDGEMENTS

I would like to thank Dr. Charith Perera, my dissertation supervisor, for his constant support

throughout the course of the project. Dr. Perera’s guidance throughout the academic year allowed

this project to take shape seamlessly.

I would also like to thank my family for the support they provided throughout this academic year.

DATE: 21 OCTOBER 2022

iii

TABLE OF CONTENTS

Page

List of Tables viii

List of Figures ix

1 Overview 1

1.1 Introduction . 1

1.2 Project Aim . 2

1.3 Objectives . 3

1.4 Contributions . 3

1.5 Outline of Thesis . 4

2 Background 6

2.1 Introduction . 6

2.2 Activity recognition . 6

2.2.1 The need for activity recognition . 6

2.2.2 Use-cases for Activity Recognition in Smart Homes 7

2.2.3 Methodology for HAR systems . 8

2.2.4 Common challenges in HAR . 10

2.3 Machine Learning approaches in HAR . 11

2.3.1 Shallow learning . 11

2.3.2 Deep learning . 11

2.3.3 Transfer learning . 12

2.3.4 Active learning . 12

2.4 Conclusion and Discussion of Scope of Work . 12

3 Related Work 13

3.1 Introduction . 13

3.2 Existing Literature . 13

3.2.1 State-of-the-art in Fingerprinting Techniques 14

3.2.2 State-of-the-art in Device State Recognition Techniques 17

3.2.3 State-of-the-art in Activity Recognition Techniques 18

3.3 Conclusion and Evaluation of Literature Discussed . 19

v

TABLE OF CONTENTS

4 Methodology 20

4.1 Introduction . 20

4.2 Overall Methodology . 21

4.3 Multi-Stage classification methodology for Activity Identification 23

4.3.1 Stage 1: Detecting IoT versus Not IoT . 23

4.3.2 Stage 2: Device Identification . 24

4.3.3 Stage 3: Device State/Activity Identification . 24

4.3.4 Stage 4: User-Activity Identification . 25

4.4 Conclusion . 25

5 Data Preparation 27

5.1 Introduction . 27

5.2 Developing the Smart Home Network . 27

5.2.1 Devices used . 27

5.2.2 Tools used . 28

5.3 Data Capture . 28

5.3.1 Methodology for Data Capture from Smart Home Lab 28

5.3.2 External Datasets . 30

5.3.3 Methodology for Data Capture during Live Deployment 30

5.4 Data Pre-processing . 31

5.5 Summary . 31

6 Pipeline Preparation and Application Development Methodology 33

6.1 Introduction . 33

6.2 Pipeline Development Overview . 33

6.2.1 MLOps and Productionalisation . 34

6.2.2 Pipeline orchestration tools . 35

6.3 Application development methodology . 36

6.3.1 Environment . 36

6.3.2 Features and UI . 36

6.3.3 Back End . 39

6.4 Summary . 41

7 Performance and Analysis 42

7.0.1 Detecting IoT versus Not IoT . 43

7.0.2 Detecting Device type — Device Fingerprinting 46

7.0.3 Detecting Activity States - On vs Off . 47

7.1 Summary . 48

8 Conclusion and Future Work 51

8.1 Conclusion . 51

vi

TABLE OF CONTENTS

8.2 Limitations . 52

8.3 Future Work . 52

9 Reflection 54

9.1 Project Management Style . 55

9.2 Shortcomings of work conducted . 56

9.3 Key Learnings and Takeaways . 58

Bibliography 60

Appendix A 65

A.0.1 Software Used . 65

A.0.2 CLI/ OS commands . 66

A.0.3 Apache Kafka Scripts . 67

A.0.3.1 Kafka Producer . 67

A.0.3.2 Kafka Consumer . 69

A.0.4 User Interface . 70

A.0.5 Classification results . 73

A.0.5.1 Stage-1 (IoT vs NoT) Classification results . 73

A.0.5.2 Stage-2 (Device Fingerprinting) Classification results 74

A.0.5.3 Stage-3 (Device State) Classification results 76

A.0.6 Code . 79

1. Script for Homepage dynamic graph . 79

2. Script for IP -> MAC mapping . 80

3. Script to predict IoT versus Non-IoT devices . 81

4. Script to retrieve data from database . 81

5. Script to output data from above two functions to front end from Database 82

6. Script to create individual line graphs of each devices’ activity for a desired time

period, generated through a user query (flask form) 82

7. Script to write user-input(label) for Device Location from the front-end to the

associated table in the database . 84

8. Script to write user-input(label) for Device Name from the front-end to the

associated table in the database . 85

9. Script to predict device’s names and locations from 30-second traffic flows using

relevant Stage2 and Stage3 classifiers, and write this to a table in the

database, for functions like graphing and logging 86

10. Script to capture live network traffic every 30 seconds, convert it to a flow-based

feature-set (CSV) and a packet ’metadata’ based feature-set (CSV), save

these CSV files temporarily (for future re-training use), and and then serve

predictions on each sample . 88

11. DeviceStates Table in SQLite . 90

vii

12. DeviceLocations Table in SQLite . 91

13. DeviceNames Table in SQLite . 91

LIST OF TABLES

TABLE Page

3.1 Survey of passive device identification techniques using network tracking 16

5.1 Network traces from the Smart Lab at Cardiff University used by the Device recognition

model. 30

7.1 Performance results from 8 binary classifiers for the IoT vs. Non-IoT detection stage . . 45

7.2 Performance results from 9 multi-class classifiers for the Device fingerprinting stage . 46

7.3 Performance results from 9 binary classifiers for the Device state recognition stage . . 48

1 Software used for generating results . 65

viii

LIST OF FIGURES

FIGURE Page

2.1 Activities of Daily Living. Fig source: (Ni et al., 2015) . 7

2.3 General use cases for HAR in smart homes . 8

2.4 Generic HAR Methodology . 8

2.5 Considerations for Human Activity recognition . 9

3.1 High-level logic for sequential activity detection using network data 14

3.2 Device Fingerprinting Techniques . 15

3.4 Source: (Acar et al., 2020) . 17

3.5 Source: (Apthorpe et al., 2018) . 17

4.1 Multi-stage process for activity identification . 20

4.2 Pipeline for user activity inference tool . 20

4.3 Overall Process Diagram for a generic Activity Recognition ’Add-On’ for Home Assistant. 21

4.5 Overall Process Diagram for a generic standalone Activity Recognition tool 22

4.6 Proposed methodology for the standalone Activity Recognition tool 23

5.1 General pre-processing methodology . 31

6.1 Proposed Process Diagram . 34

6.2 Typical workflow for real-time prediction . 35

7.1 Classification of IoT and Non-IoT traffic patterns . 44

7.2 Feature Importance - Light GBM for IoTvNoT on traffic metadata 45

7.3 Feature Importance - Light GBM for Device Fingerprinting on network flows 47

7.4 Feature Importance - Extreme Gradient Boost for Device State Identification using

network flows . 49

1 Homepage: Real-time graph showing bytes/second sent over the local network 70

2 Homepage: Current Activities and Active spaces in the Smart Home 70

3 Homepage: Anomalies activities and warnings . 71

4 Homepage: Navigation . 71

5 Connected Devices: Overview of all device states . 71

ix

LIST OF FIGURES

6 Connected Devices: User input (supervised learning) to manually input device names

and locations (to partially retrain models online . 72

7 Connected Devices: Detection of IoT and Non IoT devices in the local network 72

8 Dashboard: Historic Trends . 72

9 Results - Cumulative . 73

10 Stage 1 - Results - Light Gradient Boosting Machine . 73

11 Stage 2 - Results - Light Gradient Boosting Machine . 74

12 Stage 2 - Results - Extreme Gradient Boost . 74

13 Stage 2 - Results - OneVsRest with Extreme Gradient Boost base estimator 75

14 Stage 2 - Results - Random Forest . 75

15 Stage 3 - Results - AdaBoost . 76

16 Stage 3 - Results - Gradient Boost . 76

17 Stage 3 - Results - OneVsRest with Random Forest Base estimator 77

18 Stage 3 - Results - OneVsRest with ExtremeGradientBoost base estimator 77

19 Stage 3 - Results - ExtremeGradientBoost . 78

20 Stage 3 - Results - Feature Importance Scores - ExtremeGradientBoost 78

x

C
H

A
P

T
E

R

1
OVERVIEW

1.1 Introduction

Human activity recognition, or HAR, is a broad field of study concerned with identifying the specific

movement or action of a person(s) based on sensor data. HAR has multi-faceted applications, and

is often explored in diverse built environments such as hospitals and hospices, office spaces, factory

floors, educational institutions, commercial complexes, sports and leisure facilities, and domestic

environments like smart homes and care homes. While research in HAR has been traditionally

explored through imagery using technologies like computer and machine vision, it is now evolving

to the use of non-image data —i.e., through the use of non-invasive sensing— which is already

breaking barriers within the healthcare industry (Sumathy et al., 2021).

Current research in HAR predominantly uses device readings taken directly from source —that

is, directly from the local sensing device, or from the associated smartphone or web application

of the commercial off-the-shelf (COTS) device— as input, for machine learning models to serve

predictions on. Whilst this data acquisition process inevitably involves some degree of manual-

intervention, it is relatively straightforward if (a) it is managed by the researchers themselves, and

(b) it is done from a manageable set of IoT devices, and/or (c) it uses devices from developer-friendly

’ecosystems’ such as ’SmartThings’, ’Nest’ and ’Withings’, which include APIs (usually at a fee) to

extract these readings.

Data acquisition in this manner, however, will not scale well for real-world applications (such as the

recognition of Activities of Daily Living (ADL)), where the installation and set up of such a system

may be managed by a non-technical end-user like a smart home owner or care home manager. Nor

will this scale in scenarios where the number and types of sensing devices are likely to increase. In

essence, extracting and collating data from a collection of heterogeneous, off-the-shelf, IoT devices

1

CHAPTER 1. OVERVIEW

within a local network for a layman, and even potentially a researcher, can be non-trivial.

To address this problem, this paper looks at alternate, simpler means of data acquisition, and

then checks whether this technique can be used to build a competent smart home-based activity

recognition system.

To this end, network traffic is explored in the rest of the paper as a viable alternative to de-

vice data.

1.2 Project Aim

The primary motivation for the proposed system is to assist diverse user groups in getting access

to insights on their home devices’ activities and in extension their own activities, through simple,

non-invasive, hardware-agnostic means. As such, a fundamental requirement is to support in

answering questions like "What are the current states of all connected devices?", and “Are there

any seasonal activity patterns?” and even “What was happening in the house up to and during a

particular event?”. While historically, research and development in activity recognition catered

to specific user groups like health-care assistants and 3rd-party researchers, a general-purpose

activity recognition application could prove useful to a much wider audience of smart home owners,

care home managers, IoT enthusiasts, students, and the residents of the smart home themselves.

Products that come close to giving residents insights on their own home activities include open-

source software hubs like Home Assistant (H.A, 2022) and OpenHAB (OH, 2022), however these

fall short of reaching ’wide-enough’ user groups because of the time and technical skills they

require to set up, the specific OS platform they need, and the monetary commitment they ask for,

to retrieve data from some of the more popularly used devices’ cloud ecosystems. It is noteworthy

also that these do not currently offer any correlated or ’user’ activity insights.

To be truly ’general-purpose’, the project thus prioritises usability, scalability and comprehensibil-

lity. By ’usable’ the paper intends that (a) the tool can run across most operating systems with

minimal to no additional hardware requirements, and (b) will require no pre-requisite technical

skills; by ’scalable’ the paper intends that the tool can be used to (semi) automatically learn to

detect new devices and new activity patterns, and by ’comprehensive’, the paper intends that

the tool is able to provide an insight into activities derived from across the entire home network,

including the past and in real time.

To implement this project, this paper builds upon the research and methodologies used in both

(Avizheh et al., 2017) and (Acar et al., 2020). In contrast to the first, this paper specifically focuses

on the logging of device-activities as opposed to generic network traffic, and in comparison with

the second, this paper productionalises the research using Machine Learning Operations (MLOps),

and proposes a real-time activity inference tool in order the demonstrate results ’in the wild’.

2

1.3. OBJECTIVES

1.3 Objectives

In order to successfully complete this project, the following objectives needed to be met:

• A literature review of existing user-activity inference techniques.

• Experimentation in activity recognition using network traffic data to assess degree of infer-

ence possible.

• The selection and implementation of appropriate machine learning classifiers for deployment

and online learning.

• The design and live deployment of the machine learning pipeline.

• A performance evaluation of the overall design through relevant metrics.

1.4 Contributions

To the best knowledge of the author, the main contributions of this research project include:

1. A pipeline which uses live traffic and user-input to semi-automatically compute and expose

device activity patterns of interest in smart homes.

2. Comparison with several implementations from existing literature for device identification

and activity recognition accuracy using the UNSW (UNS, 2021) and a local dataset.

3. Evaluation of the proposed solution with a dataset from 8 commercial smart home devices

present in the Smart Lab at Cardiff University.

4. Development of a Dockerised standalone Flask application with scope to convert to an ’Add

On’ (HAA, 2022) for the open-source platform, Home Assistant. (H.A, 2022).

These contributions are further outlined in chapters 5-8.

As for point 4, this project specifically chooses Home Assistant, a leading open-source automation

hub for IoT, to set the benchmark against, to compare and demonstrate ease of install and usability

in this development. As highlighted in Section 1.2, most home automation hubs including Home

Assistant currently provide insights into individual connected devices activities including their

states and usage patterns, however, these do not provide correlated or ’larger picture’ insights.

Moreover, due to limited free integration capabilities, these hubs do not automatically connect to

all devices in the network, notably denying free access to ecosystems like Alexa, SmartThings,

Nest and Google Home. By addressing this gap in the (open-source) market through a tool that

is able to capture information indiscriminately from all Wi-Fi/Ethernet-connected devices within

a network, the author hopes to incentivise everyday users to gain high-level insights into their

everyday home activities easily.

3

CHAPTER 1. OVERVIEW

The ’logging’ capabilities of this proposal are also of note. A ’logbook’ of events in a home en-

vironment can give an indication about the lifestyle profile of the residents. to this end, this tool

stores network events in a low-level form. It also passes these through an abstraction mecha-

nism that produces higher-level summaries (e.g., Netflow-like records from packet-level traces),

which is persisted in a database. In addition to the home resident, the data procured from this

proposal could prove lucrative to numerous 3rd-party researchers such as device manufacturers,

environmental scientists, and even forensics investigators in the event of a legal proceeding.

1.5 Outline of Thesis

The remainder of this paper is structured as follows:

Chapter 2: Background

This chapter provides a brief summary of Activity Recognition in smart homes and how ma-

chine learning has been utilised for Activity Recognition.

Chapter 3: Related Work

This chapter covers a detailed study of different device and activity recognition tools and re-

search approaches. Existing datasets within the field of activity recognition are also reviewed in

order to finalise a ’reserve’ dataset. The literature’s are compared and analysed to finalise the

design of the project.

Chapter 4: Methodology

This chapter describes the high-level pipeline followed by this research to infer user-activities and

anomalies in real-time.

Chapter 5: Data Collection

This chapter discusses the process of how data is prepared before it is inputted into the sys-

tem. It also outlines the pre-processing methodology used by this research.

Chapter 6: Pipeline Preparation and Application Development Methodology

This chapter describes the development of the multi-stage device activity recognition tool, along

with the dependencies, frameworks and algorithms used.

4

1.5. OUTLINE OF THESIS

Chapter 7: Performance and Analysis

This chapter describes and analyses the performance of different classifiers at each stage of

the overall system. The performance of this system is compared to existing literature implementa-

tions that utilise similar datasets.

Chapter 8: Conclusion and Future Work

This chapter provides a summary of work completed for this project. Additionally, it discusses the

limitations of this research work. Lastly, it outlines future short-term and long-term directions for

this project.

Chapter 9: Work Reflection

This chapter provides a brief overview of the project management style along with any successes,

failures and lessons learnt.

5

C
H

A
P

T
E

R

2
BACKGROUND

2.1 Introduction

This chapter provides a background into the field of Activity Recognition for Smart Homes. It

highlights its use-cases and also outlines the challenges and gaps in current literature. It also

describes current machine learning approaches used in activity detection. It then concludes by

refining the scope of the dissertation.

2.2 Activity recognition

2.2.1 The need for activity recognition

Activity recognition systems are a large field of research and development, currently with a focus

on advanced machine learning algorithms, innovations in the field of hardware architecture, and

on decreasing the costs of monitoring while increasing safety and privacy (Sarnaik, 2020). Within

this field, Human Activity Recognition (HAR) in Smart Homes has been on the forefront of research

in the fields of Human Computer Interaction (HCI) and Internet of Things (IoT) in recent years.

HAR is often described as the art of identifying, naming and oftentimes, predicting, human

movements and actions from raw image or text-based data using machine learning. Here, ’move-

ment’ typically refers to general ambulation activities performed indoors, such as walking, jogging,

walking upstairs, as well as standing, sitting, and laying down, while ’actions’ refer to more complex

and/or functional activities such as those types of activities performed in a kitchen, bathroom or in

a workspace at home. Actions in themselves, could be simple yet specific, for example, ’peeling an

apple’, ’wearing a jacket’, ’writing a check’ while others could be generic but ’complex’ in nature, for

example, ’visiting the bathroom’ or ’cooking’. Here, ’complexity’ is defined as a sequence of actions

which potentially involves different interactions with objects, equipment or other people.

6

2.2. ACTIVITY RECOGNITION

Composite Activities Concurrent Activities

Sequential Activities Interleaved Activities

Toileting

Open Door Turn on Light Flush Turn off Light

Watch TV

Answer the Mobile

Open Fridge Drink Water Close Fridge Prepare meal

Go to toilet

Prepare meal

T1 T2 T3 T4 T5 T6 T7 T8

Time Time

T3T2T1 T4

T1 T2 T3 T4 T5 T6

Time Time

T1 T2 T3 T4

Figure 2.1: Activities of Daily Living. Fig source: (Ni et al., 2015)

Activities are typically grouped under 4 categories: Composite, Concurrent, Sequential and Interleaved. Defining and

labelling simple patterns such as walking, sleeping, sitting, and more complex patterns such as cooking, eating lunch,

watching TV, working, etc. would involve factors such as time of day, duration, surrounding devices and location.

In the context of smart homes, this data is typically collected from internet-connected (IoT)

devices which are largely grouped under two categories:

• (a) Body-based devices or wearables: These include smartphones, smart watches, implanta-

bles and even smart clothing, which often include advanced sensors such as gyroscopes,

accelerometers, magnetometers, heart-rate monitors, glucose monitors, etc.

• (b) Environment-based devices: These include motion and heat detectors, door/window contact

sensors, vibration sensors, and smart appliances such as surveillance systems (smart cameras

and alarms), body-health trackers (sleep mats, weighing scales, blood pressure monitors),

voice assistants, energy monitoring devices (smart plugs and bulbs) and entertainment

systems (smart TVs, speakers and mood lights) etc.

Using such a collection of visual and non-visual sensory data, HAR systems are able to retrieve

and process contextual (environmental, spatial, temporal, etc.) data to understand human behavior

both inside and outside built environments Accurately tracking and logging user activities and

behaviours using these devices in a domestic environment has applications in fields such as

forensics, health care systems, cyber defence, domestic resource management, and smart device

(IoT) development amongst others. Some of these applications are further described in the next

section.

2.2.2 Use-cases for Activity Recognition in Smart Homes

Sensor-based activity recognition can be used to model a wide range of human activities. These

systems could prove crucial for numerous applications, some of which include: (a) Forensic investi-

gations: where activity data retrieved from smart homes is increasingly being used as supportive

7

CHAPTER 2. BACKGROUND

Chore
Management

Health
Care

Security +
Surveillance

Domestic
Climate Actions

Forensics
Investigations

Activities of Daily Living (ADL) + Assisted Ambient Living (AAL)

Figure 2.3: General use cases for HAR in smart homes

evidence in court cases (Burke, 2022) (b) Health care systems: where the move from image-based

to sensor-driven systems has brought autonomy and a higher degree of privacy to patients lives,

breaking barriers in Assisted Ambient Living (or ’AAL’). (c) Security systems - Physical and Cyber:

where malicious activities and threats both in the physical realm and in cyber space, like unex-

pected entry, flood events and even hack attempts, are being detected through sophisticated HAR

systems, (d) Chore and resource management; Activities of Daily Living (ADL): where the output of

underlying HAR systems increase the intuitively and use of home automation systems —further

assisting residents in managing their chores and/or domestic climate actions.

2.2.3 Methodology for HAR systems

Sensor
Network

Activity Data Collection

Activity
Recognition

Model

Test Data

Data
Processing

Sensing Prediction

Figure 2.4: Generic HAR Methodology

At its simplest, an activity recognition system requires a sensor network, an actor(s), a data

acquisition and processing methodology and a prediction model [Figure 3.1]. In a smart home

setting, sensors collect readings based on user actions (e.g., ’Door state = open’ and ’Hue Bulb

state = On’), along with the timestamp of the action. These readings are then logically strung

together and labelled as composite activities like ’cooking’ or ’working’, according to some pre-

defined logic. Machine Learning models are then trained on this input and used to infer future

activities. These models are either custom trained from scratch for each smart home, or trained

using transfer learning using information from pre-trained models. Once trained, these models are

either retrained periodically to catch any new information, and/or trained continuously to prevent

temporal drift.

8

2.2. ACTIVITY RECOGNITION

2.2.3.1 Strategies for HAR

Depending on the end-application, the strategy for how activities are observed and logged in smart

home environments can very. While the technology used to recognise human behavior include

visual, non-visual, and multimodal sensor technologies, this paper focuses specifically on non-visual

sensing, which in itself involves the following considerations:

Data acquisition

Historic vs. Real
Time

Time period Target

Cyber vs.
Physical

Single vs.
Multi-user

Type

Intrusive vs
Non-intrusive

Figure 2.5: Considerations for Human Activity recognition

• Historic vs. Real-Time detection

In some situations, it is not suitable to recognise activities several minutes or hours after

they occur. Examples includes emergencies like falls in care homes, or rising water or smoke

levels in the case of a calamity. In these instances, real-time detection is a necessity to

propose reactive systems. For other scenarios like extracting energy consumption patterns or

even event-based evidence from a crime scene, historic logging is often enough. For these

applications too, frequency and duration of data capture can be a big consideration.

• Intrusive vs. Non-intrusive sensing

Certain situations allow a degree of intrusive sensing, such as care homes (where patients

are supervised and tracked round the clock, with wearables in certain cases), and detention

centres - for real-time monitoring. Other applications such as Assisted Ambient Living (AAL)

and Activities of Daily Living (ADL) in smart homes typically call for non-intrusive sensing.

Here, sensor positioning (i.e. the location of devices) is a major consideration. To ensure

continual usage, (a) these devices must accurately collect data and be accessible enough

for maintenance and (b) these devices must be sufficiently concealed and/or be designed

functionally as well as aesthetically to prevent any hindrance to the regular functioning of

the household.

• Single vs. Multi-User sensing

Recognition of group activities is fundamentally different from single, or multi-user activity

recognition in that the goal is to recognize the behavior of the group as an entity, rather

than the activities of the individual members within it. Choosing which of the two could be a

major consideration in applications such as forensics and AAL.

Depending on the end-goal, research in this field typically targets a specific demographic of people.

To suit the technical skills and needs of wider audiences, this paper outlines yet another im-

portant category/consideration — the Data acquisition methodology.

9

CHAPTER 2. BACKGROUND

• Device (physical) vs. Network data

Smart homes usually contain off-the-shelf IoT devices from more than one ecosystem, for

example, a typical household might have an Alexa Echo Dot voice assistant, an LG smart TV,

a Withings BP Monitor and a Weekett Kettle. It can be a challenge to extract meaningful

data from (such) a diverse collection of smart home devices because each ecosystem will have

its own data storage method. The standard method then, to collect readings from this set of

devices is to (a) collate readings individually from each respective smartphone application or

web application, or (b) connect these devices to a central hub such as OpenHAB or Home

Assistant and download all readings across the period of interest from the add-on database

offering. If ad-hoc sensing devices such as arduinos or NodeMCUs are used in the smart

home to measure temperature or humidity data, live data from these sensing devices can

be logged using Google Sheets. This paper groups the aforementioned methods under a

sub-category called ’Device Data’ under Data acquisition.

An alternate, albeit indirect, technique could be to extract readings through network activity.

This paper places this technique under the sub-category ’Network traffic data’. This method

attempts to draw the same conclusions about user activities using (potentially encrypted)

network traffic as opposed to data from source. This is particularly useful for applications

that are more autonomous - i.e. those requiring less initial input from users. The advantage of

this method is that new devices could be automatically detected and device states potentially

inferred as accurately as the usual standara, from network traffic. Moreover, irregularities in

network traffic, which could potentially be the work of cyber criminals, could also be spotted

using this technique. There are drawbacks to this method as well — network traffic does not

reveal the location of the device in question within the network, this can make it harder to

ascertain which activity is taking place and where. For example, the activity of visiting the

cloakroom could be defined by two sequential actions: ’door contact sensor state = Open’ and

’philips hue bulb = On’. In this scenario, a smart home with 2 Philips Hue bulbs and/or 2

door contact sensors would cause confusion if an activity in another room, such as ’visiting

the guest bathroom’, was defined in a similar fashion. In this instance, some level of user

input would be required to map IP or MAC addresses of the device to the room location.

2.2.4 Common challenges in HAR

The data acquisition and processing stages can present several challenges. These include: (a) The

challenge with data acquisition itself: As data is collected indiscriminately for all users in a smart

home, it can be difficult to ascertain which user the data belongs to. Secondly, in terms of the

method of extraction, readings extracted directly from the device or indirectly via network data

would require some level of user input and/or specific hardware in certain cases (ex. for Bluetooth

and ZigBee interfaces). (b) The issue of data storage: Forensic records may require data from

varying timelines. Questions such as, ’How long to persist data for?’ and ’ What happens to older

10

2.3. MACHINE LEARNING APPROACHES IN HAR

logs?’ would need to be answered. (c) The issue of activity ambiguity: When activities are performed

around the house there is no clear indication when one activity ends and another one starts,

moreover, there could be ambiguity in the observed sensor data with respect to which activity is

taking place. For example, cooking and getting a drink both involve opening the fridge. (d) The

issue of noisy data: Human error could lead to faulty readings (like opening a wrong cupboard,

entering the wrong room); similarly a power cut could lead to lost network packets and hence a

gap in sensor readings, (e) The issue of imbalanced data: Class imbalance (and therefore biased

activity recognition models) could occur when an activity is being performed for a longer duration

than others, for example, a participant may ’work at a desk’ longer than he/she ’drinks water’.

2.3 Machine Learning approaches in HAR

Different data collection, data preprocessing and machine learning algorithms can effect a model’s

capability to recognize activities. Therefore, data capture, analysis and feature extraction requires

an expert-level understanding of human activity for both healthcare and social science applications.

Current and previous works in sensor-based HAR use both heuristically derived handcrafted

feature-based traditional modeling approaches (such as those used in statistics and stochastic

process like Decision Tree, Hidden Markov models, kNN, SVM, Ensemble models), as well as hier-

archically self-evolving feature-based deep learning approaches (like Convolution Neural Networks

(CNN), Long Short-Term Memory (LSTM), and Recurrent Neural Networks (RNN)) to classify data.

Some of these approaches are outlined below:

2.3.1 Shallow learning

In HAR systems designed using shallow learning, the commonly used features are time domain

features such as mean, variance, and time sequences, frequency domain features and other

transformations (wavelet transform) (Ramasamy Ramamurthy and Roy, 2018). Tree-based models

such as Random Forest and Decision Trees, Boosting algorithms like CatBoost, XGBoost, and

Gradient Boost, and Ensemble models are typically used in such systems, however, care must

be taken to maintain these models over time, through periodic training and testing, to ensure

prediction accuracy stays consistent or improves when new data — brought by changing behaviour

patterns or new sensors — is made available.

2.3.2 Deep learning

In deep learning, the features are learned from the raw data hierarchically by performing some

nonlinear transformation. The nonlinear transformation determines the type of deep learning

network. Popular deep learning models include LSTM, CNN, and RNN. The drawback of using

11

CHAPTER 2. BACKGROUND

deep learning however, is that the results of the activity recognition algorithm remain largely

unexplainable.

2.3.3 Transfer learning

In Transfer learning, annotation requirements and computational costs in new environments are

reduced during model training as this technique reuses existing information from a previously

trained model. As demonstrated in (Wang and Miao, 2018), transfer learning can only be leveraged

if there exists some kind of relationship between the source (i.e., original smart home environment)

and target areas (i.e., new smart home environment) which allows for the successful transfer of

knowledge from the source to the target.

2.3.4 Active learning

Like Transfer Learning, Active learning algorithms also aim to mitigate the learning complexity

and cost (Cherman et al., 2016). These algorithms help select an optimal number of informative

unlabeled data samples and then query the user for labels.

2.4 Conclusion and Discussion of Scope of Work

This paper is interested in how data is collected and general activities inferred for any smart home

environment. To do so, the author aims to meet, if not improve upon, the state-of-the-art in activity

recognition, with the only deviation from literature being that the input datasets used will be

those of network data instead of device data.

To meet the challenges described in Section 2.2.4, whilst adhering to the time constraints set

for this dissertation, this paper will narrow the scope of research to a single-user application.

Moreover, it will attempt to classify activities in, or close to, real-time and will create a log of these

inferences. To meet the general requirements of a wide range of use-cases, this paper will look at

(unobtrusive) text-based data as opposed to image-based data. To be scalable and semi-automatic,

this paper will deviate from the standard data acquisition technique of using sensor readings

from source, and will instead use ubiquitously available network traffic data. Finally, to mitigate

activity ambiguity, this paper will make use of binary sensors, and will track events alongside

their timestamps.

As for the Machine Learning approach, this paper will further examine related works for the

current state-of-the-art techniques in network-based HAR, and will develop a suitable methodology

based on these findings.

12

C
H

A
P

T
E

R

3
RELATED WORK

3.1 Introduction

This chapter provides a detailed overview of different device and activity recognition tools and

research approaches. The literature’s are compared and analysed to finalise the design of the

project. Finally, existing datasets within the field of device-identification are reviewed in order to

finalise a ’reserve’ dataset for this project.

3.2 Existing Literature

Whilst research in sensor-based HAR is growing within the smart home realm, recognition through

network data, instead of the de-facto method of using device data to gauge activities is rare. To

address the challenges and limitations of sensor-based HAR, parallel work in device free HAR

(Cui et al., 2021) (Damodaran and Schäfer, 2019) has gained traction in recent years. To gauge

activities, these solutions make use of commonly used devices like laptops, PCs, smartphones and

tablets to extract features from Wi-Fi signals like Channel State Information (CSI) and Received

Signal Strength (RSS), on which HAR models are run. The limitation of these technique however,

is that the range of recognisable activities is limited to single-motion activities such as walking,

standing, sitting and running.

While the use of network traffic from commercial off-the-shelf (COTS) devices could be used

to gauge a wider set of activities, a (potential) limitation is that the process sets the standard

activity recognition process back by at least two steps. As demonstrated in (Acar et al., 2020) and

(OConnor et al., 2019) this problem can be thought of as a multi-stage multi-class classification

problem — i.e. to be able to extract similar human activity patterns as the de-facto from network

data, the type of device and the state of the device will first need to be ascertained. After this,

13

CHAPTER 3. RELATED WORK

the same logical framework as the state-of-the-art can be used to club concurrent device states

together (according to their timestamps) to form a composite activity. The advantage, however, of

these preliminary steps (viz. device fingerprinting and device state recognition) is that they can be

used to identify unknown, unauthorised or malicious devices within the home network.

Door Contact = Open

Fridge State = Open

Bulb = On

Kasa Plug = Active

Cooking

(Binary)
Sensor States

Composite
Activity

08:00

08:03

08:00

08:05

Timestamp

Activity Recognition
Model

Device = Door

Device = Fridge

Device = Bulb

Device = Plug

Device
Fingerprinting

Device State
Recognition

Door Sate = Open

Fridge Sate = Open

Bulb Sate = On

Plug Sate = Active

+ =Network sniffing

Figure 3.1: High-level logic for sequential activity detection using network data

As this section reviews research in network data within smart homes, it discusses the state-of-the-

art in ascertaining device type (a process called device ’fingerprinting’) and then discusses device

state recognition. It then looks at wider activity recognition methods using both device data and

network data.

3.2.1 State-of-the-art in Fingerprinting Techniques

Device fingerprinting (or ’DFP’) is the process of identifying devices in the network without using

common, spoof-able, identifiers such as IP address, Medium Access Control (MAC) address, Elec-

tronic Serial Number (ESN), International Mobile Station Equipment Identity (IMEI) number or

Mobile Identification Number (MIN). DFP instead identifies a device by using implicit identifiers,

such as network traffic (or ’packets’) or radio signals. Such identifiers are closely related to the

device hardware and software features and are almost impossible to alter/manipulate (Chowdhury

et al., 2020). Within network traffic, IoT traffic typically constitutes background traffic generated

by the device autonomously (e.g., NTP queries for time synchronization) and traffic generated due

to user interactions (e.g., the smart camera transmits image data to the cloud server when home

invasion occurs) (Sun et al., 2019). DFP can be done through both active and passive techniques:

Active techniques involve actively sending TCP/ICMP packets to the unknown device and assess-

ing the responses against some known baseline (or ’fingerprints’), while passive techniques are

stealthier; they involve sniffing network traffic to analyse patterns and information.

Active probing leverages banner grabbing and other fingerprinting approaches to identify exposed

IoT devices, however these techniques fail to identify IoT devices hosted behind NATs or firewalls

14

3.2. EXISTING LITERATURE

Device
Fingerprinting

(DFP)

Active Probing Passive Network Sniffing

Packet-Based
inspection

Flow-Based
inspection

Deep packet
inspection (DPI)

Header-based
inspection

Figure 3.2: Device Fingerprinting Techniques

DFP techniques can be both active and passive in nature: Active techniques involve actively sending TCP/ICMP packets

to the unknown device and assessing the responses against some known baseline (fingerprints). For stealthy detection,

passive scanning is preferred. This method relies on sniffing techniques to analyse the information sent in normal network

traffic.

(Perdisci et al., 2020). Moreover, active techniques are usually tailored for specific IoT devices; in

some cases, this might unintentionally activate devices as well (Bremler-Barr et al., 2020).

Passive techniques in DFP use either packet-based features (Chowdhury et al., 2020) (Aksoy and

Gunes, 2019) or flow-based features (Sun et al., 2019) (Shahid et al., 2018) (Acar et al., 2020), or

both (Hamad et al., 2019). Packet-based features use the content of individual packet payloads

and headers, while flow-based uses statistical and temporal features such as packet flow direction,

inter-arrival time and inter-packet length. In packet-based analysis, a common technique is to

appraise the Network layer (IP and ICMP), Transport layer (TCP and UDP) and Application layer

(DNS, HTTP, TLS/SSL and DHCP) protocols header felds (or features) from TCP/IP header packets

(from device originated network packets) to learn the most suitable subset of features among a

large number of features to train classification models. These methods typically exclude MAC

and IP addresses from the feature set. Results from these works show that the features with

the highest ’feature importances’ include TTL (Time To Live), source and destination ports, TCP

Window Size (Chowdhury et al., 2020).

Flow-based features, on the other hand, are based on time-series features of traffic from the

same device, some of which include packet flow direction, size of packets sent and received (mean

packet length and median absolute deviation of packet size), inter-arrival time and inter-packet

length. Some papers use flow-based information extracted during periodic time windows (such as

10s or 30s intervals), as in (Acar et al., 2020) and (Shahid et al., 2018), while others,like (Sun et al.,

2019) make use of statistical features from the entire flow such as the number of inbound/outbound

packets and bytes, the total duration of the flow in seconds, the mean packet size, and the peak

and mean packet rate. Entire flows also include the initial TLS/TCP handshake which includes

plain-text data. Whilst this enhances the accuracy of fingerprinting and even enables high malware

detection accuracy on encrypted traffic, these methods are impractical for real-time applications,

as flows can last anywhere between a few hours to a few days. Entire-flow based classification may

not be necessary however, as results from (Shahid et al., 2018) show that classifiers trained on

15

CHAPTER 3. RELATED WORK

shorter intervals of flow-based traffic can reach accuracies of 99.9% using tree based classifiers.

Regarding feature importances, results from (Hamad et al., 2019) and (Shahid et al., 2018) suggest

that the features with the highest ’feature importances’ include maximum, mean and variance of

packet sizes, however ’feature selection’ or extraction may not be necessary depending on the type

of classifier chosen.

While most research work in this realm attempts to improve device identification accuracy against

the benchmark, very few outline model performance over time. (Kolcun et al., 2021) states that

on average the models’ accuracy degrades after a couple of weeks by up to 40 percentage points.

The authors contend that the network traffic generated by these devices changes over time and

therefore a single model cannot stay accurate for a longer period of time. To maintain accuracy

these models thus need to be continuously updated.

3.2.1.1 Commonly used ML algorithms and datasets

DFP classifiers are constructed on (a)classical machine learning techniques: such as Adaptive

Boosting (ABOOST), Latent Dirichlet Allocation (LDA), K-Nearest Neighbors (KNN), Decision

Tree(CART), Extra Trees, Nave Bayesian (NB), Support-Vector Machines(SVM), RandomFor-

est,Gradient Boosting (GBOOST), and (b)neural networks: like LSTM RNN and CNN.

As such, performance using both NN and classical methods remains largely similar; the ad-

vantage of classical methods over NN is less computational costs and better explainability, but

more nuanced pre-processing requirements.

Regarding commonly used, publicly-available datasets, popular datasets to train and test al-

gorithms include: (a) IoT Sentinel (Miettinen et al., 2017) which covers network traffic from 31

COTS IoT devices and, (b) IoT Traces from University of New South Wales [Table 1].

Paper Time-based Packet-based Flow-

based

Algorithms Dataset

Result

(accu-

racy)

Real-

Time

Historic Header Payload

(Chowdhury et al.,

2020)

- ✓ ✓ - - Weka, IoT Sentinel,

UNSW Traces

S:83.35,

U:97.78

(Dong et al., 2019) ✓ - - ✓ -
LSTM

RNN
Local testbed 92%

(Shahid et al., 2018) - ✓ - - ✓ Random Forest Local testbed 99.9%

(Hamad et al., 2019) - ✓ ✓ - ✓ OneVsRest Ran-

dom Forest

IoT sentinel 90.3%

(Sun et al., 2019) - ✓ ✓ - ✓ Multi-Layer Per-

ceptron

(Sivanathan

et al., 2017)

99%

(Acar et al., 2020) ✓ - - - ✓ KNN Local testbed 93%

Table 3.1: Survey of passive device identification techniques using network tracking

16

3.2. EXISTING LITERATURE

3.2.2 State-of-the-art in Device State Recognition Techniques

Device state recognition attempts to classify binary states like ’On’, ’Off ’, ’Active’, ’Inactive’, ’Armed’

and ’Disarmed’. An overview of a few device states could be sufficient to draw conclusions about

current activities like cooking, walking, sleeping, and eating within a home. More specific informa-

tion like temperature or humidity readings is not possible to ascertain using this method, however

this information is not crucial for general activity recognition.

The previous device fingerprinting process demonstrates that most devices exhibit unique (network

traffic) behaviours and that these behaviours can be extracted from the metadata in instances

where the payload is encrypted. (Acar et al., 2020) and (Apthorpe et al., 2018) suggests that

interactions between devices and users create a significant increase in network data volumes as

compared to the ’resting’ state during which only the minimum amount of continuation packets

like heartbeat messages are sent to minimize the device’s power and bandwidth consumption.

(Acar et al., 2020) postulates that determining (binary) activity levels, i.e. active or inactive states,

using volume analysis can be used to draw general conclusions about sequential activities such as

walking through a hallway or heading to sleep. Determining certain device-specific activities is

possible using traffic shaping as well; the authors of (Apthorpe et al., 2018) were able to analyse

traffic volume graphs to infer events such as ’went to sleep’, ’temporarily out of bed’ and ’ out of bed

in the morning’ using a Sense sleep monitor (figure 3.5); determine ’off ’ or ’on’ appliances from the

traffic of a Belkin Wemo switch; and determine if users were monitoring video feeds or if motion

was detected through the traffic of a Nest indoor camera.

Active Active ActiveInactive

User

T1 T2 T3 T4 T5 T6

Inactive Active

Figure 3.4: Source: (Acar et al., 2020)

Detecting sequential activities like ’getting a drink of

water’, through activity levels.

Figure 3.5: Source: (Apthorpe et al., 2018)

Using network volume analysis to determine key states

in sleep sensor.

However, such volume-based inferences cannot be used to describe more specific, non-binary, IoT

events like colour and intensity. Additionally, peaks in graphs such as ’On’ and ’Off ’ might be hard

to distinguish. Moreover, a volume based analysis will need additional safeguards against packet

padding, traffic shaping and traffic injection.

Works such as (Trimananda et al., 2020a), (OConnor et al., 2019) address this limitation; they

identify that the client (the IoT device) and the server take turns in a request-reply communication

style, and that this communication pattern is unique to device and device events. To demonstrate

17

CHAPTER 3. RELATED WORK

this, (Trimananda et al., 2020a) extracted packet-level ’signatures’ for device events which con-

sisted of simple sequences of (unique and deterministic) packet lengths and directions, from packet

pairs which consisted of a request packet from a device/phone, and a reply packet back to the

device/phone. The authors were able to achieve an average recall of 97% using this method. The

authors in (Acar et al., 2020) also extracted similar matrices of timestamp, direction and packet

length, from traffic data and attempted to use statistical time-series features such as ’Length of

time-series, Mean and median of time-series, Skewness of time-series’ to distinguish different

states such as ’On/Off ’, ’Live View’ and ’Measure Weight’. The authors were able to achieve 94% in

F1 score and recall using this technique.

Irrespective of volume-based, packet-signature-based or statistical device-state recognition meth-

ods, characterizing IoT information exposure at scale is cumbersome: as outlined in (Ren et al.,

2019) it requires manually setting up large numbers of devices, using carefully controlled interac-

tions with them, and capturing the salient network traffic they generate. To address scalability,

these works then develop open-source repositories to encourage crowd-sourcing or the use of

security service providers (OConnor et al., 2019) for data sharing.

3.2.3 State-of-the-art in Activity Recognition Techniques

Sequential or compound activities can be modelled if labels such as device location, device activity

and timestamps are made available. Two categories of research, distinguished by their data ac-

quisition methodology, exist in this space: (a) research in privacy and exposure that looks at the

extent of (HAR) inference possible from encrypted network traffic, and (b) research in sociological

and behavioural HAR which uses directly-sourced sensor-based data to derive deeper insights.

For the first approach, researchers typically set up privacy attacks to gauge exposure from ’traffic

shaping’ experiments - and then seek ways to minimise this exposure ((Apthorpe et al., 2018),

(Apthorpe et al., 2017), (Copos et al., 2016)), (Acar et al., 2020). The strategy these papers employ

to gauge ongoing sequential activities is to first gauge which devices are active and interacting

concurrently. Each device’s activity is thought of as a ’sub-event’. Sub-events are captured by

checking for changes in individual device activity states. Timestamps are then captured for when

these sub-events begin (device state=On) and end (device state=Off). The location that each of

these sub-events occur in are then tracked. The overall event or activity (e.g. ’Walking through a

Hallway’) is then logically put together by stringing these sub-events together meaningfully, for

example, Hallway light=ON, Motion sensor=ON, Hallway light=OFF. These papers also note that

some user-activity events are simpler to track. Activities like ’boiling water’ or ’sleeping’ can simply

be ascertained through changes in individual device states. Here ’Kettle = On’ and ’Sleep mat =

On’ could provide enough information to track the ongoing activity.

In sensor-based approaches, device metadata (labels) like location, states and names are made

18

3.3. CONCLUSION AND EVALUATION OF LITERATURE DISCUSSED

available from the start. Apart from modelling sequential activities (like above) using ML tech-

niques like deep learning (LSTM) (Fang and Hu, 2014), Hidden Markov Model (Kabir et al., 2016),

and Naive Bayes Classifier (Shen and Fang, 2020), some papers extend the scope of HAR to include

transfer learning (2.3.3). (Wang and Miao, 2018) suggests that an activity recognition system

used by various smart home environments with potentially different sensor networks and/or label

spaces (i.e. activities) can be built through this technique. Here, the authors are successfully

able to use pre-labelled sensor-based readings to recognise activities in entirely new smart home

settings. This approach has not yet been tested using network traffic data, however, from the

results achieved in Chapter 07, it can be assumed that high-level traffic-based activity recognition

is transferable till at least the device state recognition phase.

3.3 Conclusion and Evaluation of Literature Discussed

This chapter evaluates the current progress in literature against each of the different stages in

network traffic-based HAR, which is defined in (Acar et al., 2020) as Device recognition, Device

State recognition and User Activity recognition. The results from these findings establishes a

benchmark for the rest of this paper.

As an extension to this review, it is important to note that none of the experiments discussed

have been developed to be deployed in a live environment. As a majority of these models are

trained on datasets captured from lab-based environments — the lack of background noise from

non-IoT devices in these environments could skew the models’ performance when deployed in a

real smart home. To this end, this Thesis will look at real-time device state recognition ’in the

wild’. The strategy of multi-stage classification from (Acar et al., 2020) will be continued in this

dissertation work, however, emphasis will be given to the feasibility of productionalising such a

tool. To mitigate the challenge of changing traffic patterns over time (highlighted in (Kolcun et al.,

2021), an attempt will thus need to be made to continuously update these models with real-time

data, using user-input, at the edge.

19

C
H

A
P

T
E

R

4
METHODOLOGY

4.1 Introduction

The state-of-the-art in IoT privacy-based literature suggests that user activity recognition through

passive network sniffing can be approached as a multi-stage process: (a) device recognition (b)

device state identification (c) device activity recognition (d) user activity recognition.

Figure 4.1: Multi-stage process for activity identification

This thesis uses this methodology to develop a generic real-time classification tool that can be

deployed from the user’s end. To predict generic user activities and provide real-time insights, this

paper extends this pipeline to also include data analysis and (physical) anomaly detection in the

smart home.

Figure 4.2: Pipeline for user activity inference tool

This chapter introduces the larger pipeline that facilitates each of the stages described in Figure

4.2.

20

4.2. OVERALL METHODOLOGY

4.2 Overall Methodology

Activity recognition, for the most part, uses the supervised machine learning paradigm. Output

features like device names, device activities and device locations will need to be labelled manually

to some extent to train ML models to predict them. This process is time-intensive and can quickly

become impractical as the number of devices and/or the number of spaces grow. To reduce the

amount of initial manual labelling required, an option could be to train models on a few samples

initially and then make use of the APIs of platforms like Home Assistant or OpenHAB to extract

labels from previously ’unseen’ devices. Another approach could be to ask for end-user input each

time a new/unseen type of activity or location comes up. A sample could be determined as ’unseen’

if the generated prediction probability score does not meet the prediction probability acceptance

threshold assigned by the developer for that label.

A simple overall process diagram that incorporates both options is described in Figure 6.2.

New Stream Pre-process data Detect Device Name

Detect Device State

Known

Get device name
from Home Assistant

Yes

No

Establish
patterns/baseline

behaviour

Detect physical
anomalies

Ask for User input Available

Live Stream

Yes

Retrain Model

No

Detect if IoT

Figure 4.3: Overall Process Diagram for a generic Activity Recognition ’Add-On’ for Home Assistant.

This diagram provides a high-level overview of what an end-to-end ML pipeline would look like if its pre-trained

classifiers were supplemented with data from the Home Assistant API and if it also included scope for user input. This

end-to-end deployment pipeline starts with a live packet capture from the local network (here, ’Live Stream’), which

is then pre-processed by converting to a set of statistical features, which then serves as input to a set of pre-trained

classifiers (here, ’Detect if IoT’ and ’Detect Device Name’). The second classifier then attempts to fingerprint the device

(here, ’Detect Device’). If the device name is known, data is then passed to another classifier to determine the device’s

state. After this, insights on usage are provided and physical anomalies are detected. If the device however is unknown,

data is then retrieved for that IP address from Home Assistant using its API. If the IP address doesn’t exist in the Home

Assistant database, users are then prompted for input. This manually inputted label is then fed back to the initial (device

fingerprinting) classifier for partial retraining or incremental learning using methods like ’Warm Start’ and ’Partial fit’

from the Sklearn library.

Such a deployment that includes device data brought in from a locally installed software hub

21

CHAPTER 4. METHODOLOGY

like Home Assistant would be best suited as an ’Add-On’ or plug-in to that software hub. The

first benefit of such an add-on is that users could indiscriminately gather high-level information

on all their IP connected devices, without having to specifically subscribe to the cloud version of

these software hubs - thus making the diagnostic capabilities of the hub truly open-source. The

use of network monitoring would also help users of such hubs to gain critical insights into all

their IP-connected devices; direct comparisons between device-based readings and network-based

readings of the same device could help highlight both cyber and physical anomalies in the smart

home. This would prove useful to a wide-range of user groups including forensics researchers and

building management.

The challenge, however, with developing a plugin for an established software hub like Home

Assistant and OpenHAB is its currently limited user base.

Home Assistant and OpenHAB are not (at present) trivial applications to install and use. These

require at least a basic working knowledge of the Linux operating system to install and to trou-

bleshoot errors. These are therefore predominantly used by IoT hobbyists and not general laymen.

A standalone application would therefore benefit a wider audience. Such a tool would largely

replicate the diagnostic capabilities of both software hubs - which is to provide insights into their

current and historic states. A notable dis-benefit however would be the loss of home automation

capabilities that an integrated tool would provide.

The process diagram for such a tool [Figure 4.6] would exclude the ’Home Assistant API’ phase of

the previous diagram.

New Stream Pre-process data Detect Device Name

Detect Device State

Known

Ask for User Input

Yes

Establish
patterns/baseline

behaviour

Detect physical
anomalies

Live Stream

Retrain Model

Detect if IoT

Figure 4.5: Overall Process Diagram for a generic standalone Activity Recognition tool

Like in (Acar et al., 2020), the drawback of the ’cascading classifier’ technique in Figure 4.6 is

that the accuracy of the final prediction is dependant on the probability of getting an accurate

reading at each of the stages (i.e. probability(final) = probability(stage1) x probability(stage2) x

probability(stage3). This tool will therefore look at uncoupling these classifiers so as to indepen-

22

4.3. MULTI-STAGE CLASSIFICATION METHODOLOGY FOR ACTIVITY IDENTIFICATION

dently predict labels like IoT/NoT, Device name, Device State and Device location for each device.

Users could then be asked to verify these outputted labels periodically.

The proposed process diagram followed by this paper for the deployment is as outlined below.

New Stream Pre-process data Detect if IoT

Detect Device State

Known

Ask for User Input

Yes

Establish
patterns/baseline

behaviour

Detect physical
anomaliesLive Stream

Retrain Model

Detect Device Name

Ask user for location

Figure 4.6: Proposed methodology for the standalone Activity Recognition tool

Each of the classifiers are de-coupled in the proposal. The ’Device Name’ classifier is a multi-class classifier whilst the

’Detect if Iot’ and ’Detect Device State’ classifier are binary classifiers. Users are asked for confirmation or label input

from the multi-class classifier based on a pre-set probability threshold. Users are then asked to input the device’s location.

Insights are then generated based on current device patterns.

4.3 Multi-Stage classification methodology for Activity

Identification

The proposed tool will thus rely on three pre-trained classifiers (datasets outlined in Section

5.3) that are capable of being re-trained online automatically as new data becomes available.

Once deployed online, real-time data (here, local network traffic) will be made available to these

classifiers to serve predictions on. This local traffic —consisting of IP address ranges starting

from ’192.168’ or ’10.0— will be captured as .pcap files using open-source packet capture tools.

These files will then pre-processed to CSV files containing a specific set of traffic and ’flow’-based

features (Appendix A.0.2), that each of these classifiers have previously been trained on. These

newly created CSV files will then be fed into each of these classifiers after which label predictions

will be generated if they meet a certain acceptance threshold.

Each of the stages are described below:

4.3.1 Stage 1: Detecting IoT versus Not IoT

This stage will attempt to determine if each ’discoverable’ device in the local network is an IoT

device or not. This is thus a binary classification problem. For this, a suitable classifier will be

23

CHAPTER 4. METHODOLOGY

trained on 91 packet features (Appendix A.0.2) that are extracted from pre-existing .pcap files.

The top classifier will then be ’pickled’ and deployed online to serve predictions (along with their

probability scores) on real-time packet captures.

Note: The feasibility, here, of training a classifier on a packet-based dataset is outlined in (Bremler-

Barr et al., 2020), (Bezawada et al., 2018) and (Aksoy and Gunes, 2019) and further experimentation

in this dissertation work corroborates these results. The performance from a range of classifiers

along with that of the top performing binary classifier is detailed in Section 7.0.1.

4.3.2 Stage 2: Device Identification

This dissertation finds that while command line applications like arp-a and nmap can be used

to map IP and MAC addresses, these do not provide a complete list of every device connected to

the network. Only the router can provide a reasonably conclusive list. SNMP can report a routers

DHCP lease list, and even so, IP spoofing can affect this IP mapping. The MAC address itself can

also be used to look up the manufacturer or vendor name of the network adaptor through its first

6 letters (which is its Organizational Unique Identifier), however this is hardly a differentiating

factor for multiple devices with the same adaptor.

This stage, therefore, will attempt to determine individual device names (e.g. ’Blink Camera’,

’Alexa Echo Studio’ etc.) based on traffic patterns. This is essentially a muti-class classification

problem and sits under the supervised learning paradigm. Here ’flow-based’ traffic —which is

a sequence of packets carrying information between two hosts during a set time interval— will

be used to train a suitable multi-class classifier. As highlighted in Figure 4.6, this tool will also

need to inform the user when previously unseen devices get connected to the local network. As

suggested in OConnor et al. (2019), this design constraint motivates an ensemble or averaging

based classifier, as they are more resistant to under-fitting. A range of such classifiers will therefore

be tested in this paper. To indicate the presence of unknown behaviours, the probability prediction

score will be used to define a threshold of acceptance.

Note: The justification for choosing flow-based instead of packet-based features to differenti-

ate IoT devices comes down to the difference in results achieved by both methods in Section 3.2.1

of the Related Work Chapter. The final time interval chosen by this paper to extract flows, along

with the tools chosen to capture these flows, are further outlined in Chapter 5. The results from

the top-performing classifier are later outlined in Chapter 7, Section 7.0.2.

4.3.3 Stage 3: Device State/Activity Identification

This stage will attempt to distinguish between the ’ON’ and ’OFF’ states of an IP connected device.

Experiments in IoT traffic-shaping suggest this is possible (Section 3.2.2) and results achieved in

Section 7.0.3 corroborate this. Flow-based features will again be used to train binary classifiers to

24

4.4. CONCLUSION

detect if devices appear active —which is characterised by random peaks of traffic— or inactive, but

locally discoverable on the network —which is characterised by a consistant stream of fixed-length

packets sent at fixed intervals. A drawback, however, of using this technique is that traffic flows

will be extracted after a set duration of time, therefore the exact moment when the switch between

the On and Off stages occurs will not be captured, which can be a deterrent for time-sensitive use

cases. For this generic use-case, a range of binary classifiers will thus be tested on flows extracted

from different time intervals.

Note: The top performing classifier that uses the least flow interval period is outlined in Sec-

tion 7.0.3.

4.3.4 Stage 4: User-Activity Identification

This stage will attempt to classify user activities. It is essentially a sequence classification problem,

however, for the purpose of this paper, less complex activities like “walking through a hallway”,

“taking a shower”, “sleeping”, “preparing breakfast”, and “spare time/TV” will be gauged through

rule-based techniques. An example of a possible sequence of activities that can be modelled based

on a simple rule-based algorithm is: ’Given Kitchen Light = On, Fridge door = Open, Stove = On,

Predict Ongoing Activity = ’Cooking”, and additionally: ’Given ’activity’ = ’cooking’, Predict ’Active

room’ = Kitchen’ ’.

Papers like (Wang and Miao, 2018) additionally make use of different time period labels (like

morning, noon, afternoon, evening and night) to gauge probable activities. This technique will

be used here to ’guesstimate’ ongoing activities as well. As an extension, this will also be used to

gauge anomalous physical events such as ’Garage Light switched ON at 02:00’, or ’Bedroom Light

OFF for 12 days’.

Note: This stage has scope for further research — this is further outlined in Chapter 08.

4.4 Conclusion

This chapter presents this Thesis work’s proposed development methodology in the form of a

high-level multi-stage process diagram. It outlines the requirements of each of these stages, based

on the current benchmark established in Chapter 03. It also notably prescribes the use of both

packet-based and flow-based traffic to train a set of binary and multi-class classifiers. This chapter

notes that whilst the proposed method serves predictions on live streams, the prediction method

itself may not be perfectly ’real-time’, and will depend on the results achieved in Chapter 07.

The chapter also alludes to the need for user input to both confirm and label any ’unknowns’. The

smart home market is set to grow by 27% in the next 8 years (Sta, 2022 - 2030) — the resulting

proliferation of new IoT devices in the market will mean that that is high likelihood of numerous

25

CHAPTER 4. METHODOLOGY

missing labels even in extensively labelled datasets. To catch any ’unobserved’ values and label

them as ’Unknowns’, an accceptance threshold will therefore need to be defined at the time of

training.

26

C
H

A
P

T
E

R

5
DATA PREPARATION

5.1 Introduction

This chapter discusses how data is collected and processed before it is inputted into the system:

it briefly describes the Smart Home Network setup for data capture, and then outlines the data

collection and data conversion techniques, along with tools used. This chapter also describes how

data is pre-processed to be used as initial training data for the ML classifiers described in the

previous chapter [Section 4.3].

5.2 Developing the Smart Home Network

A ’smart home style’ network is used in this research work to capture initial network traffic for

training data. To emulate a real-world smart home, this set up includes a router, a set of IoT sensors

and actuators, a set of non IoT devices, a host machine (PC), and a packet capture and parser

tool. To capture maximum packets, the host PC in this setup is connected to the university’s wider

network (Eduroam) and is made to act as an internal ’modem’ in the University’s Smart Home Lab.

A dedicated router is then connected to the modem via an Ethernet cable. This allows all packets

reaching the router to be made available to the host machine via the ’Eth’/’eth0’ network interface.

Whilst a real-world deployment in a smart home may not be able to capture all packets transmitted

over the network in this way, this initial step is taken to ensure all samples transmitted or received

by an IoT device are captured for robust initial training.

5.2.1 Devices used

The devices used for data capture aim to include a representative cross-section of WiFi/Ethernet-

connected IoT device types typically found in smart homes. Based on current market share trends

(Jackman, 2022), the most popular device categories are smart TVs, smart speakers, smart lighting,

27

CHAPTER 5. DATA PREPARATION

smart security systems such as smart cameras and smart locks, e-health devices such as smart

scales and blood pressure monitors, outlets and switches, gateways including hubs and routers,

and appliances such as kettles, vacuums, dishwashers, fridges and coffee makers. The set of IoT

devices thus chosen for data collection from the Smart Home Lab at Cardiff University include:

LG TV, Alexa Echo Studio, Lumiman Bulb, Blink Camera, Withings Smart Scale, Withings Blood

pressure monitor, Kasa Plug, Weekett Kettle, Roborock Vacuum, and a Smarter Coffee Machine.

In addition to this, non-IoT devices are considered as well; this includes a Dell Laptop, an Android

Phone, and a MacBook.

5.2.2 Tools used

Numerous packet capture tools with abilities to capture, analyse, create and even send packets

are available in the open market. Some of the more popular open-source ’sniffing’ tools include

Wireshark and its command line equivalent tshark (Combs, 2022), the Scapy library (Biondi, 2022),

and TCPdump (Van Jacobson and McCanne, 2022). All three have free versions for MAC, Windows

and Linux-based operating systems. For the purpose of this dissertation however, tshark will be

used because of its versatile packet parsing and analysing, and reading and writing capabilities.

5.3 Data Capture

In the design of the classification system, a full set of network traces is needed to train and test

the system at each stage. In current literature, this process is approached differently based on

the individual classification requirement; for example, for passive device fingerprinting, traffic

is typically captured during the initial TLS handshake (which may be between 1-4 KB). This

necessitates packet capture during the first one-two minutes of a device reboot or (new) connection.

In contrast, a classification that is interested in detecting binary states (on/off) of a device might

be interested in activity over time. Devices that are ’off ’ or ’inactive’ (but still connected to the

network) may still send and receive packets, however this typically happens at set intervals in

specific patterns. Papers like (Acar et al., 2020) run multiple On/Off experiments for average time

periods of 2 hours to capture this periodic traffic. A classification that is interested in differentiating

IoT from non IoT devices on the other hand, may be interested in capturing entire TLS sessions or

flows, — these could last for days for certain devices. Some papers also use similar TLS sessions

as initial training input for fingerprinting devices (Sun et al., 2019). This, however, may not be

practical in real-world developments as noted in Section 3.2.2. Similarly, while capturing initial

handshake packets during reboot is feasible in a Lab setting, this may not be feasible in a smart

home setting where devices may have already previously been connected.

5.3.1 Methodology for Data Capture from Smart Home Lab

To ensure that the quality/type of the initial training data meets that of the online (re-training)

data when new devices become available, a generalised traffic capture methodology is proposed

28

5.3. DATA CAPTURE

which seeks to capture just enough traffic to successfully (initially) train all three classifiers. For

the time period of this capture, a median point between all three classifiers appears to be between

10 minutes to 12 hour (packet capture) duration. Although a very ambitious claim, 10 minutes

of traffic may just be enough (depending on experimentation) to train classifiers to differentiate

between devices —though of course, a longer capture may improve prediction performance scores.

Moreover, if classification of new devices is possible with 10 minutes worth of traffic, lesser network

traffic will need to be stored for later retraining. At the other end, anything longer than 12 hours

may prove too memory intensive for most personal machines — findings from the Smart Home Lab

suggest that on average, 8-10 IoT devices can generate up to 75000KB in 12 hours while dormant.

For this Thesis therefore, traffic is captured for varying durations, ranging from 10 minutes-

2 hours for active experiments (like on/off), and for <12 hours for inactive/dormant captures, to get

a sufficient record of heartbeat messages and other traffic patterns.

Traffic is captured using tshark, and saved as separate PCAP files for each individual device

(identified here by source IP address). 91 individual header fields/metadata [Appendix A.0.2] from

these PCAPs are then separately parsed using tshark and written to a separate CSV file. This

packet-header data will be used to train the first IoT versus Non-IoT classifier, to test it against

current benchmarks.

The other two classifiers (viz., the Device Fingerprinter and the Device State Identifier) will

use features from ’traffic-flows’ —generated from the original PCAPs— instead of packet metadata,

as initial input. Here, ’flows’ are defined by a sequence of packets with the same values for Source

IP, Destination IP, Source Port, Destination Port and Protocol (TCP or UDP) (Palmieri and Fiore,

2009). This is so that the results from the testing phases from both classifiers are comparable with

the current state-of-the-art.

To extract these flow-based features, this Thesis makes use of a specific network traffic flow

generator —CiCFlowMeter (Hieu, 2022)— which facilitates both live and historic generation of

bidirectional flows and outputs these as features [Appendix A.0.2] in a CSV format. To ensure

these flows are limited to 10 or 30 second durations (as needed for the experimentation phase)

between all endpoints, all PCAP files are first split into smaller 10 and 30 second captures using

’editcap’ on the terminal [Appendix A.0.2]. Flow-based features are then extracted from these

shorter PCAPs as CSV files using CiCflowmeter. These files are thereafter merged to form a single

CSV file to use as raw training data. Here, each 10 or 30 second flow, acts as a sample for the

classifiers. The reason here, for limiting flows to 10 and 30 seconds, is for the classifier to be able to

predict statistics between 2 endpoints, almost in real-time.

29

CHAPTER 5. DATA PREPARATION

Device State Time Dura-

tion

Size (Flow) Samples

(flows)

Kasa Plug On 12 hours 585.2KB 662

Kasa Plug Off 12 hours 590KB 663

Smarter Coffee Active (Avg 2-5

mins) Total

15mins

15.3KB 28

Weekett Kettle Active 2 mins 8.84KB 10

Weekett Kettle Inactive 6 mins 6.55KB 16

Roborock Vacuum Active 10 mins 145KB 279

Roborock Vacuum Inactive 4 mins 4.2KB 10

LG TV On 5 mins 124KB 268

Lumiman Bulb On 15 mins 25KB 47

Lumiman Bulb Off 15 mins 24.4KB 47

Withings Blood Pressure

Monitor

Active 5 mins 4.06KB 7

Alexa Echo Studio Active mins 913KB 1960

Alexa Echo Studio Inactive mins 238KB 511

Table 5.1: Network traces from the Smart Lab at Cardiff University used by the Device recognition model.

(Note: This does not represent the complete capture set.)

5.3.2 External Datasets

Popular public network traffic datasets used by related works include IoT Traffic Traces from

UNSW (A. Sivanathan and Sivaraman, 2022), the IoT Sentinel dataset (Miettinen et al., 2018),

and the PingPong dataset (Trimananda et al., 2020b). In this paper, the UNSW dataset is used to

supplement the existing dataset (captured from the Smart Home Lab at the University) for Stage

1 (IoT versus Non-IoT recognition) to ensure a wide enough sample range. The other stages do not

require training from devices outside the Smart home Lab initially as they are due to be iteratively

re-trained online using real-time data.

5.3.3 Methodology for Data Capture during Live Deployment

In general, an online tool can capture real-time traffic from the client’s local network using the

Scapy library. It can even use tshark from the user’s terminal via the subprocess.call() method.

To facilitate this however, the user will first need to manually set their network card or intended

network interface (example, ethernet) to ’promiscuous’ or ’monitor’ mode to allow complete packet

capture over the desired interface. This is because many operating systems require superuser

privileges to allow packet capture from other devices in the network. The open source packet

capture tool of choice (viz., Scapy, TShark, NFStream or TCPDump) can then be used to write

these packet captures to local files or to online databases for further analysis.

The implementation in this paper follows all these steps. After user-permissions are granted,

a python script uses the subprocess.call() method to utilise tshark to sniff and write packet cap-

tures to a .pcap file in 30 second batches. Each file is then automatically converted — both to a

CSV file containing packet-headers (for IoT versus Non-IoT classification), as well as to a CSV file

containing flow-based features using CiCFlowMeter (for device and device-state classification).

30

5.4. DATA PRE-PROCESSING

These files are then processed further, as defined in the next section, after which they are used by

each ML model, either to serve predictions, or (after getting user-input labels), to further re-train

the model itself.

5.4 Data Pre-processing

After both types of CSV files are generated, simple pre-processing techniques are used to con-

vert these datasets into suitable training data. For easy manipulation, these CSV files are first

Stream Data Make Dataset Clean Data Extract Features Transform Data Impute Data Train Model Evaluate Model

Figure 5.1: General pre-processing methodology

converted to Pandas Dataframes. These are then pre-processed using the scikit learn library: To

clean the numeric (flow-based) datasets, any duplicates and samples with null values greater

than 70% are removed. Device and Device state labels are manually added, and then encoded and

transformed using the LabelEncoder method from the scikit-learn preprocessing library. These are

then split into training and testing datasets in a 70/30 ratio using the train-test-split method. After

this, using sklearn Pipeline, features with non-float data types are dropped (feature extraction):

this includes identifiers like the source IP, destination IP and Flow ID. The remaining features are

then imputed (using SimpleImputer where null values are assigned ’0’) and scaled (using Stan-

dardScaler). The packet-metadata dataset is similarly pre-processed, with an additional step of

imputing missing labels with ’missing’ and encoding all categorical features using OneHotEncoder

within the Pipeline.

Hereafter, a range of classifiers are fit on this training data and evaluated using sklearn per-

formance metrics such as accuracy, precision, f1 score, recall - where f1 score is given the most

importance due to the imbalanced nature of IoT data. The models are also cross-validated using 5-

fold cross validation. A confusion matrix and feature importance graph are additionally generated.

Hyperparameter tuning is done for the top performing classifiers as well. This stage is further

discussed in Chapter 07.

5.5 Summary

This chapter outlines how datasets are created for the ML training phase. The tools and techniques

used for live network traffic capture, its conversion to flows, and the automatic extraction of

features is defined here. Furthermore, a brief overview of the dataset pre-processing phase was

covered as well.

Note1: The datasets used are available at (Dat, 2022).

Note2: The samples captured for this dissertation are not as extensive as the PingPong Dataset

(Trimananda et al., 2019). To improve the quality of this work, this dataset will benefit from a

31

CHAPTER 5. DATA PREPARATION

larger number of structured ’On/off ’ experiments.

Note3: Efforts were also made to capture differences in specific states as well, such as ’Kettle

cooling down’, ’Kettle warming up’, ’Kettle boiling’ —however as this was done manually an

extensive dataset could not be obtained.

In general, these traffic capture experiments will greatly benefit from automation; cron-based

rules could be used to change device states automatically after set intervals. For this, automation

hubs like OpenHAB and Home Assistant would be prove most useful.

32

C
H

A
P

T
E

R

6
PIPELINE PREPARATION AND APPLICATION DEVELOPMENT

METHODOLOGY

6.1 Introduction

The previous chapter describes the steps taken to first convert an existing network traffic (pcap)

dataset to statistical flows and then prepare this dataset through standard methods like imputa-

tion, scaling and labelling, for supervised training and testing. While this ’pipeline’ can be manually

executed on Jupyter Notebooks to build a suitably robust model for each of the stages each time

new data is available, this methodology will not scale well in a real-time smart home environment

where new, unknown, heterogeneous devices are likely to be connected in an ad-hoc basis.

This chapter thus outlines techniques used to productionalise ML development. It then attempts

to build a tool that is (a) capable of serving predictions in real time, and (b) capable of automatic

model retraining based on new input data. To this end, the best practices in ML Operations are

explored, and the development of the application’s features, along with the tools, frameworks and

algorithms used in deployment is described.

6.2 Pipeline Development Overview

Deploying activity recognition models in a live setting is effectively an exercise in ML operations -

which by its textbook definition is a set of practices that aims to deploy and maintain machine

learning models in production reliably and efficiently.

While pre-trained models can be easily put in production to actively serve predictions, issues

such as model drift could severely affect prediction accuracy as new devices enter the market.

Depending on the business case requirement the logic for model retraining may vary; in cases like

33

CHAPTER 6. PIPELINE PREPARATION AND APPLICATION DEVELOPMENT

METHODOLOGY

recommendation systems (such as in Netflix or Amazon), real-time incremental updates can be

necessary, while in others, batch or trigger-based updates are often enough. Model retraining for

device activity recognition could take the later (trigger-based) approach. In such a scenario, detect-

ing unknown/new devices would trigger a partial retrain of the existing model to include future

recognition of the new device and its state(s) patterns. To this end, libraries such as Scikit-Learn

library will facilitate this type of retraining through approaches like ’Partial Fit’ and ’Warm Start’.

The next challenge lies in deciding where to deploy this model. This could take two approaches:

(1) a central model into which data from various ’smart’ households are fed, or (2) an individual

’barebones’ base model which is customised depending on the individual household’s activities.

As the proposed business logic in this thesis incorporates some level of user input, a central

model would require dedicated administration/quality control to manage variations in user-defined

activities across households. The resultant model may output generalised labels in this instance

and extending such a model to incorporate customisation is outside the scope of this paper. As the

proposed model puts activity definition in the hands of the (layman) user, this thesis thus takes

the second approach - a general base model which is (custom) trained when new data becomes

available on the user’s end.

6.2.1 MLOps and Productionalisation

To deploy such a (set of) models, the general pipeline would be to set up the environment and

create an initial ML model; then simulate streaming data coming in as users use the ML model

and publish this to a Kafka feed; then, periodically extract data from this feed and use it to update

the ML model, gauge its relative performance and put it up for use if it outperforms the current

version of the model; and last, log the results, model parameters, and sample characteristics of

each update run.

New Stream Pre-process data Detect if IoT

Detect Device State

Known

Ask for User Input

Yes

Establish
patterns/baseline

behaviour

Detect physical
anomaliesLive Stream

Retrain Model

Detect Device Name

Ask user for location

Figure 6.1: Proposed Process Diagram

34

6.2. PIPELINE DEVELOPMENT OVERVIEW

To take this into production the model could either be (a) initially developed offline and later

retrained online, or (b) developed and retrained offline (in batches or during specific times of the

day), and then deployed online, or (c) Developed online using a workflow management platform

like Apache Airflow, hosted online and then called using an API endpoint.

Stream Data Feature Engineering

Historical Data Feature Engineering Training/Evaluation Deployed model Scoring

Online Data Analytics

Offline Data Discovery

Figure 6.2: Typical workflow for real-time prediction

6.2.2 Pipeline orchestration tools

To avoid the consequential overhead from manually updating the model each time new data

becomes available, open-source tools like Luigi, AirFlow, MLFlow, and KubeFlow, can be used to

automate many parts of the ML pipeline development process. Amongst this, Apache Airflow is

a well-documented task scheduling platform that allows users to create, schedule, orchestrate,

monitor and maintain data/ML workflows through its UI. Here, separate data pre-processing,

training and testing scripts can automatically be run (or ’orchestrated’) via DAGs (Directed Acyclic

Graph) in AirFlow, to train and retrain ML models. Developed models can then be hosted online

using platforms like Docker or Heroku and API endpoints could then be used to serve predictions.

This thesis postulates that Flask - a lightweight python framework - can similarly be used to take

ML development out of Jupyter Notebooks and into a production environment. Flask facilitates

code modularisation and its python backend lends to its data science capabilities. Moreover it

allows for the backend scheduling of tasks, and this can be orchestrated from the frontend as

well. The advantage of packaging ML pre-processing, (re)training and deployment, together with

the prediction and dashboarding components of the tool, is that such an architectural setup is

easily portable/deploy-able and also facilitates label/prediction customisation for each user. While

a separate, centrally located, ML deployment would alleviate the risk of a single point of failure, it

will not allow for much personalisation - and hence is not explored in this Thesis.

While ML deployment via Flask is a well documented process, online development and online

learning using Flask is less so. This thesis explores option 1 of the previous section, viz, ’ML models

initially developed offline, deployed online and then retrained online’, to assess if online learning

and data pre-processing using Flask is practical. This implementation is described in detail in the

next section.

35

CHAPTER 6. PIPELINE PREPARATION AND APPLICATION DEVELOPMENT

METHODOLOGY

6.3 Application development methodology

6.3.1 Environment

Flask (FLA, 2022), a python-based micro web framework, is utilised to develop this project. The

application is containerised using Docker to facilitate integration with Home Assistant. Information

about current device states from Home Assistant can also be brought in using Home Assistant’s

REST (Res, 2022) and WebSocket API — this, however, is not demonstrated in this tool. Instead,

additional user input is collected via Flask Forms on the UI — to demonstrate feasibility both as a

standalone app and as a Home Assistant (HAA, 2022) Add-On.

6.3.2 Features and UI

Features of this tool include:

• A real-time chart which provides live updates of data volumes transferred within the private

network.

• A live mapping of currently connected devices’ MAC addresses and their currently assigned

IP addresses

• A view of historically connected IoT and N-IoT devices.

• A real-time view of currently connected devices — with IP addresses, MAC addresses, device

names, device locations and device states.

• Interactive Line charts to display trends in activity patterns over custom time periods.

• Widgets that display ongoing activities and ’active’ rooms.

• A ’Warnings’ card that displays alerts and high-level anomalies.

• A User ’Input’ card to enter values for ’Unknown’ device names or locations.

The methodology and tools used to develop these features are outlined below.

1. A dynamic, real-time chart which provides live updates of data volumes transferred within

the private network. [Figure: Appendix Section A.0.4 (1), Code: Appendix Section A.0.6 (10.1)]

For this feature, live network traffic is captured using the Scapy (Sca, 2022) library. The

Sniff() function is used to parse both the total bytes in each packet and the timestamp of the

packet, and this data is fed into a Dataframe which is then converted into the JSON format.

This function is called every 2-3 seconds by a JavaScript script, which renders this data to a

dynamic front-end line chart using the Highcharts (Hig, 2022) library.

2. A mapping of currently connected devices’ MAC addresses and their currently assigned IP

addresses. [Figure: Appendix A.0.4 (7), Code: Appendix A.0.6 (10.2)]

IP addresses in domestic settings are typically dynamically assigned — these get re-allocated

36

6.3. APPLICATION DEVELOPMENT METHODOLOGY

when the device reboots or disconnects from the network. MAC addresses, on the other hand,

are usually static - though these too can be altered which this tool addresses and mitigates

through the next two features. For this feature, the ’ARP -a’ command line functionality is

brought to the front-end without any user input. The scapy.srp() method is used to return

packets from OSI Layer 2. From this, the IP and MAC addresses are parsed and added into

a dictionary which is then returned to the front-end. This function is called every 30 seconds

by repeatedly reloading (or refreshing) its URL endpoint on Flask using a simple JavaScript

function.

3. A view of historically connected IoT and N-IoT devices. [Figure: Appendix A.0.4 (7), Code:

Appendix A.0.6 (10.3)]

For this feature, Tshark is used to capture packets from the chosen interface in real-time.

Metadata from 91 chosen headers [listed in Appendix-A] of this pcap file is then sent to a CSV

file. From this file, only addresses that match the ’198.168.’range of private addresses are

parsed and then run through a LightGBM ML model (which is pre-trained on network traffic

datasets from 23 IoT and 9 Non IoT devices from the SmartLab and UNSW), to classify them

as IoT or Non-IoT devices, without using standard identifiers such as IP and MAC addresses.

The same model that checks for IoT and Not IoT signatures also outputs the probability

score for each prediction using the ’predict_proba()’ method from scikit-learn, and this is

displayed on the front-end as well. This function is also called every 30 seconds by repeatedly

reloading (or refreshing) its URL endpoint on Flask using a simple JavaScript function.

4. A real-time view of currently connected devices — with IP addresses, MAC addresses, device

names, device locations and device states. [Figure: Appendix A.0.4 (5), Code: Appendix A.0.6

(10.4)]

For this feature, two pre-trained classifiers: a multi-class classifier that detects device names’

and a binary classifier that detects activities (On/Off), are used to serve predictions for all

source IPs that follow the ’192.168’ range of private addresses from the captured* traffic.

These predictions are then written to a SQLite database* automatically. These results are

then queried and only the latest states of each connected IoT device are displayed on the

front-end HTML table — This is done using a simple SQL query that groups readings by

MAC address, orders these by timestamp and then returns all unique MAC address row

with the latest timestamp. This table is continuously updated in 30 second intervals using

the same script as the previous functions/features.

(Note*: The predictions, in particular, are served on statistical flows that are extracted from

30 second-long packet captures. The process of capturing live network traffic and processing

these into flows for immediate ML prediction is further outlined in Section 6.3.3.2.This

section also outlines the data persisted in the SQLite database. The process of choosing both

classifiers is outlined later in Section 7.0.2 and 7.0.3.)

5. Interactive Line charts to display trends in activity patterns over custom time periods. [Figure:

37

CHAPTER 6. PIPELINE PREPARATION AND APPLICATION DEVELOPMENT

METHODOLOGY

Appendix A.0.4 (20), Code: Appendix A.0.6 (10.6)]

For this feature, a simple SQL query is used to return historic device states for each identified

MAC address. Users are able to select custom timeframes (hours/days/months) to view device

trends. This is similar in functionality to tools like Home Assistant(HA) and OpenHAB(OH),

however it has main two points of distinction, (1) this tool includes a built-in database which

does not require separate setup like in OH and HA (further outlined in Section 6.3.3), (2) data

from all internet-connected devices is persisted - this includes ecosystems like Nest, Alexa,

and SmartThings, unlike HA which requires separate payment for this functionality. The

drawback however is that data from devices that use protocols other than WiFi or Ethernet

like ZigBee (e.g. SmartThings multipurpose sensors and Aqara devices) are not captured.

6. Widgets that display ongoing activities and ’active’ rooms. [Figure: Appendix A.0.4 2]

For this feature, a simple SQL query to retrieve the data of all devices that are currently

active, from the ’DeviceStates’ table in the SQLite database. Graphic widgets for each active

device’s room/location (e.g. ’Living Room’) and activity-type (e.g. ’Entertainment’) are then

highlighted in blue on the Home Page.

7. A ’Warnings’ card that displays alerts and high-level anomalies. [Figure: Appendix A.0.4 4]

This feature displays energy alerts (e.g. devices that have been On for longer than 24 hours)

and suspicious-activity warnings (e.g. devices that are active between the hours of 1 and 6

am) by retrieving the timestamps of each active device.

8. A User ’Input’ card to enter values for ’Unknown’ device names or locations. [Figure: Appendix

A.0.4 (6), Code: Appendix A.0.6 (10.7)] The developed application renders any device recogni-

tion predictions below a 90% probability threshold as ’Unknowns’. A high initial threshold

is chosen because the total number of initial devices and the total number of samples in

the initial training dataset were both relatively low. Users are prompted to input device

names for any of these ’Unknown’ devices, and this starts the device recognition classifier’s

(partial) retraining process. The scikit-learn library facilitates this type of retraining through

approaches like ’Partial Fit’ and ’Warm Start’, where models learn incrementally on new data

without ’unlearning’ from previous data. This effectively increases the number of devices the

classifier can identify.

The location variable on the other hand is manually input by users initially, with the

capability to alter this at a later date. This label is used by a simple rule-based python

function that tracks device states by location (e.g. ’bulb’ = ’on’ in ’Study’) and then provides

a generic ’guesstimate’ about the type of human activity occurring, which in this instance

might be ’working’.

Both device Names and Device Locations are added to the database for each associated

IP entry. These are then automatically retrieved and displayed on the front-end for user

review during the next page reload (i.e. within the next 30 seconds).

38

6.3. APPLICATION DEVELOPMENT METHODOLOGY

6.3.3 Back End

A regular Smarthome with about 3-10 IoT devices could generate anywhere between 50k KB to 2-3

GB of network traffic a day. Homes with 20+ IoT devices and a couple of typical Non IoT devices

could easily go through 100+ GB of network packets a week. Persisting this kind of data over

long periods is impractical, unless a dedicated hard-drive or cloud service is made available. The

decision to store PCAP files was thus disregarded. However, as the intent was to allow users to

access historic data (to gauge how devices are used and activities change over time), device state

predictions/observations and their timestamps, along with identifiers like MAC addresses and

device names needed to be stored and easily retrieved. A simple SQLite database was set up for

this purpose. While device state changes along with device identifiers were frequently persisted to

the database (in 30 second-intervals while the app was running), the difference in magnitude from

complete packet captures which could span 40+rows in 30 seconds (15-30 KB), to these predictions

which typically only spanned 2-3 rows in the database (or 1-3KB) in 30 second intervals, suggested

that this process was far more practical.

The task then of capturing live network traffic from a smart home, processing this data in real-time,

and streaming this output to ML models for real-time prediction was approached in two ways,

(1) via a separate python script that used Apache Kafka for network streaming, and, (2) via an

integrated script that handled data collection and processing within the Flask app.

Both approaches are outlined in the next sections.

6.3.3.1 Real-time data injection using Kafka

Apache Kafka (Kaf, 2022) is an open-source distributed event streaming platform that is especially

useful for building real-time streaming data pipelines. Using Kafka to decentralise the packet

capture process was briefly considered to avoid constraining the client device’s location to an area

close to the router. At a high level, hosting a Kafka producer instead, on a device close to the

router would alleviate this by allowing any client device (i.e. device on which this tool would be

installed) the freedom to be located anywhere within the house. The host device on which the Kafka

producer is run, in this instance, would handle packet capture and streaming, while the client

device would contain a Kafka ’consumer’ script running in the background. This ’consumer’ would

automatically receive specific data from selected ’topics’ without having to repeatedly ’poll’ the host.

To test this out, a simple Kafka Producer was written based on the following high-level logic:

• Use Scapy/Pcapy/tcpdump libraries to capture network packets in 10 second intervals

and store to a (temporary) Pcap file.

• Use CiCFlowMeter library to convert these 10 second captures to statistical flows.

• Create a Kafka producer.

39

CHAPTER 6. PIPELINE PREPARATION AND APPLICATION DEVELOPMENT

METHODOLOGY

• Send each of these flows to a topic titled ’Flows’ and then call the producer.flush()

method to ensure all previously sent messages have completed.

A Kafka Consumer was then written to receive (or ’consume’) this data stream from the producer,

by subscribing to that same topic.

Both the Producer and Consumer scripts developed for this trial are included in Appendix A.0.3.

This technique was ultimately disregarded as it proved unnecessary for a use-case as small

as a household. Kafka however still remains an extremely viable option for (event based) data

streaming over a larger network such as a commercial or institutional environment. Much like how

the MQTT protocol works, it is easy to set up a ’consumer’, ’subscribe’ to specific ’Topics’ and get

event driven data in JSON format pushed to the consumer (much like a Webhook). Upon receipt,

this data can be de-serialised and used in real-time.

6.3.3.2 Real-time Network sniffing and Activity Logging through Flask

Decentralising the data capture and data consumption process proved unnecessary for this appli-

cation. Considerations like application portability and usability took priority over the challenge of

physical location constraints solved by Kafka. Running a Kafka broker, and asking a user to start

a Producer and Consumer script simultaneously would be impractical in a production environment.

In Flask, a separate traffic sniffing function using the Tshark command line functionality is

set up using subprocess calls. Live packets from a chosen interface (such as ’eth0’ and ’wlan0’)

are captured in intervals of 30 seconds and stored in temporary PCAP files. These files are used

for two purposes after which they are immediately discarded: (a) ’Cicflowmeter’, a tool developed

for statistical flow analysis, is used to convert the data in these packets to bi-directional flows.

These flows are then written to another temporary CSV file for immediate (online) ML predic-

tion. These predictions along with their timestamps are continuously persisted to the SQLite

database. The flows (CSV) file is stored for 3 days at a stretch before discarding after which

another file is created — these 3-day old files can be used to retrain the device recogniton and

device state identification models at a later stage. (b)Tshark is also separately used to parse these

packet captures and extract metadata from 91 headers into a CSV file. This file is then used by a

binary classifier to distinguish IoT from Non-IoT devices in the network, after which it is discarded.

The SQLite database is continuously updated with 5 fields each time a source MAC address

emits a packet. This includes the device’s MAC address, device name, device state, device location

and timestamp. The front end component allows Users to input values for any ’Unknowns’ —

values such as Location and some Device Names are initially entered this way. Users are also able

to alter any false predictions in real-time. This ’supervised’ technique is especially useful to retrain

multi-class classifiers on new devices connected in the network.

40

6.4. SUMMARY

6.3.3.3 User considerations

Such a passive network sniffing setup presents users with certain constraints as well. The sniffing

device (host client) will need to be placed close to the router/DHCP server to catch the maximum

number of packets. There will inevitably be some loss of packets — the exact amount will vary

depending on the location and router model, and is thus out of scope of this paper. The sniffing

device will probably be assigned one channel, and will only be able to sniff on that channel. Care

will need to be taken to ensure that the devices-of-interest are also connected to that same channel

to allow complete packet capture.

6.4 Summary

This chapter employs ’MLOps’ practises to deploy and test device and device-state recognition

models in a ’production’ environment. Allowing models to learn incrementally from new data in

real-time ensures model maintainability over time. For this, this section looks at how flow-based

and packet-based data is persisted for a short enough amount of time to facilitate potential retrain-

ing when new devices are identified in the network.

This chapter also exposes the challenges of such a development methodologies. While contin-

uous data collection was previously explored as a separate stand-alone service with a dedicated

API endpoint (in micro-service architecture style), encapsulating this functionality within a single

application meant easier portability and usability and was thus chosen. However challenges with

this architectural style persist; frequent page reloads causes additional overhead and slows down

the application significantly.

41

C
H

A
P

T
E

R

7
PERFORMANCE AND ANALYSIS

To choose the most appropriate classification technique for this multi-stage problem, this thesis

examined a number of machine learning classification techniques and compared their validated

accuracy. Across all three stages, the Scikit-learn python library was used to implement, and train

and test models. 10 iterations and 10-fold cross validation were used to generalize the validation

results. Hyper-parameter tuning using Grid Search was then used to improve the performance

of the highest performing models. To check model performance, a confusion matrix and a clas-

sification report using the Sklearn package was generated for each classifier. Metrics such as

Accuracy, Precision, F1 score and Recall for all classifiers were compared. Additionally, parameters

like learning speed and resistance to over-fitting were considered while choosing classifiers —

K-Nearest Neighbours and Support Vector Machines were therefore deliberately not tested for any

of the stages as each classifier took beyond 60 minutes to train on relatively small (>500 sample)

datasets. Feature importance from all the top performing models was also taken into consideration

to ensure that disproportionate weightage was not given to any single feature during training. To

reduce noise and improve performance further, models were retrained after subsequent feature

selection.

The challenge with IoT datasets was that some devices generated more activity than others

during the same time duration (for e.g. Alexa Echo Studio was found to be more active even during

the idle state as compared to the Withings Weighing scale and BP machine). This led to imbalanced

datasets. These datasets were not separately under or over-sampled however, as the intention was

that the chosen model would handle speedy retraining based on real-time data. Therefore more

emphasis was placed on choosing models that are known to perform well with imbalanced datasets

in real-time settings — such as boosting, tree and ensemble models. To verify performance, a

classification report was generated for each model to check how many instances of each class were

correctly identified. Additionally, the F1 score, which is the harmonic mean of precision and recall,

42

was used instead of the ’accuracy’ metric, to check the classification success rate of rarer samples.

On the development front, instead of building a single multi-stage classifier, separate classi-

fiers for each stage (i.e. detecting IoT versus Non-IoT, detecting IoT device type, detecting activity

states (i.e. on/off)) were developed in order to avoid the problem of prediction accuracy reduction in

the final stage — i.e. the probability of accurate final stage prediction = probability of accurate

prediction of Stage1 x Stage2 x Stage3), which was a challenge highlighted in (Acar et al., 2020).

Uncoupling these classifiers also provides scope for individual monitoring and maintenance.

Comparison tables for each of the stages along with the final chosen algorithms are highlighted

below:

7.0.1 Detecting IoT versus Not IoT

The methodology to differentiate IoT from Non-IoT devices in the network using ML involved the

standard pre-processing steps: importing all the necessary libraries in python, importing network

trace data from the Smart Lab at CU and the datasets published from UNSW, preprocessing

these pcap files to extract metadata from specific headers, separating the x and y variables and

splitting the data into train and test data using the Scikit-Learn library in python, fitting a range

of classifiers on the train data and making predictions on the test data. [See Jupyter Notebook 1]

The feasibility of differentiating IoT from Non-IoT devices, rapidly (< 1 minute latency), us-

ing traffic features consisting entirely of packet-based TCP/TLS metadata, was verified through

analysis conducted on IoT and Non-IoT traffic traces collected from 23 IoT and 9 Non-IoT devices,

both from the Smart Lab at Cardiff University and the public repository at UNSW (Sivanathan

et al., 2018). This analysis was conducted to test against certain baseline ground truths listed in

(Sivanathan et al., 2017), namely, "(a) An IoT device communicates with less than 10 servers on

average per day, (b) IoT devices predominantly tend to use a few specific application-layer protocols

(found by destination port number) (c) IoT devices initiate DNS queries for only a limited number of

domains (mostly domain name of their vendors or service providers) and repeat the queries in a

consistent manner ". The analysis also compared trends in features tested in (Bremler-Barr et al.,

2020), namely, maximum window TCP size, number of unique DNS queries, number of unique

interacted endpoints of remote IPs, and number of unique outgoing ports.

43

CHAPTER 7. PERFORMANCE AND ANALYSIS

IoT(Triby Speaker) Non-IoT(Galaxy tab)
0

2

4

6

8

10 unique DNS queries

(a) No.of unique DNS queries over 24 hours be-

tween an active IoT and Non IoT device

IoT Non-IoT
0

100

200

300

400

500 unique DNS queries

(b) No.of unique DNS queries over 24 hours, us-

ing 23 IoT and 9 Non-IoT devices

IoT(Triby Speaker) Non-IoT(Galaxy tab)
0

20

40

60

80

100

120

140 unique IP endpoints

(c) No.of unique IP endpoints accessed over 24

hours between an active IoT and Non IoT

device

IoT Non-IoT
0

100

200

300

400

500

600 unique IP endpoints

(d) No.of unique IP endpoints accessed over 24

hours

IoT Non-IoT
0

200

400

600

800

1000

1200

1400 unique tcp destination port

(e) No.of unique TCP destination ports accessed

over 24 hours

IoT Non-IoT
0

20

40

60

80

100
unique udp destination port

(f) No.of unique UDP destination ports accessed

over 24 hours

IoT(Triby Speaker) Non-IoT(Galaxy Tab)
0

2

4

6

8

10
unique HTTP request URIs

(g) No.of unique HTTP request URIs accessed

over 24 hours between an active IoT and Non

IoT device

IoT Non-IoT
0

50

100

150

200

250

300

350

400
unique HTTP request URIs

(h) No.of unique HTTP request URIs accessed

over 24 hours

Figure 7.1: Classification of IoT and Non-IoT traffic patterns

44

In general, the findings suggest that IoT devices connected to limited endpoints, (and thus have

fewer unique DNS requests, remote IPs and ports); These results were consistent with those

outlined in (Sivanathan et al., 2017) and (Bremler-Barr et al., 2020). A range of binary classifiers

were then trained using supervised learning, on traffic metadata from 91 pcap headers/features

[Appendix A 10].

The model chosen was Light GBM with a recall rate and F1 score of 99% [Table 7.1].

Algorithm Accuracy Precision Recall F1 score

Light GBM 99.2% 99.1% 99.9% 99.3%

Gradient Boost 98.9% 98.7% 99.2% 99.3%

XGBoost 99.2% 99.1% 99.9% 99.5%

AdaBoost 98.9% 98.8% 99.8% 99.3%

Random Forest 99.2% 99.3% 99.6% 99.5%

Decision Tree 98.9% 99.3% 99.3% 99.3%

Cat Boost 98.9% 99.3% 99.3% 99.3%

Logistic Regression 97.4% 97.6% 99.1% 98.4%

Table 7.1: Performance results from 8 binary classifiers for the IoT vs. Non-IoT detection stage

Figure 7.2: Feature Importance - Light GBM for IoTvNoT on traffic metadata

45

CHAPTER 7. PERFORMANCE AND ANALYSIS

7.0.2 Detecting Device type — Device Fingerprinting

A range of Multi-Class Classification models were initially trained on 30-second, bidirectional

network traffic flows collected from 8 commonly used house-hold devices, from the Smart Home Lab

at Cardiff University — the Alexa Echo Studio, TPLink Plug, Lumiman Bulb, Roborock Vacuum

Cleaner, LG smart TV, Withings BP monitor, Weekett Kettle, and Smarter Coffee Machine.

These statistical flows consisted of 78 features which included, the mean, standard deviation,

minimum and maximum Flow Inter-Arrival Time (or IAT); statistics for forward and backward

packets (e.g. packet length, header length, bytes, flag count); statistics for idle and active flows

and sub-flows such as the minimum and maximum time a flow was active before becoming idle,

etc. This also included a few packet-based features such as source and destination ports, IP and

MAC addresses and Protocols. These statistical flows were generated from the Flask app, using

command line applications like tshark for packet capture and CiCFlowmeter for pcap to flow

conversion.

The models tested for this stage included the OneVsRest classifier with different base estimators,

XGBoost, AdaBoost, Gradient Boost, and Light Gradient Boosting Machine algorithms, tree-based

algorithms like Decion Tree and Random Forest, and stacking ensemble algorithms with different

base estimators. The Light GBM and Extreme Gradient boost classifiers were seen to outperform

the rest. The initial LGBM training reached an F1 score of 96.0% (without parameter tuning) and

an accuracy of 97.04% after hyperparameter tuning. The scores of each input feature was tabulated

[Figure 7.3]; features such as source port, backward (initial) window bytes, destination port, and

flow inter-arrival-time statistics such as minimum flow Inter-Arrival-Time, minimum backward

Inter-Arrival-Time, and flow duration, were given the highest scores — similar to the scores from

the Random Forest and XGBoost classifiers. This classifier was later partially re-trained online

using traces from the IoT Sentinel dataset. The results of each trial are outlined in Table 7.2.

Algorithm Accuracy Precision Recall F1 score Hyperparameter tuning (accuracy)

LightGBM 96.71% 96.0% 96.0% 96.0% 97.04% (f1-score) using ’max_depth’: -10,

’min_child_weight’: 1e-05, ’n_estimators’:

1000, ’num_leaves’: 40

XGBoost 96.15% 96.3% 96.4% 96.3% -

OneVsRest (XG-

Boost)

96.15% 95.8% 96.2% 95.9% 96.75% using ’max_depth’: 4,

’min_child_weight’: 1, ’n_estimators’:

1000

Gradient Boost 94.87% 95.0% 95.0% 95.0% -

Random Forest 94.54% 94.7% 94.7% 94.6% -

OneVsRest (Random

Forest)

93.92% 94.6% 94.6% 94.4% 95.34 % using ’max_features’: 60,

’min_samples_leaf ’: 1, ’min_samples_split’:

2, ’n_estimators’: 100

Logistic Regression 80.81% 79.0% 80.0% 78.0% -

OneVsRest (Logistic

Regression)

79.80% 78.30% 79.80% 77.0% -

AdaBoost 43.35% 52.3% 42.5% 40.7% -

Table 7.2: Performance results from 9 multi-class classifiers for the Device fingerprinting stage

46

Figure 7.3: Feature Importance - Light GBM for Device Fingerprinting on network flows

7.0.3 Detecting Activity States - On vs Off

Experiments were conducted to test basic activity recognition between the active or ’On’ state

and the inactive/idle or ’Off ’ state. The ’Off state’ terminology is here used interchangeably with

the ’inactive state’ because a fully unplugged or discharged device would not exhibit any network

activity at all, leading to the device being virtually ’invisible’ over the network, i.e. this device

would be ’Offline’ in such an instance, and not ’Off ’.

The challenge at this stage was to identify device states suitably quickly whilst also reducing the

chances of mis-identification. For this, models were first trained using 10-second statistical flows.

The resulting F1-score from standard top performing algorithms such as tree-based, boosting,

and ensemble classifiers was found to average to 60%. As this score was unacceptable in a home

environment, 30-second statistical flows were next considered. This was found to be better per-

forming, with the F1 score averaging to 84.4%, with the highest score being 90.1% recorded by

47

CHAPTER 7. PERFORMANCE AND ANALYSIS

the OneVsRest Classifier (with XGBoost Base Estimator). 60-second flows were also considered,

however these were not found to be significant improvements over the 30 second flows to warrant

the increase in time.

The results additionally suggested that devices still received bursts of data during the inac-

tive state. If bidirectional flows were used to predict device states, this meant that a largely

inactive device that received some data was still predicted as an active device. This reduced

prediction accuracy. To increase performance, these datasets were pre-processed again to ensure

that only flows emanating from the device in question were taken into consideration. Findings

then suggested that while devices in the inactive state typically sent between 1-5 packets to the

router every 30 seconds (typically the Heartbeat or Time To Live (TTL) message), some devices

that were active or ’On’ for a while also displayed similar patterns; the LG TV for instance only

demonstrated peaks in traffic when channels were switched, or the volume was changed.

Algorithm Accuracy Precision Recall F1 score

OneVsRest (XGBoost) 90.4% 90.4% 90.4% 90.4%

XGBoost 90.4% 90.4% 90.4% 90.4%

Gradient Boost 88.62% 87.0% 87.0% 87.0%

AdaBoost 87.79% 87.8% 87.7% 87.7%

LightGBM 87.04% 88.0% 88.0% 88.0%

OneVsRest (Random forest) 88.0% 88.0% 88.0% 88.0%

Random forest 86.49% 86.7% 86.6% 86.6%

OneVsRest (Logistic Regres-

sion)

71.91% 71.9% 71.9% 71.9%

Logistic Regression 70.5% 71% 71% 71%

Table 7.3: Performance results from 9 binary classifiers for the Device state recognition stage

Note: This feature-set was also used to determine if specific activity states like ’Kettle heating’,

’Alexa playing music’, ’Blink Camera Live View’ could be assessed as well. 13 such ’activities’ or

states were tested in all. The same classifiers were used to test this dataset [see: Jupyter Notebook

3]. The Gradient Boost classifier was found to narrowly outperform the LightGBM classifier with

an F1 score of 80.1%. More work can be done to improve the dataset however, as these models are

not likely to perform well in a live setting.

7.1 Summary

The findings suggest that IoT devices and their current states can be successfully identified using

both packet-based and flow-based statistics, in real-time. The highest performing classifiers at

each of the three stages were found to be as follows: (a) To detect IoT from Non-IoT device, the

Light Gradient Boosting Machine outperformed both the Extreme Gradient Boost and the Random

Forest Classifiers, with an F1 score of 99.3% and accuracy of 99.2%, (b) To detect device name (i.e.,

fingerprint devices) the Light Gradient Boosting Machine again outperformed both the Extreme

Gradient Boost and the One Versus Rest Classifiers, with an F1 score of 97.0% and accuracy of

96.7%, (c) To detect device state, the One Versus Rest (with XGBoost base classifier) outperformed

48

7.1. SUMMARY

Figure 7.4: Feature Importance - Extreme Gradient Boost for Device State Identification using network flows

other boosting and tree based classifiers with an F1 score of 90.1% and accuracy of 88.1%.

In comparison with the state-of-the-art, the performance scores for Stage 1 (IoT vs NoT) was found

to be at par with current works using similar packet metadata-based classification.

The scores for Stage 2 (Device fingerprinting), on the other hand, was found to be 2.7% lower

than the high F1 score of 99.9% by the Random Forest classifier recorded by (Shahid et al., 2018).

This can be attributed to the fact that in (Shahid et al., 2018), a fewer number of IoT devices

(viz., 4) were used, data was captured over a longer duration (7 days), and the dataset was largely

balanced. In direct comparison, the datasets in this paper were captured over an average time

period of 2 hours for 8 devices, and these datasets were largely imbalanced (with a ratio of 1:50 for

some devices) - this was done to mimic real-world conditions where these models will need to be

retrained, quickly, on live, noisy, data. Light Gradient Boosting Machine, therefore, is seen here

to outperform the Random Forest Classifier, as it is built to handle heavily imbalanced datasets

out-of-the-box without the need for other techniques like under or over-sampling data.

For Stage 3: Device state identification, the f1 score was also found to be 3.7% lower than that

recorded by (Acar et al., 2020). While the dataset was equally imbalanced, the devices themselves

were a mix of sensors, gateways and bridges from across the zigbee, bluetooth and wifi protocols,

and therefore was a bit dissimilar to the wifi-based dataset used in this paper. More notably

49

CHAPTER 7. PERFORMANCE AND ANALYSIS

however, a different set of statistical features (generated using tfresh), were used to train the

classifier; 795 initial features were used initially, which were later cut down to 197 binary features

using feature selection. No mention was made on final training time. In contrast, this paper uses

84 (out-of-the-box) flow-based features generated from CiCFlowMeter to train the classifiers, where

the top performing classifier takes an average of 1.5 seconds to train. Further experiments will

therefore need to be run on this paper’s dataset using the features selected in (Acar et al., 2020) to

gain more comparable results. Additional experiments can also be run with a more custom set of

features through CiCFlowMeter to improve the achieved results.

Note: Compound user actions such as ’working’, ’sleeping’, and ’cooking’ were separately as-

certained using rule-based algorithms through the Flask application. As an example, activities

like ’working’ were ’guesstimated’ through the locations and timestamps of devices, for e.g., if the

location of the devices were labelled as ’Study’, and the states of 2 or more devices located in the

’Study’ were ’ON’ (like ’laptop plug’, and ’bulb’ for instance), and all within a set timeframe, the

activity was automatically labelled as ’working’. This may be presumptuous however; further work

can be done to improve on this.

Note 2: The Jupyter Notebooks used to (initially) train these models are included along with this

submission.

50

C
H

A
P

T
E

R

8
CONCLUSION AND FUTURE WORK

8.1 Conclusion

This thesis explores the development of a smart home-based activity recognition tool that uses a

simpler data collection methodology as compared to the current state-of-the-art.

Through a comprehensive literature review and findings from subsequent experimentation, this

paper demonstrates that COTS devices and device activities can be automatically recognised

through patterns in their network activity. Subsequently, it finds that more complex human activi-

ties can be constructed using this data, almost, if not as successfully, as traditional sensor-based

methods. It also posits that this traffic-based methodology, through its open-source nature, offers

the benefit of being almost fully hardware and software agnostic. It is therefore offered as a time

and cost-effective alternative to traditional approaches.

This Thesis therefore uses this methodology to develop a layman-friendly activity recognition tool

as a counterpart to the diagnostics component of mature open-source hubs like Home Assistant

and OpenHAB. The proposed tool in this Thesis navigates the challenges of such hubs through its

easy set-up and simple UI —both of which do not require prerequisite technical skills to use. The

proposal eliminates any monetary commitment, by making use of open-source network sniffing

tools to identify devices and their current states. This tool goes a step beyond tools like Home Assis-

tant and OpenHAB as well, by ensuring that devices are identified through robust fingerprinting

methods, instead of currently used common identifiers like MAC and IP addresses, so that they

are hard/impossible to spoof. To the best of the author’s knowledge, such a diagnostics tool with

custom labelling capabilities, does not exist in the open-source market.

To implement this tool, this Thesis uses a multi-stage device-state identification method using

51

CHAPTER 8. CONCLUSION AND FUTURE WORK

encrypted network data. It extends current literature around passive activity detection techniques

and brings it into a production-ready environment. It identifies the database requirements, outlines

tools to capture and process network traffic, recommends top performing binary and multi-class

classifiers, and offers ways to retrain models using user input. It also highlights the challenges

and limitations (Section 8.2) of using this software development technique.

For evaluation, this Thesis utilises metrics such as precision, recall and F-measure, which provides

an insight into the quality of the classification. The performance of these probabilistic models is

evaluated and these results provide a baseline for comparison with other recognition methods in

live settings. The datasets needed for repeating these experiments are made available as well (Dat,

2022).

8.2 Limitations

The architecture of this tool is designed to be an all-in-one portable solution for general activity

monitoring. This faces its own set of challenges: (a) Lag: Continuous network sniffing, frequent

database updation, and regular, automatic page refreshes, causes each Flask webpage to load

in an average of 10 seconds — which is much slower than the average 100ms recorded for a

Flask application of this size. This could be made significantly faster if computationally heavy

tasks like network capture and database updation is separated from the main flask app. From an

MLOps perspective, implementing a microservice style of architecture could address this problem.

Separate deployment would additionally address the ’single point of failure’ problem which is

another limitation of the current application. (b) Physical location of deployment: This application

captures local traffic packets passively. To minimise packet loss the application will need to be

hosted on a device close to the router,or with the least number of physical barriers between them. (c)

Non-protocol agnostic: The current set up collects network data from devices that use Ethernet and

Wifi. Protocols like ZigBee, Z-Wave, Bluetooth are not addressed here as these require additional

hardware (like ZigBee or Bluetooth sniffers), that the average User may not possess. This, however,

means that the current application excludes devices from the SmartThings and Aqara ecosystems

as these battery-based devices typically run on such low-power protocols. (d) Manual install for

certain tools: This application uses tools like Wireshark, TShark and CiCFlowMeter which users

will need to install separately. This is because the ’Promiscuous’ mode of monitoring will need to

be manually enabled, and this could require administrative privileges. The process of mitigating

some of these challenges are addressed in the next section.

8.3 Future Work

To enhance scalability and performance in a production environment, the ML pipeline could be

orchestrated via Apache Airflow and hosted online using Docker. An API endpoint would then

push data to the Flask application using Webhooks. A decentralised approach to packet capture

52

8.3. FUTURE WORK

and real-time transmittance using Apache Kafka could also be explored in environments where

physically connecting or locating the client machine close to the main router may not be possible.

The management and results of ML model retraining could also be automated and tracked online

using tools like MLFlow.

To make this application truly protocol or device-’agnostic’, dedicated hardware like Bluetooth

and ZigBee sniffers can be used. After making a change to the desired interface (e.g. from ’Wi-Fi’

to ’Bluetooth’) on the tshark packet-capture command [Appendix A.O.2], the subsequent steps

of packet capture and packet-to-flow conversion will be the same as the current set-up. Though

not tested for this paper, it is assumed that the ML component will work much the same way as

well — works such as (Acar et al., 2020) have explored similar flow-based device and device-state

recognition methods using Bluetooth and ZigBee traffic, and have achieved beyond 90% accuracy

scores.

On the ML front, an attempt could be made to include even ’noisier’ data in the initial learning

stage. The models currently classify device names with an average 75% accuracy rate when de-

ployed in a live, ’noisy’ environment. This is much lower than the initial scores achieved during

training - implying that further improvements in selecting a diverse enough dataset should be

made. While, false scores are currently mitigated through a process of ’threshold-acceptance checks’

(where devices with prediction probability scores lower than 90% are classified as ’Unknown’,

thus prompting users to re-label them), much of this online re-training process can be reduced

for already known devices if initial datasets include randomised traffic. Additionally, this pa-

per currently uses 84 flow-based features generated from CiCFlowMeter, a network traffic flow

generator to train two classifiers. The results achieved suggest that improvements can be made

on customising the feature-set further, while managing the overall training time. Moreover, the

number of samples used to train the models could be increased to improve performance score.

Additional work can also be done to improve Anomaly Detection techniques on such an application.

The current set up is built on an ad-hoc rule-based approach. It is developed as an analytics tool

that detects anomalous physical behaviour such as surges in device activities during unusual time

periods and even exceptionally long activity periods for certain devices. This analysis could be

made more sophisticated — for instance, time-based physical anomalies, such as events that could

lead up to a flood or fire, could be detected. Improvements within the cyber realm could also be

made — devices that are malfunctioning or compromised could be detected through unusually

large packet transfers, for example.

53

C
H

A
P

T
E

R

9
REFLECTION

This Thesis explored two distinct components of the IoT network analysis project equally — Ma-

chine Learning and Software Engineering. The project’s end-goal was not trivial; in essence, the

objective was to develop an MLOps project that facilitated real-time detection of physical events

using encrypted traffic. This involved a considerable learning curve — specific upskilling was

needed in areas such as (a) IoT networks and protocols, (b) Supervised, semi-supervised and online

learning ML techniques, (c) ML pipeline orchestration and management techniques, and (d) Data

collection/streaming services. It was imperative therefore to narrow down the scope of the project

and then, to create a realistic project plan.

To refine the project scope, a broad but quick market study was necessary. The aim was to

understand if activity recognition using network data instead of more commonly used physical

device data was feasible, and more importantly, informative enough, for regular smart home

users. To extract insights from multiple papers in a short span of time, a simple Excel-based

exercise proved useful. Here, any papers reviewed were tabulated and key bullet points regarding

the paper’s Purpose, Experiments, Datasets, and Outcomes were roughly outlined. The ’Abstract’,

’Conclusion’ and ’Future Work’ sections of these papers provided enough content for this exercise.

This type of a review structure exposed any outstanding themes, and gaps, quickly. It found

that while there was already substantial existing work in traffic-based HAR from the IoT privacy

and vulnerability research sub-domains, most of these works were largely theoretical. Moreover, as

their primary motivation was to gauge and limit exposure, these papers approached the study from

the point of view of an external (malicious) actor. Having found a sizeable gap to fill here, the next

step was to quickly assess if any IoT diagnostics or HAR-based tools existed in the open-source

market. A quick study revealed that while tools like NMAP, Home Assistant and OpenHAB (for

IoT diagnostics) existed, the later two did not address security (against spoofing) nor usability

54

9.1. PROJECT MANAGEMENT STYLE

for wider, non-technical audiences. Additionally, none of these tools provided an overview of the

concurrent activities happening in the smart home, and therefore did not offer any HAR insights.

These set of findings, through this preliminary market study, helped set the benchmark and

generate a more refined project outline and purpose for this dissertation.

Next, to develop a project plan, a series of iterative process diagrams proved useful. This led

to clear requirements definition — which generated a list of required and ’nice-to-have’ features.

This also helped address my existing skills gap, and helped determine which components to priori-

tise, and which to ’value engineer’ as ’out-of-scope’ for the given timescale. The outcome of this

exercise proved useful for writing the ’Limitations’ and ’Future Work’ Sections of this report.

9.1 Project Management Style

My initial project plan followed the Waterfall model. The intention was to allocate one week for

overall research (i.e., for undertaking a preliminary market study, assessing IoT lab resources, and

curating necessary learning material), two weeks for an extended literature review, one week for

data collection, four weeks for ML experimentation and software development, and four weeks for

writing the paper.

This model did not work well past the third week. The allocated timescale for each task did

not account for any additional learning nor did it cater to possible execution delays or failures dur-

ing the experimentation and software development phases. Moreover, the rigidity of this structure

did not bring potential roadblocks in the software development phase to light early in the process.

For example, two ’nice-to-have’ features that were to be included were a webserver for ML model

management, and comparison graphs between the predicted device states (using network data)

and Home Assistant states (using device data). For the first, implementing a fully automated

pipeline using Apache AirFlow and MLFlow took more time than allocated. Simpler alternatives

should have instead been tested (quickly) during the beginning stages. For the second feature, it

was found that Home Assistant required a dedicated Linux OS, and would not run on a virtual

machine or Windows Subsystem for Linux unlike what the documentation suggested. This meant

that a majority of potential non-technical users would not have as easy access to this software as

originally understood — which meant that the project scope needed to be re-revised. This should

have also been tested during the early stages of the project.

The total number of ’unknowns’ in the project, therefore, exceeded the total number of ’knowns’ —

and this did not suit the Waterfall model. To address each of the unknowns, it became necessary to

shift to a more ’Agile’ style of working.

Using the ’Sprint’ workflow helped reduce abortive tasks after the Literature Review phase. 3-day

55

CHAPTER 9. REFLECTION

sprints were used to quickly trial secondary/nice-to-have features (like real-time dynamic displays),

to allow just enough time to try and potentially fail at a task without it having an adverse impact

on the overall timeline. Planning work in this iterative manner helped generate key findings

quicker, which helped troubleshoot issues in a timely manner. To meet the deadline, other simple

workflow techniques were used as well. Where open-source tools/libraries/templates were available

for supportive functions, these were utilised. Previous skills/knowledge was reused as well — an

example of this was using Flask itself to develop the project. Since this framework was not new to

me, it was easier to focus on testing/developing the main objectives of the project without worrying

about the implementation itself.

Best practises in MLOps were used during the ML development phase as well. These were

(a) taking a modular approach (b) having pre-trained models ready to show as proof of concept

(c) developing generic algorithms to show some success, and then training them further for their

specific tasks, and (d) bridging gaps in training data with publicly available data sources. These

steps were useful in generating results quickly. The ’simplest’ models were trained first, using

small external datasets, to demonstrate proof-of-concept. During this stage, an automated pre-

processing pipeline was created that could be re-used for other classification tasks. This meant

that extra time was not spent on cleaning and pre-processing data for each subsequent stage of

the project. External datasets were also identified as a back-up for instances where certain devices

were unavailable in the Smart Home Lab.

9.2 Shortcomings of work conducted

The proposal, at its earliest stage, started with the question - ’Can I check if the hotel I am staying

at has any hidden devices’? This exposed others such as ’Are there ways to assess if any connected

devices are ’active’ in my network?’, and ’Is there an easy, human-readable way to ’see’ all the

devices connected to this network?’. These questions brought an exposure to current research

works that successfully detected IoT and Non IoT devices in the ’wild’ such as (Bremler-Barr et al.,

2020), and others which successfully fingerprinted devices such as (Bruhadeshwar et al., 2018).

Using Home Assistant (a home automation hub), for an unrelated project at that time, revealed

that this desired type of immediate ’network surveillance’ functionality was not available to most

smart home users, unless they invested time in manually connecting these devices individually to

these hubs.

A theoretical paper that solved some of these questions was (Acar et al., 2020) however this

work did not consider this research from the view of a smart home user as its primary objective was

just to gauge the extent of device activity exposure from a smart home. Factors such as scalability,

speed of recognition/detection, memory constraints, potential user-input, potential online model

re-training, database management, all needed to be considered.

56

9.2. SHORTCOMINGS OF WORK CONDUCTED

While this dissertation attempts to use this as a start at productionalising such a tool, there

is still scope for further improvement:

(a) The methodology to test the performance of the tool in a live setting requires better defini-

tion;

For the purpose of this dissertation, experiments were conducted manually - where devices are

connected, activated, de-activated and disconnected, in an ad-hoc manner. A few readings (about

3-5) were recorded for each result (e.g. ’observed ip address’, ’predicted name’, ’predicted state’),

and readings were then assessed against physical evidence (or ground truths) ’by eye’. To provide

more conclusive results of these experiments, a higher number of such experiments —at least

in the tens— could be conducted and, results tabulated. The current set of findings were too

variable to draw any definite conclusions about its performance ’in the wild’. In addition to this,

the application could benefit from being tested in more than one ’live’ environment.

(b) The initial data gathering process could benefit from automation;

The locally gathered datasets are by no means ’rich’. These were gathered through ad-hoc exper-

iments, where devices were manually activated and de-activated after either the full length of

the device’s activity (for example, for the time it takes for a ’Roborock’ vacuum cleaner to clean

one room, or for a ’Smarter’ coffee machine to finish one brew), or for about 10-15 minutes at a

stretch for devices like Smart bulbs and plugs. The number of such experiments conducted were

not extensive enough to train robust classifiers. Moreover, as this was a manual effort, the datasets

were in danger of being mislabelled. These models were therefore presented as ’proof of concepts’,

and are by no means a finished product.

The PingPong dataset (Trimananda et al., 2019), in contrast, was significantly ’richer’ and could be

used as a benchmark for future research works. It used a systematic, automated

technique to capture traffic from 22 devices, where automations through smartphone apps or-

chestrated the experiments. A script was run to generate ’touch-points’ on the smartphone apps

themselves to activate/de-active devices, so very little manual intervention was necessary. Each

experiment was then run ’n’ times for ’x’ seconds -where n was in the range of 50-100 experiments,

and ’x’ depended on the device. For our purpose, Home Assistant could easily supplant the need for

a smartphone script so as to make this process even simpler, however the key takeaway from this

is that the final dataset generated by the ’PingPong’ experiments was robust and included perhaps

a complete set of possible traces from each device.

(c) Further development is required in the proposed ’online learning’ component of this research

work;

The current lack of skills within the set timeframe of this project meant that the ’online learning’

component of this research work could not be adequately explored nor executed in the final tool.

The intention was to successfully retrain devices online, so as to recognise guest devices that may

57

CHAPTER 9. REFLECTION

enter the network at a later date. The methodology that was intended to do this has already been

put in place in the code itself: 3 days worth of network traces are currently captured by the tool,

converted to flows in a CSV format, and then stored, after which this file gets deleted (to keep

memory costs at a minimum) and is replaced by another similar file. The intention is that this

flow-based featureset can be used as input to partially retrain the ’device fingerpinting’ classifier

to detect, for example a new, never before seen, ’blood pressure monitor’ that a guest may bring in.

The way this would be done is as follows:

The tool is already capable of recognizing new devices in the network, categorising these as

’Unknowns’, and then allowing users to input or ’label’ these by IP address. This label is then

written to a database table that is then displayed on the front end. However, the main intent

of this (’device name’) label is to be used as a ’prediction output label’. In simple terms, all sam-

ples in the (3-day old) flow-based CSV file, that corresponds to the new IP address in question,

would be automatically labelled with this inputted ’device name’ label through a script. This

’labelled’ CSV file will then be fed into the same device fingerprinting classifier again, to par-

tially retrain it using Scikit Learn’s ’partial fit’ method. This updated model will then start to

serve correct predictions each time a new ’blood pressure monitor’ (for example) enters the network.

This implementation is definitely worth exploring further, as the knowledge gained through

developing such an online training mechanism will prove invaluable in industry projects and

future research works.

9.3 Key Learnings and Takeaways

On the research/project management front, a key learning was to write the paper in tandem with

the experimentation phase, and then restructure as required after implementation. The previous

waterfall method made it difficult to track the early stages of a project; moreover, the time to

allocate, to write the paper was not easy to ascertain. Another learning was that shorter (soft)

deadlines proved effective for a range of tasks. This was in keeping with the ’Agile’ spirit, where

timely rectifications could be made if these tasks did not go to plan. A third was to approach

tasks/features/models iteratively; smaller/simpler deployments could be used as proof-of-concepts

before more complex tasks were attempted.

On a technical front, new skills were acquired in machine learning techniques. Simple yet effective

data pre-processing techniques were studied and an insight was gained into ML pipelines, which

helped automate these tasks. Different performance metrics were utilised: K-fold cross validation

scores, confusion matrices, and other standard metrics such as f1 scores and recall rates were

assessed to finalise the models at each classification stage. Techniques to improve scores, such

as feature extraction using feature importances, Hyperparameter tuning using Grid Search, and

stacked ensembles were explored as well. Exposure was also gained in machine learning man-

58

9.3. KEY LEARNINGS AND TAKEAWAYS

agement and orchestration tools like Apache AirFlow. Within the Apache framework, Kafka was

explored for streaming data —with experiments in writing simple Consumer and Producer scripts

to stream captured flows in real-time proving successful. Whilst neither of the Apache products

were used in the final proposal, the exposure gained would prove most lucrative for future projects

in industry.

Lastly, a deeper understanding of IoT networks and protocols was gained. Active and passive

techniques in device fingerprinting were studied, and an understanding of the OSI model was

developed. Simple experiments in Pandas on the captured datasets were conducted to reveal

patterns in IoT and non-IoT traffic; these patterns were then exploited to classify devices and

device states with minimal training data almost as successfully as the state-of-the-art.

59

BIBLIOGRAPHY

2021. The unsw dataset, [Online]. Available at: https://research.unsw.edu.au/projects/

unsw-nb15-dataset. Accessed: 15 August 2022.

2022. Apache kafka - documentation, [Online]. Available at: https://kafka.apache.org/. Ac-

cessed: 1 September 2022.

2022. Flask v:2.2.x - documentation, [Online]. Available at: https://flask.palletsprojects.

com/en/2.2.x/. Accessed: 09 September 2022.

2022. Highcharts - interactive javascript charts library, [Online]. Available at: https://www.

highcharts.com/. Accessed: 18 September 2022.

2022. Home assistant, [Online]. Available at: https://www.home-assistant.io/. Accessed: 06

July 2022.

2022. Home assistant add-ons, [Online]. Available at: https://www.home-assistant.io/

addons/. Accessed: 09 September 2022.

2022. Iot dataset collected from smart home lab, cardiff university, [Online]. Available at:

https://cf-my.sharepoint.com/:f:/g/personal/zachariasm_cardiff_ac_uk/EpZvgw_

rO15AuO7pbDvOE9QBnZ8wSJSL-OfFEk4x9OF5uQ?e=3BAVwcy. Accessed: 17 October 2022.

2022. Openhab, [Online]. Available at: https://www.openhab.org/. Accessed: 10 July 2022.

2022. Rest api - home assistant, [Online]. Available at: https://developers.home-assistant.

io/docs/api/rest. Accessed: 07 October 2022.

2022. Scapy - packet crafting for python2 and python3, [Online]. Available at: https://scapy.net/.

Accessed: 08 August 2022.

2022 - 2030. Smart home market size, share trends analysis report by region and segment

forecasts, [Online]. Available at: https://www.grandviewresearch.com/industry-analysis/

smart-homes-industry. Accessed: 04 October 2022.

A. Sivanathan, F. L. A. R. C. W. A. V., H. Habibi Gharakheili and Sivaraman, V. 2022. Unsw sydney

- iot traffic traces, [Online]. Available at: https://iotanalytics.unsw.edu.au/iottraces.

Accessed: 09 September 2022.

60

https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://kafka.apache.org/
https://flask.palletsprojects.com/en/2.2.x/
https://flask.palletsprojects.com/en/2.2.x/
https://www.highcharts.com/
https://www.highcharts.com/
https://www.home-assistant.io/
https://www.home-assistant.io/addons/
https://www.home-assistant.io/addons/
https://cf-my.sharepoint.com/:f:/g/personal/zachariasm_cardiff_ac_uk/EpZvgw_rO15AuO7pbDvOE9QBnZ8wSJSL-OfFEk4x9OF5uQ?e=3BAVwcy
https://cf-my.sharepoint.com/:f:/g/personal/zachariasm_cardiff_ac_uk/EpZvgw_rO15AuO7pbDvOE9QBnZ8wSJSL-OfFEk4x9OF5uQ?e=3BAVwcy
https://www.openhab.org/
https://developers.home-assistant.io/docs/api/rest
https://developers.home-assistant.io/docs/api/rest
https://scapy.net/
https://www.grandviewresearch.com/industry-analysis/smart-homes-industry
https://www.grandviewresearch.com/industry-analysis/smart-homes-industry
https://iotanalytics.unsw.edu.au/iottraces

BIBLIOGRAPHY

Acar, A., Fereidooni, H., Abera, T., Sikder, A. K., Miettinen, M., Aksu, H., Conti, M., Sadeghi,

A.-R. and Uluagac, S. 2020. Peek-a-boo: I see your smart home activities, even encrypted!

In: Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile

Networks. pp. 207–218.

Aksoy, A. and Gunes, M. H. 2019. Automated iot device identification using network traffic. In:

ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE, pp. 1–7.

Apthorpe, N., Huang, D. Y., Reisman, D., Narayanan, A. and Feamster, N. 2018. Keeping the smart

home private with smart (er) iot traffic shaping. arXiv preprint arXiv:1812.00955 .

Apthorpe, N., Reisman, D. and Feamster, N. 2017. A smart home is no castle: Privacy vulnerabilities

of encrypted iot traffic. arXiv preprint arXiv:1705.06805 .

Avizheh, S., Doan, T. T., Liu, X. and Safavi-Naini, R. 2017. A secure event logging system for smart

homes. In: Proceedings of the 2017 Workshop on Internet of Things Security and Privacy. pp.

37–42.

Bezawada, B., Bachani, M., Peterson, J., Shirazi, H., Ray, I. and Ray, I. 2018. Behavioral fin-

gerprinting of iot devices. In: Proceedings of the 2018 workshop on attacks and solutions in

hardware security. pp. 41–50.

Biondi, P. 2022. Scapy - packet crafting for python2 and python3, [Online]. Available at: https:

//scapy.net/. Accessed: 05 July 2022.

Bremler-Barr, A., Levy, H. and Yakhini, Z. 2020. Iot or not: Identifying iot devices in a short time

scale. In: NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium.

IEEE, pp. 1–9.

Bruhadeshwar, B., Bachani, M., Peterson, J., Shirazi, H., Ray, I. and Ray, I. 2018. Iotsense:

Behavioral fingerprinting of iot devices. ArXiv abs/1804.03852 .

Burke, M. 2022. News article - amazon’s alexa may have witnessed alleged florida mur-

der, authorities say, [Online]. Available at: https://www.nbcnews.com/news/us-news/

amazon-s-alexa-may-have-witnessed-alleged-florida-murder-authorities-n1075621.

Accessed: 25 July 2022.

Cherman, E. A., Tsoumakas, G. and Monard, M.-C. 2016. Active learning algorithms for multi-label

data. In: IFIP International Conference on Artificial Intelligence Applications and Innovations.

Springer, pp. 267–279.

Chowdhury, R. R., Aneja, S., Aneja, N. and Abas, E. 2020. Network traffic analysis based iot device

identification. In: Proceedings of the 2020 the 4th International Conference on Big Data and

Internet of Things. pp. 79–89.

61

https://scapy.net/
https://scapy.net/
https://www.nbcnews.com/news/us-news/amazon-s-alexa-may-have-witnessed-alleged-florida-murder-authorities-n1075621
https://www.nbcnews.com/news/us-news/amazon-s-alexa-may-have-witnessed-alleged-florida-murder-authorities-n1075621

BIBLIOGRAPHY

Combs, G. 2022. tshark manual page, [Online]. Available at: https://www.wireshark.org/docs/

man-pages/tshark.html. Accessed: 05 July 2022.

Copos, B., Levitt, K., Bishop, M. and Rowe, J. 2016. Is anybody home? inferring activity from

smart home network traffic. In: 2016 IEEE Security and Privacy Workshops (SPW). IEEE, pp.

245–251.

Cui, W., Li, B., Zhang, L. and Chen, Z. 2021. Device-free single-user activity recognition using

diversified deep ensemble learning. Applied Soft Computing 102, p. 107066.

Damodaran, N. and Schäfer, J. 2019. Device free human activity recognition using

wifi channel state information. In: 2019 IEEE SmartWorld, Ubiquitous Intelligence &

Computing, Advanced & Trusted Computing, Scalable Computing & Communications,

Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, pp. 1069–1074.

Dong, S., Li, Z., Tang, D., Chen, J., Sun, M. and Zhang, K. 2019. Your smart home can’t keep a

secret: Towards automated fingerprinting of iot traffic with neural networks. arXiv preprint

arXiv:1909.00104 .

Fang, H. and Hu, C. 2014. Recognizing human activity in smart home using deep learning

algorithm. In: Proceedings of the 33rd chinese control conference. IEEE, pp. 4716–4720.

Hamad, S. A., Zhang, W. E., Sheng, Q. Z. and Nepal, S. 2019. Iot device identification via network-

flow based fingerprinting and learning. In: 2019 18th IEEE international conference on trust,

security and privacy in computing and communications/13th IEEE international conference on

big data science and engineering (TrustCom/BigDataSE). IEEE, pp. 103–111.

Hieu, L. 2022. Cicflowmeter, [Online]. Available at: https://www.unb.ca/cic/research/

applications.html. Accessed: 20 July 2022.

Jackman, J. 2022. Smart home statistics, [Online]. Available at: https://www.theecoexperts.

co.uk/smart-homes/statistics. Accessed: 18 October 2022.

Kabir, M. H., Hoque, M. R., Thapa, K. and Yang, S.-H. 2016. Two-layer hidden markov model for

human activity recognition in home environments. International Journal of Distributed Sensor

Networks 12(1), p. 4560365.

Kolcun, R., Popescu, D. A., Safronov, V., Yadav, P., Mandalari, A. M., Mortier, R. and Haddadi, H.

2021. Revisiting iot device identification. arXiv preprint arXiv:2107.07818 .

Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi, A.-R. and Tarkoma, S. 2017. Iot

sentinel: Automated device-type identification for security enforcement in iot. In: 2017 IEEE

37th International Conference on Distributed Computing Systems (ICDCS). IEEE, pp. 2177–2184.

62

https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.unb.ca/cic/research/applications.html
https://www.unb.ca/cic/research/applications.html
https://www.theecoexperts.co.uk/smart-homes/statistics
https://www.theecoexperts.co.uk/smart-homes/statistics

BIBLIOGRAPHY

Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi, A.-R. and Tarkoma, S. 2018.

Iot sentinel dataset: Automated device-type identification for security enforcement in iot,

[Online]. Available at: https://github.com/andypitcher/IoT_Sentinel/tree/master/

captures_IoT_Sentinel/captures_IoT-Sentinel. Accessed: 05 August 2022.

Ni, Q., Garcia Hernando, A. B. and De la Cruz, I. P. 2015. The elderly’s independent living in smart

homes: A characterization of activities and sensing infrastructure survey to facilitate services

development. Sensors 15(5), pp. 11312–11362.

OConnor, T., Mohamed, R., Miettinen, M., Enck, W., Reaves, B. and Sadeghi, A.-R. 2019. Homes-

nitch: behavior transparency and control for smart home iot devices. In: Proceedings of the 12th

conference on security and privacy in wireless and mobile networks. pp. 128–138.

Palmieri, F. and Fiore, U. 2009. A nonlinear, recurrence-based approach to traffic classification.

Computer Networks 53(6), pp. 761–773.

Perdisci, R., Papastergiou, T., Alrawi, O. and Antonakakis, M. 2020. Iotfinder: Efficient large-scale

identification of iot devices via passive dns traffic analysis. In: 2020 IEEE European Symposium

on Security and Privacy (EuroS&P). IEEE Computer Society, pp. 474–489.

Ramasamy Ramamurthy, S. and Roy, N. 2018. Recent trends in machine learning for human

activity recognition—a survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery 8(4), p. e1254.

Ren, J., Dubois, D. J., Choffnes, D., Mandalari, A. M., Kolcun, R. and Haddadi, H. 2019. Information

exposure from consumer iot devices: A multidimensional, network-informed measurement

approach. In: Proceedings of the Internet Measurement Conference. pp. 267–279.

Sarnaik, N. 2020. Human activity recognition using cnn. Int. J. Sci. Res. Publ 10, p. 9804.

Shahid, M. R., Blanc, G., Zhang, Z. and Debar, H. 2018. Iot devices recognition through network

traffic analysis. In: 2018 IEEE international conference on big data (big data). IEEE, pp.

5187–5192.

Shen, J. and Fang, H. 2020. Human activity recognition using gaussian naive bayes algorithm in

smart home. In: Journal of Physics: Conference Series. IOP Publishing, vol. 1631, p. 012059.

Sivanathan, A., Gharakheili, H. H., Loi, F., Radford, A., Wijenayake, C., Vishwanath, A. and

Sivaraman, V. 2018. Classifying iot devices in smart environments using network traffic

characteristics. IEEE Transactions on Mobile Computing 18(8), pp. 1745–1759.

Sivanathan, A., Sherratt, D., Gharakheili, H. H., Radford, A., Wijenayake, C., Vishwanath, A. and

Sivaraman, V. 2017. Characterizing and classifying iot traffic in smart cities and campuses. In:

2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE,

pp. 559–564.

63

https://github.com/andypitcher/IoT_Sentinel/tree/master/captures_IoT_Sentinel/captures_IoT-Sentinel
https://github.com/andypitcher/IoT_Sentinel/tree/master/captures_IoT_Sentinel/captures_IoT-Sentinel

BIBLIOGRAPHY

Sumathy, B., Kavimullai, S., Shushmithaa, S. and Anusha, S. S. 2021. Wearable non-invasive

health monitoring device for elderly using iot. In: IOP Conference Series: Materials Science and

Engineering. IOP Publishing, vol. 1012, p. 012011.

Sun, J., Sun, K. and Shenefiel, C. 2019. Automated iot device fingerprinting through encrypted

stream classification. In: International Conference on Security and Privacy in Communication

Systems. Springer, pp. 147–167.

Trimananda, R., Varmarken, J., Markopoulou, A. and Demsky, B. 2019. Pingpong: Packet-level

signatures for smart home device events. arXiv preprint arXiv:1907.11797 .

Trimananda, R., Varmarken, J., Markopoulou, A. and Demsky, B. 2020a. Packet-level signatures

for smart home devices. In: Network and Distributed Systems Security (NDSS) Symposium. vol.

2020.

Trimananda, R., Varmarken, J., Markopoulou, A. and Demsky, B. 2020b. Packet-Level Signatures

for Smart Home Devices. Proceedings of the 2020 Network and Distributed System Security

(NDSS) Symposium .

Van Jacobson, V. P., Sally Floyd and McCanne, S. 2022. Tcpdump, [Online]. Available at: https:

//www.tcpdump.org/. Accessed: 05 July 2022.

Wang, W. and Miao, C. 2018. Activity recognition in new smart home environments. In: Proceedings

of the 3rd International Workshop on Multimedia for Personal Health and Health Care. pp. 29–37.

64

https://www.tcpdump.org/
https://www.tcpdump.org/

APPENDIX A

A.0.1 Software Used

Table 1: Software used for generating results

Filename/

Hardware/

Package/

Algorithm

Supplier/

Source/

Author Website

Use

Python Python Software Foundation
Used for data preparation

and Flask development

JSON
https://www.json.org/

json-en.html
Used during Kafka streaming

Pandas https://pandas.pydata.org/
Reading datasets

converting to dataframes

Scikit-learn https://scikit-learn.org/
Used for preprocessing data

and training and testing ML models

Draw.IO https://app.diagrams.net/
Used for creating

flowcharts and diagrams

tshark
https://www.wireshark.org/

docs/man-pages/tshark.html

Used for capturing

and parsing network traffic

CiCFlowMeter https://gitlab.com/hieulw/cicflowmeter Used for generating traffic flows

SQLite https://www.sqlite.org/index.html Used as database

65

APPENDIX A

A.0.2 CLI/ OS commands

TShark Command to generate (91 feature) Dataset - For IoT versus Non-IoT detection

tshark -r 160923.pcap -T fields -E header=y -E separator=, -E quote=d -E

occurrence=f -e frame.time -e eth.src -e eth.dst -e _ws.col.Protocol -e

_ws.col.Info -e frame.len -e frame.cap_len -e ip.src -e ip.dst -e ip.len -e

ip.hdr_len -e ip.flags.df -e ip.flags.mf -e ip.fragment -e

ip.fragment.count -e ip.fragments -e ip.ttl -e ip.proto -e ip.version -e

ip.tos -e ip.id -e ip.flags -e ip.flags.rb -e ip.frag_offset -e ip.checksum

-e ip.dsfield -e tcp.window_size -e tcp.ack -e tcp.seq -e tcp.len -e

tcp.stream -e tcp.urgent_pointer -e tcp.flags -e tcp.analysis.ack_rtt -e

tcp.segments -e tcp.reassembled.length -e tcp.dstport -e tcp.srcport -e

tcp.hdr_len -e tcp.flags.fin -e tcp.flags.syn -e tcp.flags.reset -e

tcp.flags.push -e tcp.flags.ack -e tcp.flags.urg -e tcp.flags.cwr -e

tcp.checksum -e tcp.time_relative -e tcp.time_delta -e tcp.options.mss_val

-e dtls.handshake.extension.len -e dtls.handshake.extension.type -e

dtls.handshake.session_id -e dtls.handshake.session_id_length -e

dtls.handshake.session_ticket_length -e dtls.handshake.sig_hash_alg_len -e

dtls.handshake.sig_len -e dtls.handshake.version -e

dtls.heartbeat_message.padding -e dtls.heartbeat_message.payload_length -e

dtls.heartbeat_message.payload_length.invalid -e dtls.record.content_type

-e dtls.record.length -e dtls.record.sequence_number -e dtls.record.version

-e dtls.change_cipher_spec -e dtls.fragment.count -e

dtls.handshake.cert_type.types_len -e dtls.handshake.certificate_length -e

dtls.handshake.certificates_length -e dtls.handshake.cipher_suites_length

-e dtls.handshake.comp_methods_length -e dtls.handshake.exponent_len -e

dtls.handshake.extensions_alpn_str -e

dtls.handshake.extensions_alpn_str_len -e

dtls.handshake.extensions_key_share_client_length -e

tls.handshake.extensions_server_name -e http.server -e http.request -e

http.request.method -e http.host -e http.request.uri -e http.user_agent -e

udp.port -e frame.time_relative -e frame.time_delta -e dns.ns -e

dns.qry.name -e dns.qry.type -e udp.srcport -e udp.dstport -e udp.length -e

data.len> 16-09-23_pcap.csv

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

Tshark command to capture live packets and save to file:

tshark -i <interface> -w <destination.csv>

Editcap command to split pcaps into smaller files based on time duration:

66

A.0.3 APACHE KAFKA SCRIPTS

editcap -i 30 '/<filepath>/<source>.pcap' '/mnt/c/<destination>.pcap'.

CiCFlowmeter (linux/WSL based) command to convert pcap files to statistical flows:

cicflowmeter -f <source.pcap> -c <destination.csv>

84 statistical Features extracted from pcap files using CiCFlowmeter - used for Device fingerprint-

ing and device state recognition:

'Flow ID', 'Src IP', 'Src Port','Dst IP','Dst Port','Protocol','Timestamp','Flow

Duration','Tot Fwd Pkts','Tot Bwd Pkts','TotLen Fwd Pkts','TotLen Bwd

Pkts','Fwd Pkt Len Max','Fwd Pkt Len Min','Fwd Pkt Len Mean','Fwd Pkt Len

Std','Bwd Pkt Len Max','Bwd Pkt Len Min','Bwd Pkt Len Mean','Bwd Pkt Len

Std','Flow Byts/s','Flow Pkts/s','Flow IAT Mean','Flow IAT Std','Flow IAT

Max','Flow IAT Min','Fwd IAT Tot','Fwd IAT Mean','Fwd IAT Std','Fwd IAT

Max','Fwd IAT Min','Bwd IAT Tot','Bwd IAT Mean','Bwd IAT Std','Bwd IAT

Max','Bwd IAT Min','Fwd PSH Flags','Bwd PSH Flags','Fwd URG Flags','Bwd URG

Flags','Fwd Header Len','Bwd Header Len','Fwd Pkts/s','Bwd Pkts/s','Pkt Len

Min','Pkt Len Max','Pkt Len Mean','Pkt Len Std','Pkt Len Var','FIN Flag

Cnt','SYN Flag Cnt','RST Flag Cnt','PSH Flag Cnt','ACK Flag Cnt','URG Flag

Cnt','CWE Flag Count','ECE Flag Cnt','Down/Up Ratio','Pkt Size Avg','Fwd Seg

Size Avg','Bwd Seg Size Avg','Fwd Byts/b Avg','Fwd Pkts/b Avg','Fwd Blk Rate

Avg','Bwd Byts/b Avg','Bwd Pkts/b Avg','Bwd Blk Rate Avg','Subflow Fwd

Pkts','Subflow Fwd Byts','Subflow Bwd Pkts','Subflow Bwd Byts','Init Fwd Win

Byts','Init Bwd Win Byts','Fwd Act Data Pkts','Fwd Seg Size Min','Active

Mean','Active Std','Active Max','Active Min','Idle Mean','Idle Std','Idle

Max','Idle Min',

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

,→

A.0.3 Apache Kafka Scripts

A.0.3.1 Kafka Producer

#Import the necessary modules

import logging

from datetime import datetime

import subprocess

import sys

import os

import time

basepath = os.path.dirname(__file__)

#Install tcpdump, kafka-python, and cicflowmeter on linux.

pcapy can be used in place of tcpdump.

67

APPENDIX A

os.system("apt-get install tcpdump")

os.system("pip install kafka-python") #for python 3

os.system("pip install cicflowmeter") #for python 3

from time import sleep

from struct import *

from kafka import KafkaProducer

import json

import csv

producer = KafkaProducer(bootstrap_servers=['localhost:9092'],

value_serializer=lambda v:

json.dumps(v).encode('utf-8')),→

print("Created Producer\n")

#Ask user for input on which interface to listen from

#put interface in monitor mode

if __name__ == '__main__':

while True:

dev = 'eth0'

p = subprocess.Popen(['tcpdump', '-i', dev,

'-w', 'test.pcap'], stdout=subprocess.PIPE)

time.sleep(10)

p.terminate()

requires cicflowmeter to be installed using pip on linux OS

subprocess.call(['cicflowmeter','-f','test.pcap','-c','flows.csv'])

with open('flows.csv') as file:

reader = csv.DictReader(file, delimiter=";")

for row in reader:

producer.send(topic='flows', value=row)

producer.flush()

print("message sent")

68

A.0.3 APACHE KAFKA SCRIPTS

#********************************

To install CICFLOWMETER

os.system("pip install cicflowmeter")

os.system("git clone https://gitlab.com/hieulw/cicflowmeter && cd

cicflowmeter"),→

os.system("python setup.py install")

Requirements:

Install

numpy==1.18.0 scipy==1.4.1 scapy==2.4.3

A.0.3.2 Kafka Consumer

Import KafkaConsumer from Kafka library

from kafka import KafkaConsumer

kafka_topic_name = "flows"

kafka_bootstrap_servers = "localhost:9092"

Initialize consumer variable

consumer = KafkaConsumer(kafka_topic_name, fetch_max_wait_ms=0)

Read and print message from consumer

for message in consumer:

print(message) # or parse it according to tool's requirements

print('message received', time.time())

69

APPENDIX A

A.0.4 User Interface

Figure 1: Homepage: Real-time graph showing bytes/second sent over the local network

Figure 2: Homepage: Current Activities and Active spaces in the Smart Home

70

A.0.4 USER INTERFACE

Figure 3: Homepage: Anomalies activities and warnings

Figure 4: Homepage: Navigation

Figure 5: Connected Devices: Overview of all device states

71

APPENDIX A

Figure 6: Connected Devices: User input (supervised learning) to manually input device names and locations

(to partially retrain models online

Figure 7: Connected Devices: Detection of IoT and Non IoT devices in the local network

Figure 8: Dashboard: Historic Trends

72

A.0.5 CLASSIFICATION RESULTS

A.0.5 Classification results

A.0.5.1 Stage-1 (IoT vs NoT) Classification results

Figure 9: Results - Cumulative

Figure 10: Stage 1 - Results - Light Gradient Boosting Machine

73

APPENDIX A

A.0.5.2 Stage-2 (Device Fingerprinting) Classification results

Figure 11: Stage 2 - Results - Light Gradient Boosting Machine

Figure 12: Stage 2 - Results - Extreme Gradient Boost

74

A.0.5 CLASSIFICATION RESULTS

Figure 13: Stage 2 - Results - OneVsRest with Extreme Gradient Boost base estimator

Figure 14: Stage 2 - Results - Random Forest

75

APPENDIX A

A.0.5.3 Stage-3 (Device State) Classification results

Figure 15: Stage 3 - Results - AdaBoost

Figure 16: Stage 3 - Results - Gradient Boost

76

A.0.5 CLASSIFICATION RESULTS

Figure 17: Stage 3 - Results - OneVsRest with Random Forest Base estimator

Figure 18: Stage 3 - Results - OneVsRest with ExtremeGradientBoost base estimator

77

APPENDIX A

Figure 19: Stage 3 - Results - ExtremeGradientBoost

Figure 20: Stage 3 - Results - Feature Importance Scores - ExtremeGradientBoost

78

A.0.6 CODE

A.0.6 Code

1. Script for Homepage dynamic graph

@blueprint.route('/data', methods=["GET", "POST"])

def data():

"""

For real-time bytes/second graph

"""

pkt = sniff(count = 1)[0]

pktBytes=[]

pktTimes=[]

from datetime import datetime

#Read each packet and append to the lists.

for p in pkt:

if IP in p:

try:

pktBytes.append(p[IP].len)

pktTime=datetime.fromtimestamp(p.time)

pktTimes.append(pktTime.strftime("%Y-%m-%d %H:%M:%S.%f"))

except:

pass

Convert list to series

bytes = pd.Series(pktBytes).astype(int)

Convert the timestamp list to a pd date_time with the option

“errors=coerce” to handle errors.,→

times = pd.to_datetime(pd.Series(pktTimes).astype(str), errors='coerce')

times.dt_time()

Build the dataframe, set time as index

df = pd.DataFrame({'Bytes': bytes, 'Times':times})

try:

Bytes = df['Bytes'].iloc[0]

Time = df['Times'].iloc[0]

except IndexError:

Bytes = 0

Time = 0

print("Index should be smaller.") # Throws IndexError: single

positional indexer is out-of-bounds,→

79

APPENDIX A

data = [str(Time),int(Bytes)]

response = make_response(json.dumps(data))

response.content_type='application.json'

return response

2. Script for IP -> MAC mapping

-Connected Device Page-

import argparse

from scapy.all import *

def arp_scan(ip):

"""

Performs a network scan by sending ARP requests to an IP address or a range

of IP addresses.,→

Args:

ip (str): An IP address or IP address range to scan. For example:

- 192.168.1.1 to scan a single IP address

- 192.168.1.1/24 to scan a range of IP addresses.

Returns:

A list of dictionaries mapping IP addresses to MAC addresses. For

example:,→

[

{'IP': '192.168.2.1', 'MAC': 'c4:93:d9:8b:3e:5a'}

]

"""

request = Ether(dst="ff:ff:ff:ff:ff:ff") / ARP(pdst=ip)

ans, unans = srp(request, timeout=2, retry=1)

result = []

for sent, received in ans:

result.append({'IP': received.psrc, 'MAC': received.hwsrc})

Data={}

for mapping in result:

Data.update({mapping['IP']:mapping['MAC']})

return Data

80

A.0.6 CODE

3. Script to predict IoT versus Non-IoT devices

@blueprint.route('/data.html', methods=["GET", "POST"])

def Predict():

"""

For IoT versus Non-Iot Prediction

"""

df=pd.read_csv('packetsFinal.csv', on_bad_lines='skip')

loaded_model =

pickle.load(open('apps/templates/ML_models/clf_LGM_23Apr(without

router).pkl', 'rb')) #load the saved model

,→

,→

predictions = loaded_model.predict(df)

print prediction probability as well

predictionProbability = loaded_model.predict_proba(df)

predictionDict={} # return a dictionary of tuples containing ip address and

predictions,→

for f, b,c in zip(df.iloc[:, 7], predictions,predictionProbability):

if str(f).startswith('192.168'):

predictionDict.update({f:[b,round(max(c),3)]})

return predictionDict

4. Script to retrieve data from database

from apps import db

#Read data from sql

@blueprint.route('/DeviceStates', methods=["GET", "POST"])

def table():

"""

Retrieves latest Device states for all unique MAC values from SQLite db.

Function is run every 30 seconds using app scheduler (at end of file)

"""

session = db.session()

cursor = session.execute('SELECT

mac,deviceName,deviceState,location,timeStamp, max(timeStamp) FROM

DeviceStates group by mac order by timeStamp')

,→

,→

resultsDeviceStates = cursor.fetchall()

return resultsDeviceStates

81

APPENDIX A

5. Script to output data from above two functions to front end from Database

@blueprint.route('/transactions.html', methods=["GET"])

def add_data():

"""

Output from below functions is directly returned

to the table in the 'transactions.html' template

"""

data = arp_scan('192.168.1.1/24')

predictionDict=Predict()

resultsDeviceStates = table()

return render_template('home/transactions.html', data=data,

predictionDict=predictionDict,resultsDeviceStates=resultsDeviceStates),→

6. Script to create individual line graphs of each devices’ activity for a desired

time period, generated through a user query (flask form)

import plotly.graph_objects as go

from plotly.subplots import make_subplots

@blueprint.route('/dashboard', methods=['GET', 'POST'])

def graph():

"""

Retrieve data from SQLite to Flask graph based on time, with a user

query,→

"""

session = db.session()

input1 = '2022-10-05'

input2 = '2022-10-06'

if request.method == 'POST':

input1 = str(request.form.get('input1'))

input2 = str(request.form.get('input2'))

cursor = session.execute("SELECT * FROM DeviceStates WHERE timeStamp >= '" +

input1 + "' and timestamp <= '" +input2+"' ORDER BY timeStamp"),→

82

A.0.6 CODE

else:

cursor = session.execute("SELECT * FROM DeviceStates order by

timeStamp"),→

results = cursor.fetchall()

df = pd.DataFrame(results, columns = ['id', 'mac',

'deviceName','timeStamp','deviceState','location']),→

convert to df

listOfMACs = df['mac'].unique()

fig = make_subplots(

rows=len(listOfMACs), cols=1,

shared_yaxes=True

)

for i,unique in enumerate(listOfMACs):

tempdf = df[df['mac'] == unique]

check1 = tempdf['timeStamp']

check2 = tempdf['deviceState']

fig.add_trace(go.Scatter(x = check1, y=check2, name = unique,

line=dict(width=2)),row=i+1,col=1),→

fig.update_layout({'paper_bgcolor':'rgba(0,0,0,0)',

'plot_bgcolor':'rgba(0,0,0,0)','height':900, 'width':900,})

fig.update_yaxes(categoryorder='array', categoryarray= ['0', '1'])

graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder)

return render_template('home/dashboard.html', graphJSON=graphJSON)

83

APPENDIX A

7. Script to write user-input(label) for Device Location from the front-end to the

associated table in the database

@blueprint.route('/transactions.html', methods=["POST"])

def dictionary():

"""

User input from the flask form is written

to the DeviceLocations table in the database

"""

locationTable={}

if request.method == 'POST':

ip = str(request.form.get('result.mac'))

location = str(request.form.get('location'))

locationTable.update({ip:location})

record = DeviceLocations(ip, location)

try:

db.session.add(record)

db.session.commit()

print('adding locations worked')

except:

print('adding locations did not work')

Try and alter the device states table based on location

num_rows_updated =

DeviceStates.query.filter_by(mac=ip).update(dict(location=location)),→

db.session.commit()

return redirect('/transactions.html')

84

A.0.6 CODE

8. Script to write user-input(label) for Device Name from the front-end to the

associated table in the database

@blueprint.route('/devicenames', methods=["POST"])

def devicenames():

"""

User input from the flask form is written

to the DeviceNames table in the database

"""

locationTable={}

if request.method == 'POST':

ip = str(request.form.get('result.mac'))

name = str(request.form.get('name'))

record = DeviceNames(ip, name)

try:

db.session.add(record)

db.session.commit()

print('Names worked')

except:

print('Names did not work')

Try and alter the device states table based on location

num_rows_updated =

DeviceStates.query.filter_by(mac=ip).update(dict(deviceName=name)),→

db.session.commit()

return redirect('/transactions.html')

85

APPENDIX A

9. Script to predict device’s names and locations from 30-second traffic flows

using relevant Stage2 and Stage3 classifiers, and write this to a table in the

database, for functions like graphing and logging

def PredictDevice():

"""

Runs predictions (for device name and device state) on all 30-second flows

and writes entries to SQLite db

"""

#every 30 seconds:

app = current_app

with app.app_context():

df_device=pd.read_csv('flowsOriginal.csv', on_bad_lines='skip') #Clean

out,→

loaded_model_deviceRec =

pickle.load(open('apps/templates/ML_models/Diss_Recognition_LGBM_clf.pkl',

'rb')) #load the saved model

,→

,→

loaded_model_deviceState =

pickle.load(open('apps/templates/ML_models/Diss_XGB_clf_.pkl',

'rb'))

,→

,→

for row in range(len(df_device.index)):

if str(df_device.loc[[row]].iloc[:,

0].values[0]).startswith('192.168'):,→

predictionDeviceRec =

loaded_model_deviceRec.predict(df_device.loc[[row]]),→

predictionDeviceState =

loaded_model_deviceState.predict(df_device.loc[[row]]),→

#Add probability

probabilityThreshold =

loaded_model_deviceRec.predict_proba(df_device.loc[[row]]),→

maxProb = [max(i) for i in probabilityThreshold]

if maxProb[0] <= 0.9:

deviceName = 'Unknown'

if request.method == 'POST':

deviceName = str(request.form.get('Device_name'))

else:

deviceName = str(predictionDeviceRec[0]) #Check if works

#Add values to df

86

A.0.6 CODE

db=get_db()

mac = str(df_device.loc[[row]].iloc[:, 0].values[0])

timeStamp = 'hi'

timeStamp = str(df_device.loc[[row]].iloc[:, 5].values[0])

deviceState = str(predictionDeviceState[0])

location = "Unknown"

session = db.session()

cursor = session.execute('SELECT id, ip, location, max(id)

FROM DeviceLocations GROUP BY ip ORDER BY id'),→

cursor = session.execute('SELECT *, max(id) FROM DeviceLocations

GROUP BY ip ORDER BY id'),→

resultsDeviceLocations = cursor.fetchall()

for result in resultsDeviceLocations:

if mac == result.ip:

location = result.location

print(mac,location)

record = DeviceStates(mac, deviceName, timeStamp, deviceState,

location),→

try:

db.session.add(record)

db.session.commit()

print('worked')

except:

print('did not work')

87

APPENDIX A

10. Script to capture live network traffic every 30 seconds, convert it to a

flow-based feature-set (CSV) and a packet ’metadata’ based feature-set (CSV),

save these CSV files temporarily (for future re-training use), and and then serve

predictions on each sample

@blueprint.route('/Packetsniff', methods=("GET","POST"))

def Packetsniff():

"""

Back-end function to sniff (live) packets in 30 second intervals

and convert to statistical flows

"""

#Write to and read from temporary file

make_path('C:/Program Files/Wireshark') #path to tshark on

platform. Requires tshark installed separately

dev = 'Wi-Fi'

#requires tshark downloaded in linux or saved in same windows subdirectory

p = subprocess.Popen(['tshark', '-i', 'Wi-Fi', '-w',

'/path/to/folder/pcapy_test3.pcap'],cwd="/path/to/Wireshark",

stdout=subprocess.PIPE,shell=True)

time.sleep(30)

p.terminate()

#Requires cicflowmeter downloaded in linux

subprocess.call(['wsl','cicflowmeter','-f','/path/to/folder/pcapy_test3.pcap','-c',

'flowsOriginal.csv'])

,→

,→

os.system('wsl tshark -r /path/to/folder/pcapy_test3.pcap -T fields

-E header=y -E separator=, -E quote=d -E occurrence=f -e frame.time

-e eth.src -e eth.dst -e _ws.col.Protocol -e _ws.col.Info -e

frame.len -e frame.cap_len -e ip.src -e ip.dst -e ip.len -e

ip.hdr_len -e ip.flags.df -e ip.flags.mf -e ip.fragment -e

ip.fragment.count -e ip.fragments -e ip.ttl -e ip.proto -e

ip.version -e ip.tos -e ip.id -e ip.flags -e ip.flags.rb -e

ip.frag_offset -e ip.checksum -e ip.dsfield -e tcp.window_size -e

tcp.ack -e tcp.seq -e tcp.len -e tcp.stream -e tcp.urgent_pointer

-e tcp.flags -e tcp.analysis.ack_rtt -e tcp.segments -e

tcp.reassembled.length -e tcp.dstport -e tcp.srcport -e tcp.hdr_len

88

A.0.6 CODE

-e tcp.flags.fin -e tcp.flags.syn -e tcp.flags.reset -e

tcp.flags.push -e tcp.flags.ack -e tcp.flags.urg -e tcp.flags.cwr

-e tcp.checksum -e tcp.time_relative -e tcp.time_delta -e

tcp.options.mss_val -e dtls.handshake.extension.len -e

dtls.handshake.extension.type -e dtls.handshake.session_id -e

dtls.handshake.session_id_length -e

dtls.handshake.session_ticket_length -e

dtls.handshake.sig_hash_alg_len -e dtls.handshake.sig_len -e

dtls.handshake.version -e dtls.heartbeat_message.padding -e

dtls.heartbeat_message.payload_length -e

dtls.heartbeat_message.payload_length.invalid -e

dtls.record.content_type -e dtls.record.length -e

dtls.record.sequence_number -e dtls.record.version -e

dtls.change_cipher_spec -e dtls.fragment.count -e

dtls.handshake.cert_type.types_len -e

dtls.handshake.certificate_length -e

dtls.handshake.certificates_length -e

dtls.handshake.cipher_suites_length -e

dtls.handshake.comp_methods_length -e dtls.handshake.exponent_len

-e dtls.handshake.extensions_alpn_str -e

dtls.handshake.extensions_alpn_str_len -e

dtls.handshake.extensions_key_share_client_length -e

tls.handshake.extensions_server_name -e http.server -e http.request

-e http.request.method -e http.host -e http.request.uri -e

http.user_agent -e udp.port -e frame.time_relative -e

frame.time_delta -e dns.ns -e dns.qry.name -e dns.qry.type -e

udp.srcport -e udp.dstport -e udp.length -e data.len>

packetsOriginal.csv')

PredictDevice()

#flows to serve as future input to retrain classifiers

with open('flowsFinal.csv', 'a+', newline='') as outputfile:

with open('flowsOriginal.csv', newline='') as feed:

writer = csv.writer(outputfile, delimiter=',', quotechar='"')

reader = csv.reader(feed, delimiter=',', quotechar='"')

next(reader)

for row in reader:

writer.writerow(row)

outputfile.close()

89

APPENDIX A

packets for iot vs not detection

with open('packetsFinal.csv', 'a+', newline='') as outputfile:

with open('packetsOriginal.csv', newline='') as feed:

writer = csv.writer(outputfile, delimiter=',',

quotechar='"')

reader = csv.reader(feed, delimiter=',', quotechar='"')

next(reader)

for row in reader:

writer.writerow(row)

for running this script in the background every 30 seconds

from apscheduler.schedulers.background import BackgroundScheduler

scheduler = BackgroundScheduler(job_defaults={'max_instances': 2})

scheduler.add_job(Packetsniff, 'interval', seconds=30)

scheduler.add_job(PredictDevice, 'interval', seconds=30)

scheduler.start()

11. DeviceStates Table in SQLite

class DeviceStates(db.Model):

__tablename__ = 'DeviceStates'

mac = db.Column(db.String(64))

id = db.Column(db.Integer, primary_key=True)

mac = db.Column(db.String(64))

deviceName = db.Column(db.String(64))

timeStamp = db.Column(db.String(64))

deviceState = db.Column(db.String(64))

location = db.Column(db.String(64))

def __init__(self, mac, deviceName, timeStamp, deviceState, location):

self.mac = mac

self.deviceName = deviceName

90

A.0.6 CODE

self.timeStamp = timeStamp

self.deviceState = deviceState

self.location = location

12. DeviceLocations Table in SQLite

class DeviceLocations(db.Model):

__tablename__ = 'DeviceLocations'

mac = db.Column(db.String(64))

id = db.Column(db.Integer, primary_key=True)

ip = db.Column(db.String(64))

location = db.Column(db.String(64))

def __init__(self, ip,location):

self.ip = ip

self.location = location

13. DeviceNames Table in SQLite

class DeviceNames(db.Model):

__tablename__ = 'DeviceNames'

mac = db.Column(db.String(64))

id = db.Column(db.Integer, primary_key=True)

ip = db.Column(db.String(64))

name = db.Column(db.String(64))

def __init__(self, ip,name):

self.ip = ip

self.name = name

91

