
 

Application to Help Students 

Prepare for Placement and 

Graduate Interviews 

Dissertation Project 

 

 

Date:16th September 2022  

Supervisor: Martin Chorley 

Student ID: 21018815 

Course: MSc Computing 



i 
 

Abstract 

This project investigates a mismatch between employers’ and graduate expectations 

in the Technology Sector, which could be accounted to the graduates and Higher 

Education institutions not putting enough emphasis on the importance of soft skills, 

opposing to employers actively seeking them. Competency-based interviews are the 

most used tool for assessing graduate’s soft skills, therefore, practicing those 

interviews will allow graduates to improve their soft skills and to articulating them in 

verbal communication.   

This project aims to solve the problem by implementing a web application that helps 

students develop their soft skills through competency-based interview practice and 

explores the most effective ways to do so. Based on the findings, a survey is created, 

and requirements devised. This project focuses on “Competency-Based Interview 

Preparation”, one of the 3 most requested functionalities, and proposes how the others 

can be implemented in the future to expand it.   

In the final stage of the project, a web application is developed, where students can 

access interview questions, answer them and favourite them in their profile.  

 



ii 
 

Table of Contents 

Abstract ....................................................................................................................... i 

Table of figures .......................................................................................................... v 

Table of tables ........................................................................................................... vii 

1. Introduction .......................................................................................................... 1 

2. Aim and Objectives .............................................................................................. 3 

2.1. Aim ................................................................................................................ 3 

2.2. Objectives ..................................................................................................... 3 

3. Literature Review ................................................................................................. 4 

3.1. The Gap in Skills Expectations...................................................................... 4 

3.2. Defining Employability ................................................................................... 6 

3.3. Individual factors ........................................................................................... 7 

3.4. Soft skills ..................................................................................................... 10 

3.5. The recruitment process and role of soft skills in IT .................................... 12 

3.6. Best approaches for learning applications .................................................. 13 

3.7. Evaluation of existing applications to prepare competency-based interviews

 16 

3.8. UI and UX Design ....................................................................................... 18 

3.8.2. User Experience (UX) Design ............................................................... 18 

3.8.3. User Interface (UI) design ..................................................................... 19 

3.9. Software development lifecycle ................................................................... 22 



iii 
 

3.10. Software development methodologies ..................................................... 23 

3.11. Software design principles and patterns .................................................. 28 

3.11.1. SOLID Principles ............................................................................... 28 

3.11.2. Multi-tier architecture ......................................................................... 29 

3.11.3. Microservice architecture .................................................................. 30 

3.11.4. Domain Driven Design ...................................................................... 30 

3.11.5. Dependency injection ........................................................................ 33 

3.11.6. Repository design pattern ................................................................. 33 

3.11.7. DTO pattern....................................................................................... 33 

3.11.8. API Gateway pattern ......................................................................... 34 

3.12. Software testing ....................................................................................... 34 

4. Primary research ............................................................................................... 35 

4.1. Questionnaire Design .................................................................................. 35 

4.2. Questionnaire Results ................................................................................. 37 

5. Product Justification and Specifications ............................................................. 41 

5.1. Functional Requirements ............................................................................ 41 

5.2. Non-functional Requirements ...................................................................... 44 

6. Approach ........................................................................................................... 46 

7. Product .............................................................................................................. 48 

7.1. Design ......................................................................................................... 49 

7.1.1. Backend Design ................................................................................... 49 



iv 
 

7.1.2. Frontend design .................................................................................... 53 

7.2. Implementation ............................................................................................ 59 

7.2.1. Backend ................................................................................................... 59 

7.2.2. Frontend ............................................................................................... 73 

7.2.3. Testing ..................................................................................................... 77 

7.2.4. Version Control ........................................................................................ 83 

7.2.5. Data Seeding ........................................................................................... 83 

8. Analysis ............................................................................................................. 84 

8.1. Suggested improvements ........................................................................... 85 

Research ........................................................................................................... 85 

Implementation .................................................................................................. 86 

9. Conclusions ....................................................................................................... 88 

9.1. Future Work ................................................................................................ 88 

10. Reflection on learning ........................................................................................ 91 

11. References ........................................................................................................ 95 

11. Appendices ...................................................................................................... 106 

11.1. Appendix 1 - Ethical Review Approval ................................................... 106 

11.2. Appendix 2 – Full Survey Results .......................................................... 107 

11.3. Appendix 3 – Jira Issues ........................................................................ 113 

11.4. Appendix 4 – Manual Test Results ........................................................ 114 

 



v 
 

Table of figures 

Figure 1. Skills that help employability (Ponsukcharoen 2017) .............................................................. 9 

Figure 2 - PalmPilot device (USRobotics 1996).................................................................................... 13 

Figure 3. UI vs UX Design (Corsera,2022) ........................................................................................... 18 

Figure 4 - Baker-Miller Pink Prison in Europe (Pinterest,2017) ............................................................ 21 

Figure 5 - Software development lifecycle (Prokopiško 2019) .............................................................. 22 

Figure 6. The 12 principles of Agile (Agile Aliance 2015) ..................................................................... 25 

Figure 7. Agile vs. Waterfall (Codegiant 2020) ..................................................................................... 27 

Figure 8. - Three-tier Architecture (Finereport, 2021) ........................................................................... 30 

Figure 9- Domain Driven Design Layers  (Dupeyrat 2022) ................................................................... 32 

Figure 10 - Snippet from the quiz students were given ........................................................................ 36 

Figure 11 - Time that took students between their first application and receiving an offer .................. 37 

Figure 12 - Students preferences for application functionality, snippet from survey results ................ 40 

Figure 13 - Software Quality Factors (McCall,1977) ............................................................................. 44 

Figure 14 - Agile values (McCloskey [no date]) .................................................................................... 46 

Figure 15 - High-level context map of the domains .............................................................................. 50 

Figure 16 - System Context Map .......................................................................................................... 52 

Figure 17 - Landing Page high fidelity wireframe ................................................................................. 55 

Figure 18 - Landing page low fidelity wireframe ................................................................................... 55 

Figure 19 - Profile page low fidelity wireframe ...................................................................................... 56 

Figure 20 -Questions library low fidelity wireframe ............................................................................... 56 

Figure 21 - Individual Question page low fidelity wireframe ................................................................. 57 

Figure 22 - Questions Library high fidelity wireframe ........................................................................... 57 

Figure 23 - Color palette ....................................................................................................................... 58 

Figure 24 - Background swatches for the website ................................................................................ 58 

Figure 25 - Log in (top) and Registration (bottom) sequence diagrams ............................................... 63 

Figure 26 - API structure diagram (left), Implementation Folder Structure (right) ................................ 64 

Figure 27 - Domain object implementations ......................................................................................... 67 

Figure 28 - Code snippet from UsersController, Injection of Identity Service via constructor .............. 70 

https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176010
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176013
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176017
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176018
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176020
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176022
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176024
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176025
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176026
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176027
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176028
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176029
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176030
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176031
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176032
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176033
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176034
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176035
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176036


vi 
 

Figure 29 - Repository pattern implementation, Identity Service implementation(top right), Services 

and Persistance .................................................................................................................................... 71 

Figure 30 - DTO pattern, left MongoDB DTO, right top API DTO, right bottom DTO folder ................. 72 

Figure 31- React project structure ........................................................................................................ 74 

Figure 32. React Application loaded in HTML, index.js ........................................................................ 75 

Figure 33. React application from the web application source code, App.js ........................................ 75 

Figure 34- Examples of final design implementation ............................................................................ 76 

Figure 35 - Unit test run, all test passing, executed in 26.3 sec ........................................................... 78 

Figure 36 - Unit test structure................................................................................................................ 78 

Figure 37 - Generating fake test data for unit tests by using the MongoDB DTOs .............................. 79 

Figure 38 - Test snapshots (left) and example of a snapshot (right) .................................................... 80 

Figure 39 - Example of commit naming ................................................................................................ 83 

https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176037
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176037
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176038
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176039
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176042
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176043
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176044
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176045
https://cf-my.sharepoint.com/personal/velkovams_cardiff_ac_uk/Documents/o.docx#_Toc114176046


vii 
 

Table of tables 

Table 1 - Soft skills classification by Chou (Chou, 2013) ...................................................................... 10 

Table 2 - Soft Skills classification by Misra and Khurana (Misra and Khurana, 2017) ......................... 10 

Table 3 - Principles of instructional design (Pappas 2017) ................................................................... 15 

Table 4 - Comparison of different applications on the market .............................................................. 16 

Table 5 - The concept of "appointment" in different contexts ............................................................... 31 

Table 6 - Implementation of context map .............................................................................................. 66 



1 
 

1. Introduction  

Computer Science is one of the most popular Higher Education disciplines for which 

the number of students has grown by 13% resulting in 158,340 applications for 

bachelor’s degrees in the UK in 2022 (BCS 2022). It is believed that Computer Science 

degrees guarantee employability for students due to the high demand for technology 

professionals in the market. However, 7% of Computer Science students are 

reportedly unemployed, higher than the 6% unemployment average of other high 

education disciplines in 2020. 

Why does this phenomenon occur and why is there a mismatch between the 

graduates' and employers’ expectations? 

This research investigates the reasons for the higher unemployment of Computer 

Science students and the expectations dissonance between employers and graduates 

in the Technology sector. It explores the importance of soft skills and the recruitment 

process for graduates and aims to help graduates and placement students prepare for 

competency-based interviews. 

In the first section, this report defines its main aim and objectives. After, it presents a 

Literature Review outlining the gap between employers’ expectations and graduates’ 

skills, its rationale, researches the specific skills required to be successful in the job 

market and how to teach them effectively. In addition, the literature review identifies 

and assesses existing software applications to practice competency-based interviews 

and explores different technical practices and methodologies for designing 

applications. A questionnaire is designed based on it and distributed between students 

in their second or final year of Computer Science or related subjects (Bachelor’s and 

Master’s). The questionnaire results are evaluated in conjunction with the findings from 



2 
 

the secondary research. They underpin the requirements for an application that 

improves employability amongst students. The following chapters discuss and analyse 

the application's design, implementation and areas of improvement. In the final 

section, this report reflects on the achieved learning. 



3 
 

2. Aim and Objectives 

2.1. Aim  

This project aims to enhance and advance students' soft skills by creating a user-

friendly software application that unifies good quality resources to prepare for 

competency-based interviews. 

2.2. Objectives 

• Research and understand the reasons for the unemployment gap among 

Computer Science graduates 

• Investigate and evaluate successful approaches for creating e-learning 

applications  

• Examine students' self-reported needs to prepare for the job market 

• Devise functional requirements based on the primary and secondary research 

findings 

• Design and implement a software solution that: 

a. Fulfils the functional requirements 

b. Follows software-engineering best practices and quality metrics 

c. Protects user’s personal information 

d. It is easy to use, aesthetically pleasing and follows an intuitive design 

• Reflect on the solution and give recommendations for improvement 

 



4 
 

3. Literature Review 

3.1. The Gap in Skills Expectations 

There is an increasing demand for Computer Science graduates in the labour market, 

which is reflected in the double-digit increase of Software developers in the UK in the 

last 9 years (Alexandra 2022). The UK ranks third in the world for impact technology 

investment and that number has doubled since 2018.  

Nevertheless, Computer Science graduates have one of the highest unemployment 

rates (7%) in the UK in comparison to other disciplines, as reported by Mantle (2021) 

and Smith et al. (2018). Thus, it could be claimed that graduating from a prestigious 

university with outstanding academic results does not guarantee a full-time job in the 

IT sector, regardless of market demand. As Bridgstock (2009), Joseph et al. (2010) 

and Schipper and van der Stappen (2018) reported, this poses a significant risk for the 

UK labour market as graduates do not appear to be “work ready” and suggests that 

employers’ needs and graduates’ skills seem to be misaligned (Shadbolt 2016; Mason 

et al. [no date]).  

Almonte (2022) and Shadbolt (2016) hypothesise that employers are dissatisfied with 

“graduates’ soft or work readiness skills”, and Shadbolt (2016) concludes that the 

inability of Computer Science students to articulate their skills or lack of the same 

explain their high unemployment rate. Moreover, Bridgstock (2009) and Shadbolt 

(2016) continue to demonstrate that students favour specialist and theoretical skills 

over employability skills due to the vast number of vacancies in Computing. For 

example, employers take graduates’ “technical skills for granted but are looking for 

adaptability and transferable skills” (Department for Business, Innovation and Skills 

2016; Mason et al. [no date]). 



5 
 

In addition, there is no universally agreed skillset for Computer Science jobs as it is a 

field with highly varied job opportunities. For instance, some employers look for 

graduates with a good technological foundation, and others look for the most recent 

and up-to-date programming languages and software engineering methods (Shadbolt 

2016). Therefore, graduates need to be highly flexible and aware from the start of their 

career where they aim to be, which could be problematic when lacking work 

experience (Department for Business, Innovation and Skills 2016).  Moreover, it is not 

feasible for Higher Education Institutions to drastically adapt the course curriculum 

every year, making it hard to keep pace with new knowledge and technologies. Given 

it is virtually impossible to keep their technical skills up to date, soft skills become 

critical and the only constant factor that can help students find a job in the Technology 

sector. 

Thirdly, whilst previous work experiences such as summer internships have a 

significant positive impact on graduates’ employment (CHERI 2002; Smith et al. 2018), 

many graduates describe their job-seeking experience as a “classic catch-22 situation” 

(Department for Business, Innovation and Skills 2016). They find that they cannot get 

a job because they do not possess enough work experience. Most employers prefer 

candidates with work experience, even for entry-level positions (Shadbolt 2016).  

Furthermore, companies and recruiters follow a very structured and thorough 

application process to filter the vast number of candidates (Higginbotham 2021), 

making it harder for graduates to stand out. Thereby further emphasising the 

importance of students’ employability and work-readiness skills.  

Finally, unemployment amongst graduates is considered one of the main reasons for 

low life-satisfaction and high anxiety levels affecting their mental health (Graduates’ 



6 
 

subjective wellbeing | HESA. 2020). The next sections dive deeper into the main 

reasons for unemployment amongst graduates. 

3.2. Defining Employability 

Employability is defined as “the extent to which somebody has the skills, knowledge, 

attitude, etc. that make them suitable for paid work”(Oxford Advanced Learner’s 

Dictionary 2022); however, this definition does not shed light on what factors influence 

it.  

McQuaid et al. (2005) addresses two main theories addressing employability, a broad 

view proposing that it depends on individual factors, external factors and personal 

circumstances, and a narrow view focused on the personal readiness to work: 

• Personal circumstances are defined as access to resources, caring 

responsibilities (for children and relatives), work culture within the social-

economic circle and access to a support network. It could be argued that these 

circumstances are unique to the individual, rendering virtually impossible any 

generalisation; therefore, this study will not investigate further the impact of 

personal circumstances onto graduates’ employability. 

• External factors are considered the labour market demand, access to public 

services and job-matching technology (McQuaid and Lindsay 2005). This 

research assumes that most students with computer science degrees have 

access to the internet and online job listings, and as Nation (2021) reports, the 

labour market demand is at its highest. Therefore, external employability factors 

are in favour of Computer Science graduates. 

• Individual factors are where the two theories overlap and could be described as 

“an individual’s readiness to work” (McQuaid et al. 2005). The more significant 



7 
 

number and relevance of the students' skills, the higher the probability of 

landing the job. This research focuses on improving those skills to make 

Computer Science graduates more employable. 

3.3. Individual factors  

According to the Confederation of British industry (CBI) 2019 report (CBI 2019), 

employability skills are defined as a “set of attributes, skills, and knowledge that all 

labour market participants should possess to ensure they have the capability of being 

effective in the workplace – to the benefit of themselves, their employer and the wider 

economy”. Employability skills could be roughly split into technical and non-technical 

skills (Chou 2013). 

Shadbolt (2016) and Sobral (2019) argue that Computer Science is a vast field subject 

to constant change and advancements with over 700 programming languages, 

rendering it virtually impossible to keep up to date with the changes. Although most 

popular programming languages remain, there is an overwhelming number of new 

frameworks and trends to follow (TIOBE Index. [no date]). Opposing this drastic 

change, the university curriculum provides foundational knowledge that enables 

students to continue their future education., thus it has not changed that much over 

the years (Shadbolt 2016). Therefore, when employers advertise entry-level positions 

based on specific technological skills, they are not facilitating graduates to join the 

labour market. 

According to (Clarke 2009), “career and employment patterns have fundamentally 

changed and will continue to change in the future”; therefore, the traditional mindset 

of graduating from university and finding a job with technical skills is outdated (Chou 

2013). As reported by Mansour and Dean (2016), non-technical skills (soft skills) have 



8 
 

higher demand in junior-positions and this is especially acute in the Technology sector, 

where companies are looking for professionals that could be easily trained and have 

experience learning new technologies (Todd 2017; McQuaid et al. 2005; Almonte 

2022).  

This is further confirmed by the 80,000 hours’ “Technical report on Skills” analysis 

(Ponsukcharoen, 2017), where the most common technical and non-technical 

employability skills are evaluated. Figure 1 from the report shows that the most sought 

skills are non-technical. Programming ranks low when compared to skills such as 

judgement, decision making, critical thinking and time management. Whilst this shift 

appears in all industries, it is amplified in the Technological field due to the 

aforementioned fast-changing technical knowledge (McQuaid et al. 2005; Almonte 

2022).  

 

If soft skills are so crucial for employers, what are they? How can a graduate reach 

their full potential by learning them?  

 

 



9 
 

 

Figure 1. Skills that help employability (Ponsukcharoen 2017) 



10 
 

3.4. Soft skills 

Searching for ‘defining soft skills’ on Google scholar provides over half a million 

results. Whilst, this research cannot claim to have found a universal definition of soft 

skills and their categorisation, there are commonalities between the employers’ 

requirements for soft skills. For example, Chou (2013) defines 11 ‘smart’ soft skills 

classified into 6 categories (Table 1). 

Categories Functions 

Communicating (the absolutely 
necessary) 

Communications Smart 

Dealing with people (the essential) 
People Smart 

Marketing Smart 

Dealing with self (the basics) 
Work Smart 
Time Smart 

Career Smart 

Dealing with boss (earning trust and 
recognition) 

Job-interview Smart 
Boss Smart 

Dealing with staff (inspiring loyalty and 
productivity) 

Motivating Smart 
Delegating Smart 

Being visionary Beyond the Box 
 

Table 1 - Soft skills classification by Chou (Chou, 2013) 

Alternatively, Misra and Khurana (2017) define 22 similar skills in 6 categories (Table 

2). 

Skills Action Verbs 

Technical skills Basic literacy, Learnability, Technology skills, Numeracy 
skills, Adaptability 

Higher order thinking 
skills 

Occupational Knowledge, Learning, Reasoning, 
Creative Thinking, Decision-making, Problem-solving 

Personal Skills Knowledge, Integrity, Self-control, Self-confidence, 
Emotional literacy, Initiative 

Social Skills Teamwork, Respect, Ethics and Values, Networking, 
Interpersonal Skills, globally aware 

Generic Skills Leadership, Teamwork, Project Management, Oral 
Communication skills 

Self-perceived 
employability skills 

Resilience, Behavioural Skills, Social Networking Job-
Seeking Skills, Labout Market Knowledge 

 

Table 2 - Soft Skills classification by Misra and Khurana (Misra and Khurana, 2017) 



11 
 

Whilst both discuss communication skills, they break them down differently. For 

instance, Chou (2013) classifies them as a category and Misra and Khurana (2017) 

split different aspects of communication between all categories. In some cases, the 

classification is the same between the authors, e.g., dealing with self-skills (Self-

perceived employability skills). Similarly, the ‘Tuning’ methodology (Tuning 2008) 

defines 3 categories of skills: Instrumental, Interpersonal and Systematic. In Misra and 

Khurana's definition, instrumental Competences correspond to ‘Higher-order thinking 

skills’. Interpersonal competences are categorised as individual and social, which is 

similar to Almonte’s (2022) and Chou’s (2013) statement of soft skills being about 

“dealing with people” and “dealing with the self”. Finally, systematic competences are 

analogous to Misra’s and Khurana’s “Generic skills” of Leadership, Teamwork, Project 

Management and Oral Communication skills. Therefore, whilst each skill can be split 

into different categories, the skill core factors overlap across the definitions; see the 

example of communication. In addition, Ethics and Psychology theory roots can help 

explain the different categorisations but similar meaning of soft skills.  

“Practical intelligence in IT: assessing soft skills of IT professionals” describes soft 

skills as “the managerial, intrapersonal, and interpersonal skills that are used to 

resolve IT-related work problems (Joseph et al. 2010). They took IT professionals at 

different levels and presented them with situations that required them to demonstrate 

the possession (or lack of) different soft skills. One of the article’s conclusions is that 

the main difference between graduates and experienced IT personnel is their ability to 

handle different situations that test their soft skills (Joseph et al. 2010). 

This leads to the argument that soft skills are not static and can be learnt. Most people 

would learn them as they become more experienced; however this can be achieved 

earlier through: 



12 
 

• game-based, project-based and competition-based learning, 

• a combination of formal, non-formal and informal education, 

• self-development practices and technology-based learning, 

Being the most popular strategies.  

3.5. The recruitment process and role of soft skills in IT 

The recruitment process differs between companies; however, competency-based, 

also known as behavioural interviews, are generally used to assess candidates' soft 

skills and cultural match (Devins and Hogarth 2005; Falls et al. 2014; Soft skills – how 

to assess them. [no date]). Therefore, graduates must demonstrate their soft skills 

during the interview process. 

Preparing for those interviews can be difficult and time-consuming (Coach 2020; Mitzi 

[no date]) . Whilst most universities, including Cardiff, provide employability coaching 

and mock interviewing services (Careers and Employability. [no date]), there is a 

limited capacity of the hours a university can invest per student. In addition, it could be 

claimed that most students do not have experience applying for jobs and, therefore, 

lack confidence in their skills (Mitzi [no date]).  

Even though there are many resources to prepare for interviews available online, 

these resources are not always of good quality and might not be free of charge, 

resulting in students utilising inappropriate materials and hindering students of lower 

socioeconomic backgrounds. 

In conclusion, it could be argued that teaching students employability skills and how 

to articulate them might improve the unemployment rates with the least cost.  



13 
 

3.6. Best approaches for learning applications 

E-learning is an idea that dates back to the 

emergence of the web. Marc Rosenberg 

(2001) discusses it alongside the new (at the 

time) delivery of the internet to phones, 

accompanied by an example of a state-of-the-

art digital assistant, PalmPilot (Figure 

2)(Rosenberg 2001) 

Evidently, technology has changed 

dramatically since Rosenberg discussed the 

concept of e-learning 21 years ago; however, 

one of the case studies in his book analyses 

the adaptation of soft skills learning course into an e-learning platform (Rosenberg 

2001, p.). The contributing factors of unsuccessful e-learning applications reported by 

Rosenberg (2001) are similar to those presented by Sharma in the article from 2020 

(Sharma 2020). The 2001 publication conducted user testing on the soft skills 

available in the e-learning platform and reported users finding it “plain boring” due to 

the endless pages of text, uninteresting layout, and lack of responsiveness of the web. 

This corresponds to another article by Patel (2019) examining the importance of easy-

to-use and interactive user interfaces with the right amount of detail. Rosenberg (2001) 

and Sharma (2020) identify that the information's accuracy is vital for e-learning 

platforms' success. Once learners are drawn to the information quality and design, 

users must be retained on the platform through the principles and techniques to create 

habits.    

Figure 2 - PalmPilot device (USRobotics 1996) 



14 
 

These principles and techniques have been proven by the language-learning 

application “Duolingo”, which has over 500 million total users, 40 million monthly active 

users, ranking it the world’s leading language learning application. Upon opening the 

app, users can navigate to a lesson with two clicks. Moreover, classes are split into 

small, easily digestible tests that reward points upon completion. 

Duolingo lessons also follow Merrill’s First Principles for instruction based on 5 

statements that are found true for effective learning and often applied to e-learning 

applications (Table 3). The users of Duolingo are shown new language content in 

various real-live situations (Demonstration and Task-Centered principle) that they 

must apply (Application principle). Often recordings and a Duolingo Podcast contribute 

to making the learning as close to the real world. Finally, there are often quizzes and 

refreshers on older lessons' material. 

In summary, the application is intuitive, simple to navigate and offers instant 

gratification with minimum effort. This immediate satisfaction it brings is at the root of 

creating habits, a pivotal strategy of  “Duolingo” (Duhigg 2013). For instance, The app 

keeps track of how many consecutive days users have used it and rewards them with 

a “streak”; however, they need to start building their streak again if a single is missed.  

The design is crucial to creating an engaging e-learning application and Duolingo ticks 

the box for each guideline. For example, it has an inviting colour scheme with smooth 

edges, creating a contemporary and approachable feel (Rauser 2021). In addition, 

“Duolingo” attempts to appear approachable with encouraging and friendly language 

messages (Nare 2021) to boost user motivation through their learning journey, which 

is a crucial component to forming long-term productive habits (Duhigg 2013).  



15 
 

In conclusion, attractive e-learning applications tend to be simplistic and 

approachable, make users feel comfortable and reduce their mental load to a minimum 

with easy navigation and limited decision making.  

 

 

Principle Steps Statements 

Demonstration 
principle 

Observe a 
demonstration. 

Learning is promoted when 
learners are engaged in solving 

real-world problems 
 

Application 
Principle 

Apply new knowledge. 
Learning is promoted when 

existing knowledge is activated as 
a foundation of new knowledge 

Task-centred 
principle 

Engage in task-centred 
instructional activity. 

Learning is promoted when new 
knowledge is demonstrated to the 

learner 

Activation 
Principle 

Activate prior knowledge 
and experience. 

Learning is promoted when new 
knowledge is applied 

Integration 
principle 

Integrate their new 
knowledge into their 

everyday world. 

Learning is promoted when new 
knowledge is integrated into the 

learner’s world 

Table 3 - Principles of instructional design (Pappas 2017) 



16 
 

3.7. Evaluation of existing applications to prepare competency-based interviews 

The researcher evaluated the current applications available to prepare for competency-based interviews and summarised the results 

below. 

Name Platform Benefits Disadvantages 

Job 
Interview: 
Question 
and Answer 

Mobile The application has high reviews on google play and provides 
a variety of interview questions. 

The app is only available for Android. It 
does not allow users to answer questions. 

Interview 
Trainer 

Mobile Various questions are split into categories by skills or 
industry—hints to help the user answer the question. The tone 
of voice is analysed, giving the user feedback based on 
emotion, language, and social tones. Users can record their 
answers as videos, transforming the speech into text input to 
mimic a real-life interview. 

No focus on the level of experience. 

Interview 
Questions 

Mobile Variety of questions and example responses from 
professionals and entry-level candidates with appropriate 
reasoning for the answers and tips functionality. Ability to 
input your response and memorise it in your account and 
favourite questions. 

No significant disadvantages are found in 
the functionality. UI and UX design is not 
attractive/friendly. 

Glassdoor Web It gives the users the opportunity to input questions from 
actual job interviews and to identify relevant questions for 
individual companies. 

The focus of Glassdoor is not interview 
preparation and it’s widely focused on 
everyone, not graduates explicitly. 

Career Side 
Kick 

Web Gives a variety of questions and example answers. No ability to create a profile and save 
answers there. 

Table 4 - Comparison of different applications on the market 



17 
 

The review found that a wide range of mobile applications aid in preparing for 

competency-based interviews. However, the web applications only provide guidance 

for answering questions but no functionality to input answers or personalisation. Thus, 

there is a gap for an application to prepare for competency-based interviews on the 

web platform. In addition, mobile applications provide less flexibility on average 

(Gazzawe 2017) and web applications are easier to integrate with the existing learning 

systems at universities, for instance, Learning Central at Cardiff university. No desktop 

applications are found potentially because of the lack of portability. 

All the reviewed applications provide slightly different functionality. However, two 

exhibit all the principles of instructional design discussed previously in the context of 

the Duolingo app (Allen 2011). These are the Interview Trainer and Interview 

Questions mobile applications; therefore, they are used as a blueprint for the website 

in this project. After reviewing the highest-rated features in Google Play and App Store 

in comparison to the objectives of the projects, some appropriate features are: 

• Ability to create and save user answers 

• Access to a variety of questions and answers 

• Ability to ‘favourite’ relevant questions 

• Ability to analyse the tone of voice based on different factors 

• Transferring speech to text to record answers easily 



18 
 

3.8. UI and UX Design  

As established in the previous section, proper design and instant positive 

reinforcement are critical for e-learning applications to make users feel comfortable 

and motivated to continue their learning. Therefore, a user-friendly and aesthetically 

pleasing design is a requirement for the success of an application as captured by the 

intersection between User Experience (UX) and User Interface (UI) design: 

 
Figure 3. UI vs UX Design (Corsera,2022)  

 

3.8.2. User Experience (UX) Design  

UX design includes user perception, efficiency and ease of use to help improve the 

application usability (Krug 2006; 9 Rules For UX Design. 2018; Professional Web 

Design Process Explained in 5 minutes 2020). The usability is achieved through in-

depth knowledge of the user and their needs and by reducing the cognitive load as 

much as possible (Krug 2006; 9 Rules For UX Design. 2018). Good UX design is 

consistent and prioritises function over aesthetic, accounts for user errors and is 

compatible with common assumptions made by the user. For example, users 



19 
 

recognise that an enabled button on the web is clickable; therefore, if they click on it 

and do not receive a result, this can confuse them (Krug 2006). 

Nevertheless, accessibility should be considered, and the product should be tested on 

a variety of users, including users with disabilities (Accessibility for Teams. 2022).  

After establishing the user’s needs, site objectives and functionality, UX design 

levarages Information Architecture principles to structure the data to facilitate 

understanding (information design). In addition, it also deals with navigation design, 

which helps a user to easily move through the information architecture (Babich 2022). 

In the final stages of UX design the interface elements that user interacts with are 

planned, usually by creating wireframes.  

In practice, creating a good user experience involves in-depth user research, creating 

user stories, personas and wireframes to deduct the most effective design for the 

application to maximise the usability and accessibility of the product.  

3.8.3. User Interface (UI) design  

Once the UX is completed, the User Interface is designed, which includes establishing 

interface elements, their design and branding. UI design focuses on creating the most 

aesthetically pleasing design to engage the users and correctly convey the 

application’s message (What is User Interface Design? [no date]).   

UI design is also described as graphic design for applications based on principles 

categorised between familiarity, clarity, simplicity and user control (The 6 Key 

Principles of UI Design. 2021). 

These principles are implemented via a variety of techniques. For example, 

maintaining consistency through repetition makes the design familiar and enhances 

usability by increasing familiarity and clarity. Furthermore, using an easy-to-read font, 



20 
 

well-spaced layouts and contrasting colours supplements readability (clarity) and 

positively impacts the usability of an application. Following similar layouts and being 

consistent in the design themes, colours and font makes navigating easier (Krug 2006; 

The 6 Key Principles of UI Design. 2021).  

Moreover, establishing a good visual hierarchy also makes navigation straightforward. 

This could be done through the website's typography and via forms and colours. For 

example, using the same styling for main headings signals the user what topic the 

paragraphs below will discuss.  

Shapes and colours could incorporate the product’s message and have proven to 

convey a powerful psychological impact. For instance, a very famous study on the 

effect of colour is the “Baker-Miller” pink, where it is concluded that the presence of a 

certain shade of pink (Figure 4) calms prisoners. Unfortunately, this is only a short-

term effect, and in the long term, the colour triggered more violence (Drunk Tank Pink. 

[no date]).  Regardless of its success, the study shows how powerful the psychological 

impact of colour could be and the importance of conveying a message through it. A 

similar psychological impact is demonstrated in the Duolingo example, where soft 

edges and curves convey friendliness and amiability.  

Finally, in today’s world, there are various screen sizes and display options for content. 

Graphic User Interfaces should be adapted so that they are not only aesthetically 

pleasing and usable on as many devices as possible (Friedman 2018).



21 
 

 

 

Figure 4 - Baker-Miller Pink Prison in Europe (Pinterest,2017) 

  



22 
 

3.9. Software development lifecycle 

Software development lifecycle dates back to the 1970s and is developed to control 

and systematise the ever-increasing complexity of business systems (Elliott 2004). 

There are different versions of the theory; however, this section explains the most 

popular one consists of 6 steps (Figure 5).  

Planning: This is the project's inception phase, where its feasibility is determined. In 

this phase, the project risks and opportunities are identified and used to devise the 

project's requirements (Newell [no date]). This is also called “requirement gathering” 

phase or “initiating phase” (Boyde 2014; Author 2021).   

Design: In this stage, detailed system specifications are devised from functional 

requirements and non-functional requirements such as security concerns are 

Figure 5 - Software development lifecycle (Prokopiško 2019)  



23 
 

established (Boyde 2014; Author 2021).  Examples of the variables assessed during 

this phase are mitigating risks, technologies to be used, team capability, project 

constraints, time and budget.  

Implementation: The team builds software solutions according to the given 

architecture and designs in this phase. The high-level view of the system is now 

translated into individual tasks and day-to-day schedules (Newell [no date]).  

Testing & Integration: The system is comprehensively tested, and bugs are raised 

with the team. Different levels of testing are executed to confirm the reliability of the 

product.  

Maintenance: After the software is released to customers, the team focuses on 

maintaining it by releasing new features, fixes and addressing bugs promptly.  

Depending on the chosen methodology, these steps are executed once (e.g. 

Waterfall) or iteratively (e.g. Scrum, Kanban).  

3.10. Software development methodologies  

As the previous section discusses, software creation is often executed through the 

different phases of the software engineering lifecycle. These phases are commonly 

applied in other engineering disciplines and are executed in parallel by different teams 

collaborating with each other. Naturally, collaboration here is vital, as some tasks 

cannot be executed before others. Therefore, there is a plethora of software 

development methodologies such as waterfall, iterative, incremental, spiral, 

evolutionary, aiming to optimise this process (Al-Saqqa et al. 2020). These 

methodologies typically differ on two main criteria: 

• Linear or non-linear software development lifecycle 



24 
 

• Amount of preparation, document and project management required 

Two of the most popular and ever-opposing approaches are Agile and Waterfall. 

Waterfall is a linear methodology that follows the Software Development Lifecycle. 

This approach has ‘fallen out of fashion’; however it is still widely used in situations 

where iteration is not possible, the project is constrained by time or cost and the 

requirements are very well understood (Raza 2020; When to Use Waterfall vs Agile - 

Macadamian. [no date]).  

Often claimed to be a methodology, Agile is defined as a set of lightweight principles 

that serves as a basis for various Agile methodologies (Al-Saqqa et al. 2020). This 

approach is defined in the Agile Manifesto, in 2001 (History: The Agile Manifesto. [no 

date]). The main objective of Agile Software Development is flexibility and at its core 

are the four pillars of Agile: 

1. Individuals and Interactions over processes and tools 

2. Working software over comprehensive documentation 

3. Customer collaboration over contract negotiation  

4. Responding to change over following a plan 

  



25 
 

Agile has 12 main values, see image below: 

 
Figure 6. The 12 principles of Agile (Agile Aliance 2015)  

 

Those principles expand on the four pillars of Agile and define the basis for different 

methodologies. As evident from principle 3, Agile methodologies follow an iterative 

approach, meaning that the execute the Software Development Lifecycle non-

sequentially. Moreover, what makes this approach different is also the focus on 

collaboration and team self-reflection (principle 12) and self-organisation (principle 

11). Feedback tends to be delayed in waterfall approach and only given at the end of 

the Software development lifecycle, making the design and requirements a constant 

work in progress. That is also a pivotal difference between the two approaches, as 

Agile does not require complete requirements (Raza 2020; When to Use Waterfall vs 

Agile - Macadamian. [no date]).  



26 
 

Nevertheless, changing requirements obstruct the establishment of clear deadlines 

and resource planning (Disadvantages of Agile. [no date]). Some consider that the 

working software, centricity of Agile, leads to limited documentation in comparison 

to Waterfall approach (The Disadvantages of Agile Methodology. 2019; 

Disadvantages of Agile. [no date]). More differences between Agile and Waterfall 

development are discussed in Figure 7.  

In conclusion, software development methodologies should be studied and 

evaluated carefully, according to the project's needs, the team's size and available 

time and financial resources.  

 



27 
 

 
Figure 7. Agile vs. Waterfall (Codegiant 2020) 



28 
 

 

3.11. Software design principles and patterns 

This section explains the benefits and disadvantages of software development 

practices, designs and patterns later used in the Implementation section. 

3.11.1. SOLID Principles 

Since Robert Martin published SOLID principles, the term has gained popularity and 

is now taught at universities and tested on technical interviews. Those principles 

enhance software quality criteria factors and eliminate “rotting design” practices 

(Martin 2000; Oloruntoba 2021). A brief definition of each of them is found below: 

•  Single-responsibility Principle (S): A module should have exactly one 

reason to change. In other words: a class should have exactly one purpose 

(Oloruntoba 2021).   

• Open-closed Principle (O): A module should be open for extension and closed 

for modification (Martin 2000). Paraphrasing, one should be able to change and 

build on what a class does without changing the code of the class.  

• Liskov Substitution Principle (L): Subclasses should be substitutable for 

their base classes (Martin 2000). For example, if a class X takes and argument 

of type Y, then the derived class of class Y can also be used as an argument in 

class X.  

• Interface Segregation Principle (I): Many client-specific interfaces are better 

than one general-purpose interface. Meaning should a change is made to a 

general-purpose interface all the derived classes are affected and their 

behaviour needs to be confirmed. Hence, general interfaces make the system 

more rigid and hard to test, scale and maintain (Martin 2000). 



29 
 

• Dependency Inversion Principle (D): Depend upon Abstractions. Do not 

depend upon concretions. This principle allows decoupling of dependencies 

and enhances the software quality factors (Oloruntoba 2021).  

In conclusion, SOLID principles allow the system to be more reliable, maintainable 

and testable. They provide ease when debugging and provide better scalability. 

3.11.2. Multi-tier architecture 

In this type of architecture, software components are organised in tiers based on their 

functionality. Three-tier architecture is the most common occurrence of this 

architecture and is the one that this report explains. As illustrated in Figure 8 this 

architecture consists of three tires: 

• Presentation: This is Graphical User Interface and is a tier responsible for the 

app's presentation, be it in a browser, mobile application or another platform. 

Typically, it communicates with the Application tier through API calls, following 

a protocol.   

• Application: This is the middle layer of the application that encapsulates the 

business logic. All interactions between the data tier and the presentation tier 

go through here.  

• Data: The data storage layer of the application.  

The benefit of this pattern is that it decouples the three tiers and makes the application 

easier to scale and maintain as fewer dependencies are managed. Layers could be 

separately updated or replaced with newer technologies and that will not affect the 

application. Finally, security is improved as the Presentation tier never communicates 

to the Data tier.  



30 
 

 
Figure 8. - Three-tier Architecture (Finereport, 2021) 

3.11.3. Microservice architecture 

Instead of one monolithic system, the application is defined as a set of loosely coupled 

collaborating services. Each service is independent of the other and the data is 

maintained consistent between them. The services communicate through different 

protocols such as HTTP or message broker.  

3.11.4. Domain Driven Design  

“Domain-Driven Design is an approach to software development that centres the 

development on programming domain model that has a rich understanding of the 

processes and rules of a domain” (Fowler 2020). The domain logic becomes the 

foundation for building the application and external dependencies are abstracted to 

allow for various integrations and technology changes. Furthermore, DDD ensures 

that the domain is well understood before development begins, thus allowing for less 

error in logic overall and better maintainability. A full description of Domain Driven 

Design could be found in Eric Evans’ “Domain-Driven design” (Evans 2003); however, 



31 
 

this project describes only some main concepts that are directly utilised in the 

application design phase.   

Domain Driven Design proposes two types of design, strategic and tactical. Strategic 

design describes the concepts and abstract definitions of the domain, diving into an 

in-depth definition of the business problem and processes, whereas tactical design 

defines classes and modules (Evans 2003).  

Strategic design uses a variety of tools to achieve its goals: 

Ubiquitous language: same words are used between all team members for the same 

concepts.  

Bounded context: This is a logical boundary where domain names have a unique 

interpretation, creating the ubiquitous language. For example, the concept of 

appointment could have different meanings between the Social Media and Hospital 

bounded context (Table 5). A Context Map groups bounded contexts used across the 

entire application. 

Social Appointment Medical Appointment 

- Different number of people 

- Never urgent 

- Flexible time limit 

- Always for one person 

- Urgency level 

- Strict limit 

Table 5 - The concept of "appointment" in different contexts 

Shared Kernel: this is typically a core domain, or a set of generic subdomains shared 

between different domains  

Tactical design goes into a more granular and technical level in the application, it 

refines the domain model in a way that it is convertible to code. This is achieved by 

using the following concepts (the list is exclusive): 



32 
 

Value Object: an immutable object whose value is of importance and encapsulates 

domain logic. Two objects with the same value are considered the same. (DDD Part 

2: Tactical Domain-Driven Design | Vaadin. [no date]). 

Entity: a mutable object created for its identity. For example, two people with the same 

name will be considered two different people, unlike in the Value Object definition. 

Thus, two entities with the same type and id are always considered the same, 

regardless of their value (Evans 2003). The aim is to have fewer entities and more 

Value Objects (DDD Part 2: Tactical Domain-Driven Design | Vaadin. [no date]). 

 Aggregate: This is a collection of domain objects that logically belong together. 

Aggregates have an entity root, only accessible from the outside and holding reference 

to the other objects within the aggregate (Avram and Marinescu 2006).  

Domain Driven Design follows a project structure, where everything depends on the 

domain, as evident in Figure 9, where the dependency flows outwards, e.g. 

Infrastructure depends on all the inner concepts and the Domain, a.k.a. the Entities, 

Contexts, Aggregates are encapsulated. 

Domain Driven Design has a high entry cost that 

reduces over time because of the software's 

increased maintainability, scalability and 

testability (Vlahovic [no date]). As this project's 

outcome is relatively small and the application is 

developed iteratively, simplification decisions are 

made to avoid over-engineering.  

Figure 9- Domain Driven Design Layers  (Dupeyrat 
2022) 



33 
 

3.11.5. Dependency injection 

Dependency injection is a design pattern that decouples an object creation from its 

usage. Thereby it follows SOLID’s dependency inversion and single responsibility 

principles (Janssen 2018).  

There are three types of dependency injection: 

• Constructor Injection 

• Property Injection 

• Method Injection 

This project leverages constructor injection as the most common and recommended 

implementation, in which the dependency is injected as a parameter to the constructor.  

3.11.6. Repository design pattern 

Repository pattern enhances testability and abstracts the technical database 

implementation from the business logic (Cubet 2015). The repository pattern is a 

mediator between the domain logic and the database implementation. This is achieved 

by creating an interface that defines the DB operations required by the business. After 

that, the interface is implemented with the concrete DB implementation, e.g. SQL 

Server. The object is injected via dependency injection into the class that will use it, 

e.g. a controller.   

3.11.7. DTO pattern 

The Data Transfer Object (DTO) pattern helps to decouple domain models from the 

presentation layer. It also aims to encapsulate logic that belongs with specific 

technology implementation from the domain, for example, how the data is saved in a 



34 
 

particular data storge. Thereby, DTOs are used to store, serialise and parse data and 

do not implement any business logic (baeldung 2021).  

3.11.8. API Gateway pattern 

The Application Programming Interface (API) Gateway pattern provides a single API 

entry point for different types of client applications (e.g. mobile, web) and services to 

connect. Upon request from the client, the API coordinates which services it should be 

sent to and is used in microservice architecture so that multiple services can be 

accessed via a single gateway (entry point) (Microservices Pattern: API gateway 

pattern. [no date]).  

3.12. Software testing 

Testing is the process of verifying the application correctness and expected behaviour 

(IBM [no date]). Quality control is important to fix defects before the software goes into 

production and makes applications more robust, reliable and maintainable (Sharma 

2022). There are different types of software tests such as Unit tests, Integration tests, 

end to end tests, manual tests, performance tests and load tests.  

Test coverage “measures how much tests are covering things like test requirements, 

code, different user scenarios, and platforms such as mobile devices or browsers” 

(Kinsbruner [no date]). Test coverage is measured by “coverage metric”. Some are 

line coverage or how many lines of the code are tested and branch coverage, defining 

how many outcomes are tested 

Whilst a lot of high-scoring test coverage metrics contribute towards software quality, 

a common mistake is to use line and branch coverage on its own. To avoid that 

Khorikov (2020) recommends to measure quality of testing based on verified 

application behaviours. 



35 
 

4. Primary research 

Computer Science students’ job-search journey is essential for achieving the aim of 

this project. Hence, a survey is conducted amongst last and second-year Computer 

Science students that: 

• evaluates how many of the responded students have received a job offer 

• explores patterns in students’ behaviour depending on their employment status 

• investigates time frames and frequency of applications between those two 

groups 

• uncovers how students prioritise employability skills, mentioned in the LR 

section 

• determines the desired specifications for the system, according to the students 

The survey is completely anonymous, and an ethics review is conducted and approved 

by the COMSC office at Cardiff University. The complete survey and results and the 

ethics review form are available in Appendix 1 - Ethical Review Approval and Appendix 

2 – Full Survey Results.  

4.1. Questionnaire Design  

The chosen method for conducting the survey is an online self-administered 

questionnaire. It allows for more flexibility as it can reach more respondents at once. 

This also makes it easier to preserve anonymity.  

The questionnaire splits the students into two categories – ones that have landed a 

job and others that are still looking – to observe if there are any patterns in the attitude 

of those groups towards application preparation and practising different skills. 

Furthermore, the study assesses how long it takes and how many applications on 



36 
 

average one needs to get a job so that it can estimate for what period students will be 

using the application and evaluate the difficulty in joining the job market after 

university. There is a series of questions assessing students’ attitudes towards 

employability skills. Including closed-end provides the means to categorise the 

information easily and open-end questions give an inside of the individual’s 

circumstances, considered in employability theories. In Figure 10 the first question 

provides an uncomplicated way to assess the students’ focus when preparing for the 

job market, whereas justifying their choice gives a way to personalise this and give 

context to the data.  

Finally, students are asked to share their interview preparation and what application 

functionality they would benefit from during the process. The given list of features is 

devised based on the discussion in the Literature Review. This Question is used to 

prioritise the specifications for a minimum viable product (MVP). The survey employed 

Figure 10 - Snippet from the quiz students were given 



37 
 

Misra’s definition of Soft skills as the most concise option and the respondents will not 

be overwhelmed by the number of options, providing a more genuine response. 

4.2. Questionnaire Results 

The survey is completed by 26 graduate and placement students, 84% looking for job 

opportunities, making the application highly relevant.  Most students have applied for 

approximately 1-20 positions, with the ones who have not received an offer applying 

for the shortest time of 1-3 months. A third of the graduates that received an offer 

within 5-7 months after their first application and most of the graduates landed an offer 

after at least 3 months of applying (Figure 11).  

 

Figure 11 - Time that took students between their first application and receiving an offer 

These results make the competency-based interview practice extremely important in 

that timeframe, being the most used approach for interviews; therefore, the website is 

relevant to the students’ needs. To further improve this, the interview practice 

materials should be enough for 3-5 months of training to keep users engaged and 



38 
 

actively practising. A too short learning programme will lead students to abandon the 

application quickly. In contrast, a too-long one may create cognitive overload and 

discourage students from completing it, as discussed in the Literature Review.    

When voting about the different types of employability skills and their importance, self-

perceived employability skills have been voted least significant, whereas the rest of 

the skills are very similar in their scores. Nevertheless, when asked to self-assess 

what they could improve more than half of the graduates said Technical skills and 

none said Generic Skills defined as Leadership, Teamwork, Project Management and 

Oral Communication skills.  

This observation could be on account of two causes. The first one is reinforcing the 

gap in expectations between employers and graduate students, where employers are 

looking for strong soft skills that can even make up for the lack of some technical skills 

and students are only focusing on technical skills. A second justification could be that 

employers and universities are not clearly explaining their criteria to graduates. 

Changing big institutions would be more complex and not as straightforward to achieve 

because there are more factors beyond the personal willingness of a student to learn 

soft skills. Those two rationales can co-exist; however, this study will focus on 

educating the students and leading them in the right direction.  

Choosing technical skills as most important are various is based on various reasons. 

Many graduates feel they have not learned enough during their degree, which could 

be explained by the vast pool of technical skills required by different companies, 

making students self-conscious about their coding skills. Furthermore, some students 

reply that they are not well equipped for coding interviews, which could sometimes be 

a part of the application process. Some respondents mention that they are on a 



39 
 

conversion degree from different disciplines. Thus, they have learned soft skills in their 

previous career path and are confident in them. This reinforces the idea that 

employability skills could be taught from having prior job roles and work experience. 

The students, who believe that their technical skills are insufficient, have also 

predominantly focused on CV writing and programming for their preparation.In 

contrast, the rest of the students worked on a wider variety of skills, including CV 

writing and coding skills but also did interview preparation, behavioural tests or used 

real-life interviews as practice. Therefore, it could be argued that not many graduates 

will be interested in improving their soft skills, despite having a platform for practising 

them. Therefore, it is essential to advocate and highlight the importance of the product 

of this study. Universities or career services in those institutions can help promote the 

product. Furthermore, it is important also to make the platform easily accessible. No 

correlation is found within either of the groups to reinforce that either approach is better 

for receiving a job offer.  

Finally, students are required to assess how useful different features would be for them 

in an application to improve their soft skills. Figure 12 shows the 3 features most 

wanted by the respondents. Features wanted by less than half of the respondents are 

not going to be included in the final product specification. 



40 
 

The most wanted feature is the ability to find and save different interview questions. 

84.6% of students voted for it, making it a must for the MVP: 

The second and third voted features (76.9% & 73.1%) are considered an extension of 

this project as increasing the scope of the MVP would affect the dissertation 

timeframes. Thereby they are not part of the implementation of the product but are 

considered as part of the design and future work. Furthermore, only the interview 

practice feature affect graduates’ soft skills learning. Instead, the others(“Ability to 

input and find interview questions specific to a company”)  give the tools for more 

targeted preparation and ensure time management regarding job applications. 

In addition, the functionality to input and find different interview questions duplicates 

Glassdoor, which follows a strategy where people must share interview questions to 

view others' input on the platform. In this way, they have created a data resource of 

interview questions, salaries, jobs and employer information. Similar approach could 

be taken here; however, with having such a big competitor on the market, functionality 

is considered out of scope for MVP.   

Figure 12 - Students preferences for application functionality, snippet from survey results 



41 
 

5. Product Justification and Specifications 

5.1. Functional Requirements 

This section aims to finalise the primary and secondary research to utilise the main 

conclusions for devising a set of functional and non-functional requirements for the 

system. It serves as a transition to the next Chapter that discusses the product and 

the approach to developing it.   

The Literature review discusses the gap between student’s and employer’s 

expectations, where it uncovered that: 

• Students lack soft skills and the ability to elaborate on them. 

• Universities cannot teach every technology; thus, graduates do not feel 

prepared for the market. 

• Graduates often require previous experience to get any work experience and 

feel overwhelmed. 

This study confronts the lack of soft skills problem and devises a plan to contribute to 

solving it by: 

• Exploring the topic of employability and graduate employability,  

• Defining the most used processes to target during the application process, 

investigating similar applications  

• Deducting appropriate approaches for creating one.  

As reported by the Evaluation of Existing applications, it is considered most 

appropriate to use the web as a platform for this project.  

According to the Literature Review, employability can be split into external and 

individual factors and for computer science, the external circumstances are in favour 



42 
 

of the students. Thus, an improvement is required only within the individual skills, 

classified as soft and technical skills. The survey uncovered that most respondents 

are actively practising coding tests and technical skills; thus, they are already 

dedicating the required effort to technical skills. Furthermore, it is identified that soft 

skills are highly required by employers in all industries and are considered even more 

valuable for new joiners on the job market. 

Companies use competency-based and behavioural interviews to assess those skills; 

thus, an application to aid the learning is a solution to the “gap in expectations”. 

Furthermore, the primary research proved that an application to save and answer 

interview questions is the most desired functionality amongst the respondents. 

Therefore, the first user stories for the application could be defined as: 

1. As a user I want to have access to, save and answer interview questions so 

that I can organise my competency-based interview preparation. 

2. As a user I want to have a profile where I view the questions I have responded 

to and the questions I wish to respond to so that I have easy access to the 

application's resources. 

3. As a user I want to edit my interview questions responses so that I can 

organise my competency-based interview preparation. 

4. As a user I want to view example answers and prompts that will show me how 

to answer specific interview question so that my learning is guided, and I can 

meet employers’ expectations. 

Soft Skills are split into categories, which one could have unbalanced abilities, as 

discussed previously. Some soft skills provide more training opportunities than others. 



43 
 

Therefore, it is appropriate to split the questions into categories, called “Topics”, 

depending on their targeted skill:  

5. As a user I want the questions to be split in topics so that I exercise my less 

advanced soft skills to improve my employability skills. 

The topics that the application will implement in MVP are Collaboration, Problem 

Solving, Adaptability, Organisation, General. Topics could be changed and added to 

in later stages of the project.  

With these five user stories the essential functionality of MVP is defined.  

Optional functionalities for later stages of the project, based on the survey results are: 

6. As a user I want to receive trophies and prises for completing questions so 

that I am motivated to continue my learning.  

7. As a user I want to be able to relate interview questions to companies and filter 

by company so that my learning is targeted to the specific interview I am 

preparing for. 

8. As a user I want to track my job applications so that I can maintain good 

organisation while applying for placement/graduate opportunities. 

All the optional requirements take an example from Duolingo, where learners are given 

more functionality and instant gratification to keep returning to the application. 

Furthermore, user stories 7 and 8 are the second most wanted amongst graduates 

and are aimed to either create more targeted interview preparation, in the case of story 

7, or better time management and organisation, which allows more time to be focused 

on interview preparation for story 8. 



44 
 

5.2. Non-functional Requirements  

Figure 13 - Software Quality Factors (McCall,1977) 

With the user stories being defined, the non-functional requirements could be 

addressed. Non-functional requirements help satisfy software quality factors (Figure 

13) by measuring and satisfying the Software Quality Criteria (McCall’s Quality Model. 

2020) along with the system’s operational bound. 



45 
 

Security: 

• The user interface (web application) should keep track of user authentication 

and authorisation status before rendering any content. Therefore, the pages 

should be private by default and only accessible to authenticated users. 

• Limited API Surface Attack could be achieved by limiting the data exposed in 

the backend APIs. Thus, the data should not need to be hidden in the user 

interface.  

• Database enforces authentication and authorisation via username and 

password; therefore, every client must attach the credentials upon opening a 

connection. The backend service should be the only software component with 

the credentials to connect to the database. The credentials are managed as 

environment variables and unavailable in the source code. 

Capacity and Scalability: The application should implement asynchronous 

programming to avoid blocking threads during I/O requests, achieve concurrency and 

remove the thread per request capacity ceiling. In addition, the application should 

enable horizontal scaling with multiple deployments. 

Maintainability and Testability: When justified, the application must implement 

design pattens and software development good practices to increase the system’s 

maintainability. In terms of testability test and code coverage are considered. The 

application should have 100% test coverage and over 70% code coverage in Unit 

Testing. The application should be tested end-to-end.    



46 
 

6. Approach 

This section discusses the chosen approach to fulfil the objectives and satisfy the aim 

of this project. The methodology is devised for an individual project instead of a team 

one and uses elements of two Agile methodologies, Scrum and Kanban, adapted for 

more efficient work outside a team. Furthermore, it follows the software development 

lifecycle principles explored in the Approach section. It is preferred to use an Agile 

methodology over waterfall due to its focus on continuous feedback and self-reflection, 

a requirement for the dissertation project. Moreover, it allows for an exploratory 

approach to requirements and guarantees working software early in the development 

process. Nevertheless, the downsides of Agile are considered. Having this report as 

documentation of the process partially eliminates Agile’s lack of documentation 

problem for the planning and design phase.  

Furthermore, Jira software discussed later in the chapter serves as a chronological 

history of the implementation phase of the project and the priority of different tasks. In 

addition, Git, a version control software, is used during the implementation phase, thus 

allowing documentation of different states of the code. A disadvantage of using Agile 

is the difficulty in estimating the delivery date to match the deadline for the master’s 

degree. How this challenge is overcome is discussed later in this chapter.  

Figure 14 - Agile values (McCloskey [no date]) 



47 
 

The project focuses only on three of the four Agile values (Figure 14), excluding the 

“Customer Collaboration” one as this is not applicable for this project where the 

researcher takes on all the roles during the software development lifecycle.  

The first value is prioritising individuals and interactions over processes and tools. 

Since the team aspect does not apply to this project, it could simply be reshaped as 

prioritising the project's progress over processes and tools. Thus, a minimalistic 

methodology and project management techniques are used to achieve the objectives. 

A combination between Scrum and Kanban is used to ensure continuous progression. 

For this purpose, a project management software Jira is used. Tasks, called stories, 

are written into a product backlog and moved through a workflow (Appendix 3 – Jira 

Issues). The workflow consists of four stages: 

• To do: every story has clear objectives and acceptance criteria; it is estimated 

and prioritised accordingly.  

• In Progress: A story that is currently being completed. No more than 4 stories 

at the time are put in progress.  

• Testing: Unit testing and manual testing is done for each story 

• Done: A story is moved into “Done” once all acceptance criteria are satisfied. 

Those stories are archived to serve as documentation of the project. 

All stories are prioritised and estimated in story points, using Fibonacci numbers. A 

story point is a unit of work representing the overall effort required for a story to be 

implemented (Atlassian [no date][a]).  

The second value is creating working software over comprehensive documentation. 

This project has only one contributor; thus, there should be just enough but not 



48 
 

excessive documentation for them to understand their motives. This report and the 

completed stories are used as documentation of the project.  

The third value is “Responding to Change over following a plan”. Scrum ceremonies 

are implemented to satisfy this and achieve maximum flexibility. For this project, a 

retrospective is done approximately every month. There the work approach is 

evaluated consistently. Moreover, a refinement session, where the new stories are 

estimated and prioritised, is scheduled weekly. 

Nevertheless, these timeframes are flexible. Sessions are scheduled depending on 

the project's current needs and can occur more often. Sprints are not strictly 

implemented so that the project could benefit from just enough project management 

without overwhelming it with too many processes.  

The MVP user stories are broken down even more into epics and then further into 

tasks. New tasks are added and removed at any time to maintain flexibility in the 

design requirements as the project evolves, more similarly to Kanban than Scrum. 

7. Product 

After completing the SDLC planning phase in the prior sections, the next phases are 

discussed in this section. It is important to note that these are executed non-

sequentially and iteratively, as discussed in the Approach section. To achieve better 

structure and clarity they are discussed in sequential order. 

All the code referenced in this section and a demo video is available in the 

submission or on the following links: code and demo video. 

https://github.com/MagdalenaVelkova/InterviewMaster
https://youtu.be/QOSafIUukuE


49 
 

7.1. Design 

This application follows a three-tier architecture model where the concerns are 

separated: 

• Presentation tier: The web client application that is solely responsible for what 

the user sees and how they interact with the website 

• Application tier: The backend application contains the controllers, models and 

the domain logic. This tier integrates with the Presentation tier (the frontend) 

through Hypertext Transfer Protocol (HTTP) requests and leverages the 

JavaScript Object Notation (JSON) data standard 

• Data tier: The data storage is externally managed by a MongoDB database  

7.1.1. Backend Design 

Strategic design 

The first step in the application design is to gather all the available knowledge to define 

the domain. There are two bounded contexts for the extended version of the 

application based on the primary and secondary research: “Competency-based 

interview preparation” and “Application Tracking”. The Competency-based interview 

preparation context has two sub-contexts (subdomains): “Competency-based 

interview practice” and “Company intelligence” that correspond to the features 

requested in the questionnaire (Figure 15).  

The focus of this report and the MVP is to develop the functionality based on 

Competency-based interview practice.  



50 
 

 

Figure 15 - High-level context map of the domains 

  

Tactical design 

As mentioned during the tactical design, additional granularity is provided to the 

schema, making it easier to transfer into code. Three primary root aggregates are 

identified within the two main domains and two subdomains: Interview Question, User 

Identity and Application (Figure 16).  

I. Interview Question 

The interview question is an aggregate displayed to the user in the UI. It consists of 

an id and a title (the question) and encapsulates three Value Objects – Topic, Example 

Answer and Prompt (those objects are valuable for their data, not identity). It is 

modelled to satisfy the business criteria of supplemented learning applications and the 

requirements defined and justified in section 5. This aggregate is the shared kernel 

between the Company Intelligence and Interview Practice domains.  

II. User Identity 

User Identity is a shared kernel between the Interview Practice and Application 

tracking domains that allows the application to identify the user so that they can 

Competency-
based interview 

preparation

Competency-based 
interview practice

Company 
Intelligence  

Application 
Tracking



51 
 

interact with the application and gives the means to satisfy the “Protects user’s 

personal information” objective. It consists of two entities: 

• User Profile: used to interact with Applications and Interview Questions and 

encapsulate the user in the context of the application 

• User Personal Data (Identity): This context is all the personal information 

required to identify the user, currently the value objects Email and Password.  

The implementation of using two entities is a design decision that also allowed the 

scalability of authentication. For example, using OAuth with Google or Facebook will 

only give a token and a user id that could be easily related to a User Profile.  

III. (Job) Application 

This aggregate allows a user to create an application for a company and add 

scheduled Application Events such as interviews and assessments to achieve the 

desired Application Tracking functionality. Application Event is a value object because 

an event for the same Application. 

As a last step of the tactical design, the relationships between domain objects are 

established and the model is finalised for implementation (Figure 16).  



52 
 

Figure 16 - System Context Map 



53 
 

7.1.2. Frontend design 

As mentioned in the Literature Review section, visual design and ease of use are 

essential for e-learning applications. Reducing cognitive load and creating a non-

judgmental and approachable learning environment is most important for its success. 

The design process began by outlining the wireframes for the application and deciding 

on the navigation structure of the MVP with 5 pages: 

Landing Page: It is the application's starting point from where the user can navigate 

to other pages (Figure 18 and Figure 17). Text here is minimal, and the user will be 

presented with important information about why the application is valuable. The 

Navigation bar is persisted across all other pages.  

Profile Page: This page will display the user’s responses and favourite interview 

questions. Users can see their trophies for completed lessons and learning progress 

along with their applications and favourite companies in the future. Naturally, this page 

is available only for registered and logged-in users.  

Questions Library: This page is the hub for all the core functionality of the 

Competency-Based interview preparation domain. The low fidelity wireframe shows 

how the list of questions is arranged, see Figure 20. This page has two states: for a 

guest user or a logged-in user. Guest users will only be allowed to view the questions 

and they will not be able to click, answer a question or favourite it. Authenticated users 

can click on the questions, answer them and mark them as favourites, which is visible 

in the navigation bar and questions card displayed in Figure 22. Authenticated uses 

can also filter the questions by topic.  



54 
 

Individual Question Page 

Once a question card is clicked the user is redirected to the Individual Question page 

where users have a workspace to answer the question, see Figure 21. All application 

pages are available here via the navigation bar. Moreover, one can switch to the 

following question in the currently opened list by clicking on the arrows in the 

navigation bar. The order from the question list on the previous page is persisted for 

clarity. For example, selecting a question from the topic “General” will result in the 

whole list of General questions being displayed in the same order as they appear in 

the Question Library. This is presented in the demo video.  

Log in and Registration  

Log in and Registration pages contain forms with the relevant information required. 

Both frontend and backend validation is required to prevent attacks and ensure data 

consistency. 

https://youtu.be/QOSafIUukuE?t=202


55 
 

Figure 18 - Landing page low fidelity wireframe 

Figure 17 - Landing Page high fidelity wireframe 



56 
 

Figure 19 - Profile page low fidelity wireframe 
Figure 20 -Questions library low fidelity wireframe 



57 
 

Figure 22 - Questions Library high fidelity wireframe 

Figure 21 - Individual Question page low fidelity wireframe 



58 
 

Visual Design 

The application’s visual design is established after sufficient clarity is achieved for the 

UX design.  

Firstly, a colour palette with bright and contrasting colours is selected, see Figure 23. 

This palette helps people with visual impairments to see the website. Furthermore, a 

dark theme is used so that the website is less stressful in the eyes and easier to use 

for extended periods (Figure 24). The gamut from blue, purple and pink is chosen 

because it implies 

professionalism and 

creativity (blue and purple) 

but also safety and 

harmony (pink), which 

corresponds to the idea of 

creating a safe 

environment to foster 

students’ employability 

skills. The chosen shapes 

are soft and round, which, 

as discussed, appears 

more approachable. Figure 

24 demonstrates this in a few of the background swatches that are created for the 

project. 

                                                                                                         

Figure 23 - Color palette 

Figure 24 - Background swatches for the website 



59 
 

7.2. Implementation 

7.2.1. Backend 

This section discusses the development of the backend application and highlights 

important implementation details. The application follows Object Oriented 

Programming, SOLID principles, and implements DTO pattern, Repository pattern and 

uses Dependency Injection. Asynchronous programming is used to satisfy the non-

functional requirements, make the app more performant. 

Technology Justification 

Initially, the backend application was developed with Python and FastAPI, a web 

framework. Python was selected because of its fast development, the researcher’s 

familiarity with the language and the language's popularity for open sourcing the 

application at a later stage. FastAPI was chosen as it has a better performance 

compared to other Python frameworks such as Django and Flask (FARM Stack 

Course - FastAPI, React, MongoDB [no date]; FastAPI. [no date]). 

However, as the project grew, Python’s fast development came at the expense of 

maintainability, scalability and code readability. As a result, the application was 

migrated to C# and .NET core as it provides type safety and dependency injection 

facilitating the DDD implementation. The benefits of choosing C# opposing to Python 

are: 

• Performance: C# has better performance than Python as it compiled to an 

Intermediate Language (IL) to achieve multiplatform support and then 

compiled to machine code. 

• Ease in implementing OOP principles with interfaces, inheritance and type 

safety. 



60 
 

• C# has Dependency Injection, which eases adopting SOLID principles, 

whereas python does not provide this out of the box. 

• Both C# and Python support Object Oriented Programming. However, in 

Python, procedural programming is also supported; therefore, it gives the 

flexibility to break OOP principles and start writing less maintainable scripts. 

C# enforces OOP, thus eliminating this risk (C# vs Python: Head to Head 

Comparison [Updated]. 2022). 

• C# has better code readability and more consistent syntax than Python, 

making it more readable and easier to maintain. 

• .NET Core framework is flexible, lightweight, and not platform-specific like the 

pure .NET framework. NuGet packages add extra functionality to the .NET 

Core framework (Microsoft 2022). 

Given that C# results in longer development times, the scope of the MVP was reduced 

to exclude the Job Application Tracking Functionality that was included in the first 

phase of design. 

The proof of concept developed in Python is beneficial as it aided the design process. 

In addition, the Frontend application was subject to minor changes during the C# 

migration due to the low coupling provided by the API contracts. This contributed to 

further refinements of the Context Map during the Design. As a reference, the Python 

code is available in the repository:  

https://github.com/MagdalenaVelkova/InterviewMaster-Legacy 

Data Storage 

MongoDB, a NoSQL database, was preferred over a relational database because 

NoSQL databases provide simplicity when programming, positively affects the 

https://github.com/MagdalenaVelkova/InterviewMaster-Legacy


61 
 

development timescales and allow for frequent application changes during the Agile 

development process. Furthermore, NoSQL databases provide better scalability and 

fast response times; therefore, they affect the usability and efficiency of the software 

solution (McCall’s Quality Model. 2020; NoSQL Vs SQL Databases | MongoDB. [no 

date]).  Mongo Atlas, a cloud-based MongoDB provider, was chosen over setting up 

a local database as it allows for better data security and provides more reliability due 

to being hosted on AWS servers. The official MongoDB Driver NuGet package 

connects the application with the database. 

Authentication 

User Authentication is stateless and implemented using JSON Web Tokens (JWT) 

attached as a header to every network request. Unlike Stateful authentication, 

stateless authentication does not require the server to store any session information 

in memory. Hence, the backend application has better scalability as it can be scaled 

horizontally through multiple deployments and increases reliability as the server does 

not require any in-memory data storage that might corrupt in case of crashes (Dwyer 

2021).  

JWT is chosen as it is simple to implement and enhances security compared to token 

authentication methods such as Simple Web Tokens (SWT).  JWT is a standard used 

to transmit Java Script Object Notation (JSON) objects and is usually sent in the 

“Authorization” header of HTTP requests (Auth0 2022). The sequence diagram in 

Figure 25 outlines the Authentication flows of the application for login and registration. 

Each JWT holds a header, payload and signature separated by dots (“.”) and is signed 

with a symmetrical key available in the backend application. The JWT payload 

contains the user ID in this project to facilitate the backend to manage the requests.  



62 
 

Another critical aspect of authentication and security is the handling of personal data. 

User passwords are salted and hashed with a SHA256 cryptographic hash function, 

as the National Institute of Standards and Technology recommends (NIST). A 

password salt is a randomly generated string created when the user registers and is 

appended to the plain text password to introduce deterministic randomness in the 

hashing process. The salt and hashed password are stored in the database to 

calculate the hash in future login attempts, protecting against rainbow attacks where 

hackers use pre-calculated hashes to find matching passwords (Rainbow Table 

Attack. 2022). 

In addition, it was decided to separate personal data in an individual collection that 

later could become its encryption-protected database, separated from the rest of the 

data to directly satisfy the objective of protecting users’ personal data. 

This implementation satisfies the objective of protecting the user data for MVP. The 

“Analysis” section discusses the downsides of this implementation, and the “Future 

work” section continues that discussion on how it can be improved as the project 

matures. 



63 
 

Figure 25 - Log in (top) and Registration (bottom) sequence diagrams 



64 
 

Backend structure 

An API starter project is created and wrapped in a project solution to satisfy the DDD 

structure and patterns described in the Design section. After that, it is modified to 

satisfy the layers described in Figure 26 left, and the structure was established as 

shown in Figure 26 right. All outer layers (Figure 26 left) depend on the inner ones and 

no dependency flows in the other direction. This way, the logic belonging to the 

Domain and Application layers is encapsulated.  

Domain layer 

The first development phase is creating the Domain layer representing the Context 

Map with the User (Identity), Interview Question and User Solution (Interview 

Preparation) aggregates. The domain layer does not depend on any other system’s 

layers, as illustrated in Figure 26. 

Figure 26 - API structure diagram (left), Implementation Folder Structure (right) 



65 
 

The Classes and what type of domain object they represent have been specified in 

Table 6 where the “purpose” field describes their real-world representation and 

justification for the classes and demonstrates clearly how the “Single-responsibility” 

(SOLID) principle is implemented. For example, an Interview Question would only 

change should the business needs about the Interview Question change. In Figure 27 

the domain structure of all domain objects and their properties is visible.  

The User aggregate described in the previous section is not implemented as a class 

as it would only hold references to UserAuth and UserProfile classes, which adds 

unnecessary complexity to the code. Validation is added to some of the domain 

objects for example Topic, a value object. A Topic object cannot be created if the topic 

value does not exist.  

The Domain implementation directly contributes to fulfilling the Functional 

Requirements as it creates the foundation for building the application's logic. For 

example, to satisfy user story 5: 

As a user I want the questions to be split in topics so that I exercise my less advanced 

soft skills as a means to improve my employability skills. 

The Topic value object was created and validation of its values was implemented.  



66 
 

 Table 6 - Implementation of context map 

Domain Class Name Type Purpose 
Id

e
n

ti
ty

 
UserProfile Entity To hold all the information about 

interview Practice and other application 

features. It has the same id as UserAuth 

and together they form User aggregate*. 

UserAuth Entity To hold all personal information about the 

user such as their email and encoded 

password. 

Credentials Value 

Object 

To represent the User when logging in. A 

matching email-password value 

represents exactly one identity. 

 I
n

te
rv

ie
w

 P
ra

c
ti

c
e

 

InterviewQuestion Aggregate Combines all domain objects necessary 

for the concept of interview question. 

UserSolution Aggregate Combines a response to a question for a 

user so that the user can see to which 

questions they answered and what 

response they have created. 

ExampleAnswer 

 

Value 

Object 

The value of an example answer. Two 

identical example answers are 

considered the same 

Topic Value 

Object 

Enumerator of possible topic values 

Prompt Value 

Object 

Questions/Advice that aids the user to 

respond to the question e.g., “Use 

SMART objectives” 

Response Value 

Object 

A domain object that holds the value of a 

response. This object doesn’t link it to a user 

r interview question. 



67 
 Figure 27 - Domain object implementations 



68 
 

Application, Controller and Persistence layers 

The Application layer of the project encapsulates all logic and services. The 

controllers’ layer defines the API endpoints acting as the entry points to the backend 

application. Finally, the Persistence layer is an infrastructure layer that deals with the 

communication with MongoDB (or any other Database).  

Services are only created if there are more than two logical actions (for example, if 

statement or validations) in the controller, in contrast to the traditional DDD 

implementation. This rule is implemented to avoid over-engineering and creating 

single-method Services.  

Application layer contains four interfaces, implementing the repository pattern and an 

Identity Service class. The purpose of the Identity Service class is to encapsulate all 

authentication logic and contains the methods for all the steps described in the 

sequence diagrams in the Authentication section (Figure 25). It also helps keeps the 

API endpoints private, satisfing the non-functional requirements. By using a service 

class, implementation specific details are abstracted and should a change be 

necessary for example for generating a different token or using a different hashing 

algorithm the changes are easily implemented in one file, reducing the development 

timeframes and increasing the readability of the code.  

Dependency injection is used to inject the different classes across the application. An 

example of this can be seen in the Users Controller (Figure 28). Dependency injection 

is typically used with interfaces, however it was implemented for a concrete class 

IdentityService in this case. This contributes to the testability of the project as the class 

could be later injected in the Unit tests.  



69 
 

This abstraction of the database implementation into an interface and injecting it into 

the controller is another way of implementing dependency injection and is called 

Repository Pattern. The four repositiory interfaces are defined in the application layer 

(Figure 29) and then implemented to concrete classes in the Presistance layer (Figure 

29). After that they are registered in Service Configuration and injected via 

constructure in the Controller layer (Figure 28). This means that the Application layer 

has no dependency on the Controller and Percistance layers. The benefits of that are 

scalability and reusability. There is no dependency on external technology 

implementation or changes in the technoolgy used. For example if a change in 

technology is necessary for example from MongoDB to SQL Database, only the 

concrete class will change but the logic, encapsulated in the Application layer remains 

the same.  

Therefore, the Dependency Inversion Principle (SOLID) is followed as “Entities must 

depend on abstractions, not on concretions” (Oloruntoba 2021). This principle is also 

conducted by creating the BaseRepository abstract class that is the blueprint of how 

to connect to Mongo Collections and perform actions that was used to inherit from and 

send requestes to MongoDB. Moreover, Dependency injection is also used to inject 

the MongoDB database as a singleton to each of the repositories. This allows for easy 

implementation of other technologies and was used to simplify unit testing.  

DTO pattern is used from incoming data from the frontend such as data from login and 

registration forms (Figure 30,top right) and also implemented for objects saved to the 

database. In this way there is no dependency between the domain layer and the 

presentation or persistence layers (Figure 30,left, right bottom). This helps abstract 

implementation details of domain objects.  



70 
 

  

Figure 28 - Code snippet from UsersController, Injection of Identity Service via constructor 



71 
 

 

Figure 29 - Repository pattern implementation, Identity Service implementation(top right), Services and Persistance 



72 
 

Figure 30 - DTO pattern, left MongoDB DTO, right top API DTO, right bottom DTO folder 



73 
 

 

7.2.2. Frontend 

Technology Justification  

The presentation tier of the application is a web application built with React, a reactive 

and declarative framework for JavaScript (Reactjs 2022). React was selected because 

of its popularity, extensive official documentation and community support (Jaiswal [no 

date]). Furthermore, React encourages creating reusable components and utilises a 

virtual DOM to track updates and only re-render the UI sections subject to updates, 

which results in faster development and better application performance (Jaiswal [no 

date]). 

Alternatives to React such as Svelte were considered for the UI. Svelte is a front-end 

framework that has gained 150% popularity in the last two years (Twardowska 2022). 

Svelte has a compiler that provides better application performance and smaller file 

sizes, however, it is less scalable, it does not support code reusability, has less 

documentation and smaller community support. Thereby, React’s faster development 

and scalability were preferred over application performance (LePage 2022).   

React Project  

The application follows the Single Responsibility Principle and encapsulates 

components, styling, pages, state management and routing separately: 

• Component: They hold specific HTML components and functionality that can 

be reused multiple times. Bootstrap and Material UI were leveraged to build the 

web application as they provide already styled components and layouts. 



74 
 

• Styling: Each component has an associated CSS file with the styling and the 

application implemented a Material UI theme to encapsulate the colour palette 

of the design   

• Pages: They set the layout and combine multiple components to create a page 

available at a given URL. Components are available for the 6 pages described 

in the Design section. The pages render content conditionally based on the 

state of the application.  

• State Management: React has one-way data binding that follows the 

hierarchical structure of the virtual DOM by design, i.e., application state is only 

passed from parent to children in the 

DOM tree. Redux, a state container 

for JavaScript, was adopted to 

centralise the state management and 

make it available to any node in the 

DOM. In essence, Redux is the 

“single source of truth” of the 

application state and sits in parallel to 

the virtual DOM to provide global 

state for the application, thereby avoiding having to pass it from a parent to a 

child in the Virtual DOM (Three Principles | Redux. 2021). This directly 

contributes to achieving the non-functional requirement of keeping some of the 

pages on the FE private.  

• Routing: React applications are single page and have a single HTML file that 

loads the React application. React router mimics a multipage application by 

selecting the page component that should be rendered for each URL 

Figure 31- React project structure 



75 
 

Figure 32 shows the entry point of the application in index.js. Figure 33 show the React 

application that is loaded into the single HTML and how the main services are added: 

 
Figure 32. React Application loaded in HTML, index.js 

 

 
Figure 33. React application from the web application source code, App.js 

• Provider: Redux container to hold the global state 

• CacheProvider: Maintains the Material UI theme consistently in the DOM 

• ThemeProvider: Customised Material UI global theme  

• BrowserRouter and Routes: Provide URL navigation and page rendering 

• FixedTopContainer: This is the application navigation bar 

This way of annotating allows to use these services at any point of the application as 

the highest in hierarchy component is App.js.  



76 
 

Finally, Axios library, an HTTP client for node.js was used to make asynchronous API 

calls to the backend and retrieve the data, thus minimising response times (Getting 

Started | Axios Docs. [no date]).   

Visual Implementation 

The final pages correspond to the UX design and are a good example of consistency 

in the colours, shapes and typography. Furthermore, they implement visual hierarchy, 

Figure 34- Examples of final design implementation 



77 
 

for example the main titles in Figure 34 are significantly more noticeable than the small 

paragraphs’ titles. All of the pages are available in the demo video.  

7.2.3. Testing  

The MVP project implements unit testing and end to end manual testing.  

Unit testing 

XUnit, the most common open-source testing framework for .NET projects, was 

utilised for the Unit Tests. This framework was chosen as it provides a variety of 

learning materials online and because it is very lightweight, making it ideal for 

performing unit testing during development, which needs to be fast by definition 

(Khorikov 2020).  

Unit testing was integrated in the Jira workflow and were developed with each ticket, 

so that all features were tested extensively at unit level.  

Unit of testing in the context of the application is defined as a unit of business logic 

and focuses on behaviours. The name standard follows the structure of {Domain 

Object/Process}Should, for example InterviewQuestionShould and is follow by the 

name of an individual test, which is an action e.g. “Interview Question Should Fetch 

All Questions If Topic Is All”.  This directly contributes to the readability of the code as 

it brings clarity to the implementation of features and what the test scenarios are.  

There are a total of 18 test case scenarios that are executed in less than 30 seconds 

and available to view on  Figure 35. 

https://www.youtube.com/watch?v=QOSafIUukuE


78 
 

The testing project was structured in 3 main 

sections: Tests, Utilities and TestData (Figure 

36). The  InterviewMasterTestApp is created as 

a substitute that contains a dependency injection 

container. It  allows to register replacements for 

the injected services similar to the Startup.cs in 

the main app project. This enhances testability, 

as discussed in the “Application, Controller and 

Figure 35 - Unit test run, all test passing, executed in 26.3 sec 

Figure 36 - Unit test structure 



79 
 

Persistence layers” section and allows to register a MongoDB service that initialises a 

local Mongo Database. Therefore, the test cover whole features not isolated methods 

and classes. Furthermore, this eases development as it allows the developer to use 

the ready DTO models for MongoDB to initialise test data (Figure 37). 

Finally, Snapshooter NuGet package is used to create snapshots of data that was 

received and simplify the result validation of the tests. Using a snapshooting tool 

reduces development time and allows for testing longer payloads and validate the test 

results in MongoDB. (Figure 38) 

 

Figure 37 - Generating fake test data for unit tests by using the MongoDB DTOs 



80 
 

The unit test coverage was testes with “Fine Code Coverage” tool. This tool allows 

to see  line coverage and branch coverage. This is useful when estimating what 

else should be tested , however,  according to  Khorikov (2020) only aiming to 

achieve 100% coverage does not guarantee that the system is resilient . This is 

another reason why the Unit Tests are focused on behaviours as they would only 

change should the business logic changes, not when implementation details 

change. Having this in mind, the application achieved 81% line coverage and 70% 

branch coverage.  It is advisable to increase the branch coverage as it allows for 

multiple flows to be tested, nevertheless the line coverage is considered sufficient 

for MVP.  The domain model is excluded from test coverage as  any errors within 

it will cause an error with the outer layers of the application, thus this is an example 

where it is not necessary  to add more tests to only increase the line/branch 

coverage. Furthermore, the Test Coverage is increased by the implementation of  

end to end manual testing. 

Figure 38 - Test snapshots (left) and example of a snapshot (right) 



81 
 



82 
 

End to End Testing 

End to end manual testing is implemented, so that the final application is tested as a 

black box from the perspective of the final user. This ensures that the frontend of the 

application is also tested and the integration between the three tiers is working 

effectively.  

By definition end to end testing is the last level of the testing pyramid and should be 

minimal, thus 5 flows were identified and tested (Appendix 4). Those flows directly 

relate to the functional requirements as defined in section 5.1Functional Requirements 

: 

• Main Flow / Response Flow 

This flow verifies that the user is able to access, save and answer interview 

questions.  

• Favourite Flow 

Verifies that the user can favourite questions and that this state is persisted in both 

the “Questions library” and “My profile” pages. A bug was uncovered and raised as 

a result of this test, which proves its effectiveness in  uncovering different 

scenarios.  

• Topic Flow 

Verifies all the functionality related to topics.  

• Login Flow and Register Flow 

Those two flows relate to the requirement that a user should be able to create and 

have access to their own profile and that the state of that profile is persisted.  



83 
 

The final results of the tests can be found in Appendix 4.  

7.2.4. Version Control  

“Version control is a system that records changes to a file or set of files over time so 

that you can recall specific versions later” (Atlassian [no date]). Git is the most popular 

version control for software projects making arguably the most reliable as well 

(Atlassian [no date]). For the project a trunk-based development workflow was 

leveraged. This includes a remote and local version of the code hosted on GitHub and 

the researcher’s personal machine which ensures that there is sufficient back-up to 

complete the project and for future work. There is only one branch that is frequently 

committed to the remote repository, using meaningful names and the Jira ticket 

numbers. This helps to track which features are delivered in each commit and supports 

rolling back in case of regression bugs, see Figure 39 . 

 
Figure 39 - Example of commit naming  

7.2.5. Data Seeding 

Meaningful data is identified by the “Best approaches for learning applications” as one 

of the most important aspects of creating successful learning applications. Therefore, 

a data seeding tool was developed to insert meaningful, curated interview questions 

and responses in the database. The tool is developed in JavaScript using Mongoose 

language to connect to MongoDB and seed the data.   

 

 



84 
 

8. Analysis 

The study provides comprehensive research exploring the unemployment gap of 

Computer Science students. A variety of sources are used to build a discussion, 

identify the main reasons and explore them, making the study robust and reliable. The 

reason for unemployment in graduates that this study tackles is the “Lack of soft skills 

in graduates”. Therefore, that is explored in detail in conjunction with all the topics that 

relate to it, for example how are soft skills defined and learnt. Exploring a variety of 

topics and angles contributes to seeing the “Lack of soft skills in graduates” in a multi-

dimensional way, thus enhancing the correctness of the study. In sections 2.5. – 2.7. 

the successful approaches for creating e-learning applications are explored and later 

applied in the design discussions, as per the objectives. Furthermore, the primary 

research generates data that shows students self-reported needs for the application 

and the desired functionality. Primary and secondary research findings are later 

applied in devising the functional requirements of the application, thus bringing the 

project as close as possible to achieving the project aim.  

Moreover, the final MVP implementation is closely following the requirements and 

design, that are an outcome of the successful research. It satisfies the objectives of 

the project: 

• As demonstrated in the Testing section all functional requirements of the project 

have been achieved and tested, at least through manual tests and for the 

Backend on Unit level as well. 

• Software engineering best practices were followed and critically analysed 

before being implemented. This means that the complexity of the software 

corresponds to its maturity, but also it allows for capacity and scalability, 



85 
 

maintainability and testability. The latter is achieved also by implementing the 

suggestions in the non-functional requirements section.   

• The Authentication section discusses in depth how personal information is 

protected through the hashing and salting of passwords as well as creating 

separate collections to maintain the information. This is also achieved by 

implementing the non-functional security requirements of keeping pages and 

API endpoints private.  This is considered sufficient for the completion of this 

project and MVP, however in the next section it is discussed how this could be 

improved.  

• The design is repetitive and consistent, and the users have multiple ways of 

reaching different points in the application. The psychological impact of shapes 

and colours is considered as well when creating the final theme.  

8.1. Suggested improvements 

Naturally, the research has its shortcomings. This section highlights them and gives 

improvement suggestions. 

Research 

The primary and secondary research provides extensive information for creating the 

MVP and for mapping the future of the application. Nevertheless, the success of the 

application is currently only assessed based on how it satisfies the requirements. It 

would be beneficial to extend the Primary research by testing the application with real 

users and revising the project objectives and product requirements.  

In addition to this, the initial survey could have been revised to provide less more 

concisely defined options, so that it reduces the students’ cognitive load and creates 

more accurate results. Furthermore, having a bigger sample group and extending the 



86 
 

survey to different universities would have created a more rounded opinion about the 

Computer Science graduates in the UK. 

Implementation 

While the project implementation satisfies the MVP, it mostly only considered the 

“happy path”, when using the application and therefore is prone to errors. This could 

be improved in a series of steps: 

• Exceptions: Meaningful messages on exceptions and exception handling are 

important steps of application development as they exist to give information 

about bugs and crashes. Currently the application has no exception handling, 

thus it is harder to troubleshoot and less reliable as it could crash should the 

use encounter an unhandled exception.  

• Logging: The current implementation of the application does not provide any 

logging. This creates a “black box” application after deployment and is very 

hard to monitor for potential issues. Logging should be implemented for 

important events in the application, and it should go beyond Error handling 

only. As a standard the log levels of an application are “Information”, “Warning” 

and “Error”. These are defined as following: 

o Information: A typical behaviour in the application that is beneficial when 

investigating a bug but should not cause concerns 

o Warning: A non-typical behaviour that is a reason for investigation but 

not serious concerns 

o Error: Atypical behaviour that should raise concerns and should be fixed 

immediately  



87 
 

In this way event-driven monitoring of the logs can be implemented and alerts 

sent if any unusual behaviour appears.  For example, an information log of 

connecting to the database performed many times can alert of memory leaks.  

• Validation: Input validation is important for the correct functioning of the 

application, preventing user error and for increasing security by preventing XSS 

attacks. The Entities and ValueObjects in the backend should be updated to 

reflect proper validation and simple validation rules such as verifying the validity 

of an email field or ensuring the password is at least 8 symbols should be 

implemented in the React application.  

•  Additional testing:  More automated tests should be added to both the 

backend and the frontend. It is recommended to do performance and load 

testing as this will explore the limits of the application and will diagnose 

implementation weaknesses and optimise them. One such weakness has 

already been identified, when a user wants to change from one individual 

question to another by pressing the arrow buttons it takes the application 3+ 

seconds to identify the next question and fetch it from the database. Load test 

on the other hand make the system more reliable and can help in estimating 

costs.  

• Implementing transaction in Backend:  When saving the User aggregate 

(combination of the UserAuth and UserProfile classses) to the database it was 

decided that the personal data is going to be saved in a separate collection and 

later on Database to improve security. However, this creates a scenario where 

a UserAuth class could be created or changed and due to a network error, for 

example,  a UserProfile might never be initiated. To rectify this the Unit of Work 

pattern should be implemented, meaning that a set of operation, in this case 



88 
 

the creation of the two domain objects and saving them into MongoDB, should 

be grouped by using a transaction. This ensures that if there is an error the 

transaction will roll back and there will not be any inconsistencies in the data 

that might cause errors at a later stage. There is an argument against this 

solution as Vernon (2013) recommends to use transactions and UoW pattern 

minimally when implementing DDD as they increase the complexity and 

readability of code, nevertheless, in this case protecting the user’s personal 

information comes as a priority.  

Another recommendation for the project is improving the accessibility of the application 

by following the recommendations of the Web Accessibility Guidelines  (Initiative (WAI) 

2020). In addition to that, loading states could be added to make the application more 

user-friendly and interactive. This could be achieved by creating a loading skeletons 

for each page that are displayed, whilst the data is fetched from the backend.  

Finally, enhancing security by creating a separate password-protected Vault is a must 

for the future stages of the project, especially before deployment. This vault should 

hold MondoDB secrets and keys for hashing the passwords as they are currently 

exposed and create a security vulnerability.  

9. Conclusions 

9.1. Future Work 

Based on the Literature Review and Primary research, to be able to achieve the full 

benefits of this solution and to attract students, the application should implement the 

additional functionality, requested in the initial survey (Primary research) and 

described in the optional requirements for MVP: 



89 
 

6. As a user I want to receive trophies and prises for completing questions so 

that I am motivated to continue my learning.  

7. As a user I want to be able to relate interview questions to companies and 

filter by company so that my learning is targeted to the specific interview I 

am preparing for. 

8. As a user I want to track my job applications so that I can maintain good 

organisation while applying for placement/graduate opportunities. 

This could be achieved by continuing to implement DDD and creating new 

microservices for Application Tracking and Company Intelligence, similarly to the 

Interview Preparation application, created for MVP and adding the trophy and prises 

to the Interview Preparation Domain. The Application tracking and Company 

Intelligence give the users to free access to more functionality, and brings them onto 

the website, whereas the instant gratification motivates them to continue using it. 

Prises, like Duolingo’s streak, for using the application in consecutive days is also 

recommended. In addition, implementing Merill’s principles of instruction is going to 

increase the product’s effectiveness. Furthermore, leveraging a microservice 

architecture contributes towards looser coupling between the services and better 

scalability.  

Another suggestion is to expand the application on the mobile platform. This will allow 

the students to use their preferred medium and give the ability to send direct 

notifications to their phones and prompt them to continue their learning. This should 

create more engagement from the users onto the mobile and website platforms and 

will give them flexibility to use their preferred way of learning. In terms of technological 

solution this could be achieved by using the API gateway design pattern and again 

Microservice architecture.  



90 
 

For the future stages of this project it is suggested to extend the Authentication 

application. This is because storing personal data comes with additional costs and risk 

of security and GDPR breaches. A solution for this is to implement Google 

authentication. This will guarantee a smooth experience when logging in and will 

relieve the project of having to maintain any personal data, such as names, emails 

and passwords, thus transferring the responsibility for the security of those data to 

Google. 



91 
 

10. Reflection on learning  

This section aims to reflect on the project completion process and on the learning 

achievements. Bain reflective model is considered most appropriate for completing 

this section because it provides a systematic approach to reflective learning (Bain 

2002; The University of Edinburgh 2018). Furthermore, it is more recent opposing to 

other approaches such as Gibbs’ reflective cycle and Kolb’s Learing cycle (Kolb 1984; 

Gibbs et al. 1988). In summary, Bain’s model contains five steps: 

• Reporting of the context of the experience 

• Responding to the experience (observations, feelings, thoughts, etc.) 

• Relating the experience to knowledge and skills you already have 

• Reasoning about the significant factors/theory to explain the experience 

• Reconstructing your practice by planning future actions for a similar 

experience 

The full work is available in the Reference section (Bain 2002).  

To complete the project, it was required to research non-technical topics such as 

employability and softs skills. Researching “the gap in employability” and completing 

the Literature Review has given me knowledge that I can apply in my own career 

journey and development. I was able to reflect on my personal soft skills and educate 

myself beyond the scope of the project on how to articulate them better. This has 

helped me in my day-to-day job and I strongly believe it will continue to in the future.  

The application and report development process could be generally split into two 

phases: before September 2021 and after January 2022. The idea generation, 

choosing technologies and developing the project with FastAPI, React and MongoDB 



92 
 

took place in the summer of 2021 with the completion of the taught modules at 

university. I was aiming to use the project as an opportunity to learn new technologies 

and strengthen my knowledge from the MSc Computing taught modules. Furthermore, 

to manage the workload for the original deadline in September 2021 I had to base the 

project on technologies I know as well as new ones. Therefore, I have selected React 

for the Frontend as one of the most popular JavaScript frameworks. Having learnt 

JavaScript at university helped me speed up the learning process. Python and FastAPI 

were chosen for similar reasons as Python were the language that I felt most 

knowledgeable during the degree but I wanted a framework that exposes more 

implementation details and is more lightweight and flexible in comparison to the one 

taught during the degree (Flask). In addition to the degree, I have started a new 

position in September, thus my workload became hard to manage and I had to move 

to a part-time education mode. Nevertheless, this experience taught me how to 

effectively manage my time and allow for more time to absorb fresh knowledge and 

learn new technologies. Upon reflection, I believe moving to part-time education has 

also allowed me to benefit more from the dissertation project, explore and learn new 

technologies and approaches. Alternatively, I would have allowed more time to learn 

and reduce the scope of the MVP to match my abilities or I would choose technologies 

I am more familiar with to complete the project on time. This, however, would not have 

achieved my goal of learning during the course of the project and gaining additional 

time management skills. 

Between September 2021 and January 2022, I have been exploring other languages 

and frameworks and have gained an interest in C# and .NET Core framework. 

Furthermore, I was working as a software engineer, which helped me see how projects 

are handled in practice, in a professional environment.  I learned new concepts from 



93 
 

my job and used my project to practice them. For example, I was not aware of Domain 

Driven Design and architecture processes beforehand so researching those has 

enhanced my abilities to make decisions and create more maintainable, readable and 

scalable implementations. This has aided me to redesign my application, using those 

new concepts and create a better solution.  

Furthermore, in this timeframe I had sufficient time to practice my React knowledge 

and do additional courses.  

In January 2022, as I felt more confident with React, I refactored my web client 

application and to explored in more depth the libraries I am using such as React 

Redux.  I started doing C# and .NET Core courses for Web development and was 

learning different design patterns and strategies for implementation and re-made the 

whole Backend. Using MVC and two different applications for the API and the 

Frontend, opposing to a monolith made it easier to do this and I saw the benefits of 

loose coupling dependencies first-hand. Having this experience, in conjunction with 

the architectural knowledge from my job will benefit me in future projects as I now 

consider what effect such changes have and ways to avoid them. 

 Moreover, I have put higher priority onto testing and read a book about it that helped 

me understand it better (in particular unit testing).  The project gave me the opportunity 

to practice my learning and to set up my own Testing project. During the process I 

experimented with an In memory data storge that slowed down the implementation 

sufficiently. This lead me to explore a solution, where a MongoDB is available in 

memory for the Unit tests, so that the CRUD operations do not need to be mocked for 

a different implementation. In retrospect, this has taught me the time cost of 

overcomplicating Unit Tests and the importance of good architectural decisions even 



94 
 

when setting a testing project up. If I am to complete this project again I will use Test 

Driven Development as now I can clearly see how it reduces the timeframes and 

increases the system’s reliability.   

I have updated my Jira board with my tasks and estimated my tasks. This was a direct 

result of my previous project management experience and the knowledge I gained for 

those three months. In retrospective, there was a big improvement in this area, 

however for future projects I will also implement Sprints for more structured and 

definitive completion timeframes. This is because I often found myself adding more 

stories and the work was not sufficiently prioritised until the later stages of the SDLC. 

Furthermore, I believe I achieved the purpose of this project by learning how to use 

React and C# .NET Core from the very basics.  



95 
 

11. References 

9 Rules For UX Design. 2018. Available at: https://usabilitygeek.com/rules-for-ux-

principles/ [Accessed: 31 July 2022]. 

Accessibility for Teams. 2022. Available at: 

https://accessibility.digital.gov/ux/inclusive-design/ [Accessed: 31 July 2022]. 

Alexandra, J. 2022. Programmers & software developers in the UK 2020. Available at: 

https://www.statista.com/statistics/318818/numbers-of-programmers-and-software-

development-professionals-in-the-uk/ [Accessed: 3 September 2021]. 

Almonte, R. 2022. A practical guide to soft skills: communication, psychology, and 

ethics for your professional life. New York: Routledge, Taylor & Francis Group. 

Al-Saqqa, S. et al. 2020. Agile Software Development Approaches And Trends. 

Atlassian [no date][a]. What are story points and how do you estimate them? Available 

at: https://www.atlassian.com/agile/project-management/estimation [Accessed: 25 

July 2022]. 

Atlassian [no date][b]. What is Git: become a pro at Git with this guide | Atlassian Git 

Tutorial. Available at: https://www.atlassian.com/git/tutorials/what-is-git [Accessed: 1 

September 2022]. 

Auth0 2022. JSON Web Tokens. Available at: https://auth0.com/docs/ [Accessed: 1 

September 2022]. 

Author, H. 2021. Understanding the Phases of the Software Development Life Cycle 

(SDLC). Available at: https://harness.io/blog/devops/software-development-life-cycle/ 

[Accessed: 21 July 2022]. 



96 
 

Avram, A. and Marinescu, F. 2006. Domain-Driven Design Quickly: A Summary of Eric 

Evans’ Domain-Driven Design. C4Media. 

Babich, N. 2022. Information Architecture Guide for UX Architects & Designers | 

Adobe XD Ideas. Ideas . Available at: 

https://xd.adobe.com/ideas/process/information-architecture/information-ux-architect/ 

[Accessed: 31 July 2022]. 

baeldung 2021. The DTO Pattern (Data Transfer Object) | Baeldung. Available at: 

https://www.baeldung.com/java-dto-pattern [Accessed: 2 September 2022]. 

Bain, J.D. 2002. Reflecting on practice: student teachers’ perspectives. Flaxton, Qld.: 

Post Pressed. 

BCS, T.C.I. for I. 2022. Record numbers have applied for UK computer science 

degrees this year. Available at: https://www.bcs.org/articles-opinion-and-

research/record-numbers-have-applied-for-uk-computer-science-degrees-this-year/ 

[Accessed: 4 July 2022]. 

Boyde, J. 2014. A Down-To-Earth Guide To SDLC Project Management (2nd Edition): 

Getting your system / software development life cycle project successfully across the 

line using PMBOK adaptively. Joshua Boyde. 

Bridgstock, R. 2009. The graduate attributes we’ve overlooked: Enhancing graduate 

employability through career management skills. Higher Education Research and 

Development 28. doi: 10.1080/07294360802444347. 

C# vs Python: Head to Head Comparison [Updated]. 2022. Available at: 

https://hackr.io/blog/c-sharp-vs-python [Accessed: 30 August 2022]. 



97 
 

Careers and Employability. [no date]. Available at: 

https://www.cardiff.ac.uk/study/student-life/student-support/careers-and-

employability [Accessed: 17 May 2021]. 

CBI 2019. Getting young people ‘work ready’. Available at: 

https://www.cbi.org.uk/media/2960/cbi_work-readiness.pdf. 

CHERI 2002. UK graduates and the impact of work experience. 

Chou, W. 2013. Fast-tracking your career: soft skills for engineering & IT 

professionals. Hoboken, New Jersey: IEEE Press. doi: 10.1002/9781118662144. 

Clarke, M. 2009. Plodders, Pragmatists, visionaries and opportunists: Career patterns 

and employability. The Career Development International 14(1), pp. 8–28. doi: 

10.1108/13620430910933556. 

Coach, G. 2020. Why is it so hard to get a job after university? Available at: 

https://graduatecoach.co.uk/so-hard-to-get-a-job/ [Accessed: 2 May 2021]. 

Cubet 2015. Introduction to Repository Design Pattern. Cubettech 24 July. Available 

at: https://cubettech.com/resources/blog/introduction-to-repository-design-pattern/ 

[Accessed: 15 May 2021]. 

DDD Part 2: Tactical Domain-Driven Design | Vaadin. [no date]. Available at: 

https://vaadin.com/blog/ddd-part-2-tactical-domain-driven-design [Accessed: 22 

August 2022]. 

Department for Business, Innovation and Skills 2016. Computer science graduate 

employability: qualitative interviews with graduates., p. 64. 



98 
 

Devins, D. and Hogarth, T. 2005. Employing the Unemployed: Some Case Study 

Evidence on the Role and Practice of Employers. Urban Studies 42(2), pp. 245–256. 

doi: 10.1080/0042098042000316128. 

Disadvantages of Agile. [no date]. Available at: 

https://www.planview.com/resources/articles/disadvantages-agile/ [Accessed: 24 July 

2022]. 

Drunk Tank Pink. [no date]. Available at: https://www.colormatters.com/color-and-the-

body/drunk-tank-pink [Accessed: 31 July 2022]. 

Duhigg, C. 2013. The power of habit: why we do what we do and how to change. New 

York: Random House Books. 

Dwyer, G. 2021. Stateful vs Stateless Architecture: Why Stateless Won | Virtasant. 

Available at: https://www.virtasant.com/blog/stateful-vs-stateless-architecture-why-

stateless-won [Accessed: 2 September 2022]. 

Elliott, G. 2004. Global Business Information Technology: An Integrated Systems 

Approach. Pearson Education. 

Evans, E. 2003. Domain-Driven Design Tackling Complexity in the Heart of Software. 

Sydney: Pearson Education, Limited. Available at: 

https://public.ebookcentral.proquest.com/choice/PublicFullRecord.aspx?p=7054140 

[Accessed: 22 August 2022]. 

Falls, I. et al. 2014. Factors Influencing Students’ Perceptions of Online Teamwork. 

SAGE Open 4(1), p. 2158244014525415. doi: 10.1177/2158244014525415. 

FARM Stack Course - FastAPI, React, MongoDB [no date]. Available at: 

https://www.youtube.com/watch?v=OzUzrs8uJl8 [Accessed: 1 August 2021]. 



99 
 

FastAPI. [no date]. Available at: https://fastapi.tiangolo.com/ [Accessed: 23 May 

2021]. 

Fowler, M. 2020. bliki: DomainDrivenDesign. Available at: 

https://martinfowler.com/bliki/DomainDrivenDesign.html [Accessed: 29 August 2022]. 

Friedman, V. 2018. Responsive Web Design - What It Is And How To Use It — 

Smashing Magazine. Available at: 

https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/ 

[Accessed: 31 July 2022]. 

Getting Started | Axios Docs. [no date]. Available at: https://axios-http.com/docs/intro 

[Accessed: 15 September 2022]. 

Gibbs, G. et al. 1988. Learning by doing: a guide to teaching and learning methods. 

London: FEU. 

Higginbotham, D. 2021. Graduate schemes 2021 | Prospects.ac.uk. Available at: 

https://www.prospects.ac.uk/careers-advice/getting-a-job/graduate-schemes 

[Accessed: 2 May 2021]. 

History: The Agile Manifesto. [no date]. Available at: 

https://agilemanifesto.org/history.html [Accessed: 23 July 2022]. 

IBM [no date]. What is Software Testing and How Does it Work? | IBM. Available at: 

https://www.ibm.com/topics/software-testing [Accessed: 15 September 2022]. 

Initiative (WAI), W.W.A. 2020. Web Content Accessibility Guidelines (WCAG) 

Overview. Available at: https://www.w3.org/WAI/standards-guidelines/wcag/ 

[Accessed: 14 February 2021]. 



100 
 

Jaiswal, S. [no date]. Pros and Cons of RectJS. Available at: 

https://www.javatpoint.com/pros-and-cons-of-react [Accessed: 7 September 2022]. 

Janssen, T. 2018. Design Patterns Explained – Dependency Injection with Code 

Examples. Available at: https://stackify.com/dependency-injection/ [Accessed: 6 

September 2022]. 

Joseph, D. et al. 2010. Practical intelligence in IT: assessing soft skills of IT 

professionals. Commun. ACM 53, pp. 149–154. 

Khorikov, V. 2020. Unit testing: principles, practices, and patterns. Shelter Island, NY: 

Manning. 

Kinsbruner, E. [no date]. The Testing Pyramid & How to Use It. Available at: 

https://www.perfecto.io/blog/testing-pyramid [Accessed: 15 September 2022]. 

Kolb 1984. Kolb’s Learning Styles and Experiential Learning Cycle | Simply 

Psychology. Available at: https://www.simplypsychology.org/learning-kolb.html 

[Accessed: 4 September 2022]. 

Krug, S. 2006. Don’t make me think! a common sense approach to Web usability. 2nd 

ed. Berkeley, Calif: New Riders Pub. 

LePage, J. 2022. Svelte vs React: Which is the best library in 2022? - Isotropic. 

https://isotropic.co/ . Available at: https://isotropic.co/svelte-vs-react/ [Accessed: 7 

September 2022]. 

Mansour, B.E. and Dean, J.C. 2016. Employability Skills as Perceived by Employers 

and University Faculty in the Fields of Human Resource Development (HRD) for Entry 

Level Graduate Jobs. Journal of Human Resource and Sustainability Studies 4(1), pp. 

39–49. doi: 10.4236/jhrss.2016.41005. 



101 
 

Martin, R. 2000. Design Principles and Patterns. 

Mason, G. et al. [no date]. How Much Does Higher Education Enhance the 

Employability of Graduates?, p. 52. 

McCall’s Quality Model. 2020. GeeksforGeeks 4 July. Available at: 

https://www.geeksforgeeks.org/mccalls-quality-model/ [Accessed: 9 August 2022]. 

McQuaid, R.W. et al. 2005. Introducing Employability. Urban studies (Edinburgh, 

Scotland) 42(2), pp. 191–195. doi: 10.1080/0042098042000316092. 

McQuaid, R.W. and Lindsay, C.D. 2005. The concept of employability. Urban Studies 

, pp. 197–219. 

Microservices Pattern: API gateway pattern. [no date]. Available at: 

http://microservices.io/patterns/apigateway.html [Accessed: 5 September 2022]. 

Microsoft 2022. NuGet Gallery | Packages. Available at: 

https://www.nuget.org/packages [Accessed: 4 September 2022]. 

Misra, R.K. and Khurana, K. 2017. Employability Skills among Information Technology 

Professionals: A Literature Review. Procedia Computer Science 122, pp. 63–70. doi: 

10.1016/j.procs.2017.11.342. 

Mitzi, W. [no date]. Improving Student Employability. 

Nare, K. 2021. Analyzing Duolingo from Product Design Perspective after 400 Days 

Of Non-Stop Practice | by Nare K. | UX Planet. Available at: 

https://uxplanet.org/analyzing-duolingo-from-product-design-perspective-after-400-

days-of-non-stop-practice-c4d4809bdb37 [Accessed: 17 July 2022]. 



102 
 

Nation, T. 2021. Tech hiring at its highest level for five years. Available at: 

https://technation.io/news/tech-hiring-at-its-highest-level-for-five-years/ [Accessed: 5 

July 2022]. 

Newell, S. [no date]. What is the Software Development Lifecycle? Available at: 

https://www.productplan.com/learn/software-development-lifecycle/ [Accessed: 21 

July 2022]. 

NoSQL Vs SQL Databases | MongoDB. [no date]. Available at: 

https://www.mongodb.com/nosql-explained/nosql-vs-sql [Accessed: 1 September 

2022]. 

Oloruntoba, S. 2021. SOLID: The First 5 Principles of Object Oriented Design | 

DigitalOcean. Available at: 

https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-

principles-of-object-oriented-design, 

https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-

principles-of-object-oriented-design [Accessed: 2 September 2022]. 

Oxford Advanced Learner’s Dictionary 2022. Definition of employability. Available at: 

https://www.oxfordlearnersdictionaries.com/definition/english/employability 

[Accessed: 1 September 2022]. 

Patel, S. 2019. How To Design And Build Successful eLearning Websites: Key Tips 

And Principles To Follow. Available at: https://elearningindustry.com/build-successful-

elearning-websites-key-tips-principles-follow [Accessed: 19 July 2022]. 

Ponsukcharoen, T. 2017. Technical report - Skills analysis - April 2017. Available at: 

https://docs.google.com/document/d/1h8OOkz1L7AZQvOYFbY3jgzh8yZMVKlZifSzd

DEY07kU/edit?usp=embed_facebook [Accessed: 8 July 2022]. 



103 
 

Professional Web Design Process Explained in 5 minutes 2020. Available at: 

https://www.youtube.com/watch?v=IbOyBIS57C0 [Accessed: 30 July 2022]. 

Rainbow Table Attack. 2022. Available at: 

https://www.beyondidentity.com/glossary/rainbow-table-attack [Accessed: 15 

September 2022]. 

Rauser, A. 2021. The Psychology of Lines and Shapes in Web Design. Available at: 

https://prototype.net/blog/web-design-shapes [Accessed: 23 July 2022]. 

Raza, M. 2020. Agile vs Waterfall SDLCs: What’s The Difference? Available at: 

https://www.bmc.com/blogs/agile-vs-waterfall/ [Accessed: 23 July 2022]. 

Reactjs 2022. React. Available at: https://reactjs.org/ [Accessed: 15 September 2022]. 

Rosenberg, M.J. 2001. E-learning: strategies for delivering knowledge in the digital 

age. New York: McGraw-Hill. 

Schipper, M. and van der Stappen, E. 2018. Motivation and attitude of computer 

engineering students toward soft skills. In: 2018 IEEE Global Engineering Education 

Conference (EDUCON)., pp. 217–222. doi: 10.1109/EDUCON.2018.8363231. 

Shadbolt, S.N. 2016. Shadbolt review of computer sciences degree accreditation and 

graduate employability., p. 91. 

Sharma, A. 2020. 10 Tips For Creating The Perfect eLearning Website. Available at: 

https://elearningindustry.com/10-tips-creating-perfect-elearning-website [Accessed: 

14 July 2022]. 

Sharma, L. 2022. Why is Testing Necessary and Important? | ISTQB. Available at: 

https://www.toolsqa.com/software-testing/istqb/why-is-testing-necessary/ [Accessed: 

15 September 2022]. 



104 
 

Smith, S. et al. 2018. The impact of work placement on graduate employment in 

computing: Outcomes from a UK-based study. Available at: 

https://files.eric.ed.gov/fulltext/EJ1199461.pdf. 

Sobral, S. 2019. 30 YEARS OF CS1: PROGRAMMING LANGUAGES EVOLUTION. 

doi: 10.21125/iceri.2019.2214. 

Soft skills – how to assess them. [no date]. Available at: 

https://www.pagepersonnel.co.uk/advice/management-advice/attracting-

candidates/soft-skills-how-assess-them [Accessed: 14 July 2022]. 

The 6 Key Principles of UI Design. 2021. Available at: https://maze.co/collections/ux-

ui-design/ui-design-principles/ [Accessed: 17 July 2022]. 

The Disadvantages of Agile Methodology. 2019. Available at: 

https://www.lucidchart.com/blog/3-disadvantages-of-agile-methodology [Accessed: 

24 July 2022]. 

The University of Edinburgh 2018. The 5R framework for reflection. Available at: 

https://www.ed.ac.uk/reflection/reflectors-toolkit/reflecting-on-experience/5r-

framework [Accessed: 4 September 2022]. 

Three Principles | Redux. 2021. Available at: 

https://redux.js.org/understanding/thinking-in-redux/three-principles [Accessed: 7 

September 2022]. 

TIOBE Index. [no date]. Available at: https://www.tiobe.com/tiobe-index/python/ 

[Accessed: 12 July 2022]. 



105 
 

Todd, B. 2017. These skills make you most employable. Why isn’t coding in the top 

10? Available at: https://80000hours.org/articles/skills-most-employable/ [Accessed: 8 

July 2022]. 

Tuning 2008. Tuning Project. Available at: https://www.unideusto.org/tuningeu/tuning-

methodology.html [Accessed: 14 September 2022]. 

Twardowska, B. 2022. Why Svelte is the Next Big Thing in JavaScript Development. 

Available at: https://naturaily.com/blog/why-svelte-is-next-big-thing-javascript-

development [Accessed: 7 September 2022]. 

Vernon, V. 2013. Implementing domain-driven design. Upper Saddle River, NJ: 

Addision-Wesley. 

Vlahovic, N. [no date]. Implications of Domain-driven Design in Complex Software 

Value Estimation and Maintenance using DSL Platform. Available at: 

https://www.semanticscholar.org/paper/Implications-of-Domain-driven-Design-in-

Complex-and-Vlahovic/41b403e4d61f8de7dc7364bf6186d5fc5584efe7 [Accessed: 

24 August 2022]. 

What is User Interface Design? [no date]. Available at: https://www.interaction-

design.org/literature/topics/ui-design [Accessed: 30 July 2022]. 

When to Use Waterfall vs. Agile - Macadamian. [no date]. Available at: 

https://www.macadamian.com/learn/when-to-use-waterfall-vs-agile/ [Accessed: 23 

July 2022]. 



106 
 

11. Appendices 

11.1. Appendix 1 - Ethical Review Approval  

 



107 
 

11.2. Appendix 2 – Full Survey Results 

 

 

 



108 
 

 

 

 



109 
 

 

 

Please tell us why? 

22 responses 

I don't feel that I have learned enough coding skills from the MSc - I am still a beginner despite doing 

very well in assignments and passing the modules. 

I am not a confident coder. 

Specifically occupational skills - having solid knowledge in CS theory and practical knowledge in a 

programming knowledge we’re coming themes in my interviews/applications. Having more 

knowledge/confidence in these areas would make the interview process less daunting and ultimately 

improve your work in related roles. 

I have felt as a woman in STEM that I do not belong and need to work on my confidence 

I am not very good with people 

I feel like I've got a good grasp on everything else 



110 
 

I believe I need more practice in creating projects and completing them to a good standard 

Actually it is not higher order thinking skills important, the most important thing is that you can 

express your thinking in free. Most people know technical skills but they do not know how to share. 

They just know do do do, but do not know promote their ideas. Like writing code, you should not be 

silence, be ready to tell a good story of what you are writing and be ready to communicate with 

partners telling them what they need do. Speaking out idea in a short time, at least in the interview, 

is very important, and it needs practice. I do not think Cardiff University does this well, especially in 

the pandemic. 

I feel confident in the soft skills I've gained in other industries - as a conversion masters student, I 

think I have a diverse skillset in that regard - but I am competing with technically proficient applicants 

from STEM backgrounds. As such, becoming more technically skilled would make me a more well-

rounded candidate. 

Many jobs require particular technical skills 

Having a genuine conversation with your interviewer is generally far more beneficial then behaving 

like somebody who is being interrogated 

These skills can be trained even during the study of our MSc Course 

Little experience in the technical skills aside from Master's program. Likely to develop more when in 

a work environment. 

Criteria employers are looking for is often unclear 

I have Asperger's Syndrome and find networking and small talk difficult 

creative but rational solutions to worldly problems are always in the highest demand 

It would help pass tests that the graduate schemes put across. 

I sometimes am too rash in decisions which I need to improve on 

Technical skills are highly prioritized by employers in China since they usually want well-equipped 

graduates. 

Graduate jobs feel like a new experience 

Technical skills in the Cyber security realm are very important 

 



111 
 

 

What type of preparation tools have you used through the application process? 

21 responses 

Linkedin, CodeCademy, Google, etc. 

none 

Leetcode, AlgoExpert 

Practice interviews mainly. I have been through the process a lot by this point so am well practiced in 

other things like CV creation and cover letters etc 

I have used various interview techniques practising quistions on social interactions 

Leetcode, hackerrank, CTCI 

I haven't 

A blank paper, recall what I have done. 

Self-study courses (eg. online free bootcamps and tutorials) and personal programming projects. 

Doing extremely thorough research into the company, practicing aptitude tests, preparing answers to 

commonly asked questions 

Google, Uni Career Services 

Cardiff Careers centre resources 

CV advice 

Mock interviews 

Articles about CV and Cover letter writing, LinkedIn, numeracy tests 

Meeting with university careers staff, the CV checker 

Practice behavioural tests  



112 
 

CV support 

Guides for CV writing online for free, for interview skill I got better as I done real interviews with 

various companies. 

Notes apps. 

None 

Mostly determination. The ability to pick yourself up after every rejection and just keep applying 

 

 



113 
 

11.3. Appendix 3 – Jira Issues  

Note: the issues were exported as CSV and some of the fields such as description 

and acceptance criteria were omitted for simplicity

Summary Issue key Issue Type Status Created Updated DescriptionStory points

Interview questions grouped in topics IM-1 Task Done 04/10/2021 21:36 10/04/2022 22:54 As a user I w 8

Individual question page IM-2 Task Done 04/10/2021 21:38 10/04/2022 22:56 As a user I want to access 

Saving answers IM-3 Task Done 04/10/2021 21:40 10/04/2022 11:10 As a user I w 5

Edit answers IM-4 Task Done 04/10/2021 21:41 10/04/2022 11:12 As a user I w 3

Status functionality of questions IM-5 Task Done 04/10/2021 21:42 02/06/2022 14:47 As a user 3

Job application creation and logging IM-6 Task To Do 04/10/2021 21:46 10/04/2022 11:13 As a user I w 8

Add Application categories IM-8 Task To Do 04/10/2021 21:48 10/04/2022 11:13 As a user I w 3

Application email notifications IM-9 Task To Do 04/10/2021 21:49 10/04/2022 11:13 8

Timestammping of events in Applications IM-10 Task To Do 04/10/2021 21:49 10/04/2022 11:13 As a user I w 2

Calender option in job applications IM-11 Task To Do 04/10/2021 21:49 10/04/2022 11:13 As a user I w 8

Authentication IM-12 Task Done 04/10/2021 21:50 15/06/2022 10:44 As a user I w 8

Application tracking dashboard IM-15 Task To Do 04/10/2021 21:51 10/04/2022 11:14 5

Create model for a single question IM-18 Task Done 17/10/2021 12:30 26/04/2022 08:51

Create an API request to fetch all questions IM-19 Task Done 17/10/2021 12:35 29/03/2022 23:45

Create an API request to fetch a single question IM-20 Task Done 17/10/2021 12:35 10/04/2022 11:11

Create an API request to fetch all questions by topic IM-21 Task Done 17/10/2021 12:35 21/11/2021 13:13

Design all questions page IM-22 Task Done 17/10/2021 12:39 10/04/2022 11:09 2

Implement design of all questions page IM-23 Task Done 17/10/2021 12:39 10/04/2022 11:09 5

Display all questions dynamically from DB on 'All Questions' PIM-24 Task Done 17/10/2021 12:40 29/03/2022 23:45

Create an individual Question component to be displayed onIM-25 Task Done 17/10/2021 12:43 10/04/2022 10:59

Create a 'User Response' schema IM-27 Task Done 17/10/2021 12:49 10/04/2022 22:56

Design Individual Question page IM-28 Task Done 17/10/2021 12:50 10/04/2022 11:11 2

Implement design for Individual Question Page IM-29 Task Done 17/10/2021 12:50 10/04/2022 11:13 5

Individual Question IM-30 Epic Done 17/10/2021 12:52 03/06/2022 23:22 As a user 

Questions group features IM-31 Epic To Do 17/10/2021 12:58 28/05/2022 10:12 As a user I want to have a

Profile Features IM-32 Epic Done 17/10/2021 13:08 15/06/2022 10:44 As a user I want my data

Set up error handling with redux IM-33 Task To Do 17/10/2021 13:09 03/06/2022 19:32 5

Job Application Tracking functionality IM-35 Epic To Do 17/10/2021 13:13 17/10/2021 13:13 As a user I want my job

Add topics tabs IM-37 Subtask Done 24/10/2021 11:03 10/04/2022 22:53

Create topics attribute in Question schema IM-38 Subtask Done 24/10/2021 11:03 13/03/2022 21:31

Pass filtering by topics to frontend IM-39 Subtask Done 24/10/2021 11:04 10/04/2022 22:53

Create an API to request questions by topic IM-40 Subtask Done 24/10/2021 11:05 26/03/2022 14:06

Connect to MongoDB IM-42 Task Done 13/03/2022 12:11 13/03/2022 21:30

Create git repository IM-43 Task Done 13/03/2022 21:29 13/03/2022 21:30

Make individual question page responsive on mobile IM-44 Task Done 10/04/2022 11:01 03/06/2022 23:23 1

Design and implement profile page IM-46 Task Done 10/04/2022 11:26 03/06/2022 18:36 5

Dynamically get the user profile from DB IM-47 Task Done 10/04/2022 11:27 24/05/2022 15:27 2

Seed meaningful data IM-48 Task Done 10/04/2022 11:28 03/06/2022 10:50 5

Create data seeding project for all collections IM-49 Subtask Done 10/04/2022 11:29 02/06/2022 14:47

Generate meaningful data IM-50 Subtask To Do 10/04/2022 11:29 10/04/2022 11:29

Refactor tabs component on Question Library page IM-51 Task Done 10/04/2022 22:54 28/05/2022 10:05 3

Add informative logging IM-52 Task To Do 15/05/2022 20:37 15/06/2022 10:45 5

JWT token authentication IM-53 Subtask Done 15/05/2022 22:06 22/05/2022 23:06

Refactors FE IM-55 Task Done 19/05/2022 22:56 28/05/2022 10:09 2

Redirect to home page from register and login page IM-56 Subtask Done 19/05/2022 22:56 28/05/2022 10:03

Set up Logout functionality IM-58 Subtask Done 19/05/2022 22:57 22/05/2022 23:06

Add favourite/unfavourite question functionality to questionIM-59 Task Done 19/05/2022 23:03 28/05/2022 10:05 3

UserSolution not being saved with correct userId and QuestioIM-60 Task Done 22/05/2022 22:47 28/05/2022 10:09

Password hash, encode, salt and refactor authentication to fIM-61 Task Done 23/05/2022 19:26 03/06/2022 19:40

Set up unit testing project BE IM-62 Task Done 24/05/2022 15:29 28/05/2022 21:16 Acceptan 8

Create Unit Testing scenarios for the BE IM-63 Task Done 24/05/2022 15:29 03/06/2022 19:40 2

Testing IM-64 Epic To Do 24/05/2022 15:31 28/05/2022 10:10

Implement transaction when creating a userprofile and useriIM-65 Task To Do 28/05/2022 09:56 15/06/2022 10:45

Non-functional IM-67 Epic To Do 28/05/2022 10:08 28/05/2022 10:18

Optional IM-68 Epic To Do 28/05/2022 10:16 28/05/2022 10:17

Set up unit tests FE IM-69 Task To Do 28/05/2022 10:31 15/06/2022 10:46 8

Add Unit tests for questions IM-70 Task Done 28/05/2022 21:16 03/06/2022 19:40 5

Add unit tests for User IM-71 Task Done 28/05/2022 21:16 01/06/2022 19:10 5

Add unit tests for UserResponse IM-72 Task Done 28/05/2022 21:17 03/06/2022 19:40 5

Refactor unit tests to use an instance of MongoDb so repositoIM-73 Task Done 30/05/2022 17:00 03/06/2022 19:40

Add previous/next functionality to individual question page IM-74 Task Done 03/06/2022 10:49 03/06/2022 23:00

Refactor individual question page and menu IM-75 Task Done 03/06/2022 10:50 03/06/2022 19:40

Delete leftover pages from refactoring questions library IM-76 Task Done 03/06/2022 10:50 03/06/2022 19:40

WriteUp ReadMe file IM-77 Task To Do 03/06/2022 19:46 15/06/2022 10:47

Delete unused node modules IM-78 Task Done 03/06/2022 19:46 19/07/2022 08:10 1

Seed more questions IM-79 Task To Do 03/06/2022 19:47 15/06/2022 10:47

Add references IM-80 Task To Do 04/06/2022 00:18 15/06/2022 10:47

Add FE form validation IM-81 Task To Do 15/06/2022 10:46 15/06/2022 10:47

Add meaningful errors on Exceptions IM-82 Task To Do 15/06/2022 10:46 15/06/2022 10:47



114 
 

11.4. Appendix 4 – Manual Test Results 

Test Case Id: 1 Test Purpose: Verify functional requirement that a user should be able 

to access interview questions, answer them and view them in their 

profile 

Environment: Microsoft Windows v.10.0.18363 Build 18363 Google Chrome 

Preconditions: 

Be logged in the application with the following account: 

Email: magic@email.me 

Password: 123456 

and be on the application homepage. AND have the Questions library open.  

Test Case Steps: Main Flow / Response Flow 

Step 

No 

Procedure Expected Response Pass/Fa

il 

1 Click on the “Tell me a bit 

about yourself” card 

Be redirected to the individual question 

page with 3 panes as shown in sketch 1.  

 

Pass 

2 In the right pane write 

“Lorem Ipsum” 

Text should appear on screen when 

typing. 

Pass 

3 Select “Lorem” and press 

the bold button  

The text should appear bold Pass 

4 Click the “Submit Response” 

button 

No visible changes.  Pass 

5 
Click the  questions 

library icon in the nav bar 

Be redirected to the “Questions Library " 

page 

Pass 

6 Click on the “Tell me a bit 

about yourself” card 

Be redirected to the individual question 

page  

AND the text “Lorem Ipsum” with 

“Lorem” in bold should appear in the 

editor box on the right   

 

Pass 



115 
 

7 
Click on the profile icon  

in the navigation bar 

Be redirected to “My profile” page 

AND 

“Tell me a bit about yourself” should 

appear under “My Responses” 

Pass 

8 Click on the “Tell me a bit 

about yourself” card 

Be redirected to the individual question 

page  

AND the text “Lorem Ipsum” with 

“Lorem” in bold should appear in the 

editor box on the right   

 

Pass 

9 Edit the text to say “Hi, my 

name is John Doe.” 

AND 

Click submit response 

The text should change as you type.  Pass 

10 
Click the  questions 

library icon in the nav bar 

AND 

Click on the “Tell me a bit 

about yourself” card 

Be redirected to the individual question 

page  

AND  

the text  “Hi, my name is John Doe.” 

should appear in the editor box on the 

right   

 

Pass 

Related Tests: Favourite flow 

Author: MV Checker: MV 



116 
 

 

Test Case Id: 2 Test Purpose: Verify functional requirement that a user should be able 

to access interview questions, favourite them and view them to their 

profile 

Environment: Microsoft Windows v.10.0.18363 Build 18363 Google Chrome 

Preconditions: 

Be logged in the application with the following account: 

Email: magic@email.me 

Password: 123456 

and be on the application homepage. 

Test Case Steps: Favourite Flow 

Step 

No 

Procedure Expected Response Pass/Fa

il 

1 Click on the ‘Questions library’ 

button 

Be redirected to the “Questions 

Library " page 

Pass 

2 Click the ♡ icon in the right corner of 

the “Tell me a bit about yourself” 

question. 

The icon is now coloured ♥ Pass 

3 Click ‘My Profile’ button in the 

navigation bar 

Under “Your Favourites” the 

“Tell me a bit about yourself” 

should appear AND the heart 

icon should be coloured ♥ 

Fail 

4 Click on the “Tell me a bit about 

yourself” card 

Be redirected to the individual 

question page with 3 panes as 

shown in sketch 1.  

 

Pass 

Comments: Step 3 failed – the icon colour is not persisted in the “My Profile” page. A 
bug is raised in Jira IM-108 

Related Tests: N/A 

Author: MV Checker: MV 

https://interviewmaster.atlassian.net/browse/IM-108


117 
 

 

 

Sketch 1 – The individual page wireframe 



118 
 

Test Case Id: 3 Test Purpose: Verify functional requirement that questions should be 

split in topics 

Environment: Microsoft Windows v.10.0.18363 Build 18363 Google Chrome 

Preconditions: Open the application as a guest and navigate to the “Question library” 
page 

Test Case Steps: Topic Flow 

Step 

No 

Procedure Expected Response Pass/Fa

il 

1 Click on the ‘General’ tab See only questions with topic 

‘general’ 

Pass 

2 Click on the ‘Collaboration’ tab See only questions with topic 

‘Collaboration’ 

Pass 

3 Click on the ‘Problem Solving’ tab See only questions with topic 

‘Problem Solving’ 

Fail 

4 Click on the ‘Adaptability’ tab See only questions with topic 

‘Adaptability’ 

Pass 

5 Click on the ‘Organisation’ tab See only questions with topic 

‘Organisation’ 

Pass 

6 Click on the ‘All’ tab See all questions.  Pass 

Author: MV Checker: MV 



119 
 

Test Case Id: 4 
Test Purpose: Verify functional requirement that a user should be able 

to log into a profile  

Environment: Microsoft Windows v.10.0.18363 Build 18363 Google Chrome 

Preconditions: Open the application homepage as a guest user. 

Test Case Steps: Login Flow 

Step 

No 
Procedure Expected Response 

Pass/Fa

il 

1 Click on the ‘Login’ button  Be redirected to the Login page Pass 

2 

Fill the form: 

Email: magic@email.me 

Password: 123456 

Be redirected to the home page. 

Navigation menu should display 

options “My Profile” and 

“Logout”  

Pass 

3 
Click ‘My Profile’ button in the 

navigation bar 

Be redirected to the “My Profile” 

page. 

The title should say “Hi there, 

Mag!”. 

Pass 

4 
Click on question “Are you a team 

player?” 

Be redirected to “Individual 

Question” page. 

The navigation bar should have 

5 icons.  

 

5 Click the exit icon at the end.  

Be redirected to the homepage.  

In the navigation bar: 

‘My Profile’ becomes ‘Login’ 

‘Logout’ becomes ‘Register’ 

On the homepage 

‘Profile’ button becomes 

Register 

Pass 

Related Tests:  

Author: MV Checker: MV 

 

mailto:magic@email.me


120 
 

Test Case Id: 5 Test Purpose: Verify functional requirement that a user should be able 

to create a profile and access it.  

Environment: Microsoft Windows v.10.0.18363 Build 18363 Google Chrome 

Preconditions: Open the application homepage as a guest user. 

Test Case Steps: Register Flow 

Step 

No 

Procedure Expected Response Pass/Fa

il 

1 Click on the ‘Register’ button  Be redirected to the register 

page 

Pass 

2 Fill the form: 

Email: test@email.net 

Password: 123456 

First Name: John 

Last Name: Doe 

Be redirected to the home page. 

Navigation menu should display 

options “My Profile” and “Logout”  

Pass 

3 Click ‘My Profile’ button in the 

navigation bar 

Be redirected to the “My Profile” 

page. 

The title should say “Hi there, 

John!”. 

Pass 

4 Click ‘Logout’ button in the navigation 

bar 

Be redirected to the homepage.  

In the navigation bar: 

‘My Profile’ becomes ‘Login’ 

‘Logout’ becomes ‘Register’ 

On the homepage 

‘Profile’ button becomes Register 

Pass 

5 Click ‘Register’ button in the 

navigation bar 

Be redirected to the register 

page 

Pass 

Related Tests: Login Flow 

Author: MV Checker: MV 

 

mailto:test@email.net

