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0.1 Abstract

In the past decade autonomous computing mechanisms such as machine learning have grown in

popularity, with a wide spectrum of professions and tasks looking to employ such techniques.

One task that has seen the potential for automation is the imaging of prostate via MRI. Re-

searchers have been looking at using these techniques to assist in clarifying the structure of the

prostate to aid in the diagnoses of prostate cancers. As a result of this research there have

been a myriad of methods considered and tested. This paper reviews the current landscape

of these methods, selecting and ideal model in terms of efficacy and specificity in segmenting

the prostate, as well as identifying the best data-set to use in future research and testing .

Once the ”ideal” model was selected we confirmed its efficacy by selecting what we deemed

to be a potentially weak aspect, and attempting to refine the model in said aspect. This was

accomplished by altering a structurally similar model and comparing its variation in Dice score

(DSC) when using the selected data-set. Finally we applied these alterations to the ”ideal”

model and compare the differences seen from its base version to confirm the most ideal con-

figuration. The findings were then placed within the limitations of the project allowing for

discussion on potential future application of these findings, as well as the methods employed

within this paper.
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0.2 Introduction

In recent years Neural networks and Deep learning have seen a dramatic increase in interest

and application, mainly thanks to increased GPU power and availability. This has allowed for

model frameworks to be increasingly developed upon and documented, leading to a plethora of

highly specialised models being available for certain tasks.

In the context of medical imaging, there has been significant increase not only in the efficiency

of automated classification and segmentation task but also their efficacy, with some of the best

models achieving results near to those of trained professionals (Isensee et al. 2020).

As this efficacy creeps up to fully replicating human ability these models can potentially be em-

ployed in aiding professionals in a clinical setting, providing faster and more accurate diagnosis

for pathology’s such as prostate cancer.

This paper attempts to look at the current state of this automation when applied to segmenting

prostate MRI’s, a organ with an internal structure that is notoriously hard to discern. This is

vital in the diagnosis of cancers as significantly different prognosis’s are heavily dependent on

where pathology’s reside. In this paper there will be an overview of multiple automated and

semi-automated techniques that can produce segmented prostate images to be used to aid in

cancer diagnosis’s.

The literature around this will be reviewed and the models seen within will have their strong

and weak points evaluated and compared with one another as well as their overall efficacy.

From here the aim is to select a final model based on score, availability and considerations from

previous literature, then seek to evaluate its weaknesses and potentially improve upon them.

The result of this evaluation and testing is to provide the most exemplary model possible for

future use and research.

As well as the model, research and testing requires a robust data-set that allows for sufficient

comparison to real world scenarios and aids to validate the findings of the research utilising the

model. This paper also takes this into account, selecting the most applicable data-set from the

literature and validating it internally.

The selected model will be trailed with different configurations using the selected data-set, with

the metrics obtained from these configurations being compared to one another to eventually

isolate the most effective configuration.

A familiarity with machine learning advised but not a pre-requisite , python code knowledge

would be a benefit although in terms of the model selection and application the paper should

provide a a sufficiently encompassing overview.
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0.3 Aims and objectives

Aims

• Evaluate the current automatic and semi-automatic segmentation methods, and their

components.

• identify an ideal data-set to use for testing the efficacy of segmentation models, and

validate the selected model with internal testing.

• Select the most ideal model from the literature.

• Assess and evaluate differing model configurations, selecting the ideal one

• Showcase selected models efficacy.

Objectives

• Provide the most applicable data-set for model use.

• Identify the most ideal model, and its strongest configuration.
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0.4 Background

This section aims to provide an overview of the knowledge needed to understand the model

application seen in this paper, as well as provide context for why a certain type of model

was selected. Papers were sourced using Cardiff Universities internal library as well as Google

Scholar.

0.4.1 MRI Overview

The prostate is an organ that plays a pivotal role in the male reproductive tract, producing and

excreting the seminal plasma that combines with sperm to form semen (Barrett et al. 2019).

Although the prostate plays an instrumental role in male anatomy and function it also presents

a significantly high prevalence of cancerous pathology’s, being responsible for 1 in 5 new cancer

cases in men (Siegel et al. 2019) with particular prevalence shown in men over the age of 65 and

those of african descent(Rawla 2019). Although typically it is slow to progress treatment can be

costly and intrusive, with certain late stage variants essentially being incurable (Sumanasuriya

and De Bono 2017). Therefore an early diagnosis plays a vital role in the management and

treatment of such pathology’s, MRI imaging has shown to be a favorable tool in achieving this

early diagnosis (Bloch et al. 2008).

Due to MRI’s ability to better distinguish between soft tissues when compared with other imag-

ing techniques, they have become a mainstay in prostate imaging since their introduction the

early 80s (Giganti et al. 2019). Most notably to aid in the detection of cancerous legions within

the prostate, by allowing radiologists to categorise the lesions more accurately by employing

the images along with classification techniques such as PIRADS (Weinreb et al. 2016).

In terms of structure the prostate overlaps with the Urethra and Seminal Gland and is composed

of 4 main segments (Kumar and Majumder 1995). The Peripheral zone is the largest section

and encompasses about 4/5ths of the entire prostate, with the remainig 5th being made up of

the transition and Central zones (Kumar and Majumder 1995), as well as a structure that lies

anterior to the Central/Transitional zone is the anterior fibromuscular stroma. (Bouyé et al.

2008).

6



Figure 1: A sagittal plane image of the prostate indicating its position relative to the bladder,
urethra and seminal vesicles.(The prostate - Canadian Cancer Society.)

When diagnosing prostate cancers MRI images are reviewed under the guidance of the PIRADS

v2 grading system. This is a grading system allows clinicians to assess the danger of any tissue

abnormalities present in the image, however there is a large discrepancy in how the abnormalities

are diagnosed on either side of the transitional/central zone border (Barentsz et al. 2016). As a

result one of the most prevalent issues seen in MRI interpretation is the ability to differentiate

between the border of the Peripheral zone (PZ) and transitional/central zone (TZ/CZ) of the

prostate. This is a key aspect that can impede the diagnosis accuracy and as a result the

efficacy of the supplied treatment (Vargas et al. 2012). This is since tumour location in the TZ

typically has a more favoured pathology and a higher recurrence free survival rate (Lee et al.

2014), making a clear distinction between the two vital in providing an accurate diagnosis and

cancer grading.

When using MRI’s to image the prostate, for segmentation purposes T2 weighted MRI’s are

employed over other variants of MRI as they have been shown to provide superior delineation

of the prostates specific zones (Lovegrove et al. 2018). More recently Multi-parametric MRI’s

have also been utilised, these combine T2 Images with and Diffusion’s weighted images and Dy-

namic Contrast-Enhanced images, this provides a better all round image including the superior

segmentation of the T2 imaging with alongside imagine techniques typically used for tumour

classification (Stabile et al. 2019).

Advents such as these in the imaging the prostate have been vital in allowing clinicians to ac-

curately gauge the serverity of abnormalities in prostate tissues.However despite these improve-

ments, the efficacy of these diagnosis is still shown to be quite limited with large heterogeneity

in results seen across differing studies. (Oerther et al. 2021). This has resulted in more complex
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techniques being developed with the goal of aiding clinicians in this task and reducing these

inconsistent diagnosis’s.

0.4.2 Automatic Computer Aided Segmentation

To rectify the aforementioned issues that arise from the image heterogeneity and variability

when interpreting prostate MRI’s, radiologists adopted computer aided vision to aid in the

segmentation of lesions and zonal anatomy within the prostate.

A computer can aid in this process in a fully or semi-automatic fashion (SAMPSON 1999). Fully

automatic will segment the image fully and present the final output for use without any human

intervention. Whilst semi-automatic techniques are normally altered by classic methods before

the final image is formed. As the clinicians role already is hindered by manually interpreting the

MRI image, semi-automatic is not typically the preferred choice as it requires someone trained

in MRI interpretation to provide input to the images resulting from the models.

Fully automatic models can be trained with varying levels of autonomy as well, typically in

two distinct ways, supervised or unsupervised learning. In supervised learning the training

data consist of input and output examples, in the case of the prostate the input would be a

typical MRI, and the output would be the labelled variant of this (Nilsson 1996). This allows

the algorithm to learn how the input data should be processed from a pre provided example

but does require more pre-processing (Yves Chauvin and Rumelhart 2009).The alternative is

unsupervised learning which only takes the input data and generalises characteristics from it

that can be supplied to new test data. This will not be as tailored as supervised methods but

does, to some degree, prevent the model tailoring too closely to the characteristics of a training

set (Hilton et al. 1999).

Early automated models such as Atlas based segmentation trained their algorithms with previ-

ously labelled images, with structures in the inferred image to be matched to labelled structures

from the training set, essentially allowing for automatic labelling of the new image.This is bene-

ficial as it allows for multiple structures within the image to be identified as apposed to treating

the prostate like a discrete area, with a yes or no answer, structures within the prostate can be

identified and located thanks to this process. This method has been implemented for prostate

segmentation with significant efficacy, achieving a dice score (DSC) of 0.89 in (Ayache and

Al 2012), however this paper also signified newer methods at the time such as Voxel based

classification outperformed Atlas models, although it is worth noting Voxel used manual whole

prostate segmentation’s while Atlas did not, potentially skewing the results .

Both models had issues segmenting out the peripheral zone as it presented as thin in the images,

resulting in a less clear cut boundary. This could cause issues in real world applications of the

model, as high image heterogeneity occurs across different clinical spaces. This paper also

8



utilises ADC MRI’s along side the T2’s, MP-MRI’s are not always performed and a purely T2

image may perform significantly worse on models such as these, meaning their efficacy may be

quite limited across differing clinical environments.

Another algorithm, the Random Walker Algorithm, functions off of edges and vertices, edge

weights give probability a random walker will traverse the edge based on the image, this prob-

ability will be high if traversal is likely. Some nodes have ground truths with user supplied

labels(Grady 2006) . On each pixel you compare the probability of reaching each label first,

you then label the pixels with the outcome, with the highest probability route being what is

followed (Li et al. 2013) . This model Showcased decent efficacy, achieving a DSC of 71.9.

Although this came with the caveat of treating the image as purely discrete object, limiting the

discerning of finer structures. The paper also showcased a high sensitivity to image noise which

disrupted the models effectiveness . Furthermore despite using a significantly small data-set of

30 images, the model heavily taxed the hardware used taking a Long time and consuming a

high amount of memory (Gao et al. 2018).

The final model reviewed was Super Pixel based segmentation. This model is more functionally

distinct than the last two, it would group pixels together basing them on shared properties,

this allowed borders to be easily distinguished, resulting in clear segmentation (K loczko 2017).

The main draw of this is the reduction in computational power needed as not every pixel needs

to be individually assessed (Achanta et al. 2012). However, as a result of its structure, image

quality can directly affect its efficacy, but there is significant variation in the algorithms used

and a quality one can override these issues to some extent(Ibrahim and El-Kenawy 2020).

The Majority of these models did show efficacy but had significant setbacks in terms of the

level of automation, hardware time/power cost, and aspects of the segmentation’s themselves.

Most notable is the models lacking ability to deal with heterogeneous image sets either requiring

pre-processing or pre-selection of the images used for training.

0.4.3 Machine Learning

Just feeding a model data will not necessarily result in a significant level of efficacy. Under-

fitting is where the input is not sufficient for the model to learn the necessary information, as a

result it will not be able to delineate the correct information in the testing data (Cunningham

and Delany 2021). Over-fitting is the opposing issue, where the data fed to the model is too

extensive and as a result means the model can now delineate from that data set with high

efficacy but will perform poorly on other data-sets as it essentially ‘tuned’ to detect features as

they present within that data-set (Nichols et al. 2018).

(Mitchell 2017) describes Machine learning as an algorithm that can optimize itself from expe-

rience with new data, the sample ‘Training data’ that is fed to it. This presented an excellent
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opportunity for image segmentation, as image variability could be accounted for by training on

a wide selection of data, moving beyond simple pattern matching and helping to remedy the

Over-fitting seen in earlier automated models .

Method

Name

Method

Description
Pros Cons

Prostate

Application

Markov

Random

Fields

(Kato

2011)

An un-directed

graphical model, the

edges have no

orientation

associated with

them, connected

edges form cliches.

That associated

characteristic can be

matched to based

on probability.

Can represent data

without worrying

about directionality.

Can clique slightly

differing data

together, so variations

in images can be held

together. (allows each

pixel to belong to

more than one class)

Difficult to generate

and interpret data.

Costly.

Fuzzy MRF used to

segment the

prostate, (Liu et al.

2009)

DSC 0.98,

significantly higher

than K-clustering

Support

vector

machine

(SVM) .

(Cortes

and Vapnik

1995)

(Habes et

al. 2013)

Classified features

that differ are

segregated. Support

vector boundaries

are aligned with this

along the extremes

of each

characteristic. The

hyperplane formed

in between them is

the aggregator,

classification is

based on the side of

the characteristic it

falls on.

Good for

multidimensional

characteristic

recognition, highly

applicable to 3D

images in medical

imaging.

Memory Efficient.

Works well with

limited data sets.

Requires costly cross

validation to convert

to a probability.

Impacted heavily by

noise in images.

Larger data sets can

impact the efficacy.

(Habes et al. 2013)

Didn’t measure

efficacy with DSC

so not comparable

to other

papers.Performed

well on a limited

size 16 data-set,

when analysed using

Hausdorff distance.

Random

Forests

(Schroff et

al. 2008)

(Ghose et

al. 2012)

Generates a forest

of decision trees,

containing nodes

that represent

characteristics of the

image, taken from

the training data.

Segments the image

and its semantic

regions.

Prevents overfitting to

some degree.

Handles large data

sets well, maintaining

high dimensionality.

Better at classification

then segmentation, as

it cannot identify

outside the training

data.

May over fit noisy

data sets, issue with

MP-MRI.

In (Ghose et al.

2012) the DSC

ranges from 61 to

73, depending on

the boundary being

observed. Based on

the PROMISE12

data-set.
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Linear

Regression

(Wang

2019)

(Yuan et

al. 2012)

(Liu et al.

2011)

Trained using a

regression model

that will map input

values to output

values, establishing

their relationship,

this can then be

used to assess

output on test data.

Far more simple than

some other models

and easier to interpret.

Has a more discrete

nature than some

other methods, as a

result fluctuations or

issues with the image

will severely impact

efficacy.

No papers with sole

usage of algorithm

could be found,

usually used more a

confirmation of

efficacy such as in

(Turkbey et al.

2013b).

K

Clustering

(k-means)

(Dhanac-

handra et

al. 2015)

(Hamerly

and Elkan

2003)

Finds the mean of a

grouping of data

and refines this

process over and

over to place the

mean in the ideal

position allowing a

separation between

the two sets, which

you can classify on

either side.

Can implement

contrast stretching to

improve low contrast

images.

Easy to implement.

Initial choice of the

mean location will

impact the efficacy,

requiring extra

computation power to

implement a decent

selection algorithm for

this.

Averaging data means

it is less accurate in

certain scenarios.

(Gao et al. 2012)

Is on a CT scan but

used K-mans and

rectifies some of the

issues by treating

the mean as a

dictionary that

holds more specific

values in it.

Proved affective

with a 91.3 DSC

score. But not

relatable to MRI.

Table 1: Table summarising early machine learning Algorithms, including and overview of
each, along with its pros and cons and its efficacy when applied to prostate medical
imaging. DSC = Dice Score

Whilst unsupervised learning seems like and ideal fit for medical imaging, especially with
the added bonus of reducing over-fitting in application it makes difficult to look for certain
features which is a key requirement when considering segmentation. The issue that arises
from this is that mentioned above, under-fitting.

As these early machine learning models were more popular for classification, they were
very effective at identifying structures based off the training data. However the het-
erogeneity and noisiness of prostate MRI images meant that the models struggled to
perform segmentation task. As a result the vast majority of the methods outlined above
used supervised training, with the exception K Clustering.

Though they fair-ed better in relation to to segmentation, the majority either were used
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exclusively for classification or were applied to segmentation by altering a classification
model. From what is observed in Table 1 dedicated segmentation algorithms are a rather
niche when looking at early machine learning algorithms.

Across the models seen in table 1 the issues of over fitting and under-fitting can be seen
in the Cons column, early deep learning algorithms where exceedingly dependent on the
consistency of the data provided to them and would still over-fit. This combinations pre-
sented a key issue as limited access to variable data-sets meant that the models generated
and tested would not necessarily translate to real world application.

0.4.4 Artificial Neural Networks (ANN’s)

ANN’s are named due to their ‘mimicking’ of a processes that is thought to occur in the
human brain. Structured in such a way as to replicate the synaptic connections that lie
within the brain, each node acts essentially acts as a synapse and can generate a weighting
based on the information it receives. Depending on the weighting it can fire down edges
(such as neurons in the brain) to a node specifically adept at processing information
of that weighting (Gupta 2013).This allows for weightings and connections relating to
individual characteristics to be adjusted based on the training data, meaning specific
structures in the images can be be used to reinforce said weights without impacting
weights that do not relate them.

These weights are stored in the hidden layer, this passes input information to the correct
corresponding node in the output layer. Manually entering the weights of such a large
structure would be extremely costly, to prevent this the network is designed in such a way
that it can self-adjust the weightings based on data provided to it (Gupta 2013). This
typically comes in the form of reinforcement learning, an offshoot of supervised learning
where the network is only given critiques of its efficacy to refine said weightings (Sutton
and Barto 2018).

Loss Function

This critique is performed using a loss function, this calculates the error seen from the
models predictions and the outcome from the training data (Rosasco et al. 2004).

Dice loss has proven to be the most popular choice for medical segmentation in recent
years as evidenced by its proliferation across the models reviewed in this paper and
papers such as (Zhao et al. 2020), it works by evaluating the overlap of the automatically
segmented image with a ground truth, where an exact match would result in a dice loss
score of 1, with incomparable images scoring 0 (Zhao et al. 2020).
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Figure 2: Dice Loss Function Summary (image segmentation - neural network probability
output and loss function (example: dice loss). 2020)

This loss score is then typically applied using a method called gradient descent, where
the weighting applied would result in the smallest loss (Specifically sum of the squared
residuals between expected and observed) which optimises the architecture speeding it
up significantly (Lecun et al. 1998).

Gradient Descent, Learning Rate and Momentum

Popular gradient descent algorithms are stochastic gradient descent algorithm where each
layer’s weighting is adjusted based on the loss experienced from each image as apposed to
regular gradient descent that updates after the entire data set, this is costly particularly
with larger data sets, but does prevent the weight overreaching the minima. The middle-
ground solution to this is to use the Mini Batch version of this which selects a single
training example from the batch for pass, this speeds up computation as there is a lot
less to compute whilst maintaining the optimisations that occur from the batch method
(Li et al. 2014b). This is due to the computational cost of processing the data from
the whole data-set not being an issue, making it especially ideal for larger data sets
(Mustapha et al. 2020).

The learning rate dictates how much the weights within the model can be updated with
each pass, typically ranging from a value of 0 to 1. This means that a smaller learning rate
will typically require more epochs or iterations to produce an accurate result, however
this will prevent over reaching of the minima, due to the gradual descent (Lee et al.
2022).

In more recent models a feature called Momentum has been used to improve Gradient
Descent algorithms by preventing ill fitting from singular poor examples in the data set.
Using momentum the step is not only determined by the gradient of the current step
but the accumulation of previous steps in the model(Alamri et al. 2022). However this
can lead to overshooting of the minima so in recent years acceleration has been employed
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Figure 3: Overview of Gradient Descent (Kansal 2020)

as well. Which automatically adjusts the momentum rate based on the variance of the
current step and its assumed step from the previous examples has been used such as
Nesterov (Dozat 2016). ADAM is a gradient descent algorithm that has gained favour
over the last few years as it allows application of Learning rates and momentum to
individual parameters. This means it can more directly follow the ideal path to the
minima for each parameter speeding up the model whilst retaining its accuracy(Dozat
2016).

There are typically two structures to ANN’s, the first is a more linear approach referred
to as feed-forward networks where each neuron can only pass information on to one
other neuron. The alternative to this is a recurrent network which sends signals to
multiple neurons (Gupta 2013). Due to their binary relationship for input and output,
feed-forward networks are best used on distinct values that will output based on their
conformity to specific weightings, this relationship also means that feed-forward networks
do not integrate ‘memory’ in their neuron selection.

Recurrent Neural Networks (RNN’s)

Recurrent neural networks utilise ‘memory’ as prior information collated from the neurons
is still fed down and can interact with information in the current neuron influencing its
output (there is also no weight difference between nodes in a layer), this allows for more
variability in the data set without compromising the efficacy of the output (Abiodun et
al. 2018). This has been applied to segmentation scenarios as seen in (Wang et al. 2019),
but has been limited in its application to prostate segmentation normally playing a less
significant role in more recently proposed models such as (Lu et al. 2020).However this
results in an issue called the long term dependency problem. As more information builds
on the node the RNN will struggle to learn new contextual information (Bengiot et al.
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1993).

A specific mechanism to remedy this Is “Long Short-Term Memory” (LSTM), which
has dedicated memory blocks that store contextual information from previous inputs.
Here it takes in information from the current input, forgets irrelevant information whilst
retaining useful data, then providing the current memory blocks context to the weighting
(Sak et al. 2014).

Although recurrent networks allowed for context to be applied to specific weightings, and
helps to resolve the issue of heterogeneity in images,one big draw back is that they still
lacked contextual information between different structures in the images. This limits
ANN’s in the context of image segmentation as although they perform well at feature
extraction, when aiming to image and discern the boundaries in the prostate identifying
singular features is not enough . Whilst there have been attempt to rectify this such as
feeding in images in sequential order in terms of the structure being segmented i.e. the
PZ/CZ boundary, the efficacy seen suffers under image heterogeneity, and is extremely
reliant on the appropriateness of the training data (Seo et al. 2020)

0.4.5 Deep Neural Networks (DNN’s)

Deep learning is a sub-sect of Neural Networks in which the hidden layers far exceed the
number present in ANN’s/RNN’s (Albawi et al. 2017) and the connections between each
node and layer are more complex (Abiodun et al. 2018). Another altered aspect of Deep
Neural Networks (DNN’s) when compared to NN’s is the abstraction that takes place at
each level, higher layers pick out lower-level features and the deep layers pick out higher
level features that will be significant to human observers.

Figure 4: Depiction of a Neural Network with multiple hidden layers (Sun et al. 2019a)

(Emmert-Streib et al. 2020) argues that the adoption of deep learning techniques had
been accelerated by the need to process increasingly large data-sets. As the architecture
can hold multiple learning algorithms in its ‘deep’ structure it can correctly store informa-
tion relating to heterogeneous characteristics seen throughout large Data sets. This has
coincided with commercial GPU power seeing a significant increase in the 2010 allowing
these architectures to be used by a far broader range of researchers (Sun et al. 2017).
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This ability to process large heterogeneous data sets has allowed significant developments
in image segmentation and classification in both medical imaging and the other fields.
Despite its efficacy in these tasks, there are still issues associated with deep learning. The
advent of increased GPU power certainly opened the door for deep learning algorithms
but didn’t’t make them an entirely feasible option in terms of training and processing
time. Both these aspects of DL models can be time and resource heavy, albeit significantly
faster than when performed on CPU’s (BUBER and DIRI 2018).

One issue that is exacerbated by the deep layering of DNN’s is that of Internal Covariate
Shift (ICS), where a change in the weighting input at each layer of the DNN occurs during
training, this can slow the model as it needs to adapt to this new data (Ioffe 2015). This
slows down the DNN training significantly as it now has to account for these changes at
each layer. To remedy this batch normalisation has been employed on mini batches to
standardise the inputs at each layer. This speeds up the training time and can reduce
the impact off poor weight initiation (Ioffe 2015). This does have limited applicability
on small batch sizes and the images forming the batch, which prevents it’s use along side
mini batch gradient descent limiting the speed and efficacy of the models (Lian and Liu
2019).

As well as the impact of ICS, the increasing depth of DNN’s makes the gradient descent
on each layer more reductive, as propagating down the levels (forward-propagation) re-
sults in overlapping computations occurring also increasing the computation time. Back-
propagation was developed where the loss function on each layer is assessed from the
output upwards. This removes the processing of redundant calculations in the chain rule
led gradient descent (Li et al. 2014).

0.4.6 CNN’s

CNN’s are designed specifically for in-taking data in the form of images, they are particu-
larly useful in this regard due to their preservation of the spatial relationships within the
images (Selvikv̊ag Lundervold and Lundervold 2018). This is accomplished by the image
going through many filtering layers that can discern spatial features over each section of
the images grid like structure (Yamashita et al. 2018).

The composition used by the CNN facilitates this unique decomposition and separates
it from more broad deep learning implementations. Generally, the 3 main layers are the
Convolutional, pooling and fully connected layers.

When training a CNN, typically you have a forward stage where information if fed into
the model, and then proceeding this a backwards stage, where back-propagated weight
adjustment occurs.

These two processes both being completed for the entire training set is referred to as
an epoch, studies may only use one epoch but typically this may result in under-fitting,
instead a higher number will typically be used to optimise the training with iterations
will be the number of batches fed to achieve one epoch (Khosa et al. 2020).

The initial Input Layer Is where pixel values of the base image are held. After this the
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image enters the Convolutional layer, which is what gives the architecture its name, in
this an array of numbers (Kernel) is applied over the grid separated input in the form
of numbers referred to as a tensor. This kernel slides over the tensor composed image
acting as a specific filter identifying features in each tensor (Selvikv̊ag Lundervold and
Lundervold 2018). The kernel is typically found in a 3x3 format, but larger variants have
been used in certain scenarios (Yamashita et al. 2018) and it typically shifts over one
pixel at a time (This is referred to as a stride of 1). The kernel undergoes padding to
ensure the width of the feature map matches the kernel which then allows the dot product
generation of obtained probabilities from each tensor, yielding a single value (Yamashita
et al. 2018).

Once this has been accomplished the tensor grid is down sampled in the Pooling Layer.
This takes individual tensor layers and down samples them. When using Max Pooling this
is accomplished by downsizing by a factor (stride) of 2, reducing the number of learn-able
parameters whilst insuring the CNN a degree of image invariance (Selvikv̊ag Lundervold
and Lundervold 2018). This allows for abstraction that after multiple layers will result
in the identification of more discrete features (O’shea and Nash 2015). Although Max
polling is the most common, average pooling is sometimes used where the average is taken
across a kernel of Y*X (for a 2D image).This helps to remedy the issue of over-fitting as
the strucutres picked out are now more high level meaning they will apply to more MRI
cases .

Fully connected layers take the output from the convolutional and pooling layers and
flattens them (converts them into and a 1d array of probabilities as opposed to a matrix
structure). The probabilities can the be used for feature classification. (O’shea and Nash
2015).

Activation Functions

Activation functions are used following the convolutional layers and fully connected layers,
they essentially ensure the input data for the next node in the hidden layers or for the
overall CNN output. This is a non-linear activation function that approximates the input
into that node into a standardised form. This needs to be nonlinear as the data can be
complex enough that linear activation’s functions will not be strong enough to process
it, this is essential to allow the back propagation method mentioned before (Chigozie et
al. 2018).

A popular choice for the convolutional layers is the rectified linear unit (ReLU), where
the value is 0 if below 0 and then ranges from zero to the input number when positive.
This has been widely adopted in DL networks in recent years due to its time efficiency
(Krizhevsky et al. 2017) and diminishes the impact of the vanishing gradient problem
experienced from back propagation as seen in (Talathi and Vartak 2016).

The vanishing gradient problem persists where weight between layers in the network
become too similar, as the weight adjustment is based on the gradient between the weights
the update to the weights will also be very small. As a result the weight cannot be updated
sufficiently to reach the minimam, hindering the networks ability to learn (Rehmer and
Kroll 2020).

However, this is typically only used within the hidden layers of the CNN, for the output
layer other algorithms such as softmax (Fritscher et al. 2016) or sigmoid (Astono et al.
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2020) are preferred, due to their output of 0 to 1 being easier to interpret (Goodfellow et
al. 2016).

CNN’s as described above can be designed to process input in multiple ways. Patched-
wise CNN’s take a sub-sect of the image being looked at and process it individually, once
this sub-sect had been fully processed the CNN will move onto a neighbouring pixel and
preform the same on the next patch . This is computationally costly as there is much
repetition in the pixels encompassed in the patches, furthermore, the balance between
image quality and the number of pooling layers can be hard to gauge and can impact the
efficacy of the CNN itself (Gholamalinezhad and Khosravi 2021).

Early CNN architectures were used solely for classification. However, these models did
introduce features that would be implemented into segmentation specific CNN’s. They
generally follow the patched wise structure outlined above, consisting of only an encoder,
and processing selected patches one at a time. Below is an overview of three early notable
models and components they introduced. They are not specific for medical segmentation,
with the majority of them being used for broad classification.
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AlexNet (Krizhevsky et al. 2017)

• Pioneer of using ReLUs as activation functions, early proof of efficacy.

• Overlapping Max pools were used to reduce the error rate of typical max pooling.

• Introduced dropout to prevent over-fitting, by dropping one neuron the back prop-
agation path changes, resulting in more robust learnt weights.

VGGNet (Simonyan and Zisserman 2015)

• Replaced AlexNet large kernals in the first and second convolutional layers with a
3x3 kernal to achieve higher accuracy in the image.

• Achieved a new level of accuracy in classification at the time.

• Reduced the error from AlexNet significantly.

GoogleNet (Szegedy et al. 2015)

• Uses Global average pooling at the end as apposed to fully connected layers.

• Has a 1x1 kernal in the middle of the network to reduce the number of operations
and as a result the processing time.

• Combine max pooling sizes 3x3, 5x5, and 1x1 on each layer, extracting different
features at each level.

• This further reduced the error seen in VGG.

Despite these improvements in classification, performance degradation of the DNNs due
to the “Vanishing Gradient” problem was an issue seen from the deeper structures, new
models such as highway networks and the Residual Neural Network (ResNet) were devel-
oped to combat this degradation affect, accomplished by introducing features such as skip
connections. ResNets connects layers further upstream to the current layer to provide
information and context, it is built off of VGG and is not dissimilar from a recurrent
network. This reduces the gradient diminishment and increases performance is deeper
models (He et al. 2015).

One main caveat is that whilst there is literature to indicate the above models have proven
effective when segmenting the prostate such as in (Chen et al. 2021) and (Abbasi et al.
2020) and models such as GoogleNet have open source builds online, these segmentation’s
relate to the whole prostate and tumours within, a hindrance employed by the fully
connected layer. This layer struggles to provide output for real world images, fairing
better with constructed images. When using real world images they are limited to a
small number of structures with little heterogeneity (which makes it struggle with arease
such as the PZ/CZ border)(Long et al. 2015),(Liu et al. 2021).. Another caveat of the
fully connected layer is that it has a high computational cost as seen in (Dosovitskiy et
al. 2016).
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0.4.7 Fully Convoluted Networks (FCN’s)

FCN’s replace the fully connected layers in classic CNN’s with 1x1 convolutional layers,
this allows for pixel wise classification whilst retaining spatial information (Long et al.
2015). This is ideal for image segmentation as images different sizes can be fed in and
effectively segmented and individual pixel segmentation can be combined with spatial
knowledge allowing for specific delineation of boundaries based on their characteristics.
This lack of fully connected layers also resulted in an improved computation time (Long
et al. 2015).

Another addition the FCN provided was the use of up-sampling within the network, at
each convolution layer the resulting heat map of features is up-sampled to produce a
higher res image that can be aggregated with the other up-sampled heat maps resulting
in the final image (Long et al. 2015).

Model Key Features Efficacy

PSNet

(Tian et

al. 2018)

Fine-tuned the last layers if the network as these

were the layers that discerned high level features in

the prostate.

Improved efficacy over the classic

FCN with a DSC of 0.85. Using

2 data-sets including PROMISE12 ,

giving a good range of data, sourced

form various hospitals, indicating a

decent efficacy even under assumed

heterogeneity in the data-set. This

score was also further validated by

the use of 5 fold cross validation to

gather the results. However it is

worth noting efficacy was not consis-

tently high across all metrics used.

DenseNET

(Huang

et

al. 2018)

Builds on the skip connections design from ResNet

and applies connections between every layer, this

allows less parameters to be considered at each step.

Just adding a subsect of feature maps on each level.

This reduces the computational costs of learning

redundant feature maps and helps resolve the van-

ishing gradient problem.

This has been adapted in hybrid de-

signs with other CNN architectures,

but no basic DenseNet has been used

for prostate segmentation. However,

it does show significant efficacy in

classification when compared with

the base FCN, however this is not

directly transferable to segmentation

efficacy only implied.
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DeepLab

(Chen et

al. 2017)

(Chen et

al. 2018)

(Khan et

al. 2019)

DeepLab v1

Atrous Convolution – allows maintenance of

spatial resolution despite the convolution layers, a

form of “devolution” where the kernel is dilated

out to a larger size but still only takes in the same

number of parameters. This aides as the drop in

resolution is never as severe as in typical models.

DeepLab v2

Atrous Spatial Pyramid Pooling (ASPP) –

using multiple atrous layers with different sizes to

identify features which are then processed in other

branches to form an overall result. This allows for

identical structures of similar sizes to be processes

without altering the scale and distorting the image.

DeepLab v3/v3+

Multi grid method – As each consecutive layer

is undertaken the convolution scale increase by a

factor of 2 to maintain image size. And removed

Random Field – Resulting in higher efficacy.

(Khan et al. 2019) showed in-

creased efficacy over both PSNet and

the base FCN when segmenting the

peripheral and central zone of the

prostate.

However this was done against in-

ternally tested models of PSNet and

FCN, as apposed to a comparison

with the papers directly, as a result

it is hard to determining the validity

of these results, especially when con-

sidering the PSNet paper reported a

much higher DSC score.

SegNet

(Khan et

al. 2020)

(Badrina-

rayanan et al.

2017))

Introduces a multilevel decoder that mirrors the en-

coder that is typically akin to VGG or ResNet. The

decoder up-scales its feature maps to the encoder

feature map of the same level by taking indices from

each encoder level.

In (Khan et al. 2020) segNet showed

a significant improvement over base

FCN, but was not as efficient as

DeepLabV3+, although this was not

used in a medical segmentation con-

text.

PSP-Net

(Zhao et

al. 2017)

(Malekijoo

and Fadaeies-

lam 2019)

(Yan et

al. 2021)

Pyramid Pooling Module – Different pooling lay-

ers are used after each convolutional layer, then

are up sampled and concatenated providing struc-

tural information within a larger context. This also

prevents image size differences impacting the effi-

cacy of the model. This paper also used contrast-

limited adaptive histogram equalization to increase

the contrast seen in the image.

In (Yan et al. 2021) showed

a significant efficacy increase when

compared with FCN when using

the PROMISE12 data-set, although

there no mention of the dice coeffi-

cient in the paper limiting the com-

parability to other models.
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HD-Net

(Jia et al.

2019)

(Jia et al.,

2019a)

Similar in structure to MSD net but with as 2d

boundary decoder as opposed to a 3d one. This

also follows a denseNet structure where skip con-

nections are present throughout. The 2d decoder

extracts volumes from the encoder.

Like MSD the 3d encoder feeds information

to the 3d decoder at each layer, but unlike MSD

it does not pool information from the boundary

decoder before the segmentation decoder portion

is undertaken. It also employs convolultional

pyramids as well as a residual refinement block

which uses 1x1x3 convolutions to capture 2d

features within the plane.

Producing a DSC of 0.9135 and scor-

ing 90.34 in the PROMISE 12, it

currently sits 3rd place. This struc-

ture is complex and although the pa-

per outlines it there are no models

present online for external use.

MSD-Net

(J. Sathi-

anathen et al.

2020)

Combines a 3D resNet encoder with a specific

boundary decoder and segmentation decoder. The

boundary decoder output is fused with the encoder

output before entering the segmentation decoder.

Currently placing 1st in

PROMISE12, but the paper is

limited in description of the model

due to it being built off HD-Net, and

as with HD-Net online models are

lacking in availability.

Table 2: Table presenting FCN’s that provided notable new aspects to the base FCN model,
that have either then become more common in newer models or showed a high efficacy
when metrics were applied.

These Fully convectional models allowed for not only discernment of the whole prostate
but also differentiation between the PZ and CZ using pixel classification to identify the
boundary.Many of the models present here had features in place to combat the vanishing
gradient issue, or refine the up-scaling seen in early CNN’s, providing clear images that
showcased the segmentation of the prostate.

However, despite the efficacy select models show here they are still very computationally
costly and the up-scaled images are still not on par with the base MRI image, meaning
that although the border would be segmented from the model, the rest of the image
suffered. In medical image analysis this makes it far more difficult to effectively use
systems such as PIRADS V2 for diagnosis purposes.

The main drawback of these models is their availability, few have open source code
available to use such as MSD-Net and HD-Net, this issue is further amplified by their
papers being relatively brief, with the aforementioned models being examples of this,
with MSD-Net being particularly vague as it is a variant of HD-Net. This makes the
models more difficult to replicate internally without compromising efficacy. As well as
this other models such as Dense-Net have not been applied to prostate segmentation as
noted by the literature and results of web searches.
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0.4.8 U-Net

U-net, so called due its structure forming a “U” shape, is uniquely equipped when com-
pared to other CNNs as it provides higher detailed output. It does this by essentially
having a de-convolution process whereby the convoluted image is passed through an “de-
convolution” tree. In this process it concatenates the input with the corresponding output
feature map from the descending (convolution) side of the tree, essentially restoring its
resolution at that level before it is passed further up the tree (Ronneberger et al. 2015).
Decoders were used previously in models such as SegNet but the U-Net structure differs
in that it passes over entire feature maps to the de-convolution tree as apposed to just
the output from the pooling layers (Ronneberger et al. 2015). V-Net is shown later in
this paper, providing a visual overview of the convolution an de-convolution tree, Figure
7.

This structure removes the need for fully connected levels, as at the end of the process
the output size is equal to the input size, this lends itself particularly well to image
segmentation as the as the localisation and distinction of borders is far superior when
each low level convolution is classified within the higher level image, effectively allowing
the low level aspects to improve accuracy whilst the high level can extract complex
features (Liu et al., 2021).

Another big advantage of U-net is the ability to use data augmentation methods to
artificially increase the data pool. By altering the images and running then through
the CNN again, essentially you are providing other imaged for the neural network to
learn from (Ronneberger et al. 2015). Although this may not be exclusive to the u-net
build but just associated with the period where this became more common place, as data
augmentation has been observed throughout this review on ealrier models.

Model Key Features Efficacy

USE-Net

(Rundo et

al. 2019)

Squeeze and Excitation blocks are added af-

ter each convolution layer. These blocks

contain 1x1 convolutional layers and activa-

tion functions to aid in providing clear data

in each scenario.

The USE-Net model showed an increase in

efficacy over base U-net by a significant mar-

gin when they were both trained on the

same data set. However this was further im-

proved by training with multiple data-set,

although it is worth noting base U-net also

improved from this training strategy. A big

draw of USE-Net is its reported efficacy un-

der smaller data-sets when compared with

U-Net, In terms of real world application

this feature could allow the model to prolif-

erate into may settings with limited data-set

sizes.

ResU-Net

(Xiang-

xiang et al.

2018)

Introduces skip connections within each

layer such as in Res-Nets to prevent gradient

degradation.

Achieved a DSC of 0.872, but does indicate

traditional segmentation algorithms outper-

form it in certain metrics. Regardless shows

and improvement over base U-Net.
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Z-Net

(Zhang et

al. 2019)

The convolutional layers are arranged in a z

shape, this essentially allows for skip connec-

tions to be implemented between each layer

allowing spatial information to be preserved.

Showed that the architecture worked well

with 2d resizing methods used to normalise

the input data size.

Deeply su-

pervised

U-Net

(Zhu et

al. 2017)

The addition of supervised blocks deep

within the hidden layer of U-Net preserves

the gradients throughout so the vanishing

gradient issue is reduced. And like google

net they introduce smaller kernels in this

case 1x1, reducing the number of parameters

to consider and as a result reducing compu-

tational costs.

Showed very limited improvements over

Classic U-net. The paper did mention it al-

lowed for a quicker convergence time poten-

tially speeding up the U-Net model whilst

retaining similar efficacy but the paper only

eluded to this and doesn’t showcase this im-

provement.

Bridged

U-Net

(Chen et

al. 2018)

The main caveat associated with U-Net is

that is difficult to have lots of layer, as at

a certain point the image quality starts to

degrade not unlike what was seen in early

FCN’s. Certain papers have attempted to

remedy this, an early method was (Chen

et al. 2018b), still aimed at 2D images but

utilising a double U-Net structure where

contextual information at each layer in one

of the encoder-decoder segments was also

fed into the next level, essentially allowing

for more levels to be introduced.

This paper also introduced the Expo-

nential Linear Unit, as a replacement

for ReLu, in an attempt to resolve the

vanishing gradient issue.

This showed an improvement in dice score,

with the base U-net achieving 0.8715 and

this version achieving 0.8996. However this

structure does imply a longer time for a

models to run and there is no considertation

of this in the paper.

Cascaded

U-Net

(Zhu et

al. 2018)

This also follows a bridge like structure,

but differs in the fact one encoder-decoder

pair is solely used for segmenting the whole

prostate, whilst the second one focuses on

segmenting the peripheral zone.

This showed efficacy improvements in both

when compared with U-net in both whole

gland and zonal segmentation. This paper

did utilise an internal data-set for training

and testing limiting the comparisons that

Can be made to other models.
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U-Net++

(Zhou et

al. 2019)

This model introduces a decoder tree pre-

senting from each encoder level, this allows

for information to be reinforced as it moves

from the encoder to the final decoder. This

is termed the nested structure and provides

skip connections between every node adja-

cent to one another.

This proved to be highly effective whe

regarding dice scoring producing a DSC of

0.8974 again 0.7573. However there was

only a smaller gain when IoU was used

providing 92.55 against 91.03 but both

showed a significant increase regardless.

Both these also showed improvement

when incorporating a Mask region based

CNN. These results are biomedical segmen-

tation but are limited in comparability as

they were not undertaken on the prostate.

nnU-Net

(Isensee

et al. 2020),

(Isensee et al.

2019)

nnU-Net is a widely applicable pipeline that

can tailor itself for different medical imag-

ing tasks, it does so by identifying variable

parameters and altering the training process

to pick out these task specific parameters.

The DSC for this was just below 0.8 for the

PZ and just above 0.9 for the TZ, beating

out specific pipelines to also come first in

the PROMISE12 challenge at the time with

a score of 89.65.

3D-Unet

(Mooij et

al. 2018)

(Çiçek et

al. 2016)

As the name implies performed 3d convo-

lutions on a 3d image. This was the first

3D version of U-Net and allowed for fully or

semi-automated segmentation of the images

in question.

Whilst this showed and efficacy increase in

the DSC compared to the 2D u-net when

considering the peripheral zone (0.85 up

form 0.82) it did fall at the transitional zone

which saw a drop to 0.60 from 0.77. They

identified issues with the thinness of the PZ

boundary prohibiting it from being coded in

on certain layers.

V-Net

(Milletari

et al. 2016)

At each stage a residual function is learned

and applied to the output from the convolu-

tional layers in a similar manner as ResNet.

Other than that, it is similar to the

base 3D model. Its most notable structural

changes from U-Net, excluding the foray

into 3D is the use of 2x2x2 convolutions in

place of pooling layers which they argue

increases efficiency of the model as there is

no mapping required between pooling input

and output during back propagation. One

other difference from U-Net is the use of the

slightly altered PReLu as opposed to ReLu.

Comparisons to base 3D U-net are limited

from this paper, there is no talk of specific

segments within the prostate, however us-

ing as dice based loss function it achieved

a DSC of 0.869. This model also has mul-

tiple entries within the PROMISE12 chal-

lenge showcase a consistently decent efficacy
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Table 3: Significant CNN variants built upon U-Net are noted above, with the key features
they introduced and their efficacy.

The U-Net architecture consistently provided a way to produce high quality fully seg-
mented prostate MRIs. As seen in its many offshoots which all showcased significant
efficacy when compared with a manual segmentation with the majority achieving dice
scores above 80. The introduction of data augmentation became common place, with ex-
tremes such as nnU-Net heavily relying on tailored augmentations to allow for improved
efficacy.

CNN’s have become the de-facto choice for medical image segmentation due to the rea-
sons outlined in this report such as excellent output image quality. However, although
models have now achieved dice scores in the early 90’s (Isensee et al. 2020), they can
still not rival the levels achieved by a trained individual. Furthermore the issue of het-
erogeneity has meant that normalisation and optimisation of the data-set has become
more commonplace, this renders the models even less computationally efficient as outs of
prepossessing must proceed the the training and testing of the model. Methods such as
this having to be employed have resulted in more recent models efficiency decreasing as
minor improvements in model performance requiring large developments in model design
and training.

From the literature above it is clear that Fully Convoluted Networks and U-Net specific
Networks present the most viable option for the selected model. Both show high scores
across the board in terms of Dice score, and work to resolve the majority of problems
seen in early automated model, the Vanishing Gradient Problem, under and over-fitting
due to image heterogeneity and output image quality to name a few. They both also
represent a turn to dedicated segmentation models as apposed to to altered classification
models, particularly in the world of medical imaging. This next section showcases the
rationale behind the chosen model and provides further evaluation of the models outlined
above.
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0.5 Selecting The Dataset

Data Set Patients /n Images/n MRI Pro’s Con’s

Promise 12

(Litgens et
al. 2014)

50 100 3T/1.5T

T2 weighted images

Includes metrics for comparison.
(Including leaderboard)

Sourced from 4 places.

Small dataset

ProstateX

(Hulsen
2019)

346 N/A 3T Includes DWI and DCE as well as T2
Images chosen for
lesion segmentation

Decathelon N/A 48 N/A ADC Included Very small dataset
UKMMC 11 229 3T WG Included Small patient number
NCI-ISBI

2013
40 542 3T Includes PZ, CA, labelled Masks No whole gland labelled masks

Table 4: Overview of available data sets, the patient number, the number of images that
comprises them and their pro’s and con’s, (Gillespie et al. 2020), (Khan et al. 2020)

Data-sets for prostate MRI’s are quite limited , more so when considering the need for
segmented versions of each image to accompany it, resulting in the small pool of the
5 data-sets above . The decathlon data-set and UKMMC both had limitations in the
number of patients images present, with decathlon not providing the actual number and
only 48 images implying a very small pool of patients, whilst UKMMC only provided 11.
Although Deformations can be used to artificially inflate the data set there is potential
when using a small data set of carrying over biases (Shorten and Khoshgoftaar 2019). It
is worth noting this specific paper is regarding GANS and uses multiple dog breeds as the
example for this bias, never the less this data-set is significantly small and was deemed
to likely carry over biases even with augmentation.

NCI-ISBI 2013 has a similar sized patient pool to PROMISE12 but lacks the labelling of
the whole gland meaning segmentation’s of the CZ-TZ boundary would be all the model
produced, negating the whole gland. Whilst not inherently bad for this papers direction,
it was deemed preferential to have segmentation’s of the whole gland. This was done to
future-proof the findings of this paper in the scenario the models is compared down the
line in a challenge such as PROMISE12 which requires full prostate segmentation.

Both ProstateX and PROMISE12 provide T2 images for segmentation purposes, and
both have leader-boards of other models for direct comparison. Although ProstateX
has a far larger pool of patients PROMISE12 has become the dominant place to test
and compare prostate segmentation models. Furthermore ProstateX focuses more on the
legion identification aspect of imaging, which is less applicable to this paper. AS a result
the PROMISE12 data set was selected, with considerations of its small size. Luckily this
is somewhat offset by the fact it sources the images from 4 differing locations providing
some inbuilt heterogeneity amongst the test cases.

Intially the papers interest was surrounding MP-MRI’s. However, there were notable
issues with the data set being provided due to external factors. As a result Promise12
was selected as a training set due to the whole gland nature of it as well as its data-set
size and diversity, even though it only supplies T2 images. However, as the gland segment
delineations in the MP-MRI’s largely hinge on the T2 images efficacy, improvements seen
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in this paper should carry forward to MP-MRI’s.

The Datset is provided at the link below along with the leaderboard containing previously
attmepted bulds:

PROMISE12 Data-Set

0.6 Selecting a Model

0.6.1 Notable Exclusions

• Base Variants such as classic 2d U-Net and Classic FCN have been excluded as they
have both seen significant improvement with new respective models and have acted as
more of a baseline.

• PSP-Net (Yan et al. 2021) was excluded as it only used ROC curve metric in paper,
and no model present in PROMISE12.

• UNet++ (Zhou et al. 2019) Was excluded as there was no data on performance
in prostate segmentation from the papers found, furthermore it does not appear in
PROMISE12, as a result there is little room to assess its effectiveness in regard to the
prostate.

• Papers only presenting PZ and TZ specific Dice Scores were not considered as there was
little comparative data formed from this metric as only a few papers such a (Rundo et al.
2019) used these metrics for the specific boundaries whereas whole gland was widespread,
allowing for easy comparison.

0.6.2 Initial removals

PS-Net

Provides a good degree of metrics despite not featuring in the PROMISE12 challenge,
which does allow for comparison of when regarding other models. However, these metrics
do indicate that this model is lacking when compared with others most notably in the
metric of DSC score where it achieved 0.85.

This is not a poor score, however there is also no model build available online as of
September 2022. As a result it is difficult to see if this efficacy could be improved with
minor tweaks to it’s parameters or structure, and in terms of the efficacy shown there are
other models more readily available that preform similarly to PS-Net, as a result it has
been not been considered for the final model.
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DeeplabV3+

Scores for both SegNet and DeepLab can be seen in Table Table 8.

Whilst this model does have code available online for implementation, it is limited in terms
of prostate segmentation. With the most information regarding prostate segmentation
efficacy coming from (Khan et al. 2020) which is mainly aimed at assessing SegNet it may
be hard to tailor the model based off of this . Futhermore, In regards to PROMISE12,
no entry of DeepLab has scored above 80 showcasing a significant lack of efficacy when
compared with the higher scoring models.

SegNet

SegNet has an impeccable code write-up online, but this is not specific to the task of
prostate segmentation. The models do score highly in whole gland when using Dice
Scoring and very well in CG boundary, but a more objective comparison to other models
proves difficult as it does not feature on PROMISE12, as a result comparisons would have
to be made with a self reported metric rending this model a poor choice for this paper.

USE-Net

Even more limited than SegNet, this only reports DSC for the PZ and CG not the whole
gland, and does not feature in PROMISE12. Furthermore there is no implementation
online to run the model and compare.

Deeply Supervised U-Net

Similar to USE net with lack of reference to PROMISE12 and lack of code preventing
further comparisons. Although its paper does provide a DSC for the whole gland where
it preforms decently, unfortunately there is still not enough data to effectively compare
without recreating the model from scratch and even with that undertaking the score is
still not comparable to the highest performing models only showing slight improvement
over base U-Net.

3D U-Net

Whilst variants of 3D U-Net do feature in the PROMISE12 challenge, and there are
models present online, the literature surrounding its use with the prostate for segmen-
tation purposes is very limited. Not only this but the score achieved in PROMISE12’s
best implementation of this model is not high ranking, scoring 0.8689, as a result it was
removed at this stage in the selection process .

0.6.3 Comparison of Promise12 Data

Scores sourced from individual papers are lacking in a comparative sense, as scores can be
based on averages or single cycles, or use differing metrics and or differing data-sets. As
mentioned before the PROMISE12 data set and leader board were placed at the forefront
of this project due to the plethora of comparative data it provides. As a result, this stage
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in the selection process looked to compare only data sourced from the PROMISE12
leader-board. The best ranking version of each model was selected to reflect their full
potential, and allow for comparison of each in their best light.

Figure 5: Internal comparison, showcasing the models and their corresponding PR12 scores
and metrics.

0.6.4 Selecting The Final Model

Z-Net and Bridged

All these models have been enhanced with pre-processing and model alterations, however
despite their improved efficacy from their base counterparts they still do not score highly
in any of the metrics when compared to other models. To add to this, although there are
models present online, they are not specific to the prostate, as a result they were deemed
unfit for selection and were negated from the chosen models.

Cascaded U-Net

This model performed similarly to ResU-Net but achieved a better total score on the
PROMISE12 leader board, however in terms of DSC the two models show no significant
difference. Due to the fact ResU-Net has the code available online in an open-source for-
mat whilst cascaded does not, ResU-Net appears to be the preferred choice for achieving
this metric level.

ResU-Net

Although performing well and having open-source code available the details of the exact
model used are not present, this means efficacy may not be achievable without a high
degree of alteration that would have to be determined from the literature. Other variants
of ResU-net may be sourced within the PROMISE12 challenge, but their efficacy would
be lower. This hinders the validity of their inclusion within the highest achieving models.
As a result, it was negated from the internal testing stage.

MSD and HD-Net

Both models are very similar with MSD being an extension of HD, although they are
the highest achieving models of the PROMISE12 there is a lack of resources available
online for them in terms of prostate imaging, both have papers describing the algorithms
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used, but their structure in terms of using multiple encoders is rather complex and as a
result would prove time consuming to reverse engineer. This complexity is furthered in
the MSD model as the literature on it is lacking. As a result they have been removed
from the final choice.

V-Net

Whilst not the strongest performer in terms of Dice Score, there is a wide variety of
builds for this model available online in an open-source format and specified to imaging
the prostate. This matched with its still moderately performing efficacy, with a level
similar to ResU-Net, and the fact the tweaks to the model have been noted makes it a
valid choice for a model to be built upon. However as an out of the box option it is still
lacking due to its low efficacy.

nnU-Net

With a plethora of resources online including code and a broad description on how to
implement said model accompanied with the high score on the PR12 challenge makes
nnU-Net an ideal choice for the final model, it also works as a good bench mark for
the other models as it comes pre-loaded with a PROMISE12 setup so the results can be
gained locally with little to no issue if the inferred image pool is utilised.

0.7 Analysis of Chosen Model

0.7.1 nnU-net

Figure 6: Visual overview of nnU-Net (Isensee et al. 2020)

As previously mentioned nnU-Net is not prostate specific, instead this CNN adapts to fit
the data set applied to it. It does so by through a number of methods, the first of which
is encompassed in the Data Fingerprinting stage.

Here the data is cropped to remove the majority of zero values, the paper notes that
this has no effect on the ability to segment most data-set’s, and they also note it reduces
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computational costs by reducing the image size. Then based on these cropped images the
model creates a fingerprint by capturing the modalities, intensity, spacial features and
number of images, amongst other characteristics.

Once this fingerprint is achieved, Rule-based parameters are applied to the data-set al-
lowing the configuration of the U-Net models, as well as choosing the ”ideal” one. Model
configuration also includes the levels of down-sampling to be applied. The ideal batch and
patch size is also determined and more augmentations may be applied such as re-sampling
or intensity normalisation(using z scoring).

The data is then fed into each model along with the fixed parameters mentioned below
being applies to the data-set.

• Learning Rate = Initial, 0.0003, decayed throughout the training following the
‘poly’ learning rate.

• Loss Function = Dice and Cross Entropy

• Architecture Template = U-Net structure with skip connections instance normal-
ization, leaky ReLU, deep super-vision (topology-adapted in inferred parameters).

• Data Augmentation = Rotations, scaling, Gaussian noise, Gaussian blur, bright-
ness, contrast, simulation of low resolution, gamma correction and mirroring

• Optimizer = stochastic gradient descent with Nesterov momentum = 0.99

• Training Procedure = 1,000 epochs/250 mini-batches, foreground oversampling

• Inference Procedure = Sliding window with half-patch size overlap, Gaussian patch
center weighting.

Once the U-Net architectures have processed the data, cross validation is used to assess
the ideal choice for inference on a test set along side post processing to remove any false
positives occurring in the image.

As visible in it’s paper nnU-Net is heavily on augmentation and pre-processing techniques
for its levels of efficacy, they propose in the paper that this pre-processing may be a
prerequisite for surpassing trained human performance.

However, where the clear impact their pre-processing has on the efficacy is evidenced, the
varying of hyper parameters is not,as a result this efficacy may be further heightened by
implementing hyper parameter tweaks and structural changes that differ from the base
nnU-Net model, this paper aims to investigate the effects of such hyper-parameter tweaks
on the models efficacy in a bid to provide a more refined overview of nnU-Net and its
efficacy, as well as ensure the model selected in this paper provides the best performance
possible in any future use. At current nnU-Net uses AutoML to set its hyper parameters
based on performance, but this time and resource heavy. It also only alters certain hyper-
parameters such as batch size and normalization, here we are hoping to alter the direct
structure as well to provide a more ideal configuration in terms of the static components
such as activation functions.
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In reference to the above, throughout the rest of the paper ”Hyper parameters” is used
to refer to structural changes such as the activation function that may not be typically
classified as such.

nnU-Net supplies a Github repo containing its out of the box build along with extensive
documentation on its usage at:

nnU-Net Implementation

0.8 Overview of Model Development

As mentioned above this project was undertaken by altering the structure of the neural
network in terms of hyper-parameters as apposed to adding in more pre-processing aspects
which nnU-Net already relies strongly on.

With nnU-Net being such a high scoring model with a build ready to test present online,
it seems logical to build upon its structure for a further performance increase. However
it’s structure is far more complex that most variants of U-Net. Having 3 different U-Nets
within, a 2D,3D and 3D cascaded form and a large focus on prepossessing means that
changes to the the model could interact in an odd manner with said prepossessing/data
augmentation. This may impede the efficacy of the results or reduce the validity of any
conclusions drawn from them.

The nnU-Net models complexity also results in a longer training and testing periods,
and with multiple model configurations this could lead to a overly long period of testing.
This complex structure also results in configuration difficulties when attempting to run
multiple models concurrently, due to consideration such as environmental parameters.

To negate these issues this paper proposes using a model of V-Net to quantify the effect
of internal changers or ”tweaks” on the U-Net based architectures efficacy when training
and running inference on the PROMISE12 data-set and then attempt to apply them to
nnU-Net, this offers a final display of nnU-Net’s efficacy as well as confirming the most
ideal configuration.
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Figure 7: Visual overview of V-Net (Milletari et al. 2016)

V-Net is a much simpler model when compared with nnU-Net, essentially being an early
3D variant of U-Net. However for its simplicity it still scores decently, and its variants are
still notable in the PROMISE12 challenge, furthermore the models comprising nnU-net
are all offshoots of the U-Net/V-net architecture. This would suggest a maximal carryover
of the results seen in V-Net when the configuration is applied to nnU-net,however this
may not be the case due to the extended pre-processing that nnU-Net performs.
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0.9 Initial Promise12 Results

0.9.1 Sourcing the Model and Computer

The base v-net model was to be used for the initial testing phase, due to its age many
implementations that have been made available online, building a new model seemed
redundant.

The model used in this paper was sourced from:

V-Net PyTorch Implementation

The base model here is relatively unchanged throughout the models being tested with
only a few hyper-parameters altered and slight changes to the code added for tasks such
as cross validation.

This implementation was based off of the initial V-Net paper but has been translated
into PyTorch. All models in this paper were run on the Super-computing Wales (SCW)
System utilising a Tesla V100-PCIE-16GB GPU on the Redhat 7.9 OS. The GPU was
vital to allow for CUDA enabled modelling which greatly sped up the model, specifically
this paper ran the models on CUDA 11.5.

Whilst there is still an element of pre-processing, there is far less than in the nnU-Net
configuration. This allows the results drawn from this provide the as close to a raw
comparison of the hyper-parameters as possible, whilst still relating to the structure
of nnU-Net. Any variance seen in the nnU-Net implementation will be indicative of
interaction from non discrete parameters within the model.

The build matches the V-Net architecture described in the paper with the exception of
ELU being used in place of PReLU, however this was changed to fit the paper before any
tests were performed.

A few parameters did have to be assumed as they were not explicit within the, most
notably was the Gradient Descent algorithm, SGD-Mini-Batch was chosen as the batch
size was mentioned indicating it was not pure SGD, the other popular choice in models
is ADAM but with this becoming popular more recently the assumption was made base
V-Net used SGD.

There was also no mention of epochs in the paper, only 30k iterations the mentioned
batch size of 2, as a result the model we used was reworked to follow this structure, this
was done to ensure comparisons could be made between ours and theirs to indicate the
variance in the output formed from their augmentation within the paper.

Gamma was also present within the model, and was negated for the initial test to fall in
line with the paper as a result it is not mentioned throughout this paper.
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0.9.2 Cross validation the train set

Another method utilised in this paper that differs from the original V-net paper is the
inclusion of cross validation. Here 5 fold cross validation was used to assess the efficacy
of the data set.

Typically cross fold cross validation is a method used to ensure the efficacy shown from
a model is not due to a synergistic effect between the training and testing set. In this
method the data-set is split into smaller batches which each take a turn being the testing
set whilst the rest of the data-set trains said model.

5 fold cross validation is already present in nnU-Net but is used during the model training
to allow for optimal configurations when running inference. Here it is identifying anoma-
lies in the data set, this was not undertaken to exclude images in future but to better
identify how the data-set should be configured and utilised when training and testing
further models and comparing to externally tested models, as well as being a potential
indicator of any outliers seen in later tests performed in this paper.

For instance although this paper is internally comparing models, the best data-set config-
uration would allow for a superior comparison to other models present in the literature,
as a result ensuring that weakly performing training images are not clustered together
not only allows for a better performing model but one that displays efficacy similar to
that seen with a larger training set where edge cases produce a lesser performance impact,
which would better reflect an ideal real world scenario.

Similarly the same can be applied to over-performing data-set distributions, which in
a small data-set such as this can produce equally poor results in terms of generalist
performance of the model.

As the base V-Net model did not feature any form of cross validation it was implemented
using the SKlearn Python package more specifically the kfold component. This was used
to form the data set distribution and the training code was altered to loop over these
distributions and populate the data-set queue based on the fold the model was currently
training on.
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def trainTestSplit(self,imgs, labs, img_keys, kfold):

print("Saving Cross Validation Distribution")

imagesTr ={}

labelsTr ={}

imagesTs ={}

labelsTs ={}

#splitting the keys based on the kfold passed in

for fold, values in enumerate(kfold.split(img_keys)):

if fold !=0:

continue

print(values)

training_keys =[]

testing_keys =[]

training_indexs =values[0]

testing_indexs =values[1]

for index in training_indexs:

training_keys.append(img_keys[index])

for index in testing_indexs:

testing_keys.append(img_keys[index])

train_images ={i: imgs[i] for i in img_keys if i in training_keys}

train_labels ={i+’_segmentation’: labs[i+’_segmentation’] for i in img_keys if

i in training_keys}

test_images ={i: imgs[i] for i in img_keys if i not in training_keys}

test_labels ={i+’_segmentation’: labs[i+’_segmentation’] for i in img_keys if

i in testing_keys}

imagesTr[fold] =train_images

labelsTr[fold] =train_labels

imagesTs[fold] =test_images

labelsTs[fold] =test_labels

all_folds =[imagesTr, labelsTr, imagesTs, labelsTs]

with open(’/nfshome/store03/users/c.c1631387/V-Net/KFoldDistribution.json’, ’wb’)

as fp:

pickle.dump(all_folds, fp)

Figure 8: Code Snippet showcasing how the cross validation data-sets were produced
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0.9.3 Initial Results

Figure 9: Dice Score Distribution across folds in cross-fold validation of PROMISE12 data-set
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FOLD Test Img 1 Test Img 2 Test Img 3 Test Img 4 Test Img 5 Test Img 6 Test Img 7 Test Img 8 Test Img 9 Test Img 10

1 2 10 13 22 24 28 29 33 34 35

2 5 8 27 32 37 41 42 44 45 47

3 3 4 6 9 14 16 20 21 25 31

4 12 15 17 18 19 26 38 43 46 49

5 0 1 7 11 23 30 36 39 40 48

Table 5: Testing images used in each fold of the 5 fold cross validation, all images omitted
from each row were used to train the model for the specific training run.

As presented above the yield from the cross validation showed relatively uniform results with

the exception of fold 4. In this fold excluding Case18 which scored a 0.739 DSC, however

the majority of cases showcased very low scores below 0.5 DSC. This may indicate a poor

performing data configuration for either the training or testing, however this seems unlikely as

the fold where randomly selected in terms of configuration. The model parameters remained

static during this training which implies an error occurred on the machine, however this is

unlikely. Although this is somewhat re-enforced as the fold saw continuously low dice scores

throughout, with the relatively high scoring case18 occurred at the end of the evaluation run.

This may possibly indicate a bottleneck on the machine running the model especially as it is

not seen throughout the rest of the paper.The most probable cause would be that a section of

the model was altered accidentally before resuming a checkpoint in its run, however res-testing

would be required to validate the claims.

The large range of Dice scores present in this fold may also be reinforce the claims of weak image

configuration or an unwanted change to a hyper-parameter. In an attempt to gain insight into

this issue case 49 from this set was included in the main model testing phase, to validate it

being a weak performer.

Re-testing was not undertaken due to time constraints and as internal evaluation was not

dependent on the values seen here, this was undertaken for future evaluation against external

models. This anomaly did not continue throughout the next stage of testing, further removing

the need for extended retesting.

The remaining folds fared significantly better as evidenced in Table 9, with fold 1 and 2 both

having ranges well below 0.15, and showing consistently high efficacy across the evaluation

cases. Fold 3 and 5 both had high scoring cases producing the 2 highest scores of 0.903 and

0.882 respectively. However the Dice Score ranges seen over cases in both these Folds was far

greater than those of fold 1 and 2 indicating the cases here were not as much an ideal match to

this models configuration as those in the other folds and that those data-sets are possibly more

heterogeneous than 1 and 2, full fold scores can be found in the appendix at Table 16.

This had little impact on fold 3’s average value, as it scored on par with fold 1 and 2 in this

regard. Fold 5 fared worse from this variability with the average DSC coming in significantly

lower, although it is worth noting fold 5 showcased less outliers when compared with fold 3.
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Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

0.8318 0.82824 0.82034 0.37601 0.70801

Table 6: Average Dice Score from each fold in the cross-fold validation of the PROMISE12
data-set

0.10 Structural Alterations/Hyper-parameter tuning

As outlined earlier in this paper there are multiple hyper-parameters that can be altered
within a neural network. In this case the hyper-parameters that underwent these alter-
ation’s were selected based those found in the high performing models outlined in the
literary review section of this paper.

Whilst there are many hyper-parameters and many options within each parameter, the
literature can only provide so much information as to the efficacy of certain combinations
and parameters.For this paper time constraints did result in a limited number of times
models could be run. As a result hyper-parameter choices were based off of the existing
literature and were limited in terms of internal testing, resulting in only a select number
of models available to be run. To deal with this caveat the paper only considers a limited
number of hyper-parameters and their variants to be selected as testing candidates.
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Model
Loss

Function
Gradient

Descent
Learning Rate

Batch

Size

Weight

Decay

Activation

function

U-Net
Cross

Entropy
SGD - - - ReLU

3D U-Net
Weighted

Softmax
SGD/ADAM 0.00001 1 - ReLU

V-Net Dice SGD
0.0001 decreases by

power of 1 each 25k

iterations

2 - PReLU

ResU-Net Dice ADAM - 32 - ReLU

Z-Net Dice ADAM 0.001 8 - ReLU

Bridged

U-Net

Cos-Dice ADAM 0.001 24 - Elu/ReLU

Cascaded

U-Net

Dice - 0.0001 - - -

U-Net++ Dice - 0.0003 - - -

U-Net3+
- - - - - ReLU

nnU-Net Multiple ADAM

0.01 with poly

learning rate

Applied

Variable 0.00003 ReLU

3D Unet2
Hybrid ADAM 0.0003 Variable 10−5 -

USE L-loss SGD
0.01 X 0.2 every 20

epochs
4 5x10−4 -

Table 7: Hyper Parameters present in evaluated models
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Batch Size

Batch Size in the initial V-Net paper was set to 2, in more recent years smaller batch sizes
such as this have been less favoured as although it converges quickly can result in a noisy
image, so is typically paired with a low learning rate to remedy this (Kandel and Castelli
2020). However, a benefit it does have is having a smaller computing footprint due to the
faster conversion. nnU-Net also uses a batch size of 2 when training a model to abide by
GPU memory constraints (MIC-DKFZ/nnUNet. 2021). Due to the fact that a change
in the batch size would need to coincide with a suitable change to the learning rate in
V-Net and would require many internal models to perfect due to great variability within
the literature, batch size remained at 2 to fit time constraints. Furthermore nnU-Nets
batch size is altered when running inferred data as it pulls the most ideal model from the
5 fold validation performed so manually setting it here has very little carry over.

Momentum

Momentum in both nnU-Net and the base V-Net model was 0.99, on-top of this other
papers that were analysed in the literary portion of this paper lacked information on the
momentum or didn’t include it. As a result momentum has been omitted from the final
pool of tweak-able hyper-parameters, as without examples supporting other ideal values
changing the momentum risks disrupting the finding in the model, and as it is the same
in both models momentum instead remains a fixed parameter. As there will be may other
factors affecting the model keeping this the same anchors both models in a similar base
setup, which should increase the degree to which the V-net tweaks efficacy carries over
to nnU-Net.

Weight Decay

Weight Decay information was significantly lacking when reviewing other high scoring
models either due to it not being included or not mentioned in their papers. V-Net
lacked this information whilst the Github build of nnU-Net showcased a value of 3E-1
(MIC-DKFZ/nnUNet. 2021), as a result this was selected as the weight decay in this
papers V-Net build to maintain consistent values for the parameters not being altered
in both models, and an in depth explanation of this parameter was not included in the
paper.

Loss Function

As mentioned previously Dice Loss has proven to be the most popular choice across the
reviewed literature and this is echoed in the vast majority of CNN’s investigated, this
trend has become more extreme in recent years,and whilst nnU-Net has applied multiple
loss functions, to meet the time constraints imposed on this model Dice was selected as
a constant parameter for the V-Net builds.

Gradient Descent and Learning rate

Of the papers and models reviewed every single one utilised a gradient descent algorithm
of SGD or ADAM. In the majority of ADAM cases this Descent algorithm coincided with
a Learning rate of 0.001, as a result for use in this paper ADAM was partnered with this
learning rate to provide the most ideal setup for producing effective results.

42



SGD was more variable across the papers ranging from a set 0.00001 value to larger values
which also decayed by various factors. However more modern papers such as nnU-Net use
a seemingly retain larger starting rates, with nnU-Net starting a 0.01 when utilising SGD,
and reducing this further with the ply learning rate functione .This paper chose to follow
the aforementioned 0.00001 value, to differentiate itself from the base nnU-Net model
allowing for comparison down the line if an SGD model were to be selected. Furthermore
as the V-Net build used in this paper is more simple and doesn’t hold complex parameters
such as acceleration it was argued that utilising Learning rates seen similar to older models
using SGD would produce effective results even without the inclusion of newer feature
and pre-processing.

Activation Function

The most variety seen amongst the hyper-Parameters was in the activation functions,
with 4 variants of the ReLu function. One of these Leaky ReLu is used in nnU-Net,
whereas the base V-Net model utilises PReLu. PReLu itself appears more dated as
newer models tend towards Leaky ReLu/eLu/ReLu, with ReLu in particular appearing
an a few of the more recent models. Elu only appears in one paper as an optional choice
alongside ReLu but is also present in the base code of the V-Net model used throughout
this paper implying efficacy over PReLu.

All 4 of these functions were selected to be modelled along side differing Gradient descents
and Learning rates .

0.10.1 Generating models to Test

Initially grid search was to be employed to allows for ideal model selection, it is available
via the sklearn package used earlier in the paper for cross validation.

However, due to the lack of variety in the hyper parameter setup a simple for loop was
implemented to alter the parameters once each model had run.
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Activation

Function

Gradient

Descent

Learning

rate

ELU ADAM 0.001

ELU SGD 0.0001

ReLU ADAM 0.001

ReLU SGD 0.0001

PReLU ADAM 0.001

PReLU SGD 0.0001

LReLU ADAM 0.001

LReLU SGD 0.0001

Table 8: Final selection of hyper parameter setups in tested models
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0.10.2 Model Assessment

Figure 10: Range of Dice Scores achieved with each model presented as box-plots
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The variants of the V-net model produced significantly differing results in terms of efficacy.
The 3 highest scoring models in terms of average score were Elu-ADAM, LReLu-SGD
and Elu-SGD all achieving an average Dice score over 0.82. ReLu-SGD fell just short of
the top 3 producing a marginally worse result than Elu-SGD achieving an average score
of 0.81313 awith the latter producing a result of 0.82084, as well as this it produced more
outliers making it a less consistent choice than Elu-SGD, as a result it was not placed
into the second round of testing.

Certain models that fared well under the use of the SGD optimiser,saw signifcant drops in
efficacy when utilising ADAM in its place. This is most evident in the results of LReLu
and ReLu, both scored well when placed with SGD achieving Dice scores in the low
80’s but their ADAM counterparts did not follow this trend. LReLu saw a large range
of values, indicating it may not generalise structures well when partnered with ADAM,
suffering in more unique cases. ReLu however saw the inverse issue, where it was unable
to identify structures all together, gaining low scores across the board with no DSC above
0.15 being achieved. To ensure these low scoring models where not caused by a faulty
model, the model parameters where reset and ran on the same target set again.

Figure 11: Scatter plot showcasing the Dice Score of the low scoring models attempts on the
initial data-set configuration
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LRelu-ADAM Relu-ADAM LRelu-ADAM-2 Relu-ADAM-2
0.292222798 0.068663962 0.20445402 0.115774922

Table 9: Mean Dice Scores Achieved from the poor performing models.

The second test of these models reinforced the findings with similar trends seen in both
LRelU and ReLu, with only slight deviations seen within the score of each test case.
LReLu fared slightly worse on the second attempt whereas ReLu perfomed slightly better,
however this improvement did not place it on par with the rest of the examined models.

For the most part the initial high scoring models showed differing efficacy across the cases
tested, however case 03 showed a significantly lower dice scores on all 3 models regardless
of the optimiser, well case 31 performed poorly on the SGD builds . This could be
indicate of more heterogeneous samples in the data set or potentially a structure present
in certain samples that the V-Net model struggles with.

Figure 12: Grouped Bar Graph showcasing the Dice Scores achieved for each test case in the
initial data-set configuration

The high scoring values were already established on this data arrangement so the second
round of testing was undertaken with a differing configuration.

Within the 2nd rounds results Elu-Adam showed significantly more consitent results than
the other models only showing a large efficacy drop on case 23. The differences in efficacy
of the specific optimisers was more apparent here than in the first test, both SGD builds
handled case 23 far better than the Elu build, but the inverse was also true case 19 where
both SGD builds saw a massive drop, with LRelu’s been the most extreme.
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Figure 13: Grouped Bar Graph showcasing the Dice scores achieved on a new data-set con-
figuration

Round ELU-ADAM ELU-SGD LReLU-SGD
1 0.867540777 0.820839405 0.828844726

2 0.870441735 0.830230534 0.818103313

Table 10: Mean Dice Scores Achieved from the well performing models in the 2nd round of
testing.

The two rounds confirmed the efficacy of all 3 models, and showcased the Elu-ADAM
build as being the most effective when considering stability amongst the different cases
and overall average Dice score.

0.11 Application to nnU-Net

The data was data-set was converted to nii.gz files from mhd. The newly selected ELU-
ADAM model was then ran against the LReLU- SGD model, whilst keeping other pa-
rameters the same and using the 3D model present in nnU-Net. It should be noted time
constraints only allowed for a single run-through on each model to confirm efficacy. The
scores graphically represented throughout this section mostly present the score achieved
without post processing, this was done to view the raw efficacy of the configurations
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present, furthermore the post-processed scores showed very slight improvements with the
average Dice score being 0.0001 higher in the ELU build and 0.00003 in the LRelu Build.

Figure 14: Box plot showing the range of scores achieved using both nnU-Net models, the
proc models indicate DSC scores achieved after post-processing was applied

As shown in Table 14 both models performed with high efficacy resulting in median
scores similar to one another with individual scores for both processed and processed
being shown in Table 19.
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Case ELU LReLU ELU Post-Processed LReLU Post-Processed
02 0.8731462479 0.90154446 0.873146247 0.901544459

03 0.86601437 0.884541664 0.86601437 0.859785050

05 0.853171278 0.847216313 0.853171278 0.847216313

19 0.859106782 0.910201129 0.860391603 0.906112180

20 0.881750338 0.859785051 0.881750338 0.884541664

25 0.935610612 0.948959507 0.936103531 0.948959507

28 0.842139468 0.914785994 0.842139468 0.914785994

31 0.932568326 0.915432723 0.932568326 0.915432723

39 0.908705882 0.947092261 0.908705882 0.947402952

43 0.95562825 0.90611218 0.95562825 0.910201129

Mean 0.890784155 0.903567128 0.890961929 0.903598197

Table 11: Testing DSC scores from both nnU-NEt models and their post processed variants.

Figure 15: Grouped Bar plot showcasing the Dice scores achieved for both nnU-Net models
across the testing set
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0.12 Discussions

Both models showed significant efficacy when tested on this data-set configuration, with
no DSC score coming in below 0.84. Both models produced raw results from testing as
well as results achieved with a post processing component. This added post-processing a
marginal increase in efficacy that was not deemed significant. When considering the raw
results, the ELU model achieved a mean DSC of 0.890784155, fairing worse than LReLU
which produced an mean of 0.903567128, this was only marginal though with the overall
difference being under 0.1 DSC .The inverse scenario was true when testing out the V-Net
builds, with ELU outperforming LReLU both highest score achieved and highest average
score. This could be down to the pre-processing element or the differing initial learning
rate , as well as other factors, applying the same to ELU would be the next logical step
in confirming the learning rates impact.

The efficacy did not indicate that either configuration was significantly superior, with
fluctuations in results likely varying along with the data-set cases used for testing, however
more models would need to be run on the data-set to confirm this theory. Furthermore
the differing hyper-parameter configurations seemingly had little effect when compared
to the dice scores seen in the PROMISE12 data, including the samller initial learning
rate of 0.001, although this was still impacted upon by the poly learning rate function
so likely dropped relatively quickly and took a slightly shorter time to converge, though
testing with the base nnU-Net model and applying this higher learning rate would allow
confirmation of this point .

In terms distribution of scores across the test set, more variance was seen than when
just considering the highest mean DSC, with LReLU’s median score being significantly
higher than ELU’. As well as this, the range of values produced by the LReLu builds is
notably smaller, indicating more consistent results across the data set with the exception
of the singular outlier present. This result is echoing that seen in the V-Net builds, in
which LReLU’s range was also significantly more compact, possibly suggesting LReLU is
overall less impeded by image heterogeneity. In terms of the values of DSC achieved from
both models, the range was shown to be largely similar, although with ELU producing
both the lowest scoring and highest scoring test and having a much larger inter-quartile
range. This suggests the LReLu is a more ideal choice as it appears less impacted by
heterogeneity in the data-set, or is possibly working in a more synergistic fashion with
the pre-processing than the ELU build is.

This potential impact of heterogeneity on efficacy was reinforced from the V-Net builds,
specifically when the LReLu-SGD build that performed well in the first round producing
the second highest median score with a small range, saw certain images such as Case19
in the second round resulting in a significantly lower DSC than any other image. At the
same time these points are somewhat refuted from the consistency of the ELU builds
and the poor performing builds when retested. However this point may be valid and
this could potentially indicate ELU as being the more consistent choice across the data-
set.This does indicate that the carry over from V-Net to nnU-Net may be limited, and
that nnU-Nets complex strucutre negates findings from the V-Net builds being echoed
within it’s results.

Overall the findings produced here showcase the efficacy of nnU-Net reinforcing the pub-
lished data relating to it as well as the PROMISE12 score it has achieved. However
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altering the activation function and gradient descent algorithm shows little impact on
nnU-Nets efficacy, although the majority of findings between models don’t line up, this
echoes the results from the V-Net builds where both these models where high scorers
with little variance between them.

However, as mentioned before, validating the points above would require further testing
to confirm and as a result these points lie out of the scope of the paper . This underlies
a core issue with this paper, as due to GPU sourcing issues and time constraints only a
small number of models could be ran, and was limited to 2 days run-time before having
to be restarted. To fully justify the points mentioned above, further models would need
to be run using these nnU-Net builds,ideally with differing data-set configurations.

In terms of efficacy across the models modalities, the time constraints allowed for the
comparative nnU-Net models to be run only in the 2D modality, so it is highly possible
3D and cascaded variants display vastly different efficacy. In terms of direct translation
from V-Net efficacy carried over well when moving from 3D to 2D, indicating these hyper
parameter choices may present a strong model across modalities. When looking at certain
publications, the 2D variant has proven to be a higher scoring model when compared to
nnU-Nets 3D build however this is not significantly higher and was validated on the
inferred data they provide where-as this paper has only used the training data for it
testing, never the less both internal and external literature does elude to there being only
a minor difference in the efficacy between modalities (Isensee et al. 2019).

In regards to the data-set validation performed, the weak FOLD 4 results appeared to be
an anomaly, as further results within the paper did not replicate this poor performance.
Most notably this was not echoes in the testing of differing V-Net builds, where the ReLU-
SGD build fared signifcantly better, with the worst DSC score being 0.7124. Furthermore
test case 49 was used in the V-Net training and presented a DSC of 0.821 in the ReLU-
SGD build. It is difficult to decipher what caused this anomaly without re-testing, it
is likely the model was setup incorrectly, although other low scores exhibited in ReLU-
ADAM and LReLU-ADAM presented after a re-test, at which point their setup was
confirmed to be correct and the low scores were confirmed to be present on those models.
Never the less the nature of internally testing with the same test cases negated the need
to remove outliers form the data-set as models efficacy was being leveraged against one
another.

0.13 Conclusions and Further Directions

From the limited application in this paper caused by external constraints, it is hard to
validate any claims regarding ideal setup of nnU-net or the role of image heterogeneity
and pre-processing. What it does confirm is the efficacy of the nnU-Net setup in the
literature and available online, making it an excellent out of the box model for use in
segmenting the prostate. This shown in terms of efficacy when evaluating metrics, ease of
use in terms of setup and navigating its online documentation, and its consistency across
modalities and data configurations.

These last points are need of validation, it is recommended that for confirmation of the
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models robustness in these factors the models are ran on a variety of data-set configura-
tions and indeed data-sets themselves, we were limited in selecting the most ideal publicly
available data-set in this paper, initially there was to be an internally sourced data-set,
but issues arose in collating this data. Ideally once fully utilising the PROMISE12 set
and potentially submitting it for official scoring (with the blessing of both models devel-
opers), the internally sourced set as well as other public-ally available sets should be used
to further test the effects of data heterogeneity on the models observed in this paper to
provide more insight into this issue.

To further add to this the efficacy of other nnU-Net internal models is a lacking section in
this paper with only the 2D model being used and even then only for one run. nnU-Net
provides internal model selection once the training data has been fed in allowing for it to
setup an ideal build based off the data it collates. The findings from V-net may be more
applicable to the 3D model and ELU could present a more ideal choice in that scenario.

Another to point to consider is that although nnU-Nets efficacy remained high in internal
testing, there was a very small range of Dice scores achieved throughout both tested
models. This limited range was not seen as strongly in the V-net testing phase, most likely
due to the higher variety of activation functions tested as well . This likely indicates that
at this high level hyper-parameter tuning whilst still providing a slight boost in efficacy
does not play as vital a role as pre-processing now does. However only a limited number
of hyper-parameters where tuned in these models and more extreme differences achieved
through methods such as grid search may discredit this point. It is suggested that to
fully understand the role hyper parameters play alongside nnU-Nets pre-possessing, that
grid search be employed and more variable builds run with V-Net and nnU-Net.

This would also allow for more comparison between perceived efficacy in both models
and how a good V-Net build translates to nnU-Net, a more short term method of gaining
insight into this would be running a poor performing V-net build such as ReLu-ADAM
and seeing if its performance was echoed in nnU-Net. At current it appears the carryover
is rather limited, as a result if future research is time limited, its advised modelling only
be performed with nnU-Net.

Once thees variables are check, if further efficacy or confirmation of efficacy was required,
pre-processing would next logical step, depending on the importance gauged from these
other tests. This paper has remained based around hyper parameters and model structure
and at offers very little insight into the role of pre-processing so future research would
compliment it greatly.

More broadly speaking it would ideal to use nnU-Nets automatic configuration which
actually serves to negate the need for hyper-parameter selection. Testing this against
a more varied selection of hyper-parameter configurations selected by researchers or ob-
tained using Grid search algorithms that differ from nnU-Nets AutoML method. The
confirmation of nnU-Nets hyper parameter selections effect on efficacy could remove the
need for future papers surrounding hyper parameter tuning and allow for a more robust
conclusion surrounding the use of pre-processing’s importance, and how it may now be
the more vital component for building an effective model. As well as this the fact the
parameters not normally tweaked were altered in this paper may have a combined effect
with the AutoML selection, which could either be positive or negative. To fully see the
extent of the efficacy that may be achieved inference with these parameters is a must.
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Overall a well performing model and robust data-set has selected and their idealistic
features displayed. For internal future research, PROMISE12 provides a varied seemingly
robust data-set whilst nnU-Net makes for a fine model to employ not only for its efficacy
but for the amount of resources available for its setup and application.The combination
of both should allow for out of the box efficacy in research or an ideal starting point for
future model development.
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0.14 Reflective Learning

This project has been a bit of a roller coaster for me.

Initially this project was set on selecting a model based on published literature and
internal testing, in hopes of selecting a model to be used within a PHD project. However
with GPU availability at an all time low I was forced to turn to utilising a remote
computer provided by Cardiff university, their Linux labs. Whilst they are undeniably
an excellent resource to the university I believe my lack of understanding on how they
function hindered by ability to use their machines to my benefit. With multiple attempts
at running models on there resulting in my data being removed or the model continuously
being interrupted by machine faults and shutdowns.Leading to data collection being
continuously being pushed back closer to the deadline.

This swayed my approach on the project and after discussion with my supervisor lead
to me altering my approach, instead of running many models and slowly whittling them
down to a final one the brunt of the model selection was now to be done using the
literature. With the core of the project still being the selection of an ideal model, this was
more of a lateral move than a compete re-write. As a result the modelling now revolved
around confirming the efficacy of the selected model by attempting to compare its current
”ideal version” to a version developed from my internal testing.This also coincided with
the fact the internal data-set we were attempting to source had been held-up so the focus
moved to also identifying an ideal data-set that models could use if the internal data-set
was not available.

This reduced the number of models to be run but still left me short on time, and with
persisting issues using the Linux lab my project was extended to meet this, now with the
caveat of working a full time role around it. With said role requiring a lot of self learning
outside of its core hours initially I struggled greatly to balance the two.

Switching to super-computing wales took some time as I had to learn how to navigate
its Linux build, schedule models to run, set up environmental variables on the shared
computer and deal with time limitations imposed on the system. However, once I got to
grips with this I was able to run the models I needed with far less interruptions although
certain weeks I would setup models to run whilst I was preoccupied and return to find
they had not initialised properly, never the less SCW allowed me to complete this project,
and I must admit I could of ran more models if I had headed the advice early on form
my supervisor to switch to SCW.

A core lesson to take away form this is the not be intimidated by altering core aspects of
the project even if you had per-sued a different direction until that point, I was reluctant
to do so as I thought it would essentially cost me time to learn an entirely new system
as I had already been doing so for the Linux lab. This was not the case though as the
knowledge I had gained on Linux terminal carried over greatly and although I did have
to learn the nuances of SCW it was a much less steep learning curve than anticipated
,especially in relation to the Linux labs computers. Furthermore I believe the model I
have selected fully earns its merit without the need for internal testing of other models,
and I am happy I was able to achieve what I did in this paper.

This indicated to me that I was potentially perceiving time management in the wrong way
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and that being too dogmatic in the path I was taking resulting in said time management
acting as more of a hindrance than a benefit. My take away form this was that time
management doesn’t need to be a linear mechanism and that investing time in resources
that where not expected in the original itinerary for a task can greatly benefit it.

As mentioned above i feel like my newfound abilities to use the Linux terminal stand out
as a high-point in displaying the knowledge I gained from this project, it was an aspect I
was hesitant about at the beginning of this project, as I had only ever used windows and
the majority of my computing knowledge had only been gained in the last year during my
degree. However i found it quite intuitive and have ended up preferring it to the windows
terminal, now utilising Linux commands by choice in window due to this preference. This
also more generally extended my comfort and knowledge when it came to using any form
of command line interface, and Im not sure I would of ever delved into this naturally as
I would have always chosen the UI if it was down to my own volition.

I think most would consider my degree to lean more towards the software engineering
route than that of more broad computer science, coding was much more of a focus than
the principles behind it, so coming into the project with little to no knowledge of AI was
initially quite a shock. This arose as understanding the principles behind the models is
such a core part of AI, in a certain way coding is a very small part of this field. As a
result I had to do a lot of reading to gain even the initial understanding of how image
segmentation is achieved, this pulled on mathematical knowledge as well. I was genuinely
surprised at my grasp of the core concepts, as it they were not as much of a challenge as
anticipated, particularly the maths side of things, although I didn’t delve excessively deep
into the mathematics aspects and my knowledge of that aspect is more high level than
other aspects such as model structure. Overall I do believe I have gained a well rounded
understanding of automatic imaging techniques, in terms of this paper it may have been
a bit unfocused as techniques such as GANS were delved into at one time, and aspects
such as these may have bled into the literary portion of the paper, however I do feel like
it provides excellent focus on the task at hand. In terms of my more general development
this extra reading definitely aided in my understanding of the autonomous imagine field,
possibly to a degree not expected of the writer of this paper, a good example of this would
be the papers I read on lesion imaging of the prostate and the deeper understanding I
gained of the MRI’s.

My skill coding in Python was my strong point entering this project, but it was still in
its infancy at that time, as mentioned before the coding aspect was not the largest part
of this project but the code written and deciphered significantly increased my comfort
with the language as well as expanding my knowledge on its potential applications. The
code implemented within the model provided the most severer challenge as understanding
of the model was required to ensure changes did not impact the efficacy or stability of
said model. I was definitely lacking understanding of the model the first time I ran it,
having done reading around it and having a brief overview of the code and listening to the
ideology of the code being ”just boiler plate”. Instead, my main gain in understanding
was galvanised by altering the code and implanting new structures such as the cross
validation. This indicated to me that at least in terms of coding and me understanding
complex structures within, I should be treating the literature associated with it as a
supplement as apposed to the main source of knowledge and that interacting with the
code was the way I learnt it best. This technique has already proved invaluable to me
in my working life, and is one that I will likely be employing for the rest of my time
interacting with code and computers as a whole.
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The more comfortable coding came in the form of utilising python to form the data
analytic such as the scatter and box plots seen in this paper, as well as using packages such
as SKLearn to convert images into compatible data formats. Although this didn’t prove
as difficult to me as other aspects of this project it was key for my personal developments
as it showed me the wide range of applications code has, before this I would of looked for
pre-made software that would perform these. Now I am much more keen to investigate
if a task I need done can-be implemented in code, and this has generated a positive
feedback loop of me attempting more tasks and performing them in code, which has led
to me being a much more well rounded coder.

Another technical skill I gained was the ability to construct documents in Latex, initially
I found this quite a schock as although the learning curve is not very steep specific
tasks can be tricky to navigate especially when compared to using more mainstream
documentation methods. However this has proven to be another vital skill I have carried
over to my work-life, now writing the majority of my documents in Latex and seeing
noticeable improvements of my understanding in object based languages such as HTML.

All in all I think this project has greatly benefited me as a person. I have a much greater
appreciation of the struggles researchers go through and that the actual research can end
up being one of the least challenging factors, and that the resources available for certain
Fields may not be as abundant as I first thought.

Personally I have developed from someone who only knew AI in a very high level manner,
to someone who can now understand the underlying mechanisms in place as well as the
overall model structure, how its tailored to the role it performs and how it resolves
persisting issues seen across the field. I now have a decent understanding of the hierarchy
of models seen in this field as well as being able to assess their efficacy in relation to
this hierarchy. Furthermore, I was able to successfully add aspects to models, tweak
their hyper parameters, alter their input data and run them on an operating system I
had never used, with only the command line interface. Complementing this has been my
increased use of code to interpret the data from both internal and external models.

As well as this I have seen mass gains in my soft skills, my initial reluctance to change
aspects of project has shown me that change isn’t always negative and that revaluation
of a project doesn’t need to stop early on in its development as changes past this time
can be of great benefit. This has conceited with my improvements in time management,
propagated by the poor state this skill was in a the beginning of the project but ending up
being a string suite with an itinerary being drawn out for the second half of the project
as well as daily progress recording . Furthermore I learnt how I best interprets complex
structures such as the models code, an invaluable skill that stretches well beyond coding.
Finally I learnt to not be afraid to ask for help on certain things, I tended to think of
dissertation as a very isolated piece of work but interactions with computing staff across
this projects span showed me that even such an isolated piece of work can greatly benefit
from the input of others.

Finally I just want acknowledge that things don’t always go to plan, and that is core part
of research, although I did find aspects of this project very stressful I credit it as a vital
part of my development as a person, not just academically and I am happy I persevered
through the low points.
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APPENDIX
FOLD CASE DSC

1 Case28 0.843544185

1 Case10 0.797212183

1 Case35 0.849505603

1 Case02 0.830221117

1 Case34 0.827350557

1 Case29 0.815288424

1 Case24 0.842849374

1 Case13 0.831863105

1 Case22 0.877457201

1 Case33 0.802664459

1 Average 0.831795633

2 Case41 0.828293264

2 Case08 0.753793478

2 Case44 0.863909602

2 Case05 0.822674811

2 Case42 0.79643631

2 Case27 0.863778472

2 Case47 0.867089033

2 Case32 0.876167059

2 Case37 0.783816993

2 Case45 0.826455653

2 Average 0.828241467

3 Case06 0.651115417

3 Case04 0.852223754

3 Case20 0.843352735

3 Case25 0.903787017

3 Case09 0.845862269

3 Case21 0.831848025

3 Case31 0.828802407

3 Case03 0.746114492

3 Case16 0.863697171

3 Case14 0.836634994

3 Average 0.820343792

4 Case43 0.353404254

4 Case49 0.301529646

4 Case15 0.4274441

4 Case19 0.394715518

4 Case46 0.272013068

4 Case17 0.145750374

4 Case12 0.226359576

4 Case38 0.493457437

4 Case26 0.406985402

4 Case18 0.739034832

4 Average 0.376069427

5 Case36 0.610463679

5 Case07 0.624872088

5 Case48 0.631584525

5 Case11 0.882853448

5 Case00 0.851850629

5 Case39 0.795151055

5 Case30 0.766530931

5 Case01 0.568112493

5 Case40 0.753161788

5 Case23 0.595533907

5 Average 0.708011508

Figure 16: Full DSC’s achieved during 5 fold cross validation of training set
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CASE ELU-SGD ELU-ADAM PReLU-SGD PReLU-ADAM LReLU-SGD LReLU-ADAM ReLU-SGD ReLU-ADAM

Case09 0.801279068 0.892371774 0.857186258 0.854653895 0.8550331 0.270442426 0.829091311 0.071559869

Case24 0.773004532 0.907026529 0.53468591 0.834220588 0.817172408 0.537648797 0.712439358 0.046929866

Case13 0.857659757 0.879510283 0.80676949 0.823678553 0.820285678 0.237944826 0.808180571 0.066511579

Case03 0.749732256 0.809801996 0.658943355 0.642373025 0.790341437 0.103973992 0.873468101 0.030151434

Case45 0.843116641 0.859973609 0.795779347 0.733997464 0.852141619 0.145844012 0.834049165 0.036444537

Case20 0.869334698 0.889773726 0.646380603 0.788071752 0.843522668 0.227107465 0.798274934 0.062352363

Case30 0.821317911 0.865436196 0.748200595 0.822010577 0.840809762 0.176796556 0.829010844 0.086080194

Case29 0.876253724 0.860500395 0.850521505 0.884497941 0.858853877 0.581573784 0.82858479 0.123849846

Case49 0.818406522 0.862469018 0.802677929 0.783684969 0.828538835 0.256299168 0.821092427 0.064505823

Case31 0.798289239 0.848543346 0.763902009 0.759601414 0.781747401 0.384596914 0.803027332 0.098254062

Average 0.820839405 0.867540777 0.746504724 0.792679012 0.828844726 0.292222798 0.813721955 0.068663962

Figure 17: DSC’s achieved in initial running of V-Net models

CASE LReLU ReLU

Case09 0.168305457 0.15760693

Case24 0.42911458 0.091643758

Case13 0.1440911 0.135687456

Case03 0.068364017 0.069671743

Case45 0.098856464 0.069386542

Case20 0.166996434 0.09510348

Case30 0.101349354 0.125112355

Case29 0.422036886 0.17561014

Case49 0.163297296 0.105452187

Case31 0.282128662 0.132474571

Average 0.20445402 0.115774922

Figure 18: DSC’s of the poor perfoming models second test

CASE LReLu-SGD ELU-SGD ELU-ADAM

Case34 0.794183493 0.718686521 0.889110267

Case14 0.9187181 0.90852046 0.909287512

Case22 0.891145229 0.889333189 0.915589213

Case19 0.485634744 0.683053851 0.905706763

Case10 0.755961955 0.814648628 0.8796556

Case43 0.84811765 0.885275185 0.866998971

Case23 0.850724518 0.875144362 0.729635537

Case01 0.851860523 0.901549339 0.825799048

Case08 0.881186306 0.777904153 0.888725579

Case47 0.903500438 0.848189831 0.893907726

Average 0.818103313 0.830230534 0.870441735

Figure 19: DSC’s of the well performing models second run on new data configuration
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