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Abstract 

The advent of the 5G era has led to artificial intelligence profoundly influencing our living 

environment and how we live. As a significant branch of artificial intelligence, research in 

computer vision has gradually tended towards deep learning. Optical character recognition has 

been deployed in various smart devices, such as document scanning, bank card number 

recognition, etc. However, the recognition environment is complex and must be placed within 

a defined box for recognition. In addition, character recognition can also be used in more 

complex scenarios, such as license plate detection and signage recognition. 

 

The popularity of electronic devices has led to more and more people using mobile phones, 

computers, and other devices, which has led to an explosive growth in the number of people 

with visual impairment. So, to help extraordinary people who cannot read and look at 

newspapers, this paper investigates the detection and recognition of text in natural scenes 

through deep learning techniques. In order to help particular groups of people unable to read 

and watch newspapers, this paper investigates text detection and recognition in natural scenes 

using Tesseract-OCR, CRNN, PGNet and PaddleOCR through deep learning techniques. 

Furthermore, I designed and implemented an image-to-speech system. Because the detection 

environment is complex and variable, resulting in blurred and distorted images, the images are 

pre-processed, and the engine is optimized to improve recognition accuracy based on an OCR 

engine and a deep learning model. Moreover, the performance of different models in different 

scenarios was analyzed to improve the accuracy of text recognition. 

 

This image-to-speech system is designed and implemented based on deep learning and OCR 

engines to meet the practical needs of visually impaired people. This project is a convenient 

way to implement image-to-speech, which can significantly help the visually impaired. 
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1. Introduction 

With the development of information technology, including big data, cloud computing and the 

Internet, the trend towards artificial intelligence is becoming more and more apparent. 

Ubiquitous networks and computing platforms such as graphics processors have driven the 

rapid development of artificial intelligence technologies. Technologies such as text recognition, 

text-to-speech, image classification, knowledge quizzes and driverless news are experiencing 

explosive growth, intending to enable people to have a more convenient and comfortable life 

through technology. OCR (Optical Character Recognition) text recognition is a branch of 

computer vision research under pattern recognition and artificial intelligence. It refers to the 

analysis and recognition of image files of text material to obtain text and layout information. 

Typically, image information is acquired and stored in image files by devices such as cameras 

and scanners. OCR software then reads, analyses, and extracts the strings in the image file 

through character recognition and converts them into a format acceptable to computers and 

understandable to humans. OCR technology is changing our lives. For example, mobile phones 

can scan and upload information such as ID cards and A4 paper to the Internet through a small 

app or Face ID when people need to pay bills. 

 

Paper documents are the primary source for people to disseminate and access information. 

However, using a large number of paper documents to keep information is undoubtedly time-

consuming and does not facilitate the dissemination of information. Over time, paper 

documents are difficult to store and easily damaged and can be inconvenient for people with 

visual impairments to read. A mobile device with a camera or a computer with a photo function 

that converts paper documents into electronic documents that can be read aloud is undoubtedly 

the best option for document preservation and reading. 

 

Some visually impaired people report many obstacles in using electronic products, such as 

difficulties in payment and verification because they cannot see the screen of their mobile 
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phones. Despite the obstacles they encounter, more and more application developers have taken 

notice of them, and they have developed software such as document scanning. Based on the 

current situation, I intend to develop an image-to-speech system based on TTS (text-to-speech). 

The aim is to take a picture of an article or book with a camera, then use optical symbols to 

recognize the text on the picture and intelligently translate it into speech to be read aloud 

fluently to people with visual impairments. This system will be lighter, with a clean page design, 

good conversion, and fast recognition of medium to long texts. 

 

This research will promote a better understanding of image-to-speech. Furthermore, it will give 

people a sense of how technology can make people's lives more accessible. Finally, this image-

to-speech system will continue to be improved in the future. 
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2. Background 

This report focuses on solving the problem of text reading for people with visual impairment. 

The World Health Organization says that over 2.2 billion people are visually impaired or 

blind [1]. The eyes are the first human organs to undergo ageing, and long hours of work and 

reading can lead to dryness, stinging, and even short periods of blurred vision. With the 

advancement of technology, mobile phones have become an indispensable part of people's 

lives. While people relax and unwind, they also neglect the most critical issue of eye health. 

The image-to-speech function makes reading books easier for people with visual impairment 

so that people with special needs can really "see" the outside world and communicate 

smoothly, all through the OCR image-to-speech function. 

 

In this report, I have studied the specific method of recognizing text and propose improving 

the recognition accuracy. After research, it was discovered that the photographic environment 

and the device significantly impact text recognition. Therefore, I performed pre-processing 

algorithms on the images (edge detection, contour detection, binarization and image 

correction algorithms). Secondly, I needed to study and learn the theory of OCR technology, 

including how to use the Tesseract engine and utilize the deep neural network CRNN, Paddle 

and PGNet algorithms. I also compared and analyzed the advantages and disadvantages of 

each algorithm. Finally, I use a text-to-speech library to produce sounds. The overall front-

end content will be displayed using a simple GUI to make it easier for the user.  
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3. Literature Review 

Data show that more than 161 million people worldwide were visually impaired in 2002 [2], 

and the number of people with visual impairment is rapidly increasing. By 2010 [3] it had 

grown to approximately 300 million people.  

 

In the literature [4], the authors state that it is possible to convert recognized text to speech 

through OCR and TTS modules. The authors use OCR components provided by Microsoft and 

have a recognition accuracy of 98%. However, no corresponding studies are proposed for 

various forms, such as surface anomalies, slope distribution, wrinkle distortion and 

incompleteness. In the literature[5], the author demonstrates the desire of visually impaired 

people to read to enrich their lives and presents three needs of visually impaired people: visual 

reading, tactile reading, and auditory reading. Based on the author's three needs, this paper will 

continue investigating the image-to-speech function in depth based on 'auditory reading'. 

3.1  Image preprocessing 

Image pre-processing aims to eliminate irrelevant information from the image and recover 

valuable and accurate information. With the development of the times, pre-processing 

techniques are also receiving more and more attention from scholars. 

 

In 1992 MF McNitt-Gray [6] acquired images with different features from multiple modalities. 

After experiments, 93% of the CT images were automatically rotated to the correct orientation, 

improving medical image processing. In the study of edge detection algorithm techniques for 

image pre-processing, R Main et al. [7]compare various edge detection techniques and analyze 

their performance. The authors highlight the importance of edge detection for image pre-

processing; irrelevant information in the image is eliminated, interference and noise are filtered 

out, helpful information is recovered, new detectability about the image is enhanced, and data 

is simplified to the maximum. According to experimental results, Canny's edge detection 

algorithm outperforms others in noisy operation conditions. However, Canny's edge detection 
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method outperforms these operators in most cases, but Canny is the costliest of these algorithms.  

 

Image binarization has long been a popular research topic. Binarization can change the grey 

scale value of pixels in an image to 0 or 255, resulting in a distinct black-and-white effect. In 

the literature[8], the authors propose new methods for the adaptive binarization of documents, 

that is, global and local threshold segmentation methods. Because of the source document's 

lighting variations, resolution, and poor quality, more than a single global threshold is required. 

It was found that the proposed algorithm is very adaptive, adapting the algorithm in time, thus 

analyzing the image significantly better than other algorithms. 

 

ZHAI Jun-hai et al. [9], the authors illustrate the extraction methods, characteristics, and 

current state of development of image features and state that image feature extraction is the 

most critical step in image preprocessing. Four commonly used feature extraction methods 

(colour, texture, image algebra and image transform coefficient features) are presented 

separately. Finally, an outlook is given for combining transform coefficient and algebraic 

methods. Li Rong [10] shows that the wavelet transform LBP algorithm has a significantly 

better recognition rate for texture feature extraction than the traditional LBP algorithm. 

3.2  Text Recognition 

Following the previous image pre-processing, text recognition technology is described below. 

Because text extraction is divided into two parts: detection and recognition, the detection aspect 

will be covered first. 

 

Cong Yao [11] focuses on the problem of natural image text detection, noting that detecting 

text in different orientations is challenging. Based on novel text algorithms and the inclusion 

of various datasets, the art algorithm outperforms similar algorithms in detecting text in 

different orientations and performs significantly in complex scenarios. Kwang In Kim et al.  

[12] proposed a text detection method based on texture features, which effectively solves the 

problem of extracting text from complex backgrounds. A fast-directed text discovery network 
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was proposed by Xuebo Liu et al. [13]. It has undergone testing and performed 5% better than 

prior state-of-the-art results.  

 

In order to recognize text, as early as 1994, J.J. Hull et al. [14] described a handwritten text-

based recognition image database and divided a training and test set. After more than a decade 

of development in the literature[15], for previous studies, the authors improved the problem of 

word detection and recognition in natural images and, in some cases, outperformed traditional 

OCR engines. This literature [16] presents a top-down text recognition-based framework with 

significant improvements on two more difficult datasets. 

 

Hewlett-Packard originally developed the Tesseract between 1985 and 1994 [17]. This article 

comprehensively describes Tesseract OCR, introducing what is new and different about the 

OCR engine[18]. In 2011, the literature [19] mentioned Tesseract OCR as the most accurate 

open-source image recognition engine today and implemented the Tesseract Wrapper available 

for the .Net platform. Deep learning development is expected to accelerate in the coming years, 

resulting in the recognition efficiency of Tesseract OCR being far lower than other text 

detection algorithms. In the literature[20], the author uses OpenCV to perform a series of 

preprocessing on images, thereby improving the English recognition rate of Tesseract-OCR. 

 

In 2016 Baoguang[21] Shi et al. proposed a new network structure, CRNN, based on combining 

feature extraction, transcoding, etc., into the same network to achieve end-to-end text 

recognition and demonstrated that this algorithm outperforms most techniques. In 2018 

Jiuxiang Gu et al. [22] provided an in-depth discussion of recent research, such as text detection, 

visual recognition, etc., concluding with the need to continue to improve the design of CNNs. 

Monica Jangpangi[23] solves handwriting recognition with an accuracy of 93%. 
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4. Deep learning-based on text recognition (OCR) 

4.1  Tesseract-OCR 

Tesseract is an open-source OCR [24] engine that currently supports the recognition of most of 

the world's text. Tesseract comes with its character library, and we can also continuously train 

our library so that the ability to convert images to text continues to grow. An important part of 

Tesseract is the analysis of related areas and character outlines in images. Where page layout 

analysis can capture areas of approximate text, contiguous domain analysis captures more 

precise blocks of text. The workflow of tesseract is shown in the figure 1 below. 

 

Figure 1 workflow of tesseract 

Tesseract can be divided into four parts. The first part is to analyze the region of interest: 

detecting the region's outline and the character region's sub-outline and setting as block regions. 

Two methods of analyzing text lines: Fixed scenes segmented by character cells. The next is to 

split the scene according to proportional text by spaces or fuzzy space. If the first recognition 

is not good, tesseract will perform a second process to resolve the blurred text. 

 

Tesseract uses text baselines to align lines of text, generally through the baseline, midline, 

ascending and descending lines to position the characters. The figure 2 clearly illustrates the 

Latin stylized baseline. Blue is the rising line, red is the middle line, purple is the baseline, and 

green is the falling line. 
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Figure 2 Tesseract text baselines 

The second part is to find block regions, detect character outlines and divide text and words 

into spaces. The third part is to find text lines and words. This step uses an adaptive classifier 

and performs word analysis twice. The final part is recognizing the text and identifying 

ambiguous spaces, stroke heights and lowercase letters. 

4.2  CRNN 

Deep learning methods have achieved great success in image recognition as artificial 

intelligence technology has advanced, owing to deep neural networks' powerful feature 

extraction ability. More network architectures with excellent performance have emerged. They 

are also gradually applied to optical character recognition, influenced by their advanced 

performance. After the classification of single characters and the detection and recognition of 

single characters, the classical CRNN[25] model was proposed. The CRNN model is the first 

algorithm that can be applied to the recognition of uncertain long character sequences. It can 

achieve end-to-end training and detection from the input image to the recognized text and adapt 

to most character recognition scenarios to achieve high recognition speed and detection 

accuracy. Figure 3 depicts the CRNN model's architecture, which consists of three layers: the 

convolutional layer, the recurrent layer, and the transcription layer. 

 

Figure 3 The architecture of the CRNN[25] model. 
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The CRNN model begins by scaling the input images, scaling all input images to the same 

height of 32 by default, and the width can be arbitrarily long. Then the convolutional layer 

performs feature extraction on the preprocessed images. The layer structure is similar to that 

of a VGG[26] network, consisting of convolutional layers, pooling layers, and batch operation 

layers. The extracted vectors are arranged on the feature map from left to right as input to the 

recursive layer. Each feature vector represents a feature on a specific image width. The width 

is set to one by default, representing a single pixel. Because the CRNN model scaled the input 

image to the same height, only features at a specific width are required. 

 

In the recurrent layer, a bidirectional LSTM[27] neural network is used to predict the label 

distribution of each feature vector in the feature sequence. The CRNN model regards the 

sequence width as the LSTM's time steps since the LSTM requires a time dimension. Error 

feedback of the recurrent layer and conversion with feature sequences are the primary uses of 

the "Map-to-Sequence" custom network layer. The mistake can effectively be feedback from 

the cyclic layer to the convolutional layer, acting as a bridge between both. 

 

The transcription layer combines and creates the final output from the feature sequences that 

the LSTM network predicted. It is mostly implemented via the CTC module. The CTC[28] 

model (Connectionist Temporal Classification), which can perform end-to-end training and 

output the results of variable-length sequences, is used to solve the alignment problem of input 

data with a given label. Character spacing issues and image distortion lead to different 

representations of the exact text for the input text images of natural scenes. Therefore, the CTC 

model is introduced to remove the spacing characters and duplicate characters from the results. 

4.3  PGNet 

The PGNet[29] model introduces a fully convolutional Point Gathering Network (PGNet) to 

achieve real-time recognition of curved text in most natural images. Three major problems are 

solved in the PGNet model: (1) the high time-consuming problem of using NMS and RoI to 

determine text position and orientation. (2) the time-consuming and laborious problem of 
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character-level annotation of the training dataset. (3) the failure of using predefined rules to 

recognize unconventional text orientation. The PGNet model uses a single-stage text reader 

and a point-gathering operation based on multi-task learning. In Figure 4, its architecture is 

displayed. 

 

Figure 4 The architecture of the PGNet[29] model. 

As shown in Figure 2, the image will first be input into a backbone network with FPN (Feature 

Pyramid Networks) for feature extraction and output of the feature map visualF  . visualF  is an 

original feature map that is used to predict the four feature maps:  TCL, TBO, TDO, and TCC 

in a parallel multitasking manner. T These four feature maps take up 1/4 of the input image's 

width and height. The scale-labelled feature maps that oversee TCL, TBO, and TDO during 

training are utilized to train the pixel-level TCC feature maps using the PG-CTC losses (PG-

CTC loss solves the problem of requiring character-level labelling). Each text instance's 

centroid sequence is taken from the TCL feature map during inference. The TDO feature map 

is then utilized to rank the centroid sequence to recover the correct recognition order for the 

text. They are allowing PGNet to recognize text in unconventional text orientation. Based on 

the corresponding boundary offset information provided by the TBO feature map, PGNet 

achieves polygon detection for each text instance. Additionally, the high-level 2D TCC feature 

map may be serialized into a character classification probability sequence using the PG-CTC 

decoder, and the probability sequence can then be decoded to get the final text recognition 

result. 
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The training and inference stages of PGNet heavily rely on the PG (point gathering) process. 

It can help to get rid of the NMS and RoI operations of character-level annotation. In PGNet, 

the TCC is a feature map of 37 characters (37 channels) containing 26 letters, 10 Arabic digits, 

and one background class. The centroid of each forms the foundation of the PG operation. 

Based on the centroid of each text instance, the PG operation aggregates the character 

classification probability sequence from the TCC feature map. The entire PG operation process 

can be summed up as follows: �� = ���ℎ��岫���, �岻 岫な岻 

where a series of centroids with length N is called � = {�怠,p態, ⋯ ,p朝}. P  is a sequence of 

character classification probabilities of size 37N  . Using PG-CTC loss during the training 

phase makes it possible to train pixel-level TCC feature maps without the necessity for 

character set annotation. The NMS and RoI procedures are eliminated throughout the inference 

process thanks to the PG-CTC decoder's simplified end-to-end arbitrary shape text recognizer 

processes. 

4.4  PaddleOCR 

PaddleOCR[30] is a complete and powerful text recognition library built based on Baidu's 

paddle deep learning framework. It integrates the latest and most robust word recognition 

algorithm. It provides a set of rich, advanced, and practical OCR tool libraries which can meet 

general industrial production and actual needs. For general text recognition, PaddleOCR uses 

three stages of the text box detection model, the angle classification model, text, and 

recognition model to cascade to complete text detection of input images. The discrete text box's 

location in the picture is determined using the text detection model, which can select a 

regression-based EAST[31] model, segmentation-based DB[32] model, and regression and 

segmentation-based SAST[33] model. The angle classifier is used to adjust the angle of the 

text box to better identify the text in the detection box. It is an embedded model of PaddleOCR, 

which can be selected for or not used. The text recognition model is used to identify and output 

the text in the detected text box in a good order, which can select the CTC-based Rosetta model, 

CRNN model, STAR-Net models, the Attention-based RARE model, and the Transformer 
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based SRN[34] model. 

 

PaddleOCR provides the training and deployment versions of the above text recognition 

package, which can be trained on individual models at each stage or used directly. It also allows 

users to train on personal data sets combined with official data sets, and after training, can be 

converted into an inference version for deployment to use. In addition, PaddleOCR provides 

several model versions with different CPU and GPU sizes, which can be flexibly selected 

according to the scenario. 
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5. Image Pre-Processing 

5.1  Edge detection 

The first pre-processing step is converting the image to a grey scale. As the edges of the image 

are very susceptible to noise, the second step is usually to filter the image to remove the noise 

to avoid detecting false edge information. Filtering aims to smooth out some non-edge areas 

with a soft texture to get a more accurate edge. The size of the filter is also variable, and the 

size of the Gaussian kernel plays an essential role in the effectiveness of edge detection. The 

larger the filter's kernel, the less sensitive the edge information is to noise. However, the larger 

the kernel, the greater the localization error of the edge detection. Generally, a 5 x 5 kernel is 

sufficient for most cases and implements edge detection using cv2.Canny(). 

 

Incorrect edges may appear in the edge image due to noise or the image itself. Given the data, 

we need to define two thresholds. One for the high maximum value maxVal and one for the 

low minimum value minVal. Edges with a gradient value higher than or equal to maxVal are 

marked as strong edges. Edges with a gradient value between maxVal and minVal are marked 

as false edges. If the gradient value of edges is lower than minVal, it has considered suppressed 

edges. Figure 5 

 

The figure 6 below displays the method's detection results after the edge extraction based on 

the Canny algorithm is finished. 

 

Figure 5 edge threshold 
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Figure 6 detection results 

5.2  Outline 

Once the edge detection is complete, the next step is contour detection, where we need to use 

the image after the edge detection. The outermost contour is the one with the most extended 

perimeter or the most significant area, where we can use an outer rectangle for sorting. The 

next step is to traverse the outline. First, we need to calculate the approximation of the outline, 

as the outline we observe may differ from the outline displayed by the computer. The outline 

may not be a rectangle and may consist of many points, so we need the approxPolyDP function 

to produce an approximate rectangle. In the end, we get a four-coordinate point, which means 

we get the outline of the text. The result of the contour detection is shown below. Figure 7 

 

Figure 7 Result of the contour detection 
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5.3  Perspective Transformation 

Once the outline has been detected, because the initial angle is random, we need to convert it 

to look like an electronic document, where we need to use a perspective transformation. 

Perspective transformation is projecting an image from one plane of view to another, called 

Projection Mapping. In simple terms, it changes a two-dimensional figure viewed obliquely 

into a two-dimensional image viewed from above. The perspective transformation is used quite 

often in computer vision, as the image captured by the computer is not regular. 

  

As figure 8 shown below, after the above contour detection, we know the four ABCD 

coordinate points; we need to know this rectangle's h (height) and w (width). We can calculate 

each coordinate value's final conversion result with this information. The image is taken in two 

dimensions. Next, it will be mapped into three dimensions and converted back to two 

dimensions. This series completes the perspective transformation. 

 

Figure 8 perspective transformation 

峭捲検権嶌 = (ℎ怠怠 ℎ怠態 ℎ怠戴ℎ態怠 ℎ態態 ℎ態戴ℎ戴怠 ℎ戴怠 な ) 峭捲検な嶌 岫に岻 

 

We also require binarization, where each point in the matrix has a separate RGB value and is 

shown in a different color, to provide a crisper image. By "binarizing," the most important 

portions of the image are preserved by having the RGB values of each point in the matrix either 

be (255, 255, 255) [white] or (0, 0, 0) [black]. 
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6. Design and Implementation 

6.1  UI design 

The GUI links entire steps and provides a user-friendly interface so that the user does not have 

to type in filenames or use a command line interface to run the program. The GUI uses the 

PySimpleGUI library. PySimpleGUI is a Python package that collects all the major popular 

GUI modules. The most important aspect is the small amount of code and the simplicity of 

writing it, reducing the cognitive burden on the user. This project has a series of buttons 

designed to make it easier and faster for the user to operate the image-to-speech conversion. 

Figure 9 show image-to-speech project. 

 

Figure 9 Image-to-speech project 

6.2  Get image function implementation 

There are three types to obtain pictures: local upload and camera photography, which users can 

use according to their needs. The image will be affected by the environment and light during 

shooting, likely affecting the recognition efficiency. Please upload as clear pictures as much as 

possible. 
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6.2.1 Local Camera 

The first type is using the local camera either embedded in the computer or connected to the 

computer. If multiple cameras are connected, the first one in the list will be used. The python 

library for open-cv is used for this functionality. It will show another window with the camera's 

view, and users can capture the image by pressing "SPACE" and close/exit the window by 

pressing "ESC". The advantages of a local camera are that it is easy, fast and does not require 

a program to be installed. The disadvantages are bad pixels and low recognition accuracy. 

6.2.2 IP Camera 

The second way is using the IP camera figure 10, which is connected to the local area network. 

There are input forms for users to type in the camera's IP address and the username and 

password for authorization. These configurations can also be saved so that the user will not 

need to input the same values the next time running this program. Once the appropriate 

information has been loaded into the program, the same window will be opened as the local 

camera window, except the camera view is from the IP camera configured. This project uses 

software called "IP Camera Lite", which is a free IP camera system on apple store or google 

play that the user can set up within a few minutes via an IP address camera. The advantage is 

the high pixel count, which makes it easy for people to take pictures to identify text. The 

disadvantage is that it needs to configure and download mobile phone software. 

 

Figure 10 IP Camer in apple store and google play store 

6.2.3 Local File upload 

The last way is to upload image files locally. Image files must be in the format "JPG", "PNG" 
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and "GIF". Please note that the name of the image is in English and not in other languages, 

such as Chinese. The advantage is that it can recognize screenshots, but the disadvantage is 

that only three forms of files are currently supported. 

6.3  Tesseract 

6.3.1 Implementation details  

The character recognition process is divided into analyzing related areas, finding blocks of 

areas, finding lines of text and words, and recognizing text. In this part of the implementation, 

we mainly input the image pre-processed photos to the Tesseract engine portal and process the 

images through the relevant APIs inside the Tesseract framework. The core code is shown 

figure11. 

 

Figure 11 Image_to_string 

For more information about the pyTesseract image_to_string () function inside the code, the 

first and most straightforward way to implement it is to pass in 2 parameters. One is the image's 

file name, and the other is the type of language package used for recognition (the training 

language library is mentioned in the next chapter). In addition to passing in the image file name, 

the other method is to pass in the NumPy array of images, which can be used with modules 

such as pillow and OpenCV. First, do some pre-processing using pillow or OpenCV etc. and 
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then pass in the image_to_string () for recognition. image_to_string () can also be used to 

configure the command options for tesseract with the config parameter. All the optional 

parameters form a string to be passed to config using the following method: 

 

6.3.2 jTessBoxEditor training and test results 

In tesseract image text recognition, the jTessBoxEditor can be used for training to improve the 

recognition rate of image text. In tesseract's image text recognition, we use the official English 

font provided. However, these only sometimes meet our needs, so we can train with the 

jTessBoxEditor to improve the recognition rate of specific image text. 

 

First, we need to prepare the font training images; we can use the tools that come with 

jTessBoxEditor to create TIF files. When all the photos generate a TIF file, we need to generate 

the .box file and execute the command as follows. 

tesseract test_1.font.exp0.tif test_1.font.exp0 -l eng batch.nochop makebox 

Next, we use the jTessBoxEditor to adjust the .box training file and correct the recognition 

characters and recognition boxes for each photo trained. This process is essential and 

determines the accuracy of the improved character recognition. Figure 12 

 

Figure 12 Recognition Box and Correction Recognition Characters 

Then the font feature file is created, the training file and the character set file are generated, 

and the current directory generates the test_1. traineddata file is the same as the official font 
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library, only for the current type of text recognition. We can see figure 13 that the top part of 

the graph below shows the recognition accuracy after using the product, while the bottom part 

shows the accuracy using the original text library. 

 

Figure 13 Optimization of training character library 

The jTessBoxEditor tool is a basic training tool for samples; its function is to execute the above 

script commands automatically. In practice, imperfections exist, such as the inability to add 

psm parameters, and the program often crashes when generating shapes. We can see that after 

specific training, our conversion accuracy for image text has improved a lot. 

6.4  CRNN 

6.4.1 Implementation details 

We refer to the source code of CRNN, use the PyTorch deep learning framework to build the 

whole network structure, and design the corresponding CTC loss function to train the network 

model based on the CRNN paper. The CTC loss function accurately describes the 

transformation path from the original output characters to the correct character sequence, which 

solves the problem of unaligned characters during training. The following formulation 

represents the CTC loss function: 
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�岫�|捲岻 = ∑ �岫�|捲岻�∈喋−1岫�岻 = ∑ ∏痛=怠� 検��痛�∈喋−1岫�岻 岫ぬ岻 

                   �寵�寵 = ∑ −log岫�岫�|捲岻�∈喋−1岫�岻 岫ね岻 

where the LSTM network's input and output characters are x  and l , respectively. B  is the 

transformation mapping from the sequence with spaces and repeated characters to the sequence 

of correctly ordered characters.   is one of the transformation paths. t  are the moments of 

each output character under the current path  . y   is the probability of the corresponding 

character output at the time t  under the current path  . The CTC loss function uses the idea 

of dynamic programming and borrows the forward-backward algorithm of HMM to quickly 

traverse all transformation paths and accurately calculate the input-to-output loss to effectively 

train the network model. Table 1 displays the specifics of the CRNN model. 

Model Training Parameter Value 

Epoch  100 

Batch Size 10 

Max Text Length 25 

Architecture Backbone ResNet 

Layers 34 

Loss CTC Loss 

Optimizer Adam 

Learning Rate 0.0005 

Table 1 The implementation details of the CRNN model. 

6.4.2 Dataset training and test results 

We train and test the model using the dataset used in the original CRNN paper. The experiment 

was equipped with Intel(R) Core (TM) i7-8750H CPU @ 2.20GHz, NVIDIA GeForce RTX 

2060. The software platform is Pytorch1.7.1 framework and Python3.8. Finally, we deploy the 

trained model on equipment to detect images of multiple text recognition scenarios. The results 

of the detection are shown in Table 2. 
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Images CRNN Results 

 
Future 

 
SLOW 

 PAIN 

 

SPRI 

Table 2 The detection results of the CRNN model 

As shown in Table 2, the CRNN model can only detect characters of a single shape and 

direction in the rectangular box and cannot achieve arbitrarily shaped image text recognition. 

Furthermore, it has poor recognition of blurred, skewed character orientation images. 

 

6.5  PGNet 

6.5.1 Implementation details 

We use the source code of PGNet for reference, build the whole network model with PyTorch 

deep learning framework, and design the corresponding PG-CTC loss function to train the 

network model according to the PGNet paper. Although the CTC loss function of CRNN solves 

the problem of inconsistent length between the source sequence and target sequence, it will 

convert the height of the feature map to 1, which is easily affected by background noise when 

recognizing curved text. Therefore, PGNet proposed the PG-CTC loss function to solve this 

problem. It can be formulated as follows: ���−寵�寵 = ∑ �����鎚鎚岾��� ,挑�峇暢
�=怠 岫の岻 

where 1 2{ , , , }
i MP    L  is the character classification probability sequence.

1 2{ , , , }i ML L L L L  is the corresponding transcription label. _CTC loss  is shown in 

equation (5). Table 3 displays the specifics of the PGNet model. 

Model Training Parameter Value 
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Epoch  600 

Batch Size 14 

Max Text Length 50 

Architecture Backbone ResNet 

Layers 50 

Loss PG-CTC Loss 

Optimizer Adam 

Learning Rate 0.001 

Table 3 The implementation details of the PGNet model. 

6.5.2 Dataset training and test results 

We trained the PGNet model using the hardware environment and software environment 

described in Section 6.4.2 and the dataset used in the PGNet paper. We tested its recognition 

performance with the following experimental results. Finally, we deploy the trained model on 

Raspberry Pi to detect images of multiple text recognition scenarios. Table 4 displays the 

detection's findings. 

Images PGNet Results 
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Table 4 The detection results of the PGNet model 

The text area in the image and the text in the area of any shape can both be precisely identified 

by the PGNet model, as shown in Table 4. However, it is only for the task of text recognition. 

Its recognition effect is poor for many natural and document scenes, such as license plate 

recognition and card and bill information recognition. 

6.6  PaddleOCR 

6.6.1 Implementation details 

We established the operating environment using the Paddle deep learning framework according 

to PaddleOCR's open-source code repository and the official tutorial and reproduced the entire 

text recognition process. Considering the speed and accuracy of camera detection during actual 
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deployment, we used the datasets officially provided by PaddleOCR to train the three-stage 

model with the lightest CPU version. Finally, the CPU version model was optimized and 

deployed on the camera to realize the text recognition function. The specific details of the 

PaddleOCR are shown in Table 5. 

Model Training Parameter Value 

Epoch  600 

Batch Size 14 

Max Text Length 50 

 Detection Model  EAST, DB, SAST 

Recognition Model 
Rosetta, CRNN, STAR-Net, 

RARE, SRN 

Optimizer Adam 

Learning Rate 0.001 

Table 5 The implementation details of the PaddleOCR. 

6.6.2 Dataset training and test results 

We train the PGNet model using the hardware environment and software environment 

described in Section 6.4.2. Finally, we deploy the trained model on the camera to detect images 

of multiple text recognition scenarios. The results of the detection are shown in Table 6. 
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Images PaddleOCR Results 

          

 

  

Table 6 The detection results of the PaddleOCR 

As shown in Table 6, the PaddleOCR can adopt the most of natural scenes and document 

scenes, such as license plate recognition, card and bill information recognition, and PDF and 

online document recognition. And it can achieve high recognition accuracy and meet the needs 

of practical applications. 
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6.7  Text-to-speech based on pytssx3 

pyttsx3 is a text-to-speech conversion library in Python. The texts-to-voice process applied the 

pyttsx3 library to transfer the texts we obtained from the second process and save it to the 

temporary directory. Then we used the Pygame module’s sound mixer library to load the sound 

file we just saved and play it in another thread so that the main thread, which is the GUI, will 

not stop responding until the voice stopped. Two global variables and buttons are used to 

control the status of the currently playing voice. Processing another image will also stop the 

currently playing voice to void concurrently playing different voices. 

6.8  System functional testing 

After the method described in detail above, we have completed the development of the image-

to-speech system. We have tested the system functions to ensure that the whole system can 

function properly and have tested the image upload, image taking, image-to-text, etc. The 

specific test table 7 is as follows. 

Test content Test Steps Expected results Test 

results 

Note 

Use local files 

uploads picture 

Click on upload 

image, select the 

correct format image, 

upload successfully, 

and save it to a 

temporary picture 

Successful image 

upload and display 

of image path 

Pass The correct format 

(PNG, JPG) needs 

to be uploaded 

Use IP or local 

camera uploads 

picture 

Click on Local 

Camera to connect to 

your local camera, 

take a picture and save 

it to a temporary 

picture 

Open the local 

camera or IP 

camera normally 

and show the save 

path 

Pass No local 

configuration 

required; IP 

cameras require 

network address 

configuration 
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Text 

recognition 

Select the model and 

click to recognize the 

text 

Text recognition 

successful, results 

shown on the right 

Pass Differences in 

model and photo 

size can affect 

recognition wait 

times 

Converting 

speech 

If the text recognition 

is successful, the voice 

playback will be 

displayed, click on 

Play 

Voice playback is 

successful and can 

be stop and paused 

Pass None 

Table 7 System functional testing 

Through extensive testing, this chapter provides an effective integration of image processing 

and several text recognition models proposed for the image-to-speech system, allowing users 

to take and upload images freely and to recognize and read aloud the text in the images. 
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7. Analysis 

Tesseract-OCR has the highest recognition rate for neatly aligned text. However, when the light 

is dark, the text of the image is not aligned, and the paper is distorted. Tesseract cannot even 

recognize all the text. Tesseract-OCR is also poor at recognizing images with complex 

environments and has almost zero accuracies regarding shop names, billboards, and banners, 

so sometimes Tesseract is seriously polarized.  

 

In this case, we have launched a study on the CRNN model. The CRNN model can achieve 

end-to-end detection of indeterminate length characters from images to character recognition. 

Moreover, its network structure is simple, fast, and accurate. However, it can only detect 

characters of a single shape and direction in the rectangular box and cannot achieve arbitrarily 

shaped image text recognition. Besides, the CRNN model requires the construction of special 

datasets during training, which has low universality. Therefore, we introduced the PGNet 

model. The PGNet model can adapt to natural scenes and achieve high text recognition 

accuracy and detection speed. It is the first text recognition algorithm with excellent 

performance that can be used in practice. However, it is only for text recognition and cannot 

meet the needs of real-time and accurate industrial production and practical applications. In 

many natural and document scenes, such as license plate recognition, card and bill information 

recognition, and PDF and online document recognition, the PGNet model is less effective in 

handling complex and diverse tasks and cannot meet the text detection requirements of this 

paper. Finally, we chose a mature and open-source text recognition library, PaddleOCR, to 

complete the text recognition function of this paper.  
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8. Future work 

This report has done some research in image-to-speech and realized this function, using 

various models to find the best method. Although some expected results have been obtained, 

there are some shortcomings that need to be studied in the future: 

 

In terms of text recognition accuracy, although PaddleOCR has a high recognition accuracy, it 

cannot accurately recognize all punctuation marks, so the break in sentences after the 

characters are recognized requires a lot of data support. Furthermore, I need to continue 

optimizing these frameworks, adding the Attention Model mechanism, and using a large 

amount of multi-scene data for training to improve recognition accuracy. For future research 

in the recognition field, the existing system should be improved to realize automatic 

recognition and broadcast of various special scripts, such as oracle bone script, Tangut script 

and other ancient Chinese scripts. We can improve the information collection and recording 

work based on deep learning of complex scene text recognition technology and use natural 

language processing technology to interpret the context and semantic understanding of the 

recognized ancient Chinese. In the future, this system will contribute to and help study 

ancient texts' literary and historical value. 

 

The application scenario of image-to-speech needs further design. I have implemented the 

photo method by calling the phone's IP. However, this method is not very convenient for 

taking photos after my use because it cannot do these configurations easily for those special 

people. So, I need to improve my image uploading part and build personalized APPs, for 

example, by adding software to the phone where the user can hold the phone for content to 

speech, and the content inside can be shown immediately in the form of speech. 

 

For the test of image-to-speech software, this paper only tests its functionality. The system's 

stability and code robustness have yet to be studied, so the code needs to be continuously 

improved in the future, and the pages and functions can be significantly improved. 
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9. Conclusion 

This report designs an image upload module, a pre-processing image module, a text recognition 

module, and a text-to-speech module. Furthermore, based on this, each function is described in 

detail. We analyze the principles, advantages, and disadvantages of Tesseract-OCR, CRNN, 

PGNet and PaddleOCR methods and design a prototype of a PaddleOCR-based image-to-

speech system. 

 

The system first uploads the image to be converted using either a photo or a local readout, then 

pre-processes the uploaded image to highlight the text features and perform text recognition, 

and finally converts the recognized text into speech. In this report, we have carefully analyzed 

the principles of the four OCR algorithms mentioned above, studied the model structure of 

each part in depth, and summarized their technical advantages and applicable scenarios. In 

addition, based on the algorithms' advantages and disadvantages and considering the camera 

environment's variability and complexity, we have improved the OCR algorithms with some 

pre-processing using traditional image processing methods. The pre-processing includes 

contour detection, edge detection, perspective transformation and binarization, which can 

significantly improve the recognition accuracy of the image. We propose a complete and 

accurate conversion scheme from image to speech. 

 

Although this paper has obtained good results for image-to-speech conversion, the task of scene 

text detection and recognition remains an arduous task. Objective factors such as scene 

complexity it has an impact on both the accuracy rate and the response time of recognition, so 

the text recognition model still needs to be improved.  
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10. Reflection 

The first point is the literature review section. At first, I summarized all the literature in 

chronological order. However, this method of collating the literature could be more organized 

and provide a visual representation of the strengths and weaknesses. So, I have improved the 

literature review by presenting and analyzing the different areas chronologically to make it 

more intuitive for the reader. 

 

The second point is the model selection of text recognition. The model selected at the beginning 

has a poor effect and low recognition efficiency, making it challenging to write the paper. 

Through communication with the supervisor, I extended the model and analyzed the 

recognition effect in different situations. Moreover, I compared and analyzed all the models, 

improving recognition accuracy. 

 

The third point is image preprocessing. I have a relatively simple implementation for the image 

preprocessing part and have not studied the implementation of image processing in depth. In 

the future, different frameworks and image-processing algorithms need to be used to improve 

the results of image preprocessing. 

 

The last point is whether this system is helpful for visually impaired people. Consider the 

condition of visually impaired people because everyone's impairment is different. The system 

must make higher requirements if the user's situation is serious. For example, deploying on 

mobile, setting shortcut keys, switching speech in real-time by taking pictures, speeding up the 

recognition of models and creating more concise interaction pages. Because of the current 

research needs, the UI interface design will have many buttons for model selection. If this 

system is deployed in the future, we need to specify the model with the best generality for text 

recognition and a more user-friendly speech. 

 

Through this project, first as a brief accessibility developer, I know how difficult the life of 
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accessible people is, and I will continue to optimize this system and find the most suitable 

model. Secondly, I am weak in deep learning, need to understand the text recognition part of 

deep learning in more detail, and need to continue learning the underlying logic. In the literature 

review section for thesis writing, I learned how to sort out the research topic and summarize 

and analyze the previous research results. In my future study, I will continue to optimize and 

research this project and learn different areas based on deep learning methods.  
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