

 Cardiff University

 School of Computer Science and Informatics

Wales Safeguarding Repository: Document Discovery via Natural
Language Processing.

 MSc in Advanced Computer Science
 Author: Sebastian Thomas (21114338)

 Supervisor: Dr. Alun D Preece
 Moderator: Dr Jose Camacho Collados
 October 2022

1

Declaration

I certify that this thesis was entirely done by myself and that I have never submitted it in full or in

part as part of another application for a degree.

 Sebastian Thomas

 October, 2022

2

Abstract

Document discovery via semantic search is the process of discovering the documents from a

corpus which has a semantic meaning similar to the input document submitted by the user. For

example, browsing the internet for information.

In order to attain this, we create vector representations also known as embeddings of both the

documents to be searched as well as the input document must be created. Traditional approach

for embedding a document is to use a Count vector or a TF – IDF vector (Term Frequency –

Inverse Document Frequency). But modern approach include the use of neural networks which

has a rising popularity over the past few years. The BERT network which was released in 2018

is a highly popular neural network for document embeddings. Multiple versions of BERT had

been created after its release, one such version is the Sentence-BERT network which is a very

popular network for sentence embeddings.

In this thesis, we create a framework to discover the documents from the Wales Safeguarding

Repository which is semantically similar to the input document supplied by a user. We evaluate

different Sentence-BERT models on the BBC news dataset and chosen the most optimal model

to perform the embeddings on the WSR dataset. We have also used the TF-IDF vector to find

the most important words in a document and then picked up the sentences in the document

which contains the important words obtained by the TF-IDF vector. Once we reduced the size of

the document, we then calculate the embeddings using the Sentence-BERT model and then the

embeddings are compared using cosine similarity method.

3

Contents

 1 Introduction 5

 1.1. Overview 5

 1.2. Problem Statement . . 5

 1.3. Motivation 6

 1.4. Research aim and approaches . 6

 1.5. Thesis structure .6

2 Literature Review 8

 2.1. Overview . 8

 2.2. Text similarity analysis 8

 2.3. TF - IDF 9

 2.4. Transformers . 10

 2.5. BERT 11

 2.6. Sentence-BERT. 11

 2.7. Cosine Similarity. .. . 12

3 Model Selection 14
 3.1. Overview . 14

 3.2. Data set. .14

 3.3. Data preprocessing. 14

 3.4. Evaluation of models on the dataset. 15

 3.5. Results. 17

4 Techniques Implemented on WSR dataset 18
 4.1. Overview . 18

 4.2. Wales Safeguarding Repository Dataset. 18

 4.3. Creating a data frame. . . 18

 4.4. Data Preprocessing. . . .19

 4.5. Reducing the document size. . .20

 4.6. Calculate the embeddings of documents. 21

 4.7. Calculating the similarity. 22

 4.8. Fine-tuning the sentence transformer model. 22

5 Results 25
 5.1. Overview . 25

 5.2. Results. 25

4

6 Conclusion and Future work 29
 6.1. Overview . 29

 6.2. Conclusion. 29

6.2. Future work. . 30

7 References 31

8 Acknowledgement 32

5

Chapter 1

 Introduction and Problem Statement

1.1 Overview

This chapter represents a description of the whole thesis, which is to discover similar

documents from the Wales Safeguarding Repository based on the input document supplied,

using Natural Language Processing techniques. This chapter describes the problem statement

first followed by motivation, research aim, and approaches, and finally describes the thesis

structure.

1.2 Problem Statement

The Wales Safeguarding Repository (WSR) is an online repository of safeguarding review

reports that contain useful data on lessons learned in dealing with significant occurrences

affecting children and vulnerable adults. To improve the future safeguarding practices of

professionals including police officers, social workers, and those working in health and social

care, better learning must come from these assessments, according to research from Cardiff

University's School of Social Sciences.

The Cardiff University Crime & Security Research Institute (CSRI) is working with the School of

Social Sciences to develop natural language processing (NLP) technology to support the

indexing and search functions of the WSR platform. The collection of safeguarding review

reports is continually expanding, and the reports themselves are lengthy and intricate. This

makes it difficult to manually identify common themes and issues across the entire collection of

reports. To identify key themes in the reports, a group of social scientists has created a "coding

framework." The thematic framework was created to make it easier to see recurring difficulties

and problems in multi-agency work across many reports.

The goal of this project is to use the theme framework to make it easier to find related

documents throughout the collection. Practitioners from health and social care agencies will be

able to make decisions more quickly and accurately thanks to the automatic identification of

comparable reports. The project's intended output is an application that determines the most

6

similar reports from the collection for a given document by computing a similarity measure that

takes into account document content and themes that are present in the documents. Students

who have enjoyed learning about machine learning and have a particular interest in NLP might

consider taking on this project.

 1.3 Motivation

One of the main ideas in Information Retrieval is the concept of document similarity(or distance

between two document vectors). How do people describe how similar the two documents are?

Typically, two documents are similar if they describe the same topic and are semantically equal.

Measuring the similarity also helps in identifying duplicate documents in a corpus [1].

In recent years, the development of methods to measure document similarity has become an

important field in Computer Science, and Natural Language Processing. Several techniques

have been developed to determine the quantitative measure of the similarity of documents.

Such procedures may be helpful for information retrieval, document version control,

authentication, summarization, etc. In addition, assessment of documentary evidence in criminal

and civil courts, version control in administrative document archives, authentication of identity

documents, historical research, and literary studies have all relied heavily on the judgments of

document similarity in the past and continue to do so today.

1.4 Research Aim and Approaches

In this thesis, I am trying to find the documents in a corpus, that is the Wales Safeguarding

Repository which is similar to an input document.

In my research, I have used the sentence transformers for embedding sentences in a

document. Once the documents are vectorized then we can measure the similarity between the

documents using the cosine similarity matrix.

1.5 Thesis Structure

The entire thesis is written in 6 chapters.

Chapter 1 describes the introduction of the thesis, it includes the details such as the problem

statement, motivation, research aim and approaches and also describes about the Wales

Safeguarding Repository dataset.

Chapter 2 presents the literature review that describes about the various approaches in text

similarity analysis, tf-idf vector, evolution of transformers from the transformer model till the

sentence-bert model and cosine similarity.

Chapter 3 discuss about the model selection by evaluating the different sentence-bert models

against the bbc news dataset and choosing the most optimal model.

7

Chapter 4 discuss about the techniques implemented on the Wales Safeguarding Repository

dataset to find the documents from the repository which is similar to the input document

supplied.

Chapter 5 discuss about the results produced by the model based on different inputs supplied to

the model.

Chapter 6 describes about the conclusion of the thesis and future work that can be implemented

on the Wales Safeguarding Repository dataset for improving the results.

8

Chapter 2

 Literature Review

2.1 Overview

This chapter is divided into 6 sections. The first section explains about different methodologies

in text similarity analysis and the second section explains the TD-IDF vectorizing technique. The

third, fourth and fifth section explains the evolution of different transformers from the transformer

model till the Sentence-BERT transformers, and the sixth section describes cosine similarity

which is used to find the distance between two vectors that represents two different documents.

2.2 Text Similarity Analysis

Text similarity is a widely used approach in different applications. Its meaning is different in

different scenarios, so there is no unified and accepted definition for it. Lin presented a universal

definition of similarity in terms of information theory derived from a set of assumptions. He

discovered that the similarity between two documents let's say A and B, are related to their

commonality and differences. Documents A and B are said to be more similar if they share more

commonality and less difference [9]. The methods for calculating text similarity can be divided

into four categories. They are, string-based method, corpus-based method, knowledge-based

method, and other methods [9].

1. String-based method

The String-based method gauges the degree of string co-occurrences and similarity by starting

with the degree of string matching. Textual comparisons are being made at a literal level, and

the source texts are represented by text data.

2. Corpus-based method

The corpus-based approach calculates the text similarity using the data from the corpus.

A technique for computing text similarity that has recently received attention in the field of

natural language processing is the creation of word vectors using neural network models.

Word2Vec is one of the many models and programs that have been offered for creating word

vectors.

3. Knowledge-based method

The term method based on world knowledge refers to the calculation of text similarity using a

knowledge base with a normative organization scheme. Universal dictionaries like WordNet, are

the ontologies that are used more frequently.

9

Besides the three methods mentioned above, there are several other methods for text similarity

calculation, such as syntactic analysis and hybrid methods.

2.3 TD-IDF

TD-IDF stands for term frequency-inverse document frequency. TD-IDF is a statistical measure

that evaluates how significant a word is to a document in a collection of documents [2]. This is

obtained by multiplying two values, how many times the word occurs in a document which is

also the term frequency, and the inverse document frequency of the word across a set of

documents [2].

 Figure 2.1

It is highly useful for scoring words in machine learning algorithms for Natural Language

Processing and has a wide range of applications with automated text analysis being the most

essential one.

TF-IDF was invented for document similarity, search, and information retrieval. It operates by

escalating the frequency with which a word appears in a document, but it is counterbalanced by

the quantity of documents in which the word appears [2]. Therefore, the most frequently

occurring words in a document like ‘this’, ‘that’ etc have a low TF-IDF score and the words that

are more significant to the document have a high TF-IDF score. For example, if a word

accident occurs many times in a document but is less likely to occur in other documents in the

corpus, then it means that the word accident is more relevant to that document and has a high

TF-IDF score.

10

Why TF-IDF is used in Natural Language Processing?

Machine learning algorithms are designed in such a way that they deal with numbers rather than

words or sentences. So we need a mechanism to transform the text data into numerical data,

also known as text vectorization. The vector which is obtained using the TF-IDF vectorizer can

be fed as an input to the machine learning algorithms like Naive Bayes or Support Vector

Machines and gives more results than basic vectorizing techniques like word count [2].

2.4 Transformers
The transformers were introduced in the year 2017 with the aim to solve the limitations of RNNs.

An RNN's sequential nature prevents calculations from being parallelized because the input to

the current step includes the hidden state from the previous timestep. The Transformer lacks

recurring connections to eliminate this obstacle. A translation job was used to train the first

Transformer network. English sentences were translated into French and German, respectively

[3].

The Transformer receives a series of tokens as input, which may include whole words as well

as word fragments. The Transformer creates a translation of those tokens in the original

environment. Making words into tokens that are part of the model vocabulary enables the model

to deal with uncommon terms at the time of inference that it would not have encountered during

training and are thus not in the vocabulary.

The Transformer employs a method known as byte-pair encoding to break apart words into

tokens [3]. The frequency of each word in the corpus is first measured. Second, a special ""

token is added to each character sequence created from the word sequences to establish an

initial vocabulary. Third, all character pairs in the vocabulary are ranked by frequency. Fourth,

each instance of the pair with the highest frequency is combined into a brand-new token and

added to the lexicon. Repeating this process until the necessary vocabulary size is reached [4].

The input embeddings are then created with 512 dimensions using the initialized token

embeddings. However, the order of the tokens in the sequence is not disclosed in these input

embeddings. Therefore, the Transformer augments each input embedding with positional

encodings [3].

Both an encoding and a decoding component are part of the Transformer network. The only

component employed in this thesis is the encoder, hence this theory portion will concentrate on

the encoder. A series of input tokens are translated into a series of embeddings by the encoder

stack. The decoder stack then decodes the embeddings to produce a series of output tokens

[3].

There are six stacked encoder/decoder layers in both the encoding and decoding components.

Despite having the same construction, the stacked encoders do not share weights. The input

embeddings that are fed into the top encoder in the stack are converted into output embeddings

11

that are fed into the bottom encoder layer. The last encoder layer's output embeddings are then

fed into the decoder stack [3]. A feedforward network makes up the second sub-layer of an

encoder layer, which is made up of several self-attention units, also known as self-attention

heads. These two sub-layers have residual connections around them and each sub-layer is

followed by layer normalization.

2.5 BERT

BERT stands for Bidirectional Encoder Representations from Transformer and is a network

architecture that was released in the year 2018 by Devlin et al. Instead of using a decoder

stack, it is made up of a stack of Transformer encoders. BERT is available in two sizes:

BERTbase, with 12 encoder layers and 12 attention heads per layer, outputting embeddings

with 768 dimensions, and BERTlarge, with 24 encoders and 16 attention heads per layer,

outputting embeddings of size 1024 [5]. The original Transformer network has 6 encoders

stacked with 8 attention heads per layer. There are two phases to the BERT training program.

Pre-training is the first step, which entails training the model on unlabeled data.

The model is trained on labeled data while completing downstream tasks in the second step,

which is referred to as "fine-tuning." These downstream duties include named entity recognition

and answering questions. Giving the model a question and a context that may or may not

contain the answer to the question, then asking the model to provide the response, is known as

question answering. All of the model's parameters are trained during fine-tuning. The BERT's

designers made pre-trained models available to the public [5].

The BERT algorithm is made to accept input sequences that can include both single sentences

and pairs of sentences, like an inquiry and a response. A sentence is defined as any grouping of

words, regardless of whether they make up a sentence in the traditional sense of the word. The

unique [CLS] token always appears as the first token in a sequence. You can think of this token

as an overall representation of the sequence. There is a requirement for a specific token to

distinguish between sentence pairs because they are crammed into one sequence. As a result,

BERT employs the [SEP] token to break up sentence pairs. The model can execute attention

between tokens belonging to separate sentences because both phrases are in one token

sequence [5].

2.6 Sentence BERT

The Sentence BERT (SBERT) network is a pre-trained BERT network that generates

semantically significant sentence embeddings using Siamese and triple network architectures

[6]. A network made up of two identical neural networks that share weight is known as a

siamese neural network. Both networks operate simultaneously and the final results are

compared, typically using a cosine distance metric as the distance metric. Similarity problems

are ideally suited for a siamese network. Since each network computes the same function, the

Siamese network’s weight-sharing characteristics ensure accurate predictions [7].

12

 Figure 2.2

SBERT produces a single embedding for the entire phrase as opposed to BERT’s several

embeddings for each token. The embeddings generated by SBERT, according to its developers,

are superior to the sentence representations that are obtained from the standard BERT network

[6].

Fine-tuning

Depending on the dataset the network is tuned on, the sentence transformer network

architecture will vary. In this thesis, the model is fine-tuned on the Wales Safeguarding

Repository dataset which is further explained in section 4.8 in detail. As seen in figure 2.2, the

architecture is built around two BERT networks with shared weights. The SBERT network is first

fed with each sentence in a sentence pair. The sentence embeddings u and v are created by

pooling the output embeddings. The BERT network is pooled by calculating the mean of all

output embeddings, with the exception of [CLS] and [SEP] tokens. Then, the cosine similarity

between these two networks is calculated. Utilizing the mean-squared error loss function, the

loss is calculated [6].

2.7 Cosine Similarity

Cosine similarity is a method that is used to calculate the similarity between two vectors. The

cosine of the angle between the two vectors is a measure of similarity. The vectors are typically

non-zero vectors and are located within an inner product space [8].

The divide between the dot product of vectors and the product of the euclidean norms or

magnitude of each vector is how the cosine similarity is formally defined.

13

 Figure 2.3

Cosine similarity is a commonly used technique to measure the similarity of two vectors. It can
be found in various libraries such as Mathlab, SciKit-Learn, Tensorflow, etc.

The value of cosine similarity ranges from 0 to 1. The cosine of the angle between two non-zero
vectors A and B is used to calculate how similar the vectors are. For example, if the angle
between two vectors is 90 degrees, the cosine similarity will then have a value of zero,
indicating that the two vectors are perpendicular or orthogonal to one another.

The angle between the two vectors decreases as the cosine value approaches to 1. (Refer
figures 2.4 and 2.5)

 Figure 2.4

 Figure 2.5

14

 Chapter 3

 Model Selection

3.1 Overview

This section describes about the model selection which is done by measuring the performance

of various sentence transformer models on the BBC news dataset.

3.2 Dataset

The dataset contains 2225 news articles split into five categories. They are technology,

business, politics, entertainment, and sports.

3.3 Data Preprocessing

Libraries used are nltk and re.

The following preprocessing steps are taken on the BBC news dataset.

1. Convert the text data into lowercase letters

If all the text is in the same case it would be easy for the computer to read and process

the text data as the computer treats the lowercase and uppercase differently. So the

dataset is converted to lowercase letters.

2. Replace the shortened words or character symbols with standard text data

Shortened words like what’s, ‘ve and symbols like $, % and £ are replaced with their
respective standard text to avoid confusion to the transformer model.

3. Removing the digits and multiple spaces in the dataset

To make the dataset evenly balanced, eliminate the multiple spaces and digits from the

dataset and replace them with a single space.

4. Tokenize the words

The text is divided into a list of words so that each article can be processed as a vector

of words.

5. Removal of stopwords from the dataset

Stopwords are the most commonly occurring words in text data that provide little or no

information to the text data. Stopwords include words like ‘the’, ‘this’, ‘there’ etc. The

15

NLTK library is used to get rid of stop words from the dataset, which can remove up to

180 stopwords from the dataset.

6. Lemmatization

The term is stemmed while still being clear in its meaning. Lemmatization makes use of

a pre-defined vocabulary to maintain word context and check the word when it becomes

less common.

The figure 3.1 shows the code for the preprocessing steps which are done on the BBC news

dataset.

 Figure 3.1

3.4 Evaluation of models on the dataset

Here are the transformer models which I have downloaded from the hugging face to check for

the similarity between the news articles in the BBC dataset.

1. xlm-roberta-base

100 languages from 2.5TB of filtered CommonCrawl data were used to pre-train the

XLM-RoBERTa model. It was first mentioned in the Conneau et al. publication

Unsupervised Cross-lingual Representation Learning at Scale [10].

16

RoBERTa is a transformers model that was self-supervised and pretrained on a sizable

corpus. This means that an automatic method was used to generate inputs and labels

from those texts after it had been pretrained on just the raw texts without any human

labeling (which explains why it may use a ton of data that is readily available to the

public).

It was pretrained specifically with the Masked language modeling (MLM) purpose in

mind. When given a sentence, the model randomly selects 15% of the input words to be

hidden, after which it must predict the words that were hidden. This contrasts with

conventional recurrent neural networks (RNNs), which typically perceive the words

sequentially, and autoregressive models like GPT, which internally conceal the next

tokens. This makes it possible for the model to learn a two-way representation of the

statement.

In this approach, the model acquires an internal representation of 100 languages from

which features for later tasks can be extracted: For example, if you have a dataset of

labeled sentences, you can train a standard classifier using the features produced by the

XLM-ROBERTa model as inputs.

2. bert-base cased

BERT is a transformers model that was self-supervised and pretrained on a sizable

corpus of English data. As a result, it can use a lot of data that is readily accessible to

the public because it was trained exclusively on raw texts, with an automatic process

generating inputs and labels from those texts [11]. This model was pretrained with two

objectives.

● Masked language modeling (MLM) involves randomly masking 15% of the words

in an input sentence before running the complete sentence through the model to

predict the remaining words. This contrasts with conventional recurrent neural

networks (RNNs), which typically perceive the words sequentially, and

autoregressive models like GPT, which internally conceal the next tokens. This

makes it possible for the model to learn a two-way representation of the

statement [11].

● Next sentence prediction (NSP): During pretraining, the model concatenates two

masked sentences as inputs. They occasionally match sentences that were next

to one another in the original text, and sometimes they don't. The model must

then determine whether or not the two sentences followed one another [11].

A standard classifier can be trained using the features produced by the BERT model as

inputs if you have a dataset of labeled sentences, for example. In this way, the model

learns an internal representation of the English language that can then be used to

extract features useful for downstream tasks.

3. optimum/all-MiniLM-L6-v2

17

This is a sentence transformer model. This model can be used to map sentences or

paragraphs into a 384-dimensional dense vector space and can be used for applications

that perform clustering and semantic search.

This model was developed by hugging face during the Community week using JAX/Flax

for NLP & CV, organized by Hugging Face. It was developed as part of the project: Train

the Best Sentence Embedding Model Ever with 1B Training Pairs [12]. This model was

benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well

as intervention from Googles Flax, JAX, and Cloud team members about efficient deep

learning frameworks.

Intended uses

The model is designed to be used as an encoder for sentences and brief paragraphs. It

generates a vector from the supplied text that contains the semantic data. The sentence

vector can be applied to problems involving sentence similarity, clustering, or information

retrieval.

3.5 Results

The three models were evaluated on the BBC news dataset to find the similarity of a news

article with other articles. To evaluate the models, I picked up an article from the business

category as the input document and then compared it with 10 other news articles from each

category to find the similarity. Among these three models, the model all-MiniLM-L6-v2 showed

better results. This model showed that the input document which belongs to the business

category is more similar to the documents in the business category than the document which

belongs to the other category. The figure 3.2 shows the average similarity score that is

calculated by comparing the input document with the other ten documents from each category

by model all-MiniLM-L6-v2.

 Figure 3.2

18

 Chapter 4

 Techniques implemented on the WSR dataset

4.1 Overview

This section describes about the Wales Safeguarding Repository data set and the methods

implemented to discover similar documents from the WSR dataset based on an input document

supplied using Natural Language Processing techniques.

4.2 Wales Safeguarding Repository Dataset

The Wales safeguarding repository dataset contains a collection of reports that contains

information about a serious safeguarding incident, for example, an incident that involves a child

or an adult, events that occur preceding the event, and the role of agencies and the application

of best practices. Key details about learning experiences and reflections on handling significant

occurrences are included in each report. The papers have a huge potential to enhance

interagency collaboration and advance improved protection techniques and policies. Currently,

the corpus contains 77 reports that can be split into three categories namely, Domestic

Homicide Reviews (DHRs), Mental Health Homicide Reviews (MHHRs), Adult Practice Reviews

(APRs), and Child Practice Reviews (CPRs) [13].

4.3 Creating a data frame

The dataset was given in a zip format. It was downloaded, then extracted and saved in the

system storage. The files in the dataset are accessed using the file traversal method in python.

The files with extensions .txt are accessed and read using the file read operations in python. A

python dictionary is created and the data is stored in the dictionary as key-value pairs in which

the keys are the file name and the values are the file content. Finally, the data frame is created

using the pd.DataFrame method which accepts the inputs as the dictionary created.

19

 Figure 4.1

 4.4 Data Preprocessing

Data cleaning and preprocessing is a very important steps in Natural Language Processing. The

results in an NLP depend on how well the data had been cleaned and preprocessed. The

following are the steps that I have done to preprocess the WSR dataset.

Libraries used: nltk

1. Convert the text data into lowercase letters

If all the text is in the same case it would be easy for the computer to read and process

the text data as the computer treats the lowercase and uppercase differently. So the

dataset is converted to lowercase letters.

2. Remove the special characters from the text data

The text data contained some encoded special characters like ‘\n’, and ‘xff’. These
characters are removed from the text data by encoding the text data using the

str.encode(“ascii”, “ignore”) method in python and then decoding the encoded string

to get the normal text data.

3. Splitting the text data into sentences / Sentence tokenization

In this step, the text data is split into sentences.

4. Removal of stopwords from the dataset

Stopwords are the most commonly occurring words in text data that provide little or no

information to the text data. Stopwords include words like ‘the’, ‘this’, ‘there’ etc. The

20

NLTK library is used to get rid of stop words from the dataset, which can remove up to

180 stopwords from the dataset.

5. Lemmatization

The term is stemmed while still being clear in its meaning. Lemmatization makes use of

a pre-defined vocabulary to maintain word context and check the word when it becomes

less common.

The figure 4.2 shows the preprocessing steps which are done on the WSR dataset.

 Figure 4.2

4.5 Reducing the document size

After preprocessing the data we need to reduce the size of the document. As many sentences

in the document are insignificant and do not contribute any semantic meaning to the document,

these sentences can be omitted from the documents when they are compared for similarity.

This can be done using a tf-idf vector. Using a tf-idf vector, we find the most significant words in

a document. And we then picked up the sentences from the document that contains the

significant words. In this way, we can omit the sentences from the document which are not

significant and can thereby reduce the size of the document. The reduced document would

contain sentences that are significant and contributes semantic information for the document.

Here are the steps that I have done to reduce the size of the document.

21

1. Create an object of TF-IDF vectorizer.

2. Find the top 20 words in the document using a tf-idf vector and initialize them in a list.

3. Picked up the sentences in the document that contains the words in the list. (Refer

figures 4.3, and 4.4)

 Figure 4.3

 Figure 4.4

4.6 Calculate the embeddings of documents

In this step, we split the document into small paragraphs each of size less than 512 tokens. As

the sentence transformers cannot process more than 512 tokens, we split our document into

small paragraphs of size less than or equal to 512 words. We then calculate the embeddings of

each paragraph using our sentence transformer model. Once we calculate the embeddings of

each paragraph of a document, we then calculate the mean of the embeddings to get the final

vector of the document.

22

 Figure 4.5

4.7 Calculating the similarity

Once the final vectors of the documents are created, the similarity between the documents can

be calculated using cosine similarity.

 Figure 4.6

4.8 Fine-tuning the sentence transformer model

The goal is to encode the same sentence twice. The placements of the two sentence

embeddings will differ significantly since transformer models use dropout. While the distance to

other embeddings of the other phrases in the same batch will be maximized, the distance

between these two embeddings will be minimized (they serve as negative examples).

23

 Figure 4.7

MultipleNegativeRankingLoss

If you only have positive pairs, for instance, only pairs of comparable texts like pairs of

paraphrases, pairs of identical questions, pairs of (question, response), or pairs of (source

language, target language), MultipleNegativeRankingLoss is a good loss function to use for fine-

tuning the transformer model.

This loss anticipates a batch of phrase pairs as input, where (a_i, p_i) is assumed to be a

positive pair and (a_i, p_j) to be a negative pair for i != j. All other p_j are used as negative

samples for each a_i, meaning that there is only one positive example (p_i) and n negative

instances (p_j) for each a_i. Then, for softmax normalized scores, the negative log-likelihood is

minimized. As it will randomly choose n-1 negative docs in each batch, this loss function is

excellent for training embeddings for retrieval setups where you have positive pairs. For

example, query, relevant doc.

Creating the dataset for training the model

To create the dataset to train the model, I have picked up the first 1000 most significant words

from the WSR dataset using the tf-idf model. Then I created a python list called

most_significant_sentences and add the sentences which contain words in the top 1000 words

to the list. The list most_significant_sentences is used to fine-tune the transformer model. (refer

figures 4.8, 4.9 and 4.10)

24

 Figure 4.8

 Figure 4.9

 Figure 4.10

25

 Chapter 5

 Results

5.1 Overview

This chapter describes about the results obtained by the transformer model for different input

texts.

5.2 Results

To evaluate the sentence transformer model, I have supplied some input documents and

retrieved similar documents from the WSR dataset based on the input document supplied.

1. Input document: APR2015-W01.txt

I have supplied the input document APR2015-W01.txt to the framework and evaluated the

similarity of the input document against all the other documents in the WSR dataset. The

similarity score of each document in the WSR dataset is stored as a key-value pair in a

dictionary in which the filename is the key and the similarity score is the value.

The figure 5.1 shows the most similar documents retrieved from the WSR dataset for the input

document APR2015-W01.txt.

 Figure 5.1

The document APR2017-W01.txt was found as the most similar document in the WSR dataset

for the input document APR2015-W01.txt. Both documents belong to the Adult Practise

Reviews (APRs) category.

26

The figure 5.2 shows the graph which shows the average similarity score of the input document

APR2017-W01.txt against the documents in all the categories (APR, CPR, DHR, MHHR) in the

WSR dataset.

 Figure 5.2

2. Input document: MHHR2011-W03.txt

The second input document supplied was MHHR2011-W03.txt.The figure 5.3 shows the top

similar documents retrieved from the WSR dataset for the input document MHHR2011-

W03.txt.

 Figure 5.3

The document MHHR2014-W03.txt was found as the most similar document in the WSR

dataset for the input document MHHR2011-W03.txt.Both documents belong to the Mental

Health Homicide Reviews (MHHRs) category.

27

The figure 5.4 shows the average similarity score of the input document MHHR2014-W03.txt

against the documents in all the categories in the WSR dataset.

 Figure 5.4

3. Input document: DHR2017-W02.txt

The third input document supplied was DHR2017-W02.txt. The figure 5.5 shows the top similar

documents retrieved from the WSR dataset for the input document DHR2017-W02.txt.

 Figure 5.5

The document DHR2017-W01.txt was found as the most similar document in the WSR dataset

for the input document DHR2017-W02.txt. Both documents belong to the same category

Domestic Homicide Reviews (DHRs).

28

The figure 5.6 shows the average similarity score of the input document DHR2017-W01.txt

against the documents in all categories in the WSR dataset.

 Figure 5.6

29

 Chapter 6

 Conclusion and future work

6.1 Overview

This chapter discuss the conclusion of the thesis and also the future works which can be done

on the Wales Safeguarding Repository dataset to improve the results.

6.2 Conclusion

We have evaluated different Sentence-BERT models against the BBC news dataset which

contains news articles from 5 different categories. A news article from the business category is

taken as the input document as is compared with 10 different articles from each category.

Among all the models, model optimum/all-MiniLM-L6-v2 showed the best results. So this

model is chosen to evaluate the similarity between documents in the Wales Safeguarding

Repository dataset. While comparing two documents, we first reduced the size of the document

by selecting the significant sentences from both the documents. This is done by using the tf-idf

vector. We first select the top 20 words that has the highest tf-idf score and then picked up the

sentences from the document that contained the top 20 words. We then split the documents into

small paragraphs of size less than or equal to 512 words. This is done as the Sentence-BERT

model can process maximum of token size 512. We then calculated the embeddings of each

paragraph in a document and then the mean of the embeddings is taken as the final vector

which represent the document. We calculated the similarity of two documents by measuring the

similarity between the final vectors obtained using the cosine similarity.

Fine-tuning the model

The model is fine-tuned using the sentences which contains the top 1000 words in the corpus.

As we do not have a dataset which contains the similarity score of each sentence with other

sentences in the WSR corpus we use a different technique to fine-tune the transformer model.

The idea is to create a positive pairs of sentences like (ai, pi), where i ranges from 1 to n. We

use the MultipleRankingLoss as the loss function to fine-tune the transformer model. This loss

anticipates a batch of phrase pairs as input, where (ai, pi) is assumed to be a positive pair and

(aj, pj) to be a negative pair for i != j. All other pj are used as negative samples for each ai,

meaning that there is only one positive example (pi) and n negative instances (pj) for each ai.

(refer figure 4.7)

30

6.3 Future Work

The future work will include creating a dataset for training the model, which contains the pair of

sentences from the corpus along with their similarity score. Thus we can fine-tune the

transformer model on a labelled dataset which helps the model to predict more accurate

similarity score for the documents in the Wales Safeguarding Repository.

31

7. References

[1] Huitfeldt, Claus, and C. M. Sperberg-McQueen. “Document similarity: Transcription, edit
distances, vocabulary overlap, and the metaphysics of documents.” Presented at Balisage: The
Markup Conference 2020, Washington, DC, July 27 - 31, 2020. In Proceedings of Balisage: The

Markup Conference 2020. Balisage Series on Markup Technologies, vol. 25 (2020).

[2] Stecanella, Bruno. Understanding TF-ID: A simple introduction. MonkeyLearn. Available at:

https://monkeylearn.com/blog/what-is-tf-idf/. [Accessed: 10 August 2022].

[3] Vaswani, Ashish. Shazeer, Noam. 2017. Attention is all you need. Available at:

https://arxiv.org/pdf/1706.03762.pdf. [Accessed: 01 September 2022]

[4] Sennrich, Rico. Birch, Alexandra. 2015. Neural Machine Translation of Rare words Subword

units. Available at: https://arxiv.org/abs/1508.07909. [Accessed: 01 September 2022]

[5] Devlin, Jacob. Toutanova, Kristina. 2018. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. Available at: https://arxiv.org/abs/1810.04805.

[Accessed: 10 September 2022]

[6] Reimers, Nils. Gurevych, Iryna. 2019. Sentence-BERT: Sentence embeddings using

Siamese BERT networks. Available at: https://arxiv.org/abs/1908.10084. [Accessed: 12

September 2022]

[7] Koch, Gregory. Zemel, Richard. and Salakhutdinov, Ruslan. 2015. Siamese Neural Networks

for one shot image recognition. Lille France. 6 - 11 July 2015.

[8] Alake, Richmond. 2020. Understanding cosine similarity and its applications. Towards Data

Science. Available at: https://towardsdatascience.com/understanding-cosine-similarity-and-its-

application-fd42f585296a. [Accessed: 20 September 2022]

[9] Jia, Jingdong. Liu, Xi. 2018. Improving Systematic Literature Review Based on Text

Similarity Analysis. Journal Of Physics. pp 2 – 3. doi: 10.1088/1742-6596/1069/1/012059

[10] Hugging Face. 2019. XLM-RoBERTa. Available at: https://huggingface.co/xlm-roberta-base

[Accessed: 21 September 2022]

[11] Hugging Face. 2018. BERT base model. Available at: https://huggingface.co/bert-base-

cased?text=The+goal+of+life+is+%5BMASK%5D. [Accessed: 21 September 2022]

[12] Hugging Face. 2018. ONNX convert all-MiniLM-L6-v2. Available at:

https://huggingface.co/optimum/all-MiniLM-L6-v2. [Accessed: 22 September 2022]

[13] Edwards, Aleksandra. 2022. Extracting Knowledge from Complex Unstructured Corpora:

Text Classification and a Case Study on the Safeguarding Domain. PhD Thesis, Cardiff

University.

https://monkeylearn.com/blog/what-is-tf-idf/
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1908.10084
https://towardsdatascience.com/understanding-cosine-similarity-and-its-application-fd42f585296a
https://towardsdatascience.com/understanding-cosine-similarity-and-its-application-fd42f585296a
https://huggingface.co/xlm-roberta-base
https://huggingface.co/bert-base-cased?text=The+goal+of+life+is+%5BMASK%5D
https://huggingface.co/bert-base-cased?text=The+goal+of+life+is+%5BMASK%5D
https://huggingface.co/optimum/all-MiniLM-L6-v2

32

8 Acknowledgement

I would like to thank my supervisor Dr Alun Preece, Alexandra Edwards, and David Rogers for

their encouragement, support, and assistance throughout my thesis. Their vast knowledge and

wealth of experience have inspired me throughout my thesis.

Finally, I am grateful to my family for their love, faith in me, encouragement, and sacrifices they

have made for me during my education.

