

Image to Speech System

Hanci Quan

MSc Advanced Computer Science

Supervisor: Dr Bailin Deng

School of Computer Science and Informatics

Cardiff University

December 2022

Abstract

The advent of the 5G era has led to artificial intelligence profoundly influencing our living

environment and how we live. As a significant branch of artificial intelligence, research in

computer vision has gradually tended towards deep learning. Optical character recognition has

been deployed in various smart devices, such as document scanning, bank card number

recognition, etc. However, the recognition environment is complex and must be placed within

a defined box for recognition. In addition, character recognition can also be used in more

complex scenarios, such as license plate detection and signage recognition.

The popularity of electronic devices has led to more and more people using mobile phones,

computers, and other devices, which has led to an explosive growth in the number of people

with visual impairment. So, to help extraordinary people who cannot read and look at

newspapers, this paper investigates the detection and recognition of text in natural scenes

through deep learning techniques. In order to help particular groups of people unable to read

and watch newspapers, this paper investigates text detection and recognition in natural scenes

using Tesseract-OCR, CRNN, PGNet and PaddleOCR through deep learning techniques.

Furthermore, I designed and implemented an image-to-speech system. Because the detection

environment is complex and variable, resulting in blurred and distorted images, the images are

pre-processed, and the engine is optimized to improve recognition accuracy based on an OCR

engine and a deep learning model. Moreover, the performance of different models in different

scenarios was analyzed to improve the accuracy of text recognition.

This image-to-speech system is designed and implemented based on deep learning and OCR

engines to meet the practical needs of visually impaired people. This project is a convenient

way to implement image-to-speech, which can significantly help the visually impaired.

Acknowledgements

Firstly, I want to thank my supervisor Dr Bailin Deng for explaining and communicating the

problems and ideas I encountered during the dissertation. Also, very grateful to Dr Bailin

Deng for his time during this period.

Finally, I would like to thank the school for all their support and help.

Table of Contents

1. Introduction ... 1

2. Background ... 3

3. Literature Review.. 4

3.1 Image preprocessing ... 4

3.2 Text Recognition .. 5

4. Deep learning-based on text recognition (OCR) .. 7

4.1 Tesseract-OCR .. 7

4.2 CRNN ... 8

4.3 PGNet ... 9

4.4 PaddleOCR ... 11

5. Image Pre-Processing.. 13

5.1 Edge detection .. 13

5.2 Outline .. 14

5.3 Perspective Transformation .. 15

6. Design and Implementation .. 16

6.1 UI design .. 16

6.2 Get image function implementation ... 16

6.2.1 Local Camera .. 17

6.2.2 IP Camera.. 17

6.2.3 Local File upload .. 17

6.3 Tesseract ... 18

6.3.1 Implementation details .. 18

6.3.2 jTessBoxEditor training and test results ... 19

6.4 CRNN ... 20

6.4.1 Implementation details .. 20

6.4.2 Dataset training and test results .. 21

6.5 PGNet ... 22

6.5.1 Implementation details .. 22

6.5.2 Dataset training and test results .. 23

6.6 PaddleOCR ... 24

6.6.1 Implementation details .. 24

6.6.2 Dataset training and test results .. 25

6.7 Text-to-speech based on pytssx3 .. 27

6.8 System functional testing ... 27

7. Analysis... 29

8. Future work ... 30

9. Conclusion .. 31

10. Reflection .. 32

11. Reference ... 34

1

1. Introduction

With the development of information technology, including big data, cloud computing and the

Internet, the trend towards artificial intelligence is becoming more and more apparent.

Ubiquitous networks and computing platforms such as graphics processors have driven the

rapid development of artificial intelligence technologies. Technologies such as text recognition,

text-to-speech, image classification, knowledge quizzes and driverless news are experiencing

explosive growth, intending to enable people to have a more convenient and comfortable life

through technology. OCR (Optical Character Recognition) text recognition is a branch of

computer vision research under pattern recognition and artificial intelligence. It refers to the

analysis and recognition of image files of text material to obtain text and layout information.

Typically, image information is acquired and stored in image files by devices such as cameras

and scanners. OCR software then reads, analyses, and extracts the strings in the image file

through character recognition and converts them into a format acceptable to computers and

understandable to humans. OCR technology is changing our lives. For example, mobile phones

can scan and upload information such as ID cards and A4 paper to the Internet through a small

app or Face ID when people need to pay bills.

Paper documents are the primary source for people to disseminate and access information.

However, using a large number of paper documents to keep information is undoubtedly time-

consuming and does not facilitate the dissemination of information. Over time, paper

documents are difficult to store and easily damaged and can be inconvenient for people with

visual impairments to read. A mobile device with a camera or a computer with a photo function

that converts paper documents into electronic documents that can be read aloud is undoubtedly

the best option for document preservation and reading.

Some visually impaired people report many obstacles in using electronic products, such as

difficulties in payment and verification because they cannot see the screen of their mobile

2

phones. Despite the obstacles they encounter, more and more application developers have taken

notice of them, and they have developed software such as document scanning. Based on the

current situation, I intend to develop an image-to-speech system based on TTS (text-to-speech).

The aim is to take a picture of an article or book with a camera, then use optical symbols to

recognize the text on the picture and intelligently translate it into speech to be read aloud

fluently to people with visual impairments. This system will be lighter, with a clean page design,

good conversion, and fast recognition of medium to long texts.

This research will promote a better understanding of image-to-speech. Furthermore, it will give

people a sense of how technology can make people's lives more accessible. Finally, this image-

to-speech system will continue to be improved in the future.

3

2. Background

This report focuses on solving the problem of text reading for people with visual impairment.

The World Health Organization says that over 2.2 billion people are visually impaired or

blind [1]. The eyes are the first human organs to undergo ageing, and long hours of work and

reading can lead to dryness, stinging, and even short periods of blurred vision. With the

advancement of technology, mobile phones have become an indispensable part of people's

lives. While people relax and unwind, they also neglect the most critical issue of eye health.

The image-to-speech function makes reading books easier for people with visual impairment

so that people with special needs can really "see" the outside world and communicate

smoothly, all through the OCR image-to-speech function.

In this report, I have studied the specific method of recognizing text and propose improving

the recognition accuracy. After research, it was discovered that the photographic environment

and the device significantly impact text recognition. Therefore, I performed pre-processing

algorithms on the images (edge detection, contour detection, binarization and image

correction algorithms). Secondly, I needed to study and learn the theory of OCR technology,

including how to use the Tesseract engine and utilize the deep neural network CRNN, Paddle

and PGNet algorithms. I also compared and analyzed the advantages and disadvantages of

each algorithm. Finally, I use a text-to-speech library to produce sounds. The overall front-

end content will be displayed using a simple GUI to make it easier for the user.

4

3. Literature Review

Data show that more than 161 million people worldwide were visually impaired in 2002 [2],

and the number of people with visual impairment is rapidly increasing. By 2010 [3] it had

grown to approximately 300 million people.

In the literature [4], the authors state that it is possible to convert recognized text to speech

through OCR and TTS modules. The authors use OCR components provided by Microsoft and

have a recognition accuracy of 98%. However, no corresponding studies are proposed for

various forms, such as surface anomalies, slope distribution, wrinkle distortion and

incompleteness. In the literature[5], the author demonstrates the desire of visually impaired

people to read to enrich their lives and presents three needs of visually impaired people: visual

reading, tactile reading, and auditory reading. Based on the author's three needs, this paper will

continue investigating the image-to-speech function in depth based on 'auditory reading'.

3.1 Image preprocessing

Image pre-processing aims to eliminate irrelevant information from the image and recover

valuable and accurate information. With the development of the times, pre-processing

techniques are also receiving more and more attention from scholars.

In 1992 MF McNitt-Gray [6] acquired images with different features from multiple modalities.

After experiments, 93% of the CT images were automatically rotated to the correct orientation,

improving medical image processing. In the study of edge detection algorithm techniques for

image pre-processing, R Main et al. [7]compare various edge detection techniques and analyze

their performance. The authors highlight the importance of edge detection for image pre-

processing; irrelevant information in the image is eliminated, interference and noise are filtered

out, helpful information is recovered, new detectability about the image is enhanced, and data

is simplified to the maximum. According to experimental results, Canny's edge detection

algorithm outperforms others in noisy operation conditions. However, Canny's edge detection

5

method outperforms these operators in most cases, but Canny is the costliest of these algorithms.

Image binarization has long been a popular research topic. Binarization can change the grey

scale value of pixels in an image to 0 or 255, resulting in a distinct black-and-white effect. In

the literature[8], the authors propose new methods for the adaptive binarization of documents,

that is, global and local threshold segmentation methods. Because of the source document's

lighting variations, resolution, and poor quality, more than a single global threshold is required.

It was found that the proposed algorithm is very adaptive, adapting the algorithm in time, thus

analyzing the image significantly better than other algorithms.

ZHAI Jun-hai et al. [9], the authors illustrate the extraction methods, characteristics, and

current state of development of image features and state that image feature extraction is the

most critical step in image preprocessing. Four commonly used feature extraction methods

(colour, texture, image algebra and image transform coefficient features) are presented

separately. Finally, an outlook is given for combining transform coefficient and algebraic

methods. Li Rong [10] shows that the wavelet transform LBP algorithm has a significantly

better recognition rate for texture feature extraction than the traditional LBP algorithm.

3.2 Text Recognition

Following the previous image pre-processing, text recognition technology is described below.

Because text extraction is divided into two parts: detection and recognition, the detection aspect

will be covered first.

Cong Yao [11] focuses on the problem of natural image text detection, noting that detecting

text in different orientations is challenging. Based on novel text algorithms and the inclusion

of various datasets, the art algorithm outperforms similar algorithms in detecting text in

different orientations and performs significantly in complex scenarios. Kwang In Kim et al.

[12] proposed a text detection method based on texture features, which effectively solves the

problem of extracting text from complex backgrounds. A fast-directed text discovery network

6

was proposed by Xuebo Liu et al. [13]. It has undergone testing and performed 5% better than

prior state-of-the-art results.

In order to recognize text, as early as 1994, J.J. Hull et al. [14] described a handwritten text-

based recognition image database and divided a training and test set. After more than a decade

of development in the literature[15], for previous studies, the authors improved the problem of

word detection and recognition in natural images and, in some cases, outperformed traditional

OCR engines. This literature [16] presents a top-down text recognition-based framework with

significant improvements on two more difficult datasets.

Hewlett-Packard originally developed the Tesseract between 1985 and 1994 [17]. This article

comprehensively describes Tesseract OCR, introducing what is new and different about the

OCR engine[18]. In 2011, the literature [19] mentioned Tesseract OCR as the most accurate

open-source image recognition engine today and implemented the Tesseract Wrapper available

for the .Net platform. Deep learning development is expected to accelerate in the coming years,

resulting in the recognition efficiency of Tesseract OCR being far lower than other text

detection algorithms. In the literature[20], the author uses OpenCV to perform a series of

preprocessing on images, thereby improving the English recognition rate of Tesseract-OCR.

In 2016 Baoguang[21] Shi et al. proposed a new network structure, CRNN, based on combining

feature extraction, transcoding, etc., into the same network to achieve end-to-end text

recognition and demonstrated that this algorithm outperforms most techniques. In 2018

Jiuxiang Gu et al. [22] provided an in-depth discussion of recent research, such as text detection,

visual recognition, etc., concluding with the need to continue to improve the design of CNNs.

Monica Jangpangi[23] solves handwriting recognition with an accuracy of 93%.

7

4. Deep learning-based on text recognition (OCR)

4.1 Tesseract-OCR

Tesseract is an open-source OCR [24] engine that currently supports the recognition of most of

the world's text. Tesseract comes with its character library, and we can also continuously train

our library so that the ability to convert images to text continues to grow. An important part of

Tesseract is the analysis of related areas and character outlines in images. Where page layout

analysis can capture areas of approximate text, contiguous domain analysis captures more

precise blocks of text. The workflow of tesseract is shown in the figure 1 below.

Figure 1 workflow of tesseract

Tesseract can be divided into four parts. The first part is to analyze the region of interest:

detecting the region's outline and the character region's sub-outline and setting as block regions.

Two methods of analyzing text lines: Fixed scenes segmented by character cells. The next is to

split the scene according to proportional text by spaces or fuzzy space. If the first recognition

is not good, tesseract will perform a second process to resolve the blurred text.

Tesseract uses text baselines to align lines of text, generally through the baseline, midline,

ascending and descending lines to position the characters. The figure 2 clearly illustrates the

Latin stylized baseline. Blue is the rising line, red is the middle line, purple is the baseline, and

green is the falling line.

8

Figure 2 Tesseract text baselines

The second part is to find block regions, detect character outlines and divide text and words

into spaces. The third part is to find text lines and words. This step uses an adaptive classifier

and performs word analysis twice. The final part is recognizing the text and identifying

ambiguous spaces, stroke heights and lowercase letters.

4.2 CRNN

Deep learning methods have achieved great success in image recognition as artificial

intelligence technology has advanced, owing to deep neural networks' powerful feature

extraction ability. More network architectures with excellent performance have emerged. They

are also gradually applied to optical character recognition, influenced by their advanced

performance. After the classification of single characters and the detection and recognition of

single characters, the classical CRNN[25] model was proposed. The CRNN model is the first

algorithm that can be applied to the recognition of uncertain long character sequences. It can

achieve end-to-end training and detection from the input image to the recognized text and adapt

to most character recognition scenarios to achieve high recognition speed and detection

accuracy. Figure 3 depicts the CRNN model's architecture, which consists of three layers: the

convolutional layer, the recurrent layer, and the transcription layer.

Figure 3 The architecture of the CRNN[25] model.

9

The CRNN model begins by scaling the input images, scaling all input images to the same

height of 32 by default, and the width can be arbitrarily long. Then the convolutional layer

performs feature extraction on the preprocessed images. The layer structure is similar to that

of a VGG[26] network, consisting of convolutional layers, pooling layers, and batch operation

layers. The extracted vectors are arranged on the feature map from left to right as input to the

recursive layer. Each feature vector represents a feature on a specific image width. The width

is set to one by default, representing a single pixel. Because the CRNN model scaled the input

image to the same height, only features at a specific width are required.

In the recurrent layer, a bidirectional LSTM[27] neural network is used to predict the label

distribution of each feature vector in the feature sequence. The CRNN model regards the

sequence width as the LSTM's time steps since the LSTM requires a time dimension. Error

feedback of the recurrent layer and conversion with feature sequences are the primary uses of

the "Map-to-Sequence" custom network layer. The mistake can effectively be feedback from

the cyclic layer to the convolutional layer, acting as a bridge between both.

The transcription layer combines and creates the final output from the feature sequences that

the LSTM network predicted. It is mostly implemented via the CTC module. The CTC[28]

model (Connectionist Temporal Classification), which can perform end-to-end training and

output the results of variable-length sequences, is used to solve the alignment problem of input

data with a given label. Character spacing issues and image distortion lead to different

representations of the exact text for the input text images of natural scenes. Therefore, the CTC

model is introduced to remove the spacing characters and duplicate characters from the results.

4.3 PGNet

The PGNet[29] model introduces a fully convolutional Point Gathering Network (PGNet) to

achieve real-time recognition of curved text in most natural images. Three major problems are

solved in the PGNet model: (1) the high time-consuming problem of using NMS and RoI to

determine text position and orientation. (2) the time-consuming and laborious problem of

10

character-level annotation of the training dataset. (3) the failure of using predefined rules to

recognize unconventional text orientation. The PGNet model uses a single-stage text reader

and a point-gathering operation based on multi-task learning. In Figure 4, its architecture is

displayed.

Figure 4 The architecture of the PGNet[29] model.

As shown in Figure 2, the image will first be input into a backbone network with FPN (Feature

Pyramid Networks) for feature extraction and output of the feature map visualF . visualF is an

original feature map that is used to predict the four feature maps: TCL, TBO, TDO, and TCC

in a parallel multitasking manner. T These four feature maps take up 1/4 of the input image's

width and height. The scale-labelled feature maps that oversee TCL, TBO, and TDO during

training are utilized to train the pixel-level TCC feature maps using the PG-CTC losses (PG-

CTC loss solves the problem of requiring character-level labelling). Each text instance's

centroid sequence is taken from the TCL feature map during inference. The TDO feature map

is then utilized to rank the centroid sequence to recover the correct recognition order for the

text. They are allowing PGNet to recognize text in unconventional text orientation. Based on

the corresponding boundary offset information provided by the TBO feature map, PGNet

achieves polygon detection for each text instance. Additionally, the high-level 2D TCC feature

map may be serialized into a character classification probability sequence using the PG-CTC

decoder, and the probability sequence can then be decoded to get the final text recognition

result.

11

The training and inference stages of PGNet heavily rely on the PG (point gathering) process.

It can help to get rid of the NMS and RoI operations of character-level annotation. In PGNet,

the TCC is a feature map of 37 characters (37 channels) containing 26 letters, 10 Arabic digits,

and one background class. The centroid of each forms the foundation of the PG operation.

Based on the centroid of each text instance, the PG operation aggregates the character

classification probability sequence from the TCC feature map. The entire PG operation process

can be summed up as follows: �� = ���ℎ��岫���, �岻 岫な岻

where a series of centroids with length N is called � = {�怠,p態, ⋯ ,p朝}. P is a sequence of

character classification probabilities of size 37N . Using PG-CTC loss during the training

phase makes it possible to train pixel-level TCC feature maps without the necessity for

character set annotation. The NMS and RoI procedures are eliminated throughout the inference

process thanks to the PG-CTC decoder's simplified end-to-end arbitrary shape text recognizer

processes.

4.4 PaddleOCR

PaddleOCR[30] is a complete and powerful text recognition library built based on Baidu's

paddle deep learning framework. It integrates the latest and most robust word recognition

algorithm. It provides a set of rich, advanced, and practical OCR tool libraries which can meet

general industrial production and actual needs. For general text recognition, PaddleOCR uses

three stages of the text box detection model, the angle classification model, text, and

recognition model to cascade to complete text detection of input images. The discrete text box's

location in the picture is determined using the text detection model, which can select a

regression-based EAST[31] model, segmentation-based DB[32] model, and regression and

segmentation-based SAST[33] model. The angle classifier is used to adjust the angle of the

text box to better identify the text in the detection box. It is an embedded model of PaddleOCR,

which can be selected for or not used. The text recognition model is used to identify and output

the text in the detected text box in a good order, which can select the CTC-based Rosetta model,

CRNN model, STAR-Net models, the Attention-based RARE model, and the Transformer

12

based SRN[34] model.

PaddleOCR provides the training and deployment versions of the above text recognition

package, which can be trained on individual models at each stage or used directly. It also allows

users to train on personal data sets combined with official data sets, and after training, can be

converted into an inference version for deployment to use. In addition, PaddleOCR provides

several model versions with different CPU and GPU sizes, which can be flexibly selected

according to the scenario.

13

5. Image Pre-Processing

5.1 Edge detection

The first pre-processing step is converting the image to a grey scale. As the edges of the image

are very susceptible to noise, the second step is usually to filter the image to remove the noise

to avoid detecting false edge information. Filtering aims to smooth out some non-edge areas

with a soft texture to get a more accurate edge. The size of the filter is also variable, and the

size of the Gaussian kernel plays an essential role in the effectiveness of edge detection. The

larger the filter's kernel, the less sensitive the edge information is to noise. However, the larger

the kernel, the greater the localization error of the edge detection. Generally, a 5 x 5 kernel is

sufficient for most cases and implements edge detection using cv2.Canny().

Incorrect edges may appear in the edge image due to noise or the image itself. Given the data,

we need to define two thresholds. One for the high maximum value maxVal and one for the

low minimum value minVal. Edges with a gradient value higher than or equal to maxVal are

marked as strong edges. Edges with a gradient value between maxVal and minVal are marked

as false edges. If the gradient value of edges is lower than minVal, it has considered suppressed

edges. Figure 5

The figure 6 below displays the method's detection results after the edge extraction based on

the Canny algorithm is finished.

Figure 5 edge threshold

14

Figure 6 detection results

5.2 Outline

Once the edge detection is complete, the next step is contour detection, where we need to use

the image after the edge detection. The outermost contour is the one with the most extended

perimeter or the most significant area, where we can use an outer rectangle for sorting. The

next step is to traverse the outline. First, we need to calculate the approximation of the outline,

as the outline we observe may differ from the outline displayed by the computer. The outline

may not be a rectangle and may consist of many points, so we need the approxPolyDP function

to produce an approximate rectangle. In the end, we get a four-coordinate point, which means

we get the outline of the text. The result of the contour detection is shown below. Figure 7

Figure 7 Result of the contour detection

15

5.3 Perspective Transformation

Once the outline has been detected, because the initial angle is random, we need to convert it

to look like an electronic document, where we need to use a perspective transformation.

Perspective transformation is projecting an image from one plane of view to another, called

Projection Mapping. In simple terms, it changes a two-dimensional figure viewed obliquely

into a two-dimensional image viewed from above. The perspective transformation is used quite

often in computer vision, as the image captured by the computer is not regular.

As figure 8 shown below, after the above contour detection, we know the four ABCD

coordinate points; we need to know this rectangle's h (height) and w (width). We can calculate

each coordinate value's final conversion result with this information. The image is taken in two

dimensions. Next, it will be mapped into three dimensions and converted back to two

dimensions. This series completes the perspective transformation.

Figure 8 perspective transformation

峭捲検権嶌 = (ℎ怠怠 ℎ怠態 ℎ怠戴ℎ態怠 ℎ態態 ℎ態戴ℎ戴怠 ℎ戴怠 な) 峭捲検な嶌 岫に岻

We also require binarization, where each point in the matrix has a separate RGB value and is

shown in a different color, to provide a crisper image. By "binarizing," the most important

portions of the image are preserved by having the RGB values of each point in the matrix either

be (255, 255, 255) [white] or (0, 0, 0) [black].

16

6. Design and Implementation

6.1 UI design

The GUI links entire steps and provides a user-friendly interface so that the user does not have

to type in filenames or use a command line interface to run the program. The GUI uses the

PySimpleGUI library. PySimpleGUI is a Python package that collects all the major popular

GUI modules. The most important aspect is the small amount of code and the simplicity of

writing it, reducing the cognitive burden on the user. This project has a series of buttons

designed to make it easier and faster for the user to operate the image-to-speech conversion.

Figure 9 show image-to-speech project.

Figure 9 Image-to-speech project

6.2 Get image function implementation

There are three types to obtain pictures: local upload and camera photography, which users can

use according to their needs. The image will be affected by the environment and light during

shooting, likely affecting the recognition efficiency. Please upload as clear pictures as much as

possible.

17

6.2.1 Local Camera

The first type is using the local camera either embedded in the computer or connected to the

computer. If multiple cameras are connected, the first one in the list will be used. The python

library for open-cv is used for this functionality. It will show another window with the camera's

view, and users can capture the image by pressing "SPACE" and close/exit the window by

pressing "ESC". The advantages of a local camera are that it is easy, fast and does not require

a program to be installed. The disadvantages are bad pixels and low recognition accuracy.

6.2.2 IP Camera

The second way is using the IP camera figure 10, which is connected to the local area network.

There are input forms for users to type in the camera's IP address and the username and

password for authorization. These configurations can also be saved so that the user will not

need to input the same values the next time running this program. Once the appropriate

information has been loaded into the program, the same window will be opened as the local

camera window, except the camera view is from the IP camera configured. This project uses

software called "IP Camera Lite", which is a free IP camera system on apple store or google

play that the user can set up within a few minutes via an IP address camera. The advantage is

the high pixel count, which makes it easy for people to take pictures to identify text. The

disadvantage is that it needs to configure and download mobile phone software.

Figure 10 IP Camer in apple store and google play store

6.2.3 Local File upload

The last way is to upload image files locally. Image files must be in the format "JPG", "PNG"

18

and "GIF". Please note that the name of the image is in English and not in other languages,

such as Chinese. The advantage is that it can recognize screenshots, but the disadvantage is

that only three forms of files are currently supported.

6.3 Tesseract

6.3.1 Implementation details

The character recognition process is divided into analyzing related areas, finding blocks of

areas, finding lines of text and words, and recognizing text. In this part of the implementation,

we mainly input the image pre-processed photos to the Tesseract engine portal and process the

images through the relevant APIs inside the Tesseract framework. The core code is shown

figure11.

Figure 11 Image_to_string

For more information about the pyTesseract image_to_string () function inside the code, the

first and most straightforward way to implement it is to pass in 2 parameters. One is the image's

file name, and the other is the type of language package used for recognition (the training

language library is mentioned in the next chapter). In addition to passing in the image file name,

the other method is to pass in the NumPy array of images, which can be used with modules

such as pillow and OpenCV. First, do some pre-processing using pillow or OpenCV etc. and

19

then pass in the image_to_string () for recognition. image_to_string () can also be used to

configure the command options for tesseract with the config parameter. All the optional

parameters form a string to be passed to config using the following method:

6.3.2 jTessBoxEditor training and test results

In tesseract image text recognition, the jTessBoxEditor can be used for training to improve the

recognition rate of image text. In tesseract's image text recognition, we use the official English

font provided. However, these only sometimes meet our needs, so we can train with the

jTessBoxEditor to improve the recognition rate of specific image text.

First, we need to prepare the font training images; we can use the tools that come with

jTessBoxEditor to create TIF files. When all the photos generate a TIF file, we need to generate

the .box file and execute the command as follows.

tesseract test_1.font.exp0.tif test_1.font.exp0 -l eng batch.nochop makebox

Next, we use the jTessBoxEditor to adjust the .box training file and correct the recognition

characters and recognition boxes for each photo trained. This process is essential and

determines the accuracy of the improved character recognition. Figure 12

Figure 12 Recognition Box and Correction Recognition Characters

Then the font feature file is created, the training file and the character set file are generated,

and the current directory generates the test_1. traineddata file is the same as the official font

20

library, only for the current type of text recognition. We can see figure 13 that the top part of

the graph below shows the recognition accuracy after using the product, while the bottom part

shows the accuracy using the original text library.

Figure 13 Optimization of training character library

The jTessBoxEditor tool is a basic training tool for samples; its function is to execute the above

script commands automatically. In practice, imperfections exist, such as the inability to add

psm parameters, and the program often crashes when generating shapes. We can see that after

specific training, our conversion accuracy for image text has improved a lot.

6.4 CRNN

6.4.1 Implementation details

We refer to the source code of CRNN, use the PyTorch deep learning framework to build the

whole network structure, and design the corresponding CTC loss function to train the network

model based on the CRNN paper. The CTC loss function accurately describes the

transformation path from the original output characters to the correct character sequence, which

solves the problem of unaligned characters during training. The following formulation

represents the CTC loss function:

21

�岫�|捲岻 = ∑ �岫�|捲岻�∈喋−1岫�岻 = ∑ ∏痛=怠� 検��痛�∈喋−1岫�岻 岫ぬ岻

 �寵�寵 = ∑ −log岫�岫�|捲岻�∈喋−1岫�岻 岫ね岻

where the LSTM network's input and output characters are x and l , respectively. B is the

transformation mapping from the sequence with spaces and repeated characters to the sequence

of correctly ordered characters. is one of the transformation paths. t are the moments of

each output character under the current path . y is the probability of the corresponding

character output at the time t under the current path . The CTC loss function uses the idea

of dynamic programming and borrows the forward-backward algorithm of HMM to quickly

traverse all transformation paths and accurately calculate the input-to-output loss to effectively

train the network model. Table 1 displays the specifics of the CRNN model.

Model Training Parameter Value

Epoch 100

Batch Size 10

Max Text Length 25

Architecture Backbone ResNet

Layers 34

Loss CTC Loss

Optimizer Adam

Learning Rate 0.0005

Table 1 The implementation details of the CRNN model.

6.4.2 Dataset training and test results

We train and test the model using the dataset used in the original CRNN paper. The experiment

was equipped with Intel(R) Core (TM) i7-8750H CPU @ 2.20GHz, NVIDIA GeForce RTX

2060. The software platform is Pytorch1.7.1 framework and Python3.8. Finally, we deploy the

trained model on equipment to detect images of multiple text recognition scenarios. The results

of the detection are shown in Table 2.

22

Images CRNN Results

Future

SLOW

 PAIN

SPRI

Table 2 The detection results of the CRNN model

As shown in Table 2, the CRNN model can only detect characters of a single shape and

direction in the rectangular box and cannot achieve arbitrarily shaped image text recognition.

Furthermore, it has poor recognition of blurred, skewed character orientation images.

6.5 PGNet

6.5.1 Implementation details

We use the source code of PGNet for reference, build the whole network model with PyTorch

deep learning framework, and design the corresponding PG-CTC loss function to train the

network model according to the PGNet paper. Although the CTC loss function of CRNN solves

the problem of inconsistent length between the source sequence and target sequence, it will

convert the height of the feature map to 1, which is easily affected by background noise when

recognizing curved text. Therefore, PGNet proposed the PG-CTC loss function to solve this

problem. It can be formulated as follows: ���−寵�寵 = ∑ �����鎚鎚岾��� ,挑�峇暢
�=怠 岫の岻

where 1 2{ , , , }
i MP L is the character classification probability sequence.

1 2{ , , , }i ML L L L L is the corresponding transcription label. _CTC loss is shown in

equation (5). Table 3 displays the specifics of the PGNet model.

Model Training Parameter Value

23

Epoch 600

Batch Size 14

Max Text Length 50

Architecture Backbone ResNet

Layers 50

Loss PG-CTC Loss

Optimizer Adam

Learning Rate 0.001

Table 3 The implementation details of the PGNet model.

6.5.2 Dataset training and test results

We trained the PGNet model using the hardware environment and software environment

described in Section 6.4.2 and the dataset used in the PGNet paper. We tested its recognition

performance with the following experimental results. Finally, we deploy the trained model on

Raspberry Pi to detect images of multiple text recognition scenarios. Table 4 displays the

detection's findings.

Images PGNet Results

24

Table 4 The detection results of the PGNet model

The text area in the image and the text in the area of any shape can both be precisely identified

by the PGNet model, as shown in Table 4. However, it is only for the task of text recognition.

Its recognition effect is poor for many natural and document scenes, such as license plate

recognition and card and bill information recognition.

6.6 PaddleOCR

6.6.1 Implementation details

We established the operating environment using the Paddle deep learning framework according

to PaddleOCR's open-source code repository and the official tutorial and reproduced the entire

text recognition process. Considering the speed and accuracy of camera detection during actual

25

deployment, we used the datasets officially provided by PaddleOCR to train the three-stage

model with the lightest CPU version. Finally, the CPU version model was optimized and

deployed on the camera to realize the text recognition function. The specific details of the

PaddleOCR are shown in Table 5.

Model Training Parameter Value

Epoch 600

Batch Size 14

Max Text Length 50

 Detection Model EAST, DB, SAST

Recognition Model
Rosetta, CRNN, STAR-Net,

RARE, SRN

Optimizer Adam

Learning Rate 0.001

Table 5 The implementation details of the PaddleOCR.

6.6.2 Dataset training and test results

We train the PGNet model using the hardware environment and software environment

described in Section 6.4.2. Finally, we deploy the trained model on the camera to detect images

of multiple text recognition scenarios. The results of the detection are shown in Table 6.

26

Images PaddleOCR Results

Table 6 The detection results of the PaddleOCR

As shown in Table 6, the PaddleOCR can adopt the most of natural scenes and document

scenes, such as license plate recognition, card and bill information recognition, and PDF and

online document recognition. And it can achieve high recognition accuracy and meet the needs

of practical applications.

27

6.7 Text-to-speech based on pytssx3

pyttsx3 is a text-to-speech conversion library in Python. The texts-to-voice process applied the

pyttsx3 library to transfer the texts we obtained from the second process and save it to the

temporary directory. Then we used the Pygame module’s sound mixer library to load the sound

file we just saved and play it in another thread so that the main thread, which is the GUI, will

not stop responding until the voice stopped. Two global variables and buttons are used to

control the status of the currently playing voice. Processing another image will also stop the

currently playing voice to void concurrently playing different voices.

6.8 System functional testing

After the method described in detail above, we have completed the development of the image-

to-speech system. We have tested the system functions to ensure that the whole system can

function properly and have tested the image upload, image taking, image-to-text, etc. The

specific test table 7 is as follows.

Test content Test Steps Expected results Test

results

Note

Use local files

uploads picture

Click on upload

image, select the

correct format image,

upload successfully,

and save it to a

temporary picture

Successful image

upload and display

of image path

Pass The correct format

(PNG, JPG) needs

to be uploaded

Use IP or local

camera uploads

picture

Click on Local

Camera to connect to

your local camera,

take a picture and save

it to a temporary

picture

Open the local

camera or IP

camera normally

and show the save

path

Pass No local

configuration

required; IP

cameras require

network address

configuration

28

Text

recognition

Select the model and

click to recognize the

text

Text recognition

successful, results

shown on the right

Pass Differences in

model and photo

size can affect

recognition wait

times

Converting

speech

If the text recognition

is successful, the voice

playback will be

displayed, click on

Play

Voice playback is

successful and can

be stop and paused

Pass None

Table 7 System functional testing

Through extensive testing, this chapter provides an effective integration of image processing

and several text recognition models proposed for the image-to-speech system, allowing users

to take and upload images freely and to recognize and read aloud the text in the images.

29

7. Analysis

Tesseract-OCR has the highest recognition rate for neatly aligned text. However, when the light

is dark, the text of the image is not aligned, and the paper is distorted. Tesseract cannot even

recognize all the text. Tesseract-OCR is also poor at recognizing images with complex

environments and has almost zero accuracies regarding shop names, billboards, and banners,

so sometimes Tesseract is seriously polarized.

In this case, we have launched a study on the CRNN model. The CRNN model can achieve

end-to-end detection of indeterminate length characters from images to character recognition.

Moreover, its network structure is simple, fast, and accurate. However, it can only detect

characters of a single shape and direction in the rectangular box and cannot achieve arbitrarily

shaped image text recognition. Besides, the CRNN model requires the construction of special

datasets during training, which has low universality. Therefore, we introduced the PGNet

model. The PGNet model can adapt to natural scenes and achieve high text recognition

accuracy and detection speed. It is the first text recognition algorithm with excellent

performance that can be used in practice. However, it is only for text recognition and cannot

meet the needs of real-time and accurate industrial production and practical applications. In

many natural and document scenes, such as license plate recognition, card and bill information

recognition, and PDF and online document recognition, the PGNet model is less effective in

handling complex and diverse tasks and cannot meet the text detection requirements of this

paper. Finally, we chose a mature and open-source text recognition library, PaddleOCR, to

complete the text recognition function of this paper.

30

8. Future work

This report has done some research in image-to-speech and realized this function, using

various models to find the best method. Although some expected results have been obtained,

there are some shortcomings that need to be studied in the future:

In terms of text recognition accuracy, although PaddleOCR has a high recognition accuracy, it

cannot accurately recognize all punctuation marks, so the break in sentences after the

characters are recognized requires a lot of data support. Furthermore, I need to continue

optimizing these frameworks, adding the Attention Model mechanism, and using a large

amount of multi-scene data for training to improve recognition accuracy. For future research

in the recognition field, the existing system should be improved to realize automatic

recognition and broadcast of various special scripts, such as oracle bone script, Tangut script

and other ancient Chinese scripts. We can improve the information collection and recording

work based on deep learning of complex scene text recognition technology and use natural

language processing technology to interpret the context and semantic understanding of the

recognized ancient Chinese. In the future, this system will contribute to and help study

ancient texts' literary and historical value.

The application scenario of image-to-speech needs further design. I have implemented the

photo method by calling the phone's IP. However, this method is not very convenient for

taking photos after my use because it cannot do these configurations easily for those special

people. So, I need to improve my image uploading part and build personalized APPs, for

example, by adding software to the phone where the user can hold the phone for content to

speech, and the content inside can be shown immediately in the form of speech.

For the test of image-to-speech software, this paper only tests its functionality. The system's

stability and code robustness have yet to be studied, so the code needs to be continuously

improved in the future, and the pages and functions can be significantly improved.

31

9. Conclusion

This report designs an image upload module, a pre-processing image module, a text recognition

module, and a text-to-speech module. Furthermore, based on this, each function is described in

detail. We analyze the principles, advantages, and disadvantages of Tesseract-OCR, CRNN,

PGNet and PaddleOCR methods and design a prototype of a PaddleOCR-based image-to-

speech system.

The system first uploads the image to be converted using either a photo or a local readout, then

pre-processes the uploaded image to highlight the text features and perform text recognition,

and finally converts the recognized text into speech. In this report, we have carefully analyzed

the principles of the four OCR algorithms mentioned above, studied the model structure of

each part in depth, and summarized their technical advantages and applicable scenarios. In

addition, based on the algorithms' advantages and disadvantages and considering the camera

environment's variability and complexity, we have improved the OCR algorithms with some

pre-processing using traditional image processing methods. The pre-processing includes

contour detection, edge detection, perspective transformation and binarization, which can

significantly improve the recognition accuracy of the image. We propose a complete and

accurate conversion scheme from image to speech.

Although this paper has obtained good results for image-to-speech conversion, the task of scene

text detection and recognition remains an arduous task. Objective factors such as scene

complexity it has an impact on both the accuracy rate and the response time of recognition, so

the text recognition model still needs to be improved.

32

10. Reflection

The first point is the literature review section. At first, I summarized all the literature in

chronological order. However, this method of collating the literature could be more organized

and provide a visual representation of the strengths and weaknesses. So, I have improved the

literature review by presenting and analyzing the different areas chronologically to make it

more intuitive for the reader.

The second point is the model selection of text recognition. The model selected at the beginning

has a poor effect and low recognition efficiency, making it challenging to write the paper.

Through communication with the supervisor, I extended the model and analyzed the

recognition effect in different situations. Moreover, I compared and analyzed all the models,

improving recognition accuracy.

The third point is image preprocessing. I have a relatively simple implementation for the image

preprocessing part and have not studied the implementation of image processing in depth. In

the future, different frameworks and image-processing algorithms need to be used to improve

the results of image preprocessing.

The last point is whether this system is helpful for visually impaired people. Consider the

condition of visually impaired people because everyone's impairment is different. The system

must make higher requirements if the user's situation is serious. For example, deploying on

mobile, setting shortcut keys, switching speech in real-time by taking pictures, speeding up the

recognition of models and creating more concise interaction pages. Because of the current

research needs, the UI interface design will have many buttons for model selection. If this

system is deployed in the future, we need to specify the model with the best generality for text

recognition and a more user-friendly speech.

Through this project, first as a brief accessibility developer, I know how difficult the life of

33

accessible people is, and I will continue to optimize this system and find the most suitable

model. Secondly, I am weak in deep learning, need to understand the text recognition part of

deep learning in more detail, and need to continue learning the underlying logic. In the literature

review section for thesis writing, I learned how to sort out the research topic and summarize

and analyze the previous research results. In my future study, I will continue to optimize and

research this project and learn different areas based on deep learning methods.

34

11. Reference

[1] https://news.un.org/zh/story/2019/10/1043162

[2] Resnikoff, S., Pascolini, D., Etya'Ale, D., Kocur, I., Pararajasegaram, R., Pokharel, G.P.
and Mariotti, S.P., 2004. Global data on visual impairment in the year 2002. Bulletin of the
world health organization, 82(11), pp.844-851.

[3] Pascolini, D. and Mariotti, S.P., 2012. Global estimates of visual impairment: 2010. British
Journal of Ophthalmology, 96(5), pp.614-618.

[4] Yu, T. & He, F. Him. (2012).Application of OCR components in smart readers. Computer
Knowledge and Technology (14), 3385-3387.

[5] Lin Ying. (2014). Research on Reading Problems of People with Visual Impairment.
Library Theory and Practice (04), 22-25.

[6] McNitt-Gray, M.F., Pietka, E. and Huang, H.K., 1992. Image preprocessing for a picture
archiving and communication system. Investigative radiology, 27(7), pp.529-535.

[7] Maini, R. and Aggarwal, H., 2009. Study and comparison of various image edge detection
techniques. International journal of image processing (IJIP), 3(1), pp.1-11.

[8] Sauvola, J. and Pietikäinen, M., 2000. Adaptive document image binarization. Pattern
recognition, 33(2), pp.225-236.

[9] ZHAI Jun-hai,ZHAO Wen-xiu,WANG Xi-zhao. Research on the Image Feature
Extraction[J]. Journal of Hebei University (Natural Science Edition), 2009, 29(1): 106-
112.

[10] LI Rong XU Yan-hua.(2016). Research on the extraction algorithm of image feature based
on visual information. Electronic Design Engineering (09),188-190.
doi:10.14022/j.cnki.dzsjgc.2016.09.056.

[11] Yao, C., Zhang, X., Bai, X., Liu, W., Ma, Y. and Tu, Z., 2013. Rotation-invariant features
for multi-oriented text detection in natural images. PloS one, 8(8), p.e70173.

[12] Kim, K.I., Jung, K. and Kim, J.H., 2003. Texture-based approach for text detection in
images using support vector machines and continuously adaptive mean shift algorithm.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12), pp.1631-1639.

[13] Liu, X., Liang, D., Yan, S., Chen, D., Qiao, Y. and Yan, J., 2018. Fots: Fast oriented text
spotting with a unified network. In Proceedings of the IEEE conference on computer vision

https://news.un.org/zh/story/2019/10/1043162(Background

35

and pattern recognition (pp. 5676-5685).

[14] Hull, J.J., 1994. A database for handwritten text recognition research. IEEE Transactions
on pattern analysis and machine intelligence, 16(5), pp.550-554.

[15] Wang, K., Babenko, B. and Belongie, S., 2011, November. End-to-end scene text
recognition. In 2011 International conference on computer vision (pp. 1457-1464). IEEE.

[16] Mishra, A., Alahari, K. and Jawahar, C.V., 2012, June. Top-down and bottom-up cues for
scene text recognition. In 2012 IEEE conference on computer vision and pattern
recognition (pp. 2687-2694). IEEE.

[17] https://iopscience.iop.org/article/10.1088/17426596/1516/1/012017/pdf#:~:text=The%20
Tesseract%20OCR%20engine%20was,%2B%2B%20to%201998%20%5B5%5D.

[18] Smith, R., 2007, September. An overview of the Tesseract OCR engine. In Ninth
international conference on document analysis and recognition (ICDAR 2007) (Vol. 2, pp.
629-633). IEEE.

[19] Chi Hao. (2011). Design and Implementation of a Wrapper Based on Tesseract OCR
Engine. Science and Technology Communication (23), 199.

[20] Guo Shiyi. (2019). Research on English Character Algorithm Based on OpenCV and
Tesseract-OCR. Computer Programming Skills and Maintenance (06), 45-49.
doi:10.16184/j.cnki.comprg.2019.06.017

[21] Shi, B., Bai, X. and Yao, C., 2016. An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE transactions on
pattern analysis and machine intelligence, 39(11), pp.2298-2304.

[22] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G.,
Cai, J. and Chen, T., 2018. Recent advances in convolutional neural networks. Pattern
recognition, 77, pp.354-377.

[23] Jangpangi, M., Kumar, S., Bhardwaj, D. et al. Handwriting Recognition Using Wasserstein
Metric in Adversarial Learning. SN COMPUT. SCI. 4, 43 (2023).
https://doi.org/10.1007/s42979-022-01445-x

[24] https://github.com/tesseract-ocr/tesseract

[25] Shi, B., Bai, X. and Yao, C., 2016. An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE transactions on
pattern analysis and machine intelligence, 39(11), pp.2298-2304.

https://iopscience.iop.org/article/10.1088/17426596/1516/1/012017/pdf#:~:text=The%20Tesseract%20OCR%20engine%20was,%2B%2B%20to%201998%20%5B5%5D
https://iopscience.iop.org/article/10.1088/17426596/1516/1/012017/pdf#:~:text=The%20Tesseract%20OCR%20engine%20was,%2B%2B%20to%201998%20%5B5%5D
https://doi.org/10.1007/s42979-022-01445-x

36

[26] Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

[27] Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural
computation, 9(8), pp.1735-1780.

[28] Graves, A., Fernández, S., Gomez, F. and Schmidhuber, J., 2006, June. Connectionist
temporal classification: labelling unsegmented sequence data with recurrent neural
networks. In Proceedings of the 23rd international conference on Machine learning (pp.
369-376).

[29] Wang, P., Zhang, C., Qi, F., Liu, S., Zhang, X., Lyu, P., Han, J., Liu, J., Ding, E. and Shi,
G., 2021, May. PGNET: Real-time arbitrarily-shaped text spotting with point gathering
network. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 4,
pp. 2782-2790).

[30] https://github.com/PaddlePaddle/PaddleOCR

[31] Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W. and Liang, J., 2017. East: an
efficient and accurate scene text detector. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (pp. 5551-5560).

[32] Liao, M., Wan, Z., Yao, C., Chen, K. and Bai, X., 2020, April. Real-time scene text
detection with differentiable binarization. In Proceedings of the AAAI conference on
artificial intelligence (Vol. 34, No. 07, pp. 11474-11481).

[33] Wang, P., Zhang, C., Qi, F., Huang, Z., En, M., Han, J., Liu, J., Ding, E. and Shi, G., 2019,
October. A single-shot arbitrarily-shaped text detector based on context attended multi-
task learning. In Proceedings of the 27th ACM international conference on multimedia (pp.
1277-1285).

[34] Yu, D., Li, X., Zhang, C., Liu, T., Han, J., Liu, J. and Ding, E., 2020. Towards accurate
scene text recognition with semantic reasoning networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp. 12113-12122).

