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Abstract

It has been long regarded that abstract relational reasoning is fundamental to human intelligence and a

critical component for the development of human-level AI systems. A well-studied and reliable estima-

tion of human’s capacities w.r.t. abstract reasoning is Raven Progressive Matrices (RPM) Test. Given

that performances on the RPMs have predictive validity, understanding individual performances opens a

gate to the essence of intelligence. To better analyse the performances, both symbolic and deep learning

(DL) approaches have been proposed. However, existing proposals either ignore the challenges raised

by visual perception (symbolic) or suffer from statistical biases and lack of explainability (DL models).

While recent developments of Neuro-Symbolic frameworks, e.g. NeurASP, have combined the strengths

of both the symbolic system and DL models as complementaries, to what extent these frameworks can

be applied to abstract reasoning still remain unexplored. To fill up this empty gap, we explore potential

ways to apply NeurASP to solve the RPM task and develop a prototype framework as the first attempt.

Although experiment results are not as competent as the state-of-the-arts, we pinpoint several assump-

tions of NeurASP to be relaxed for more suitable solutions to abstract reasoning. We also highlight the

key challenges and future directions to develop NeurASP-based systems with the capacity of abstract

reasoning, then blueprint one of the potential solutions. The prototype system and experiments have been

open-sourced and available at: https://tinyurl.com/diss-xzl.

Keywords. Abstract Reasoning; Artificial Intelligence (AI); Neuro-Symbolic AI; Neural Probabilistic

Logic Programming.

https://tinyurl.com/diss-xzl


2

Acknowledgements

I would like to express my greatest gratitude to my parents for the trusts and wholehearted supports they

have been giving to me for pursuing further studies abroad. Without the supports from them, I would not

have the opportunities to explore what I truly like to devote as career.

I am also really grateful to my supervisor Dr Vı́ctor Gutiérrez Basulto for identifying such an interesting

topic and all the guidance he has been giving. It’s has been a fruitful year for my scientific growth, the

inspirations that he has been sharing selflessly makes these little achievements possible.

Lastly, I would like to thank the ARCCA team for providing computational resources and technical sup-

ports during the development.



3

1 Introduction

1.1 Background

Abstract Reasoning and Raven Progressive Matrices. Abstract reasoning refers to the mechanism of

human cognation for generalising about high-level concepts and relating variations of attributes above

concrete objects. Such capabilities for abstraction and relational reasoning allow human to deal with nov-

elty, i.e., to adapt one’s thinking to a new cognitive problem. It has been long regarded by both cognitive

psychology and artificial intelligence (AI) communities that abstract relational reasoning is fundamental

to human intelligence (Carpenter et al., 1990; Meo et al., 2007; Falkenhainer et al., 1986; Hofstadter

and Mitchell, 1994) and a critical component for the development of human-level AI systems (McCarthy

et al., 2006).

A well-studied and reliable estimation of human’s capacities w.r.t. abstract reasoning is Raven Pro-

gressive Matrices (RPM) Test (John and Raven, 2003). Simple yet effective, RPM has been extensively

applied as IQ test by psychology community to a wide range of populations (Meo et al., 2007). In an RPM

test, the test-taker is presented with a 3×3 matrix with the bottom right panel left blank as shown in Fig-

ure 1. The goal is to complete the matrix by choosing one of the 8 candidates listing in answer set, such

that visual features of the figural elements occurring in each row/column align with the same “underlying

patterns” of variation. This requires test-takers to identify the correspondences between among figural

elements and reason about the underlying relations applied to them. For instance, all vertical elements

in Figure 1 quantitatively follow a distribution of numbers distinctively picking from the set {1, 2, 3} in a

row-wise manner. However, difficulties of RPMs substantially raise as the visual complexities and number

of underlying rules increased (Carpenter et al., 1990; Meo et al., 2007). Such characteristics make RPM

test a strong diagnosis of abstract and relational reasoning abilities, distinguishing even among highly

educated subjects (Meo et al., 2007; Santoro et al., 2018).

Computational Approaches to RPMs. Given that performances on the RPMs have predictive validity,

understanding the causal relationship between individual differences and test performances opens a gate

to the understanding of the essence of intelligence (Meo et al., 2007). Symbolic computational simulation

models were therefore proposed for a better analysis of the nature of individual differences (Carpenter

et al., 1990; Lovett et al., 2007; Lovett and Forbus, 2017). While symbolic systems are explainable and

can achieve human-like performances, they rely heavily on explicitly encoded rules and oversimplified

assumptions w.r.t. visual inputs (Lovett and Forbus, 2017; Mitchell, 2021). Nevertheless, the rule taxon-

omy identified by (Carpenter et al., 1990) inspired a wealth of research tackling automatic RPM problem
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generation systems (Matzen et al., 2010; Wang and Su, 2015; Santoro et al., 2018; Zhang et al., 2019a),

providing abundant high-quality RPMs for both psychological practice and the development of AI agents

for abstract reasoning.

With the large amount of generated data available and the paradigm shift of AI approaches, there

have recently been numerous attempts to get deep learning (DL) models to learn relation abstraction via

the RPM test (Santoro et al., 2018; Zhang et al., 2019a,b; Wang et al., 2020; Hu et al., 2021; Yu et al.,

2021; Zhang et al., 2021). Although the capacities w.r.t. low-level perception (Steenbrugge et al., 2018;

van Steenkiste et al., 2019; Spratley et al., 2020) and generalising abstract relations (Santoro et al., 2018;

Hu et al., 2021; Yu et al., 2021) of DL models seem fascinating, they come with costs of interpretability

and data efficiency (Manhaeve et al., 2021b; Mitchell, 2021). More importantly, training on procedurally

generated data examples allows DL models to exploit potentially statistical biases, resulting to unfaithful

performances (Santoro et al., 2018; Spratley et al., 2020; Hu et al., 2021; Mitchell, 2021). It therefore

remains unclear what DL models have learnt hold faithfully the abilities of abstract and relational reason-

ing.

Neuro-Symbolic Frameworks. In another venue, there has been an increasing interest in the devel-

opment of Neuro-Symbolic systems that take into account the strengths of both the DL models, e.g.

visual perception, with those of symbolic systems, e.g. structural reasoning as complementaries (d’Avila

Garcez et al., 2019; Manhaeve et al., 2021b). Two prominent examples of Neuro-symbolic systems are

NeurASP (Yang et al., 2020) and DeepProbLog (Manhaeve et al., 2021a), that is the formalism of neural

probabilistic logic programming (NPLP). Being able to make full use of both the worlds of symbolic

systems and DL models, NPLP enables symbolic systems the ability of visual perception and provides

DL models the capabilities of explainable logic reasoning. Moreover, the intuition of combining neural

perception and logic reasoning aligns well with the “thinking fast and slow” cognitive model (Kahneman,

2011; Booch et al., 2021) , offering a well-suited test bed for abstract visual reasoning. Surprisingly, stud-

ies regarding the abilities of abstract reasoning of existing NPLP frameworks remain to-date an empty

gap.

1.2 Objectives and Contributions

Given that the NPLP paradigm has not only well-aligned intuition with cognitive models but also the

advantages in combining both symbolic systems and DL models, we are interested in its capabilities w.r.t.

abstract visual reasoning. Specifically, the main aim of this project is to explore to what extend the Neuro-

Symbolic frameworks (Yang et al., 2020) can be applied to solve abstract visual reasoning tasks such as



5

1 2 3 4

5 6 7 8

Context Matrix

Answer Set

Object

Cell Figural  
Element

Row

Figure. 1: An example problem of Raven’s Progressive Matrix(Carpenter et al., 1990) (5 is the correct

answer)

Raven’s Progressive Matrices. To this aim, we first observe the pitfalls w.r.t. scalability and expressiveness

of NeurASP led by the assumptions on output of neural network (NN) and the nature of symbolic systems.

We explore potential ways to overcome the problems and propose a prototype framework using NeurASP

by introducing scalable and expressible representations under restricted assumptions.

In particular, we capture the low-level variations of figural elements and relations between cells by

row-level embeddings, lifting the innumerable combinations of attributive values of figural elements.

While the row-level representations may lack of low-level information of individual elements, we utilise

a pretrained AIR module (Eslami et al., 2016) to provide NNs with a scene-disentangled object-centric

bias (Spratley et al., 2020). To get around the inability of NeurASP w.r.t. accepting mutually non-exclusive

probabilistic input, we introduce a component-attribute-wise symbolic representation using ASP encod-

ing, then establish one-to-one correspondences between row embeddings and underlying rules via a multi-

task classification network (Zhang et al., 2014). To examine the effectiveness of our approach, we experi-

ment the prototype system on the I-RAVEN dataset (Hu et al., 2021), comparing with two state-of-the-art

models. Although results shown are not as competent, we analyse possible reasons with respect to both

the proposed methodology and restrictions of NeurASP framework. On top of the reasons, we discuss

the key challenges and future directions to develop AI systems with the capacity of abstract relational

reasoning.
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1.3 Outline

The remainder of this report is organised as follows. The next section reviews existing works on symbolic

and DL approaches to the RPM task, and surveys relevant techniques to be adopted. Section 3 gives a

detailed descriptions of the RPM problem with formal definitions. Section 4 introduces briefly the key

concepts will be used in methodology. Section 5 discusses the preliminary observations and underlines

potential pitfalls of applying NeurASP to the RPM task. Based on the observations, Section 6 proposes an

intermediate representation of the problem and specifies the pipeline of the prototype system. Section 7- 8

gives details of the evaluations and analyses potential reasons contribute to the results. Finally, Section 9

concludes the report and highlights challenges for the future work, then enclosed by a scratch design for

one possible solution.

2 Related Work

2.1 Computational Attempts on RPM Problem

Provided the extensive use of the RPM test and its centric role in measuring abstract reasoning abilities, to

simulate and understand better the cognitive processes (Meo et al., 2007), many efforts have been taken

for the development of automatic RPM solvers. Computational models in this regard can be roughly

categorised into symbolic approaches and deep learning approaches.

Symbolic Approaches. Symbolic methods typically represent visual of figural elements into a set of

symbolic representations and then infer corresponding rules by instantiating explicitly encoded rule for-

mulae (Carpenter et al., 1990; Lovett et al., 2007; Lovett and Forbus, 2017). In a key study on this direc-

tion, Carpenter et al. (1990) identified a rule taxonomy and proposed theoretical models of the cognitive

processes used in solving RPM test. Based on the taxonomy, computational simulation systems were also

developed where symbolic representations of figural elements were directly encoded by human. Indeed,

predetermining hand-coded representations of visual input is an oversimplification considering what in-

formation in each cell should be or should not be perceived is ignored (Lovett et al., 2007; Lovett and

Forbus, 2017). To address the limitations regarding symbolic visual mapping, the Structure-Mapping En-

gine (SME) (Falkenhainer et al., 1986) is used in (Lovett and Forbus, 2017). Empowered by SME, the

system can effectively capture underlying rules implied through comparing the set of predicate logic de-

scriptions of each manually segmented objects. Yet still, low-level visual perception was not addressed

at all (Mitchell, 2021). Nevertheless, the rule taxonomy identified by Carpenter et al. (1990) inspired a

wealth of research tackling automatic RPM problem generation systems (Matzen et al., 2010; Wang and
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Su, 2015; Santoro et al., 2018; Zhang et al., 2019a). Notably, Wang and Su (2015) introduced an abstract

representation of RPMs formalised in first-order logic (FOL). By taking advantage the expressive power

of FOL, the proposed formulation can not only capture the irregularly varied patterns of RPMs, but also

formal notions of well-formedness of RPMs. By contrast, symbolic formulation of our work borrows the

notions of RPM well-formedness in (Wang and Su, 2015), but the notions are formulated in answer set

semantics (Calimeri et al., 2020) rather than full FOL.

Deep Learning (DL) Approaches. In general, DL approaches excel in incorporating information from

low-level visual inputs (Manhaeve et al., 2021b). Task-specific NNs are often adopted to introduce induc-

tive bias, informing NNs about the abstract relations (Santoro et al., 2018; Zhang et al., 2019a; Spratley

et al., 2020; Hu et al., 2021). As a pioneer to explore solving advanced RPMs via DL models, Santoro

et al. (2018) proposed a variant of the relational neural model (Santoro et al., 2017). The proposed model

learns to generalise the relations based upon convolutional representations of a problem matrix and an in-

dividual answer choice pair. While it appears fascinating the abilities to learn abstract relations, the use of

DL models comes at the costs of lacking interpretability and low data efficiency (Manhaeve et al., 2021b;

Mitchell, 2021). To meet the demands of large-size training data, Santoro et al. (2018) took inspirations

from (Wang and Su, 2015), synthesised a large-scale RPM-like dataset, namely the Procedurally Gen-

erated Matrices (PGM) dataset. Similarly, Zhang et al. (2019a) introduced the RAVEN dataset based on

Attributed Stochastic Image Grammar (A-SIG). Compared to PGM, RAVEN is claimed to be visually less

complex but more complex w.r.t. underlying abstract relations (Zhang et al., 2019a; Spratley et al., 2020).

The establishment of these two major datasets encourages many following studies to investigate neural

models’ abilities in the abstract reasoning task (Zhang et al., 2019b; Zheng et al., 2019; Hu et al., 2021;

Yu et al., 2021). Although attempts to model hierarchical relations of RPMs using neural embeddings

have given some performance boosts, DL methods still show inadequacies when underlying abstract re-

lations get more complex (Hu et al., 2021; Yu et al., 2021). Moreover, DL models potentially suffer from

subtle statistical bias residing in procedurally generated data (Mitchell, 2021). Both (Hu et al., 2021) and

Spratley et al. (2020) have reported that due to the defect of answer set generation of RAVEN dataset, DL

models can generalise to solve the RPMs without looking at answer sets, such statistical shortcut can lead

to unfaithful performances. Although a fairer version (Hu et al., 2021) of RAVEN dataset is proposed, it

still remains unclear what DL models have learnt provided the lack of transparency (Mitchell, 2021).
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2.2 Neuro-Symbolic Systems

With the recent raising concerns about the interpretability and accountability of neural models in AI

community, there are increasing interests on Neuro-Symbolic AI. This paradigm brings the advantages

of learning in neural networks, reasoning and intepretability of symbolic representation together (Besold

et al., 2021; d’Avila Garcez et al., 2019). While there are different formalisms within the paradigm, promi-

nent approaches include symbolic constraints to regularise neural models (Xu et al., 2018), templating

neural networks using logic (Rocktäschel and Riedel, 2017; Wang et al., 2019). Notably, by bridging DL

models and probabilistic logic programming (PLP) (Dries et al., 2015; Lee et al., 2017), the neural prob-

abilistic logical programming (NPLP) formalism (Manhaeve et al., 2021a; Yang et al., 2020) treats the

output of DL models as the probability distribution over atomic facts in PLP, exploiting the full strength

of DL models and symbolic systems. This intuition of taking the strength from both DL models, e.g.

low-level visual perception, and those of symbolic systems, e.g. structural reasoning as complementaries

aligns well with the “thinking fast and slow” cognitive model (Kahneman, 2011; Booch et al., 2021).

With the rich background knowledge provided by logic programs, DL models in NPLP frameworks have

shown great potentials in learning visual reasoning task such as Sudoku (Manhaeve et al., 2021a; Yang

et al., 2020) and common-sense reasoning on image scenes (Yang et al., 2020). Given the well-suited

test beds of abstract visual reasoning offered by NPLP frameworks, it is a surprise that the topic remains

unexplored to-date.

2.3 Disentangled Representations

While learning good representations of high-dimensional perceptual data has been a fundamental goal

of DL (Bengio et al., 2013), there has recently been research attentions focused on learning representa-

tions that are disentangled (Bengio et al., 2013; Kingma and Welling, 2014; Eslami et al., 2016; Steen-

brugge et al., 2018; van Steenkiste et al., 2019). The intuition is to model lower-dimensional neural

representations as the explanatory factors of variations in data, while keeping each distinct factor in

isolation (Steenbrugge et al., 2018). It is often expected that disentangled representations could pro-

vide more effective representations of the data and thus help to learn more data-efficient and robust

representations (van Steenkiste et al., 2019). Particularly, variational auto-encoder (VAE) based meth-

ods (Kingma and Welling, 2014; Eslami et al., 2016) have been shown effective on visual relational rea-

soning tasks (Steenbrugge et al., 2018; van Steenkiste et al., 2019; Spratley et al., 2020). These methods

are able to learn compact latent vectors of visual sensory data, explicitly capturing the attributive vari-

ations of figural elements in visual relational reasoning tasks (Steenbrugge et al., 2018; van Steenkiste
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et al., 2019). Notably, Spratley et al. (2020) leverages the “Attend-Infer-Repeat” (AIR) framework (Es-

lami et al., 2016) to disentangle figural elements in RPMs, informing DL models with objectness and

spatial information as inductive biases. Indeed, spatial and attributive information of figural elements are

crucial to induce the underlying rules (Lovett et al., 2007). In light of this, our work will adopt an AIR

module as a preprocessing component prior to the main pipeline.

3 Problem Description

3.1 Raven Progressive Matrix

An RPM problem consists of a 3×3 problem matrix, in which the bottom right entry is absent, test takers

are required to choose one of the eight candidates in the answer set below the problem matrix for the

empty entry. Each of the entries consists of one to five figural elements, for example shapes, shadings and

lines etc. In order to determine the empty entry, test takers would need to be able to correctly identify

the underlying relations among entries and rows depending solely on visual analogy, then reason about

which candidate could satisfy the rules that both of the first two rows/columns follow.

Example 1. Figure 1 shows an RPM problem matrix that contains entries of 3 types of figures (line,

curve and rectangle), to identify the corresponding rules one may need to make several assumptions and

try them out one by one. For example, one may first heuristically hypothesise that figures in the same

shape are governed by a same rule. Once the rule has been tried out, it became obvious that both the

number and orientation of the figures vary unsystematically. In this case, one must keep trying other

possible assumptions until the correct correspondences are found. In fact, horizontal and vertical figures

in each row all follow two rules, that are, the distribution of numbers of identical figures (one, two and

three) and the distribution of distinct shapes (line, curve and rectangle) present horizontally/vertically.

As such, the difficulty of solving a RPM problem varies in accordance with the complexity of identifying

corresponding rules and the number of underlying rules. A study conducted by Meo et al. (2007) showed

that as the difficulty raises, the percentage of correct attempts falls significantly from 85% to 30% among

80 university students. The RPM test is therefore, a strongly diagnostics in terms of abstraction and

reasoning abilities, discriminating even among test takers from higher education background Carpenter

et al. (1990); Meo et al. (2007). Solving RPM problems has therefore been a long-standing challenging

task in the AI community to the degrees of the difficulty in developing a machine with the ability to reason

abstractly as well as the complexity of the problem itself (Hu et al., 2021).
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Figure. 2: General outline of incremental, reiterative solving procedure of human test-takers

3.2 General Solving Scheme Used by Human

As revealed in Carpenter et al. (1990), one typical strategy adopted by test-takers to solve RPM problems

in the experiment is so called incremental, reiterative representation and rule induction scheme. The

general outline of the solving procedure is shown as Figure 2, the figural objects in the first row are first

perceived cell by cell, attributes of corresponding objects are then compared in order to identify relations

between each cell. After the patterns of similarities and differences are compared, dominant patterns in

the first row could be derived as instances of rules. The second row is processed in an akin way, and the

set of rules identified in the second row are subsequently taken intersection with the rules showing in the

first row. The intersections are then applied to the third row with a chosen candidates filling in the missing

cell. Candidates who are failed to contribute to a third row that satisfies all the dominant rules from the

first two rows will be weed out. The goal of our method is to build an automatic RPM solving model via

Neuro-symbolic technique to simulate this abstract reasoning strategy used by human.
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3.3 Problem Formulation

Formally, following the FOL formulation presented by Wang and Su (2015), we denote objects and at-

tributes finite sets of constantsO andA respectively. We shall make clear distinctions between object and

figural element. While a figural element is a single visual pattern that picked from an alphabet, objects can

be considered as a set of multisets with elements from the alphabet whose attributive variations together

contribute to a rule. Clearly, it is non-trivial that to identify which figural elements should be “grouped”

together by comparison, but we assume that has been given as we are operating at a higher level (see

section 5). For every pair of (o, α) where o ∈ O and α ∈ A, there exists a function v : (O,A) → D,

where D is a finite set of value domain, that is, v(o, α) indicates attribute α of the figural element o is

assigned with a value picked from the value domainD. We follow a conventional notation R/k to indicate

a predicate R has arity k. By a tri-ary predicate p(o, i, j), we represent an object o locates on the i-th row

and j-th column of the context matrix of an RPM problem, where i, j ∈ {1, 2, 3}.

Definition 1. Denote the generalisation of underlying variation pattern with the ternary predicate R, an

underlying rule to a row of the context matrix of an RPM is defined as following:

∃a ∈ A, ∀i, ∃o1, o2, o3 ∈ O.(p(o1, i, 1) ∧ p(o2, i, 2) ∧ p(o3, i, 3) ∧R(v(o1, α), v(o2, α), v(o3, α)) (1)

∀a, o1, o2, o3.(R(v(o1, a), v(o2, a), v(o3, a))↔

unary(v(o1, a), v(o2, a), v(o3, a)) ∨ binary(v(o1, a), v(o2, a), v(o3, a))∨

ternary(v(o1, a), v(o2, a), v(o3, a)).

(2)

While formula 1 constrains the occurrence of a rule R to be dependent on the assignments of a common

attribute of objects in each cell of a row, formula 2 specifies what type of relation R could be. Namely,

a rule R holds for an attribute α of objects {o1, o2, o3} from each cell of a row i if and only if the value

assignments satisfy one or several of {unary, binary, ternary} relations. Figure 3 illustrates how do

the ternary relations interact with attributive values across a row, instantiations of these relations will be

discussed in section 6.

Definition 2. Denote the set of Rs that hold for in the first 2 row of a context matrix, that is, R1 ∩R2, we

consider an RPM constraint if φ ∈ R1 ∩R2 satisfied the following:

∃o1, o2, o
′ ∈ O, i ∈ {1, ..., 8}.

(p(o1, 3, 1) ∧ p(o2, 3, 2) ∧ ans(o′, i) ∧ ∃α.φ(v(o1, α), v(o2, α), v(o
′, α))),

(3)
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Figure. 3: Illustration of the 3 abstract relations (Wang and Su, 2015)

where the predicate ans/2 indicate objects occurring at the i-th position of an answer set.

As a result, formula 3 filters out a set of rules φ that hold for value assignments of an attribute α of

objects from the first 2 rows, but do not assert true for α of objects in a third row completed by choosing

the candidate i as an answer. We denote the set of RPM constraints in an RPM problem by CR, the aim

of an RPM problem is therefore picking a candidate from answer set that contributes to a third row where

the most of relations in CR hold. For simplicity, we denote

Ans(i) = {φ(v(o1, α), v(o2, α), v(o
′, α)))|(p(o1, 3, 1), p(o2, 3, 2), ans(o

′, i), α ∈ A, φ ∈ CR}, (4)

namely, Ans(i) is the subset of CR that contains the set of RPM constraints satisfied also by the third

row when selecting the i-th candidate as an answer. Therefore, for a given RPM problem, we are aiming

at identifying the i such that Ans(i) 6⊆ Ans(j) holds for every Ans(j) where i, j ∈ {1, ..., 8} and i 6= j.

4 Preliminaries

Here we briefly introduce key concepts relevant to the AIR model (Eslami et al., 2016), answer set pro-

gramming (ASP) (Gebser et al., 2012) and NeurASP (Yang et al., 2020) as preliminaries to understand

the proposed method , we refer the reader to the references for more details.

4.1 Variational Auto-Encoder and Attend-Infer-Repeat

Variational Autoencoder (VAE) (Kingma and Welling, 2014) consists of an encoder network and a de-

coder network. Given an encoder network parameterised by φ is trained to produce vectors for the mean

µ and the standard deviation σ of the distribution function for sampling lower-dimensional latent factors

z given input x, namely qφ(z|x). Then the decoder network parameterised by θ could be characterised as
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Figure. 4: Graphical Model of VAE (Kingma and Welling, 2014)

a generative model that learns to reconstruct x for each given z, that is, pθ(x|z)p(z). Learning objective

of such models is to maximise the evidence lower bound (ELBO), formulated as follow:

L(x; θ, φ) = Eqφ(z)[log pθ(x|z)]−KL[qφ(z|x||p(z))],

Intuitively, the ELBO loss contributes to the minimisation of two factors: 1) the reconstruction loss,

modelled by the decoder network (left-hand side of subtraction); 2) the KL divergence between qφ(z|x)

and a hypothesised, e.g. Gaussian, distribution p(z) for sampling latent variables (right-hand side of

subtraction). In this way, the latent space is encouraged to be an information-rich latent representation

that allows for smooth interpolation between samples (Spratley et al., 2020).

Since the latent representations produced by VAEs are generally unstructured and lack of interpretabil-

ity, the Attend-Infer-Repeat framework (AIR) (Eslami et al., 2016) is proposed to follow the intuition of

structured perception of human vision system to improve VAE. For an input scene image, AIR attends

an object within the scene using attention windows constructed by spatial transformers, and encoding it

into a structured embedding (representing the what the object is, and the position and scale of the object),

which is subsequently fed to a decoder network to reconstruct the image scene by adding the decoded

object into an empty scene for each iteration, until all the objects are assembled. As such, the learnt

representations of AIR are able to further disentangle each object along with its crucial properties in a

scene image. Inspired by Spratley et al. (2020), we will leverage such virtue of AIR to preprocess our

dataset, in this way latent representations of position and scale of figural objects in each RPM image can

be obtained.
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4.2 Answer Set Programming (ASP)

ASP is a form of the stable model (answer set) semantics based logic programming which aims at solv-

ing difficult, primarily NP-hard, search problem by computing answer sets of logic programs (Lifschitz,

2008).

Basic Notion. In this report, we consider extended logic programs allowing for disjunctive in heads of

rules (Gebser et al., 2012). A rule r is of the following form:

H ← B1, ..., Bm,∼ Bm+1, ...,∼ Bn. (5)

By head(r) = H and body(r) = {B1, ..., Bm,∼ Bm+1, ...,∼ Bn}, we denote the head and body of r,

where ”∼” stands for default negation. The head H is a disjunction a1 ∨ ... ∨ ak over atoms a1, ..., ak,

belonging to some alphabet A. Each body component Bi is either an atom or a #sum (or weight) con-

straint of the form L#sum[l1 = w1, ..., lk = wk]U . In the latter li = ai or li =∼ ai is a literal

and wi a non-negative integer weight for ai ∈ A and 1 ≤ i ≤ k; L and U are integers providing a

lower and an upper bound. Intuitively, a rule specifies the head H holds true, if all the conjunctions of

body literals appearing on the right-hand-side of← are true. An integrity constraint is a rule r such that

head(r) = ⊥. If body(r) = ∅, r is called a fact. Sticking to formula 5, we let head(r)+ = {a1, ..., ak},

body(r)+ = {B1, ..., Bm}, and (L#sum[l1 = w1, ..., lk = wk]U)+ = [li = wi|1 ≤ i ≤ k, li ∈ A].

A special case of #sum constraint is the cardinality constraint, where the default weights 1 is omitted,

that is, L#sum[l1, ..., lk]U . For simplicity, we use the form L{l1, ..., lk}U when referring a cardinality

constraint. Specially, choice rules are those rules with cardinality constraints as heads and of the form

L{a1, ..., ak}U ← B1, ..., Bm,∼ Bm+1, ...,∼ Bn, (6)

expressing that the number of selections of the disjunctive heads is subject to the associated lower and

upper bound. Another variant of the #sum constraint is the #max aggregate where literals with the

greatest weights is derived. Choice rules and the #max aggregate are in fact transformed from normal

rules defined as formula 5 detailed in (Gebser et al., 2012).

Intepretation and Stable Model. A (Herbrand) interpretation is represented by the set X ⊆ A of its

entailed atoms. The satisfaction relation ”|=” on rules r is defined as follows:

– X |=∼ B if X 6|= B,
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– X |= (a1 ∨ ... ∨ ak) if {a1, ..., ak} ∩X 6= ∅,

– X |= (L#sum[l1 = w1, ..., lk = wk]U) if L ≤
∑

1≤i≤k,X|=li
wi ≤ U ,

– body(r) if X |= l for all l ∈ body(r), and

– X |= r if X |= head(r) or X 6|= body(r).

A logic program Π is a set of rules r, and X is a model of Π if X |= r for every r ∈ Π . The reduct

of the head H of r w.r.t. X is HX = {a1 ∨ ... ∨ ak} if H = a1 ∨ ... ∨ ak, and HX = atom(H+) ∩X

if H = (L#sum[l1 = w1, ..., lk = wk]U) . Furthermore, the reduct of some (positive) body element

B ∈ body(r)+ is BX = B if B ∈ A, and BX = (L −
∑

1≤i≤k,li=∼ai,ai 6∈X wi)#sumB
+ if B =

(L#sum[l1 = w1, ..., lk = wk]U). The reduct of program Π w.r.t. interpretation X is the following:

ΠX = {H ← BX
1 , ..., BX

m |r ∈ Π,X |= body(r), H ∈ head(r)X , body(r)+}. (7)

X is an answer set (or stable model) of Π s.t. no proper subset of X is a model of ΠX , that is, an answer

set is a ⊆-minimal model of its own reduct.

4.3 NeurASP

NeurASP is a simple and effective extension that bridges NNs and PLP by treating the output of neural

networks as the probability distribution over atomic facts in answer set programs. It has been successfully

used in solving visual reasoning task such as Sudoku solving and common-sense reasoning on image

scenes etc.

Syntax. For a given neural network M that takes an arbitrary tensor input x, we consider the output

M(x) a R
e×n matrix that contains the probabilities of predicted results output by M , where e denotes

the number of random events while n is the possible outcomes of each of the random events. The entry

M(x)[i, j](i ∈ {1, ..., e}, j ∈ {1, ..., n}) is the probability of the j-th outcome of the i-th event. To

express M in answer set programs, neural atoms are defined as form

nn(m(e, t), [v1, ..., vn]). (8)

where i) the reserved keyword nn indicates the presence of a neural atom; ii) m is the symbolic predicate

that identifies the given neural network M ; iii) [v1, ..., vn] are the possible predicted results for each input

tensor of M ; iv) t is a list of terms (functions or constants) mapped to an input tensor of M via an

externally defined mapping D, i.e. D(t) = x. Each neural atom introduces ground atoms of the form
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c = v, where c ∈ {m1(t), ...,me(t)} and v ∈ {v1, ..., vn}. In the cases where an input tensor x is

indexed by several tuples ts, rules with neural atoms as heads are allowed, that is,

nn(m(e,T ), [v1, ..., vn])← B(T ). (9)

Here, B(T ) indicates the conjunctions of body literals with a list T of variables to be assigned by ts.

A NeurASP program Π is the union of the set of answer set programs Πasp (specified in subsec-

tion 4.2), and the set of neural atoms Πnn. Denote the set of all ground atoms derived from Πnn with

σnn, a NeurASP program requires that atoms in σnn only appear in body of any rules in Πasp.

Semantics. For any NeurASP program Π , each neural atom of Πnn is replaced with the set of choice

rules

1{mi(t) = v1, ...,mi(t) = vn}1. for i ∈ {1, ..., e} , (10)

where both lower and upper bounds are 1, meaning only one of the bracketed atoms is picked. Rules

having neural atoms as heads in Πnn are expanded analogously. An ASP counterpart Π ′ of Π can be

obtained by replacing all the neural atoms with the set of ground atoms σnn introduced by neural atoms.

Consequently, stable models of a NeurASP program Π can be defined as the stable models of its ASP

counterpart Π ′.

To compute the probability of a stable model of Π , we consider first the probability of an atom

mi(t) = vj in σnn, that is,

PΠ(mi(t) = vj) = M(D(t))[i, j]. (11)

Recall that D(t) is an externally defined mapping that links the term t to an input tensor x, Equation 11

can therefore be seen as the probability of an input tensor D(t) is labelled to vj for a random event i. Let

I|σnn be the projection of an given interpretation I to σnn, then the probability of a stable model I of Π

can be defined as following:

PΠ(I) =















∏

c=v∈I|σnn

PΠ(c=v)

Num(I|σnn,Π) , if I is a stable model of Π;

0, otherwise,

(12)
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where Num(I|σnn,Π) is the total number of derivable stable models of Π agree with I|σnn on σnn.

Equation 12 defines probability of a stable model I of Π is the product of the probability of each atom in

σnn.

For a set of integrity constraints (recall subsection 4.2) O that are used to specify observable facts,

e.g. ground truth labels of data samples, of for an input tensor are referred to observation, the probability

of an observation O is satisfied by Π is defined as

PΠ(O) =
∑

I�O

PΠ(I).

Finally, we consider the probability of a set of observations O = {O1, ..., Oo}, calculated as the product

of the probability of each Oi ∈ O, that is,

PΠ(O) =
∏

Oi∈O

PΠ(Oi).

Learning in NeurASP. The objective of learning in a NeurASP program Π is to find the set of parameters

θ in the associated neural network, such that derived probabilistic facts given by θ maximise the log-

likelihood of being satisfiable to the set of observations O under Π , i.e.

θ̂ ∈ argmax
θ

∑

O∈O

log(PΠ(θ)(O)),

where θ̂ denotes the best set of parameters, PΠ(θ)(O) refers to the probability of the provided interpreta-

tion from the set of parameters θ is satisfiable observation O ∈ O.

As the probabilities of atoms in σnn are the output of a neural network, one can indeed compute

the gradient of the NeurASP program Π with regard to θ via back-propagation. Denoting the output

probability distribution of neural network M with p, then the gradient of
∑

O∈O

log(PΠ(θ)(O)) with regard

to θ can be computed as follows:

∂
∑

O∈O

log(PΠ(θ)(O))

∂θ
=
∑

O∈O

∂log(PΠ(θ)(O))

∂p
×

∂p

∂θ
.

Inference in NeurASP. Inference in NeurASP can be considered as a process of computing the most

possible stable models based on the ground probabilistic facts derived from neural atoms with domain

terms corresponding to labelling classes, and the probabilities corresponding to the distribution of an

input tensor is given a each of the classes of a neural network.
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5 A NeurASP Approach to RPM

Intuitively, the most natural solution to RPM problems using NeurASP (Yang et al., 2020) would be

training a neural network to learn low-level perception for given RPM problems. That is, recognising all

the figural elements in each cell of a problem matrix (see blue box in Figure 2), and assigning each of

them categorical labels that describe their attributes. For example, the shape attribute of horizontal figural

element in the first cell of Figure 1 can be labelled to curve. Subsequently, we gather all the labels and

the corresponding probabilities output by the NNs as the input domain for deriving ground atoms to be

used in NeurASP inference. In this case, NNs are responsible for only low-level visual perception, LP

programs derive the most possible answer of a problem instance, making full use of both DL models

and symbolic reasoners. However, after carefully examining the implementation details of NeurASP, we

observed that the NeurASP framework might not be scalable to solve RPM problems due to either the

nature of the problem or the scalability of the framework itself.

5.1 Observation

To begin with, we argue that assumptions on perceptual output of the NeurASP framework do not align

with the non-verbal nature of visual abstract reasoning problem. In fact, the non-verbal nature of RPM

indicates that only visual sensory is mandantory during tests (Carpenter et al., 1990; Meo et al., 2007).

Specifically, although test-takers need to figure out the underlying relations at different levels (figural el-

ements, cells and rows) when solving an RPM, it is not necessary that one needs to perceive the exact at-

tributive values of figural elements. Rather, relations are inferred through visual comparison only (Lovett

et al., 2007; Lovett and Forbus, 2017). Therefore, exact labels should be considered unknown when solv-

ing RPMs. However, assumptions of NeurASP on the output of DL models imply that symbolic labels to

be explicitly given and exhaustively enumerable. Take example the hand-written digits addition reasoning

task in (Manhaeve et al., 2021a; Yang et al., 2020), where a neural network is responsible for recognising

hand-written digits and additions are inferred by logic programs. In the case, output of the neural network

is explicit and enumerable, considering numbers are verbally explicit and ranging from a small domain of

{0, ..., 9}. In contrast, attributes of figural elements are much more complicated to be explicitly captured

by labels, e.g. how do we label an object in terms of position? Indeed, one might argue such problem is

trivial if unsupervised techniques, such as multi-attribute clustering (Sim et al., 2009), are used to obtain

distinguishable clusters as symbolic labels to be associated to attributes. Nevertheless, the problem of

innumerable domain will rise when trying to list all the possible output of neural networks as implied by
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the domain assumption in (Yang et al., 2020). Clearly, foreseeing all combinations of irregularly varied

attributive values like those occurring in RPMs is an infeasible task (Agarwal et al., 2021).

5.2 A Row-level Representation?

To address the problem above, we seek for an alternative solution where output representations of neural

network are finite in size and enumerable. Inspired by Hu et al. (2021), where the proposed DL model

extracts embedding vectors of underlying rules leveraging a hierarchical representation of an RPM, we

consider an intermediate symbolic representation of underlying rules at the row level. Since each underly-

ing rule applies to only one of the attributes of objects in each row (Figure 2), the number of rule-attribute

pairs in RPM problems are finite. In light of this, instead of using neural network to identify attributes as

exact representations of objects in RPM problems (object-level perception), capturing descriptive infor-

mation of attributes with embedding vectors at the row-level seems more sensible. Therefore, we assume

that the types of rules underlined by Carpenter et al. (1990) in RPMs to be known by the system. While it

is indeed an strong assumption to be made, acknowledging the system with rules will make possible the

enumeration of predicted outcomes of the neural network. To this end, we consider encoding RPMs at a

row-level using an intermediate embedding representation that aggregates the descriptive information of

figural elements in cells across a row. Consequently, for each input row embedding vector from an RPM,

we can formulate the neural network as a multi-task classification problem w.r.t. the underlying rules of

the row. Since the range of underlying rules is an actually enumerable and scalable domain, neural atoms

could now capture the variations in a row.

5.3 The Challenge

Although an intermediate representation of rows helps neural network overcome the challenge posed by

inenumerable predicted outcomes, another two potential problems are still in the way. First, as using row-

level representation captures only variations at the cell-level and row-level, information at the object-level

could be missing. It has been identified that information w.r.t. both spatial relation and shape comparison

(Lovett et al., 2007) are crucial to discover the correspondences between objects. Second, taking per

output of a neural network as a random event implies that probabilities assigned to each ground atom

derived from a neural atom is mutually exclusive. However, due to the fact that different groups of objects

could contribute to different variations on the same attribute across a row, the classification of a row-level

representation to type of rules should be mutually non-exclusive. For example, colour of some objects

might follow a progression rule and get darker (unary relation of increment), whereas others might follow
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a distribute of 3 particular colours (ternary relation). In fact, the problem of computing the probabilities

facts in mutually non-exclusive settings has been known as the disjoint-sum-problem (Raedt and Kimmig,

2015) in the field of logic programming. Thus, to address issues above a more object-centric neural

representation and a finer-grained symbolic representation are needed, details will be discussed in the

following sections.

6 Methodology

6.1 A Finer-grained Representation at Row-level

As mentioned, one potential pitfall of using NeurASP to establish a mapping between row and rules is its

assumption on a categorical output of neural network, which restricts the system’s ability to capture mu-

tually non-exclusive random events. However, as suggested by (Raedt and Kimmig, 2015), one possible

treatment to this problem is to split the formulation into mutually exclusive ones. Thus, we shall consider

representations with a finer granularity, such that predicted outcomes of the neural network reflect to mu-

tually exclusive events. That is, to find a representation that gives one-to-one correspondences to rules at

a row-level.

Actually, objects that share the same variation patterns in each cell of a row can be grouped together

by underlying rules (Zhang et al., 2019a). In line with the formulation of a rule of an RPM Formula 1, we

define the notion of a component in RPMs.

Definition 3. We say sets of objects O1, O2, O3 distribute in columns {1, 2, 3} respectively contribute to

a component, if the following is satisfied

∀O1, O2, O3, α, i.(comp(i, α,O1,O2, O3)↔ ∀o1 ∈ O1, o2 ∈ O2, o3 ∈ O3∃R.

(R(v(o1, α), v(o2, α), v(o3, α)) ∧ p(o1, i, 1) ∧ p(o2, i, 2) ∧ p(o3, i, 3))).

(13)

In light of this, an one-to-one mapping from an attribute of a component to a rule can be established at

a row-level, since a component contains all the objects that share the same rule on a particular attribute

in a row. An illustration of the hierarchy from row to rule can be seen in Figure 5. While there might

be figural elements irrelevant that serve as distractions and do not contribute to any rules (Santoro et al.,

2018; Zhang et al., 2019a), our focus is only on components/objects since the goal is to establish the

mapping between rules and a given row. Low-level variations of components, however, would be captured

by neural representations as discussed.
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Having the idea of representing low-level details by neural representations, we assume the maximal

number of components allowed in RPMs is known by n, a component can be therefore identified by a

simpler tuple of the form (ri, c, α) where i ∈ {1, 2, 3}, c ∈ {1, ..., n} and ri is the embedding vector rep-

resents the i-th row of an RPM. Denote rule(ri, c, α,R) the 4-ary predicate, meaning that a component

c of the i-th row has an attribute α follows the rule R. Following the rule taxonomy in (Carpenter et al.,

1990), we label the underlying rules in RPMs asR = {distr 3,distr 2,prog,const,add sub},

namely, the distribution of three/two values, quantitative progression, constant in a row and addition or

subtraction respectively. In fact, the relations introduced in Formula 2 can be instantiated by R (Wang

and Su, 2015). We use a subscripted r
(j)
3 when referring the third row constructed by choosing the j-th

candidate as an answer. Then the set 4 can be represented by

Ans(i) = {rule(r
(j)
3 , c, α, φ)|(j ∈ 1, ..., |ans|, α ∈ A, φ ∈ CR}, (14)

while keeping the objective stated in Section 3.3 the same. Given the new representation, we will specify

in the following sections, how the row embedding ri is learnt and how is NeurASP program encoded.

Row

Component 1

...

...

Component n

...

...

...

Figure. 5: Row-level Hierarchy

6.2 Overview of the Architecture

Generally, as shown in Figure 6, the proposed architecture consists of three stages which simulate the

commonly adopted human-solving scheme mentioned in Section 3.2. As the first step, we obtain object-

level latent representations by preprocessing RPMs with an AIR model, introducing an object-centric in-

ductive bias (Spratley et al., 2020) to address the challenge w.r.t. lack of object-level information. Second,

we aggregate the latent representations of objects and fuse them into an objectness-informed row-level

embeddings. By utilising a multi-task DNN (MLTNN) module, we establish the mappings between the
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row-level embeddings and infer the underlying rules. Subsequently, we formulate a validity program for

to be used by the NeurASP learning engine as semantic regularisation, effectively informing the MLTNN

module with the background knowledge w.r.t. validity of RPMs. Consequently, a trained MLTNN is in-

corporated with a inference program in NeurASP to reason about the correct answers.

6.3 Preprocessing for Disentangled Representation

To identify relations between cells, object-centric observations to individual figural elements among cells

are crucial (Carpenter et al., 1990; Lovett et al., 2007). Similar to Spratley et al. (2020), we exploit the fast

scene decomposition ability of the AIR (Eslami et al., 2016) module to disentangle figural objects in each

cell in an RPM as a preprocessing stage, then obtain latent vectors encoded information w.r.t. individual

objects and their positions.

To achieve this, we train an AIR module takes each cell in both problem matrices and answer sets of

RPMs as input. As seen in Figure 7, the module attends individual objects in a cell while inferring latent

factors encoding the appearance, position and presence of the objects by an encoder network and recov-

ering the latent factors to image tensors by a decoder network each by each during training. Specifically,
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consider a set of RPMs X , we extract the set all cells in X as the dataset Xcell for training. We denote each

cell in Xcell with xj , where j ∈ {1, ..., |X| × 16}. We use S to denote an AIR module with an encoder

network Eφ and a decoder network Dθ, Eφ and Dθ are trained jointly to minimise the ELBO loss, that

is,

argmin
∑

j∈{1,...,|Xcell|}

ELBO|xj −Dθ(Eφ(xj))|. (15)

Assume that every xj ∈ Xcell contains at most n objects. For each of object oi ∈ {o1, ..., on}, its

occurrence in xj is determined the generative model Dθ w.r.t. three types latent factors: i) wi
j refers to

the appearance of oi; ii) pi
j indicates the position and scale of oi in xj ; iii) zi

j encodes the presence of

oi, that is, both wi
j and pi

j will be set to padding vectors in the same shapes if zi
j = 0. While wi

j and pi
j

are assumed to subject to a Gaussian prior N(0,1) (continuous), presences of n objects are considered

drawn from a geometric prior n ∼ Geom(ρ) since whether an object oi presents in xj or not is a binary

event. As a result, once S is trained, we utilise the trained encoder Eφ to encode each cell of per RPM in

X as a preprocessing stage. Namely, for each data example X ∈ X , we have the following,

Zm
code = Eφ(xm) = {(w1

m,p1
m), ..., (wn

m,pn
m)},

Z = {Zm
code|m} where m ∈ {1, ..., 16}.

(16)

In this way, we include both the object-centric appearance and spatial information encoded into disen-

tangled latent vectors to be used by MLTNN at the next stage. Different from Spratley et al. (2020), which

serialises the figural object tensors cropped by attention windows to build a new dataset, we directly use

the encoded latent embeddings in the next stage as we believe that the disentangled representations learnt

by AIR module condense representative information (van Steenkiste et al., 2019) of each cell and have

a much lower dimensionality compared to raw image tensors, the subsequent NN training could thus be

more efficient in for above reasons.

6.4 Row Embedding Aggregation and Multi-task Rule Classification

Since a row-level one-to-one correspondences can be established between component and rules, we model

the mapping from a given row to underlying rules as n categorical classification problems with the rule

taxonomy as labels. To achieve this, we first aggregated for each RPM the set of object-level embeddings

Z obtained from the last stage to produce row embeddings. Specifically, for a given set of object-level
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Figure. 7: Scene decomposition process of AIR. For each iteration, Spatial Transformer crops one object

xi
att from cell image xm using the position and scale latent pi

m inferred from the hidden state hi from

previous step, then xi
att is encoded as object latent wi

m by an Encoder network. Decoder network recon-

structs the object image as yi
att, the same position and scale latent is used by the generative process to

obtain shifted and scaled reconstruction yi
m, which will be added to scene image if the presence latent

zim was inferred to be true.

latents of an RPM, we first compute the i-th row embedding as following

Step 1: Zij = ELU
(











w1
ij ⊗ p1

ij

...

wn
ij ⊗ pn

ij











)

, cij = MLP (Zij),

Step 2: ri = MLP

(











ci1

ci2

ci3











)

.

(17)

As visualised in Figure 8, for the first step, we unify the latent vectors for appearances wo
ij and position

po
ij with the element-wise bi-linear operation ⊗, then pass the unified linear combinations to an ELU 1

function to obtain the unified latents Zij of a cell. Aggregating all the objects latents via the fully con-

nected layer MLP with ReLU 2 activation, the cell-level embedding cij can be obtained. For the second

step, we stack all 3 cell-level embeddings of the i-th row and again use a MLP function to aggregate the

information at cell level as the row embedding ri. Note that for every third row r3, the row embedding is

1 Exponential Linear Unit is an activation function that tends to converge cost to 0 faster and produce more accurate

results.
2 Rectified Linear Units is the activation function formulated as max{0, x}.
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constructed as











c31

c32

c
(q)
33











, where c
(q)
33 is the cell embedding of the q chosen candidate from the answer set.

Consequently, for each RPM, we obtain the set of row embeddings H = {r1, r2, r
(1)
3 , ..., r

(8)
3 }.

To build the mapping between components are rules, we consider classifying each attributive variation

of the components of a row by the rule taxonomy. That is, we build a MTLNN Mrule such that for each

input row embedding ri, we classify each of components c
(k)
i w.r.t. attribute α into the category R =

{distr 3,distr 2,prog,const,add sub}. As different attributes of objects vary independently

and all the classification task are equally important, the learning task can be viewed as a MTLNN using

shared trunk (unified input representation to all tasks) with task-specific branches (Zhang et al., 2014).

Also, each of the sub-tasks is a multi-class classification problem, it is reasonable to employ cross-entropy

function as the loss functions. Thus, we formulate the learning objective as following

argmax
{W (t)}T

t=1

N
∑

i=1

T
∑

t=1

y
(t)
i log(p(y

(t)
i |ri;W

(t)))−
T
∑

t=1

||W (t)||2, (18)

where T denotes the total number of tasks, N is the input sample size. Since there are at most n compo-

nents varying over 5 attributes, T is assigned by 5n. W (t) is the learnable parameters of the t-th task. p

is the softmax function p(y
(t)
i = r|ri) =

exp {(W (t)
r )⊺ri}

∑|R|
j

exp {(W
(t)⊺
j

)ri}
, produces the probability distribution over

rule classes R per attribute α of a component c
(k)
i . To penalise large weights, the second term of Equa-

tion 18 is added as regularisation.

As a result, for each input row representation ri ∈ H , Mrule output a matrix P (i) in R
n×|A|×|R|.

Each row of P represents the distribution over R produced by one of the 5n sub-task classifiers, i.e. the

probability distribution of how a particular component c
(k)
i of the row ri is classified over the rule taxon-

omyR. To gather the probabilities for all of H per RPM, we sequentially feed the 10 row embeddings to

Mrule. We will show in the next step, how to integrate the probability matrix P (i) to NeurASP using neural

atoms and facilitate the MTLNN training with background knowledge encoded as answer set programs.

6.5 Learning with Background Knowledge

One of the promising features of NeurASP is to regularise the NN integrated with rich background knowl-

edge encoded as logic programs, such that the NN also learns from logically encoded semantic con-

straints (Yang et al., 2020). To inform Mrule the knowledge of whether the predicted rules contribute to a

valid RPM (Wang and Su, 2015), we define the NeurASP program Πnn
valid (Listing 19 - 24), underlining

the validity of predictions made by Mrule.
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Figure. 8: Multi-task Rule Classification Module

To express Mrule and introduce the atomic facts gathered from its predicted outcomes, we first define

the neural input Listing 20 and the rule 19 with a neural atom as head and the occurrence of component

atoms as body. While the predicate comp/2 in the body of rule 19 represents the input of Mrule is a com-

ponent C of the row embedding X , nn(rule(5, X,C), [distr 3,distr 2,prog,const,add sub])

defines the output of Mrule for the input component w.r.t. 5 attributes over the rule taxonomy. Note that

the each row embedding is identified by a tuple t(X, I), where X is grounded by a row embedding and

I is the subscript indicates the index of a candidate in answer sets when X = r3. Altogether, for each

ground atom in Listing 20, the rule 19 generate all the possible worlds by expanding the neural atom to

the choice rules of form 10. As such, the ASP counterpart of Πnn
rule can be obtained, we denote the ASP

program by Πrule.

nn(rule(5, X,C), [distr 3,distr 2,prog,const,add sub])← comp(X,C). (19)

comp(t(r1, 0), 1, ..., n).

comp(t(r2, 0), 1, ..., n).

comp(t(r3, 1), 1, ..., n).

...

comp(t(r3, 8), 1, ..., n).

(20)
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Then in Listing 21, we represent an RPM constraint by rpm cr/3 as the intersections of all the applicable

rules to each of the third rows and the dominant rules dominant/3 occurring in the first two rows.

dominant(E,C,R)← rule(E,C, t(r1, 0), R), rule(E,C, t(r2, 0), R).

intersect(E, t(r3, I), C,R)← rule(E,C, t(r3, I), R), dominant(E,C,R).

rpm cr(E,C,R)← intersect(E, t(r3, I), C,R).

(21)

Having derived the set of RPM constraints, we check again how each of the third rows aligns with the

RPM constraints. The first rule in Listing 22 derives an atom of cr intersect/4 for every underlying rule

of a third row that coincides with one of the RPM constraints. Then we record how many RPM constraints

satisfied by the third row of choosing the I-th candidate from the answer set. Therefore, the second rule

count the number of constraints satisfied and derive an atom of answer/2, indicating the I-th candidate

contribute to a third row with N underlying rules coincide with RPM constraints. The actual answer can

thus be derived as an atom of max ans/1 following the Monotonicity of RPM Constraints (Wang and

Su, 2015).

cr intesect(E, I, C,R)← rule(E, t(r3, I), C,R), rpm cr(E,C,R).

answer(I,N)←rule(E, t(r3, I), C,R),

N = #sum[E,C1, R : rule(E, t(r3, I), C1, R), rpm cr(E,C1, R)].

max ans(I)← answer(I,N), N = #max[N1 : answer(I1, N1)].

(22)

To check the well-formedness of RPMs (Wang and Su, 2015), we specify the notion of equivalent an-

swers in Listing 23, then eliminate the stable models which violate the integrity constraints w.r.t. well-

formedness in Listing 24. Specifically, rules in Listing 23 describe that an atom of eqv ans is derived

if two answers satisfy the same amount of RPM constraints, and such relation of equivalence is closed

under symmetric, transitive and reflective closures. While the first constraint in Listing 24 corresponds

to the prerequisite defined in (Wang and Su, 2015), it ensures that an RPM must have at least one satis-

fiable RPM constraint. The following constraints reject any stable models derived more than one actual

answer (correctness) and refuse any other answers but the actual one have less than one equivalent answer
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(necessity).

eqv ans(X,Y )←answer(X,N), answer(Y,N),

#sum[E,C,R : cr intersect(E,X,C,R), cr intersect(E, Y,C,R)] = N1, N1 = N.

eqv ans(X,Y )← eqv ans(Y,X).

eqv ans(X,Z)← eqv ans(X,Y ), eqv ans(Y, Z).

eqv ans(X,X)← answer(X,N).

(23)

⊥ ← #sum{E,C,R : rpm cr(E,C,R)} ≤ 1.

⊥ ← max ans(I1),max ans(I2), I1 6= I2.

⊥ ←∼ max ans(I), answer(I,N),#sum[Y : eqv ans(I, Y ), Y 6= I] < 1.

(24)

In addition, to inform the model about correct predicted rules and the right answers, we append to Πnn
rule

the ground truth label of each row and the actual answer as set of observation constraints O for each RPM

example during training, that is,

⊥ ← rule(1, t(ri, j), 1, r
(1)
ij ).

...

⊥ ← rule(e, t(ri, j), n, r
(n×e)
ij ).

⊥ ← max ans(a).

(25)

Here, e is the total number of attributes, and r
(n×e)
ij ∈ H is the rule type of the n-th component on the

e-th attribute of row t(ri, j) (j ∈ {1, ..., 8} if i = 3), a is the index of the actual answer of the RPM.

To compute the probabilities of the stable models, we denote σnn
rule the set of ground atoms of the

form rule(e, t(ri, j), c) = r(k) ∈ σnn
rule introduced by Listing 19 and 20 in all the possible worlds, where

i ∈ {1, 2, 3}, e ∈ {1, ..., |A|}, r ∈ H, k ∈ {1, ..., |H|}, c ∈ {1, ..., n} and j ∈ 1, ..., 8 if i = 3 otherwise

0. Recall that the probabilities output by Mrule for each input ri ∈ H is a matrix P (i) in R
n×|A|×|R|, then

the probability of assigned to each ground atom rule(e, t(ri, j), c) = r(k) is

p
(

rule(e, t(ri, j), c) = r(k)
)

= Mrule

(

D(rt(i,j))
)

[c, e, k] = P (t(i,j))[c, e, k].

In light of this, we compute the probability of a stable model under Πrule. Given an interpretation I , we

denote the projection of I onto σnn
rule as I|σnn

rule
. The number of stable models of Πrule for I is denoted by
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Num(I|Rnn , Πrule). For simplicity, we refer each rule(e, t(ri, j), c) = r(k) as (e = r) ∈ σnn
rule, then the

probability of a stable model of Πrule can be computed as

PΠrule
(I) =















∏

e=r∈I|σnn
rule

p(e=r)

Num(I|σnn
rule

,Πrule
) , if I is a stable model of Πrule;

0, otherwise.

The probability of all satisfiable stable models of all integrity constraints O ∈ O is thus computed as

PΠrule
(O) =

∑

I�O

PΠrule
(I),

PΠ(O) =
∏

Oi∈O

PΠ(Oi).

Corresponding to Section 4.3, learning objective of our reasoning module is defined as finding the

parameter θ̂ of neural network Mrule, such that the probability distribution produced by Mrule gives the

maximal log-likelihood of observation O in Equation 24 under Πrule, i.e.,

θ̂ ∈ argmax
θ

logPΠrule(θ)(O). (26)

To further incorporate Mrule and Πrule, we unify the learning objectives (Equations 18 and 26) as one by

treating the learning objective of reasoning module as semantic constraint (Xu et al., 2018; Yang et al.,

2020) to Mrule during training (see Figure 6), formulated as follow

Lrpm = (1− α)Lsemantics + α

10×N×n
∑

LMTLNN,

where N now denotes the sample size of dataset. By taking both classification and semantic loss into

account Mrule makes use of the background knowledge in Πrule as regularisation, such that Πrule can

help identify predictions that violate the semantic constraints and therefore make the row embedding

classification in Mrule more robust.

6.6 Neuro-symbolic Inference

At the inference stage, our goal is to incorporate the trained Mrule with the NeurASP program and infer

the correct answers. To achieve this, we define an inference program Πinfer by simply removing all the

observation constraints O, i.e. Πinfer = Πvalidity\O. Similar to Section 6.5, for each input RPM, we use
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the trained Mrule to obtain the set of probability matrices {P (1), ..., P (i)} to be mapped to Πinfer and

compute the probabilities of stable models. In this regard, the most probable stable model is derived as

the inferring answer. Note that as high-level reasoning is done by answer set solver, there is no statistical

bias involved for inferring the answer and the results are explainable due to the declarative nature of

logic.

7 Experiments

With the proposed framework, we are interested in examining following questions:

1. Can the AIR module effectively disentangle figural elements in RPMs to introduce the right object-

centric inductive bias as expected?

2. Would the proposed Neuro-symbolic architecture work or not? How effective it is? How does it

perform on different settings of RPMs?

3. Can the background knowledge provided facilitate the training of MTLNN? How do the models

trained with/without semantic loss perform in inference time?

To seek the answers to questions above, we train and evaluate the AIR module and the proposed

architecture on I-RAVEN dataset (Hu et al., 2021). In particular, we first experiment the disentangling

capability of the AIR module. Taking the best performed AIR model to preprocess the I-RAVEN dataset,

we train the MTLNN together with the validity program and evaluate the MTLNN’s performance in rule

inferring. Lastly, we evaluate the best performed MTLNN integrated with the inference program on the

RPM answer inference task.

7.1 Dataset

While there are two major types of RPM-like datasets available for experiment, we choose RAVEN/I-

RAVEN (Zhang et al., 2019a; Hu et al., 2021) dataset over PGM dataset (Santoro et al., 2018) since

RAVEN/I-RAVEN datasets are more challenging in reasoning (Zhang et al., 2019a), thus could allow a

better evaluation of abstract reasoning ability.

The RAVEN dataset is a set of RPM matrix instances which automatically generated via the A-SIG

structure. It consists of 1, 120, 000 images and 70, 000 RPM problems. In particular, the dataset provides

total 7 types of configurations of RPM problems, including Center-Single (Center), Left-Right (L-R),

Up-Down (U-D), Out-InCenter (O-IC), Out-InGrid (O-ID), 2×2Grid, and 3×3Grid. Each of the config-

urations contains 10, 000 problems. Figural elements in each of the problems have 5 attributes: number
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of objects, position, shape, size, and colour. Attributes of the objects could vary according to 4 types of

rules: Constant, Progression, Arithmetic and Distribute Three. The implementations of rules include all

the 5 relations in Advanced RPM identified by Carpenter et al. (1990). The number of variations in the

combinations rule-attribute combinations is 19, excluding an inapplicable variation of Arithmetic rule

on Type attribute. A sample taken from RAVEN dataset is shown as Figure 9. In terms of format, raw

Figure. 9: (a) A sample taken from RAVEN dataset (Zhang et al., 2019a). (b) In this sample problem, the

general structure configuration is Out-InGrid (O-ID), the component outside follows the Center-Single

(Center) layout, the component inside follows the 2×2Grid layout. (c) The attribute-rule combinations of

inside and outside components are listed.

information of each sample is serialised in a .npz file, including: (i) 8 cells of a problem matrix and 8

candidates of an answer set, together encapsulated as a 16-channel image tensor in the size of 160×160;

(ii) the index of the correct candidate in the answer set; (iii) the structure tree annotation for the sample

problem; (iv) meta description of the sample. In addition, detailed A-SIG structure description for each

.npz file is recorded in an .xml file together with the underlying rules to attributes of each component

in cells.

We use the fairer version of RAVEN dataset, i.e. I-RAVEN (Hu et al., 2021) in the experiment to

mitigate potential statistical backdoors. Following (Zhang et al., 2019a), we divide the dataset into three

splits, 6 folds for training, 2 folds for validation, and 2 folds for testing.
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7.2 The AIR Module

Setup. We train a self-supervised AIR model with cell images divided from each example of the dataset

prior to the rule classification training pipeline, and utilise the trained model to obtain disentangled rep-

resentations of each RPM instance. We use a batch size of 32 (for cell images) to enable batch paralleli-

sation. To further prevent the model from exploiting any statistical bias and mitigate overfitting, when

loading training samples, answer set are shuffled randomly. Following the specifications from (Spratley

et al., 2020) and the original AIR paper (Eslami et al., 2016), we implement the AIR module using the

Pyro library (Bingham et al., 2019). The maximal amount of figural elements in a cell is set to 9. The

Gaussian prior is set to (µ = 2.0, σ = 0.4), while geometric prior is assigned to 0.01 with a linear anneal

after 4, 000, 000 steps. The module are trained for 60 epochs with early stoppings or maximum number

of epochs reached. The ADAM optimiser (Kingma and Ba, 2015) is used for optimisation and with the

set of learning rate {1e−4, 5e−5, 1e−5}.

Results of AIR Module. From Figure 10 we can see that the assignments of learning rates have huge

impacts on loss optimisation of the AIR module. While the learning rates of 1e−4 and 1e−5 seems either

too large or too small, the ELBO loss raises steeply and converge early respectively. The minimal ELBO

loss during 60 epochs is achieved by the model with a learning rate of 5e−5 . When observing the qualita-

tive results (in Figure 11) of the model with a learning rate of 5e−5, we found that the model seem to have

the capabilities in distinguishing figural elements from background but having difficulties in inferring the

presences of figural elements , and also struggling at singling out figural elements in the 9-object setting.

As claimed in (Spratley et al., 2020), the AIR model does suffer from poor performance in small

object settings. Whereas for the first problem, we observed part of the source code that is available, and

found that models to process different settings w.r.t. numbers of figural elements were trained separately

with different hyperparameter settings. However, such details are not specified in (Spratley et al., 2020).

Although we believe that separately training AIR models for different number settings could be inap-

propriate as this explicitly gives away the number of figural elements in a cell, trained models could be

overfitting to the setting thus lost their generality. Nevertheless, we will stick to the plan and use the

trained model as a tool for prerprocessing since the model does highlight important elements of a cell

thus may provide useful inductive bias to the model.

7.3 The Main Pipeline

Pre-processing via AIR. In this step, a pre-trained AIR module picked from the best performing models

from the previous step is used to preprocess each of the data. As specified in subsection 6.3, we use only
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Figure. 10: ELBO loss evaluation of the AIR module on test set

(a) Cells reconstructed on the 10th epoch

(b) Cells reconstructed on the 30th epoch

(c) Cells reconstructed on the 60th epoch

Figure. 11: Qualitative results of AIR module
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the encoder to produce pairs of latent vectors w.r.t appearances w and locations p of objects in each

example. The model achieved 161, 743 on ELBO loss is used in this case. For each pair of latent vectors,

the dimensionalities of w and p are set to 80 and 3 respectively (following (Spratley et al., 2020)). As a

result, for each input example, we encode a pair of tensors w ∈ R
b×16×9×80 and p ∈ R

b×16×9×3, where

b is the batch size (will be discussed later).

Validity Program Guided MTLNN Rule Prediction. For this stage, we are aiming at building the

correspondences between rows and rules with the background knowledge provided by the validity pro-

gram. While sizes of cell embeddings and row embeddings are set to 1, 200 and 400 respectively, we

set the maximal amounts of components to 2 as it is in the I-RAVEN dataset. Note that current im-

plementation of NeurASP encapsulates data loading process for the needs of creating instance-specific

observations, thus requires to load the whole dataset at once to the memory which could easily lead to

memory overflow when the dataset is large like the I-RAVEN. We hence modify part of the source code to

implement ourselves a learn step function, where data instances and instance-specific observations

are processed one by one, avoiding the heavy memory needs in training time. For optimisation, we use a

regular ADAM (Kingma and Ba, 2015) setting for classifiers with a learning rate of 1e−4 and L2 regular-

isation. Importantly, to examine the effect of background knowledge, we train 3 instances of the MTLNN

with different values of α in Equation 6.5. While α = 0 and α = 1 indicate the models trained with full

and none respectively the semantic loss, the model trained under a α = 0.5 setup enjoys both regular-

isation from the semantic loss and classification loss. Furthermore, since ASP solving is required when

calculating the semantic loss, NeurASP cannot process examples in batches. For this reason, the batch

size is set to 1. Not being able to full leverage parallel optimisation and the needs for solving answer set

programs per example lead to a significant time increase for training (will be discussed later). Therefore,

we train the models under the setups above only on 20% of the training split for 10 epochs.

Setting Center L-R U-D O-IC O-ID 2×2Grid 3×3Grid Row Avg

α = 0 77.05 29.37 29.22 38.00 51.42 59.68 58.92 49.11 0.19

α = 0.5 87.38 31.11 36.21 72.28 52.49 57.97 50.90 55.49 3.05

α = 1 86.65 31.95 41.16 72.10 52.94 57.76 48.87 55.92 2.68

Table 1: MTLNN classification results on the test split
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Inference. For the final stage, we take the best performed MTLNN from the previous step, and perform

logical reasoning to infer the correct answers for examples in the test split. Following the commonly

adopted evaluation protocol, we evaluate our approach via accuracy on the correctness of inferred answer.

Keeping setups of the MTLNN the same, we compare the inference results of our approach with the

baseline DRT (Zhang et al., 2019a) and the state-of-the-art model SRAN (Hu et al., 2021) on I-RAVEN

dataset.

Implementation. The MTL classification network and reasoning components are developed based on

Pytorch library (Paszke et al., 2019) and NeurASP (Yang et al., 2020) respectively, all the logic programs

are encoded in the format of ASP (Calimeri et al., 2020). The ASP encoding are grounded and solved

using clingo 5.4 API 3. All the experiments were run on the GPU resources (Nvidia P100 and V100)

provided by the Advanced Research Computing at Cardiff (ARCCA) 4 with job scripts available in the Git

repository.

7.4 Results of the Main Pipeline

Results on Rule Prediction. Although the MTLNNs are trained with only 20% percent training data, we

evaluate their rule prediction performances with full test split in the test time to examine the effectiveness

of background knowledge and object-centric inductive bias since both factors could promote the data

efficiency in training time. The results can be seen in Table 1. Overall, we observed the followings

1. Even though the models trained on less data, results on some of the problem settings still appear

optimistic.

2. While the model trained with only semantic loss (α = 0) obtained inferior performances in general,

performances of the models appear similar when α is set to {0.5, 1}. Performances of all setups

w.r.t. most of problem settings, except for O-IC, behaved similarly. Surprisingly, the model trained

without semantic loss obtained the best results overall.

3. Models trained with semantic losses tend to predict better on single component problem settings

(Center, 2×2 and 3×3).

The first observation could reflect the representative power of disentangled representations produced by

the AIR module, as models are able to generalise well on the problem settings (Center and O-IC

particularly) even when less training data is used with and without semantic loss included. The second

3 https://potassco.org/clingo/python-api/5.4/
4 https://www.cardiff.ac.uk/advanced-research-computing/about-us

https://potassco.org/clingo/python-api/5.4/
https://www.cardiff.ac.uk/advanced-research-computing/about-us
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observation implies that regularisation on classification losses themselves are more crucial than semantic

loss for rule prediction in our method. This could due to fact that predicted outcomes of all 10 row embed-

dings are used to calculate the semantic loss, semantic constraints that are distributed to individual row

embeddings could be really sparse. The assumption seems coherent to the third observation, where the

semantic loss is computed with a denser probability distributions since in the single-component problem

settings since rule labels on the second component of each row are padded by 0 (meaning no rules are

applied). While the model could be more certain about the labels for the second components, predictions

made for the first components become a stronger indications for RPM validity checking. This can partic-

ularly be reflected by the results on the 2×2 and 3×3 settings, where including only semantic loss can

lead to better performances.

Results on Inference. As can be seen in Table 2, our approach is clearly not a successful attempt:

inference results of the method are still quite distant from the state-of-the-art approaches, and surprisingly,

results obtained in the L-R, U-D and O-IC settings are even worse than random guess. While the results

appear pessimistic, we attribute the poor performances to two potential reasons.

First, and perhaps the most direct reason is the poor performances of the pretrained MTLNN. Clearly,

having correct inference results in NeurASP depends heavily on the output probability distributions of

NNs to be input to logic programs (the inference program in our case). When output of the upstream NN is

not as accurate, it is not surprising that the downstream logic reasoning will derive incorrect conclusions.

More critically, taking output from NNs for multiple times as random event could potentially lead to a

cascading failure. For example, even though a decent accuracy (87.38% the highest) is achieved by the

model in the Center setting of RAVEN, making full correct predictions on rules for 10 row embeddings

w.r.t. 5 attributes of 2 components results to a vanishingly small probability of success (a joint probability

of 0.87550). This could also be the reason why inference accuracies on the high prediction accuracy

settings are far away from expectation. Second, the representation of rule prediction at a row level as

MTLNN is in fact really restricted. As described in section 5 and section 6, many assumptions about

the problem settings are made in order to adapt NeurASP to the RPM problem. It is clear that assuming

the type of rules and maximal number of components are know is unrealistic. From the perspective of

computation, a 20-head categorical classifier is indeed expensive to train. This is also shown by the fact

that even model was trained without semantic loss, the training process still takes a significant long time

for each epoch. For this reason, we ended up using only 20% of the training data, which could lead to

poor generalisations on several of the problem settings.
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Method Center L-R U-D O-IC O-ID 2×2Grid 3×3Grid Avg

Random Guess 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

DRT 54.6 15.3 10.8 39.7 51.4 27.6 19.1 22.1

SRAN 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1

Ours 13.0 6.5 9.0 11.0 15.5 13.0 13.5 13.0

Table 2: Inference results on the test split

8 Future Work and A Potential Solution

8.1 Future Work

Although our method appear to be an unsuccessful attempt of adapting NeurASP to the RPM problem,

there are still unexplored aspects of the approach to be further experimented. Experimentally, provided

that training on only 20% percent of the data is one of the reasons leads to inferior performances of

the MTLNNs, it would be interesting to see how well the models could generalised the rule prediction

task when the whole training set is used. In line with this, different settings of hyperparameters are still

worth trying if time permits. For example, experimenting on different setups of latent size, learning rate

of the MTLNNs, another proportions of the semantic loss (α = {0.2, 0.8}) and etc. Obviously, results of

the inference stage could be improved if the upstream prediction accuracies raised after the models are

experimentally fine-tuned.

From a methodological point of view, although latent representations preprocessed by the AIR mod-

ule seem to introduce object-centric inductive bias to the models, the training procedure of the AIR

module and the main pipeline are however, in isolation. Hence it would also be interesting to see how an

end-to-end solution with typical methods of deep computer vision models, e.g. ResNet (He et al., 2016),

can actually performance for rule predictions. Additionally, one could consider the end-to-end unsuper-

vised training idea proposed in (Agarwal et al., 2021), where amazingly, training of the DL model can

be integrated with the symbolic reasoner without any supervisory signals (labels). In this way, the AIR

module could be trained jointly under the regularisation of the validity program and thus logically con-

strained disentangled representations could be learnt. In fact, recent works on disentangled representation

learning seem to provide really neat ways to model attributive variations of objects via distinguishable

latent factors (Jiang and Ahn, 2020; Sahu and Pavlovic, 2021). Together with vector discretisation tech-

niques like (van den Oord et al., 2017), one might be able to capture attributive variations at the object-

level and ground the logic program with discretised disentangled representations. Moreover, another logic

program-based NPLP framework is DeepProblog (Manhaeve et al., 2021a). Interestingly, DeepProblog

enables logic program with the ability to operate on neural embeddings directly, offering a more flexible
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way to extend the semantics of LP predicates with neural representations. In light of this, how to leverage

background knowledge to enhance the performances of embedding-based models like (Hu et al., 2021)

would definitely be an interesting research question.
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Figure. 12: An envision of future work

8.2 A Potential Solution

With all has been said, we visualise one potential future solutions by Figure 12. Provided the issues of

NeurASP have been identified in this report, key aspects one might need to consider in future work using

NPLP frameworks could be

1. provided the non-verbal nature of RPMs, how can we integrate DL models with logic programs in an

unsupervised manner and get around with the domain enumeration problem?

2. What representation should we adopt in order to incorporate the semantic information available in

neural embeddings to symbolic system more smoothly?

3. How can we leverage background knowledge to regularise DL models to learn the neural representa-

tions that are transferable (at least to different datasets of RPMs)?

For a potential solutions to the questions above, we consider a object-level representation of cells en-

coded by a disentangled encoder (Jiang and Ahn, 2020). While having the disentangled encoder and the
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Neuro-symbolic framework in (Agarwal et al., 2021) provides us a possible way to integrate DL models

with logic programs without supervisory signals, the learnt disentangled representations can capture the

attributive values of individual objects in a distinguished manor. Since relations between objects can be

visually determined by comparison (Lovett and Forbus, 2017), we could actually build mappings from

attributive variations to symbolically encoded commonsense concepts , e.g. bigger than, via NPLP pro-

grams to be grounded by a discretised disentangled representations. Being able to imply what common-

sense concepts the objects between cells in a row follow, we can further derive the actual underlying rules

and consequently entail the right answer by these rules as we have seen in the current approach. In this

case, we do not need hard labels for NN supervision. More importantly, jointly training disentangled en-

coder with commonsense concepts could inform the model with transferable knowledge, thus regularise

the model to learn in a transferable way.

9 Conclusion

In this project, we first observed and argued that assumptions on perceptual output of the NeurASP frame-

work do not align with the non-verbal nature of visual abstract reasoning problem. To lift the observed

restrictions, we proposed an row-component-attribute wise representation with object-centric inductive

bias and validity/inference ASP encodings as the first attempt of NeurASP to the RPM problem. We ex-

perimented our method on the I-RAVEN dataset and showed inferior results compared to state-of-the-art

models. Apart from the strong assumptions made in our approaches, we analysed the potential reasons re-

sulted to poor performances could mainly be the inadequate performance in perception and the cascading

failure of joint probability. Finally, we envisioned experimentally and methodologically the future work

could be done and visualised a potential solution to surging research questions of the NPLP formalism to

solve the RPM problem.

10 Reflection

Overview. Having strong interests about neuro-symbolic AI led to the proposal of this project. However,

the project was rather challenging for me from the following aspects:

– First, so many things that I had to learn from scratch. At a conceptual level, the project covers

a wide range of advanced topics in AI that I had never touched with, for instances, representation

learning, deep generative models and probabilistic logic programming etc. In order to understand the

literature, it’s obvious I have to learn from scratch by either lectures recordings online and extensively
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reading relevant background literature in deepth (most of which published in top tier conferences in

AI). Likewise, for the implementation, I learnt all by myself from scratch how to use advanced DL

library such as pytorch and pyro to build DL models. Also, since training and running the system is

computationally heavy, I needed to also learn how to use the high performance computing facility

(Hawk) in order to deploy and experiment the system.

– Second, things ran unexpectedly in most of the cases. Before started, I did not expect the project

would be as challenging given the intuition of using DL models as perceptual agents while ASP

as the agents of logical reasoning is simple. Unexpectedly, many of the research challenges raised

after background investigation about the RPM problem and NeurASP (as one can see in Section 5).

Significant time spent before actually figuring out solutions to overcome the challenges and starting

implementing as new problems keep raising one by one.

Even potential solutions are found, implementation and experiments did not go smoothly as expected

as well. For example, to reproduce the preprocessing methods proposed in (Spratley et al., 2020), I

contacted the author for the missing yet critical part of the source code (the AIR module) but got no

response. I ended up implementing the missing components myself with the descriptions and math

formulae presented in (Spratley et al., 2020) and (Eslami et al., 2016). Similar situations happened as

well when trying to adapt NeurASP, as mentioned in Section 7. Moreover, to run implementations and

experiments deployed on Hawk, often times I have to join in a long queue for GPU nodes. Debugging

and experiments easily take weeks as the resources got busier.

– Third, time management and research organisation of such difficult project in such limited time

are tough. Given the amount of concepts, techniques and tools I had to investigate and the obstacles

in implementation, how to decompose these packages into small chunks of tasks and arrange time

doing them is another challenge. Even though I had started working on the project earlier, I found

myself really short in time to finish it. Also, when experimenting the system,it was difficult to organise

and keep experiments on track since multiple components with different setups of hyperparameters

needed to be monitoring and recording. For instance, to get the best performed AIR model, different

distribution parameters, latent size, learning rate were tried at first, results of different setups were

messed because I did not keep the experiment running scripts in separation. In fact, I think I did not

do well in both time management and experiment organisations.

Lesson Learnt.

– Critically assessing and relating literature are important. There are always knowledge one do not

know about. When encountering plenty of new concepts, it is important to assess them critically and
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relate them to each other. For example, although various different approaches to the RPM problem

are proposed in deep learning research, they can be boiled down to the problem of learning good

representations to capture the underlying relations. Knowing what is essential helps us to have a

better understanding when confronting new concepts.

– No one knows whether things would work or not before actually examining and trying the

problem, so we should plan for the worst. Given the intuition of adopting NeurASP to solve the

RPM problem is simple, I was expecting things would be as simple. The initial plan was made naively,

ended up nothing actually followed the plan. We shall therefore, be less optimistic and plan for the

worst things could happen.

– We shall not be too ambitious, focus on one thing at a time, and achieve the bigger goal step

by step. At first, I was too ambitious to include those fancy techniques that I had seen in literature,

which actually complicated the problem (for example, the AIR module). I shall, however, trying first

simple techniques like basic convolutional NNs to have a base solution, then using more advanced

techniques to gradually improve on the base.

– Failure and exceptions are normal. Although it was frustrated to that the system achieved incom-

petent results, I believe through further empirical studies we can understand better the inferior perfor-

mances. For example, conducting ablation studies on perceptual NNs to understand the effectiveness

disentangled representations in our framework. However, due to the time constraint, I did not have

enough time to conduct more experiments.

– Every detail of the experiments is important, keep things in records even though that look

trivial at the first glance. When starting to experiment, models trained with different setups were

messed with each other due to the lack of job script separation. Also, training checkpoints were saved

for every 5 epochs in the AIR module. This led to the best performed model was omitted. In both of

the scenarios, significant time was spent on re-running the experiments. Time could have been saved

for taking careful logs on experiments.
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