
Detecting Distributed Denial-of-Service Attacks on Networks

Jack Davies

School of Computer Science & Informatics, Cardiff University, UK

MSc Cyber Security & Technology

Master’s Thesis

Supervisor: Dr. Amir Javed

Moderator: Dr. George Theodorakopoulos

1 INTRODUCTION

Over the last two decades, we have seen a massive

shift towards more online connectivity. With 25% of

all business in the USA being conducted online (IBIS-

World, 2022), and similar patterns seen in much of the

world, the Internet has gone from a useful resource to

a near necessity; with many small, medium, and even

large businesses relying on business from their Web-

based customers. In the early 2000s, less than 7%

of the world was online - today, that number is over

60% (Roser et al., 2020) and this is only expected to

increase. This level of online activity has benefited

many people. Amazon now employs more than 1.3

million people worldwide (Amazon, 2022). There are

over 50 million business pages (Chaykowski, 2015)

and nearly 3 billion users on Facebook (Dixon, 2022),

allowing unprecedented customer reach and gener-

ating many new small businesses due to the small

startup costs. In fact, the E-commerce revenue in the

UK has risen from £42.6 billion to £129 billion in just

6 years (Coppola, 2022).

However, these benefits come with drawbacks.

We now rely on Internet connectivity, the Covid-19

pandemic highlighted the need to be able to commu-

nicate with each other, in a personal as well as busi-

ness respect. The connectivity provided by the In-

ternet is crucial for almost everything we do today.

This reliance puts us in a tenuous situation where the

loss of this connectivity could have dramatic conse-

quences.

Distributed Denial of Service (DDoS) attacks are

a threat to this connectivity. A DDoS attack over-

whelms a server’s ability to respond to requests, thus

preventing access to legitimate users. In Q1 of 2022,

there was a reported 1,406 DDoS attacks per day

(Gutnikov et al., 2022), this is a 450% rise compared

to the same period last year - largely attributed to the

Russia-Ukraine conflict. The shared cyberspace has

become a primary battleground in modern conflict,

thus it is important to be always progressive in our

ability to respond to these attacks.

In order to effectively respond to DDoS attacks,

one must be able to recognise when an attack is occur-

ring. This report investigates a novel method of iden-

tifying DDoS attacks using a hybrid machine learning

system. We train an unsupervised anomaly-detection

model to recognise when an attack may be taking

place. The packet flows associated with a potential

attack are then passed to a supervised classification

model, which classifies the attack into a known class.

If classification is not possible, the data is separated

for further investigation and fed back into the system

to iteratively improve it.

In this report, the current state of DDoS attack

recognition is investigated and reviewed and the over-

all problem is outlined. This is followed by a high-

level description of the proposed solution. A review

of potential machine learning techniques that could be

used is then provided, with a rationale for the meth-

ods ultimately chosen. The prototype implementa-

tion of the proposed system is described and experi-

mental methodology is then explained and the results

of these experiments are provided with conclusions

drawn from said experiments. Following this, poten-

tial future work is outlined and finally, a reflection on

the project is given.

2 RELATED WORK

Brihat Ratna Bajracharya (Bajracharya, 2019)

presents a method of detecting DDoS attacks on a

set of packet data using logistic regression. Logistic

regression uses one or more independent variables to

determine the probability that an object belongs to

a particular class. The author trains and tests their

models using the CICDDoS2019 data set (Canadian

Institute for Cybersecurity, New Brunswick, 2019),

specifically the PortMap and LDAP sets, which show

packet flow data of abstract behaviour and whether a

packet flow was linked to a DDoS attack or not.

In this paper, the author uses a binomial logistic

regression for the PortMap model, where classifica-

tion is determined by setting a threshold value for the

probability (in this case, 0.5) that defines if the out-

come is class 1 where the threshold is exceeded, or

class 0 otherwise - where 1 is the positive class, be-

ing a PortMap attack, and 0 is benign. The author

uses a multinomial logistic regression for the LDAP

classification model. where the probability of each of

three potential classes (LDAP, NetBIOS and benign)

is given by an output vector with a set of probabilities

summing to 1.

The logic for using such methods can be clearly

seen, the problem of DDoS attack recognition can be

described as a binary classification problem - regard-

less of the type or protocol, is this set of packets part

of a DDoS attack (1), or not (0)? Ultimately, the num-

ber of classes that can be recognised by a given model

is irrelevant when trying to determine this binary out-

come. The method shown in this paper can therefore

be used to detect a range of different types of DDoS

attacks. The results of the experiment in the paper

show that the trained classification models appear to

have a strong accuracy in determining the presence of

a DDoS attack from a flow of packets, with 99.91%

accuracy for PortMap attack detection and 99.94% for

LDAP.

The paper is perhaps lacking in application in that

it is only used in classification on a static set of data

and has never been tested on a live system, it would

be interesting to see how this sort of model performs

when dealing with a live system. The source port and

IP address are recognised in this paper as being two

of the strongest packet-flow features in the training of

the PortMap classification model and this could sug-

gest that an attack from a new source would not be

recognised as part of a DDoS attack.

Sahi et al. (Sahi et al., 2017) describe a DDoS de-

tection and prevention system from TCP flood attacks

on cloud environments. The system is split into two

subsystems: detection and prevention. The detection

part of the system is based on a classification algo-

rithm, where an incoming packet on a live network

is classified as being either part of a DDoS attack or

not. Packets determined to be part of a DDoS attack

are sent to a prevention subsystem which blacklists

the source IP address and drops the incoming packets

from any blacklisted IP.

The detection subsystem was tested using multi-

ple classification algorithms to determine the most re-

liable: LS-SVM, Naı̈ve Bayes, k-nearest and Multi-

layer Perceptron. The data used to train and test the

classifiers was self-created and used a bespoke algo-

rithm to classify whether a packet was part of a DDoS

attack or not - this being if the number of packets from

the same source IP address within 60 seconds ex-

ceeded a user-defined threshold. The classifiers were

given two packet features as input variables, source

IP and destination IP. Ultimately, LS-SVM was deter-

mined to be the most reliable classifier in this exper-

iment, with 97% accuracy, 97% sensitivity and 97%

specificity.

The results of the experiment appear to suggest

strong reliability of the detection subsystem. How-

ever, it should be noted that whilst the use of a user-

defined threshold for the number of packets within

60 seconds as a method of recognising DDoS attacks

could be useful for certain situations, it is ultimately

an arbitrary number, and could easily be calibrated in-

correctly. Furthermore, it does highlight that only one

type of DDoS attack can be prevented with this sys-

tem – although that is the scope of the paper from the

beginning. The use of only the source IP and destina-

tion IP as input features for the classifier also suggests

that it cannot be used to detect DDoS attacks where a

spoofed source IP address is used.

That said, the paper does show a viable method for

dealing with DDoS attacks, there is no obvious reason

why the prevention subsystem could not be used for

responding to different types of DDoS attacks and it

could be expanded on further to be more nuanced in

its response. In addition, it is positive that the paper

shows the system working on a live network and it

can deal with individual packets rather than a flow,

potentially preventing DDoS attacks before they have

even begun. The comparison of different classifiers

is also useful in this research and suggests possible

alternatives to the aforementioned logistic regression.

Balkanli et al. (Balkanli et al., 2014) make com-

parisons between existing network intrusion detection

systems (NIDS) and two different classifiers in their

ability to detect DDoS attacks. Along with two well-

known NIDS, the authors create a CART decision tree

classifier and a Naı̈ve Bayes classifier and measure the

reliability of DDoS detection on a set of backscatter

data from darknet channels – the rationale for this is

that darknet addresses should not receive any legit-

imate traffic as there is no service running on these

networks, thus all traffic directed at these addresses

can be considered part of a malicious attack.

The NIDS used in this paper use a signature-based

detection method for DDoS attack detection, whereas

the classifiers naturally use a machine learning ap-

proach. The authors identify two sets of features

from the data for the classifiers to learn from, the first

set contains IP addresses and source/destination port

numbers, and the second set omits these.

The results show that the two classifiers performed

as well as or better than the two NIDS, with the de-

cision tree classifier slightly outperforming the Naı̈ve

Bayes classifier in reliability and vastly outperform-

ing it in speed. Interestingly, the results showed that

using a smaller training set was beneficial in that it

reduced training time and improved accuracy. Fur-

thermore, the second feature set which omitted IP

addresses and port numbers had comparable or bet-

ter reliability – suggesting that this information is

not required to detect DDoS attacks, an important

point when wanting to generalise a detection system

to recognise attacks from new sources. The authors

highlight that the protocol, ACK flag and RST flag

are features from packets that appear to be the most

important in identifying DDoS attacks.

The runtimes of the classifiers used in this paper

are significant and may not be suitable for a live sys-

tem. However, it should be noted that the majority of

this time is spent in the training phase; it should only

be required once per model.

Bindra and Sood (Bindra and Sood, 2019) provide

an analysis of different machine learning classifica-

tion algorithms for detecting DDoS attacks based on

recent data. The notable importance of using recent,

real-world data is that DDoS attacks have changed

and become more sophisticated, thus older data sets

that are commonly used for such tasks are now out-

dated. The authors compare five supervised classi-

fiers: Support Vector Machine (SVM), Naı̈ve Bayes,

k-Nearest Neighbour (k-NN), Random Forest and Lo-

gistic Regression and train and test the models using

the CICIDS2017 data set (Canadian Institute for Cy-

bersecurity, New Brunswick, 2017b).

The results show that the most accurate classifiers

used the k-NN and Random Forest algorithms, with

the Random Forest classifier being slightly better than

k-NN in the reliability of DDoS detection.

Unfortunately, the authors do not provide specific

details on the data set and which features were used

in the experiments, although it is stated that the num-

ber of features was reduced from 85 to 12. They also

acknowledge that only one technique for data pre-

processing was used, and this could have created a

bias in their results, as certain machine learning mod-

els can be boosted by specific data pre-processing

techniques. Nonetheless, it is interesting that the Ran-

dom Forest was identified as the optimal classifier for

detecting DDoS attacks. The Random Forest classi-

fier is essentially a collection of polled decision trees

running concurrently, and decision trees have been

previously highlighted as reliable classifiers for DDoS

detection in other related works.

Yan Li and Yifei Lu (Li and Lu, 2019) use a

method of combining two classifiers to improve the

classification of benign and DDoS attack packet data.

The authors use a Long Short-Term Memory (LSTM)

classifier with a Naı̈ve Bayes (NB) classifier, in a

combination dubbed LSTM-BA.

The LSTM classifier represents predicted results

in a similar way to a logistic regression, where the

Sigmoid function is used to make a prediction – a

predicted value less than 0.5 is classified as normal

traffic, and a value above this number is classified as

attack traffic. Classification becomes unreliable for

values close to 0.5. Therefore, the authors integrate

the NB classifier to provide a “second opinion” on

the more ambiguous results from the LSTM classifier.

Their work shows that values from the LSTM classi-

fier between 0.2 and 0.8 have a classification accuracy

of just 74%, which is much lower than required. How-

ever, when these instances are passed to the NB clas-

sifier, the accuracy, precision and sensitivity scores hit

around 98% in ultimate classification accuracy. Thus,

a multi-layered approach using different types of clas-

sification algorithms appears to be useful, providing a

much more reliable output.

Shieh et al. (Shieh et al., 2021) propose a

hybrid-ML framework for identifying known and

novel DDoS attacks which utilises a supervised Bi-

Directional Long Short-Term Memory (BI-LSTM)

model and an unsupervised Gaussian Mixture Model

(GMM) with applied iterative learning. The authors

recognise the issue with having a model that “has

no built-in mechanism for knowing what it does not

know” – the Open Set Recognition problem. This is

an issue for DDoS attack recognition as new attacks

can be created and performed at any time, so it is cru-

cial that a detection system can quickly learn to re-

spond to these.

The BI-LSTM model discriminates between be-

nign traffic and DDoS attack traffic, whilst the GMM

discriminates between learned samples and novel traf-

fic. Novel traffic is forwarded to a ‘Traffic Engineer’

who then analyses and labels this traffic as either a

new type of attack or as benign, this data is then fed

back into the system to retrain the model – a pro-

cess known as incremental or iterative learning. Thus,

known attacks and unknown attacks have the potential

to be recognised by the system, and recognition capa-

bilities are flexible and continue to be improved with

use.

The authors use CIC-IDS2017 and CICD-

DoS2019 data sets as the initial training sets for their

model. The BI-LSTM model is tested first by compar-

ing the classification accuracy on benign and attack

traffic from two different sets – the first with “known”

data (that is, data the model was trained on) and the

second with novel data. Results show a poor perfor-

mance in the reliability of classification on the second

data set, with around a 50% drop in performance, sen-

sitivity and accuracy. The authors then integrate an

unsupervised GMM module where unknown traffics

that breach a given threshold of deviation away from

the mean, are considered novel instances. The traffic

is labelled by a human operator and fed back into the

system. After the completion of the loop, the results

for the same experiment show much-improved classi-

fication reliability, with an improvement in sensitivity,

precision, and accuracy, each to around 99.8%.

3 DETECTING DDOS ATTACKS

It is widely considered that prevention is better than

cure. This applies to cyber security also; prevent-

ing an attack is far preferable to responding to one.

There are many techniques to prevent DDoS attacks.

One commonly-used technique is to apply ingress and

egress filtering to the gateway of a network. Ingress

filtering (Ferguson and Senie, 1998) involves filter-

ing malicious incoming traffic by preventing access

to any IP address not in a predefined range, egress fil-

tering (Killalea, 2000) works in essentially the same

way for outbound traffic. Such methods help prevent

packets with spoofed IP addresses (a common feature

of DDoS attacks) from arriving at their target. How-

ever, if a spoofed IP address were to fall inside the

predefined range, it would not be blocked. In addi-

tion, not all DDoS attacks use spoofed IP addresses.

Further, it could be the case that legitimate users are

restricted from access to the network without some

form of tunnelling. Therefore, this technique is not

infallible. Other prevention techniques such as hop-

count filtering (Jin et al., 2003), route-based packet

filtering (Park and Lee, 2001), and history-based fil-

tering (Peng et al., 2003), all suffer from similar draw-

backs. Whilst being useful, they are not able to stop

all DDoS attacks, particularly the more sophisticated

ones.

Other means of DDoS attack prevention include

the use of load balancing (NGINX, 2022) (Mahjabin

et al., 2017). This is where the loads placed on the

service host are spread out across sibling hosts. This

helps prevent DDoS attacks as a much larger payload

is required to disrupt the system - as more than one

host is available for legitimate connections. However,

this method requires a significant investment from the

service owner as replica servers are required to be

available at all times. Therefore, this is not an ideal

solution for small to medium-sized enterprises or or-

ganisations. Other, more simple methods essentially

require an awareness of the issue from the service

owner. Ensuring unnecessary services are disabled

and applying up-to-date security patches to host sys-

tems can go a long way in helping prevent DDoS

attacks and other types of attacks. However, even

a combination of all of the aforementioned methods

cannot be relied upon to prevent all DDoS attacks.

It is, therefore, necessary to be able to respond to

attacks that evade these measures and mitigate their

effects. In order to respond to a DDoS attack effec-

tively, it is crucial that the attack is detected as quickly

as possible. As demonstrated in section 2, the prob-

lem of detecting DDoS attacks has been the subject

of a lot of research in recent years. The increase in

our use and reliance on connectivity has increased the

attack surface for attackers to target and the issues

spawned from this are clear – so the reason for this

heightened attention in research is justified.

DDoS attack detection is a difficult problem to

solve as it is challenging to distinguish between le-

gitimate traffic and malicious traffic. In general, two

categories of DDoS attack detection are most often

considered: signature-based and anomaly-based de-

tection.

Signature-based detection systems use a selec-

tion of known attack indicators to identify malicious

traffic. These systems can be effective at prevent-

ing attacks with signatures in the detection system’s

database, however, they are ineffective at recognising

slight variations of known attacks and cannot detect

novel attacks whatsoever due to the open-set recogni-

tion problem.

Anomaly-based detection systems differ in that

they simply monitor network traffic for outliers, as op-

posed to specific attacks, and use a particular function

to determine if such traffic is potentially malicious.

Naturally, anomaly-based detection systems require a

baseline understanding of the network they are oper-

ating on in order to reliably detect outliers, this can

take some time to establish as there are often large

variations in network traffic for many external rea-

sons, such as time of year and socioeconomic changes

as well as sudden internal changes. Therefore, they

can be less effective in the short term.

Section 2 shows that much of the modern research

into DDoS attack detection uses machine learning

models. The approaches used can be considered part

of the above two categories. Supervised classifiers

fall into the signature-based detection category, as the

Figure 1: High-level diagram of the DDoS detection system

features used in classification can be considered sig-

natures of the labelled attack. Unsupervised anomaly

detection models naturally fall into the other category.

The issues with using a single approach from these

two categories have been discussed. It would seem

a more reliable method of detecting DDoS attacks

would be to use a two-pronged approach.

4 DDOS DETECTION SYSTEM

The detection system proposed in this work is a hy-

brid machine learning system made from a combi-

nation of an unsupervised anomaly detection mod-

ule and a supervised classification module. The two

modules work in tandem to provide a reliable detec-

tion method for known and novel DDoS attack types,

whilst also informing the network owner of the na-

ture of the attack. In addition, the system uses iter-

ative learning to continuously improve its ability to

detect and recognise known and novel DDoS attacks

in a network. A high-level diagram of the overall sys-

tem can be seen in Figure 1.

The unsupervised anomaly detection module op-

erates based on the assumption that any traffic not

recognised as benign could be part of a DDoS attack.

It is trained on benign network traffic data and recog-

nises outliers as potentially part of an attack. Any out-

liers are passed onto the classification module, this is

a supervised machine learning model trained on data

from historical DDoS attack data from real, known

attacks. It outputs the probabilities of the outlying

sample belonging to a particular class of DDoS attack

from the set of known attack classes. If the maximum

output probability is below a specified threshold, the

sample can be considered to be unclassifiable. Any

maximum probability over this threshold suggests the

sample can be considered part of the corresponding

attack and is reported accordingly. Unclassifiable out-

lying samples are passed to a human operator – in this

example, a system administrator. The administrator

can investigate the sample more thoroughly and de-

termine if it belongs to an attack or if it is benign.

The administrator labels the sample as such and the

sample is passed back to the system. Benign samples

are passed back to the unsupervised anomaly detec-

tion module to retrain and improve the model such

that future, comparable samples are recognised cor-

rectly. Similarly, if the unclassifiable sample is de-

termined to be part of a new or known attack type,

the administrator can label it as such and the sample

is passed back to the supervised classification module

to retrain the model.

5 IMPLEMENTATION

The prototype DDoS detection system was imple-

mented in Python as this is the programming lan-

guage most familiar to the author, and to leverage

its powerful data-science capabilities. Python has

many well-supported libraries such as Pandas (Num-

FOCUS, 2022), Numpy (NumPy, 2022) and scikit-

learn (scikit learn, 2022b) that deal with the problems

posed by the development of this system in a clean

fashion.

Due to time constraints and the necessity of reli-

ability, the machine learning algorithms used in the

implementation of the DDoS detection system made

use of external libraries. Whilst the external library

code will be more reliable than newly-written code, it

does restrict which algorithms can be used to the set of

algorithms that the library provides. The scikit-learn

library was used to implement all machine learning

algorithms used in this prototype system.

5.1 Machine Learning Algorithm for

Anomaly Detection

The general idea of anomaly detection is to consider

a set of n samples from a data set with m attributes,

each sample can be described by those features and

plotted in an m-dimensional space. If a new sample is

added, we can plot this sample into the existing space

and determine using a variety of techniques whether

this sample is close enough to an existing cluster of

samples to be considered part of the cluster, samples

that are not close enough to the cluster are outliers.

As stated, the number of possible algorithms to

choose from for the anomaly detection model was

limited to those provided by the scikit-learn library

(scikit learn, 2022a), these are One-class Support

Vector Machine (SVM), Isolation Forest and Local

Outlier Factor (LOF). All three were tested to find the

most reliable for this system.

5.1.1 One-class SVM

Support Vector Machines are normally considered to

be supervised learning models and are most often

used for classification tasks. If we have a dataset

where there are two classes: positive and negative, the

regular SVM finds the maximum-margin hyperplane,

that is, the hyperplane that is equidistant from the two

sets of data points. This hyperplane is then used to

classify future samples by determining which side of

the hyperplane the sample lies on.

For a one-class SVM (Schölkopf et al., 1999), all

samples in the dataset are considered to be part of the

Figure 2: One-class SVM hyperplane split (not to scale)

same class. We can plot the data points onto an m-

dimensional space and consider these points to be part

of the negative class. We then consider the origin to

be the point of the positive class. This allows us to

compute a hyperplane that is equidistant from the two

class clusters, and to determine where new samples

fall. Those that fall on the positive side of the hyper-

plane, are considered outliers. The one-class SVM

uses the kernel trick (Shawe-Taylor and Cristianini,

2004) in particular, a Gaussian kernel (Schölkopf

et al., 1995) to operate in a high-dimensional space

and increase the chances of separability from the ori-

gin, allowing outliers in any direction to be placed in

the negative space. The details of this particular tech-

nique are out of the scope of this report.

5.1.2 Isolation Forest

An Isolation Forest (Liu et al., 2008) is a method of

anomaly detection that uses a multitude of isolation

trees to isolate each data point in a set by splitting

them into separate partitions, each isolation tree is

polled and an anomaly score is calculated. It works

similarly to a Random Forest, discussed in 5.2.1, with

the difference that there is a one-to-one mapping of

partitions to data points, rather than a one-to-many

mapping where all data points in a partition are ho-

mogeneous.

An isolation tree is built by randomly selecting an

attribute from the data set and then randomly parti-

tioning along the range of values for that attribute.

This is repeated until all points are isolated into sep-

arate partitions. Recursive partitioning can be repre-

sented by a tree structure, thus the path length from

the root node in a given tree t to the leaf node that rep-

resents a particular sample (or more specifically, the

partition containing said sample) is the value v. Each

isolation tree can be polled for the value vt and the

Figure 3: Isolation tree comparison for isolation of regular and anomalous samples

decision function can be calculated with the formula:

V =
∑t∈T vt

|T |

Where V is the final anomaly score of the sam-

ple and T is the set of isolation trees for the isola-

tion forest. The isolation forest works on the intuition

that anomalous samples will require fewer partitions

to isolate, thus a low comparative score for a given

sample indicates an outlier. Figure 3 shows an exam-

ple where an anomalous sample is isolated in just 1

partition (right), compared to the 4 required to isolate

the regular sample (left).

5.1.3 Local Outlier Factor (LOF)

The LOF algorithm (Breunig, M.M. and Kriegel, H.-

P. and Ng, R.T. and Sanger, J., 2000) measures the

degree of abnormality of a given data point by com-

puting a score, known as the local outlier factor. This

score is a measurement of the density deviation from

a neighbouring cluster of data points for a given data

point. The local outlier factor is based on the ratio

of the average density of its k-nearest neighbours to

its own density. The intuition is that a regular data

point is expected to have a density similar to that of

its neighbours, whilst an outlying sample is expected

to have a much smaller density score.

5.1.4 Anomaly Detection Algorithm

Performance Comparison

Each of the three algorithms was evaluated to deter-

mine the most reliable for the DDoS detection sys-

tem. The data used to train each model was sourced

from the CICDDoS2019 data set from the Canadian

Institute for Cybersecurity (Canadian Institute for Cy-

bersecurity, New Brunswick, 2019). This data set

contains realistic network packet-flow data demon-

strating the effect and signatures of numerous types

of DDoS attacks on a network. It is split into sep-

arate comma-separated value (CSV) files each con-

taining data pertaining to a different type of DDoS

attack. The types of DDoS attack represented in the

data set include SYN-flood, UDP-flood, UDP-Lag,

and Portmap, LDAP, MS-SQL and NetBIOS reflec-

tive attacks. The data set also contains benign traffic

data amongst the attack data. The UDP-Lag set was

removed entirely from use in the creation of and test-

ing of this system due to the lack of samples provided

by the data set relative to other types of attacks.

The problem of anomaly detection is essentially a

binary classification problem – does the new sample

belong to the group, or is it an outlier? This allows us

to disregard the type of DDoS attack at this stage, and

simply label each sample as BENIGN (0) or ATTACK

(1). This was done to all of the data as part of prepro-

cessing. An equal amount of BENIGN samples were

taken from each CSV file to get a range of data and

avoid biases, these were selected at random to avoid

the problem of data non-uniformity, and were com-

bined to create a single superset of data to train the

models with.

Each CSV file in the CICDDoS2019 data set con-

tains 86 features and a class label. This is far too many

for effective training of a machine learning model,

and indeed too many features can cause issues with

overfitting. Therefore, features were selected based

on their correlation with the label and lack of corre-

lation with each other, as this is a standard approach

(Hall, 1999). The correlation to the label was lim-

ited to between 0.75 and 0.9, with the latter limit

to reduce the chance of overfitting the data. Intu-

itively, features such as Source IP and Destination

IP were removed with this process, as these would

create a non-network-agnostic model. The Flow ID

Table 1: Selected features for the training of ML models

Feature Description

Protocol The network protocol used

Fwd Packet Length Min Minimum size of packet in forward direction

Fwd Packet Length Mean Average size of packet in forward direction

Bwd Packet Length Min Minimum size of packet in backward direction

Min Packet Length Minimum length of a packet

Packet Length Mean Average length of a packet

ACK Flag Count Number of packets with ACK flag

URG Flag Count Number of packets with URG flag

Down/Up Ratio Download and upload ratio

Average Packet Size Average packet size (bytes)

Avg Fwd Segment Size Average size observed in the forward direction

Figure 4: Data preprocessing steps

and Timestamp features were also omitted manually

as these are irrelevant to future predictions. The fi-

nal set of features that were used for the training and

testing of the model are shown in Table 1 with a de-

scription in the context of a packet flow from an out-

side source to an inside host. Descriptions were ob-

tained from the documentation for the CICFlowMe-

ter software (Canadian Institute for Cybersecurity,

New Brunswick, 2017a) used to extract the data from

packet captures.

In addition to the above, it was necessary to pre-

process the data to remove bad or unusable values -

such as infinity and null values. These were replaced

with 0 (note: no column with infinity values also had

legitimate 0 values) and the mean of all other values

in the column, respectively. Furthermore, all labels

in the data were replaced with numerical encodings,

these were simply integers starting from 0 for each

label in the data, this is necessary as scikit-learn is

unable to deal with non-numerical categorical values.

For the anomaly detection data, it was only necessary

to include samples with a BENIGN (or 0-encoded) la-

bel. However, ATTACK data was also kept separately

for testing purposes. Data for the classifier included

both BENIGN and ATTACK samples. A flow chart

of the preprocessing script usage can be seen in Fig-

ure 4, the code used is included in the appendix as

Preprocess.py.

The models trained using benign data were each

tested using an equal amount of unseen BENIGN and

ATTACK samples from each CSV file combined into

a single file. The test aimed to measure the reliability

of each algorithm in correctly identifying data that be-

longed to the group (negative - benign data) and out-

Table 2: Anomaly Detection Algorithm Comparison Results

One-class SVM Isolation Forest LOF

Total Test Samples 203154 203154 203154

True Positives 183026 203055 203030

False Positives 47 10 20

True Negatives 17 54 44

False Negatives 20064 35 60

Accuracy 0.9010 0.9998 0.9996

Sensitivity 0.9012 0.9998 0.9997

Specificity 0.2656 0.8438 0.6875

Precision 0.9997 1 0.9999

F1 Score 0.9479 0.9999 0.9998

liers (positive - attack data). Test results can be seen

in Table 2.

The first thing to note is that the number of reg-

ular (BENIGN) samples used in this test is far lower

than the number of outlier (ATTACK) samples. This

is because of the limits of the CICDDoS2019 data

set. Each CSV file has a limited number of benign

samples to train the model with, compared to attack

samples. It was decided that the majority of these

would be used to train the model to ensure it has the

best chance of identifying outliers. Therefore, only a

handful were kept back from the training set for test-

ing. It is more important in this system that positive

outliers are detected than negative samples missed, as

a false alarm DDoS attack would be less damaging

than completely missing a real attack. Furthermore,

the nature of the system means that if a False Posi-

tive DDoS attack is detected by the anomaly detection

module, it will be passed to the classification module

which should filter it out as non-malicious.

From these results, it is clear that the best overall

performer in this test is the Isolation Forest algorithm,

it outperformed the other two algorithms in every

measure. All had a high score for accuracy, however,

this measure is biased due to the far larger amount of

positive (ATTACK) samples in the data. The preci-

sion score links to this, as all performed very well in

identifying positive samples, so accuracy is skewed

by this and it was merely shown for completeness.

Where the algorithms differed was mostly seen in the

correct identification of negative (BENIGN) samples.

Interestingly, there was a massive disparity between

the One-class SVM model and the other two in this

aspect, this model saw a huge amount of False Neg-

ative predictions and can therefore be considered un-

reliable for anomaly detection in this system – False

Negatives here equate to missed attack samples, and

there are far too many misses here for it to be re-

lied upon. The other two models were much closer,

however, the Isolation Forest model outperformed the

LOF model slightly in identifying a greater propor-

tion of negative and positive samples correctly, thus

this algorithm was chosen for the anomaly detection

module of the DDoS detection system.

5.2 Machine Learning for DDoS Attack

Classification

Classification is the mapping of a set of input vari-

ables to a discrete set of output variables. It can be

seen as the process of predicting the label of a partic-

ular data point such that it can be placed into a known

category. Classification is used in the DDoS detec-

tion system to identify the type of DDoS attack that

the anomaly detection module has detected.

The possible algorithms to choose from for this

part of the system were again limited by those pro-

vided by the scikit-learn library (scikit learn, 2022d).

In this respect, there are more provided than with

anomaly detection. However, due to time constraints,

not all could be tested for reliability. It was there-

fore decided that only a select few would be tested.

These were Random Forest, Logistic Regression, k-

Nearest Neighbour (k-NN), and Multilayer Percep-

tron (MLP). Each was mentioned in the literature in

2 and was shown to be either the strongest or the sec-

ond strongest algorithm for its research case. As these

are more well-known algorithms than those used for

anomaly detection, only a high-level description of

each will be provided here for brevity.

5.2.1 Random Forest

The Random Forest algorithm (Ho, 1995) is an en-

semble method of learning that can be used for classi-

fication tasks. Akin to the Isolation Forest described

in 5.1.2, it makes use of a collection of Decision Trees

that are polled to provide a more reliable prediction.

5.2.2 Logistic Regression

Logistic Regression uses the logistic function to

model the probability that a sample belongs to a par-

ticular class, this is usually a binary decision as dis-

cussed in 2. In this case, Logistic Regression is ex-

panded to a Multinomial Logistic Regression to allow

for more than two classes to be predicted. Scikit-learn

compares the probability values of each class (scikit

learn, 2022c) in order to determine the most likely

class for a given sample.

5.2.3 k-Nearest Neighbour (k-NN)

The k-Nearest Neighbour algorithm (Fix and Hodges,

1951) is trained by generating a vector in n-

dimensional space (where n is the number of predic-

tors for the sample) for every training sample, each

given a class label. Predictions are then made by gen-

erating a further vector for each new sample and com-

paring the distance (usually Euclidean distance) to the

nearest k vectors; the class label of the majority of

these k vectors is assigned as the predicted class label

for the new sample.

5.2.4 Multilayer Perceptron (MLP)

The Multilayer Perceptron algorithm is a neural net-

work model that learns a function from the training

data set sample, that is it creates a mapping from in-

put (the predictor values) to output (the class label)

using backpropagation. The model works by creating

three or more layers of neurons: one input, at least

one “hidden” and one output. Each neuron in each set

of “hidden” layers in the Multilayer Perceptron has

a function that maps to every node in the following

layer until the output layer is reached, this can then be

reduced to a direct input-output mapping.

5.2.5 Classification Algorithm Performance

Comparison

Whilst the same data set was used, testing each classi-

fication algorithm involved a slightly different process

to the testing of the anomaly detection algorithms in

5.1.4. Firstly, due to it being a multinomial classifica-

tion problem, analysis of predictions for each possible

class is necessary. Secondly, our system requires that

unknown classes are recognised as such – these are

the novel DDoS attacks that are recognised in anoma-

lous traffic by the anomaly detection module but can-

not be classified by the classification module.

To determine if a sample is unclassifiable, we need

to define a boundary probability value, where if no

class probability value for a given sample exceeds the

boundary value, we consider that sample to be unclas-

sifiable. Therefore, we do not take the final prediction

output from the classifier, but an array of probabilities

corresponding to each possible class. The probabil-

ity boundary value was set to 0.9 for the purposes of

testing.

Each algorithm model was trained using a super-

set of equal amounts of benign and malicious traffic

from each CSV file in the data set except the Portmap

data, with each CSV file randomly sampled to en-

sure uniformity. The test superset was created from

samples not used in the training superset, including

samples from the Portmap data. The aim of the test

was to determine the reliability of classification for

all known types of DDoS attacks and to determine the

reliability of recognising the unknown (Portmap) as

unclassifiable. The results of these tests can be seen

in Tables 3, 4, 5 & 6. Note that the results were taken

directly from the built-in scikit-learn classification re-

port to reduce human error and to save time, thus

the formatting and values shown here differ from the

manually calculated results shown in 5.1.4, but should

be sufficient for comparison.

From these results, we can note that all algo-

rithms underperformed in the reliability of determin-

ing the unclassifiable attack type compared to all

other classes, in almost all cases. This can be at-

tributed to the boundary probability value and there

is a chance this could be improved with calibration.

For the purposes of comparison, this is not important

as the boundary value was kept consistent throughout

the experiment.

The k-NN algorithm generally has a very strong

accuracy in predicting known attack types correctly.

However, overall, the results show the Random Forest

algorithm to be the most reliable in predicting a DDoS

attack class when the unclassifiable attack type is also

considered. The Random Forest model will be used

for the classification module in the DDoS detection

system.

5.3 System Prototype

As discussed, the prototype system was implemented

in Python. It is made up of three Python modules:

Anomaly.py, Classification.py, and Detection.py. Nat-

urally, the first two represent the anomaly detection

and classification modules of the system. The third

contains functionality to connect the first two and pro-

duce an output. Each will be described in this section

with truncated Python code (omitting minor techni-

calities). The actual Python files are included in the

attached appendix files of the project.

Table 3: Random Forest Test Results

Random Forest

Benign NetBIOS LDAP MSSQL SYN-

Flood

UDP-

Flood

Unclassifiable

(Portmap)

Total Samples 86694

Sensitivity 1.00 1.00 1.00 0.98 1.00 0.98 0.80

Precision 1.00 0.98 0.98 0.84 1.00 0.98 0.98

F1 Score 1.00 1.00 0.99 0.98 1.00 0.99 0.88

Table 4: Logistic Regression Test Results

Logistic Regression

Benign NetBIOS LDAP MSSQL SYN-

Flood

UDP-

Flood

Unclassifiable

(Portmap)

Total Samples 86694

Sensitivity 0.63 1.00 1.00 0.94 1.00 0.51 0.78

Precision 1.00 0.99 0.94 0.66 0.73 0.98 0.84

F1 Score 0.77 1.00 0.97 0.77 0.84 0.67 0.81

Table 5: k-NN Test Results

k-Nearest Neighbour

Benign NetBIOS LDAP MSSQL SYN-

Flood

UDP-

Flood

Unclassifiable

(Portmap)

Total Samples 86694

Sensitivity 1.00 1.00 1.00 0.97 1.00 0.98 0.79

Precision 1.00 1.00 0.98 0.98 1.00 0.99 0.89

F1 Score 1.00 1.00 0.99 0.98 1.00 0.99 0.84

Table 6: Multilayer Perceptron Test Results

Multilayer Perceptron

Benign NetBIOS LDAP MSSQL SYN-

Flood

UDP-

Flood

Unclassifiable

(Portmap)

Total Samples 86694

Sensitivity 1.00 1.00 0.99 0.89 1.00 0.98 0.80

Precision 1.00 1.00 0.96 0.97 1.00 0.93 0.95

F1 Score 1.00 1.00 0.98 0.93 1.00 0.95 0.87

5.3.1 Anomaly.py

The pseudo-Python code for this module can be seen

in Code 1.

Line 6 shows the anom prediction function which

takes a sample as input and returns a prediction of ei-

ther 1 for regular samples or -1 for anomalous sam-

ples. It first converts the input data to a Pandas

dataframe for easier processing, it then extracts only

the predictor values that it requires and converts them

to a Numpy array. The model is loaded using the

pickle module (an object serialisation library for sav-

ing and loading the model) (Python, 2022) and the

Numpy array of values is used as input to the model’s

prediction function, which returns the prediction.

The following function, train model, is a method

used for the iterative learning functionality of the sys-

tem. This takes a new input value and appends it to

the existing training data set for future use, then re-

trains the model using the new data set. Note that in

this function, the right-facing arrows indicate saving

the input (left) to disk at the location defined by the

variable (right).

5.3.2 Classification.py

The pseudo-Python code for this module can be seen

in Code 2.

Similar to Anomaly.py, this module has two func-

tions. The first, described from line 6, is a method for

retrieving the probabilities of a given sample belong-

ing to each known class. This works in much the same

way as the anom prediction function in Code 1, but

instead of returning a 1 or -1, it returns a list of prob-

Code 1 Anomaly.py

1: import pandas, sklearn, pickle

2: MODEL = < path to anom model > .sav

3: MODEL PREDICTORS = [< set o f predictors >]
4: T RAINING SET = < path to benign set > .csv

5:

6: function anom prediction(input)

7: d f = pandas.DataFrame(input).[MODEL PREDICTORS]
8: vals = d f .to numpy()
9: loaded model = pickle.load(MODEL)

10: prediction = model.predict(vals)
11: return prediction

12: end function

13:

14: function train model(input)

15: d f = pandas.DataFrame(input)
16: tset = pandas.read csv(T RAINING SET)
17: tset.append(d f)
18: pandas.to csv(tset)−→ T RAINING SET

19: new model = sklearn.IsolationForest()
20: new model. f it(tset)
21: pickle.save(new model)−→ MODEL

22: end function

Code 2 Classification.py

1: import pandas, sklearn, pickle

2: MODEL = < path to class model > .sav

3: MODEL PREDICTORS = [< set o f predictors >]
4: T RAINING SET = < path to attack set > .csv

5:

6: function class probabs(input)

7: d f = pandas.DataFrame(input).[MODEL PREDICTORS]
8: vals = d f .to numpy()
9: loaded model = pickle.load(MODEL)

10: probs = model.predict proba(vals)
11: return probs

12: end function

13:

14: function train model(input)

15: d f = pandas.DataFrame(input)
16: tset = pandas.read csv(T RAINING SET)
17: tset.append(d f)
18: pandas.to csv(tset)−→ T RAINING SET

19: new model = sklearn.RandomForest()
20: new model. f it(tset)
21: pickle.save(new model)−→ MODEL

22: end function

abilities. Again, the train model function described

from line 14 is a method of retraining the model with

new inputs from the iterative learning process, this

differs here only in that a Random Forest model is

used.

Code 3 Detection.py

1: f rom Anomaly import anom prediction

2: f rom Classi f ication import class probabs

3:

4: function run(input)

5: if anom prediction(input) ==−1 then

6: probabs = class probabs(input)
7: if max(probabs)>= prob threshold then

8: return probabs[index(max(probabs))]
9: else

10: return −1

11: end if

12: else

13: return 0

14: end if

15: end function

5.3.3 Detection.py

The pseudo-Python code for this module can be seen

in Code 3.

This module is used to integrate the anomaly de-

tection and classification modules into one cohesive

system. It uses a very straightforward algorithm in the

run function, shown from line 4. It first executes the

anom prediction function from the Anomaly.py mod-

ule which returns a -1 if the input sample is anoma-

lous, and 1 if not. If the sample is deemed benign, the

function returns a 0 to signify this. If the sample is

deemed anomalous, it is passed to the class probabs

function from the Classi f ication.py module which at-

tempts to classify the sample. Again, this function

returns a list of probabilities corresponding to each

possible known class of DDoS attack.

If the maximum probability k in the list is greater

than the probability threshold, then the index of k in

the list is taken as the class of attack. This works be-

cause each DDoS attack type is encoded with an or-

dinal value (0, 1, 2. . . n) due to the inability of scikit-

learn to deal with categorical values. Furthermore,

lists in Python are ordered. Therefore, so long as we

keep the position of each probability in the probability

list the same, we can safely say that the max proba-

bility index corresponds to the encoded value of the

attack type. If k is less than the probability threshold,

the classifier is not certain of the attack type and re-

turns -1 to signify this. The sample can then be further

investigated by a human operator to determine if it is

benign or a new type of attack.

6 TESTING METHODOLOGY &

RESULTS

6.1 Network Topology

To properly test the reliability and portability of this

prototype DDoS detection system, it was necessary

to collect new data from a fresh source. This could

have been collected from existing, publicly available

data different from the CICDDoS2019 set. However,

the issue with this is the inconsistency of the for-

matting of the data. The CICDDoS2019 set contains

packet flow data from packet capture (pcap) files col-

lected using Wireshark (Wireshark, 2022). As men-

tioned, the packet flow data is extracted using the CI-

CFlowMeter software (Canadian Institute for Cyber-

security, New Brunswick, 2017a), which outputs the

data as a CSV file. This is not a consistent method

of formatting throughout all DDoS attack data sets,

therefore we cannot test a model trained on data from

CICDDoS2019 with those data sets.

A better method would be to use Wireshark (Wire-

shark, 2022) to capture packet data from a simulated

attack and extract packet flow data in the same format

as CICDDoS2019 using the CICFlowMeter tool. This

was made possible using Cardiff University’s Cyber

Range. The Cyber Range allows for the virtualisation

of a relatively large amount of machines and connec-

tions between them, thus enabling the creation of vir-

tualised network topologies. It is, therefore, possible

to create a simulated network environment that mod-

els an organisation and to perform a DDoS attack on

this network using further virtualised machines. This

was the method chosen to test the prototype DDoS de-

tection system, and the implementation details of this

Figure 5: Small business star topology network

test follow.

One can imagine a small business workplace com-

prised of two or three rooms with machines connected

to a switch in each room, all connected to a central

router that acts as a gateway to the Internet. The busi-

ness may also have a web server and Email server.

This would be a fairly typical star topology, and an

illustration of such a network can be seen in Figure 5.

Ultimately, this was the type of network emulated

on the Cyber Range for our test. The beauty of a net-

work like this is that its centralised nature ensures that

(excepting certain direct connections between end-

user machines, which can be omitted) all packets

pass through the same point, in this case, the central

switch. This allows us to easily collect all packet data

that passes through the network by tapping into this

location and collecting the packets. We do this using

a type of switch known as a mirror switch. The mirror

switch has multiple regular ports that work as normal,

whilst also having a mirror port where a copy of every

packet transmitted through all other ports is sent.

6.2 Implementation on the Cyber Range

The Cyber Range implementation of the topology de-

scribed in 6.1 can be seen in Figure 6. Firstly, the

implementation differs from the originally described

topology in that there is no connection to the Inter-

net. This is partly due to technological restrictions but

also because such an implementation was not neces-

sary to perform a test. The topology also has a host

for capturing the packet data, connected directly to

the mirror switch, and two attacking hosts connected

indirectly via one further switch. In addition, the im-

plementation has a DNS server to aid in routing to the

mail server. The interface to the Cyber Range is the

DIATEAM Hyneview software (DIATEAM, 2022).

The user systems are virtualised Ubuntu Linux

machines. Each is labelled with a randomly gen-

erated user name to distinguish between them, e.g.

“z.dudley”. Each user host can perform basic actions

such as email, creating files, and accessing the web

server. The use of these is further described in 6.3.

They are represented graphically in the topology by

the computer monitor.

The three servers in the topology include the

Email server, a DNS and a simple web server. The

first two are implemented using Windows Server,

with the Email server utilising the open-source hmail

software (hMailServer, 2022) and the DNS server us-

ing the Windows DNS Server Manager (Microsoft,

2021). The web server is a simple Apache (The

Figure 6: Functional Cyber Range topology

Apache Software Foundation, 2022) server hosted on

an Ubuntu Linux machine. These are represented

graphically in the topology by the black tower ma-

chines.

The DDoS attacker hosts are Kali Linux (Off-

Sec Services Limited, 2022b) virtual machines rep-

resented by the hacker icon in the topology. The

function of these is discussed in detail in 6.4. Packet

capturing using the Cyber Range can be done using

the Hyneview software directly. However, to capture

from a mirror switch, the mirror port must have a con-

nection to a host, so we have a dummy-host labelled

Capture represented graphically by the eye icon in

the topology for this purpose. Finally, there are four

switches, with the most central one being the mirror

switch.

6.3 Simulating Legitimate Activity

Naturally, a normal network is created for legitimate

users, DDoS attacks are a phenomenon that occurs

as a result of this legitimate use – if a network was

not used, there would be no need to attack it. This

means that any traffic associated with a DDoS attack

on a network will almost certainly be present along-

side legitimate traffic. One of the main difficulties

encountered when trying to implement a DDoS de-

tection system is to ensure it can reliably distinguish

between legitimate and malicious traffic. To ensure

that our system can do this, we need to simulate legit-

imate use as well as malicious use.

In our topology, we have a set of hosts belonging

to users. The users at this simulated organisation are

able to perform some basic actions. To simulate re-

alistic usage, and to provide constant activity on the

network, a simple Python script was written that is

present on all user hosts. The details of this script

will not be described here, although the script is in-

cluded in the appendix as SimUser.py. Suffice to say

the script performs a user-defined number of the fol-

lowing actions at random:

• Generate a text file – generates a simple text file

with a random string of text

• Send an email – sends an email to another named

user on the network, with a generated file attached

• Access website – accesses the website hosted by

the web server and downloads the page

• Pause – pauses for a random amount of time up to

30 seconds to better simulate realistic use

Figure 7: Packet capture data at the point of DDoS attack

6.4 Simulating a DDoS Attack

For this experiment, a DDoS attack was conducted

against the web server. The web server was chosen as

a target over the Email server due to the relative sim-

plicity of testing whether or not the attack had been

successful and because such attacks are more likely

to occur in real scenarios than attacks against private

Email servers due to the open-access nature of web-

sites.

The type of DDoS attack chosen for this exper-

iment was a SYN-flood attack. Performing such an

attack is a simple task using the hping3 tool (OffSec

Services Limited, 2022a) provided as standard with

Kali Linux installations. This type of attack has asso-

ciated packet flow data in the CICDDoS2019 data set,

thus we can test the system’s ability to detect SYN-

flood attacks using completely new data – that is to

say, in theory, there is no further training necessary

for the system’s machine learning models.

The following hping3 command was used to per-

form the attack:

hping3 -d 120 -S -p 80 –flood 8.0.0.11

To break this down:

• The -d option specifies the size of the packet data,

in this case, 120 bytes

• The -S option tells the tool that we want all pack-

ets to be SYN packets

• The -p option specifies the destination port, in this

case, port 80 was used as this is the HTTP port

• The -flood option tells the tool to send packets as

fast as possible, thus flooding the target host

• The final argument is the destination IP address,

8.0.0.11, which is the IP of the web server on this

network

Note that DDoS attacks are often conducted using

spoofed source IP addresses, this was not the case

for this experiment as this gave us a method of clear

differentiation between malicious and benign packet

data.

6.5 Test Steps & Results

The test was performed by first initiating the user-

simulation script described in 6.3 for all five user

hosts on the topology; each was initialised with 500

random actions to perform to ensure that none would

stop whilst data was collected. Network traffic was

checked using the built-in packet capture feature in

Hyneview (akin to Wireshark) – it was confirmed that

traffic was present on the network. Further, the con-

nection to the website hosted by the web server was

checked and it was confirmed that the page loaded

properly.

At this point, the packet capture began. As men-

tioned, all traffic passes through the central switch in

the topology. Therefore, the packet capture took place

on the mirror port of this switch. The packet capture

was set to stop at 400,000 packets as this was deemed

a large enough number to provide a useful amount of

flow data, but not too large as to make the packet cap-

ture file size unmanageable. The tool was left alone

for a few minutes to capture a usable amount of be-

nign data before performing the DDoS attack.

The DDoS attack was performed by executing the

command described in 6.4 on the two attacker hosts

in the topology. The specifications of the web server

were very modest, and no DDoS prevention security

was in place, thus only a small amount of attacking

hosts were required to trigger a denial of service. In-

deed, denial of service was confirmed almost instantly

after the attack began. This was checked by attempt-

ing to access the website from a separate host machine

– the page failed to load. Malicious packets were

captured along with benign packets until the 400,000

packet limit was reached.

Table 7: Confusion matrix for detection of anomalous samples

Predicted Positive Predicted Negative

Actual Positive 70084 0

Actual Negative 32 141

Table 8: Confusion matrix for detection of SYN-flood attack samples

Predicted Positive Predicted Negative

Actual Positive 42337 27747

Actual Negative 0 173

Table 9: DDoS Detection System test results

Benign SYN-Flood Unclassifiable*

Total Samples 70257

Predicted 141 42337 27779

Actual 173 70084 0

Sensitivity 1.00 0.6041 -

Precision 0.9995 1.00 -

Specificity 0.8150 1.00 -

F1-Score 0.9998 0.7532 -

Subsequently, the packet capture data was down-

loaded and checked in Wireshark for correctness, the

data is shown in Figure 7. The figure shows the exact

moment when SYN-flood attack packets began to be

transmitted (green packets).

The raw packet data was then used as input into

the CICFlowMeter tool which extracted data from

70,257 packet flows and stored the data in a structured

CSV file comprising 173 benign flows and 70,084

malicious flows. The data required manual labelling,

which was a trivial task as all data that originated from

a malicious host (8.0.0.100 or 8.0.0.101) could be la-

belled as “Syn” whilst all other data could be labelled

as “BENIGN”. This data was then ready to use as

input to the DDoS detection system, after preprocess-

ing.

The models derived from the algorithm tests per-

formed in 5 for the chosen algorithms (Isolation For-

est and Random Forest) were used for testing with this

new packet flow data. The test was done in this way

because it allows the evaluation of the DDoS detec-

tion system’s ability to be ported to new topologies

and still be useful without requiring further training

data.

The results of the DDoS detection system test us-

ing this new data are in tables 7, 8 & 9.

*Unclassifiable results in Table 9 only show

the predicted count. This is because there were

no samples in the testing data that should have

been considered unclassifiable (types of attacks

that the classifier had no prior knowledge of) –

however, the system deemed some data to be so.

Table 7 shows the confusion matrix for the de-

tection of anomalous samples with the packet flow

data from the Cyber Range test. We can see a rel-

atively strong performance here in the detection sys-

tem’s ability to accurately distinguish between benign

and malicious data, especially considering the system

has not been trained with data from the simulation.

These results suggest that the anomaly detection mod-

ule works well, with an accuracy of 99.95%. The key

point to take from this particular set of results is that it

shows the system’s ability to recognise when a DDoS

attack has occurred – this is the most important part

of any DDoS detection system, so these initial results

are encouraging here.

Table 8 shows the confusion matrix for the cor-

rect identification of SYN-flood attack samples on the

packet flow data from the Cyber Range test. This

had a weaker performance compared to the results

for simply detecting anomalous samples. With an ac-

curacy of just 60.51%, we can suggest that the sys-

tem does not perform especially well when classify-

ing particular DDoS attacks, albeit with only the ini-

tial training.

One interesting point to note here is that the num-

ber of True Negatives shown in Table 8 is 173, the

exact number of benign samples in the data, but Table

7 showed that errors were made, with 32 False Posi-

tives. This shows that whilst some benign traffic was

initially mislabelled as potentially malicious by the

anomaly detection module, the classification module

deemed the same samples to be unclassifiable – in-

deed, Table 9 confirms this with the Predicted count

of the Unclassi f iable samples. This is an excellent

Table 10: Confusion matrix for detection of anomalous samples with retrained model

Predicted Positive Predicted Negative

Actual Positive 56211 0

Actual Negative 2 155

Table 11: Confusion matrix for detection of SYN-flood attack samples with retrained model

Predicted Positive Predicted Negative

Actual Positive 56128 83

Actual Negative 0 157

Table 12: DDoS Detection System test results with retrained model

Benign SYN-Flood Unclassifiable*

Total Samples 56368

Predicted 155 56128 85

Actual 157 56211 0

Sensitivity 1.00 0.9985 -

Precision 1.00 1.00 -

Specificity 0.9873 1.00 -

F1-Score 1.00 0.9993 -

outcome. The iterative learning process allows these

unclassi f iable samples to be later recognised as be-

nign by a human administrator and fed back into train-

ing the anomaly detection module to ensure improved

recognition. If these samples had been recognised as

actual attacks after being flagged as anomalous, this

opportunity may have been missed. It also means that

no false alarms were triggered in this test – no benign

data was ever considered part of a definite attack.

The weakness of the ability of the classification

module to recognise the type of attack is a slight de-

traction. That said, considering that these are tests

using models trained on a completely separate set of

data, the overall results are positive. As discussed, all

malicious samples were recognised as anomalous by

the anomaly detection module, the classification of an

attack as a particular type is less important than this.

A network that uses a DDoS detection system based

on this architecture could be configured to respond to

all anomalous traffic in some way, regardless of its

eventual classification – at the least, such outcomes

could alert the possibility of an attack to the admin-

istrator. Furthermore, the iterative learning process

allows for improvement with time. A legitimate at-

tack that is recognised as anomalous at first, but later

recognised as unclassi f iable can be used to train the

classification module, whilst false alarms can be used

to train the anomaly detection module.

Following the collection of the first set of results,

the system was retrained using unclassifiable data

from the same test. To retest the system without the

need to run a new simulation, only half of the un-

classifiable samples were taken for the training phase,

with the benign samples used to retrain the anomaly

detection model, and the benign and malicious sam-

ples used to retrain the classifier. This equated to 16

benign samples and 13,873 malicious samples. These

were then omitted from the test phase data set and

the system was tested once again. Thus for this sec-

ond, post-retraining test, we have 157 benign samples

and 56,211 malicious samples, summing to 56,368 to-

tal samples. The results from the test on the newly-

trained DDoS detection system can be seen in Tables

10, 11 & 12.

We can see a large improvement in reliability in

these results. Here there are 2 False Positives for

the predictions made by the anomaly detection mod-

ule, these are initial false alarms, but again, they were

recognised as unclassifiable by the classification mod-

ule (as shown by the number of unclassifiable values

in Table 12) thus were never registered as definite at-

tacks. We also see a massive decrease in the number

of False Negatives made by the classifier, with only

83 compared to the previous 27,747. Thus we have a

massive improvement in the sensitivity and F1 scores

from these tests. Furthermore, the number of anoma-

lous samples correctly identified increased, with an

improved specificity of 0.99 from 0.82. These results

show the benefit of the iterative learning process and

how this method can be used to quickly improve the

system in a dramatic way.

7 CONCLUSIONS & FUTURE

WORK

Whilst the work done during this investigation should

be considered only an initial step, the findings suggest

that this could be an interesting and successful path-

way for denial-of-service prevention research. The

DDoS detection system developed here is capable of

dealing with issues that other methods struggle with,

the chief of which is the capacity to detect new at-

tacks. Initial results from tests performed in this in-

vestigation show that anomaly detection is a reliable

method of detecting an attack regardless of type, and

the logic involved in this is sound. Furthermore, the

architecture of the system allows for continuous im-

provement by iterative learning, reducing any remain-

ing error with time.

Although anomaly detection can be used to detect

when a potential attack is taking place, it cannot say

for sure that it is an attack. This system compensates

for this problem by using a classifier in tandem with

the anomaly detector. This is mostly a convenience

for the network administrator or intrusion response

system, as an attack of a known type can be mitigated

faster and more reliably. However, if a sample can

be reliably classified in this way, it can be said with

more certainty that an attack is definitely happening

and is not a false alarm. Further, the classifier enables

iterative learning by ensuring that it has a high level

of certainty before classifying an attack. This means

that any time it is not certain, further investigation can

be done by a human operator, and the data can be re-

labelled and used to improve the system.

As shown, the initial results are promising, but

they should not be considered enough to draw definite

conclusions on the reliability of this method. Further

work is necessary in this area of research before a live

system using this architecture could be used.

One question that needs to be answered is how the

system deals with large amounts of data in a small

amount of time. Large organisations are often the

main targets of DDoS attacks, this is because the mali-

cious actor generally wants to cause the most disrup-

tion possible. This means that the system will need

to be able to deal with an extremely large amount of

traffic, thus requiring incredibly fast packet process-

ing. The prototype system designed in this investi-

gation was trained and tested using packet flow data;

this required an extra step in the processing of pack-

ets. Using packet flow data in a live system may not

be reliable as by the time a set of packets has been col-

lated into a flow, processed and then analysed, it may

be too late and an attack may have already been suc-

cessfully conducted. Further work is necessary here,

perhaps using live network tests, to determine the ef-

ficacy of such a system. It may be that packet flow

data is not a practical determiner for the recognition

of attacks, and instead, individual packet data could

be used.

Another area for investigation is how the system

deals with different types of network topologies. The

star topology was chosen in this investigation due to

the simplicity of packet capture within it. All pack-

ets passed through a single point in the network, thus

packet capture was straightforward, and a DDoS de-

tection system running in this location would have

access to all of this data. Furthermore, the network

was remarkably simplistic, partially due to time con-

straints, but also due to this being only an initial in-

vestigation. It may be that a large organisation has a

vast network with many gateways and multiple paths

to a single server that could be targeted by a malicious

actor. Where would the detection system be placed in

this case? Perhaps the system can be copied into mul-

tiple locations, but there is a strong chance that a set

of packets involved in an attack will not pass through

just one of these locations. So, then we have the issue

of the detection system only having access to a subset

of the entire set of attack packet data – would that be

enough to recognise an attack? It is a question that

must be investigated before any live system with this

architecture could be used.

Thought must also be placed into how the itera-

tive learning process would function in reality. If the

system encounters many unclassifiable samples, how

arduous would the process of manually investigating

each of these be? Can it be done by a single person

in a realistic amount of time, or would an entire team

need to be on hand to deal with this? The logic be-

hind the process is sound, and would with some cer-

tainty lead to a robust detection system, but the prac-

ticalities must also be considered. Perhaps this issue

could be dealt with by an external provider, whereby

a business entrusts the improvement of their DDoS

detection system to the external team. However, with

this comes security issues, some organisations may

not see the risk of sharing packet data with an exter-

nal party as a reasonable tradeoff for improved DDoS

protection.

In general, all of these issues to be investigated

are problems of scale. Whilst they should still be in-

vestigated regardless, it could be suggested that this

type of DDoS detection system may be used solely

by smaller organisations to provide a solid method of

preventing and mitigating attacks on their networks.

8 REFLECTIONS

The original aims of the project were to create a ma-

chine learning model to detect DDoS attacks using a

pre-existing data set and to further test this model by

using data from simulated DDoS attacks on the Cyber

Range. These aims have been met and results show

that the methodologies used appeared to have been

successful.

During the project, I had the opportunity to learn

a great deal about current methods of DDoS attack

detection and prevention. Whilst much of the liter-

ature discussed methods of detection using machine

learning, almost none used an architecture like that

described and used in this project. Less still per-

formed a simulated DDoS attack to collect data to

test their model. The novelty of the project can be

shown in this, and I believe that the architecture used

in the detection system described in this project has

a great potential to solve common issues encountered

by traditional and even more recent methods of DDoS

detection; such as the unknown attack type problem.

In addition, I believe I have learned a significant

amount of useful information on machine learning,

particularly regarding anomaly detection and unsu-

pervised learning in general. I had implemented and

used supervised machine learning models in previous

projects, but prior to this project, I had no previous ex-

perience with implementing an unsupervised model

and had no knowledge of anomaly detection. This

project has allowed me to realise the potential util-

ity of unsupervised learning, and how it can be com-

bined with supervised learning to achieve goals that

would not be possible with either method alone. The

particular challenge involved here was to overcome

that knowledge barrier and to learn how an unsuper-

vised machine learning model can be used to identify

patterns in data that are not explicit, a lot of reading

was involved in this and it took a while for the idea

to take hold. However, once the idea was clear in my

mind, the suggested method of creating a hybrid sys-

tem seemed like an excellent way of overcoming cer-

tain problems associated with single-method DDoS

detection systems and I quickly got a clear idea of

what needed to be done.

One aspect of the MSc Cyber Security & Technol-

ogy course that particularly helped during this project

was the knowledge I acquired on virtualisation, par-

ticularly the work done involving the Cyber Range.

Prior to my study on this course, I had very limited

knowledge of the core aspects of virtualisation and its

potential uses. The work done for this project using

virtual machines to create a virtual network that could

be used to simulate activity and cyber attacks was

a crucial part of the required novelty in this project,

and it allowed me to test the system I had built with

completely new data – meaning that the utility of the

system in use on different networks could be demon-

strated. However, due to time constraints and tech-

nical issues regarding access and use of the Cyber

Range, the amount of work done in this regard was

limited. It would have been interesting to test the sys-

tem on multiple topologies, different target services

and different kinds of attacks. This was unfortunate,

but it provides scope for future work to be done.

The mentioned problems involving the Cyber

Range were the biggest obstacle that had to be over-

come in this project for me, and were unfortunately

mostly out of my control. However, another major

challenge in this project was the setting up of the vir-

tualised network and its services. Having learned how

to create a functional mail server, web server and DNS

server for the project, I was provided with technical

skills that will certainly be useful in my future career,

and it gave me a further understanding of how these

systems function in a deeper sense. This part of the

project also allowed me to exercise my networking

skills in a practical way that I had not had the oppor-

tunity to do previously.

I believe that an early error in my judgement was

the expected amount of time required to collate and

preprocess the data retrieved from the pre-existing

data sets and the Cyber Range experiments for use in

the training of the machine learning models and test-

ing of the system. This was a challenging aspect due

to the non-uniformity of the data, and the ambiguity

of some of the labelling. I expected this part of the

project to be relatively simple and found that it was

actually very challenging, partly due to the process-

ing capacity of the machine I used for this project, but

also due to the need for a bespoke script to preprocess

the data, and the opportunity for human error to creep

in with this. I often found that results that I had be-

lieved to be accurate were not so on closer inspection

due to a minor error made earlier in the process. This

is an area I believe I would pay more attention to plan-

ning meticulously in future projects of this nature.

Furthermore, it was necessary to ensure that train-

ing and testing of the models were done in a way that

conformed with standard scientific practices. This is

something that I believe I managed to do, but not in

an ideal manner. My understanding is that the most

reliable way of testing a machine learning model is

to use k-fold cross-validation testing. Indeed, this is

what I had originally planned to do. However, due to

the difficulties in preprocessing and the time spent in

that regard, I felt I had to change my plans with this to

meet the deadlines. I believe that the results I have are

still reliable, but this is an area that I would certainly

look to improve, again by proper planning, in future

work.

To conclude, I believe that this project has been a

success and I have learned some useful technical and

transferrable skills in its undertaking. Being able to

spend time working with a powerful piece of tech-

nology in the Cyber Range was a great privilege and

allowed me to further my understanding of virtuali-

sation and networking in a way that would not have

been possible otherwise. I also had the opportunity to

perform a denial-of-service attack on a functional tar-

get, allowing me to experience the other side of cyber,

gaining some insight into how such attacks can be per-

formed and the related effects and signatures. Further,

this project helped me improve my timekeeping, read-

ing, reviewing and writing abilities, with the need to

ensure that I met my target deadlines, attended meet-

ings with the supervisor and had prepared notes to dis-

cuss, critically evaluated existing literature and wrote

clearly and accurately to convey the rationale behind

my decisions and the meaning of the results. These

are all skills that will be useful in future projects I un-

dertake, and in many other aspects of my career and

life.

REFERENCES

Amazon (2022). Working at Amazon. [Online]. Avail-
able: https://www.aboutamazon.co.uk/news/working-
at-amazon [Accessed: September 01, 2022].

Bajracharya, B. R. (2019). Detecting DDoS Attacks Using
Logistic Regression. Master’s thesis, Tribhuvan Uni-
versity, Kathmandu.

Balkanli, E., Alves, J., and Zincir-Heywood, A. N. (2014).
Supervised Learning to Detect DDoS Attacks. In Pro-
ceedings of 2014 IEEE Symposium on Computational
Intelligence in Cyber Security (CICS), pages 1–8.

Bindra, N. and Sood, M. (2019). Detecting ddos attacks us-
ing machine learning techniques. Automatic Control
and Computer Sciences, page 419–428.

Breunig, M.M. and Kriegel, H.-P. and Ng, R.T. and Sanger,
J. (2000). LOF: identifying density-based local out-
liers. In Proceedings of the 2000 ACM SIGMOD In-
ternational Conference on Management of Data.

Canadian Institute for Cybersecurity, New
Brunswick (2017a). CICFlowMeter (for-
merly ISCXFlowMeter). [Online]. Available:
https://www.unb.ca/cic/research/applications
.html#CICFlowMeter [Accessed: September 05,
2022].

Canadian Institute for Cybersecurity, New Brunswick
(2017b). Intrusion Detection Evaluation
Dataset (CIC-IDS2017). [Online]. Available:
https://www.unb.ca/cic/datasets/ids-2017.html [Ac-
cessed September 20, 2022.

Canadian Institute for Cybersecurity, New Brunswick
(2019). DDoS Evaluation Dataset (CICDDoS2019).

Chaykowski, K. (2015). Number of Facebook
Business Pages Climbs to 50 million With
New Messaging Tools. [Online]. Available:
https://www.forbes.com/sites/kathleenchaykowski
/2015/12/08/facebook-business-pages-climb-to-
50-million-with-new-messaging-tools [Accessed:
September 01, 2022].

Coppola, D. (2022). E-commerce revenue in the united
kingdom from 2015 to 2021. [Online]. Avail-
able: https://www.statista.com/statistics/282162/e-
commerce-annual-sales-in-the-united-kingdom-uk
[Accessed: September 01, 2022].

DIATEAM (2022). DIATEAM. [Online]. Available:
https://www.diateam.net/ [Accessed: September 12,
2022].

Dixon, S. (2022). Number of monthly ac-
tive Facebook users worldwide as of
2nd quarter 2022. [Online]. Available:
https://www.statista.com/statistics/264810/number-
of-monthly-active-facebook-users-worldwide [Ac-
cessed September 01, 2022].

Ferguson, P. and Senie, D. (1998). RFC2267: Net-
work Ingress Filtering: Defeating Denial of Ser-
vice Attacks which Employ IP Source Address
Spoofing. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc2267 [Accessed: September 02,
2022.

Fix, E. and Hodges, J. (1951). Discriminatory Analysis.
Nonparametric Discrimination: Consistency Proper-
ties. USAF School of Aviation Medicine.

Gutnikov, A., Kupreev, O., and Shmelev, Y. (2022).
DDoS attacks in Q1 2022. [Online]. Avail-
able: https://securelist.com/ddos-attacks-in-q1-
2022/106358 [Accessed: September 01, 2022].

Hall, M. (1999). Correlation-based feature selection for ma-
chine learning. University of Waikato.

hMailServer (2022). hMailServer. [Online]. Available:
https://www.hmailserver.com/ [Accessed: September
12, 2022].

Ho, T. (1995). Random Decision Forests. In Proceedings of
the 3rd International Conference on Document Anal-
ysis and Recognition. Montreal, QC.

IBISWorld (2022). Percentage of Business
Conducted Online. [Online]. Available:
https://www.ibisworld.com/us/bed/percentage-
of-business-conducted-online/88090 [Accessed:
September 01, 2022].

Jin, C., Wang, H., and Shin, K. (2003). Hop-count filter-
ing: an effective defense against spoofed DDoS traf-
fic. In Proceedings of the 10th ACM conference on
Computer and communications security, Washington
D. C, pages 30–41.

Killalea, T. (2000). RFC3013: Recommended Inter-
net Service Provider Security Services and Pro-
cedures. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc3013 [Accessed: September 02,
2022].

Li, Y. and Lu, Y. (2019). LSTM-BA: DDoS Detection Ap-
proach Combining LSTM and Bayes. In Proceed-
ings of Seventh International Conference on Advanced
Cloud and Big Data (CBD), page 180–185.

Liu, F., Ting, K., and Zhou, Z.-H. (2008). Isolation For-
est. In Proceedings of Eighth IEEE Internation Con-
ference on Data Mining.

Mahjabin, T., Xiao, Y., Sun, G., and Jiang, W. (2017). A
survey of distributed denial-of-service attack, preven-
tion, and mitigation techniques. International Journal
of Distributed Sensor Networks.

Microsoft (2021). What’s New in DNS Server
in Windows Server. [Online]. Available:
https://docs.microsoft.com/en-us/windows-server
/networking/dns/what-s-new-in-dns-server [Ac-
cessed: September 12, 2022].

NGINX (2022). What Is Load Bal-
ancing? [Online]. Available:
https://www.nginx.com/resources/glossary/load-
balancing [Accessed: September 02, 2022].

NumFOCUS (2022). Pandas. [Online]. Available:
https://pandas.pydata.org [Accessed: September 03,
2022].

NumPy (2022). NumPy. [Online]. Available:
https://numpy.org [Accessed September 03, 2022].

OffSec Services Limited (2022a). hping3 -
Tool Documentation. [Online]. Available:
https://www.kali.org/tools/hping3/ [Accessed:
September 12, 2022].

OffSec Services Limited (2022b). Kali. [Online]. Avail-
able: https://www.kali.org/ [Accessed: September 12,
2022].

Park, K. and Lee, H. (2001). On the effectiveness of
route-based packet filtering for distributed DoS attack
prevention in power-law internets. ACM SIGCOMM
Computer Communication Review, page 15–26.

Peng, T., Leckie, C., and Ramamohanarao, K. (2003). Pro-
tection from distributed denial of service attacks using
history-based IP filtering. In Proceedings of IEEE In-
ternational Conference on Communications. Anchor-
age, AK., pages 482–486.

Python (2022). pickle - Python ob-
ject serialization. [Online]. Available:
https://docs.python.org/3/library/pickle.html [Ac-
cessed: September 11, 2022].

Roser, M., Ritchie, H., and Ortiz-Ospina, E.
(2020). Internet. [Online]. Available:
https://ourworldindata.org/internet. [Accessed:
September 01, 2022].

Sahi, A., Lai, D., Li, Y., and Diykh, M. (2017). An Ef-
ficient DDoS TCP Flood Attack Detection and Pre-
vention System in a Cloud Environment. PhD thesis,
University of Southern Queensland, Toowoomba.

Schölkopf, B., Burges, C., and Vapnik, V. (1995). Ex-
tracting support data for a given task. Proceedings of
First International Conference on Knowledge Discov-
ery and Data Mining, Menlo Park, CA.

Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor,
J., and Platt, J. (1999). Support Vector Machines for

Novelty Detection. In Advances in Neural Informa-
tion Processing Systems 12, NIPS, page 582–588.

scikit learn (2022a). Novelty and Outlier De-
tection. [Online]. Available: https://scikit-
learn.org/stable/modules/outlier detection.html
[Accessed: September 03, 2022].

scikit learn (2022b). scikit-learn: Machine Learn-
ing in Python. [Online]. Available: https://scikit-
learn.org/stable/.[Accessed: September 03, 2022].

scikit learn (2022c). sklearn.linear model. Lo-
gisticRegression. [Online]. Available:
https://scikit-learn.org/stable/modules/generated/
sklearn.linear model/LogisticRegression.html [Ac-
cessed: September 10, 2022].

scikit learn (2022d). Supervised Learn-
ing. [Online]. Available: https://scikit-
learn.org/stable/supervised learning.html [Accessed:
September 09, 2022].

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Meth-
ods for Pattern Analysis. Cambridge University Press,
Cambridge.

Shieh, C.-S., Lin, W.-W., Nguyen, T.-T., Chen, C.-H.,
Horng, M.-F., and Miu, D. (2021). Detection of Un-
known DDoS Attacks with Deep Learning and Gaus-
sian Mixture Model. Applied Sciences.

The Apache Software Foundation (2022). Apache
- HTTP Server Project. [Online]. Available:
https://httpd.apache.org/ [Accessed: September 12,
2022].

Wireshark (2022). About Wireshark. [Online]. Available:
https://www.wireshark.org/ [Accessed: September 12,
2022].

