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Abstract 
 
Twitter is a social media and micro-blogging platform where users (of which 
there are an estimated 600 million) communicate using tweets no more than 
140 characters in length. The platform is used by a variety of people, 
organisations and institutions for a wide variety of reasons. Users can 
articulate a variety of opinions, sentiments and observations.  
 
This project aims to identify ways in which the text contained within a tweet 
can be used to classify a it according to its author, reason it was posted and 
opinions contained within it. 
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Introduction 
 
Project Overview 
 
Taken from the Initial Report: 
 

People use Twitter for different reasons, e.g. business, personal, 
sharing information or emotion, etc., and broadcast tweets of 
different nature. The goal of this project is to analyse text data on 
Twitter to develop a taxonomy of the basic types of tweets. A 
corpus of tweets will then be collected and manually mapped to the 
classes in the taxonomy. The corpus be initially analysed manually 
in order to investigate the language usage across different types 
(e.g. personal messages probably start with pronouns such as 'I' or 
'my'). After collecting an initial set of lexical (words) and syntactic 
(phrases) clues, a classifier will be implemented that will 
automatically map tweets to the most appropriate class in the 
taxonomy. The classification performance will be evaluated in terms 
of precision, recall and F-measure. 
 

Twitter supplies a proportion of tweets as part of their Streaming API1. 
These are gathered in real time. Using this stream, this project intends to 
collect a relatively large sample of tweets. Once collected, they can then 
be categorised manually in order to create two datasets: training and 
testing.  
 
Once annotated, the corpus of tweets can be analysed in order to build a 
set of classes to sort tweets into (i.e. a classification scheme), as well as 
a set of rules with which the tweets can be sorted. These rules can then 
be implemented to automatically classify a tweet in real time.  
 
Hopefully, the project will also be able to learn from erroneous 
classifications that can be manually reclassified. These will feed back into 
the rules and decision-making process to increase precision and accuracy 
of future classifications. 
 

This project is broken down into three main sections: Data Collection & 
Manual Annotation, Implementation and Evaluation. These are discussed 
more in the Project Approach section later on. 
 
 
 

                                            
1 Twitter. (2012). Getting Started. Available: https://dev.twitter.com/start. Last 
accessed 27th January 2014 
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Project Goals 
 
This project aims to identify if the body text of a tweet can be used to identify 
the following properties: 
 

• Identity – Who posted the tweet? (For example, an individual person, 
an organisation or otherwise) 

• Tweet Capacity / Type – Is this tweet created in a professional context 
or was made in a personal capacity? 

• Reason – Why was the tweet created in the first place (e.g. to describe 
an event or as part of a conversation) 

• Opinions – Does this tweet exhibit a positive or negative opinion – or 
none at all? 

 
These decisions should be made based on crowd-sourced data that manually 
classifies a training set of tweets. Using these classifications, a final prototype 
should be able to calculate the relative occurrence of terms within this dataset 
and subsequently use them as features to support automatic classification. It 
will award larger scores to the classifications in which a given term occurs 
most frequently. For example, if the word “me” occurs most commonly in 
tweets by individuals, then the term will have a higher relative occurrence in 
the dataset for individuals.  
 
To evaluate the system, a copy of the prototype will be developed to make 
classifications for a subset of the training data tweets. This second version of 
the system will be make predictions in the same way, and then collect 
information from humans about its accuracy. Users will simply answer “yes” or 
“no” to the predictions made in the four properties, and these will be saved 
into a database. 
 
The final prototype will be developed using web-based technologies (mostly 
PHP and MySQL) so as to allow for the most effective use of the existing 
Twitter APIs. As a result, the final implementation will most likely be a website 
that pulls any necessary data from either its own MySQL database, or directly 
from Twitter using available APIs. Similarly, the initial site developed to crowd-
source data on tweets will save data to a MySQL database. 
 
Project Assumptions 
 
In the project, it is assumed that the properties “Identity” and “Tweet Type” 
remain constant throughout the life of a Twitter Account. For instance, an 
Individual’s Twitter account will always be theirs and will not change. Similarly, 
if an account posts tweets in a professional context, then they will continue to 
do so with this account.   
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Project Approach 
 
The core structure of the project will be in three main phases. The first will be 
a “Collecting & Teaching” phase where the taxonomy of tweet types will be 
identified from manual, human classification. Following this, there will be an 
“Implementation & Application” phase where these rules will be implemented 
into a software solution, which may make predictions on any individual tweet 
specified.  
 

 
Figure 1 Overall Project Structure 

 
Throughout this product any development will be mostly done using web 
based technologies. These include PHP and MySQL for data collection and 
storage, as well as a small amount of processing. HTML & CSS will be used 
to construct websites for the collection of data and automatic classification. 
The site is hosted at a personal web server that has MySQL and PHP pre-
installed. It can be accessed at:  
 
 http://www.fyp.dave-harrison.com  
 
Data Collection 
 
In order to collect the tweets, the Twitter Streaming API will be used to provide 
authorised access a subset of the full Twitter “firehose”. These will then be 
stored in a database in a manner that allows them to be compared and 
aligned with additional classification data. 
 
Classification data will then be collected manually from a number of 
individuals. They will be asked who is tweeting and why they are doing so. For 
instance, they may then suggest that this is a business tweeting to promote a 

 
 

Collection  
& Teaching#

• Collection of tweets from Streaming API#
• Crowd Sourcing classification data for tweets#

 
 

Implementation &  
Applicaiton#

• Development of a system to classify tweets 
automatically#

 
 

Evaluation#

• Creation of a site with evaluation features 
added#

• Collection of crowd-sourced evaluation data.#



Page 10   

product. Each tweet will be classified a number of times, so as to measure the 
accuracy with which tweets are classified. 
 
This classification information should then be related directly to the tweet it 
describes and stored in the same database. 
 
Implementation 
 
Using web-based technologies (PHP, MySQL) and the available Twitter APIs 
(GET / status). A system will be created that is capable of taking a tweet ID or 
URL and performing the following steps: 
 

1. Retrieve Tweet properties and text using the Twitter API 
2. Tokenising the data in a similar way to the data collected previously 
3. Comparing each word in the tweet to identify: 

a. How many words are there in each possible classification’s 
corpus 

b. How many times it occurs within the corpus of this classification. 
 
The implemented system will be a rule-based system and will use the existing 
dataset (gathered, for this project, in the stage before) to identify, relatively, 
how often a term occurs within each corpus. Scores assigned will be a 
measure of how many times the word occurs in the corpus for the 
classification, divided by the total size of that corpus.  
 
It is expected that number of terms in the training data set used by the system 
will not be equally divided between the possible classifications of the system. 
Therefore the scores assigned must be relative to the total number of terms in 
each classification’s corpus.  
 
Evaluation 
 
A similar version of the implementation will be created that uses a restricted 
set of tweets, of which the properties are already known (this will be a subset 
of the data collected in the first stage of the product). The guesses of the 
system will be then evaluated manually to decide whether or not they are 
accurate. Users of the evaluation page will be simply asked whether they 
think that a classification is correct or not. This data will provide a numeric 
measure of how accurate (or not) the system is. 
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Terms Used  
 
Within this report, certain terms may be used (some interchangeably). This 
section of the report serves to clearly define and explain briefly their meaning. 
 
Tweet Properties and Classifications 
 
Each tweet will have a set of properties. These include things such as their 
location, time and content. Of importance to this project (and those to be 
predicted by a system) are the following four properties: 
 

• Identity tweeting 
• Tweet Type (in what capacity it is being tweeted) 
• Tweet Reason 
• Tweet Opinion 

 
These four properties can be classified into a number of subclasses: 
 

Identity 
• Individual (Not a 

Celebrity) 
• Individual (Celebrity) 
• Group (Special 

Interest) 
• Group (Other) 
• Organisation 

(Academic) 
• Organisation 

(Business) 
• Organisation (Charity) 
• Organisation (Team) 
• Organisation (Other) 

Tweet Type 
• Personal 
• Professional 

 
Tweet Reason 

• Describe an event 
• Promote something 
• Part of a conversation 
• Joking 
• Other 

 
Tweet Opinion 

• Positive 
• Negative 
• Neutral 
• None expressed 

 
Humans will first manually identify these classifications in order to create a 
dataset. This dataset will then be used to build a system capable of classifying 
these four properties automatically. 
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Classification Definitions 
 
These classifications are divided into four main property types, and their 
definitions (for the purpose of this project, at least) are defined below: 
 
Identity 
The identity is intended to represent who is responsible for posting the tweet. 
Most commonly, this will be the account’s owner. It is unlikely that this 
classification would change with time. 
 

Individual (Not Celebrity) 
The tweet was posted by one person who is not a public figure, well 
known sports person or celebrity. 
 
Individual (Celebrity) 
The tweet was sent by (or on behalf of) an individual person who is a 
well-known sportsperson, celebrity or other public figure. 
 
Group (Special Interest) 
This tweet is from a group, which represents a set of people with a 
particular interest, to which the account is dedicated. For instance, a 
fan page for a musician or sports team, or political movement. 
 
Group (Other) 
A group of people not joined by a shared common interest. 
 
Organisation (Business) 
The tweet is sent by a company driven by financial goals. This could be 
a company such as Coca Cola, for instance. 
 
Organisation (Academic) 
A tweet sent by a School, College of Further Education or Higher 
Education institute (such as a university) or any other academic 
institution 
 
Organisation (Charity) 
The tweet sent by an organisation that operates in a Not-For-Profit 
manner. 
 
Organisation (Team) 
Tweet sent by a team of individuals who compete in their field. For 
instance, Manchester United - a football team.  
 
Organisation (Other) 
Any other organised set of more than one individual that have set 
objectives and goals. 
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Tweet Type 
The tweet type is the capacity in which a tweet was posted. This depends also 
on the account holder. Since personal and professional accounts are not used 
to tweet in the other capacity. 
 

Personal 
The tweet is posted on behalf of the person(s) posting it. It does not 
represent any other person or organisation in its viewpoint. 
 
Professional 
The tweet is intended to represent the views of a larger company or 
organisation or entity. For instance, their employer. 

 
Reason 
The main purpose for which the tweet was posted. This most likely changes 
between tweets within an account. 
 

Describe an Event 
A tweet posted to describe an event which has occurred, possibly 
adding their opinion to the matter. 
 
As Part of a Conversation 
As part of a series of tweets sent back and forth between two or more 
Twitter users. 
 
To Promote something 
The tweet intends to raise awareness for something. This could be a 
physical item such as a product or service, or an online entity such as a 
link to online multimedia (e.g. a YouTube video). 
 
To tell a joke 
Attempting to provide humour or wit with a tweet. 
 
Other 
The tweet in question doesn’t fall into any of the above categories. 
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Opinion 
Whilst this may not be present in all tweets, there may also be an opinion 
offered by the tweet. 
 

Positive 
Expresses praise or support for something. 
 
Negative 
The tweet expresses a distain towards or condemns something. 
 
Neutral 
The opinion within the tweet is balanced and shows no preference in 
either direction 
 
None 
The tweet in question serves to show no opinion whatsoever. 

 
Corpora 
 
A corpus is a limited set of terms that fall within specified boundaries. Within 
this project, the boundary of each corpus is simply the list of all terms that 
occurs in all tweets that match a specified classification. Terms will commonly 
appear in many corpora.  
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Project Background 
 
Potential and Existing Uses 
 
Should this project prove successful, the immediate application of technology 
would be in the areas of marketing and brand promotion. Many organisations 
already use Twitter as a method of reaching potential customers online, yet 
lack the ability to see reliable statistics about what users of Social Media are 
saying. 
 
For example, at present, Twitter’s Streaming API (v1.1) would easily allow an 
organisation, such as Cardiff University, to see any tweets that include 
relevant terms (this could be “Cardiff”, “Cardiff University”, “University of 
Cardiff” and “Caerdydd”, for example). However, these would simply just be 
displayed as they are with no value or information added. 
 
This project aims to develop techniques that would allow for additional 
information to be provided with tweets to possibly answer the following 
questions: 
 

• Are people tweeting about Cardiff University with a positive or negative, 
if any, opinion? 

• Who typically tweets about Cardiff University (age, gender, location) 
• Are people talking about Cardiff University in conversations, describing 

events or are they responding to something else? 
 
Whilst not covered in this project, other uses of real time Twitter analysis 
include those of community policing. For instance, a police force could use 
Twitter to identify whether certain groups of people (demographically, or in 
terms of physical co-location) are using Twitter to describe a common event – 
such as a crime in progress.  
 
An example of when this type of thinking would most be prevalent could be 
the murder of Fusilier Lee Rigby on the 22nd of May 2013. In this case, the 
news broke on Social Media sites well in advance of traditional media.  
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Existing Technologies 
 
A number of technologies exist which are capable of identifying terms and (to 
an extent) their role within natural language. Of particular interest to this 
project are the Natural Language Toolkit (NLTK)’s Stemming Algorithms and 
the Stanford Named Entity Tagger. These are both able to use information 
contained within free text, as well as supplied additional information, to lend 
context to the properties and meaning of terms. 
 
Stemming & Lemmatising Algorithms 
 
Individual words, which we intend to use as features, vary when used in order 
to conform to syntactic rules of a given language. When words are used as 
they occur, their different versions would be treated separately based on their 
surface form and ignoring their meaning. In order to neutralise some types of 
variation, the processing step aims to normalise the word, i.e. map words with 
identical (or related) meaning to the same normal form, e.g. stem or lemma. 
 
The Natural Language Toolkit (NLTK)2 has a set of resources for Stemming 
and Lemmatising words for natural language processing tasks. 
 
Stemming algorithms, such as the Lancaster3 and Porter4 algorithms take a 
set of words and return just the word on which variants are based – the stem. 
As an example, “colourful”, “colouring” and “coloured” are all based on the 
stem “colour”.  
 
More complexly, lemmatisation maps a word to its canonical form, e.g. 
singular for nouns or infinitive for verbs. For example: “better” and “best” will 
have no common stem, but both share the lemma “good”.  Lemmatisation has 
advantages over stemming, in that it can become aware of context. For 
instance in cases where the base of a word can be used as either a noun or a 
verb – such as in the case as “plant” and “planting”.  
 
In both the case of stemming and lemmatisation, the algorithms are built to 
remove inflections from the word present in text. This applies in terms of the 
tense that a word takes (e.g. “jog”, “jogging”, “jogged”) or variants of it within 
common language (e.g. “running” and “runner”) 
 
This, whilst not serving to describe the text processed, can make future 
processing of words much easier. Since a word is grouped together with other 
stems and lemmas, the diversity of the dataset is reduced and comparing 
                                            
2 NLTK Project (2013), The Natural Language Toolkit 
Available at: http://www.nltk.org  
 
3 Paice, Husk (2005), What is Stemming? Lancaster University. Available at: 
http://www.comp.lancs.ac.uk/computing/research/stemming/general/ 
 
4 Porter M et al (2006), The Porter Stemming Algorithm, Tartarus.org 
Available at: http://tartarus.org/~martin/PorterStemmer/  
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individual words with one and other becomes a lot more straightforward. It 
also lends benefits to the amount of time needed to process a smaller number 
of words – if the dataset is stemmed or lemmatised in advance 
 
 
Stanford Named Entity Tagger 
 
Named Entities are words in common language that have a fixed and 
common meaning and can be clearly identified as belonging to a specific 
category. Commonly, these are also proper nouns.  
 
Named entity recognition allows the context of an individual word (for 
instance, a place) to be processed in a way specific to the category it falls 
within. For instance, tweets containing a time or location will be far more likely 
to represent an event. 
 
The Stanford Named Entity Tagger (NER) is capable of using known context 
about words to suggest if they are: 
 

• Locations 
• Dates or Times 
• A person 

• Organisation 
• Money 

 
An online examplev of this is made available by Stanford University and 
demonstrates the way in which words are tagged as the above: 
 

 
Figure 2 Stanford NER Example of Use 

 

                                            
v Finkel JR, Grenager T, Manning C (2005), Stanford Named Entity 
Recogniser, Stanford University. 
Online Demo: http://nlp.stanford.edu:8080/ner/process 
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Twitter APIs 
 
APIs (Application Programming Interfaces) are a set of methods and 
instructions for how applications, third party and those of the provider, should 
interact and make requests for data. Twitter makes available two sets of APIs 
– Streaming and REST. These are both accessible with a Twitter Developer’s 
account, and OAUTH and Consumer Tokens/Keys are freely available. These 
are needed in requests to both Twitter APIs since some of the APIs are rate 
limited in terms of the number of requests that can be asked within a given 
time period. 
 

 
Figure 3 Twitter API Keys 

 
Streaming APIs 
This allows access to tweets that match a given criteria in real time. For 
instance, if a request is made to the API for all tweets containing the word 
“basketball” then the Streaming API will pass tweets containing with this term 
in them as they are posted to Twitter.  
 
REST APIs 
The REST (Representational State Transfer) APIs (currently version 1.1) are 
a set of APIs that allow for the retrieval of tweets that already exist.  These 
operate over HTTP and use the GET method. The REST API contains a set of 
variants to allow the request of JSON formatted information for Timelines 
(chronologically ordered sets of tweets), Individual Tweets, Users, Places and 
Trends (amongst many).  
 
Some POST methods also exist to allow developers to create applications 
that post information back to Twitter (such as sharing something by tweeting 
it), however these are not of consequence to this project. 
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Initial Data Collection 
 
In order to collect tweets, a Developers Twitter account was created. In turn, 
this generated a set of API keys necessary to access tweets in real time using 
the Streaming API. The Streaming API from Twitter typically parses the 
information in a JSON format. An example of the JSON provided for one tweet 
is included as Appendix 3. 
 
 
 
Data Source 
 
The 140dev library (developed by Adam Greenvi) is an existing Framework 
that first gathers tweets from the Twitter streaming API, before parsing them 
into a MySQL database. Both of these are achieved using PHP and must 
therefore be run using a server.  
 
The downloadable (and open source) framework includes configuration files to 
allow access to the Streaming API using the following authentication tokens: 

• Twitter Consumer Key 
• Twitter Consumer Secret 
• OAUTH Token 
• OAUTH secret 

 
These are unique to each application and therefore were specified in the file 
“140dev_config.php”.  
 
The Streaming API is primarily built for monitoring tweets about a certain 
topic, and is not entirely intended to be used to gather large sets of tweets. It 
requires one or more (up to 400) keywords to be used to search for tweets.  
In order to get the largest possible scope of tweets for the project, a set of 
common stop words was used when gathering the tweets:

                                            
vi Green, Adam (2014), 140dev Streaming API Framework, 140Dev.com 
Available at: http://140dev.com/free-twitter-api-source-code-library/  
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• the 
• an  
• a 

• is 
• if 
• you 

• me 
• it 
• in 

 
This was specified in the file “get_tweets.php”. By using these English stop 
words, the collected set of tweets was limited to only the English Language. 
 
When ran, “get_tweets.php” collects the tweets from the Streaming API and 
records them in the MySQL table “json_cache” before they are parsed further. 
The file “parse_tweets.php” then parses the tweets from the table into the 
appropriate tables in the database. 
 
The 140Dev database schema is as shown below: 
 

 
Figure 4 140Dev Database Schema (Adam Green) 

Data Management 
 
A number of alterations were made to the existing database for the purpose of 
tweet classification later on. 
 
tweets 
In order to help divide the thousands of tweets into smaller chunks, an 
additional column was created in this table called “TeachingGroup”. This 
means that a small number of tweets could be released for manual 
classification (or “Teaching”) at a time simply by changing the value in this 
field from 0 to 1.  
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The tweets given to each group were selected entirely at random using the 
following SQL Query: 
 

UPDATE tweets 
SET TeachingGroup = 1 
ORDER BY RAND() 
LIMIT 100; 

 
Once this set had been completely classified, more tweets could be added by 
simply picking more at random and changing the value in TeachingGroup to 
1.  
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Figure 5 Tweet Classification Database Schema (Modified from 140 Dev) 
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Tweet Classification Website 
 
A website was created in order to allow individuals to manually tag a tweet with the 
answers to the following questions: 
 

1. Who is sending this tweet? 
• An individual 

• Are they a celebrity or public figure (checkbox) 
• A group (pick one) 

• A Special Interest Group 
• Other [Please State] 

• An organisation (pick one) 
• A business 
• Academic Institution 
• Charity 
• Sports (or other) Team 
• Other [Please State] 

 
2. On whose behalf are they sending this tweet? 

• A personal tweet 
• A professional tweet 

 
3. Why are they sending this tweet? (Select one) 

• To describe an event 
• To promote something 
• As part of a conversation 
• To tell a joke 
• Other [Please state] 

 
4. Are they providing an opinion (optional, checkbox, select one) 

• Positive 
• Negative 
• Neutral 

 
 
The created website can be accessed at: 
 

www.fyp.dave-harrison.com/index.php 
 
The PHP code for this page is included as Appendix 5. An example of it in use is 
displayed overleaf. 
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Figure 6 Final Tweet Classification Website in use 
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Figure 7 Tweet Classification Process 

 
Tweets are selected from the table “tweets” in the database. In order to 
ensure the richness of data, the field “TeachingGroup” was used to create 
blocks of 100. For example – the first 100 to be classified have the value “1” in 
this column. There is also an additional table “tweet_tag_count” which 
contains the following values: 

• tweet_id (as a foreign key) 
• counter 

Each tweet should be classified a maximum of 5 times. Minimum? 
 
Within the webpage, the following MySQL command is used to select one 
random row from the “tweets” table: 
 

SELECT *  
FROM tweets, tweet_tag_count  
WHERE TeachingGroup = 1  

AND tweets.tweet_id = tweet_tag_count.tweet_id  
 AND tweet_tag_count.counter < 5  
ORDER BY RAND()   
LIMIT 1; 
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The result of this was then passed to the page, and using the Twitter Embed 
script, displayed as below: 
 

 
Figure 8 Embedded Tweet 

The values were simply taken from the MySQL Fetch Array for the tweet 
information using basic PHP and added into a <blockquote> tag and then 
followed with the following line of HTML: 
 

<script async src="//platform.twitter.com/widgets.js"  
  charset="utf-8"> 

</script> 
 
To its advantage, this script also gathers contextual information about the 
tweet from Twitter. Most relevant to this project are the following: 

• Information about the user sending the tweet 
• Full name 
• Twitter name (e.g. @somebody) 
• Their profile image 

• Information about the tweet itself 
• Time and date 
• The number of retweets and favorites 
• Any images or media within the tweet 
• Other tweets within the conversation 

 
Figure 9 Embedded Tweet with Conversation 

However, since the script pulls the information from Twitter, if there are any 
tweets that are within the database that are no longer live on Twitter, it fails to 
load correctly. 
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To overcome this, the fall-back procedure simply displays it as a block quote: 
 

 
Figure 10 Fall-back for tweets not present on Twitter 

 
For the most part, these tweets were simply removed from the database 
manually and replaced, so as to ensure that the data is complete for the 
majority of the project. Elements of future development will use Twitter’s 
REST API which will require the information to be accessible on Twitter’s 
servers. There also exists an inequality in the way in which tweets are 
classified if some of the accompanying data (for instance, any other tweets in 
a conversation) is not displayed for some tweets being classified but is for 
others. 
 
In order to view progress and encourage users to submit more than one 
classification where they could – a coloured stacked progress bar was added 
at the top of the page.  
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Classification Data Storage 
 
Once submitted, the classifications for each of the questions are recorded into 
a set of linked tables. The table classifying takes most of the information, and 
where an answer is not given with the radio buttons on the form, the free text 
is recorded (once sanitised) in the tables other_identities and other_reasons.  
 
Table: classifying 
 
Field Given values Purpose 
tweet_id Unique number from tweets 

table. 
Foreign Key, used to 
link between other 
tables. 

identity • Individual (Celebrity) 
• Individual (Not Celebrity) 
• Group (Special Interest) 
• Group (Other) 
• Organisation (Business) 
• Organisation (Academic) 
• Organisation (Team) 
• Organisation (Charity) 
• Organisation (Other) Collects classification 

data as submitted by 
users. 

tweet_type • Personal 
• Professional 

Reason • Event 
• Promote 
• Conversation 
• Joke 
• Other 

Opinion • None 
• Positive 
• Negative 
• Neutral 

Table 1 classifying table description 

In addition to this, where the option “Other” was selected, either for a group, 
organisation or in response to the reason. 
 
Table: other_reasons 
 
Field Values Purpose 
tweet_id As above Foreign Key 
reason_other Free text from form  

Table 2 other_reasons table description 
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Table: other_identities 
 
Field Values Purpose 
tweet_id As above Foreign Key 
Identity_type • Group 

• Organisation 
Denotes the type of 
identity initially selected. 

Identity_other Free text from form  
Table 3 other_identities table description 

 
With every form submission, there is also a command to update the table 
“tweet_tag_count”. This table is built with the aim to track how many times 
each tweet has been successfully classified. 
 
Field Values Purpose 
tweet_id As above Foreign Key 
Counter Number (minimum 0, 

theoretical maximum 5) 
Counts how many times tweet has 
been shown, used to determine if 
tweet needs to be shown again 

Table 4 tweet_tag_count table description 

 
With each submission, the following SQL command is used to increment the 
value of “counter”: 
 

UPDATE tweet_tag_count  
SET counter = counter + 1  
WHERE tweet_id = '$sqlinsert_tweetID’; 
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In addition to the data gathered explicitly through the form – the site also 
includes code to enable Google Analytics tracking as a method of monitoring 
the demographic of individuals who have visited the site. Available information 
includes: 
 

• Raw access numbers 
• Unique visitors 
• Page views 
• Visit duration 
• Bounce rate (% of visitors leaving with no interaction) 

• Audience information 
• Location 
• Spoken language 
• Access Technology 

- Platform (Mobile/Desktop/Tablet) 
- Browser & System 
- Network Service Provider 

• Acquisition Sources 
• Social Media 
• Direct Traffic 
• Search Terms 

 



Page 31   

Collected Data 
 
A total of 497 individual classifications were performed on 99 tweets. The 
page was left open for roughly two weeks from the 15th to the 27th of February 
2014. Information was collected both about the way in which the page was 
accessed and how the classifications were recorded. 
 
Data Properties (Demographics) 
 
In addition to the raw classification data that was collected by the page and 
stored in the MySQL database, a Google Analyticsvii script was also included 
on the page to collect information about those who were providing 
classifications.  
 

 
Figure 11 Google Analytics Dashboard 

 
Page Traffic 
 
Using Google Analytics, basic information about the majority of site visitors 
was collected. Users using certain browser add-ons will have been exempted 
from this data.  
                                            
vii Google (2014), Web Analytics & Reporting 
http://www.google.com/analytics/ 
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The page was accessed a total of 1361 times by 146 unique visitors – each 
visit lasted approximately 4 minutes. A total of 250 visits to the site were made 
in this period of time. 
 
42.8% of people who visited the site left with no interaction taking place 
(Bounce Rate). The average number of page views (or interactions) taking 
place in this was 5.42 pages/session and the average session lasted 4 
minutes and 10 seconds. 
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Geographic Location  

 
Figure 12 Geographic Distribution of visitors 

 
Country / Territory Visits % New Visits More than one 

form submitted 
Site averages 250 

% of Total: 
100.00% (250) 
 

58.40% 
Site Avg: 
58.40% (0.00%) 
 

96 

Canada 2(0.80%) 100.00% 0(0.00%) 

Netherlands 2(0.80%) 50.00% 0(0.00%) 

Taiwan 2(0.80%) 50.00% 0(0.00%) 

Germany 5(2.00%) 100.00% 1(1.04%) 

United States 22(8.80%) 95.45% 10(10.42%) 

United Kingdom 217(86.80%) 53.46% 85(85.54%) 

Table 5 Visits by Country 

 
The top 5 cities where the traffic resulted from are all based in the United 
Kingdom and are (in order): 
 

1. Cardiff (119 visits, 47.6% of all traffic) 
2. London (20 visits, 8.0%) 
3. Birmingham (11 visits, 4.4%) 
4. Durham (9 visits, 3.6%) 
5. Liverpool (7 visits, 2.8%) 
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Traffic Sources & Devices 
 
Traffic Acquisition 
(Source/Medium) 

Visits  
 

Visits 
 (% of 250) 

1.  facebook.com / referral 106 42.40% 
2.  (direct) / (none) 49 19.60% 
3.  reddit.com / referral 41 16.40% 
4.  m.facebook.com / referral 36 14.40% 
5.  t.co / referral 18 7.20% 

Table 6 Inbound traffic sources 

 
Device 
Category 

Visits More than 1 form submitted 
(% of 250) 

desktop 190 37.37% 

mobile 37 32.43% 

tablet 23 56.52% 

Total 250 38.40% submitted more than one form. 

Table 7 Devices used 

 
The source of traffic acquisition is mostly from Social Media where it was 
promoted. Facebook had the highest success of these, followed by direct 
connections from those given the link in other media. Ironically, Twitter saw 
the least uptake from links posted. 
 
Whilst the page was optimised to be used on a variety of devices – Desktop 
users were best suited to view the whole page and naturally the number of 
visits here was largest.  
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Manual Annotation Data 
 
A total of 99 tweets were manually classified 497 times in total (each tweet 
classified at least five times).  
 
Tweet Identities 
 
Identity Classification Times classified Total 
Individual Celebrity 8 442 

Not Celebrity 434 
Group Special Interest 16 21 

Other 5 
Organisation Business 12 33 

Academic 0 
Charity 5 
Team 3 
Other 13 

 Table 8 Individual classifications for each Identity 

 
Figure 13 Number of classifications for each Identity 

 
Whilst the dataset being classified was selected at random and based on 
unspecific stop words as a filter term, the results show a large bias towards 
Non-Celebrity Individuals. At the other end of the scale – only one tweet was 
classified as being from a Charity, and the dataset included no academic 
tweets at all. This is likely to reflect the general distribution of overall users on 
Twitter.

442#

21#
33#
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The following values were returned where “other” was selected: 
 
Identity Type Given description Frequency 

group 
 

Band 2 
Musical group 1 
Religious group 1 
[ Left blank ] 1 

Organisation TV Channel 3 
News Organisation 3 
News 2 
Leader in small 
company 

1 

Musical group 1 
other 1 
No idea 1 
[ Left blank ] 1 

Table 9 Stated other classifications for Identity 
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Tweet Types 
 
Tweet Type Times 

Classified 
Personal 420 

Professional 77 
Table 10 Classifications for each Tweet Type 

 
Figure 14 Number of classifications for each Tweet Type 

 
Similarly to the Identity property, there was a significantly higher number of 
tweets that were classified as being posted in a personal capacity. This may 
also be representative of the overall Twitter ecosystem.

420#

77#
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Tweet Reasons 
 
Reason Times 

Classified 
Conversation 161 
Event 118 
Promote 111 
Joke 25 
Other 82 

Table 11 Classifications for each Reason 

 

 
Figure 15 Number of classifications for each Tweet Reason 

 
 
This property saw the widest diversity in answers. However the inter-
annotator agreement for this property was not the lowest (see Fleiss’ Kappa).  
 

161#

118#

111#

25#

82#

Conversation#
Event#
Promote#
Joke#
Other#
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Below are all the reasons given where the “other” option was selected.  
 
Reason Freq. 
[No text entered] 16 
I have absolutely no idea 3 
bitchin 3 
life advice 3 
Quote 3 
Complaining 2 
Opinion 2 
Flame war 2 
Status Update  2 
Statement  2 
Reflection of oneself 1 
Ask a question 1 
Whining 1 
Wanting attention 1 
Seeking attention 1 
talks about themself 1 
obsession 1 
saying 1 
Aggressive behaviour  1 
Naming a film? 1 
Question 1 
Provide opinion on an event 1 
follow 1 
Sharing News 1 
Asking followers opinion 1 
Insult individual 1 
misc 1 
To enter a contest 1 
Posting a picture 1 
Advice 1 
Automatic tweet 1 

Complain 1 
To moan 1 
Rhetorical Question 1 
Declaration of love 1 
This bro needs some deep 
thoughts about what he 
wants for lunch 

1 

Begging for followers 1 
Asking a question 1 
Warning 1 
Asking for a follow. 
Question/ Request 

1 

Inane rhetoric 1 
Poll people 1 
Begging for attention 1 
fan boy 1 
To chat someone up 1 
Inane profoundness.  1 
to express an emotion 1 
A statement of desire... 1 
nostalgia 1 
self promotion 1 
Agreeing 1 
None 1 
micheal Jackson 1 
Existential crisis 1 
Spam 1 
 

Table 12 Stated other classifications for 
Reason

 
The above list is aggregated across all of the tweets that were classified.  
 
Commonly Occurring Terms 
 
For each of the terms, a list of the most commonly occurring words was 
created using an online toolviii. The top 50 for each classification are included 
as an appendix to this report (Appendix 2). 
 

                                            
viii Word Counting Tool: Write Words.org.uk 
http://www.writewords.org.uk/word_count.asp  
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Further to this, terms such as “http” and “www” could be grouped together into 
URLs – since many of the tweets were sharing some form of web content 
using a hyperlink.  
Usefulness of collected data 
 
In order to calculate the individual agreement between the classifications of 
each tweet, the following formula was used: 
 
 

Agreement % = ! Number!of!records+ 1 − !!"#$"%&$!values!for!identity
Total!number!of!records!for!this!tweet  

 
The total number of classifications was taken from the related table, 
tweet_tag_count. 
 
An SQL Query was then written to execute this on a tweet-by-tweet basis as 
below: 
 
SELECT classifying.tweet_id,  
ROUND (((tweet_tag_count.counter+1 - (COUNT(DISTINCT 
identity))) 

/tweet_tag_count.counter),2) as 'Agreement (%)' 
 
FROM classifying, tweet_tag_count  
WHERE tweet_tag_count.tweet_id = classifying.tweet_id 
GROUP BY tweet_id; 

 
The output of this SQL (a sample is shown below) was then used to calculate 
an average agreement across the whole dataset. 
 

Tweet_id Agreement (%) 
434807673650180096 1.00 
434807673985712129 0.80 
434807674040254464 1.00 
434807674098565120 1.00 
434807674107355137 0.80 

Table 13 Individual agreement example 



Page 41   

Inter-annotator Agreementix 
 
Inter annotator agreement is the measure of the certainty with which data 
classified by a number of users can be treated. A higher measure of inter-
annotator agreement indicates a stronger consensus about the information 
provided. Lower measures indicate higher amounts of uncertainty in the 
information provided and less homogeneity in the classifications provided. 
 
For each of the four properties, Fleiss’ Kappa was calculated as a measure of 
inter-annotator agreement. Unlike Cohen’s kappa or Krippendorff’s alpha, 
Fleiss’ kappa does not require all of the data to have been annotated by the 
same individuals. This more formal measure of inter-annotator agreement is 
far more reliable than the method previously demonstrated, which can only 
really be applied to an individual tweet. 
 
Applied to this project, it is safe to assume that one tweet may well have been 
annotated by an entirely different set of people than another, since no 
identifying information (such as an IP address) was collected, this is 
discussed more in Annotator Repetition. Unlike Cohen’s kappa, this also 
allows for more than two annotators to have been involved in the dataset. 
 
The kappa is defined as 

! = !! − !!!!1− !!!!
 

Where  
! represents a row (or in this case tweet)  
! represents a column (or classification)  
! is the number of classifications available for the property. Therefore it 
stands that !!" represents one classification for row ! and column !. 
 

!! = ! !!!
!

!!!
 

 

!! =
1

!!×(! − 1)× !!!"
!

!!!
(!!" − 1) 

 

!! = !!
!  

A worked example has been followed through in detail for the Opinion 
property.

                                            
ix Fleiss J et al (2003), Statistical Methods for Rates and Proportions, 3rd 
Edition, Ch 18.3, pg. 610-617, Wiley 
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Firstly, for each tweet in each property, the number of annotators who 
selected each classification was found. A sample is shown below: 
 
tweet_id None Negative Positive Neutral TOTAL 

434807673650180096 1 0 4 0 5 

434807673985712129 4 0 1 0 5 

434807674040254464 4 1 0 0 5 

434807674098565120 5 0 0 0 5 

434807674107355137 4 0 0 1 5 

434807674111545346 5 0 0 0 5 

… … … … … … 
TOTAL 394 43 48 12 497 

Table 14 Tweets for Inter Annotator Agreement 

 
From this, the values !! were added (second row working shown below): 
 

!! =
1

5!× 5− 1 !× 4! + 0! + 1! + 0! − 5  
!! = 0.6 

The values for !! were also calculated (first column shown below): 
 

!! =
394
497 

 
tweet_id None Negative Positive Neutral TOTAL !! 
434807673650180096 1 0 4 0 5 0.6 

434807673985712129 4 0 1 0 5 0.6 
434807674040254464 4 1 0 0 5 0.6 
434807674098565120 5 0 0 0 5 1 
434807674107355137 4 0 0 1 5 0.6 
434807674111545346 5 0 0 0 5 1 

… … … … … …  

TOTAL 394 43 48 12 497 72.9 
!! 0.79276 0.08652 0.09658 0.02414   

!! = !!! 0.62846 0.00749 0.00933 0.00058   
Table 15 Tweets with !!, !! and!! calculated for Inter annotator agreement 

 



Page 43   

 
Therefore:  
 

! = 0.736 and  !! = 0.646 
 
 

! = 0.736− 0.646
1− 0.646 = 0.2556 

 
This process (carried out in a spreadsheet) was repeated for all four 
properties to give the following overall results: 
 

Property ! Strength of 
agreementx 

Identity 0.52308 Moderate 

Tweet Type 0.69397 Moderate - High 

Reason 0.45440 Moderate 

Opinion 0.25556 Poor – Moderate 

Table 16 Total Inter-Annotator Agreement, !, for all properties 

 
The spreadsheet in which the values for the process described above were 
calculated for all properties and classifications is included as an appendix to 
this report (Appendix 4) 
 
Sample Size 
 
The main issue encountered with the collected classifications is that they 
apply to a sample set of tweets containing only 99 tweets. Originally, the 
dataset stood at 100, however, one was found to be highly inappropriate and 
contained explicit media and language.  
 
As a result, the occurrence of words and terms within the sample tweets set 
may not be sufficient in statistical terms to generalise the conclusions, i.e. 
frequencies in the sample may not be representative despite the randomised 
selection. It is also likely that not all relevant words will capture features at this 
stage. Nonetheless, for the purpose of this approach we would like to 
demonstrate an approach, which could be scaled up in the future permitted 
more available resources for a large study of this type. 
 
To resolve this issue, it was assumed that for each account the following 
characteristics remained constant across all tweets: 
 

                                            
x Landis, J.R., Koch, G.G. (1977). The measurement of observer 
agreement for categorical data. Biometrics. 33, 159–174. 
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• Identity (e.g. an individual will always be tweeting as an 
individual) 

• Tweet Type (e.g. tweets posted in a professional context will 
always remain as such) 

 
The same cannot be said for Tweet Reason, it is reasonable that a single 
Twitter account can be used to send tweets for a variety of reasons, and may 
include a range of different opinions. 
 
Each user with a tweet in the original classifying set of 99 was then monitored 
for a week from Thursday 13th March. The user_id from the tweets in the 
classifying set was used to replace the filter terms in the process 
get_tweets.php and left running on a server for a week.  
 
From these additional collected tweets, more terms and words can be used to 
identify those which are relevant to the identity and tweet type.  
 
Annotator Repetition 
 
One issue with the way in which the classifications collected is that tweets 
were selected for classification entirely at random each time the page was 
loaded. It therefore stands to be entirely possible that an individual annotator 
could have been presented with the same tweet more than once. The problem 
would be worsened where an individual annotator did a large number of 
tweets, particularly later on. Indeed, there is anecdotal evidence from the 
annotators that this was the case. 
 
In this situation, the annotator’s personal classification of the tweet would be 
unlikely to have changed, and therefore would be recorded twice with identical 
classifications. The immediate impact this has is that the inter-annotator 
agreement, !, would have been artificially inflated as individuals within each 
tweet agree with themselves. 
 
The way to combat this would be to also log some identifying feature (such as 
an IP address) with each classification and ensure that a tweet is not shown 
where the IP address of the current annotator has already submitted an 
annotation for that particular tweet_id. Whilst this is not a watertight solution, 
some users may use more than one device or connection to access the site, it 
would greatly reduce the impact that this phenomenon would have on the 
inter-annotator agreement within the data collected.  
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Tokenization 
 
Punctuation 
In natural language (unprocessed, raw tweets), a word can be preceded or 
immediately followed with punctuation or white space. 
 
For example in the phrase “Oh my goodness!”, the word “my” is surrounded 
by a space (represented hereon as an underscore, _), the word “Oh” is 
followed by a space, but not preceded by one. The word goodness has a 
preceding space, but is then followed by an exclamation mark. 
 
To tokenise the tweets, any occurrence of punctuation was replaced with a 
space using an SQL command such as: 
 

UPDATE tweets 
SET tokenised = REPLACE (tokenised,"@"," " );  

 
Bounding Spaces 
The simplest way to recognise a word is any set of characters that follows the 
pattern: 

_[a-z characters]_ 
 
For example, “goodness” would be recognised differently in “Oh my 
goodness” than as in a phase where it had no following punctuation (e.g. 
“thank goodness for that”). A tokenised set of tweets was created alongside 
each tweet in the tweets table.  
 
To resolve the issue in the first and final words of a tweet, each tweet had a 
space appended to the start and end of the record. 
 

UPDATE tweets 
SET tokenised = CONCAT(' ',tokenised, ' '); 
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Automated Classification Tool 
 
Using the data collected, a system was built which was capable of taking a 
user-specified tweet and being able to discern the appropriate classification 
for the four properties.  
 
To measure the effectiveness of this data, there will also be a version of the 
software, which is limited to a set of tweets, and includes a way of measuring 
the accuracy of the software. This is addressed in the Evaluation section that 
follows this section. 
 
The prototype is available at: 

www.fyp.dave-harrison.com/guesser.php 
 
 
Limitations & Requirements 
 
The developed prototype must be capable of operating subject to a number of 
limitations placed upon it in order to ensure fairness and consistency in the 
data processed.  
 
Data Sources 
 
In order to ensure fairness and control over all the aspects of the data being 
handled, only data from two sources will be permissible in the analysis of a 
given tweet: 

• Twitter’s REST API  
• The project MySQL database (davidh_finalyearproject) 

 
Data Context 
 
No additional information, aside from the rate of occurrence in historic tweets 
of each classification, should be made available. Any attempt to do so for this 
project would inevitably be incomplete and lead to bias in the system. The 
addition of extra rules would also add to the complexity of the developed 
system. 
 
As an example of this extra context, the word “donate” might be specified as a 
word that adds more weight to the tweet being posted by a charity. This would 
be difficult to prove beyond anecdotal or “common sense” evidence. 
 
Corpora Used 
 
In predicting the identity and the  type of the tweet, it will be possible to use 
the larger “FollowedUser” corpus. This includes a larger set of tokenised 
tweets from users whose tweets were used in the initial Classification 
Website.  
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Since the reason and opinions may differ between tweets in an individual 
account, it is only possible to use the TeachingGroup corpus for the Reason 
and Opinion properties. These tweets are individually classified earlier in the 
project.  
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Features 
 
A user should be able to specify a tweet using either its URL or unique tweet 
ID. 
 

Tweet URL:  
 
 https://twitter.com/David_Cameron/status/456001553661710338 

or 
https://twitter.com/statuses/456001553661710338   

 
Tweet ID: 
 

456001553661710338 
 
These are simply entered into a form item as shown here: 
 

 
 
This will then, using the Twitter REST APIxi, retrieve the full set of information 
regarding the tweet in the JSON format. From an individual Tweet ID number, 
all the information needed to fully reconstruct the tweet can be accessed, 
including any embedded media: 
 

                                            
xi Twitter. (2013). GET statuses/show/:id.  
Available: https://dev.twitter.com/docs/api/1.1/.  
Last accessed 17th April 2014 
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Figure 16 An embedded tweet with associated media 

 
 
The JSON-formatted data provided by the API can then be parsed using PHP 
and the terms within the tweet data can be processed one by one to 
determine their relative occurrence in each of the possible categories. The 
final output of the system is a set of best guesses about which classifications 
best describe the given tweet. 
 

 
Figure 17 Suggested Classifications 

 
 
For the purposes of this project, it also displays the score for each of the 
possibilities, to demonstrate the process by which the final decision was 
reached. In the case where more than one classification is tied for the 
maximum value (shown below for Identity and Reason), the first occurring in 
the array is chosen.  
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Figure 18 Breakdown of scores for each classification 
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Rules 
 
The basic design of the system is to individually find a score for every 
classification (across 4 properties) for every term in the tweet. In total there 
are 20 classifications in 4 properties, listed below: 
 
Identity 

1. Individual (Not Celebrity) 
2. Individual (Celebrity) 

 
3. Group (Special Interest) 
4. Group (Other) 

 
5. Organisation (Business) 
6. Organisation (Academic) 
7. Organisation (Charity) 
8. Organisation (Team) 
9. Organisation (Other) 

Tweet Type 
10. Personal 
11. Professional 

 
Reason 
12. Describe an Event 
13. Promote Something 
14. As part of a conversation 
15. To tell a joke 
16. Other 

 
Opinion 
17. Positive 
18. Negative 
19. Neutral 
20. None 

 
The main method of determining a score for each of the terms in a tweet 
follows the following equation: 
 

Score = !Times!the!term!occurs!in!the!corpus!for!the!classificationTotal!terms!in!the!corpus!for!the!classification  

 
 
The aim is to produce a number to define a relative score for how often each 
term occurs in each possible corpus. For instance, the word “me” might form 
2% of all the terms used in tweets by Businesses, but 10% in tweets by 
Teams. Therefore, the values 0.02 and 0.1 would be added to the scores, for 
these terms, respectively.
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The system therefore follows the basic structure: 
 

1. Count the total number of terms in the corpus for each classification 
a. Store these within an array for each property 

2. Count the amount of times that a given term appears in the corpus for a 
classification 

a. Store as a value 
3. Divide the value in 2.a by the corresponding value in 1.a  
4. Add this to the running score for that classification. 

 
Steps 2-4 are repeated for each term in the tweet. 
 

5. Pick the classification with the highest score from each of the 
properties 

 
Initially, to identify the total number of terms that occur in each classification’s 
corpus, a query is performed on all 20 possible outcomes. These are stored in 
an array – one for each property -, which is later used to calculate each term’s 
individual score. 
 
Once retrieved using the Twitter API, the text from a provided tweet should be 
stripped of any punctuation broken down into a tokenised array. For instance, 
the phrase “The rain in Spain falls, mainly, on the plains!” should be broken 
down into an array as such: 
 
The rain in Spain falls mainly on  the plains  
 
These  terms are then used to perform a number of queries to the database – 
to identify how often each term occurs in the corpus of each classification. For 
instance, to identify the Identity, it will loop through this array, performing a 
query for each of the possible identities. The same process is repeated for all 
four properties to be classified. 
 
For each term, the relative occurrence score is added to the variable for that 
classification. These arbitrary scores are combined together into four arrays 
(identity, tweet type, tweet reason and opinion) with the descriptor for each 
classification added as a key. The maximum value from each of these arrays 
is then chosen to be the system’s “guess”. 
 
Finally, these are displayed on the page. For the purpose of this project, the 
scores are also displayed in a set of tables at the foot of the page, with the 
selected value highlighted. An example is shown on the next page.
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Identity 
Individual (Not Celebrity) 0.2107 
Individual (Celebrity) 0.1868 
Group (Special Interest) 0.1646 
Group (Other) 0.2658 
Organisation (Business) 0.1858 
Organisation (Academic) 0 
Organisation (Charity) 0.2 
Organisation (Team) 0.2 
Organisation (Other) 0.1271 
 
Tweet Type 
Personal 0.2053 
Professional 0.207 
 
Tweet Reason 
To describe an event 0.1985 
To promote something 0.2059 
As part of a Conversation 0.1985 
Telling a joke 0.2087 
Other 0.206 
 
Opinion 
Positive 0.2366 
Negative 0.1324 
Neutral 0.1527 
None 0.212 

Table 17 Example Scores for a tweet, as shown on website 

 
Since less words are likely to appear in smaller corpora, and will occur 
commonly where there is more data – such as in the case of “Individual (Not 
Celebrity)” as the Identity, a larger score is given to the value with the smaller 
dataset. This moves towards overcoming the issue that in the case of smaller 
collected corpora, words simply may not be present (a score of zero will be 
given for this term) but also means that words common to all corpora will fetch 
a higher score for the classification with the smallest set of training data. 
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Methods 
 
Process Diagram 

 
Figure 19 Overall Automatic Classification Process 
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A full copy of the PHP code used is included as Appendix 6. Where possible, 
small elements of code have been included in this report to illustrate some 
methods. Larger loops and that have not been replicated. 
 
Front End Framework 
 
Similarly to the Tweet Classification Website, the page’s user interface is built 
using Twitter’s Bootstrap Frameworkxii. This framework is freely available 
under Creative Commons licensingxiii and handles all the CSS and JavaScript 
used in creating the page with the sole exception of the embedded tweet, 
which is done using Twitter JavaScript. It also allows the page to be viewed 
appropriately on a number of platforms and screen sizes (including mobiles 
and tablets).  
 
For this project, it was used mainly as a way to reduce the amount of time and 
effort given to the HTML page, leaving more time for the PHP to be 
developed. 
 
Check for POST Data 
 
The page loads in two main ways, depending on whether or not a tweet URL 
or ID has been provided. This is determines both which HTML elements are 
loaded, and whether or not the page runs through the PHP code to parse and 
analyse the tweet text. 
 
The PHP method used to achieve this, both in the <head> for the PHP 
processing, and in the <body> to determine which HTML elements to display, 
is: 
 

if (isset($_POST['sourcetweet']) == TRUE) 
 
Retrieve Twitter JSON Data 
 
Since it is possible for users to specify either a URL or a tweet ID, the page 
must first determine which of these the given element is. The simplest way of 
doing this is to use the is_numeric function within PHP. If the given value is 
numeric, then the system assumes that the given value is a tweet ID, 
otherwise, it must be a URL.  
 
In either case, the desired value for the REST API is a numeric tweet_id. As a 
result, the system either takes a given numeric value as it stands, or it 
extracts it from the URL, which will always follow the same pattern: 
 

                                            
xii Bootstrap v3.1.1, Twitter Inc. (2013). Used under Creative Commons 3.0 (by attribution). 
http://getbootstrap.com  
 
xiii Creative Commons 3.0 By Attribution, http://creativecommons.org/licenses/by/3.0/  
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http:// twitter.com /BBCSport/status/ 457170950757564416 /statuses/ 
URL Prefix Statuses, or includes the 

username. If the username not 
included, Twitter will change this 
automatically. 

Numeric Tweet ID 

Table 18 Twitter URL Structure 

 
 
Therefore, to extract the numeric Tweet ID, the easiest thing to do in both 
cases is to work backwards from the end until a forward slash (“/”) indicates 
the beginning of a numeric Tweet ID. The following code therefore was used: 
 

if (is_numeric($sourcetweet)) {    
 $sourceID = $sourcetweet;     
} else {  

$sourceID = end((explode('/', $sourcetweet))); 
} 

To form and execute the necessary GET command for the Twitter REST API, 
an existing PHP Wrapper created by James Mallison (J7mbo on GitHub) was 
used. The twitter-api-php xivwrapper is released as Open Source software 
under the MIT Licensexv.  
 
This is called using require_once, with the OAuth Access tokens and 
consumer keys included as an array. The URL is also built as below: 
 

$url = 'https://api.twitter.com/1.1/statuses/show.json'; 
$getfield='?id='.$sourceID.'&trim_user=FALSE';  
$requestMethod = 'GET';  
$twitter = new TwitterAPIExchange($settings);   

 

                                            
xiv Mallison, J (2013), twitter-api-php. Available at https://github.com/J7mbo/twitter-api-php 
Last accessed 18th April 2014.  
 
xv MIT License - Open Source Initiative 
http://opensource.org/licenses/MIT  
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Following  a successful request, the Twitter API will reply with a JSON file to 
describe the tweet specified. The JSON file includes information to describe 
each aspect of the tweet, from the time and location it was posted to 
information on mentioned users and hashtags in the tweet. The fields used 
within this project are as follows: 

 
• created_at1 
• tweet_text1,2 
• user: {name:}1,3 
• screen_name 1 

 
1 Used to display within the page, simply returned as part of the embed code. 
2 Used within the actual term-by-term analysis of the tweet 
3 User Data is contained within a nested array, which needs to be further 
decoded. 

 
 
$twitterJSON = $twitter->setGetfield($getfield) 

->buildOauth($url, $requestMethod)  
->performRequest();       

 
This is then decoded to a PHP Array ($twitterARRAY), which can be 
processed more easily using standard PHP arrays than it would be in its 
original JSON format.  
 
Pre-processing of terms 
 
Before the terms can be processed, each term must be stripped of any 
punctuation similarly to the terms in the training set. In both sets of data, a 
term must be surrounded by a space on either side. This was achieved using 
the str_replace function. 
 
The tokenised terms were then converted into an array of terms using the 
explode function: 

  $text_array = explode(" ", $tokenised);  
 



Page 58   

Count of all terms in each corpus 
 
To ensure that the scores are relative to the rate of occurrence of a term in a 
corpus for each possible classification, rather than an arbitrary count, each 
term needs to be divided by the total number of words in that corpus. 
Effectively, this identifies the bottom half of the equation below: 
 

Score = !Times!the!term!occurs!in!the!corpus!for!the!classification!"#$%!!"#$%!!"!!"#!!"#$%&!!"#!!"#!!"#$!"#"$%&"'(  

 
Therefore, a query to find the number of words in each corpus needs to be 
executed for each of the twenty classifications. Four arrays were created with 
the possible values with each property (identity, tweet type, reason, opinion), 
listed inside. For example, the tweet type array had the options “Personal” 
and “Professional”. These arrays were looped through using foreach to 
execute a variation of the below query: 
 

SELECT 
COUNT(tokenised LIKE CONCAT (“% “, word, “ %))  
AS ‘count’ 

FROM words_followed, classifying, tweets 
WHERE 
 FollowedUser = 11 
 AND tweets.tweet_id = classifying.tweet_id 
 AND (tokenised LIKE CONCAT(“% “, word,” %)) 
 AND identity2 = ‘$identity_key’2; 

 
1 The “FollowedUser” field is used as an indicator to highlight tweets where 
the tweet was collected by gathering tweets by a user who appeared in the 
initial classification (“TeachingGroup =1”). Since continuity in the Reason and 
Opinion fields cannot be guaranteed, only the original manually classified set 
of tweets was used here. 
 
2. This line limits the corpus to the individual classification – for the loops 
through other properties (tweet type, reason and opinion) the line was edited 
to reflect this.   
 
For each of these, it adds an entry to an array. In total, four arrays are created 
similar to as below: 

 
$total_count_type_array[$type_key] = $sqlarray['count'];  
 

The result is an array that contains the name of the classification (e.g. 
“Personal”) as a key, and the total number of terms in its corpus.  
 
This process is done once at the beginning of each identity type – a total of 
twenty times.
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Term occurrence in corpus 
 
For each term in a tweet, a similar query was performed to identify how many 
times that term appears in the corpus (the top half of the equation below). 
 

Score = !!"#$%!!"#!!"#$!!""#$%!!"!!"#!!"#$%&!!"#!!"#!!"#$$%&%!#'%()Total!terms!in!the!corpus!for!the!classification  

 
The same arrays for identity, tweet type, reason and opinion were used. 
However, within these, the query needs to be executed for every tweet. As a 
result, the code to run consisted of two for loops, one within the other as 
structured below: 
 
 foreach($text_array as $lookup_term) 

{ 
 foreach ($tweet_types_array as $type_key) 

{ 
Collect occurrence and assign score... 
} 

}  
 
The outer loop works its way through each of the tokenised terms within the 
tweet. Within that, for each term, a second loop goes through each of the 
classifications within a property.  
 
Each iteration of this innermost loop will perform two main functions: 

1. Find the number of times that this term occurs in the set of all terms for 
a classification 

2. Divide this value by the total terms in the classification’s corpus to 
create a relative occurrence score 

3. The Relative Occurrence Score is then added to the existing sum of 
scores for that classification. 

 
The SQL query used to retrieve the occurrence of each term in the set 
followed the structure as below: 
 

SELECT   
 COUNT(tokenised LIKE CONCAT("% ",word,"% "))   

AS 'count'  
FROM  words_followed, classifying, tweets    
WHERE 

FollowedUser = 1 1     
AND tweets.tweet_id = classifying.tweet_id  
AND (tokenised LIKE CONCAT("% ",word," %"))  
AND tweet_type = '$type_key' 2 

AND word = '$lookup_term' 3 
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1The FollowedUser corpus can only be used for identifying the Identity and 
Tweet Type, since these are values unlikely to change for each Twitter 
account. For the Reason and Opinion – both of which are likely to change – 
the “TeachingGroup” corpus was used instead. 
 
2 The line to specify the property type in which the term is being counted 
changes with each value in the inner loop.  
 
3 The word being counted in the corpus changes with each value in the array 
for terms – which forms the outer loop. 
 
To its disadvantage, the system does perform a lot of very similar queries. 
Given that there are 20 types of possible outcome that it checks it against. It 
must run the query a total of 20 times for each, with an impact on 
performance. This is discussed in further detail under Evaluation. 
 
Assigning Scores 
 
Once the values have been retrieved from the SQL Database, they are added 
to the running total for each possible outcome. The scores are initially defined 
at the start of the system and all begin with a score of zero. Each of these 
variables has the score for each term added to them as the system does so. 
 
Immediately after the query to find the number of times that a term occurs in 
the corpus is ran (and still within the innermost foreach loop), a set of IF 
statements follow, to identity which of the twenty property types the score 
applies to (determined by the key from the property type array). Once it 
identifies the type of property for which the score applies, the new score is 
calculated, and added to the old one. 
 

if ($type_key == "Personal"){  
$score_tt_personal =  
$score_tt_personal + ($word_count_type_array[$type_key] / 
$total_count_type_array[$type_key]);  
} 

 
To remove the possibility of any errors from occurring as a result of a division 
by zero (in cases where a word doesn’t appear at all in a corpus). This set of 
IF statements is only carried out if the following condition is met: 
 

if ($total_count_type_array[$type_key] > 0)  
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Once the two loops have been run through for the four different properties, the 
score variables are stored in arrays with the appropriate labels: 
 

$opinion_scores = array( 
"Positive" => $score_op_good,  
"Negative" => $score_op_bad,  
"Neutral" => $score_op_neutral,  
"None" => $score_op_none); 

 
This makes it straightforward to identity the most appropriate classification for 
each property: 
 

array_search(max($opinion_scores),$opinion_scores); 
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Evaluation 
 
To evaluate the effectiveness of the implemented prototype, two main 
approaches are taken to evaluation. Firstly, areas for improvement which are 
immediately apparent are discussed. These are a result of the Techniques 
and methods used to implement this prototype.  
 
Secondly, the actual performance against the project goals is evaluated. 
Using a statistical approach, numerical measures of system accuracy can be 
derived. 
 
Techniques 
 
Some of the techniques used in the prototype system created provide areas 
for improvement in future development. These inefficiencies and bottlenecks 
result in longer processing times, and in some areas can compromise the 
functionality of the system overall. 
 
MySQL Server load 
 
One of the immediate problems with the developed system is the amount of 
work that it carries out. For each of the twenty possible classifications, the 
system performs the following: 
 

1. SQL query to count total words in data 
2. SQL query to count how many times each word occurs in the same 

data (performed each term in turn) 
3. A series of IF statements (up to 10) to identify the type of word being 

used. 
4. Division of step 2 by step 1. 
5. Add to the current existing score 
6. Create an array. 

 
Excluding any traffic inherent with connecting to the MySQL database – the 
site performs the following number of queries, where ! is the number of terms 
in a tweet. 
 

!"#$%#& = 20+ 20! 
 
As an example, a tweet typically contains anywhere from 10 to 15 words, in 
the uppermost case here, there would be a total of 320 similar queries 
performed. 
 
To compound this, many of the queries being executed are very high level 
queries and all contain the LIKE function, which searches all the data in the 
dataset. For the current dataset (containing less than 300 queries all with less 
than 200 characters), each query takes approximately 30ms to run. With a 
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larger dataset, each of these queries would take longer to execute, and would 
increase both the wait for the page to load and the load on the server. 
 
Exception Handling 
 
One of the major downfalls of the system comes in the way in which it handles 
user input. The current method takes two kinds of input, numeric and non-
numeric. In both cases, no checks are performed on the input to check that 
they are valid. 
 

 
Figure 20 Invalid Entry to form – neither a URL nor a number 

 
Numeric Entries 
In the case of a numeric input, the system will simply assume that the number 
provided is a tweet ID. This number will be taken at face value and included in 
an API Request to Twitter. The Twitter API will return an error as below 
(formatted in JSON): 
 

{"errors":[{"message":"Sorry, that page does not 
exist","code":34}]} 

 
The PHP processing of the JSON (after it has been converted to an array) will 
result in a number of undefined index errors: 
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Figure 21 Undefined Index errors as a result of invalid Tweet ID 

Non-Numeric Entries 
 
Where a non-numeric entry is given, the system will attempt to use the 
explode and end functions to work back to the last forward slash, assuming 
that the given text is a tweet URL. Where there is no forward slash, the value 
for the tweet ID is taken to be an empty string, and no PHP errors are 
invoked. 
 
However, once this empty string is sent to Twitter, the same JSON error is 
returned. The following processing will also return errors where indexes are 
undefined. 
 
Solution 
 
In both cases, there are simple methods that could be implemented in a later 
revision to overcome wrong input. This could either be done before the API 
Request is made – checking that a URL is actually a URL, for instance – or by 
identifying whether the returned JSON is an error response or valid tweet 
data. 
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Evaluation Method 
 
In order to evaluate the accuracy of the system in correctly identifying the four 
properties, a subset of the data gathered at the start of the project (that went 
on to form the training data) was used.  
 
Normally, the data used to evaluate the system would be previously unseen 
data to the system. However, for this project no other data was available that 
was thoroughly classified in the same manner as the initial training data set. It 
therefore stands that the evaluation carried out only serves as a preliminary 
investigation that would need to be followed up with an independent dataset. 
 
47 tweets were added to the table evaluation_set which contained the 
following fields: 
 
Tweet Id The tweet ID of the tweet being evaluated 
Count_shown The number of times that the tweet had been loaded 

and analysed by the system1 

Count_evaluated The number of times that the tweet had been evaluated 
Real_ident The real identity behind the tweet2 
Real_type The real tweet type for this tweet2 
Real_reason The real reason for the tweet2 

Real_opinion The real opinion shown in the tweet2 

Table 19 evaluation_set table description 

 
1 Due to the slow analysis performed by the page, the query to fetch the tweet 
may be executed (and the value of this field increased) before the page 
actually completes loading. 
 
2 These were based on the table “classifying” and were the results of what the 
first set of data had to say. 
 
The tweets chosen to form this set were as wide ranging as possible within 
the dataset in order to test the accuracy of the system for all possibilities.  
 
A version of the file guesser.php (created in the implementation) was created 
which did not accept user-submitted tweets, but instead worked using tweets 
contained in the evaluation_set table. This version included features that 
allowed users to record whether they thought each of the classifications by 
the system was correct. This version is available at: 
 

www.fyp.dave-harrison.com/testing.php  
 
The full source code is included as Appendix 7. 
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Figure 22 Evaluation Questions with Classifications 

 
 
This version of the system takes the tweet ID from the evaluation_set table 
(where it has been evaluated fewer than three times) and processes it in 
exactly the same way as it would with a tweet ID provided by a user to 
guesser.php. The page displays the results similarly to guesser.php and 
invites users to select whether they think each value is correct or not.  
 
Correctly filled out and submitted, the form will save the following values to the 
table evaluation:
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Column Purpose Possible Values 
tweet id The tweet id being 

evaluated 
Any tweet id 

guessed_identity The identity that the 
system predicted the 
tweet to be 

Any of the “Identity” 
classifications 

identity_correct Records whether the 
user thought the 
“Identity” property was 
correctly classified 

• Correct 
• Wrong 

guessed_type The system’s prediction 
for the Tweet Type 

Any tweet-type 
classification 

type_correct Whether the user 
thought the “type” 
classification was 
correct. 

• Correct 
• Wrong 

guessed_reason The system’s prediction 
for the Tweet Reason 

Any reason 
classification 

reason_correct Whether the user 
thought the “reason” 
classification was 
correct. 

• Correct 
• Wrong 
• Unsure1 

guessed_opinion The system’s prediction 
for whether the “opinion” 
was correct 

Any opinion 
classification 

opinion_correct Whether the user 
thought the “opinion” 
classification was 
correct. 

• Correct 
• Wrong 

Table 20 evaluation table description and explanation of data stored 

 
1The “unsure” option was added for the reason, since many of the tweets may 
have been ambiguous or fit more than one category. 
 
Each tweet was evaluated in this manner a total of three times. This meant 
that, given most fields only had two options, it was mostly impossible for the 
evaluation data for each one to be inconclusive. In the worst case scenario, 
the third classification would act as a tie-breaker. 
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Results 
 
Accuracy of Classifications 
 
Perhaps the greatest measure of accuracy is simply the number of times that 
each classification was reported as correct compared to incorrect. 
 
 Identity Type Reason Opinion 
Correct 43 110 93 125 
Incorrect 102 35 31 20 
Unsure N/A N/A 21 N/A 

Table 21 Correct and Incorrect classifications in each property 

 
Figure 23 Number of Correct / Incorrect Classifications by Property 

 
 
Noticeably, the results for the Identity classifications are significantly lower 
than the other properties – with less than a 30% success rate  
 



Page 69   

Success Rates therefore are calculated using the formula: 
 

Accuracy = Number!of!classifications!described!as!correct
Total!number!of!classifications!evaluated  

 
For each of the properties, the results are as below: 
 
 Identity Type Reason Opinion 

Accuracy 29.66% 75.86% 64.14% 86.21% 
Table 22 Success rate in each property 

 
Figure 24 Overall correctness by property 

 
 
Accuracy Matrices 
 
A set of matrices were created based on the number of responses that 
believed the predictions of the system to be correct or incorrect. In the case of 
Tweet Reason, all those who selected “Unsure” were not considered. These 
matrices describe the evaluation results received, and demonstrate the 
number of times when an evaluator reported a correct or incorrect guess. 
 
It is important to note that in some cases, these were marked as “Incorrect”, 
even though the correct result was given by the system. In cases like this, 
these values counted towards an accurate prediction (shown in green). 
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Identity 
 
 Guessed_identity 

Individual 
(Not 
Celebrity) 

Individual 
(Celebrity) 

Group 
(Special 
Interest) 

Group 
(Other) 

Organisation 
(Business) 

Organisation 
(Academic) 

Organisation 
(Charity) 

Organisation 
(Team) 

Organisation (Other) 

real_ident 

Individual (Not 
Celebrity) 

21 13 0 11 0 0 65 6 0 

Individual 
(Celebrity) 

0 1 0 0 0 0 0 0 0 

Group (Special 
Interest) 

0 0 0 0 0 0 0 0 0 

Group (Other) 0 0 0 4 0 0 5 0 0 

Organisation 
(Business) 

0 0 0 0 3 0 0 0 0 

Organisation 
(Academic) 

0 0 0 0 0 0 0 0 0 

Organisation 
(Charity) 

0 0 0 0 0 0 6 0 0 

Organisation 
(Team) 

0 0 0 0 0 0 0 3 0 

Organisation 
(Other) 

0 0 0 0 0 0 0 0 3 

Table 23 Contingency Table: Automatic Classification of Identities 

 
This matrix supports anecdotal evidence by users of the testing software, and experience of using it, where the system was very 
sensitive towards classifying this property as “Organisation (Charity)”, even though in 70 out of the 76 times, it was not the case.  
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Tweet Type 
 
 Guessed_type 

Personal Professional 

real_type 
Personal 85 25 

Professional 0 27 
Table 24 Contingency Table: Automatic Classification of Tweet Types 

 
Tweet Reason 
 
 guessed_reason 

Event Promote Conversation Joke Other 

real_reason 

Event 3 3 0 0 1 

Promote 0 30 0 1 0 

Conversation 3 5 13 2 2 

Joke 0 3 0 10 0 

Other 0 0 0 0 35 
Table 25 Contingency Table: Automatic Classification of Tweet Reasons 

 
Tweet Opinion 
 
 Guessed_opinion 

Positive Negative  Neutral None 

real_opinion 

Positive 18 0 0 0 

Negative 0 23 2 0 

Neutral 0 0 23 0 

None 0 1 8 59 
Table 26 Contingency Table: Automatic Classification of Opinions 

 
 
Across all of the properties, a common aspect of the predictions is that the 
system will return more false positives (a classification that turns out not to be 
the case) where the classification is less common in the initial data set. 
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Explanation of Inaccuracies 
 
The number of inaccurate classifications (false positives) appears to be 
highest in cases where there are a smaller number of tweets that match that 
in the initial dataset.  
 
For example, there is one tweet in the data with the identity “Organisation 
(Charity)”. It contains the following tokenised terms: 
 

  I posted a new photo to Facebook http   t co Va5EtwoIYH 
 
If any of these terms appear in the source tweet, the system will find that it 
occurs (currently) in 100% of the tweets posted by charities in the dataset. 
As a result it will receive a disproportionally higher score than the more 
common classifications. This problem is worsened with the presence of stop 
words, and the terms “http”, “t” and “co” which are typically found wherever 
Twitter has shortened a URL to fit within a tweet. 
 
To highlight this, compare the measured accuracy of each of the categories 
with the distribution of terms between each possible classification. The 
following are the counts of the number of terms in a corpus: 
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 Identity (29.66% Correct) 
 

 identity Terms 
Group (Other) 79 
Group (Special Interest) 243 
Individual (Celebrity) 91 
Individual (Not Celebrity) 4989 
Organisation (Business) 226 
Organisation (Charity) 50 
Organisation (Other) 181 
Organisation (Team) 60 
Table 27 Number of terms in each classification: Identity 

 

 
Figure 25 Corpus size for classifications in Identity Property 

 
Tweet Type (75.86% Correct) 
 
tweet_type Terms 
Personal 4685 
Professional 1251 
Table 28 Number of terms in each classification: Tweet Type 

 

  
Figure 26 Corpus Size for classifications in Tweet Type property 
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 Reason (64.14% Correct) 
 

reason Terms 
Conversation 1825 
Event 1520 
Joke 321 
Other 774 
Promote 1496 
Table 29 Number of terms in each classification: Tweet Reason 

 

 
Figure 27 Corpus size for classifications in Tweet Reason Property 

 
 Opinion – (86.21% Correct) 
 

opinion Terms 
Negative 521 
Neutral 132 
None 4797 
Positive 486 
Table 30 Number of terms in each classification: Opinion 

 

 
Figure 28 Corpus size for classifications in Opinion property 
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Term Identification 
 
At present, the way in which a term is recognised as being a “word” (though, 
some others are included, such as “http”), is that it is any value in “word” 
column of the words_followed table, surrounded on each side by a space.  
 
This list of words, which at the end of the project stands at 2635 different 
terms, is by no means comprehensive and has many terms that simply aren’t 
recognised. For instance, the word “book” doesn’t appear anywhere in this 
list. Since this list was created manually in a one-time process to identify all 
words, any new tweets added to the dataset will not be added to the list in 
words_followed.  
 
In any future development, it will be essential to increase the size of the 
corpus for terms, and this will inevitably invite new words into the different 
corpora. If a new tweet in this dataset included, for instance, the word “book” 
then every search using the existing method (below) would result in no results 
being returned, since the word would need to be manually added to the list of 
recognised terms (“word”).  
 

tokenised LIKE CONCAT("% ",`word`," %") 
 
There are two methods by which this could be overcome, either by creating a 
trigger to tokenise and add any new terms to the list with each tweet added, or 
by using some kind of index to identify terms within the “tokenised” field (a 
method discussed more within Faster Processing). 
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Possible Solutions 
 
Data Set and Classification Accuracy 
 
The simplest way to improve the accuracy and reliability of the way in which 
the system determines classification is to increase the size of the dataset. 
This would mean that frequently occurring terms within individual corpora 
would be more easily distinguished from the “noise” of terms that are common 
across all corpora. It would also mean that the impact of stop words is 
reduced, since the relative occurrence would be divided by a larger number. 
 
Potentially, a system such as that used in the evaluation could be used to 
feedback into the data with correct classifications. Once a tweet has been 
correctly guessed, users could confirm this with a simple button and the 
results would be stored within the same classification data as it was based on. 
This would allow the system to grow and evolve – teaching itself which terms 
are more common, and being able to add new terms that are not yet 
discovered. 
 
As an example, if the word “university” did not appear within any corpus, but 
the other terms within the tweet suggested that this could be a tweet 
belonging to a given classification, then it would be able to identify this and 
future classification attempts would understand that the word “university” is 
found within that corpus. 
 
Faster Processing 
 
At present, pages take anywhere up to about 30 seconds to process a single 
tweet. There is certainly room for improvement in this area even at this 
prototype stage. With the larger required data set that would be needed to 
improve the accuracy and reliability the time taken to calculate the correct 
classifications may be considerably more. This could be done by either 
reducing the time each of the queries takes to execute, or by reducing the 
number of queries executed.  
 
To reduce the number of queries executed, it might be more beneficial to use 
SQL’s “GROUP BY” function to return an array of values when counting 
terms. Instead of using one query for each of the classifications, it should be 
possible to use one query that returns an array with all the terms in. It would 
then fall to PHP to process this array in a similar way to currently exists.  
 
Alternatively, MySQL provides the capability to index and search within full-
text fields. This FULLTEXTxvi definition within MySQL allows for searches 
within the sets of tweets for each of the classifications. This includes the 

                                            
xvi Oracle (2014), 12.9 Full-Text Search Functions, MySQL. Available at: 
https://dev.mysql.com/doc/refman/5.0/en/fulltext-search.html  
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ability to use the MATCH() function to find terms within the database more 
effectively than using a character by character search as in LIKE.  
 
Future Work 
 
Beyond a Proof of Concept 
 
The current prototype exists solely to demonstrate that this method of term-
by-term analysis is effective in providing a predicted classification in these 
four properties of a tweet.  
 
At present, the process has only been applied to one tweet at a time, and has 
no obvious purpose in the real world. In the future, a version of this software 
could be created that works in conjunction with Twitter’s Streaming API to 
monitor tweets on a given subject. The example used in the Introduction was 
that of Cardiff University (or any other organisation) being able to monitor 
Twitter and get real time metrics on who is saying what about their brand. 
 
As an area for future development, this term analysis within tweets could be 
combined with a dashboard that provides numerical measures with any of the 
following properties: 

• Who is talking about the subject in question? 
• What are they saying? What type of tweets are most common? 
• Is an opinion most common amongst tweets? 

 
Any of the above measures could also be used in relation to time. An example 
could be in response to a public incident – where many users of Twitter will 
describe the event, engage in conversation about it, and promote links to 
media which discuss it in more detail. As with any aspect of life, the jokes will 
follow at some point later. 
 
As well as providing a measure of public interest, this may also be applicable 
to brand management and marketing. Marketers and promoters will be able to 
see, over the progression of time, users’ changing opinions about their 
product, service or company. 
 
Data Stored 
 
A large number of the tables inherited from the 140Dev library were not used 
in the final implementation of this system. Whilst there may be future 
extensions that may look more into the information held in Users, Hashtags 
and URLs, they currently have no benefit to the system. 
 
Particularly in this prototype, where the focus of processing lies solely within 
the terms and their occurrences within different corpora, these tables could be 
removed from the MySQL database. Additionally, it should be noted that the 
time to join these tables would further worsen the performance of the system. 
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Improvements to Natural Language Handling 
 
Stemming and Lemmatising 
 
Currently the amount of actual natural language processing done by the 
prototype is very minimal. The system has no way of knowing the difference 
between “read” and “reading” as much as it would know the difference 
between the word “read” and the word “dog”.  
 
By performing some kind of stemming or lemmatising on the words prior to 
counting their occurrence, there would be a higher rate of matches within the 
dataset. For instance, if the word “running” occurs in a tweet, at present it 
does not associate this with any occurrences of the word “run” in the 
database. By stemming the word “running” to it’s stem of “run”, there would be 
matches for “run” and “running” in the database, as well as any other variants 
of “run” (such as “runner”).  
 
To go one further – lemmatising could be applied to terms to even better 
group terms around a word on which their meanings are based, rather than 
simply removing suffixes. However, with this there is the inherent risk that 
terms are made too similar. For instance, certain users with certain identities 
may use different inflections within their natural language. By completely 
lemmatising the terms – these inflections may be lost, making it harder to 
distinguish between classifications. 
 
Word Sentiment Analysis 
 
At present, the actual meaning of words is completely overlooked. For 
instance, in the case of classifying the Opinion property, words such as 
“good”, “bad” and “best” are treated the same as every other word. The only 
affect that it has on the outcome is by nature of its relative occurrence in the 
data set.  
 
By performing some basic sentiment analysis on these words, at least in 
respect to the Opinion property, there exists the potential to vastly improve the 
way in which the system classifies opinionated terms. 
 
Similar techniques to the Stanford Named Entity Tagger previously mentioned 
could also be applied in order to identify key parts of the tweet text such as 
any names being mentioned, the names of any companies or brands, or times 
and dates. By doing this, there could be a much higher level of certainty 
applied to some types of classification. For instance, in the case of an event 
being described, a tweet would far more likely mention a time or location.  
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User Identity Analysis 
 
Similarly to the way in which the size of the corpus was increased by storing 
more terms for the users whose identities and tweet-types were known, a very 
similar thing could be applied to the source tweet to get a wider set of terms to 
compare with the known terms. 
 
Within the Twitter REST API, the “GET statuses/user_timeline” resource 
would return a set (up to 3,200) of the most recent tweets by a given user. 
These terms could then be tokenised, added to the array of terms and then 
classified in exactly the same way as the system currently does.  
 
Depth of Classification 
 
The current classifications and properties are defined arbitrarily. The system 
could in future be able to further classify tweets. For instance, the identity 
property leaves a lot of room to be refined. Rather than simply saying “an 
individual” it may be possible to infer basic demographic data from their 
tweets. For instance: “A male individual aged between 18 and 25”. 
 
This further depth of classification would need to be based on new 
classification data, collected in a similar way to the first stage of this project. 
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Conclusions 
 
Property Classifications 
 
The way in which the data was collected meant that data was not in anyway 
coloured or biased. However, the process by which the classifications 
themselves were decided upon drew upon very little actual data. Created 
purely arbitrarily, and based on experience of using Twitter personally, the 
chosen classifications were a decent estimate of the classifications in the real 
world, however were in no way comprehensive. 
 
In an ideal situation, where more time was available to the project, the first 
stage would have been preceded by a much more open method whereby free 
text descriptions of tweets could be used in order to identify the appropriate 
classifications that could be used for each property.  
 
Collected Dataset 
 
The set of classifications collected by the system form a well structured 
system that make it incredibly easy to perform operations on to sort and filter 
as appropriate (for instance, to narrow down a corpus to a specific 
classification). The database as itself is well related and is able to record a 
huge amount of information about each tweet and its classifications. 
 
The primary problem with the dataset at the moment stands that it simply 
doesn’t have enough in it. For instance, only 70 terms occur in the corpus for 
“Organisation (Team)”. This makes it incredibly difficult, as described earlier, 
to distinguish between “noise” of words that occur infrequently, and terms that 
actually indicate the likelihood of that classification. Going forwards, the 
structure of the database allows for more data to be added (either in the way 
previously carried out or by another means).  
 
 
Automatic Classification Tool 
 
Arguably the best way of qualifying the success of the implemented system is 
simply in it’s accuracy of prediction. In this aspect, the system performed 
relatively poorly.  
 
The inaccuracy in the Identity property, as discussed in the Evaluation, is 
mainly caused to the large inequality in the size of the dataset on which they 
are based. Compared side by side, it is apparent that the higher inequality of 
the dataset leads to the lowest accuracy. Simply put: with such small datasets 
for Group and Organisation classifications, it becomes difficult to distinguish 
relevant terms from the noise in such a small corpus. 
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It is expected that with improvements to the dataset, possibly learning from its 
own classifications, the system will be able to improve in terms of accuracy 
across all of these areas.   
 
The current version of the system – guesser.php – currently stands only as a 
prototype and would not be suitable for release. As well as lacking error 
handling capability, it has minor security flaws in handling form entry and is 
vastly inefficient in terms of the way in which it processes terms. However, by 
indexing the database and combining multiple queries into one, this issue can 
be overcome. 
 
Evaluation Method 
 
The method by which the system was evaluated was based on the use of a 
subset of tweets that were initially classified at the beginning of the project. Of 
the initial 99 tweets that were classified, all 99 were then used in formation of 
the corpora used by the Automatic Classification Tool. 
 
This meant that the data used to evaluate the system was also being used by 
the system itself to calculate the outcome of its classifications. The correct 
way of doing this would have been to either collect additional classification 
data, or set aside a subset of the initial 99 tweets to be used for this purpose. 
 
However, given the time constraints of the project, it was not possible to 
collect further classifications. The act of removing some of the classified 
tweets from the corpora used would have drastically impaired the 
performance of the system.  
 
In the future, it would be necessary for the system to be properly evaluated 
using independent data that is new to the system. The evaluation carried out 
previously in this project is correct only in its process, but serves well to 
highlight the performance of the system in regards to accuracy and precision.  
 
Project Conclusion 
 
The project has proven that the content of a tweet is indeed an indicator of the 
four properties addressed. The classification which were used in the project 
were admittedly picked arbitrarily, and in the case of an Academic 
Organisation, failed to get used at all throughout the project. However, this 
does not stand to say that it would not be useful in a comprehensive system.  
 
Repeating the project from scratch, the first step would be to find a 
comprehensive list of classifications, and then spend more time in getting 
classification data in these areas. By spending more time in this first phase, 
there would also be sufficient data collected that some could then be set aside 
to act as a set solely for evaluating with.  
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However, with the dataset collected, there was significant success in creating 
a system capable of using it to classify tweets automatically. Admittedly, the 
results for how well it can be reliably carried out vary (30% to 86%) across 
these four categories, but the in three out of the four properties, the majority of 
automatic classifications prove to be correct.  
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Reflection 
 
This project has been a culmination of topics learned across the modules 
studied in university. From the database design and Informatics concepts 
learned in second year to the information handling techniques taught in 
Knowledge Management. This project has tied many of these concepts 
together to best control how the information used by the project is collected, 
managed and used.  
 
Perhaps one of the most revealing aspects of such a large project is how the 
decisions made about database design in the early stages can impact the way 
in which later decisions are made. For instance, by storing classifications in 
free text in the beginning, the project was already inclined to using these 
classifications as loops in the final implementation.  
 
These decisions, regarding data collection, made at the very beginning of the 
project were arguably those that had the most impact to the final outcome of 
the project. As an example of this, the filter terms used with the Streaming API 
to collect tweets for the database immediately limited the tweets collected.  
 
A large lesson regarding the evaluation of an Information-driven system was 
also learned. Particularly in regards to the data on which it is evaluated, the 
need for additional and untouched classified tweets was only an issue later 
on, and would have been much more easily created at the start of the project 
when the time was available. 
 
Looking back now, I would almost certainly have tried to select a better set of 
tweets to balance the distribution of the classifications collected. By simply 
allowing more time to collect the classifications, I would have reduced the 
amount of problems in the final implementation. Similarly, there would also 
have existed time at this early stage to create an additional set of data for the 
eventual evaluation of the system, which would not be built into the system 
itself. 
 
Looking back further still, I would have placed more emphasis on actually 
collecting a formal taxonomy of tweets into the classifications. This would 
have allowed me to not only formally describe the classifications better, but 
also evaluate whether the classifications and properties used in the project 
were comprehensive. 
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